2015-05-22 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / ada / exp_aggr.adb
blob8651074d4929263490aea5902d792567d123a9a5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Util; use Exp_Util;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Lib; use Lib;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Ttypes; use Ttypes;
52 with Sem; use Sem;
53 with Sem_Aggr; use Sem_Aggr;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Ch3; use Sem_Ch3;
56 with Sem_Eval; use Sem_Eval;
57 with Sem_Res; use Sem_Res;
58 with Sem_Util; use Sem_Util;
59 with Sinfo; use Sinfo;
60 with Snames; use Snames;
61 with Stand; use Stand;
62 with Stringt; use Stringt;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Uintp; use Uintp;
67 package body Exp_Aggr is
69 type Case_Bounds is record
70 Choice_Lo : Node_Id;
71 Choice_Hi : Node_Id;
72 Choice_Node : Node_Id;
73 end record;
75 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
76 -- Table type used by Check_Case_Choices procedure
78 procedure Collect_Initialization_Statements
79 (Obj : Entity_Id;
80 N : Node_Id;
81 Node_After : Node_Id);
82 -- If Obj is not frozen, collect actions inserted after N until, but not
83 -- including, Node_After, for initialization of Obj, and move them to an
84 -- expression with actions, which becomes the Initialization_Statements for
85 -- Obj.
87 function Has_Default_Init_Comps (N : Node_Id) return Boolean;
88 -- N is an aggregate (record or array). Checks the presence of default
89 -- initialization (<>) in any component (Ada 2005: AI-287).
91 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
92 -- Returns true if N is an aggregate used to initialize the components
93 -- of a statically allocated dispatch table.
95 function Must_Slide
96 (Obj_Type : Entity_Id;
97 Typ : Entity_Id) return Boolean;
98 -- A static array aggregate in an object declaration can in most cases be
99 -- expanded in place. The one exception is when the aggregate is given
100 -- with component associations that specify different bounds from those of
101 -- the type definition in the object declaration. In this pathological
102 -- case the aggregate must slide, and we must introduce an intermediate
103 -- temporary to hold it.
105 -- The same holds in an assignment to one-dimensional array of arrays,
106 -- when a component may be given with bounds that differ from those of the
107 -- component type.
109 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
110 -- Sort the Case Table using the Lower Bound of each Choice as the key.
111 -- A simple insertion sort is used since the number of choices in a case
112 -- statement of variant part will usually be small and probably in near
113 -- sorted order.
115 ------------------------------------------------------
116 -- Local subprograms for Record Aggregate Expansion --
117 ------------------------------------------------------
119 function Build_Record_Aggr_Code
120 (N : Node_Id;
121 Typ : Entity_Id;
122 Lhs : Node_Id) return List_Id;
123 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
124 -- aggregate. Target is an expression containing the location on which the
125 -- component by component assignments will take place. Returns the list of
126 -- assignments plus all other adjustments needed for tagged and controlled
127 -- types.
129 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
130 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
131 -- aggregate (which can only be a record type, this procedure is only used
132 -- for record types). Transform the given aggregate into a sequence of
133 -- assignments performed component by component.
135 procedure Expand_Record_Aggregate
136 (N : Node_Id;
137 Orig_Tag : Node_Id := Empty;
138 Parent_Expr : Node_Id := Empty);
139 -- This is the top level procedure for record aggregate expansion.
140 -- Expansion for record aggregates needs expand aggregates for tagged
141 -- record types. Specifically Expand_Record_Aggregate adds the Tag
142 -- field in front of the Component_Association list that was created
143 -- during resolution by Resolve_Record_Aggregate.
145 -- N is the record aggregate node.
146 -- Orig_Tag is the value of the Tag that has to be provided for this
147 -- specific aggregate. It carries the tag corresponding to the type
148 -- of the outermost aggregate during the recursive expansion
149 -- Parent_Expr is the ancestor part of the original extension
150 -- aggregate
152 function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
153 -- Return true if one of the components is of a discriminated type with
154 -- defaults. An aggregate for a type with mutable components must be
155 -- expanded into individual assignments.
157 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
158 -- If the type of the aggregate is a type extension with renamed discrimi-
159 -- nants, we must initialize the hidden discriminants of the parent.
160 -- Otherwise, the target object must not be initialized. The discriminants
161 -- are initialized by calling the initialization procedure for the type.
162 -- This is incorrect if the initialization of other components has any
163 -- side effects. We restrict this call to the case where the parent type
164 -- has a variant part, because this is the only case where the hidden
165 -- discriminants are accessed, namely when calling discriminant checking
166 -- functions of the parent type, and when applying a stream attribute to
167 -- an object of the derived type.
169 -----------------------------------------------------
170 -- Local Subprograms for Array Aggregate Expansion --
171 -----------------------------------------------------
173 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
174 -- Very large static aggregates present problems to the back-end, and are
175 -- transformed into assignments and loops. This function verifies that the
176 -- total number of components of an aggregate is acceptable for rewriting
177 -- into a purely positional static form. Aggr_Size_OK must be called before
178 -- calling Flatten.
180 -- This function also detects and warns about one-component aggregates that
181 -- appear in a non-static context. Even if the component value is static,
182 -- such an aggregate must be expanded into an assignment.
184 function Backend_Processing_Possible (N : Node_Id) return Boolean;
185 -- This function checks if array aggregate N can be processed directly
186 -- by the backend. If this is the case, True is returned.
188 function Build_Array_Aggr_Code
189 (N : Node_Id;
190 Ctype : Entity_Id;
191 Index : Node_Id;
192 Into : Node_Id;
193 Scalar_Comp : Boolean;
194 Indexes : List_Id := No_List) return List_Id;
195 -- This recursive routine returns a list of statements containing the
196 -- loops and assignments that are needed for the expansion of the array
197 -- aggregate N.
199 -- N is the (sub-)aggregate node to be expanded into code. This node has
200 -- been fully analyzed, and its Etype is properly set.
202 -- Index is the index node corresponding to the array sub-aggregate N
204 -- Into is the target expression into which we are copying the aggregate.
205 -- Note that this node may not have been analyzed yet, and so the Etype
206 -- field may not be set.
208 -- Scalar_Comp is True if the component type of the aggregate is scalar
210 -- Indexes is the current list of expressions used to index the object we
211 -- are writing into.
213 procedure Convert_Array_Aggr_In_Allocator
214 (Decl : Node_Id;
215 Aggr : Node_Id;
216 Target : Node_Id);
217 -- If the aggregate appears within an allocator and can be expanded in
218 -- place, this routine generates the individual assignments to components
219 -- of the designated object. This is an optimization over the general
220 -- case, where a temporary is first created on the stack and then used to
221 -- construct the allocated object on the heap.
223 procedure Convert_To_Positional
224 (N : Node_Id;
225 Max_Others_Replicate : Nat := 5;
226 Handle_Bit_Packed : Boolean := False);
227 -- If possible, convert named notation to positional notation. This
228 -- conversion is possible only in some static cases. If the conversion is
229 -- possible, then N is rewritten with the analyzed converted aggregate.
230 -- The parameter Max_Others_Replicate controls the maximum number of
231 -- values corresponding to an others choice that will be converted to
232 -- positional notation (the default of 5 is the normal limit, and reflects
233 -- the fact that normally the loop is better than a lot of separate
234 -- assignments). Note that this limit gets overridden in any case if
235 -- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
236 -- set. The parameter Handle_Bit_Packed is usually set False (since we do
237 -- not expect the back end to handle bit packed arrays, so the normal case
238 -- of conversion is pointless), but in the special case of a call from
239 -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
240 -- these are cases we handle in there.
242 -- It would seem useful to have a higher default for Max_Others_Replicate,
243 -- but aggregates in the compiler make this impossible: the compiler
244 -- bootstrap fails if Max_Others_Replicate is greater than 25. This
245 -- is unexpected ???
247 procedure Expand_Array_Aggregate (N : Node_Id);
248 -- This is the top-level routine to perform array aggregate expansion.
249 -- N is the N_Aggregate node to be expanded.
251 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean;
252 -- For two-dimensional packed aggregates with constant bounds and constant
253 -- components, it is preferable to pack the inner aggregates because the
254 -- whole matrix can then be presented to the back-end as a one-dimensional
255 -- list of literals. This is much more efficient than expanding into single
256 -- component assignments. This function determines if the type Typ is for
257 -- an array that is suitable for this optimization: it returns True if Typ
258 -- is a two dimensional bit packed array with component size 1, 2, or 4.
260 function Late_Expansion
261 (N : Node_Id;
262 Typ : Entity_Id;
263 Target : Node_Id) return List_Id;
264 -- This routine implements top-down expansion of nested aggregates. In
265 -- doing so, it avoids the generation of temporaries at each level. N is
266 -- a nested record or array aggregate with the Expansion_Delayed flag.
267 -- Typ is the expected type of the aggregate. Target is a (duplicatable)
268 -- expression that will hold the result of the aggregate expansion.
270 function Make_OK_Assignment_Statement
271 (Sloc : Source_Ptr;
272 Name : Node_Id;
273 Expression : Node_Id) return Node_Id;
274 -- This is like Make_Assignment_Statement, except that Assignment_OK
275 -- is set in the left operand. All assignments built by this unit use
276 -- this routine. This is needed to deal with assignments to initialized
277 -- constants that are done in place.
279 function Number_Of_Choices (N : Node_Id) return Nat;
280 -- Returns the number of discrete choices (not including the others choice
281 -- if present) contained in (sub-)aggregate N.
283 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
284 -- Given an array aggregate, this function handles the case of a packed
285 -- array aggregate with all constant values, where the aggregate can be
286 -- evaluated at compile time. If this is possible, then N is rewritten
287 -- to be its proper compile time value with all the components properly
288 -- assembled. The expression is analyzed and resolved and True is returned.
289 -- If this transformation is not possible, N is unchanged and False is
290 -- returned.
292 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean;
293 -- If the type of the aggregate is a two-dimensional bit_packed array
294 -- it may be transformed into an array of bytes with constant values,
295 -- and presented to the back-end as a static value. The function returns
296 -- false if this transformation cannot be performed. THis is similar to,
297 -- and reuses part of the machinery in Packed_Array_Aggregate_Handled.
299 ------------------
300 -- Aggr_Size_OK --
301 ------------------
303 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
304 Lo : Node_Id;
305 Hi : Node_Id;
306 Indx : Node_Id;
307 Siz : Int;
308 Lov : Uint;
309 Hiv : Uint;
311 Max_Aggr_Size : Nat;
312 -- Determines the maximum size of an array aggregate produced by
313 -- converting named to positional notation (e.g. from others clauses).
314 -- This avoids running away with attempts to convert huge aggregates,
315 -- which hit memory limits in the backend.
317 function Component_Count (T : Entity_Id) return Int;
318 -- The limit is applied to the total number of components that the
319 -- aggregate will have, which is the number of static expressions
320 -- that will appear in the flattened array. This requires a recursive
321 -- computation of the number of scalar components of the structure.
323 ---------------------
324 -- Component_Count --
325 ---------------------
327 function Component_Count (T : Entity_Id) return Int is
328 Res : Int := 0;
329 Comp : Entity_Id;
331 begin
332 if Is_Scalar_Type (T) then
333 return 1;
335 elsif Is_Record_Type (T) then
336 Comp := First_Component (T);
337 while Present (Comp) loop
338 Res := Res + Component_Count (Etype (Comp));
339 Next_Component (Comp);
340 end loop;
342 return Res;
344 elsif Is_Array_Type (T) then
345 declare
346 Lo : constant Node_Id :=
347 Type_Low_Bound (Etype (First_Index (T)));
348 Hi : constant Node_Id :=
349 Type_High_Bound (Etype (First_Index (T)));
351 Siz : constant Int := Component_Count (Component_Type (T));
353 begin
354 if not Compile_Time_Known_Value (Lo)
355 or else not Compile_Time_Known_Value (Hi)
356 then
357 return 0;
358 else
359 return
360 Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
361 end if;
362 end;
364 else
365 -- Can only be a null for an access type
367 return 1;
368 end if;
369 end Component_Count;
371 -- Start of processing for Aggr_Size_OK
373 begin
374 -- The normal aggregate limit is 50000, but we increase this limit to
375 -- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code) or
376 -- Restrictions (No_Implicit_Loops) is specified, since in either case
377 -- we are at risk of declaring the program illegal because of this
378 -- limit. We also increase the limit when Static_Elaboration_Desired,
379 -- given that this means that objects are intended to be placed in data
380 -- memory.
382 -- We also increase the limit if the aggregate is for a packed two-
383 -- dimensional array, because if components are static it is much more
384 -- efficient to construct a one-dimensional equivalent array with static
385 -- components.
387 -- Conversely, we decrease the maximum size if none of the above
388 -- requirements apply, and if the aggregate has a single component
389 -- association, which will be more efficient if implemented with a loop.
391 -- Finally, we use a small limit in CodePeer mode where we favor loops
392 -- instead of thousands of single assignments (from large aggregates).
394 Max_Aggr_Size := 50000;
396 if CodePeer_Mode then
397 Max_Aggr_Size := 100;
399 elsif Restriction_Active (No_Elaboration_Code)
400 or else Restriction_Active (No_Implicit_Loops)
401 or else Is_Two_Dim_Packed_Array (Typ)
402 or else (Ekind (Current_Scope) = E_Package
403 and then Static_Elaboration_Desired (Current_Scope))
404 then
405 Max_Aggr_Size := 2 ** 24;
407 elsif No (Expressions (N))
408 and then No (Next (First (Component_Associations (N))))
409 then
410 Max_Aggr_Size := 5000;
411 end if;
413 Siz := Component_Count (Component_Type (Typ));
415 Indx := First_Index (Typ);
416 while Present (Indx) loop
417 Lo := Type_Low_Bound (Etype (Indx));
418 Hi := Type_High_Bound (Etype (Indx));
420 -- Bounds need to be known at compile time
422 if not Compile_Time_Known_Value (Lo)
423 or else not Compile_Time_Known_Value (Hi)
424 then
425 return False;
426 end if;
428 Lov := Expr_Value (Lo);
429 Hiv := Expr_Value (Hi);
431 -- A flat array is always safe
433 if Hiv < Lov then
434 return True;
435 end if;
437 -- One-component aggregates are suspicious, and if the context type
438 -- is an object declaration with non-static bounds it will trip gcc;
439 -- such an aggregate must be expanded into a single assignment.
