2014-04-15 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / loop-iv.c
blob9091220642ccda3ac559bec063c2d5028815a26a
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58 #include "cfgloop.h"
59 #include "expr.h"
60 #include "intl.h"
61 #include "diagnostic-core.h"
62 #include "df.h"
63 #include "hash-table.h"
64 #include "dumpfile.h"
66 /* Possible return values of iv_get_reaching_def. */
68 enum iv_grd_result
70 /* More than one reaching def, or reaching def that does not
71 dominate the use. */
72 GRD_INVALID,
74 /* The use is trivial invariant of the loop, i.e. is not changed
75 inside the loop. */
76 GRD_INVARIANT,
78 /* The use is reached by initial value and a value from the
79 previous iteration. */
80 GRD_MAYBE_BIV,
82 /* The use has single dominating def. */
83 GRD_SINGLE_DOM
86 /* Information about a biv. */
88 struct biv_entry
90 unsigned regno; /* The register of the biv. */
91 struct rtx_iv iv; /* Value of the biv. */
94 static bool clean_slate = true;
96 static unsigned int iv_ref_table_size = 0;
98 /* Table of rtx_ivs indexed by the df_ref uid field. */
99 static struct rtx_iv ** iv_ref_table;
101 /* Induction variable stored at the reference. */
102 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
103 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
105 /* The current loop. */
107 static struct loop *current_loop;
109 /* Hashtable helper. */
111 struct biv_entry_hasher : typed_free_remove <biv_entry>
113 typedef biv_entry value_type;
114 typedef rtx_def compare_type;
115 static inline hashval_t hash (const value_type *);
116 static inline bool equal (const value_type *, const compare_type *);
119 /* Returns hash value for biv B. */
121 inline hashval_t
122 biv_entry_hasher::hash (const value_type *b)
124 return b->regno;
127 /* Compares biv B and register R. */
129 inline bool
130 biv_entry_hasher::equal (const value_type *b, const compare_type *r)
132 return b->regno == REGNO (r);
135 /* Bivs of the current loop. */
137 static hash_table <biv_entry_hasher> bivs;
139 static bool iv_analyze_op (rtx, rtx, struct rtx_iv *);
141 /* Return the RTX code corresponding to the IV extend code EXTEND. */
142 static inline enum rtx_code
143 iv_extend_to_rtx_code (enum iv_extend_code extend)
145 switch (extend)
147 case IV_SIGN_EXTEND:
148 return SIGN_EXTEND;
149 case IV_ZERO_EXTEND:
150 return ZERO_EXTEND;
151 case IV_UNKNOWN_EXTEND:
152 return UNKNOWN;
154 gcc_unreachable ();
157 /* Dumps information about IV to FILE. */
159 extern void dump_iv_info (FILE *, struct rtx_iv *);
160 void
161 dump_iv_info (FILE *file, struct rtx_iv *iv)
163 if (!iv->base)
165 fprintf (file, "not simple");
166 return;
169 if (iv->step == const0_rtx
170 && !iv->first_special)
171 fprintf (file, "invariant ");
173 print_rtl (file, iv->base);
174 if (iv->step != const0_rtx)
176 fprintf (file, " + ");
177 print_rtl (file, iv->step);
178 fprintf (file, " * iteration");
180 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
182 if (iv->mode != iv->extend_mode)
183 fprintf (file, " %s to %s",
184 rtx_name[iv_extend_to_rtx_code (iv->extend)],
185 GET_MODE_NAME (iv->extend_mode));
187 if (iv->mult != const1_rtx)
189 fprintf (file, " * ");
190 print_rtl (file, iv->mult);
192 if (iv->delta != const0_rtx)
194 fprintf (file, " + ");
195 print_rtl (file, iv->delta);
197 if (iv->first_special)
198 fprintf (file, " (first special)");
201 /* Generates a subreg to get the least significant part of EXPR (in mode
202 INNER_MODE) to OUTER_MODE. */
205 lowpart_subreg (enum machine_mode outer_mode, rtx expr,
206 enum machine_mode inner_mode)
208 return simplify_gen_subreg (outer_mode, expr, inner_mode,
209 subreg_lowpart_offset (outer_mode, inner_mode));
212 static void
213 check_iv_ref_table_size (void)
215 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ())
217 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
218 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
219 memset (&iv_ref_table[iv_ref_table_size], 0,
220 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
221 iv_ref_table_size = new_size;
226 /* Checks whether REG is a well-behaved register. */
228 static bool
229 simple_reg_p (rtx reg)
231 unsigned r;
233 if (GET_CODE (reg) == SUBREG)
235 if (!subreg_lowpart_p (reg))
236 return false;
237 reg = SUBREG_REG (reg);
240 if (!REG_P (reg))
241 return false;
243 r = REGNO (reg);
244 if (HARD_REGISTER_NUM_P (r))
245 return false;
247 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
248 return false;
250 return true;
253 /* Clears the information about ivs stored in df. */
255 static void
256 clear_iv_info (void)
258 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
259 struct rtx_iv *iv;
261 check_iv_ref_table_size ();
262 for (i = 0; i < n_defs; i++)
264 iv = iv_ref_table[i];
265 if (iv)
267 free (iv);
268 iv_ref_table[i] = NULL;
272 bivs.empty ();
276 /* Prepare the data for an induction variable analysis of a LOOP. */
278 void
279 iv_analysis_loop_init (struct loop *loop)
281 current_loop = loop;
283 /* Clear the information from the analysis of the previous loop. */
284 if (clean_slate)
286 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
287 bivs.create (10);
288 clean_slate = false;
290 else
291 clear_iv_info ();
293 /* Get rid of the ud chains before processing the rescans. Then add
294 the problem back. */
295 df_remove_problem (df_chain);
296 df_process_deferred_rescans ();
297 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
298 df_chain_add_problem (DF_UD_CHAIN);
299 df_note_add_problem ();
300 df_analyze_loop (loop);
301 if (dump_file)
302 df_dump_region (dump_file);
304 check_iv_ref_table_size ();
307 /* Finds the definition of REG that dominates loop latch and stores
308 it to DEF. Returns false if there is not a single definition
309 dominating the latch. If REG has no definition in loop, DEF
310 is set to NULL and true is returned. */
312 static bool
313 latch_dominating_def (rtx reg, df_ref *def)
315 df_ref single_rd = NULL, adef;
316 unsigned regno = REGNO (reg);
317 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
319 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
321 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
322 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
323 continue;
325 /* More than one reaching definition. */
326 if (single_rd)
327 return false;
329 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
330 return false;
332 single_rd = adef;
335 *def = single_rd;
336 return true;
339 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
341 static enum iv_grd_result
342 iv_get_reaching_def (rtx insn, rtx reg, df_ref *def)
344 df_ref use, adef;
345 basic_block def_bb, use_bb;
346 rtx def_insn;
347 bool dom_p;
349 *def = NULL;
350 if (!simple_reg_p (reg))
351 return GRD_INVALID;
352 if (GET_CODE (reg) == SUBREG)
353 reg = SUBREG_REG (reg);
354 gcc_assert (REG_P (reg));
356 use = df_find_use (insn, reg);
357 gcc_assert (use != NULL);
359 if (!DF_REF_CHAIN (use))
360 return GRD_INVARIANT;
362 /* More than one reaching def. */
363 if (DF_REF_CHAIN (use)->next)
364 return GRD_INVALID;
366 adef = DF_REF_CHAIN (use)->ref;
368 /* We do not handle setting only part of the register. */
369 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
370 return GRD_INVALID;
372 def_insn = DF_REF_INSN (adef);
373 def_bb = DF_REF_BB (adef);
374 use_bb = BLOCK_FOR_INSN (insn);
376 if (use_bb == def_bb)
377 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
378 else
379 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
381 if (dom_p)
383 *def = adef;
384 return GRD_SINGLE_DOM;
387 /* The definition does not dominate the use. This is still OK if
388 this may be a use of a biv, i.e. if the def_bb dominates loop
389 latch. */
390 if (just_once_each_iteration_p (current_loop, def_bb))
391 return GRD_MAYBE_BIV;
393 return GRD_INVALID;
396 /* Sets IV to invariant CST in MODE. Always returns true (just for
397 consistency with other iv manipulation functions that may fail). */
399 static bool
400 iv_constant (struct rtx_iv *iv, rtx cst, enum machine_mode mode)
402 if (mode == VOIDmode)
403 mode = GET_MODE (cst);
405 iv->mode = mode;
406 iv->base = cst;
407 iv->step = const0_rtx;
408 iv->first_special = false;
409 iv->extend = IV_UNKNOWN_EXTEND;
410 iv->extend_mode = iv->mode;
411 iv->delta = const0_rtx;
412 iv->mult = const1_rtx;
414 return true;
417 /* Evaluates application of subreg to MODE on IV. */
419 static bool
420 iv_subreg (struct rtx_iv *iv, enum machine_mode mode)
422 /* If iv is invariant, just calculate the new value. */
423 if (iv->step == const0_rtx
424 && !iv->first_special)
426 rtx val = get_iv_value (iv, const0_rtx);
427 val = lowpart_subreg (mode, val,
428 iv->extend == IV_UNKNOWN_EXTEND
429 ? iv->mode : iv->extend_mode);
431 iv->base = val;
432 iv->extend = IV_UNKNOWN_EXTEND;
433 iv->mode = iv->extend_mode = mode;
434 iv->delta = const0_rtx;
435 iv->mult = const1_rtx;
436 return true;
439 if (iv->extend_mode == mode)
440 return true;
442 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
443 return false;
445 iv->extend = IV_UNKNOWN_EXTEND;
446 iv->mode = mode;
448 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
449 simplify_gen_binary (MULT, iv->extend_mode,
450 iv->base, iv->mult));
451 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
452 iv->mult = const1_rtx;
453 iv->delta = const0_rtx;
454 iv->first_special = false;
456 return true;
459 /* Evaluates application of EXTEND to MODE on IV. */
461 static bool
462 iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, enum machine_mode mode)
464 /* If iv is invariant, just calculate the new value. */
465 if (iv->step == const0_rtx
466 && !iv->first_special)
468 rtx val = get_iv_value (iv, const0_rtx);
469 if (iv->extend_mode != iv->mode
470 && iv->extend != IV_UNKNOWN_EXTEND
471 && iv->extend != extend)
472 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