441 if Hiv = Lov and then Nkind (Parent (N)) = N_Object_Declaration then
442 declare
443 Index_Type : constant Entity_Id :=
444 Etype
445 (First_Index (Etype (Defining_Identifier (Parent (N)))));
446 Indx : Node_Id;
448 begin
449 if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
450 or else not Compile_Time_Known_Value
451 (Type_High_Bound (Index_Type))
452 then
453 if Present (Component_Associations (N)) then
454 Indx :=
455 First (Choices (First (Component_Associations (N))));
457 if Is_Entity_Name (Indx)
458 and then not Is_Type (Entity (Indx))
459 then
460 Error_Msg_N
461 ("single component aggregate in "
462 & "non-static context??", Indx);
463 Error_Msg_N ("\maybe subtype name was meant??", Indx);
464 end if;
465 end if;
467 return False;
468 end if;
469 end;
470 end if;
472 declare
473 Rng : constant Uint := Hiv - Lov + 1;
475 begin
476 -- Check if size is too large
478 if not UI_Is_In_Int_Range (Rng) then
479 return False;
480 end if;
482 Siz := Siz * UI_To_Int (Rng);
483 end;
485 if Siz <= 0
486 or else Siz > Max_Aggr_Size
487 then
488 return False;
489 end if;
491 -- Bounds must be in integer range, for later array construction
493 if not UI_Is_In_Int_Range (Lov)
494 or else
495 not UI_Is_In_Int_Range (Hiv)
496 then
497 return False;
498 end if;
500 Next_Index (Indx);
501 end loop;
503 return True;
504 end Aggr_Size_OK;
506 ---------------------------------
507 -- Backend_Processing_Possible --
508 ---------------------------------
510 -- Backend processing by Gigi/gcc is possible only if all the following
511 -- conditions are met:
513 -- 1. N is fully positional
515 -- 2. N is not a bit-packed array aggregate;
517 -- 3. The size of N's array type must be known at compile time. Note
518 -- that this implies that the component size is also known
520 -- 4. The array type of N does not follow the Fortran layout convention
521 -- or if it does it must be 1 dimensional.
523 -- 5. The array component type may not be tagged (which could necessitate
524 -- reassignment of proper tags).
526 -- 6. The array component type must not have unaligned bit components
528 -- 7. None of the components of the aggregate may be bit unaligned
529 -- components.
531 -- 8. There cannot be delayed components, since we do not know enough
532 -- at this stage to know if back end processing is possible.
534 -- 9. There cannot be any discriminated record components, since the
535 -- back end cannot handle this complex case.
537 -- 10. No controlled actions need to be generated for components
539 -- 11. For a VM back end, the array should have no aliased components
541 function Backend_Processing_Possible (N : Node_Id) return Boolean is
542 Typ : constant Entity_Id := Etype (N);
543 -- Typ is the correct constrained array subtype of the aggregate
545 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
546 -- This routine checks components of aggregate N, enforcing checks
547 -- 1, 7, 8, and 9. In the multi-dimensional case, these checks are
548 -- performed on subaggregates. The Index value is the current index
549 -- being checked in the multi-dimensional case.
551 ---------------------
552 -- Component_Check --
553 ---------------------
555 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
556 Expr : Node_Id;
558 begin
559 -- Checks 1: (no component associations)
561 if Present (Component_Associations (N)) then
562 return False;
563 end if;
565 -- Checks on components
567 -- Recurse to check subaggregates, which may appear in qualified
568 -- expressions. If delayed, the front-end will have to expand.
569 -- If the component is a discriminated record, treat as non-static,
570 -- as the back-end cannot handle this properly.
572 Expr := First (Expressions (N));
573 while Present (Expr) loop
575 -- Checks 8: (no delayed components)
577 if Is_Delayed_Aggregate (Expr) then
578 return False;
579 end if;
581 -- Checks 9: (no discriminated records)
583 if Present (Etype (Expr))
584 and then Is_Record_Type (Etype (Expr))
585 and then Has_Discriminants (Etype (Expr))
586 then
587 return False;
588 end if;
590 -- Checks 7. Component must not be bit aligned component
592 if Possible_Bit_Aligned_Component (Expr) then
593 return False;
594 end if;
596 -- Recursion to following indexes for multiple dimension case
598 if Present (Next_Index (Index))
599 and then not Component_Check (Expr, Next_Index (Index))
600 then
601 return False;
602 end if;
604 -- All checks for that component finished, on to next
606 Next (Expr);
607 end loop;
609 return True;
610 end Component_Check;
612 -- Start of processing for Backend_Processing_Possible
614 begin
615 -- Checks 2 (array not bit packed) and 10 (no controlled actions)
617 if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
618 return False;
619 end if;
621 -- If component is limited, aggregate must be expanded because each
622 -- component assignment must be built in place.
624 if Is_Limited_View (Component_Type (Typ)) then
625 return False;
626 end if;
628 -- Checks 4 (array must not be multi-dimensional Fortran case)
630 if Convention (Typ) = Convention_Fortran
631 and then Number_Dimensions (Typ) > 1
632 then
633 return False;
634 end if;
636 -- Checks 3 (size of array must be known at compile time)
638 if not Size_Known_At_Compile_Time (Typ) then
639 return False;
640 end if;
642 -- Checks on components
644 if not Component_Check (N, First_Index (Typ)) then
645 return False;
646 end if;
648 -- Checks 5 (if the component type is tagged, then we may need to do
649 -- tag adjustments. Perhaps this should be refined to check for any
650 -- component associations that actually need tag adjustment, similar
651 -- to the test in Component_Not_OK_For_Backend for record aggregates
652 -- with tagged components, but not clear whether it's worthwhile ???;
653 -- in the case of the JVM, object tags are handled implicitly)
655 if Is_Tagged_Type (Component_Type (Typ))
656 and then Tagged_Type_Expansion
657 then
658 return False;
659 end if;
661 -- Checks 6 (component type must not have bit aligned components)
663 if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
664 return False;
665 end if;
667 -- Checks 11: Array aggregates with aliased components are currently
668 -- not well supported by the VM backend; disable temporarily this
669 -- backend processing until it is definitely supported.
671 if VM_Target /= No_VM
672 and then Has_Aliased_Components (Base_Type (Typ))
673 then
674 return False;
675 end if;
677 -- Backend processing is possible
679 Set_Size_Known_At_Compile_Time (Etype (N), True);
680 return True;
681 end Backend_Processing_Possible;
683 ---------------------------
684 -- Build_Array_Aggr_Code --
685 ---------------------------
687 -- The code that we generate from a one dimensional aggregate is
689 -- 1. If the sub-aggregate contains discrete choices we
691 -- (a) Sort the discrete choices
693 -- (b) Otherwise for each discrete choice that specifies a range we
694 -- emit a loop. If a range specifies a maximum of three values, or
695 -- we are dealing with an expression we emit a sequence of
696 -- assignments instead of a loop.
698 -- (c) Generate the remaining loops to cover the others choice if any
700 -- 2. If the aggregate contains positional elements we
702 -- (a) translate the positional elements in a series of assignments
704 -- (b) Generate a final loop to cover the others choice if any.
705 -- Note that this final loop has to be a while loop since the case
707 -- L : Integer := Integer'Last;
708 -- H : Integer := Integer'Last;
709 -- A : array (L .. H) := (1, others =>0);
711 -- cannot be handled by a for loop. Thus for the following
713 -- array (L .. H) := (.. positional elements.., others =>E);
715 -- we always generate something like:
717 -- J : Index_Type := Index_Of_Last_Positional_Element;
718 -- while J < H loop
719 -- J := Index_Base'Succ (J)
720 -- Tmp (J) := E;
721 -- end loop;
723 function Build_Array_Aggr_Code
724 (N : Node_Id;
725 Ctype : Entity_Id;
726 Index : Node_Id;
727 Into : Node_Id;
728 Scalar_Comp : Boolean;
729 Indexes : List_Id := No_List) return List_Id
731 Loc : constant Source_Ptr := Sloc (N);
732 Index_Base : constant Entity_Id := Base_Type (Etype (Index));
733 Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
734 Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
736 function Add (Val : Int; To : Node_Id) return Node_Id;
737 -- Returns an expression where Val is added to expression To, unless
738 -- To+Val is provably out of To's base type range. To must be an
739 -- already analyzed expression.
741 function Empty_Range (L, H : Node_Id) return Boolean;
742 -- Returns True if the range defined by L .. H is certainly empty
744 function Equal (L, H : Node_Id) return Boolean;
745 -- Returns True if L = H for sure
747 function Index_Base_Name return Node_Id;
748 -- Returns a new reference to the index type name
750 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
751 -- Ind must be a side-effect free expression. If the input aggregate
752 -- N to Build_Loop contains no sub-aggregates, then this function
753 -- returns the assignment statement:
755 -- Into (Indexes, Ind) := Expr;
757 -- Otherwise we call Build_Code recursively
759 -- Ada 2005 (AI-287): In case of default initialized component, Expr
760 -- is empty and we generate a call to the corresponding IP subprogram.
762 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
763 -- Nodes L and H must be side-effect free expressions.
764 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
765 -- This routine returns the for loop statement
767 -- for J in Index_Base'(L) .. Index_Base'(H) loop
768 -- Into (Indexes, J) := Expr;
769 -- end loop;
771 -- Otherwise we call Build_Code recursively.
772 -- As an optimization if the loop covers 3 or less scalar elements we
773 -- generate a sequence of assignments.
775 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
776 -- Nodes L and H must be side-effect free expressions.
777 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
778 -- This routine returns the while loop statement
780 -- J : Index_Base := L;
781 -- while J < H loop
782 -- J := Index_Base'Succ (J);
783 -- Into (Indexes, J) := Expr;
784 -- end loop;
786 -- Otherwise we call Build_Code recursively
788 function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id;
789 -- For an association with a box, use value given by aspect
790 -- Default_Component_Value of array type if specified, else use
791 -- value given by aspect Default_Value for component type itself
792 -- if specified, else return Empty.
794 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
795 function Local_Expr_Value (E : Node_Id) return Uint;
796 -- These two Local routines are used to replace the corresponding ones
797 -- in sem_eval because while processing the bounds of an aggregate with
798 -- discrete choices whose index type is an enumeration, we build static
799 -- expressions not recognized by Compile_Time_Known_Value as such since
800 -- they have not yet been analyzed and resolved. All the expressions in
801 -- question are things like Index_Base_Name'Val (Const) which we can
802 -- easily recognize as being constant.
804 ---------
805 -- Add --
806 ---------
808 function Add (Val : Int; To : Node_Id) return Node_Id is
809 Expr_Pos : Node_Id;
810 Expr : Node_Id;
811 To_Pos : Node_Id;
812 U_To : Uint;
813 U_Val : constant Uint := UI_From_Int (Val);
815 begin
816 -- Note: do not try to optimize the case of Val = 0, because
817 -- we need to build a new node with the proper Sloc value anyway.
819 -- First test if we can do constant folding
821 if Local_Compile_Time_Known_Value (To) then
822 U_To := Local_Expr_Value (To) + Val;
824 -- Determine if our constant is outside the range of the index.
825 -- If so return an Empty node. This empty node will be caught
826 -- by Empty_Range below.
828 if Compile_Time_Known_Value (Index_Base_L)
829 and then U_To < Expr_Value (Index_Base_L)
830 then
831 return Empty;
833 elsif Compile_Time_Known_Value (Index_Base_H)
834 and then U_To > Expr_Value (Index_Base_H)
835 then
836 return Empty;
837 end if;
839 Expr_Pos := Make_Integer_Literal (Loc, U_To);
840 Set_Is_Static_Expression (Expr_Pos);
842 if not Is_Enumeration_Type (Index_Base) then
843 Expr := Expr_Pos;
845 -- If we are dealing with enumeration return
846 -- Index_Base'Val (Expr_Pos)
848 else
849 Expr :=
850 Make_Attribute_Reference
851 (Loc,
852 Prefix => Index_Base_Name,
853 Attribute_Name => Name_Val,
854 Expressions => New_List (Expr_Pos));
855 end if;
857 return Expr;
858 end if;
860 -- If we are here no constant folding possible
862 if not Is_Enumeration_Type (Index_Base) then
863 Expr :=
864 Make_Op_Add (Loc,
865 Left_Opnd => Duplicate_Subexpr (To),
866 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
868 -- If we are dealing with enumeration return
869 -- Index_Base'Val (Index_Base'Pos (To) + Val)
871 else
872 To_Pos :=
873 Make_Attribute_Reference
874 (Loc,
875 Prefix => Index_Base_Name,
876 Attribute_Name => Name_Pos,
877 Expressions => New_List (Duplicate_Subexpr (To)));
879 Expr_Pos :=
880 Make_Op_Add (Loc,
881 Left_Opnd => To_Pos,
882 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
884 Expr :=
885 Make_Attribute_Reference
886 (Loc,
887 Prefix => Index_Base_Name,
888 Attribute_Name => Name_Val,
889 Expressions => New_List (Expr_Pos));
890 end if;
892 return Expr;
893 end Add;
895 -----------------
896 -- Empty_Range --
897 -----------------
899 function Empty_Range (L, H : Node_Id) return Boolean is
900 Is_Empty : Boolean := False;
901 Low : Node_Id;
902 High : Node_Id;
904 begin
905 -- First check if L or H were already detected as overflowing the
906 -- index base range type by function Add above. If this is so Add
907 -- returns the empty node.
909 if No (L) or else No (H) then
910 return True;
911 end if;
913 for J in 1 .. 3 loop
914 case J is
916 -- L > H range is empty
918 when 1 =>
919 Low := L;
920 High := H;
922 -- B_L > H range must be empty
924 when 2 =>
925 Low := Index_Base_L;
926 High := H;
928 -- L > B_H range must be empty
930 when 3 =>
931 Low := L;
932 High := Index_Base_H;
933 end case;
935 if Local_Compile_Time_Known_Value (Low)
936 and then
937 Local_Compile_Time_Known_Value (High)
938 then
939 Is_Empty :=
940 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
941 end if;
943 exit when Is_Empty;
944 end loop;
946 return Is_Empty;
947 end Empty_Range;
949 -----------
950 -- Equal --
951 -----------
953 function Equal (L, H : Node_Id) return Boolean is
954 begin
955 if L = H then
956 return True;
958 elsif Local_Compile_Time_Known_Value (L)
959 and then
960 Local_Compile_Time_Known_Value (H)
961 then
962 return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
963 end if;
965 return False;
966 end Equal;
968 ----------------
969 -- Gen_Assign --
970 ----------------
972 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
973 L : constant List_Id := New_List;
974 A : Node_Id;
976 New_Indexes : List_Id;
977 Indexed_Comp : Node_Id;
978 Expr_Q : Node_Id;
979 Comp_Type : Entity_Id := Empty;
981 function Add_Loop_Actions (Lis : List_Id) return List_Id;
982 -- Collect insert_actions generated in the construction of a
983 -- loop, and prepend them to the sequence of assignments to
984 -- complete the eventual body of the loop.
986 ----------------------
987 -- Add_Loop_Actions --
988 ----------------------
990 function Add_Loop_Actions (Lis : List_Id) return List_Id is
991 Res : List_Id;
993 begin
994 -- Ada 2005 (AI-287): Do nothing else in case of default
995 -- initialized component.
997 if No (Expr) then
998 return Lis;
1000 elsif Nkind (Parent (Expr)) = N_Component_Association
1001 and then Present (Loop_Actions (Parent (Expr)))
1002 then
1003 Append_List (Lis, Loop_Actions (Parent (Expr)));
1004 Res := Loop_Actions (Parent (Expr));
1005 Set_Loop_Actions (Parent (Expr), No_List);
1006 return Res;
1008 else
1009 return Lis;
1010 end if;
1011 end Add_Loop_Actions;
1013 -- Start of processing for Gen_Assign
1015 begin
1016 if No (Indexes) then
1017 New_Indexes := New_List;
1018 else
1019 New_Indexes := New_Copy_List_Tree (Indexes);
1020 end if;
1022 Append_To (New_Indexes, Ind);
1024 if Present (Next_Index (Index)) then
1025 return
1026 Add_Loop_Actions (
1027 Build_Array_Aggr_Code
1028 (N => Expr,
1029 Ctype => Ctype,
1030 Index => Next_Index (Index),
1031 Into => Into,
1032 Scalar_Comp => Scalar_Comp,
1033 Indexes => New_Indexes));
1034 end if;
1036 -- If we get here then we are at a bottom-level (sub-)aggregate
1038 Indexed_Comp :=
1039 Checks_Off
1040 (Make_Indexed_Component (Loc,
1041 Prefix => New_Copy_Tree (Into),
1042 Expressions => New_Indexes));
1044 Set_Assignment_OK (Indexed_Comp);
1046 -- Ada 2005 (AI-287): In case of default initialized component, Expr
1047 -- is not present (and therefore we also initialize Expr_Q to empty).
1049 if No (Expr) then
1050 Expr_Q := Empty;
1051 elsif Nkind (Expr) = N_Qualified_Expression then
1052 Expr_Q := Expression (Expr);
1053 else
1054 Expr_Q := Expr;
1055 end if;
1057 if Present (Etype (N)) and then Etype (N) /= Any_Composite then
1058 Comp_Type := Component_Type (Etype (N));
1059 pragma Assert (Comp_Type = Ctype); -- AI-287
1061 elsif Present (Next (First (New_Indexes))) then
1063 -- Ada 2005 (AI-287): Do nothing in case of default initialized
1064 -- component because we have received the component type in
1065 -- the formal parameter Ctype.
1067 -- ??? Some assert pragmas have been added to check if this new
1068 -- formal can be used to replace this code in all cases.
1070 if Present (Expr) then
1072 -- This is a multidimensional array. Recover the component type
1073 -- from the outermost aggregate, because subaggregates do not
1074 -- have an assigned type.
1076 declare
1077 P : Node_Id;
1079 begin
1080 P := Parent (Expr);
1081 while Present (P) loop
1082 if Nkind (P) = N_Aggregate
1083 and then Present (Etype (P))
1084 then
1085 Comp_Type := Component_Type (Etype (P));
1086 exit;
1088 else
1089 P := Parent (P);
1090 end if;
1091 end loop;
1093 pragma Assert (Comp_Type = Ctype); -- AI-287
1094 end;
1095 end if;
1096 end if;
1098 -- Ada 2005 (AI-287): We only analyze the expression in case of non-
1099 -- default initialized components (otherwise Expr_Q is not present).
1101 if Present (Expr_Q)
1102 and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
1103 then
1104 -- At this stage the Expression may not have been analyzed yet
1105 -- because the array aggregate code has not been updated to use
1106 -- the Expansion_Delayed flag and avoid analysis altogether to
1107 -- solve the same problem (see Resolve_Aggr_Expr). So let us do
1108 -- the analysis of non-array aggregates now in order to get the
1109 -- value of Expansion_Delayed flag for the inner aggregate ???
1111 if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
1112 Analyze_And_Resolve (Expr_Q, Comp_Type);
1113 end if;
1115 if Is_Delayed_Aggregate (Expr_Q) then
1117 -- This is either a subaggregate of a multidimensional array,
1118 -- or a component of an array type whose component type is
1119 -- also an array. In the latter case, the expression may have
1120 -- component associations that provide different bounds from
1121 -- those of the component type, and sliding must occur. Instead
1122 -- of decomposing the current aggregate assignment, force the
1123 -- re-analysis of the assignment, so that a temporary will be
1124 -- generated in the usual fashion, and sliding will take place.
1126 if Nkind (Parent (N)) = N_Assignment_Statement
1127 and then Is_Array_Type (Comp_Type)
1128 and then Present (Component_Associations (Expr_Q))
1129 and then Must_Slide (Comp_Type, Etype (Expr_Q))
1130 then
1131 Set_Expansion_Delayed (Expr_Q, False);
1132 Set_Analyzed (Expr_Q, False);
1134 else
1135 return
1136 Add_Loop_Actions (
1137 Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
1138 end if;
1139 end if;
1140 end if;
1142 -- Ada 2005 (AI-287): In case of default initialized component, call
1143 -- the initialization subprogram associated with the component type.
1144 -- If the component type is an access type, add an explicit null
1145 -- assignment, because for the back-end there is an initialization
1146 -- present for the whole aggregate, and no default initialization
1147 -- will take place.
1149 -- In addition, if the component type is controlled, we must call
1150 -- its Initialize procedure explicitly, because there is no explicit
1151 -- object creation that will invoke it otherwise.
1153 if No (Expr) then
1154 if Present (Base_Init_Proc (Base_Type (Ctype)))
1155 or else Has_Task (Base_Type (Ctype))
1156 then
1157 Append_List_To (L,
1158 Build_Initialization_Call (Loc,
1159 Id_Ref => Indexed_Comp,
1160 Typ => Ctype,
1161 With_Default_Init => True));
1163 elsif Is_Access_Type (Ctype) then
1164 Append_To (L,
1165 Make_Assignment_Statement (Loc,
1166 Name => Indexed_Comp,
1167 Expression => Make_Null (Loc)));
1168 end if;
1170 if Needs_Finalization (Ctype) then
1171 Append_To (L,
1172 Make_Init_Call
1173 (Obj_Ref => New_Copy_Tree (Indexed_Comp),
1174 Typ => Ctype));
1175 end if;
1177 else
1178 A :=
1179 Make_OK_Assignment_Statement (Loc,
1180 Name => Indexed_Comp,
1181 Expression => New_Copy_Tree (Expr));
1183 -- The target of the assignment may not have been initialized,
1184 -- so it is not possible to call Finalize as expected in normal
1185 -- controlled assignments. We must also avoid using the primitive
1186 -- _assign (which depends on a valid target, and may for example
1187 -- perform discriminant checks on it).
1189 -- Both Finalize and usage of _assign are disabled by setting
1190 -- No_Ctrl_Actions on the assignment. The rest of the controlled
1191 -- actions are done manually with the proper finalization list
1192 -- coming from the context.
1194 Set_No_Ctrl_Actions (A);
1196 -- If this is an aggregate for an array of arrays, each
1197 -- sub-aggregate will be expanded as well, and even with
1198 -- No_Ctrl_Actions the assignments of inner components will
1199 -- require attachment in their assignments to temporaries. These
1200 -- temporaries must be finalized for each subaggregate, to prevent
1201 -- multiple attachments of the same temporary location to same
1202 -- finalization chain (and consequently circular lists). To ensure
1203 -- that finalization takes place for each subaggregate we wrap the
1204 -- assignment in a block.
1206 if Present (Comp_Type)
1207 and then Needs_Finalization (Comp_Type)
1208 and then Is_Array_Type (Comp_Type)
1209 and then Present (Expr)
1210 then
1211 A :=
1212 Make_Block_Statement (Loc,
1213 Handled_Statement_Sequence =>
1214 Make_Handled_Sequence_Of_Statements (Loc,
1215 Statements => New_List (A)));
1216 end if;
1218 Append_To (L, A);
1220 -- Adjust the tag if tagged (because of possible view
1221 -- conversions), unless compiling for a VM where tags
1222 -- are implicit.
1224 if Present (Comp_Type)
1225 and then Is_Tagged_Type (Comp_Type)
1226 and then Tagged_Type_Expansion
1227 then
1228 declare
1229 Full_Typ : constant Entity_Id := Underlying_Type (Comp_Type);
1231 begin
1232 A :=
1233 Make_OK_Assignment_Statement (Loc,
1234 Name =>
1235 Make_Selected_Component (Loc,
1236 Prefix => New_Copy_Tree (Indexed_Comp),
1237 Selector_Name =>
1238 New_Occurrence_Of
1239 (First_Tag_Component (Full_Typ), Loc)),
1241 Expression =>
1242 Unchecked_Convert_To (RTE (RE_Tag),
1243 New_Occurrence_Of
1244 (Node (First_Elmt (Access_Disp_Table (Full_Typ))),
1245 Loc)));
1247 Append_To (L, A);
1248 end;
1249 end if;
1251 -- Adjust and attach the component to the proper final list, which
1252 -- can be the controller of the outer record object or the final
1253 -- list associated with the scope.
1255 -- If the component is itself an array of controlled types, whose
1256 -- value is given by a sub-aggregate, then the attach calls have
1257 -- been generated when individual subcomponent are assigned, and
1258 -- must not be done again to prevent malformed finalization chains
1259 -- (see comments above, concerning the creation of a block to hold
1260 -- inner finalization actions).
1262 if Present (Comp_Type)
1263 and then Needs_Finalization (Comp_Type)
1264 and then not Is_Limited_Type (Comp_Type)
1265 and then not
1266 (Is_Array_Type (Comp_Type)
1267 and then Is_Controlled (Component_Type (Comp_Type))
1268 and then Nkind (Expr) = N_Aggregate)
1269 then
1270 Append_To (L,
1271 Make_Adjust_Call
1272 (Obj_Ref => New_Copy_Tree (Indexed_Comp),
1273 Typ => Comp_Type));
1274 end if;
1275 end if;
1277 return Add_Loop_Actions (L);
1278 end Gen_Assign;
1280 --------------
1281 -- Gen_Loop --
1282 --------------
1284 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
1285 L_J : Node_Id;
1287 L_L : Node_Id;
1288 -- Index_Base'(L)
1290 L_H : Node_Id;
1291 -- Index_Base'(H)
1293 L_Range : Node_Id;
1294 -- Index_Base'(L) .. Index_Base'(H)
1296 L_Iteration_Scheme : Node_Id;
1297 -- L_J in Index_Base'(L) .. Index_Base'(H)
1299 L_Body : List_Id;
1300 -- The statements to execute in the loop
1302 S : constant List_Id := New_List;
1303 -- List of statements
1305 Tcopy : Node_Id;
1306 -- Copy of expression tree, used for checking purposes
1308 begin
1309 -- If loop bounds define an empty range return the null statement
1311 if Empty_Range (L, H) then
1312 Append_To (S, Make_Null_Statement (Loc));
1314 -- Ada 2005 (AI-287): Nothing else need to be done in case of
1315 -- default initialized component.
1317 if No (Expr) then
1318 null;
1320 else
1321 -- The expression must be type-checked even though no component
1322 -- of the aggregate will have this value. This is done only for
1323 -- actual components of the array, not for subaggregates. Do
1324 -- the check on a copy, because the expression may be shared
1325 -- among several choices, some of which might be non-null.
1327 if Present (Etype (N))
1328 and then Is_Array_Type (Etype (N))
1329 and then No (Next_Index (Index))
1330 then
1331 Expander_Mode_Save_And_Set (False);
1332 Tcopy := New_Copy_Tree (Expr);
1333 Set_Parent (Tcopy, N);
1334 Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1335 Expander_Mode_Restore;
1336 end if;
1337 end if;
1339 return S;
1341 -- If loop bounds are the same then generate an assignment
1343 elsif Equal (L, H) then
1344 return Gen_Assign (New_Copy_Tree (L), Expr);
1346 -- If H - L <= 2 then generate a sequence of assignments when we are
1347 -- processing the bottom most aggregate and it contains scalar
1348 -- components.
1350 elsif No (Next_Index (Index))
1351 and then Scalar_Comp
1352 and then Local_Compile_Time_Known_Value (L)
1353 and then Local_Compile_Time_Known_Value (H)
1354 and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
1355 then
1357 Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1358 Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1360 if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1361 Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1362 end if;
1364 return S;
1365 end if;
1367 -- Otherwise construct the loop, starting with the loop index L_J
1369 L_J := Make_Temporary (Loc, 'J', L);
1371 -- Construct "L .. H" in Index_Base. We use a qualified expression
1372 -- for the bound to convert to the index base, but we don't need
1373 -- to do that if we already have the base type at hand.