473 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
474 val,
475 iv->extend == extend
476 ? iv->extend_mode : iv->mode);
477 iv->base = val;
478 iv->extend = IV_UNKNOWN_EXTEND;
479 iv->mode = iv->extend_mode = mode;
480 iv->delta = const0_rtx;
481 iv->mult = const1_rtx;
482 return true;
485 if (mode != iv->extend_mode)
486 return false;
488 if (iv->extend != IV_UNKNOWN_EXTEND
489 && iv->extend != extend)
490 return false;
492 iv->extend = extend;
494 return true;
497 /* Evaluates negation of IV. */
499 static bool
500 iv_neg (struct rtx_iv *iv)
502 if (iv->extend == IV_UNKNOWN_EXTEND)
504 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
505 iv->base, iv->extend_mode);
506 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
507 iv->step, iv->extend_mode);
509 else
511 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
512 iv->delta, iv->extend_mode);
513 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
514 iv->mult, iv->extend_mode);
517 return true;
520 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
522 static bool
523 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
525 enum machine_mode mode;
526 rtx arg;
528 /* Extend the constant to extend_mode of the other operand if necessary. */
529 if (iv0->extend == IV_UNKNOWN_EXTEND
530 && iv0->mode == iv0->extend_mode
531 && iv0->step == const0_rtx
532 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
534 iv0->extend_mode = iv1->extend_mode;
535 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
536 iv0->base, iv0->mode);
538 if (iv1->extend == IV_UNKNOWN_EXTEND
539 && iv1->mode == iv1->extend_mode
540 && iv1->step == const0_rtx
541 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
543 iv1->extend_mode = iv0->extend_mode;
544 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
545 iv1->base, iv1->mode);
548 mode = iv0->extend_mode;
549 if (mode != iv1->extend_mode)
550 return false;
552 if (iv0->extend == IV_UNKNOWN_EXTEND
553 && iv1->extend == IV_UNKNOWN_EXTEND)
555 if (iv0->mode != iv1->mode)
556 return false;
558 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
559 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
561 return true;
564 /* Handle addition of constant. */
565 if (iv1->extend == IV_UNKNOWN_EXTEND
566 && iv1->mode == mode
567 && iv1->step == const0_rtx)
569 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
570 return true;
573 if (iv0->extend == IV_UNKNOWN_EXTEND
574 && iv0->mode == mode
575 && iv0->step == const0_rtx)
577 arg = iv0->base;
578 *iv0 = *iv1;
579 if (op == MINUS
580 && !iv_neg (iv0))
581 return false;
583 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
584 return true;
587 return false;
590 /* Evaluates multiplication of IV by constant CST. */
592 static bool
593 iv_mult (struct rtx_iv *iv, rtx mby)
595 enum machine_mode mode = iv->extend_mode;
597 if (GET_MODE (mby) != VOIDmode
598 && GET_MODE (mby) != mode)
599 return false;
601 if (iv->extend == IV_UNKNOWN_EXTEND)
603 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
604 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
606 else
608 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
609 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
612 return true;
615 /* Evaluates shift of IV by constant CST. */
617 static bool
618 iv_shift (struct rtx_iv *iv, rtx mby)
620 enum machine_mode mode = iv->extend_mode;
622 if (GET_MODE (mby) != VOIDmode
623 && GET_MODE (mby) != mode)
624 return false;
626 if (iv->extend == IV_UNKNOWN_EXTEND)
628 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
629 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
631 else
633 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
634 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
637 return true;
640 /* The recursive part of get_biv_step. Gets the value of the single value
641 defined by DEF wrto initial value of REG inside loop, in shape described
642 at get_biv_step. */
644 static bool
645 get_biv_step_1 (df_ref def, rtx reg,
646 rtx *inner_step, enum machine_mode *inner_mode,
647 enum iv_extend_code *extend, enum machine_mode outer_mode,
648 rtx *outer_step)
650 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
651 rtx next, nextr, tmp;
652 enum rtx_code code;
653 rtx insn = DF_REF_INSN (def);
654 df_ref next_def;
655 enum iv_grd_result res;
657 set = single_set (insn);
658 if (!set)
659 return false;
661 rhs = find_reg_equal_equiv_note (insn);
662 if (rhs)
663 rhs = XEXP (rhs, 0);
664 else
665 rhs = SET_SRC (set);
667 code = GET_CODE (rhs);
668 switch (code)
670 case SUBREG:
671 case REG:
672 next = rhs;
673 break;
675 case PLUS:
676 case MINUS:
677 op0 = XEXP (rhs, 0);
678 op1 = XEXP (rhs, 1);
680 if (code == PLUS && CONSTANT_P (op0))
682 tmp = op0; op0 = op1; op1 = tmp;
685 if (!simple_reg_p (op0)
686 || !CONSTANT_P (op1))
687 return false;
689 if (GET_MODE (rhs) != outer_mode)
691 /* ppc64 uses expressions like
693 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
695 this is equivalent to
697 (set x':DI (plus:DI y:DI 1))
698 (set x:SI (subreg:SI (x':DI)). */
699 if (GET_CODE (op0) != SUBREG)
700 return false;
701 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
702 return false;
705 next = op0;
706 break;
708 case SIGN_EXTEND:
709 case ZERO_EXTEND:
710 if (GET_MODE (rhs) != outer_mode)
711 return false;
713 op0 = XEXP (rhs, 0);
714 if (!simple_reg_p (op0))
715 return false;
717 next = op0;
718 break;
720 default:
721 return false;
724 if (GET_CODE (next) == SUBREG)
726 if (!subreg_lowpart_p (next))
727 return false;
729 nextr = SUBREG_REG (next);
730 if (GET_MODE (nextr) != outer_mode)
731 return false;
733 else
734 nextr = next;
736 res = iv_get_reaching_def (insn, nextr, &next_def);
738 if (res == GRD_INVALID || res == GRD_INVARIANT)
739 return false;
741 if (res == GRD_MAYBE_BIV)
743 if (!rtx_equal_p (nextr, reg))
744 return false;
746 *inner_step = const0_rtx;
747 *extend = IV_UNKNOWN_EXTEND;
748 *inner_mode = outer_mode;
749 *outer_step = const0_rtx;
751 else if (!get_biv_step_1 (next_def, reg,
752 inner_step, inner_mode, extend, outer_mode,
753 outer_step))
754 return false;
756 if (GET_CODE (next) == SUBREG)
758 enum machine_mode amode = GET_MODE (next);
760 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
761 return false;
763 *inner_mode = amode;
764 *inner_step = simplify_gen_binary (PLUS, outer_mode,
765 *inner_step, *outer_step);
766 *outer_step = const0_rtx;
767 *extend = IV_UNKNOWN_EXTEND;
770 switch (code)
772 case REG:
773 case SUBREG:
774 break;
776 case PLUS:
777 case MINUS:
778 if (*inner_mode == outer_mode
779 /* See comment in previous switch. */
780 || GET_MODE (rhs) != outer_mode)
781 *inner_step = simplify_gen_binary (code, outer_mode,
782 *inner_step, op1);
783 else
784 *outer_step = simplify_gen_binary (code, outer_mode,
785 *outer_step, op1);
786 break;
788 case SIGN_EXTEND:
789 case ZERO_EXTEND:
790 gcc_assert (GET_MODE (op0) == *inner_mode
791 && *extend == IV_UNKNOWN_EXTEND
792 && *outer_step == const0_rtx);
794 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
795 break;
797 default:
798 return false;
801 return true;
804 /* Gets the operation on register REG inside loop, in shape
806 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
808 If the operation cannot be described in this shape, return false.
809 LAST_DEF is the definition of REG that dominates loop latch. */
811 static bool
812 get_biv_step (df_ref last_def, rtx reg, rtx *inner_step,
813 enum machine_mode *inner_mode, enum iv_extend_code *extend,
814 enum machine_mode *outer_mode, rtx *outer_step)
816 *outer_mode = GET_MODE (reg);
818 if (!get_biv_step_1 (last_def, reg,
819 inner_step, inner_mode, extend, *outer_mode,
820 outer_step))
821 return false;
823 gcc_assert ((*inner_mode == *outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
824 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx);
826 return true;
829 /* Records information that DEF is induction variable IV. */
831 static void
832 record_iv (df_ref def, struct rtx_iv *iv)
834 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
836 *recorded_iv = *iv;
837 check_iv_ref_table_size ();
838 DF_REF_IV_SET (def, recorded_iv);
841 /* If DEF was already analyzed for bivness, store the description of the biv to
842 IV and return true. Otherwise return false. */
844 static bool
845 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
847 struct biv_entry *biv = bivs.find_with_hash (def, REGNO (def));
849 if (!biv)
850 return false;
852 *iv = biv->iv;
853 return true;
856 static void
857 record_biv (rtx def, struct rtx_iv *iv)
859 struct biv_entry *biv = XNEW (struct biv_entry);
860 biv_entry **slot = bivs.find_slot_with_hash (def, REGNO (def), INSERT);
862 biv->regno = REGNO (def);
863 biv->iv = *iv;
864 gcc_assert (!*slot);
865 *slot = biv;
868 /* Determines whether DEF is a biv and if so, stores its description
869 to *IV. */
871 static bool
872 iv_analyze_biv (rtx def, struct rtx_iv *iv)
874 rtx inner_step, outer_step;
875 enum machine_mode inner_mode, outer_mode;
876 enum iv_extend_code extend;
877 df_ref last_def;
879 if (dump_file)
881 fprintf (dump_file, "Analyzing ");
882 print_rtl (dump_file, def);
883 fprintf (dump_file, " for bivness.\n");
886 if (!REG_P (def))
888 if (!CONSTANT_P (def))
889 return false;
891 return iv_constant (iv, def, VOIDmode);
894 if (!latch_dominating_def (def, &last_def))
896 if (dump_file)
897 fprintf (dump_file, " not simple.\n");
898 return false;
901 if (!last_def)
902 return iv_constant (iv, def, VOIDmode);
904 if (analyzed_for_bivness_p (def, iv))
906 if (dump_file)
907 fprintf (dump_file, " already analysed.\n");
908 return iv->base != NULL_RTX;
911 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend,
912 &outer_mode, &outer_step))
914 iv->base = NULL_RTX;
915 goto end;
918 /* Loop transforms base to es (base + inner_step) + outer_step,
919 where es means extend of subreg between inner_mode and outer_mode.