1375 if Etype (L) = Index_Base then
1376 L_L := L;
1377 else
1378 L_L :=
1379 Make_Qualified_Expression (Loc,
1380 Subtype_Mark => Index_Base_Name,
1381 Expression => L);
1382 end if;
1384 if Etype (H) = Index_Base then
1385 L_H := H;
1386 else
1387 L_H :=
1388 Make_Qualified_Expression (Loc,
1389 Subtype_Mark => Index_Base_Name,
1390 Expression => H);
1391 end if;
1393 L_Range :=
1394 Make_Range (Loc,
1395 Low_Bound => L_L,
1396 High_Bound => L_H);
1398 -- Construct "for L_J in Index_Base range L .. H"
1400 L_Iteration_Scheme :=
1401 Make_Iteration_Scheme
1402 (Loc,
1403 Loop_Parameter_Specification =>
1404 Make_Loop_Parameter_Specification
1405 (Loc,
1406 Defining_Identifier => L_J,
1407 Discrete_Subtype_Definition => L_Range));
1409 -- Construct the statements to execute in the loop body
1411 L_Body := Gen_Assign (New_Occurrence_Of (L_J, Loc), Expr);
1413 -- Construct the final loop
1415 Append_To (S,
1416 Make_Implicit_Loop_Statement
1417 (Node => N,
1418 Identifier => Empty,
1419 Iteration_Scheme => L_Iteration_Scheme,
1420 Statements => L_Body));
1422 -- A small optimization: if the aggregate is initialized with a box
1423 -- and the component type has no initialization procedure, remove the
1424 -- useless empty loop.
1426 if Nkind (First (S)) = N_Loop_Statement
1427 and then Is_Empty_List (Statements (First (S)))
1428 then
1429 return New_List (Make_Null_Statement (Loc));
1430 else
1431 return S;
1432 end if;
1433 end Gen_Loop;
1435 ---------------
1436 -- Gen_While --
1437 ---------------
1439 -- The code built is
1441 -- W_J : Index_Base := L;
1442 -- while W_J < H loop
1443 -- W_J := Index_Base'Succ (W);
1444 -- L_Body;
1445 -- end loop;
1447 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
1448 W_J : Node_Id;
1450 W_Decl : Node_Id;
1451 -- W_J : Base_Type := L;
1453 W_Iteration_Scheme : Node_Id;
1454 -- while W_J < H
1456 W_Index_Succ : Node_Id;
1457 -- Index_Base'Succ (J)
1459 W_Increment : Node_Id;
1460 -- W_J := Index_Base'Succ (W)
1462 W_Body : constant List_Id := New_List;
1463 -- The statements to execute in the loop
1465 S : constant List_Id := New_List;
1466 -- list of statement
1468 begin
1469 -- If loop bounds define an empty range or are equal return null
1471 if Empty_Range (L, H) or else Equal (L, H) then
1472 Append_To (S, Make_Null_Statement (Loc));
1473 return S;
1474 end if;
1476 -- Build the decl of W_J
1478 W_J := Make_Temporary (Loc, 'J', L);
1479 W_Decl :=
1480 Make_Object_Declaration
1481 (Loc,
1482 Defining_Identifier => W_J,
1483 Object_Definition => Index_Base_Name,
1484 Expression => L);
1486 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1487 -- that in this particular case L is a fresh Expr generated by
1488 -- Add which we are the only ones to use.
1490 Append_To (S, W_Decl);
1492 -- Construct " while W_J < H"
1494 W_Iteration_Scheme :=
1495 Make_Iteration_Scheme
1496 (Loc,
1497 Condition => Make_Op_Lt
1498 (Loc,
1499 Left_Opnd => New_Occurrence_Of (W_J, Loc),
1500 Right_Opnd => New_Copy_Tree (H)));
1502 -- Construct the statements to execute in the loop body
1504 W_Index_Succ :=
1505 Make_Attribute_Reference
1506 (Loc,
1507 Prefix => Index_Base_Name,
1508 Attribute_Name => Name_Succ,
1509 Expressions => New_List (New_Occurrence_Of (W_J, Loc)));
1511 W_Increment :=
1512 Make_OK_Assignment_Statement
1513 (Loc,
1514 Name => New_Occurrence_Of (W_J, Loc),
1515 Expression => W_Index_Succ);
1517 Append_To (W_Body, W_Increment);
1518 Append_List_To (W_Body,
1519 Gen_Assign (New_Occurrence_Of (W_J, Loc), Expr));
1521 -- Construct the final loop
1523 Append_To (S,
1524 Make_Implicit_Loop_Statement
1525 (Node => N,
1526 Identifier => Empty,
1527 Iteration_Scheme => W_Iteration_Scheme,
1528 Statements => W_Body));
1530 return S;
1531 end Gen_While;
1533 --------------------
1534 -- Get_Assoc_Expr --
1535 --------------------
1537 function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id is
1538 Typ : constant Entity_Id := Base_Type (Etype (N));
1540 begin
1541 if Box_Present (Assoc) then
1542 if Is_Scalar_Type (Ctype) then
1543 if Present (Default_Aspect_Component_Value (Typ)) then
1544 return Default_Aspect_Component_Value (Typ);
1545 elsif Present (Default_Aspect_Value (Ctype)) then
1546 return Default_Aspect_Value (Ctype);
1547 else
1548 return Empty;
1549 end if;
1551 else
1552 return Empty;
1553 end if;
1555 else
1556 return Expression (Assoc);
1557 end if;
1558 end Get_Assoc_Expr;
1560 ---------------------
1561 -- Index_Base_Name --
1562 ---------------------
1564 function Index_Base_Name return Node_Id is
1565 begin
1566 return New_Occurrence_Of (Index_Base, Sloc (N));
1567 end Index_Base_Name;
1569 ------------------------------------
1570 -- Local_Compile_Time_Known_Value --
1571 ------------------------------------
1573 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1574 begin
1575 return Compile_Time_Known_Value (E)
1576 or else
1577 (Nkind (E) = N_Attribute_Reference
1578 and then Attribute_Name (E) = Name_Val
1579 and then Compile_Time_Known_Value (First (Expressions (E))));
1580 end Local_Compile_Time_Known_Value;
1582 ----------------------
1583 -- Local_Expr_Value --
1584 ----------------------
1586 function Local_Expr_Value (E : Node_Id) return Uint is
1587 begin
1588 if Compile_Time_Known_Value (E) then
1589 return Expr_Value (E);
1590 else
1591 return Expr_Value (First (Expressions (E)));
1592 end if;
1593 end Local_Expr_Value;
1595 -- Build_Array_Aggr_Code Variables
1597 Assoc : Node_Id;
1598 Choice : Node_Id;
1599 Expr : Node_Id;
1600 Typ : Entity_Id;
1602 Others_Assoc : Node_Id := Empty;
1604 Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
1605 Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
1606 -- The aggregate bounds of this specific sub-aggregate. Note that if
1607 -- the code generated by Build_Array_Aggr_Code is executed then these
1608 -- bounds are OK. Otherwise a Constraint_Error would have been raised.
1610 Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1611 Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
1612 -- After Duplicate_Subexpr these are side-effect free
1614 Low : Node_Id;
1615 High : Node_Id;
1617 Nb_Choices : Nat := 0;
1618 Table : Case_Table_Type (1 .. Number_Of_Choices (N));
1619 -- Used to sort all the different choice values
1621 Nb_Elements : Int;
1622 -- Number of elements in the positional aggregate
1624 New_Code : constant List_Id := New_List;
1626 -- Start of processing for Build_Array_Aggr_Code
1628 begin
1629 -- First before we start, a special case. if we have a bit packed
1630 -- array represented as a modular type, then clear the value to
1631 -- zero first, to ensure that unused bits are properly cleared.
1633 Typ := Etype (N);
1635 if Present (Typ)
1636 and then Is_Bit_Packed_Array (Typ)
1637 and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ))
1638 then
1639 Append_To (New_Code,
1640 Make_Assignment_Statement (Loc,
1641 Name => New_Copy_Tree (Into),
1642 Expression =>
1643 Unchecked_Convert_To (Typ,
1644 Make_Integer_Literal (Loc, Uint_0))));
1645 end if;
1647 -- If the component type contains tasks, we need to build a Master
1648 -- entity in the current scope, because it will be needed if build-
1649 -- in-place functions are called in the expanded code.
1651 if Nkind (Parent (N)) = N_Object_Declaration and then Has_Task (Typ) then
1652 Build_Master_Entity (Defining_Identifier (Parent (N)));
1653 end if;
1655 -- STEP 1: Process component associations
1657 -- For those associations that may generate a loop, initialize
1658 -- Loop_Actions to collect inserted actions that may be crated.
1660 -- Skip this if no component associations
1662 if No (Expressions (N)) then
1664 -- STEP 1 (a): Sort the discrete choices
1666 Assoc := First (Component_Associations (N));
1667 while Present (Assoc) loop
1668 Choice := First (Choices (Assoc));
1669 while Present (Choice) loop
1670 if Nkind (Choice) = N_Others_Choice then
1671 Set_Loop_Actions (Assoc, New_List);
1672 Others_Assoc := Assoc;
1673 exit;
1674 end if;
1676 Get_Index_Bounds (Choice, Low, High);
1678 if Low /= High then
1679 Set_Loop_Actions (Assoc, New_List);
1680 end if;
1682 Nb_Choices := Nb_Choices + 1;
1684 Table (Nb_Choices) :=
1685 (Choice_Lo => Low,
1686 Choice_Hi => High,
1687 Choice_Node => Get_Assoc_Expr (Assoc));
1689 Next (Choice);
1690 end loop;
1692 Next (Assoc);
1693 end loop;
1695 -- If there is more than one set of choices these must be static
1696 -- and we can therefore sort them. Remember that Nb_Choices does not
1697 -- account for an others choice.
1699 if Nb_Choices > 1 then
1700 Sort_Case_Table (Table);
1701 end if;
1703 -- STEP 1 (b): take care of the whole set of discrete choices
1705 for J in 1 .. Nb_Choices loop
1706 Low := Table (J).Choice_Lo;
1707 High := Table (J).Choice_Hi;
1708 Expr := Table (J).Choice_Node;
1709 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
1710 end loop;
1712 -- STEP 1 (c): generate the remaining loops to cover others choice
1713 -- We don't need to generate loops over empty gaps, but if there is
1714 -- a single empty range we must analyze the expression for semantics
1716 if Present (Others_Assoc) then
1717 declare
1718 First : Boolean := True;
1720 begin
1721 for J in 0 .. Nb_Choices loop
1722 if J = 0 then
1723 Low := Aggr_Low;
1724 else
1725 Low := Add (1, To => Table (J).Choice_Hi);
1726 end if;
1728 if J = Nb_Choices then
1729 High := Aggr_High;
1730 else
1731 High := Add (-1, To => Table (J + 1).Choice_Lo);
1732 end if;
1734 -- If this is an expansion within an init proc, make
1735 -- sure that discriminant references are replaced by
1736 -- the corresponding discriminal.
1738 if Inside_Init_Proc then
1739 if Is_Entity_Name (Low)
1740 and then Ekind (Entity (Low)) = E_Discriminant
1741 then
1742 Set_Entity (Low, Discriminal (Entity (Low)));
1743 end if;
1745 if Is_Entity_Name (High)
1746 and then Ekind (Entity (High)) = E_Discriminant
1747 then
1748 Set_Entity (High, Discriminal (Entity (High)));
1749 end if;
1750 end if;
1752 if First
1753 or else not Empty_Range (Low, High)
1754 then
1755 First := False;
1756 Append_List
1757 (Gen_Loop (Low, High,
1758 Get_Assoc_Expr (Others_Assoc)), To => New_Code);
1759 end if;
1760 end loop;
1761 end;
1762 end if;
1764 -- STEP 2: Process positional components
1766 else
1767 -- STEP 2 (a): Generate the assignments for each positional element
1768 -- Note that here we have to use Aggr_L rather than Aggr_Low because
1769 -- Aggr_L is analyzed and Add wants an analyzed expression.
1771 Expr := First (Expressions (N));
1772 Nb_Elements := -1;
1773 while Present (Expr) loop
1774 Nb_Elements := Nb_Elements + 1;
1775 Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
1776 To => New_Code);
1777 Next (Expr);
1778 end loop;
1780 -- STEP 2 (b): Generate final loop if an others choice is present
1781 -- Here Nb_Elements gives the offset of the last positional element.
1783 if Present (Component_Associations (N)) then
1784 Assoc := Last (Component_Associations (N));
1786 -- Ada 2005 (AI-287)
1788 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1789 Aggr_High,
1790 Get_Assoc_Expr (Assoc)), -- AI-287
1791 To => New_Code);
1792 end if;
1793 end if;
1795 return New_Code;
1796 end Build_Array_Aggr_Code;
1798 ----------------------------
1799 -- Build_Record_Aggr_Code --
1800 ----------------------------
1802 function Build_Record_Aggr_Code
1803 (N : Node_Id;
1804 Typ : Entity_Id;
1805 Lhs : Node_Id) return List_Id
1807 Loc : constant Source_Ptr := Sloc (N);
1808 L : constant List_Id := New_List;
1809 N_Typ : constant Entity_Id := Etype (N);
1811 Comp : Node_Id;
1812 Instr : Node_Id;
1813 Ref : Node_Id;
1814 Target : Entity_Id;
1815 Comp_Type : Entity_Id;
1816 Selector : Entity_Id;
1817 Comp_Expr : Node_Id;
1818 Expr_Q : Node_Id;
1820 -- If this is an internal aggregate, the External_Final_List is an
1821 -- expression for the controller record of the enclosing type.
1823 -- If the current aggregate has several controlled components, this
1824 -- expression will appear in several calls to attach to the finali-
1825 -- zation list, and it must not be shared.
1827 Ancestor_Is_Expression : Boolean := False;
1828 Ancestor_Is_Subtype_Mark : Boolean := False;
1830 Init_Typ : Entity_Id := Empty;
1832 Finalization_Done : Boolean := False;
1833 -- True if Generate_Finalization_Actions has already been called; calls
1834 -- after the first do nothing.
1836 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
1837 -- Returns the value that the given discriminant of an ancestor type
1838 -- should receive (in the absence of a conflict with the value provided
1839 -- by an ancestor part of an extension aggregate).
1841 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
1842 -- Check that each of the discriminant values defined by the ancestor
1843 -- part of an extension aggregate match the corresponding values
1844 -- provided by either an association of the aggregate or by the
1845 -- constraint imposed by a parent type (RM95-4.3.2(8)).
1847 function Compatible_Int_Bounds
1848 (Agg_Bounds : Node_Id;
1849 Typ_Bounds : Node_Id) return Boolean;
1850 -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
1851 -- assumed that both bounds are integer ranges.
1853 procedure Generate_Finalization_Actions;
1854 -- Deal with the various controlled type data structure initializations
1855 -- (but only if it hasn't been done already).
1857 function Get_Constraint_Association (T : Entity_Id) return Node_Id;
1858 -- Returns the first discriminant association in the constraint
1859 -- associated with T, if any, otherwise returns Empty.
1861 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
1862 -- If Typ is derived, and constrains discriminants of the parent type,
1863 -- these discriminants are not components of the aggregate, and must be
1864 -- initialized. The assignments are appended to List. The same is done
1865 -- if Typ derives fron an already constrained subtype of a discriminated
1866 -- parent type.
1868 function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id;
1869 -- If the ancestor part is an unconstrained type and further ancestors
1870 -- do not provide discriminants for it, check aggregate components for
1871 -- values of the discriminants.
1873 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
1874 -- Check whether Bounds is a range node and its lower and higher bounds
1875 -- are integers literals.
1877 ---------------------------------
1878 -- Ancestor_Discriminant_Value --
1879 ---------------------------------
1881 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
1882 Assoc : Node_Id;
1883 Assoc_Elmt : Elmt_Id;
1884 Aggr_Comp : Entity_Id;
1885 Corresp_Disc : Entity_Id;
1886 Current_Typ : Entity_Id := Base_Type (Typ);
1887 Parent_Typ : Entity_Id;
1888 Parent_Disc : Entity_Id;
1889 Save_Assoc : Node_Id := Empty;
1891 begin
1892 -- First check any discriminant associations to see if any of them
1893 -- provide a value for the discriminant.
1895 if Present (Discriminant_Specifications (Parent (Current_Typ))) then
1896 Assoc := First (Component_Associations (N));
1897 while Present (Assoc) loop
1898 Aggr_Comp := Entity (First (Choices (Assoc)));
1900 if Ekind (Aggr_Comp) = E_Discriminant then
1901 Save_Assoc := Expression (Assoc);
1903 Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
1904 while Present (Corresp_Disc) loop
1906 -- If found a corresponding discriminant then return the
1907 -- value given in the aggregate. (Note: this is not
1908 -- correct in the presence of side effects. ???)
1910 if Disc = Corresp_Disc then
1911 return Duplicate_Subexpr (Expression (Assoc));
1912 end if;
1914 Corresp_Disc :=
1915 Corresponding_Discriminant (Corresp_Disc);
1916 end loop;
1917 end if;
1919 Next (Assoc);
1920 end loop;
1921 end if;
1923 -- No match found in aggregate, so chain up parent types to find
1924 -- a constraint that defines the value of the discriminant.
1926 Parent_Typ := Etype (Current_Typ);
1927 while Current_Typ /= Parent_Typ loop
1928 if Has_Discriminants (Parent_Typ)
1929 and then not Has_Unknown_Discriminants (Parent_Typ)
1930 then
1931 Parent_Disc := First_Discriminant (Parent_Typ);
1933 -- We either get the association from the subtype indication
1934 -- of the type definition itself, or from the discriminant
1935 -- constraint associated with the type entity (which is
1936 -- preferable, but it's not always present ???)
1938 if Is_Empty_Elmt_List (
1939 Discriminant_Constraint (Current_Typ))
1940 then
1941 Assoc := Get_Constraint_Association (Current_Typ);
1942 Assoc_Elmt := No_Elmt;
1943 else
1944 Assoc_Elmt :=
1945 First_Elmt (Discriminant_Constraint (Current_Typ));
1946 Assoc := Node (Assoc_Elmt);
1947 end if;
1949 -- Traverse the discriminants of the parent type looking
1950 -- for one that corresponds.
1952 while Present (Parent_Disc) and then Present (Assoc) loop
1953 Corresp_Disc := Parent_Disc;
1954 while Present (Corresp_Disc)
1955 and then Disc /= Corresp_Disc
1956 loop
1957 Corresp_Disc :=
1958 Corresponding_Discriminant (Corresp_Disc);
1959 end loop;
1961 if Disc = Corresp_Disc then
1962 if Nkind (Assoc) = N_Discriminant_Association then
1963 Assoc := Expression (Assoc);
1964 end if;
1966 -- If the located association directly denotes
1967 -- a discriminant, then use the value of a saved
1968 -- association of the aggregate. This is an approach
1969 -- used to handle certain cases involving multiple
1970 -- discriminants mapped to a single discriminant of
1971 -- a descendant. It's not clear how to locate the
1972 -- appropriate discriminant value for such cases. ???
1974 if Is_Entity_Name (Assoc)
1975 and then Ekind (Entity (Assoc)) = E_Discriminant
1976 then
1977 Assoc := Save_Assoc;
1978 end if;
1980 return Duplicate_Subexpr (Assoc);
1981 end if;
1983 Next_Discriminant (Parent_Disc);
1985 if No (Assoc_Elmt) then
1986 Next (Assoc);
1987 else
1988 Next_Elmt (Assoc_Elmt);
1989 if Present (Assoc_Elmt) then
1990 Assoc := Node (Assoc_Elmt);
1991 else
1992 Assoc := Empty;
1993 end if;
1994 end if;
1995 end loop;
1996 end if;
1998 Current_Typ := Parent_Typ;
1999 Parent_Typ := Etype (Current_Typ);
2000 end loop;
2002 -- In some cases there's no ancestor value to locate (such as
2003 -- when an ancestor part given by an expression defines the
2004 -- discriminant value).
2006 return Empty;
2007 end Ancestor_Discriminant_Value;
2009 ----------------------------------
2010 -- Check_Ancestor_Discriminants --
2011 ----------------------------------
2013 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
2014 Discr : Entity_Id;
2015 Disc_Value : Node_Id;
2016 Cond : Node_Id;
2018 begin
2019 Discr := First_Discriminant (Base_Type (Anc_Typ));
2020 while Present (Discr) loop
2021 Disc_Value := Ancestor_Discriminant_Value (Discr);
2023 if Present (Disc_Value) then
2024 Cond := Make_Op_Ne (Loc,
2025 Left_Opnd =>
2026 Make_Selected_Component (Loc,
2027 Prefix => New_Copy_Tree (Target),
2028 Selector_Name => New_Occurrence_Of (Discr, Loc)),
2029 Right_Opnd => Disc_Value);
2031 Append_To (L,
2032 Make_Raise_Constraint_Error (Loc,
2033 Condition => Cond,
2034 Reason => CE_Discriminant_Check_Failed));
2035 end if;
2037 Next_Discriminant (Discr);
2038 end loop;
2039 end Check_Ancestor_Discriminants;
2041 ---------------------------
2042 -- Compatible_Int_Bounds --
2043 ---------------------------
2045 function Compatible_Int_Bounds
2046 (Agg_Bounds : Node_Id;
2047 Typ_Bounds : Node_Id) return Boolean
2049 Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
2050 Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
2051 Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
2052 Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
2053 begin
2054 return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
2055 end Compatible_Int_Bounds;
2057 --------------------------------
2058 -- Get_Constraint_Association --
2059 --------------------------------
2061 function Get_Constraint_Association (T : Entity_Id) return Node_Id is
2062 Indic : Node_Id;
2063 Typ : Entity_Id;
2065 begin
2066 Typ := T;
2068 -- If type is private, get constraint from full view. This was
2069 -- previously done in an instance context, but is needed whenever
2070 -- the ancestor part has a discriminant, possibly inherited through
2071 -- multiple derivations.
2073 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
2074 Typ := Full_View (Typ);
2075 end if;
2077 Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
2079 -- Verify that the subtype indication carries a constraint
2081 if Nkind (Indic) = N_Subtype_Indication
2082 and then Present (Constraint (Indic))
2083 then
2084 return First (Constraints (Constraint (Indic)));
2085 end if;
2087 return Empty;
2088 end Get_Constraint_Association;
2090 -------------------------------------
2091 -- Get_Explicit_Discriminant_Value --
2092 -------------------------------------
2094 function Get_Explicit_Discriminant_Value
2095 (D : Entity_Id) return Node_Id
2097 Assoc : Node_Id;
2098 Choice : Node_Id;
2099 Val : Node_Id;
2101 begin
2102 -- The aggregate has been normalized and all associations have a
2103 -- single choice.
2105 Assoc := First (Component_Associations (N));
2106 while Present (Assoc) loop
2107 Choice := First (Choices (Assoc));
2109 if Chars (Choice) = Chars (D) then
2110 Val := Expression (Assoc);
2111 Remove (Assoc);
2112 return Val;
2113 end if;
2115 Next (Assoc);
2116 end loop;
2118 return Empty;
2119 end Get_Explicit_Discriminant_Value;
2121 -------------------------------
2122 -- Init_Hidden_Discriminants --
2123 -------------------------------
2125 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
2126 Btype : Entity_Id;
2127 Parent_Type : Entity_Id;
2128 Disc : Entity_Id;
2129 Discr_Val : Elmt_Id;
2130 In_Aggr_Type : Boolean;
2132 begin
2133 -- The constraints on the hidden discriminants, if present, are kept
2134 -- in the Stored_Constraint list of the type itself, or in that of
2135 -- the base type. If not in the constraints of the aggregate itself,
2136 -- we examine ancestors to find discriminants that are not renamed
2137 -- by other discriminants but constrained explicitly.
2139 In_Aggr_Type := True;
2141 Btype := Base_Type (Typ);
2142 while Is_Derived_Type (Btype)
2143 and then
2144 (Present (Stored_Constraint (Btype))
2145 or else
2146 (In_Aggr_Type and then Present (Stored_Constraint (Typ))))
2147 loop
2148 Parent_Type := Etype (Btype);
2150 if not Has_Discriminants (Parent_Type) then
2151 return;
2152 end if;
2154 Disc := First_Discriminant (Parent_Type);
2156 -- We know that one of the stored-constraint lists is present
2158 if Present (Stored_Constraint (Btype)) then
2159 Discr_Val := First_Elmt (Stored_Constraint (Btype));
2161 -- For private extension, stored constraint may be on full view
2163 elsif Is_Private_Type (Btype)
2164 and then Present (Full_View (Btype))
2165 and then Present (Stored_Constraint (Full_View (Btype)))
2166 then
2167 Discr_Val := First_Elmt (Stored_Constraint (Full_View (Btype)));
2169 else
2170 Discr_Val := First_Elmt (Stored_Constraint (Typ));
2171 end if;
2173 while Present (Discr_Val) and then Present (Disc) loop
2175 -- Only those discriminants of the parent that are not
2176 -- renamed by discriminants of the derived type need to
2177 -- be added explicitly.
2179 if not Is_Entity_Name (Node (Discr_Val))
2180 or else Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
2181 then
2182 Comp_Expr :=
2183 Make_Selected_Component (Loc,
2184 Prefix => New_Copy_Tree (Target),
2185 Selector_Name => New_Occurrence_Of (Disc, Loc));
2187 Instr :=
2188 Make_OK_Assignment_Statement (Loc,
2189 Name => Comp_Expr,
2190 Expression => New_Copy_Tree (Node (Discr_Val)));
2192 Set_No_Ctrl_Actions (Instr);
2193 Append_To (List, Instr);
2194 end if;
2196 Next_Discriminant (Disc);
2197 Next_Elmt (Discr_Val);
2198 end loop;
2200 In_Aggr_Type := False;
2201 Btype := Base_Type (Parent_Type);
2202 end loop;
2203 end Init_Hidden_Discriminants;
2205 -------------------------
2206 -- Is_Int_Range_Bounds --
2207 -------------------------
2209 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2210 begin
2211 return Nkind (Bounds) = N_Range
2212 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
2213 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2214 end Is_Int_Range_Bounds;
2216 -----------------------------------
2217 -- Generate_Finalization_Actions --
2218 -----------------------------------
2220 procedure Generate_Finalization_Actions is
2221 begin
2222 -- Do the work only the first time this is called
2224 if Finalization_Done then
2225 return;
2226 end if;
2228 Finalization_Done := True;
2230 -- Determine the external finalization list. It is either the
2231 -- finalization list of the outer-scope or the one coming from an
2232 -- outer aggregate. When the target is not a temporary, the proper
2233 -- scope is the scope of the target rather than the potentially
2234 -- transient current scope.
2236 if Is_Controlled (Typ) and then Ancestor_Is_Subtype_Mark then
2237 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2238 Set_Assignment_OK (Ref);
2240 Append_To (L,
2241 Make_Procedure_Call_Statement (Loc,
2242 Name =>
2243 New_Occurrence_Of
2244 (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2245 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2246 end if;
2247 end Generate_Finalization_Actions;
2249 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
2250 -- If default expression of a component mentions a discriminant of the
2251 -- type, it must be rewritten as the discriminant of the target object.
2253 function Replace_Type (Expr : Node_Id) return Traverse_Result;
2254 -- If the aggregate contains a self-reference, traverse each expression
2255 -- to replace a possible self-reference with a reference to the proper
2256 -- component of the target of the assignment.