920 The corresponding induction variable is
922 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
924 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
925 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
926 iv->mode = inner_mode;
927 iv->extend_mode = outer_mode;
928 iv->extend = extend;
929 iv->mult = const1_rtx;
930 iv->delta = outer_step;
931 iv->first_special = inner_mode != outer_mode;
933 end:
934 if (dump_file)
936 fprintf (dump_file, " ");
937 dump_iv_info (dump_file, iv);
938 fprintf (dump_file, "\n");
941 record_biv (def, iv);
942 return iv->base != NULL_RTX;
945 /* Analyzes expression RHS used at INSN and stores the result to *IV.
946 The mode of the induction variable is MODE. */
948 bool
949 iv_analyze_expr (rtx insn, rtx rhs, enum machine_mode mode, struct rtx_iv *iv)
951 rtx mby = NULL_RTX, tmp;
952 rtx op0 = NULL_RTX, op1 = NULL_RTX;
953 struct rtx_iv iv0, iv1;
954 enum rtx_code code = GET_CODE (rhs);
955 enum machine_mode omode = mode;
957 iv->mode = VOIDmode;
958 iv->base = NULL_RTX;
959 iv->step = NULL_RTX;
961 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
963 if (CONSTANT_P (rhs)
964 || REG_P (rhs)
965 || code == SUBREG)
967 if (!iv_analyze_op (insn, rhs, iv))
968 return false;
970 if (iv->mode == VOIDmode)
972 iv->mode = mode;
973 iv->extend_mode = mode;
976 return true;
979 switch (code)
981 case REG:
982 op0 = rhs;
983 break;
985 case SIGN_EXTEND:
986 case ZERO_EXTEND:
987 case NEG:
988 op0 = XEXP (rhs, 0);
989 omode = GET_MODE (op0);
990 break;
992 case PLUS:
993 case MINUS:
994 op0 = XEXP (rhs, 0);
995 op1 = XEXP (rhs, 1);
996 break;
998 case MULT:
999 op0 = XEXP (rhs, 0);
1000 mby = XEXP (rhs, 1);
1001 if (!CONSTANT_P (mby))
1003 tmp = op0;
1004 op0 = mby;
1005 mby = tmp;
1007 if (!CONSTANT_P (mby))
1008 return false;
1009 break;
1011 case ASHIFT:
1012 op0 = XEXP (rhs, 0);
1013 mby = XEXP (rhs, 1);
1014 if (!CONSTANT_P (mby))
1015 return false;
1016 break;
1018 default:
1019 return false;
1022 if (op0
1023 && !iv_analyze_expr (insn, op0, omode, &iv0))
1024 return false;
1026 if (op1
1027 && !iv_analyze_expr (insn, op1, omode, &iv1))
1028 return false;
1030 switch (code)
1032 case SIGN_EXTEND:
1033 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1034 return false;
1035 break;
1037 case ZERO_EXTEND:
1038 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1039 return false;
1040 break;
1042 case NEG:
1043 if (!iv_neg (&iv0))
1044 return false;
1045 break;
1047 case PLUS:
1048 case MINUS:
1049 if (!iv_add (&iv0, &iv1, code))
1050 return false;
1051 break;
1053 case MULT:
1054 if (!iv_mult (&iv0, mby))
1055 return false;
1056 break;
1058 case ASHIFT:
1059 if (!iv_shift (&iv0, mby))
1060 return false;
1061 break;
1063 default:
1064 break;
1067 *iv = iv0;
1068 return iv->base != NULL_RTX;
1071 /* Analyzes iv DEF and stores the result to *IV. */
1073 static bool
1074 iv_analyze_def (df_ref def, struct rtx_iv *iv)
1076 rtx insn = DF_REF_INSN (def);
1077 rtx reg = DF_REF_REG (def);
1078 rtx set, rhs;
1080 if (dump_file)
1082 fprintf (dump_file, "Analyzing def of ");
1083 print_rtl (dump_file, reg);
1084 fprintf (dump_file, " in insn ");
1085 print_rtl_single (dump_file, insn);
1088 check_iv_ref_table_size ();
1089 if (DF_REF_IV (def))
1091 if (dump_file)
1092 fprintf (dump_file, " already analysed.\n");
1093 *iv = *DF_REF_IV (def);
1094 return iv->base != NULL_RTX;
1097 iv->mode = VOIDmode;
1098 iv->base = NULL_RTX;
1099 iv->step = NULL_RTX;
1101 if (!REG_P (reg))
1102 return false;
1104 set = single_set (insn);
1105 if (!set)
1106 return false;
1108 if (!REG_P (SET_DEST (set)))
1109 return false;
1111 gcc_assert (SET_DEST (set) == reg);
1112 rhs = find_reg_equal_equiv_note (insn);
1113 if (rhs)
1114 rhs = XEXP (rhs, 0);
1115 else
1116 rhs = SET_SRC (set);
1118 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv);
1119 record_iv (def, iv);
1121 if (dump_file)
1123 print_rtl (dump_file, reg);
1124 fprintf (dump_file, " in insn ");
1125 print_rtl_single (dump_file, insn);
1126 fprintf (dump_file, " is ");
1127 dump_iv_info (dump_file, iv);
1128 fprintf (dump_file, "\n");
1131 return iv->base != NULL_RTX;
1134 /* Analyzes operand OP of INSN and stores the result to *IV. */
1136 static bool
1137 iv_analyze_op (rtx insn, rtx op, struct rtx_iv *iv)
1139 df_ref def = NULL;
1140 enum iv_grd_result res;
1142 if (dump_file)
1144 fprintf (dump_file, "Analyzing operand ");
1145 print_rtl (dump_file, op);
1146 fprintf (dump_file, " of insn ");
1147 print_rtl_single (dump_file, insn);
1150 if (function_invariant_p (op))
1151 res = GRD_INVARIANT;
1152 else if (GET_CODE (op) == SUBREG)
1154 if (!subreg_lowpart_p (op))
1155 return false;
1157 if (!iv_analyze_op (insn, SUBREG_REG (op), iv))
1158 return false;
1160 return iv_subreg (iv, GET_MODE (op));
1162 else
1164 res = iv_get_reaching_def (insn, op, &def);
1165 if (res == GRD_INVALID)
1167 if (dump_file)
1168 fprintf (dump_file, " not simple.\n");
1169 return false;
1173 if (res == GRD_INVARIANT)
1175 iv_constant (iv, op, VOIDmode);
1177 if (dump_file)
1179 fprintf (dump_file, " ");
1180 dump_iv_info (dump_file, iv);
1181 fprintf (dump_file, "\n");
1183 return true;
1186 if (res == GRD_MAYBE_BIV)
1187 return iv_analyze_biv (op, iv);
1189 return iv_analyze_def (def, iv);
1192 /* Analyzes value VAL at INSN and stores the result to *IV. */
1194 bool
1195 iv_analyze (rtx insn, rtx val, struct rtx_iv *iv)
1197 rtx reg;
1199 /* We must find the insn in that val is used, so that we get to UD chains.