2258 --------------------------
2259 -- Rewrite_Discriminant --
2260 --------------------------
2262 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2263 begin
2264 if Is_Entity_Name (Expr)
2265 and then Present (Entity (Expr))
2266 and then Ekind (Entity (Expr)) = E_In_Parameter
2267 and then Present (Discriminal_Link (Entity (Expr)))
2268 and then Scope (Discriminal_Link (Entity (Expr))) =
2269 Base_Type (Etype (N))
2270 then
2271 Rewrite (Expr,
2272 Make_Selected_Component (Loc,
2273 Prefix => New_Copy_Tree (Lhs),
2274 Selector_Name => Make_Identifier (Loc, Chars (Expr))));
2275 end if;
2277 return OK;
2278 end Rewrite_Discriminant;
2280 ------------------
2281 -- Replace_Type --
2282 ------------------
2284 function Replace_Type (Expr : Node_Id) return Traverse_Result is
2285 begin
2286 -- Note regarding the Root_Type test below: Aggregate components for
2287 -- self-referential types include attribute references to the current
2288 -- instance, of the form: Typ'access, etc.. These references are
2289 -- rewritten as references to the target of the aggregate: the
2290 -- left-hand side of an assignment, the entity in a declaration,
2291 -- or a temporary. Without this test, we would improperly extended
2292 -- this rewriting to attribute references whose prefix was not the
2293 -- type of the aggregate.
2295 if Nkind (Expr) = N_Attribute_Reference
2296 and then Is_Entity_Name (Prefix (Expr))
2297 and then Is_Type (Entity (Prefix (Expr)))
2298 and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
2299 then
2300 if Is_Entity_Name (Lhs) then
2301 Rewrite (Prefix (Expr),
2302 New_Occurrence_Of (Entity (Lhs), Loc));
2304 elsif Nkind (Lhs) = N_Selected_Component then
2305 Rewrite (Expr,
2306 Make_Attribute_Reference (Loc,
2307 Attribute_Name => Name_Unrestricted_Access,
2308 Prefix => New_Copy_Tree (Lhs)));
2309 Set_Analyzed (Parent (Expr), False);
2311 else
2312 Rewrite (Expr,
2313 Make_Attribute_Reference (Loc,
2314 Attribute_Name => Name_Unrestricted_Access,
2315 Prefix => New_Copy_Tree (Lhs)));
2316 Set_Analyzed (Parent (Expr), False);
2317 end if;
2318 end if;
2320 return OK;
2321 end Replace_Type;
2323 procedure Replace_Self_Reference is
2324 new Traverse_Proc (Replace_Type);
2326 procedure Replace_Discriminants is
2327 new Traverse_Proc (Rewrite_Discriminant);
2329 -- Start of processing for Build_Record_Aggr_Code
2331 begin
2332 if Has_Self_Reference (N) then
2333 Replace_Self_Reference (N);
2334 end if;
2336 -- If the target of the aggregate is class-wide, we must convert it
2337 -- to the actual type of the aggregate, so that the proper components
2338 -- are visible. We know already that the types are compatible.
2340 if Present (Etype (Lhs))
2341 and then Is_Class_Wide_Type (Etype (Lhs))
2342 then
2343 Target := Unchecked_Convert_To (Typ, Lhs);
2344 else
2345 Target := Lhs;
2346 end if;
2348 -- Deal with the ancestor part of extension aggregates or with the
2349 -- discriminants of the root type.
2351 if Nkind (N) = N_Extension_Aggregate then
2352 declare
2353 Ancestor : constant Node_Id := Ancestor_Part (N);
2354 Assign : List_Id;
2356 begin
2357 -- If the ancestor part is a subtype mark "T", we generate
2359 -- init-proc (T (tmp)); if T is constrained and
2360 -- init-proc (S (tmp)); where S applies an appropriate
2361 -- constraint if T is unconstrained
2363 if Is_Entity_Name (Ancestor)
2364 and then Is_Type (Entity (Ancestor))
2365 then
2366 Ancestor_Is_Subtype_Mark := True;
2368 if Is_Constrained (Entity (Ancestor)) then
2369 Init_Typ := Entity (Ancestor);
2371 -- For an ancestor part given by an unconstrained type mark,
2372 -- create a subtype constrained by appropriate corresponding
2373 -- discriminant values coming from either associations of the
2374 -- aggregate or a constraint on a parent type. The subtype will
2375 -- be used to generate the correct default value for the
2376 -- ancestor part.
2378 elsif Has_Discriminants (Entity (Ancestor)) then
2379 declare
2380 Anc_Typ : constant Entity_Id := Entity (Ancestor);
2381 Anc_Constr : constant List_Id := New_List;
2382 Discrim : Entity_Id;
2383 Disc_Value : Node_Id;
2384 New_Indic : Node_Id;
2385 Subt_Decl : Node_Id;
2387 begin
2388 Discrim := First_Discriminant (Anc_Typ);
2389 while Present (Discrim) loop
2390 Disc_Value := Ancestor_Discriminant_Value (Discrim);
2392 -- If no usable discriminant in ancestors, check
2393 -- whether aggregate has an explicit value for it.
2395 if No (Disc_Value) then
2396 Disc_Value :=
2397 Get_Explicit_Discriminant_Value (Discrim);
2398 end if;
2400 Append_To (Anc_Constr, Disc_Value);
2401 Next_Discriminant (Discrim);
2402 end loop;
2404 New_Indic :=
2405 Make_Subtype_Indication (Loc,
2406 Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2407 Constraint =>
2408 Make_Index_Or_Discriminant_Constraint (Loc,
2409 Constraints => Anc_Constr));
2411 Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2413 Subt_Decl :=
2414 Make_Subtype_Declaration (Loc,
2415 Defining_Identifier => Init_Typ,
2416 Subtype_Indication => New_Indic);
2418 -- Itypes must be analyzed with checks off Declaration
2419 -- must have a parent for proper handling of subsidiary
2420 -- actions.
2422 Set_Parent (Subt_Decl, N);
2423 Analyze (Subt_Decl, Suppress => All_Checks);
2424 end;
2425 end if;
2427 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2428 Set_Assignment_OK (Ref);
2430 if not Is_Interface (Init_Typ) then
2431 Append_List_To (L,
2432 Build_Initialization_Call (Loc,
2433 Id_Ref => Ref,
2434 Typ => Init_Typ,
2435 In_Init_Proc => Within_Init_Proc,
2436 With_Default_Init => Has_Default_Init_Comps (N)
2437 or else
2438 Has_Task (Base_Type (Init_Typ))));
2440 if Is_Constrained (Entity (Ancestor))
2441 and then Has_Discriminants (Entity (Ancestor))
2442 then
2443 Check_Ancestor_Discriminants (Entity (Ancestor));
2444 end if;
2445 end if;
2447 -- Handle calls to C++ constructors
2449 elsif Is_CPP_Constructor_Call (Ancestor) then
2450 Init_Typ := Etype (Ancestor);
2451 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2452 Set_Assignment_OK (Ref);
2454 Append_List_To (L,
2455 Build_Initialization_Call (Loc,
2456 Id_Ref => Ref,
2457 Typ => Init_Typ,
2458 In_Init_Proc => Within_Init_Proc,
2459 With_Default_Init => Has_Default_Init_Comps (N),
2460 Constructor_Ref => Ancestor));
2462 -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
2463 -- limited type, a recursive call expands the ancestor. Note that
2464 -- in the limited case, the ancestor part must be either a
2465 -- function call (possibly qualified, or wrapped in an unchecked
2466 -- conversion) or aggregate (definitely qualified).
2468 -- The ancestor part can also be a function call (that may be
2469 -- transformed into an explicit dereference) or a qualification
2470 -- of one such.
2472 elsif Is_Limited_Type (Etype (Ancestor))
2473 and then Nkind_In (Unqualify (Ancestor), N_Aggregate,
2474 N_Extension_Aggregate)
2475 then
2476 Ancestor_Is_Expression := True;
2478 -- Set up finalization data for enclosing record, because
2479 -- controlled subcomponents of the ancestor part will be
2480 -- attached to it.
2482 Generate_Finalization_Actions;
2484 Append_List_To (L,
2485 Build_Record_Aggr_Code
2486 (N => Unqualify (Ancestor),
2487 Typ => Etype (Unqualify (Ancestor)),
2488 Lhs => Target));
2490 -- If the ancestor part is an expression "E", we generate
2492 -- T (tmp) := E;
2494 -- In Ada 2005, this includes the case of a (possibly qualified)
2495 -- limited function call. The assignment will turn into a
2496 -- build-in-place function call (for further details, see
2497 -- Make_Build_In_Place_Call_In_Assignment).
2499 else
2500 Ancestor_Is_Expression := True;
2501 Init_Typ := Etype (Ancestor);
2503 -- If the ancestor part is an aggregate, force its full
2504 -- expansion, which was delayed.
2506 if Nkind_In (Unqualify (Ancestor), N_Aggregate,
2507 N_Extension_Aggregate)
2508 then
2509 Set_Analyzed (Ancestor, False);
2510 Set_Analyzed (Expression (Ancestor), False);
2511 end if;
2513 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2514 Set_Assignment_OK (Ref);
2516 -- Make the assignment without usual controlled actions, since
2517 -- we only want to Adjust afterwards, but not to Finalize
2518 -- beforehand. Add manual Adjust when necessary.
2520 Assign := New_List (
2521 Make_OK_Assignment_Statement (Loc,
2522 Name => Ref,
2523 Expression => Ancestor));
2524 Set_No_Ctrl_Actions (First (Assign));
2526 -- Assign the tag now to make sure that the dispatching call in
2527 -- the subsequent deep_adjust works properly (unless VM_Target,
2528 -- where tags are implicit).
2530 if Tagged_Type_Expansion then
2531 Instr :=
2532 Make_OK_Assignment_Statement (Loc,
2533 Name =>
2534 Make_Selected_Component (Loc,
2535 Prefix => New_Copy_Tree (Target),
2536 Selector_Name =>
2537 New_Occurrence_Of
2538 (First_Tag_Component (Base_Type (Typ)), Loc)),
2540 Expression =>
2541 Unchecked_Convert_To (RTE (RE_Tag),
2542 New_Occurrence_Of
2543 (Node (First_Elmt
2544 (Access_Disp_Table (Base_Type (Typ)))),
2545 Loc)));
2547 Set_Assignment_OK (Name (Instr));
2548 Append_To (Assign, Instr);
2550 -- Ada 2005 (AI-251): If tagged type has progenitors we must
2551 -- also initialize tags of the secondary dispatch tables.
2553 if Has_Interfaces (Base_Type (Typ)) then
2554 Init_Secondary_Tags
2555 (Typ => Base_Type (Typ),
2556 Target => Target,
2557 Stmts_List => Assign);
2558 end if;
2559 end if;
2561 -- Call Adjust manually
2563 if Needs_Finalization (Etype (Ancestor))
2564 and then not Is_Limited_Type (Etype (Ancestor))
2565 then
2566 Append_To (Assign,
2567 Make_Adjust_Call
2568 (Obj_Ref => New_Copy_Tree (Ref),
2569 Typ => Etype (Ancestor)));
2570 end if;
2572 Append_To (L,
2573 Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
2575 if Has_Discriminants (Init_Typ) then
2576 Check_Ancestor_Discriminants (Init_Typ);
2577 end if;
2578 end if;
2579 end;
2581 -- Generate assignments of hidden discriminants. If the base type is
2582 -- an unchecked union, the discriminants are unknown to the back-end
2583 -- and absent from a value of the type, so assignments for them are
2584 -- not emitted.
2586 if Has_Discriminants (Typ)
2587 and then not Is_Unchecked_Union (Base_Type (Typ))
2588 then
2589 Init_Hidden_Discriminants (Typ, L);
2590 end if;
2592 -- Normal case (not an extension aggregate)
2594 else
2595 -- Generate the discriminant expressions, component by component.
2596 -- If the base type is an unchecked union, the discriminants are
2597 -- unknown to the back-end and absent from a value of the type, so
2598 -- assignments for them are not emitted.
2600 if Has_Discriminants (Typ)
2601 and then not Is_Unchecked_Union (Base_Type (Typ))
2602 then
2603 Init_Hidden_Discriminants (Typ, L);
2605 -- Generate discriminant init values for the visible discriminants
2607 declare
2608 Discriminant : Entity_Id;
2609 Discriminant_Value : Node_Id;
2611 begin
2612 Discriminant := First_Stored_Discriminant (Typ);
2613 while Present (Discriminant) loop
2614 Comp_Expr :=
2615 Make_Selected_Component (Loc,
2616 Prefix => New_Copy_Tree (Target),
2617 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2619 Discriminant_Value :=
2620 Get_Discriminant_Value (
2621 Discriminant,
2622 N_Typ,
2623 Discriminant_Constraint (N_Typ));
2625 Instr :=
2626 Make_OK_Assignment_Statement (Loc,
2627 Name => Comp_Expr,
2628 Expression => New_Copy_Tree (Discriminant_Value));
2630 Set_No_Ctrl_Actions (Instr);
2631 Append_To (L, Instr);
2633 Next_Stored_Discriminant (Discriminant);
2634 end loop;
2635 end;
2636 end if;
2637 end if;
2639 -- For CPP types we generate an implicit call to the C++ default
2640 -- constructor to ensure the proper initialization of the _Tag
2641 -- component.
2643 if Is_CPP_Class (Root_Type (Typ)) and then CPP_Num_Prims (Typ) > 0 then
2644 Invoke_Constructor : declare
2645 CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ);
2647 procedure Invoke_IC_Proc (T : Entity_Id);
2648 -- Recursive routine used to climb to parents. Required because
2649 -- parents must be initialized before descendants to ensure
2650 -- propagation of inherited C++ slots.
2652 --------------------
2653 -- Invoke_IC_Proc --
2654 --------------------
2656 procedure Invoke_IC_Proc (T : Entity_Id) is
2657 begin
2658 -- Avoid generating extra calls. Initialization required
2659 -- only for types defined from the level of derivation of
2660 -- type of the constructor and the type of the aggregate.
2662 if T = CPP_Parent then
2663 return;
2664 end if;
2666 Invoke_IC_Proc (Etype (T));
2668 -- Generate call to the IC routine
2670 if Present (CPP_Init_Proc (T)) then
2671 Append_To (L,
2672 Make_Procedure_Call_Statement (Loc,
2673 New_Occurrence_Of (CPP_Init_Proc (T), Loc)));
2674 end if;
2675 end Invoke_IC_Proc;
2677 -- Start of processing for Invoke_Constructor
2679 begin
2680 -- Implicit invocation of the C++ constructor
2682 if Nkind (N) = N_Aggregate then
2683 Append_To (L,
2684 Make_Procedure_Call_Statement (Loc,
2685 Name =>
2686 New_Occurrence_Of (Base_Init_Proc (CPP_Parent), Loc),
2687 Parameter_Associations => New_List (
2688 Unchecked_Convert_To (CPP_Parent,
2689 New_Copy_Tree (Lhs)))));
2690 end if;
2692 Invoke_IC_Proc (Typ);
2693 end Invoke_Constructor;
2694 end if;
2696 -- Generate the assignments, component by component
2698 -- tmp.comp1 := Expr1_From_Aggr;
2699 -- tmp.comp2 := Expr2_From_Aggr;
2700 -- ....
2702 Comp := First (Component_Associations (N));
2703 while Present (Comp) loop
2704 Selector := Entity (First (Choices (Comp)));
2706 -- C++ constructors
2708 if Is_CPP_Constructor_Call (Expression (Comp)) then
2709 Append_List_To (L,
2710 Build_Initialization_Call (Loc,
2711 Id_Ref =>
2712 Make_Selected_Component (Loc,
2713 Prefix => New_Copy_Tree (Target),
2714 Selector_Name => New_Occurrence_Of (Selector, Loc)),
2715 Typ => Etype (Selector),
2716 Enclos_Type => Typ,
2717 With_Default_Init => True,
2718 Constructor_Ref => Expression (Comp)));
2720 -- Ada 2005 (AI-287): For each default-initialized component generate
2721 -- a call to the corresponding IP subprogram if available.
2723 elsif Box_Present (Comp)
2724 and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
2725 then
2726 if Ekind (Selector) /= E_Discriminant then
2727 Generate_Finalization_Actions;
2728 end if;
2730 -- Ada 2005 (AI-287): If the component type has tasks then
2731 -- generate the activation chain and master entities (except
2732 -- in case of an allocator because in that case these entities
2733 -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
2735 declare
2736 Ctype : constant Entity_Id := Etype (Selector);
2737 Inside_Allocator : Boolean := False;
2738 P : Node_Id := Parent (N);
2740 begin
2741 if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
2742 while Present (P) loop
2743 if Nkind (P) = N_Allocator then
2744 Inside_Allocator := True;
2745 exit;
2746 end if;
2748 P := Parent (P);
2749 end loop;
2751 if not Inside_Init_Proc and not Inside_Allocator then
2752 Build_Activation_Chain_Entity (N);
2753 end if;
2754 end if;
2755 end;
2757 Append_List_To (L,
2758 Build_Initialization_Call (Loc,
2759 Id_Ref => Make_Selected_Component (Loc,
2760 Prefix => New_Copy_Tree (Target),
2761 Selector_Name =>
2762 New_Occurrence_Of (Selector, Loc)),
2763 Typ => Etype (Selector),
2764 Enclos_Type => Typ,
2765 With_Default_Init => True));
2767 -- Prepare for component assignment
2769 elsif Ekind (Selector) /= E_Discriminant
2770 or else Nkind (N) = N_Extension_Aggregate
2771 then
2772 -- All the discriminants have now been assigned
2774 -- This is now a good moment to initialize and attach all the
2775 -- controllers. Their position may depend on the discriminants.
2777 if Ekind (Selector) /= E_Discriminant then
2778 Generate_Finalization_Actions;
2779 end if;
2781 Comp_Type := Underlying_Type (Etype (Selector));
2782 Comp_Expr :=
2783 Make_Selected_Component (Loc,
2784 Prefix => New_Copy_Tree (Target),
2785 Selector_Name => New_Occurrence_Of (Selector, Loc));
2787 if Nkind (Expression (Comp)) = N_Qualified_Expression then
2788 Expr_Q := Expression (Expression (Comp));
2789 else
2790 Expr_Q := Expression (Comp);
2791 end if;
2793 -- Now either create the assignment or generate the code for the
2794 -- inner aggregate top-down.
2796 if Is_Delayed_Aggregate (Expr_Q) then
2798 -- We have the following case of aggregate nesting inside
2799 -- an object declaration:
2801 -- type Arr_Typ is array (Integer range <>) of ...;
2803 -- type Rec_Typ (...) is record
2804 -- Obj_Arr_Typ : Arr_Typ (A .. B);
2805 -- end record;
2807 -- Obj_Rec_Typ : Rec_Typ := (...,
2808 -- Obj_Arr_Typ => (X => (...), Y => (...)));
2810 -- The length of the ranges of the aggregate and Obj_Add_Typ
2811 -- are equal (B - A = Y - X), but they do not coincide (X /=
2812 -- A and B /= Y). This case requires array sliding which is
2813 -- performed in the following manner:
2815 -- subtype Arr_Sub is Arr_Typ (X .. Y);
2816 -- Temp : Arr_Sub;
2817 -- Temp (X) := (...);
2818 -- ...
2819 -- Temp (Y) := (...);
2820 -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
2822 if Ekind (Comp_Type) = E_Array_Subtype
2823 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
2824 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
2825 and then not
2826 Compatible_Int_Bounds
2827 (Agg_Bounds => Aggregate_Bounds (Expr_Q),
2828 Typ_Bounds => First_Index (Comp_Type))
2829 then
2830 -- Create the array subtype with bounds equal to those of
2831 -- the corresponding aggregate.
2833 declare
2834 SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
2836 SubD : constant Node_Id :=
2837 Make_Subtype_Declaration (Loc,
2838 Defining_Identifier => SubE,
2839 Subtype_Indication =>
2840 Make_Subtype_Indication (Loc,
2841 Subtype_Mark =>
2842 New_Occurrence_Of (Etype (Comp_Type), Loc),
2843 Constraint =>
2844 Make_Index_Or_Discriminant_Constraint
2845 (Loc,
2846 Constraints => New_List (
2847 New_Copy_Tree
2848 (Aggregate_Bounds (Expr_Q))))));
2850 -- Create a temporary array of the above subtype which
2851 -- will be used to capture the aggregate assignments.
2853 TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
2855 TmpD : constant Node_Id :=
2856 Make_Object_Declaration (Loc,
2857 Defining_Identifier => TmpE,
2858 Object_Definition => New_Occurrence_Of (SubE, Loc));
2860 begin
2861 Set_No_Initialization (TmpD);
2862 Append_To (L, SubD);
2863 Append_To (L, TmpD);
2865 -- Expand aggregate into assignments to the temp array
2867 Append_List_To (L,
2868 Late_Expansion (Expr_Q, Comp_Type,
2869 New_Occurrence_Of (TmpE, Loc)));
2871 -- Slide
2873 Append_To (L,
2874 Make_Assignment_Statement (Loc,
2875 Name => New_Copy_Tree (Comp_Expr),
2876 Expression => New_Occurrence_Of (TmpE, Loc)));
2877 end;
2879 -- Normal case (sliding not required)
2881 else
2882 Append_List_To (L,
2883 Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
2884 end if;
2886 -- Expr_Q is not delayed aggregate
2888 else
2889 if Has_Discriminants (Typ) then
2890 Replace_Discriminants (Expr_Q);
2892 -- If the component is an array type that depends on
2893 -- discriminants, and the expression is a single Others
2894 -- clause, create an explicit subtype for it because the
2895 -- backend has troubles recovering the actual bounds.
2897 if Nkind (Expr_Q) = N_Aggregate
2898 and then Is_Array_Type (Comp_Type)
2899 and then Present (Component_Associations (Expr_Q))
2900 then
2901 declare
2902 Assoc : constant Node_Id :=
2903 First (Component_Associations (Expr_Q));
2904 Decl : Node_Id;
2906 begin
2907 if Nkind (First (Choices (Assoc))) = N_Others_Choice
2908 then
2909 Decl :=
2910 Build_Actual_Subtype_Of_Component
2911 (Comp_Type, Comp_Expr);
2913 -- If the component type does not in fact depend on
2914 -- discriminants, the subtype declaration is empty.
2916 if Present (Decl) then
2917 Append_To (L, Decl);
2918 Set_Etype (Comp_Expr, Defining_Entity (Decl));
2919 end if;
2920 end if;
2921 end;
2922 end if;
2923 end if;
2925 Instr :=
2926 Make_OK_Assignment_Statement (Loc,
2927 Name => Comp_Expr,
2928 Expression => Expr_Q);
2930 Set_No_Ctrl_Actions (Instr);
2931 Append_To (L, Instr);
2933 -- Adjust the tag if tagged (because of possible view
2934 -- conversions), unless compiling for a VM where tags are
2935 -- implicit.
2937 -- tmp.comp._tag := comp_typ'tag;
2939 if Is_Tagged_Type (Comp_Type)
2940 and then Tagged_Type_Expansion
2941 then
2942 Instr :=
2943 Make_OK_Assignment_Statement (Loc,
2944 Name =>
2945 Make_Selected_Component (Loc,
2946 Prefix => New_Copy_Tree (Comp_Expr),
2947 Selector_Name =>
2948 New_Occurrence_Of
2949 (First_Tag_Component (Comp_Type), Loc)),
2951 Expression =>
2952 Unchecked_Convert_To (RTE (RE_Tag),
2953 New_Occurrence_Of
2954 (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
2955 Loc)));
2957 Append_To (L, Instr);
2958 end if;
2960 -- Generate:
2961 -- Adjust (tmp.comp);
2963 if Needs_Finalization (Comp_Type)
2964 and then not Is_Limited_Type (Comp_Type)
2965 then
2966 Append_To (L,
2967 Make_Adjust_Call
2968 (Obj_Ref => New_Copy_Tree (Comp_Expr),
2969 Typ => Comp_Type));
2970 end if;
2971 end if;
2973 -- comment would be good here ???
2975 elsif Ekind (Selector) = E_Discriminant
2976 and then Nkind (N) /= N_Extension_Aggregate
2977 and then Nkind (Parent (N)) = N_Component_Association
2978 and then Is_Constrained (Typ)
2979 then
2980 -- We must check that the discriminant value imposed by the
2981 -- context is the same as the value given in the subaggregate,
2982 -- because after the expansion into assignments there is no
2983 -- record on which to perform a regular discriminant check.
2985 declare
2986 D_Val : Elmt_Id;
2987 Disc : Entity_Id;
2989 begin
2990 D_Val := First_Elmt (Discriminant_Constraint (Typ));
2991 Disc := First_Discriminant (Typ);
2992 while Chars (Disc) /= Chars (Selector) loop
2993 Next_Discriminant (Disc);
2994 Next_Elmt (D_Val);
2995 end loop;
2997 pragma Assert (Present (D_Val));
2999 -- This check cannot performed for components that are
3000 -- constrained by a current instance, because this is not a
3001 -- value that can be compared with the actual constraint.
3003 if Nkind (Node (D_Val)) /= N_Attribute_Reference
3004 or else not Is_Entity_Name (Prefix (Node (D_Val)))
3005 or else not Is_Type (Entity (Prefix (Node (D_Val))))
3006 then
3007 Append_To (L,
3008 Make_Raise_Constraint_Error (Loc,
3009 Condition =>
3010 Make_Op_Ne (Loc,
3011 Left_Opnd => New_Copy_Tree (Node (D_Val)),
3012 Right_Opnd => Expression (Comp)),
3013 Reason => CE_Discriminant_Check_Failed));
3015 else
3016 -- Find self-reference in previous discriminant assignment,
3017 -- and replace with proper expression.
3019 declare
3020 Ass : Node_Id;
3022 begin
3023 Ass := First (L);
3024 while Present (Ass) loop
3025 if Nkind (Ass) = N_Assignment_Statement
3026 and then Nkind (Name (Ass)) = N_Selected_Component
3027 and then Chars (Selector_Name (Name (Ass))) =
3028 Chars (Disc)
3029 then
3030 Set_Expression
3031 (Ass, New_Copy_Tree (Expression (Comp)));
3032 exit;
3033 end if;
3034 Next (Ass);
3035 end loop;
3036 end;
3037 end if;
3038 end;
3039 end if;
3041 Next (Comp);
3042 end loop;
3044 -- If the type is tagged, the tag needs to be initialized (unless we
3045 -- are in VM-mode where tags are implicit). It is done late in the
3046 -- initialization process because in some cases, we call the init
3047 -- proc of an ancestor which will not leave out the right tag.
3049 if Ancestor_Is_Expression then
3050 null;
3052 -- For CPP types we generated a call to the C++ default constructor
3053 -- before the components have been initialized to ensure the proper
3054 -- initialization of the _Tag component (see above).
3056 elsif Is_CPP_Class (Typ) then
3057 null;
3059 elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
3060 Instr :=
3061 Make_OK_Assignment_Statement (Loc,
3062 Name =>
3063 Make_Selected_Component (Loc,
3064 Prefix => New_Copy_Tree (Target),
3065 Selector_Name =>
3066 New_Occurrence_Of
3067 (First_Tag_Component (Base_Type (Typ)), Loc)),
3069 Expression =>
3070 Unchecked_Convert_To (RTE (RE_Tag),
3071 New_Occurrence_Of
3072 (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
3073 Loc)));
3075 Append_To (L, Instr);
3077 -- Ada 2005 (AI-251): If the tagged type has been derived from an
3078 -- abstract interfaces we must also initialize the tags of the
3079 -- secondary dispatch tables.
3081 if Has_Interfaces (Base_Type (Typ)) then
3082 Init_Secondary_Tags
3083 (Typ => Base_Type (Typ),
3084 Target => Target,
3085 Stmts_List => L);
3086 end if;
3087 end if;
3089 -- If the controllers have not been initialized yet (by lack of non-
3090 -- discriminant components), let's do it now.