1200 Since the function is sometimes called on result of get_condition,
1201 this does not necessarily have to be directly INSN; scan also the
1202 following insns. */
1203 if (simple_reg_p (val))
1205 if (GET_CODE (val) == SUBREG)
1206 reg = SUBREG_REG (val);
1207 else
1208 reg = val;
1210 while (!df_find_use (insn, reg))
1211 insn = NEXT_INSN (insn);
1214 return iv_analyze_op (insn, val, iv);
1217 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1219 bool
1220 iv_analyze_result (rtx insn, rtx def, struct rtx_iv *iv)
1222 df_ref adef;
1224 adef = df_find_def (insn, def);
1225 if (!adef)
1226 return false;
1228 return iv_analyze_def (adef, iv);
1231 /* Checks whether definition of register REG in INSN is a basic induction
1232 variable. IV analysis must have been initialized (via a call to
1233 iv_analysis_loop_init) for this function to produce a result. */
1235 bool
1236 biv_p (rtx insn, rtx reg)
1238 struct rtx_iv iv;
1239 df_ref def, last_def;
1241 if (!simple_reg_p (reg))
1242 return false;
1244 def = df_find_def (insn, reg);
1245 gcc_assert (def != NULL);
1246 if (!latch_dominating_def (reg, &last_def))
1247 return false;
1248 if (last_def != def)
1249 return false;
1251 if (!iv_analyze_biv (reg, &iv))
1252 return false;
1254 return iv.step != const0_rtx;
1257 /* Calculates value of IV at ITERATION-th iteration. */
1260 get_iv_value (struct rtx_iv *iv, rtx iteration)
1262 rtx val;
1264 /* We would need to generate some if_then_else patterns, and so far
1265 it is not needed anywhere. */
1266 gcc_assert (!iv->first_special);
1268 if (iv->step != const0_rtx && iteration != const0_rtx)
1269 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1270 simplify_gen_binary (MULT, iv->extend_mode,
1271 iv->step, iteration));
1272 else
1273 val = iv->base;
1275 if (iv->extend_mode == iv->mode)
1276 return val;
1278 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1280 if (iv->extend == IV_UNKNOWN_EXTEND)
1281 return val;
1283 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1284 iv->extend_mode, val, iv->mode);
1285 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1286 simplify_gen_binary (MULT, iv->extend_mode,
1287 iv->mult, val));
1289 return val;
1292 /* Free the data for an induction variable analysis. */
1294 void
1295 iv_analysis_done (void)
1297 if (!clean_slate)
1299 clear_iv_info ();
1300 clean_slate = true;
1301 df_finish_pass (true);
1302 bivs.dispose ();
1303 free (iv_ref_table);
1304 iv_ref_table = NULL;
1305 iv_ref_table_size = 0;
1309 /* Computes inverse to X modulo (1 << MOD). */
1311 static unsigned HOST_WIDEST_INT
1312 inverse (unsigned HOST_WIDEST_INT x, int mod)
1314 unsigned HOST_WIDEST_INT mask =
1315 ((unsigned HOST_WIDEST_INT) 1 << (mod - 1) << 1) - 1;
1316 unsigned HOST_WIDEST_INT rslt = 1;
1317 int i;
1319 for (i = 0; i < mod - 1; i++)
1321 rslt = (rslt * x) & mask;
1322 x = (x * x) & mask;
1325 return rslt;
1328 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1330 static int
1331 altered_reg_used (rtx *reg, void *alt)
1333 if (!REG_P (*reg))
1334 return 0;
1336 return REGNO_REG_SET_P ((bitmap) alt, REGNO (*reg));
1339 /* Marks registers altered by EXPR in set ALT. */
1341 static void
1342 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1344 if (GET_CODE (expr) == SUBREG)
1345 expr = SUBREG_REG (expr);
1346 if (!REG_P (expr))
1347 return;
1349 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1352 /* Checks whether RHS is simple enough to process. */
1354 static bool
1355 simple_rhs_p (rtx rhs)
1357 rtx op0, op1;
1359 if (function_invariant_p (rhs)
1360 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1361 return true;
1363 switch (GET_CODE (rhs))
1365 case PLUS:
1366 case MINUS:
1367 case AND:
1368 op0 = XEXP (rhs, 0);
1369 op1 = XEXP (rhs, 1);
1370 /* Allow reg OP const and reg OP reg. */
1371 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1372 && !function_invariant_p (op0))
1373 return false;
1374 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1375 && !function_invariant_p (op1))
1376 return false;
1378 return true;
1380 case ASHIFT:
1381 case ASHIFTRT:
1382 case LSHIFTRT:
1383 case MULT:
1384 op0 = XEXP (rhs, 0);
1385 op1 = XEXP (rhs, 1);
1386 /* Allow reg OP const. */
1387 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1388 return false;
1389 if (!function_invariant_p (op1))
1390 return false;
1392 return true;
1394 default:
1395 return false;
1399 /* If REG has a single definition, replace it with its known value in EXPR.
1400 Callback for for_each_rtx. */
1402 static int
1403 replace_single_def_regs (rtx *reg, void *expr1)
1405 unsigned regno;
1406 df_ref adef;
1407 rtx set, src;
1408 rtx *expr = (rtx *)expr1;
1410 if (!REG_P (*reg))
1411 return 0;
1413 regno = REGNO (*reg);
1414 for (;;)
1416 rtx note;
1417 adef = DF_REG_DEF_CHAIN (regno);
1418 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1419 || DF_REF_IS_ARTIFICIAL (adef))
1420 return -1;
1422 set = single_set (DF_REF_INSN (adef));
1423 if (set == NULL || !REG_P (SET_DEST (set))
1424 || REGNO (SET_DEST (set)) != regno)
1425 return -1;
1427 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1429 if (note && function_invariant_p (XEXP (note, 0)))
1431 src = XEXP (note, 0);
1432 break;
1434 src = SET_SRC (set);
1436 if (REG_P (src))
1438 regno = REGNO (src);
1439 continue;
1441 break;
1443 if (!function_invariant_p (src))
1444 return -1;
1446 *expr = simplify_replace_rtx (*expr, *reg, src);
1447 return 1;
1450 /* A subroutine of simplify_using_initial_values, this function examines INSN
1451 to see if it contains a suitable set that we can use to make a replacement.
1452 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1453 the set; return false otherwise. */
1455 static bool
1456 suitable_set_for_replacement (rtx insn, rtx *dest, rtx *src)
1458 rtx set = single_set (insn);
1459 rtx lhs = NULL_RTX, rhs;
1461 if (!set)
1462 return false;
1464 lhs = SET_DEST (set);
1465 if (!REG_P (lhs))
1466 return false;
1468 rhs = find_reg_equal_equiv_note (insn);
1469 if (rhs)
1470 rhs = XEXP (rhs, 0);
1471 else
1472 rhs = SET_SRC (set);
1474 if (!simple_rhs_p (rhs))
1475 return false;
1477 *dest = lhs;
1478 *src = rhs;
1479 return true;
1482 /* Using the data returned by suitable_set_for_replacement, replace DEST
1483 with SRC in *EXPR and return the new expression. Also call
1484 replace_single_def_regs if the replacement changed something. */
1485 static void
1486 replace_in_expr (rtx *expr, rtx dest, rtx src)
1488 rtx old = *expr;
1489 *expr = simplify_replace_rtx (*expr, dest, src);
1490 if (old == *expr)
1491 return;
1492 while (for_each_rtx (expr, replace_single_def_regs, expr) != 0)
1493 continue;
1496 /* Checks whether A implies B. */
1498 static bool
1499 implies_p (rtx a, rtx b)
1501 rtx op0, op1, opb0, opb1, r;
1502 enum machine_mode mode;
1504 if (rtx_equal_p (a, b))
1505 return true;
1507 if (GET_CODE (a) == EQ)
1509 op0 = XEXP (a, 0);
1510 op1 = XEXP (a, 1);
1512 if (REG_P (op0)
1513 || (GET_CODE (op0) == SUBREG
1514 && REG_P (SUBREG_REG (op0))))
1516 r = simplify_replace_rtx (b, op0, op1);
1517 if (r == const_true_rtx)
1518 return true;
1521 if (REG_P (op1)
1522 || (GET_CODE (op1) == SUBREG
1523 && REG_P (SUBREG_REG (op1))))
1525 r = simplify_replace_rtx (b, op1, op0);
1526 if (r == const_true_rtx)
1527 return true;
1531 if (b == const_true_rtx)
1532 return true;
1534 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1535 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1536 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1537 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1538 return false;
1540 op0 = XEXP (a, 0);
1541 op1 = XEXP (a, 1);
1542 opb0 = XEXP (b, 0);
1543 opb1 = XEXP (b, 1);
1545 mode = GET_MODE (op0);
1546 if (mode != GET_MODE (opb0))
1547 mode = VOIDmode;
1548 else if (mode == VOIDmode)
1550 mode = GET_MODE (op1);
1551 if (mode != GET_MODE (opb1))
1552 mode = VOIDmode;
1555 /* A < B implies A + 1 <= B. */
1556 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1557 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1560 if (GET_CODE (a) == GT)
1562 r = op0;
1563 op0 = op1;
1564 op1 = r;
1567 if (GET_CODE (b) == GE)
1569 r = opb0;
1570 opb0 = opb1;
1571 opb1 = r;
1574 if (SCALAR_INT_MODE_P (mode)
1575 && rtx_equal_p (op1, opb1)
1576 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1577 return true;
1578 return false;
1581 /* A < B or A > B imply A != B. TODO: Likewise
1582 A + n < B implies A != B + n if neither wraps. */
1583 if (GET_CODE (b) == NE
1584 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1585 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1587 if (rtx_equal_p (op0, opb0)
1588 && rtx_equal_p (op1, opb1))
1589 return true;
1592 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1593 if (GET_CODE (a) == NE
1594 && op1 == const0_rtx)
1596 if ((GET_CODE (b) == GTU
1597 && opb1 == const0_rtx)
1598 || (GET_CODE (b) == GEU
1599 && opb1 == const1_rtx))
1600 return rtx_equal_p (op0, opb0);
1603 /* A != N is equivalent to A - (N + 1) <u -1. */
1604 if (GET_CODE (a) == NE
1605 && CONST_INT_P (op1)
1606 && GET_CODE (b) == LTU
1607 && opb1 == constm1_rtx
1608 && GET_CODE (opb0) == PLUS
1609 && CONST_INT_P (XEXP (opb0, 1))
1610 /* Avoid overflows. */
1611 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1612 != ((unsigned HOST_WIDE_INT)1
1613 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1614 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1615 return rtx_equal_p (op0, XEXP (opb0, 0));
1617 /* Likewise, A != N implies A - N > 0. */
1618 if (GET_CODE (a) == NE
1619 && CONST_INT_P (op1))
1621 if (GET_CODE (b) == GTU
1622 && GET_CODE (opb0) == PLUS
1623 && opb1 == const0_rtx
1624 && CONST_INT_P (XEXP (opb0, 1))
1625 /* Avoid overflows. */
1626 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1627 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1628 && rtx_equal_p (XEXP (opb0, 0), op0))
1629 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1630 if (GET_CODE (b) == GEU
1631 && GET_CODE (opb0) == PLUS
1632 && opb1 == const1_rtx
1633 && CONST_INT_P (XEXP (opb0, 1))
1634 /* Avoid overflows. */
1635 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1636 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1637 && rtx_equal_p (XEXP (opb0, 0), op0))
1638 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1641 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1642 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1643 && CONST_INT_P (op1)
1644 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1645 || INTVAL (op1) >= 0)
1646 && GET_CODE (b) == LTU
1647 && CONST_INT_P (opb1)
1648 && rtx_equal_p (op0, opb0))
1649 return INTVAL (opb1) < 0;
1651 return false;
1654 /* Canonicalizes COND so that
1656 (1) Ensure that operands are ordered according to
1657 swap_commutative_operands_p.
1658 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1659 for GE, GEU, and LEU. */
1662 canon_condition (rtx cond)
1664 rtx tem;
1665 rtx op0, op1;
1666 enum rtx_code code;
1667 enum machine_mode mode;
1669 code = GET_CODE (cond);
1670 op0 = XEXP (cond, 0);
1671 op1 = XEXP (cond, 1);
1673 if (swap_commutative_operands_p (op0, op1))
1675 code = swap_condition (code);
1676 tem = op0;
1677 op0 = op1;
1678 op1 = tem;
1681 mode = GET_MODE (op0);
1682 if (mode == VOIDmode)
1683 mode = GET_MODE (op1);
1684 gcc_assert (mode != VOIDmode);
1686 if (CONST_INT_P (op1)
1687 && GET_MODE_CLASS (mode) != MODE_CC
1688 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1690 HOST_WIDE_INT const_val = INTVAL (op1);
1691 unsigned HOST_WIDE_INT uconst_val = const_val;
1692 unsigned HOST_WIDE_INT max_val
1693 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode);
1695 switch (code)
1697 case LE:
1698 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
1699 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
1700 break;
1702 /* When cross-compiling, const_val might be sign-extended from
1703 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1704 case GE:
1705 if ((HOST_WIDE_INT) (const_val & max_val)
1706 != (((HOST_WIDE_INT) 1
1707 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
1708 code = GT, op1 = gen_int_mode (const_val - 1, mode);
1709 break;
1711 case LEU:
1712 if (uconst_val < max_val)
1713 code = LTU, op1 = gen_int_mode (uconst_val + 1, mode);
1714 break;
1716 case GEU:
1717 if (uconst_val != 0)
1718 code = GTU, op1 = gen_int_mode (uconst_val - 1, mode);
1719 break;
1721 default:
1722 break;
1726 if (op0 != XEXP (cond, 0)
1727 || op1 != XEXP (cond, 1)
1728 || code != GET_CODE (cond)
1729 || GET_MODE (cond) != SImode)
1730 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1732 return cond;
1735 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1736 set of altered regs. */
1738 void
1739 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1741 rtx rev, reve, exp = *expr;
1743 /* If some register gets altered later, we do not really speak about its
1744 value at the time of comparison. */
1745 if (altered
1746 && for_each_rtx (&cond, altered_reg_used, altered))
1747 return;
1749 if (GET_CODE (cond) == EQ
1750 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1752 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1753 return;
1756 if (!COMPARISON_P (exp))
1757 return;
1759 rev = reversed_condition (cond);
1760 reve = reversed_condition (exp);
1762 cond = canon_condition (cond);
1763 exp = canon_condition (exp);
1764 if (rev)
1765 rev = canon_condition (rev);
1766 if (reve)
1767 reve = canon_condition (reve);
1769 if (rtx_equal_p (exp, cond))
1771 *expr = const_true_rtx;
1772 return;
1775 if (rev && rtx_equal_p (exp, rev))
1777 *expr = const0_rtx;
1778 return;
1781 if (implies_p (cond, exp))
1783 *expr = const_true_rtx;
1784 return;
1787 if (reve && implies_p (cond, reve))
1789 *expr = const0_rtx;
1790 return;
1793 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1794 be false. */
1795 if (rev && implies_p (exp, rev))
1797 *expr = const0_rtx;
1798 return;
1801 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1802 if (rev && reve && implies_p (reve, rev))
1804 *expr = const_true_rtx;
1805 return;
1808 /* We would like to have some other tests here. TODO. */
1810 return;
1813 /* Use relationship between A and *B to eventually eliminate *B.
1814 OP is the operation we consider. */
1816 static void
1817 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1819 switch (op)
1821 case AND:
1822 /* If A implies *B, we may replace *B by true. */
1823 if (implies_p (a, *b))
1824 *b = const_true_rtx;
1825 break;
1827 case IOR:
1828 /* If *B implies A, we may replace *B by false. */
1829 if (implies_p (*b, a))
1830 *b = const0_rtx;
1831 break;
1833 default:
1834 gcc_unreachable ();
1838 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1839 operation we consider. */
1841 static void
1842 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1844 rtx elt;
1846 for (elt = tail; elt; elt = XEXP (elt, 1))
1847 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1848 for (elt = tail; elt; elt = XEXP (elt, 1))
1849 eliminate_implied_condition (op, XEXP (elt, 0), head);
1852 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1853 is a list, its elements are assumed to be combined using OP. */
1855 static void
1856 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1858 bool expression_valid;
1859 rtx head, tail, insn, cond_list, last_valid_expr;
1860 rtx neutral, aggr;
1861 regset altered, this_altered;
1862 edge e;
1864 if (!*expr)
1865 return;
1867 if (CONSTANT_P (*expr))
1868 return;
1870 if (GET_CODE (*expr) == EXPR_LIST)
1872 head = XEXP (*expr, 0);
1873 tail = XEXP (*expr, 1);
1875 eliminate_implied_conditions (op, &head, tail);
1877 switch (op)
1879 case AND:
1880 neutral = const_true_rtx;
1881 aggr = const0_rtx;
1882 break;
1884 case IOR:
1885 neutral = const0_rtx;
1886 aggr = const_true_rtx;
1887 break;
1889 default:
1890 gcc_unreachable ();
1893 simplify_using_initial_values (loop, UNKNOWN, &head);
1894 if (head == aggr)
1896 XEXP (*expr, 0) = aggr;
1897 XEXP (*expr, 1) = NULL_RTX;
1898 return;
1900 else if (head == neutral)
1902 *expr = tail;
1903 simplify_using_initial_values (loop, op, expr);
1904 return;
1906 simplify_using_initial_values (loop, op, &tail);
1908 if (tail && XEXP (tail, 0) == aggr)
1910 *expr = tail;
1911 return;
1914 XEXP (*expr, 0) = head;
1915 XEXP (*expr, 1) = tail;
1916 return;
1919 gcc_assert (op == UNKNOWN);
1921 for (;;)
1922 if (for_each_rtx (expr, replace_single_def_regs, expr) == 0)
1923 break;
1924 if (CONSTANT_P (*expr))
1925 return;
1927 e = loop_preheader_edge (loop);
1928 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1929 return;
1931 altered = ALLOC_REG_SET (&reg_obstack);
1932 this_altered = ALLOC_REG_SET (&reg_obstack);
1934 expression_valid = true;
1935 last_valid_expr = *expr;
1936 cond_list = NULL_RTX;
1937 while (1)
1939 insn = BB_END (e->src);
1940 if (any_condjump_p (insn))
1942 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1944 if (cond && (e->flags & EDGE_FALLTHRU))
1945 cond = reversed_condition (cond);
1946 if (cond)
1948 rtx old = *expr;
1949 simplify_using_condition (cond, expr, altered);
1950 if (old != *expr)
1952 rtx note;
1953 if (CONSTANT_P (*expr))
1954 goto out;
1955 for (note = cond_list; note; note = XEXP (note, 1))
1957 simplify_using_condition (XEXP (note, 0), expr, altered);
1958 if (CONSTANT_P (*expr))
1959 goto out;
1962 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1966 FOR_BB_INSNS_REVERSE (e->src, insn)
1968 rtx src, dest;
1969 rtx old = *expr;
1971 if (!INSN_P (insn))
1972 continue;
1974 CLEAR_REG_SET (this_altered);
1975 note_stores (PATTERN (insn), mark_altered, this_altered);
1976 if (CALL_P (insn))
1978 /* Kill all call clobbered registers. */
1979 unsigned int i;
1980 hard_reg_set_iterator hrsi;
1981 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1982 0, i, hrsi)
1983 SET_REGNO_REG_SET (this_altered, i);
1986 if (suitable_set_for_replacement (insn, &dest, &src))
1988 rtx *pnote, *pnote_next;
1990 replace_in_expr (expr, dest, src);
1991 if (CONSTANT_P (*expr))
1992 goto out;
1994 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1996 rtx note = *pnote;
1997 rtx old_cond = XEXP (note, 0);
1999 pnote_next = &XEXP (note, 1);
2000 replace_in_expr (&XEXP (note, 0), dest, src);
2002 /* We can no longer use a condition that has been simplified
2003 to a constant, and simplify_using_condition will abort if
2004 we try. */
2005 if (CONSTANT_P (XEXP (note, 0)))
2007 *pnote = *pnote_next;
2008 pnote_next = pnote;
2009 free_EXPR_LIST_node (note);
2011 /* Retry simplifications with this condition if either the
2012 expression or the condition changed. */
2013 else if (old_cond != XEXP (note, 0) || old != *expr)
2014 simplify_using_condition (XEXP (note, 0), expr, altered);
2017 else
2019 rtx *pnote, *pnote_next;
2021 /* If we did not use this insn to make a replacement, any overlap
2022 between stores in this insn and our expression will cause the
2023 expression to become invalid. */
2024 if (for_each_rtx (expr, altered_reg_used, this_altered))
2025 goto out;
2027 /* Likewise for the conditions. */
2028 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2030 rtx note = *pnote;
2031 rtx old_cond = XEXP (note, 0);
2033 pnote_next = &XEXP (note, 1);
2034 if (for_each_rtx (&old_cond, altered_reg_used, this_altered))
2036 *pnote = *pnote_next;
2037 pnote_next = pnote;
2038 free_EXPR_LIST_node (note);
2043 if (CONSTANT_P (*expr))
2044 goto out;
2046 IOR_REG_SET (altered, this_altered);
2048 /* If the expression now contains regs that have been altered, we
2049 can't return it to the caller. However, it is still valid for
2050 further simplification, so keep searching to see if we can
2051 eventually turn it into a constant. */
2052 if (for_each_rtx (expr, altered_reg_used, altered))
2053 expression_valid = false;
2054 if (expression_valid)
2055 last_valid_expr = *expr;
2058 if (!single_pred_p (e->src)
2059 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2060 break;
2061 e = single_pred_edge (e->src);
2064 out:
2065 free_EXPR_LIST_list (&cond_list);
2066 if (!CONSTANT_P (*expr))
2067 *expr = last_valid_expr;
2068 FREE_REG_SET (altered);
2069 FREE_REG_SET (this_altered);
2072 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2073 that IV occurs as left operands of comparison COND and its signedness
2074 is SIGNED_P to DESC. */
2076 static void
2077 shorten_into_mode (struct rtx_iv *iv, enum machine_mode mode,
2078 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2080 rtx mmin, mmax, cond_over, cond_under;
2082 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2083 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2084 iv->base, mmin);
2085 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2086 iv->base, mmax);
2088 switch (cond)
2090 case LE:
2091 case LT:
2092 case LEU:
2093 case LTU:
2094 if (cond_under != const0_rtx)
2095 desc->infinite =
2096 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2097 if (cond_over != const0_rtx)
2098 desc->noloop_assumptions =
2099 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2100 break;
2102 case GE:
2103 case GT:
2104 case GEU:
2105 case GTU:
2106 if (cond_over != const0_rtx)
2107 desc->infinite =
2108 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2109 if (cond_under != const0_rtx)
2110 desc->noloop_assumptions =
2111 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2112 break;
2114 case NE:
2115 if (cond_over != const0_rtx)
2116 desc->infinite =
2117 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2118 if (cond_under != const0_rtx)
2119 desc->infinite =
2120 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2121 break;
2123 default:
2124 gcc_unreachable ();
2127 iv->mode = mode;
2128 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2131 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2132 subregs of the same mode if possible (sometimes it is necessary to add
2133 some assumptions to DESC). */
2135 static bool
2136 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2137 enum rtx_code cond, struct niter_desc *desc)
2139 enum machine_mode comp_mode;
2140 bool signed_p;
2142 /* If the ivs behave specially in the first iteration, or are
2143 added/multiplied after extending, we ignore them. */
2144 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2145 return false;
2146 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2147 return false;
2149 /* If there is some extend, it must match signedness of the comparison. */
2150 switch (cond)
2152 case LE:
2153 case LT:
2154 if (iv0->extend == IV_ZERO_EXTEND
2155 || iv1->extend == IV_ZERO_EXTEND)
2156 return false;
2157 signed_p = true;
2158 break;
2160 case LEU:
2161 case LTU:
2162 if (iv0->extend == IV_SIGN_EXTEND
2163 || iv1->extend == IV_SIGN_EXTEND)
2164 return false;
2165 signed_p = false;
2166 break;
2168 case NE:
2169 if (iv0->extend != IV_UNKNOWN_EXTEND
2170 && iv1->extend != IV_UNKNOWN_EXTEND
2171 && iv0->extend != iv1->extend)
2172 return false;
2174 signed_p = false;
2175 if (iv0->extend != IV_UNKNOWN_EXTEND)
2176 signed_p = iv0->extend == IV_SIGN_EXTEND;
2177 if (iv1->extend != IV_UNKNOWN_EXTEND)
2178 signed_p = iv1->extend == IV_SIGN_EXTEND;
2179 break;
2181 default:
2182 gcc_unreachable ();
2185 /* Values of both variables should be computed in the same mode. These
2186 might indeed be different, if we have comparison like
2188 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2190 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2191 in different modes. This does not seem impossible to handle, but
2192 it hardly ever occurs in practice.
2194 The only exception is the case when one of operands is invariant.
2195 For example pentium 3 generates comparisons like
2196 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2197 definitely do not want this prevent the optimization. */
2198 comp_mode = iv0->extend_mode;
2199 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2200 comp_mode = iv1->extend_mode;
2202 if (iv0->extend_mode != comp_mode)
2204 if (iv0->mode != iv0->extend_mode
2205 || iv0->step != const0_rtx)
2206 return false;
2208 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2209 comp_mode, iv0->base, iv0->mode);
2210 iv0->extend_mode = comp_mode;
2213 if (iv1->extend_mode != comp_mode)
2215 if (iv1->mode != iv1->extend_mode
2216 || iv1->step != const0_rtx)
2217 return false;
2219 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2220 comp_mode, iv1->base, iv1->mode);
2221 iv1->extend_mode = comp_mode;
2224 /* Check that both ivs belong to a range of a single mode. If one of the
2225 operands is an invariant, we may need to shorten it into the common
2226 mode. */
2227 if (iv0->mode == iv0->extend_mode
2228 && iv0->step == const0_rtx
2229 && iv0->mode != iv1->mode)
2230 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2232 if (iv1->mode == iv1->extend_mode
2233 && iv1->step == const0_rtx
2234 && iv0->mode != iv1->mode)
2235 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2237 if (iv0->mode != iv1->mode)
2238 return false;
2240 desc->mode = iv0->mode;
2241 desc->signed_p = signed_p;
2243 return true;
2246 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2247 result. This function is called from iv_number_of_iterations with
2248 a number of fields in DESC already filled in. OLD_NITER is the original
2249 expression for the number of iterations, before we tried to simplify it. */
2251 static unsigned HOST_WIDEST_INT
2252 determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
2254 rtx niter = desc->niter_expr;
2255 rtx mmin, mmax, cmp;
2256 unsigned HOST_WIDEST_INT nmax, inc;
2257 unsigned HOST_WIDEST_INT andmax = 0;
2259 /* We used to look for constant operand 0 of AND,
2260 but canonicalization should always make this impossible. */
2261 gcc_checking_assert (GET_CODE (niter) != AND
2262 || !CONST_INT_P (XEXP (niter, 0)));
2264 if (GET_CODE (niter) == AND
2265 && CONST_INT_P (XEXP (niter, 1)))
2267 andmax = UINTVAL (XEXP (niter, 1));
2268 niter = XEXP (niter, 0);
2271 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2272 nmax = INTVAL (mmax) - INTVAL (mmin);
2274 if (GET_CODE (niter) == UDIV)
2276 if (!CONST_INT_P (XEXP (niter, 1)))
2277 return nmax;
2278 inc = INTVAL (XEXP (niter, 1));
2279 niter = XEXP (niter, 0);
2281 else
2282 inc = 1;
2284 /* We could use a binary search here, but for now improving the upper
2285 bound by just one eliminates one important corner case. */
2286 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2287 desc->mode, old_niter, mmax);
2288 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2289 if (cmp == const_true_rtx)
2291 nmax--;
2293 if (dump_file)
2294 fprintf (dump_file, ";; improved upper bound by one.\n");
2296 nmax /= inc;
2297 if (andmax)
2298 nmax = MIN (nmax, andmax);
2299 if (dump_file)
2300 fprintf (dump_file, ";; Determined upper bound "HOST_WIDEST_INT_PRINT_DEC".\n",
2301 nmax);
2302 return nmax;
2305 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2306 the result into DESC. Very similar to determine_number_of_iterations
2307 (basically its rtl version), complicated by things like subregs. */
2309 static void
2310 iv_number_of_iterations (struct loop *loop, rtx insn, rtx condition,
2311 struct niter_desc *desc)
2313 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2314 struct rtx_iv iv0, iv1, tmp_iv;
2315 rtx assumption, may_not_xform;
2316 enum rtx_code cond;
2317 enum machine_mode mode, comp_mode;
2318 rtx mmin, mmax, mode_mmin, mode_mmax;
2319 unsigned HOST_WIDEST_INT s, size, d, inv, max;
2320 HOST_WIDEST_INT up, down, inc, step_val;
2321 int was_sharp = false;
2322 rtx old_niter;
2323 bool step_is_pow2;
2325 /* The meaning of these assumptions is this:
2326 if !assumptions
2327 then the rest of information does not have to be valid
2328 if noloop_assumptions then the loop does not roll
2329 if infinite then this exit is never used */
2331 desc->assumptions = NULL_RTX;
2332 desc->noloop_assumptions = NULL_RTX;
2333 desc->infinite = NULL_RTX;
2334 desc->simple_p = true;
2336 desc->const_iter = false;
2337 desc->niter_expr = NULL_RTX;
2339 cond = GET_CODE (condition);
2340 gcc_assert (COMPARISON_P (condition));
2342 mode = GET_MODE (XEXP (condition, 0));
2343 if (mode == VOIDmode)
2344 mode = GET_MODE (XEXP (condition, 1));
2345 /* The constant comparisons should be folded. */
2346 gcc_assert (mode != VOIDmode);
2348 /* We only handle integers or pointers. */
2349 if (GET_MODE_CLASS (mode) != MODE_INT
2350 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
2351 goto fail;
2353 op0 = XEXP (condition, 0);
2354 if (!iv_analyze (insn, op0, &iv0))
2355 goto fail;
2356 if (iv0.extend_mode == VOIDmode)
2357 iv0.mode = iv0.extend_mode = mode;
2359 op1 = XEXP (condition, 1);
2360 if (!iv_analyze (insn, op1, &iv1))
2361 goto fail;
2362 if (iv1.extend_mode == VOIDmode)
2363 iv1.mode = iv1.extend_mode = mode;
2365 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2366 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2367 goto fail;
2369 /* Check condition and normalize it. */
2371 switch (cond)
2373 case GE:
2374 case GT:
2375 case GEU:
2376 case GTU:
2377 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
2378 cond = swap_condition (cond);
2379 break;
2380 case NE:
2381 case LE:
2382 case LEU:
2383 case LT:
2384 case LTU:
2385 break;
2386 default:
2387 goto fail;
2390 /* Handle extends. This is relatively nontrivial, so we only try in some
2391 easy cases, when we can canonicalize the ivs (possibly by adding some
2392 assumptions) to shape subreg (base + i * step). This function also fills
2393 in desc->mode and desc->signed_p. */
2395 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2396 goto fail;
2398 comp_mode = iv0.extend_mode;
2399 mode = iv0.mode;
2400 size = GET_MODE_BITSIZE (mode);
2401 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2402 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2403 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2405 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2406 goto fail;
2408 /* We can take care of the case of two induction variables chasing each other
2409 if the test is NE. I have never seen a loop using it, but still it is
2410 cool. */
2411 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2413 if (cond != NE)
2414 goto fail;
2416 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2417 iv1.step = const0_rtx;
2420 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2421 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2423 /* This is either infinite loop or the one that ends immediately, depending
2424 on initial values. Unswitching should remove this kind of conditions. */
2425 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2426 goto fail;
2428 if (cond != NE)
2430 if (iv0.step == const0_rtx)
2431 step_val = -INTVAL (iv1.step);
2432 else
2433 step_val = INTVAL (iv0.step);
2435 /* Ignore loops of while (i-- < 10) type. */
2436 if (step_val < 0)
2437 goto fail;
2439 step_is_pow2 = !(step_val & (step_val - 1));
2441 else
2443 /* We do not care about whether the step is power of two in this
2444 case. */
2445 step_is_pow2 = false;
2446 step_val = 0;
2449 /* Some more condition normalization. We must record some assumptions
2450 due to overflows. */
2451 switch (cond)
2453 case LT:
2454 case LTU:
2455 /* We want to take care only of non-sharp relationals; this is easy,
2456 as in cases the overflow would make the transformation unsafe
2457 the loop does not roll. Seemingly it would make more sense to want
2458 to take care of sharp relationals instead, as NE is more similar to
2459 them, but the problem is that here the transformation would be more
2460 difficult due to possibly infinite loops. */
2461 if (iv0.step == const0_rtx)
2463 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2464 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2465 mode_mmax);
2466 if (assumption == const_true_rtx)
2467 goto zero_iter_simplify;
2468 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2469 iv0.base, const1_rtx);
2471 else
2473 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2474 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2475 mode_mmin);
2476 if (assumption == const_true_rtx)
2477 goto zero_iter_simplify;
2478 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2479 iv1.base, constm1_rtx);
2482 if (assumption != const0_rtx)
2483 desc->noloop_assumptions =
2484 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2485 cond = (cond == LT) ? LE : LEU;
2487 /* It will be useful to be able to tell the difference once more in
2488 LE -> NE reduction. */
2489 was_sharp = true;
2490 break;
2491 default: ;
2494 /* Take care of trivially infinite loops. */
2495 if (cond != NE)
2497 if (iv0.step == const0_rtx)
2499 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2500 if (rtx_equal_p (tmp, mode_mmin))
2502 desc->infinite =
2503 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2504 /* Fill in the remaining fields somehow. */
2505 goto zero_iter_simplify;
2508 else
2510 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2511 if (rtx_equal_p (tmp, mode_mmax))
2513 desc->infinite =
2514 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2515 /* Fill in the remaining fields somehow. */
2516 goto zero_iter_simplify;
2521 /* If we can we want to take care of NE conditions instead of size
2522 comparisons, as they are much more friendly (most importantly
2523 this takes care of special handling of loops with step 1). We can
2524 do it if we first check that upper bound is greater or equal to
2525 lower bound, their difference is constant c modulo step and that
2526 there is not an overflow. */
2527 if (cond != NE)
2529 if (iv0.step == const0_rtx)
2530 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2531 else
2532 step = iv0.step;
2533 step = lowpart_subreg (mode, step, comp_mode);
2534 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2535 delta = lowpart_subreg (mode, delta, comp_mode);
2536 delta = simplify_gen_binary (UMOD, mode, delta, step);
2537 may_xform = const0_rtx;
2538 may_not_xform = const_true_rtx;
2540 if (CONST_INT_P (delta))
2542 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2544 /* A special case. We have transformed condition of type
2545 for (i = 0; i < 4; i += 4)
2546 into
2547 for (i = 0; i <= 3; i += 4)
2548 obviously if the test for overflow during that transformation
2549 passed, we cannot overflow here. Most importantly any
2550 loop with sharp end condition and step 1 falls into this
2551 category, so handling this case specially is definitely
2552 worth the troubles. */
2553 may_xform = const_true_rtx;
2555 else if (iv0.step == const0_rtx)
2557 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2558 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2559 bound = lowpart_subreg (mode, bound, comp_mode);
2560 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2561 may_xform = simplify_gen_relational (cond, SImode, mode,
2562 bound, tmp);
2563 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2564 SImode, mode,
2565 bound, tmp);
2567 else
2569 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2570 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2571 bound = lowpart_subreg (mode, bound, comp_mode);
2572 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2573 may_xform = simplify_gen_relational (cond, SImode, mode,
2574 tmp, bound);
2575 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2576 SImode, mode,
2577 tmp, bound);
2581 if (may_xform != const0_rtx)
2583 /* We perform the transformation always provided that it is not
2584 completely senseless. This is OK, as we would need this assumption
2585 to determine the number of iterations anyway. */
2586 if (may_xform != const_true_rtx)
2588 /* If the step is a power of two and the final value we have
2589 computed overflows, the cycle is infinite. Otherwise it
2590 is nontrivial to compute the number of iterations. */
2591 if (step_is_pow2)
2592 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2593 desc->infinite);
2594 else
2595 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2596 desc->assumptions);
2599 /* We are going to lose some information about upper bound on
2600 number of iterations in this step, so record the information
2601 here. */
2602 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2603 if (CONST_INT_P (iv1.base))
2604 up = INTVAL (iv1.base);
2605 else
2606 up = INTVAL (mode_mmax) - inc;
2607 down = INTVAL (CONST_INT_P (iv0.base)
2608 ? iv0.base
2609 : mode_mmin);
2610 max = (up - down) / inc + 1;
2611 if (!desc->infinite
2612 && !desc->assumptions)
2613 record_niter_bound (loop, double_int::from_uhwi (max),
2614 false, true);
2616 if (iv0.step == const0_rtx)
2618 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2619 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2621 else
2623 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2624 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2627 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2628 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2629 assumption = simplify_gen_relational (reverse_condition (cond),
2630 SImode, mode, tmp0, tmp1);
2631 if (assumption == const_true_rtx)
2632 goto zero_iter_simplify;
2633 else if (assumption != const0_rtx)
2634 desc->noloop_assumptions =
2635 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2636 cond = NE;
2640 /* Count the number of iterations. */
2641 if (cond == NE)
2643 /* Everything we do here is just arithmetics modulo size of mode. This
2644 makes us able to do more involved computations of number of iterations
2645 than in other cases. First transform the condition into shape
2646 s * i <> c, with s positive. */
2647 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2648 iv0.base = const0_rtx;
2649 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2650 iv1.step = const0_rtx;
2651 if (INTVAL (iv0.step) < 0)
2653 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, mode);
2654 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, mode);
2656 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2658 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2659 is infinite. Otherwise, the number of iterations is
2660 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2661 s = INTVAL (iv0.step); d = 1;
2662 while (s % 2 != 1)
2664 s /= 2;
2665 d *= 2;
2666 size--;
2668 bound = GEN_INT (((unsigned HOST_WIDEST_INT) 1 << (size - 1 ) << 1) - 1);
2670 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2671 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
2672 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2673 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2675 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
2676 inv = inverse (s, size);
2677 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2678 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2680 else
2682 if (iv1.step == const0_rtx)
2683 /* Condition in shape a + s * i <= b
2684 We must know that b + s does not overflow and a <= b + s and then we
2685 can compute number of iterations as (b + s - a) / s. (It might
2686 seem that we in fact could be more clever about testing the b + s
2687 overflow condition using some information about b - a mod s,
2688 but it was already taken into account during LE -> NE transform). */
2690 step = iv0.step;
2691 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2692 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2694 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2695 lowpart_subreg (mode, step,
2696 comp_mode));
2697 if (step_is_pow2)
2699 rtx t0, t1;
2701 /* If s is power of 2, we know that the loop is infinite if
2702 a % s <= b % s and b + s overflows. */
2703 assumption = simplify_gen_relational (reverse_condition (cond),
2704 SImode, mode,
2705 tmp1, bound);
2707 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2708 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2709 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2710 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2711 desc->infinite =
2712 alloc_EXPR_LIST (0, assumption, desc->infinite);
2714 else
2716 assumption = simplify_gen_relational (cond, SImode, mode,
2717 tmp1, bound);
2718 desc->assumptions =
2719 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2722 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2723 tmp = lowpart_subreg (mode, tmp, comp_mode);
2724 assumption = simplify_gen_relational (reverse_condition (cond),
2725 SImode, mode, tmp0, tmp);
2727 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2728 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2730 else
2732 /* Condition in shape a <= b - s * i
2733 We must know that a - s does not overflow and a - s <= b and then
2734 we can again compute number of iterations as (b - (a - s)) / s. */
2735 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2736 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2737 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2739 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2740 lowpart_subreg (mode, step, comp_mode));
2741 if (step_is_pow2)
2743 rtx t0, t1;
2745 /* If s is power of 2, we know that the loop is infinite if
2746 a % s <= b % s and a - s overflows. */
2747 assumption = simplify_gen_relational (reverse_condition (cond),
2748 SImode, mode,
2749 bound, tmp0);
2751 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2752 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2753 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2754 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2755 desc->infinite =
2756 alloc_EXPR_LIST (0, assumption, desc->infinite);
2758 else
2760 assumption = simplify_gen_relational (cond, SImode, mode,
2761 bound, tmp0);
2762 desc->assumptions =
2763 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2766 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2767 tmp = lowpart_subreg (mode, tmp, comp_mode);
2768 assumption = simplify_gen_relational (reverse_condition (cond),
2769 SImode, mode,
2770 tmp, tmp1);
2771 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2772 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2774 if (assumption == const_true_rtx)
2775 goto zero_iter_simplify;
2776 else if (assumption != const0_rtx)
2777 desc->noloop_assumptions =
2778 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2779 delta = simplify_gen_binary (UDIV, mode, delta, step);
2780 desc->niter_expr = delta;
2783 old_niter = desc->niter_expr;
2785 simplify_using_initial_values (loop, AND, &desc->assumptions);
2786 if (desc->assumptions
2787 && XEXP (desc->assumptions, 0) == const0_rtx)
2788 goto fail;
2789 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2790 simplify_using_initial_values (loop, IOR, &desc->infinite);
2791 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2793 /* Rerun the simplification. Consider code (created by copying loop headers)
2795 i = 0;
2797 if (0 < n)
2801 i++;
2802 } while (i < n);
2805 The first pass determines that i = 0, the second pass uses it to eliminate
2806 noloop assumption. */
2808 simplify_using_initial_values (loop, AND, &desc->assumptions);
2809 if (desc->assumptions
2810 && XEXP (desc->assumptions, 0) == const0_rtx)
2811 goto fail;
2812 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2813 simplify_using_initial_values (loop, IOR, &desc->infinite);
2814 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2816 if (desc->noloop_assumptions
2817 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2818 goto zero_iter;
2820 if (CONST_INT_P (desc->niter_expr))
2822 unsigned HOST_WIDEST_INT val = INTVAL (desc->niter_expr);
2824 desc->const_iter = true;
2825 desc->niter = val & GET_MODE_MASK (desc->mode);
2826 if (!desc->infinite
2827 && !desc->assumptions)
2828 record_niter_bound (loop, double_int::from_uhwi (desc->niter),
2829 false, true);
2831 else
2833 max = determine_max_iter (loop, desc, old_niter);
2834 if (!max)
2835 goto zero_iter_simplify;
2836 if (!desc->infinite
2837 && !desc->assumptions)
2838 record_niter_bound (loop, double_int::from_uhwi (max),
2839 false, true);
2841 /* simplify_using_initial_values does a copy propagation on the registers
2842 in the expression for the number of iterations. This prolongs life
2843 ranges of registers and increases register pressure, and usually
2844 brings no gain (and if it happens to do, the cse pass will take care
2845 of it anyway). So prevent this behavior, unless it enabled us to
2846 derive that the number of iterations is a constant. */
2847 desc->niter_expr = old_niter;
2850 return;
2852 zero_iter_simplify:
2853 /* Simplify the assumptions. */
2854 simplify_using_initial_values (loop, AND, &desc->assumptions);
2855 if (desc->assumptions
2856 && XEXP (desc->assumptions, 0) == const0_rtx)
2857 goto fail;
2858 simplify_using_initial_values (loop, IOR, &desc->infinite);
2860 /* Fallthru. */
2861 zero_iter:
2862 desc->const_iter = true;
2863 desc->niter = 0;
2864 record_niter_bound (loop, double_int_zero,
2865 true, true);
2866 desc->noloop_assumptions = NULL_RTX;
2867 desc->niter_expr = const0_rtx;
2868 return;
2870 fail:
2871 desc->simple_p = false;
2872 return;
2875 /* Checks whether E is a simple exit from LOOP and stores its description
2876 into DESC. */
2878 static void
2879 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2881 basic_block exit_bb;
2882 rtx condition, at;
2883 edge ein;
2885 exit_bb = e->src;
2886 desc->simple_p = false;
2888 /* It must belong directly to the loop. */
2889 if (exit_bb->loop_father != loop)
2890 return;
2892 /* It must be tested (at least) once during any iteration. */
2893 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2894 return;
2896 /* It must end in a simple conditional jump. */
2897 if (!any_condjump_p (BB_END (exit_bb)))
2898 return;
2900 ein = EDGE_SUCC (exit_bb, 0);
2901 if (ein == e)
2902 ein = EDGE_SUCC (exit_bb, 1);
2904 desc->out_edge = e;
2905 desc->in_edge = ein;
2907 /* Test whether the condition is suitable. */
2908 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2909 return;
2911 if (ein->flags & EDGE_FALLTHRU)
2913 condition = reversed_condition (condition);
2914 if (!condition)
2915 return;
2918 /* Check that we are able to determine number of iterations and fill
2919 in information about it. */
2920 iv_number_of_iterations (loop, at, condition, desc);
2923 /* Finds a simple exit of LOOP and stores its description into DESC. */
2925 void
2926 find_simple_exit (struct loop *loop, struct niter_desc *desc)
2928 unsigned i;
2929 basic_block *body;
2930 edge e;
2931 struct niter_desc act;
2932 bool any = false;
2933 edge_iterator ei;
2935 desc->simple_p = false;
2936 body = get_loop_body (loop);
2938 for (i = 0; i < loop->num_nodes; i++)
2940 FOR_EACH_EDGE (e, ei, body[i]->succs)
2942 if (flow_bb_inside_loop_p (loop, e->dest))
2943 continue;
2945 check_simple_exit (loop, e, &act);
2946 if (!act.simple_p)
2947 continue;
2949 if (!any)
2950 any = true;
2951 else
2953 /* Prefer constant iterations; the less the better. */
2954 if (!act.const_iter
2955 || (desc->const_iter && act.niter >= desc->niter))
2956 continue;
2958 /* Also if the actual exit may be infinite, while the old one
2959 not, prefer the old one. */
2960 if (act.infinite && !desc->infinite)
2961 continue;
2964 *desc = act;
2968 if (dump_file)
2970 if (desc->simple_p)
2972 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2973 fprintf (dump_file, " simple exit %d -> %d\n",
2974 desc->out_edge->src->index,
2975 desc->out_edge->dest->index);
2976 if (desc->assumptions)
2978 fprintf (dump_file, " assumptions: ");
2979 print_rtl (dump_file, desc->assumptions);
2980 fprintf (dump_file, "\n");
2982 if (desc->noloop_assumptions)
2984 fprintf (dump_file, " does not roll if: ");
2985 print_rtl (dump_file, desc->noloop_assumptions);
2986 fprintf (dump_file, "\n");
2988 if (desc->infinite)
2990 fprintf (dump_file, " infinite if: ");
2991 print_rtl (dump_file, desc->infinite);
2992 fprintf (dump_file, "\n");
2995 fprintf (dump_file, " number of iterations: ");
2996 print_rtl (dump_file, desc->niter_expr);
2997 fprintf (dump_file, "\n");
2999 fprintf (dump_file, " upper bound: %li\n",
3000 (long)get_max_loop_iterations_int (loop));
3001 fprintf (dump_file, " realistic bound: %li\n",
3002 (long)get_estimated_loop_iterations_int (loop));
3004 else
3005 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
3008 free (body);
3011 /* Creates a simple loop description of LOOP if it was not computed
3012 already. */
3014 struct niter_desc *
3015 get_simple_loop_desc (struct loop *loop)
3017 struct niter_desc *desc = simple_loop_desc (loop);
3019 if (desc)
3020 return desc;
3022 /* At least desc->infinite is not always initialized by
3023 find_simple_loop_exit. */
3024 desc = ggc_alloc_cleared_niter_desc ();
3025 iv_analysis_loop_init (loop);
3026 find_simple_exit (loop, desc);
3027 loop->simple_loop_desc = desc;
3029 if (desc->simple_p && (desc->assumptions || desc->infinite))
3031 const char *wording;
3033 /* Assume that no overflow happens and that the loop is finite.
3034 We already warned at the tree level if we ran optimizations there. */
3035 if (!flag_tree_loop_optimize && warn_unsafe_loop_optimizations)
3037 if (desc->infinite)
3039 wording =
3040 flag_unsafe_loop_optimizations
3041 ? N_("assuming that the loop is not infinite")
3042 : N_("cannot optimize possibly infinite loops");
3043 warning (OPT_Wunsafe_loop_optimizations, "%s",
3044 gettext (wording));
3046 if (desc->assumptions)
3048 wording =
3049 flag_unsafe_loop_optimizations
3050 ? N_("assuming that the loop counter does not overflow")
3051 : N_("cannot optimize loop, the loop counter may overflow");
3052 warning (OPT_Wunsafe_loop_optimizations, "%s",
3053 gettext (wording));
3057 if (flag_unsafe_loop_optimizations)
3059 desc->assumptions = NULL_RTX;
3060 desc->infinite = NULL_RTX;
3064 return desc;
3067 /* Releases simple loop description for LOOP. */
3069 void
3070 free_simple_loop_desc (struct loop *loop)
3072 struct niter_desc *desc = simple_loop_desc (loop);
3074 if (!desc)
3075 return;
3077 ggc_free (desc);
3078 loop->simple_loop_desc = NULL;