3092 Generate_Finalization_Actions;
3094 return L;
3095 end Build_Record_Aggr_Code;
3097 ---------------------------------------
3098 -- Collect_Initialization_Statements --
3099 ---------------------------------------
3101 procedure Collect_Initialization_Statements
3102 (Obj : Entity_Id;
3103 N : Node_Id;
3104 Node_After : Node_Id)
3106 Loc : constant Source_Ptr := Sloc (N);
3107 Init_Actions : constant List_Id := New_List;
3108 Init_Node : Node_Id;
3109 Comp_Stmt : Node_Id;
3111 begin
3112 -- Nothing to do if Obj is already frozen, as in this case we known we
3113 -- won't need to move the initialization statements about later on.
3115 if Is_Frozen (Obj) then
3116 return;
3117 end if;
3119 Init_Node := N;
3120 while Next (Init_Node) /= Node_After loop
3121 Append_To (Init_Actions, Remove_Next (Init_Node));
3122 end loop;
3124 if not Is_Empty_List (Init_Actions) then
3125 Comp_Stmt := Make_Compound_Statement (Loc, Actions => Init_Actions);
3126 Insert_Action_After (Init_Node, Comp_Stmt);
3127 Set_Initialization_Statements (Obj, Comp_Stmt);
3128 end if;
3129 end Collect_Initialization_Statements;
3131 -------------------------------
3132 -- Convert_Aggr_In_Allocator --
3133 -------------------------------
3135 procedure Convert_Aggr_In_Allocator
3136 (Alloc : Node_Id;
3137 Decl : Node_Id;
3138 Aggr : Node_Id)
3140 Loc : constant Source_Ptr := Sloc (Aggr);
3141 Typ : constant Entity_Id := Etype (Aggr);
3142 Temp : constant Entity_Id := Defining_Identifier (Decl);
3144 Occ : constant Node_Id :=
3145 Unchecked_Convert_To (Typ,
3146 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Temp, Loc)));
3148 begin
3149 if Is_Array_Type (Typ) then
3150 Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
3152 elsif Has_Default_Init_Comps (Aggr) then
3153 declare
3154 L : constant List_Id := New_List;
3155 Init_Stmts : List_Id;
3157 begin
3158 Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
3160 if Has_Task (Typ) then
3161 Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
3162 Insert_Actions (Alloc, L);
3163 else
3164 Insert_Actions (Alloc, Init_Stmts);
3165 end if;
3166 end;
3168 else
3169 Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
3170 end if;
3171 end Convert_Aggr_In_Allocator;
3173 --------------------------------
3174 -- Convert_Aggr_In_Assignment --
3175 --------------------------------
3177 procedure Convert_Aggr_In_Assignment (N : Node_Id) is
3178 Aggr : Node_Id := Expression (N);
3179 Typ : constant Entity_Id := Etype (Aggr);
3180 Occ : constant Node_Id := New_Copy_Tree (Name (N));
3182 begin
3183 if Nkind (Aggr) = N_Qualified_Expression then
3184 Aggr := Expression (Aggr);
3185 end if;
3187 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3188 end Convert_Aggr_In_Assignment;
3190 ---------------------------------
3191 -- Convert_Aggr_In_Object_Decl --
3192 ---------------------------------
3194 procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
3195 Obj : constant Entity_Id := Defining_Identifier (N);
3196 Aggr : Node_Id := Expression (N);
3197 Loc : constant Source_Ptr := Sloc (Aggr);
3198 Typ : constant Entity_Id := Etype (Aggr);
3199 Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
3201 function Discriminants_Ok return Boolean;
3202 -- If the object type is constrained, the discriminants in the
3203 -- aggregate must be checked against the discriminants of the subtype.
3204 -- This cannot be done using Apply_Discriminant_Checks because after
3205 -- expansion there is no aggregate left to check.
3207 ----------------------
3208 -- Discriminants_Ok --
3209 ----------------------
3211 function Discriminants_Ok return Boolean is
3212 Cond : Node_Id := Empty;
3213 Check : Node_Id;
3214 D : Entity_Id;
3215 Disc1 : Elmt_Id;
3216 Disc2 : Elmt_Id;
3217 Val1 : Node_Id;
3218 Val2 : Node_Id;
3220 begin
3221 D := First_Discriminant (Typ);
3222 Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3223 Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
3224 while Present (Disc1) and then Present (Disc2) loop
3225 Val1 := Node (Disc1);
3226 Val2 := Node (Disc2);
3228 if not Is_OK_Static_Expression (Val1)
3229 or else not Is_OK_Static_Expression (Val2)
3230 then
3231 Check := Make_Op_Ne (Loc,
3232 Left_Opnd => Duplicate_Subexpr (Val1),
3233 Right_Opnd => Duplicate_Subexpr (Val2));
3235 if No (Cond) then
3236 Cond := Check;
3238 else
3239 Cond := Make_Or_Else (Loc,
3240 Left_Opnd => Cond,
3241 Right_Opnd => Check);
3242 end if;
3244 elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3245 Apply_Compile_Time_Constraint_Error (Aggr,
3246 Msg => "incorrect value for discriminant&??",
3247 Reason => CE_Discriminant_Check_Failed,
3248 Ent => D);
3249 return False;
3250 end if;
3252 Next_Discriminant (D);
3253 Next_Elmt (Disc1);
3254 Next_Elmt (Disc2);
3255 end loop;
3257 -- If any discriminant constraint is non-static, emit a check
3259 if Present (Cond) then
3260 Insert_Action (N,
3261 Make_Raise_Constraint_Error (Loc,
3262 Condition => Cond,
3263 Reason => CE_Discriminant_Check_Failed));
3264 end if;
3266 return True;
3267 end Discriminants_Ok;
3269 -- Start of processing for Convert_Aggr_In_Object_Decl
3271 begin
3272 Set_Assignment_OK (Occ);
3274 if Nkind (Aggr) = N_Qualified_Expression then
3275 Aggr := Expression (Aggr);
3276 end if;
3278 if Has_Discriminants (Typ)
3279 and then Typ /= Etype (Obj)
3280 and then Is_Constrained (Etype (Obj))
3281 and then not Discriminants_Ok
3282 then
3283 return;
3284 end if;
3286 -- If the context is an extended return statement, it has its own
3287 -- finalization machinery (i.e. works like a transient scope) and
3288 -- we do not want to create an additional one, because objects on
3289 -- the finalization list of the return must be moved to the caller's
3290 -- finalization list to complete the return.
3292 -- However, if the aggregate is limited, it is built in place, and the
3293 -- controlled components are not assigned to intermediate temporaries
3294 -- so there is no need for a transient scope in this case either.
3296 if Requires_Transient_Scope (Typ)
3297 and then Ekind (Current_Scope) /= E_Return_Statement
3298 and then not Is_Limited_Type (Typ)
3299 then
3300 Establish_Transient_Scope
3301 (Aggr,
3302 Sec_Stack =>
3303 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3304 end if;
3306 declare
3307 Node_After : constant Node_Id := Next (N);
3308 begin
3309 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3310 Collect_Initialization_Statements (Obj, N, Node_After);
3311 end;
3312 Set_No_Initialization (N);
3313 Initialize_Discriminants (N, Typ);
3314 end Convert_Aggr_In_Object_Decl;
3316 -------------------------------------
3317 -- Convert_Array_Aggr_In_Allocator --
3318 -------------------------------------
3320 procedure Convert_Array_Aggr_In_Allocator
3321 (Decl : Node_Id;
3322 Aggr : Node_Id;
3323 Target : Node_Id)
3325 Aggr_Code : List_Id;
3326 Typ : constant Entity_Id := Etype (Aggr);
3327 Ctyp : constant Entity_Id := Component_Type (Typ);
3329 begin
3330 -- The target is an explicit dereference of the allocated object.
3331 -- Generate component assignments to it, as for an aggregate that
3332 -- appears on the right-hand side of an assignment statement.
3334 Aggr_Code :=
3335 Build_Array_Aggr_Code (Aggr,
3336 Ctype => Ctyp,
3337 Index => First_Index (Typ),
3338 Into => Target,
3339 Scalar_Comp => Is_Scalar_Type (Ctyp));
3341 Insert_Actions_After (Decl, Aggr_Code);
3342 end Convert_Array_Aggr_In_Allocator;
3344 ----------------------------
3345 -- Convert_To_Assignments --
3346 ----------------------------
3348 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
3349 Loc : constant Source_Ptr := Sloc (N);
3350 T : Entity_Id;
3351 Temp : Entity_Id;
3353 Aggr_Code : List_Id;
3354 Instr : Node_Id;
3355 Target_Expr : Node_Id;
3356 Parent_Kind : Node_Kind;
3357 Unc_Decl : Boolean := False;
3358 Parent_Node : Node_Id;
3360 begin
3361 pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
3362 pragma Assert (Is_Record_Type (Typ));
3364 Parent_Node := Parent (N);
3365 Parent_Kind := Nkind (Parent_Node);
3367 if Parent_Kind = N_Qualified_Expression then
3369 -- Check if we are in a unconstrained declaration because in this
3370 -- case the current delayed expansion mechanism doesn't work when
3371 -- the declared object size depend on the initializing expr.
3373 begin
3374 Parent_Node := Parent (Parent_Node);
3375 Parent_Kind := Nkind (Parent_Node);
3377 if Parent_Kind = N_Object_Declaration then
3378 Unc_Decl :=
3379 not Is_Entity_Name (Object_Definition (Parent_Node))
3380 or else Has_Discriminants
3381 (Entity (Object_Definition (Parent_Node)))
3382 or else Is_Class_Wide_Type
3383 (Entity (Object_Definition (Parent_Node)));
3384 end if;
3385 end;
3386 end if;
3388 -- Just set the Delay flag in the cases where the transformation will be
3389 -- done top down from above.
3391 if False
3393 -- Internal aggregate (transformed when expanding the parent)
3395 or else Parent_Kind = N_Aggregate
3396 or else Parent_Kind = N_Extension_Aggregate
3397 or else Parent_Kind = N_Component_Association
3399 -- Allocator (see Convert_Aggr_In_Allocator)
3401 or else Parent_Kind = N_Allocator
3403 -- Object declaration (see Convert_Aggr_In_Object_Decl)
3405 or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
3407 -- Safe assignment (see Convert_Aggr_Assignments). So far only the
3408 -- assignments in init procs are taken into account.
3410 or else (Parent_Kind = N_Assignment_Statement
3411 and then Inside_Init_Proc)
3413 -- (Ada 2005) An inherently limited type in a return statement, which
3414 -- will be handled in a build-in-place fashion, and may be rewritten
3415 -- as an extended return and have its own finalization machinery.
3416 -- In the case of a simple return, the aggregate needs to be delayed
3417 -- until the scope for the return statement has been created, so
3418 -- that any finalization chain will be associated with that scope.
3419 -- For extended returns, we delay expansion to avoid the creation
3420 -- of an unwanted transient scope that could result in premature
3421 -- finalization of the return object (which is built in place
3422 -- within the caller's scope).
3424 or else
3425 (Is_Limited_View (Typ)
3426 and then
3427 (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
3428 or else Nkind (Parent_Node) = N_Simple_Return_Statement))
3429 then
3430 Set_Expansion_Delayed (N);
3431 return;
3432 end if;
3434 -- Otherwise, if a transient scope is required, create it now. If we
3435 -- are within an initialization procedure do not create such, because
3436 -- the target of the assignment must not be declared within a local
3437 -- block, and because cleanup will take place on return from the
3438 -- initialization procedure.
3439 -- Should the condition be more restrictive ???
3441 if Requires_Transient_Scope (Typ) and then not Inside_Init_Proc then
3442 Establish_Transient_Scope (N, Sec_Stack => Needs_Finalization (Typ));
3443 end if;
3445 -- If the aggregate is non-limited, create a temporary. If it is limited
3446 -- and context is an assignment, this is a subaggregate for an enclosing
3447 -- aggregate being expanded. It must be built in place, so use target of
3448 -- the current assignment.
3450 if Is_Limited_Type (Typ)
3451 and then Nkind (Parent (N)) = N_Assignment_Statement
3452 then
3453 Target_Expr := New_Copy_Tree (Name (Parent (N)));
3454 Insert_Actions (Parent (N),
3455 Build_Record_Aggr_Code (N, Typ, Target_Expr));
3456 Rewrite (Parent (N), Make_Null_Statement (Loc));
3458 else
3459 Temp := Make_Temporary (Loc, 'A', N);
3461 -- If the type inherits unknown discriminants, use the view with
3462 -- known discriminants if available.
3464 if Has_Unknown_Discriminants (Typ)
3465 and then Present (Underlying_Record_View (Typ))
3466 then
3467 T := Underlying_Record_View (Typ);
3468 else
3469 T := Typ;
3470 end if;
3472 Instr :=
3473 Make_Object_Declaration (Loc,
3474 Defining_Identifier => Temp,
3475 Object_Definition => New_Occurrence_Of (T, Loc));
3477 Set_No_Initialization (Instr);
3478 Insert_Action (N, Instr);
3479 Initialize_Discriminants (Instr, T);
3481 Target_Expr := New_Occurrence_Of (Temp, Loc);
3482 Aggr_Code := Build_Record_Aggr_Code (N, T, Target_Expr);
3484 -- Save the last assignment statement associated with the aggregate
3485 -- when building a controlled object. This reference is utilized by
3486 -- the finalization machinery when marking an object as successfully
3487 -- initialized.
3489 if Needs_Finalization (T) then
3490 Set_Last_Aggregate_Assignment (Temp, Last (Aggr_Code));
3491 end if;
3493 Insert_Actions (N, Aggr_Code);
3494 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3495 Analyze_And_Resolve (N, T);
3496 end if;
3497 end Convert_To_Assignments;
3499 ---------------------------
3500 -- Convert_To_Positional --
3501 ---------------------------
3503 procedure Convert_To_Positional
3504 (N : Node_Id;
3505 Max_Others_Replicate : Nat := 5;
3506 Handle_Bit_Packed : Boolean := False)
3508 Typ : constant Entity_Id := Etype (N);
3510 Static_Components : Boolean := True;
3512 procedure Check_Static_Components;
3513 -- Check whether all components of the aggregate are compile-time known
3514 -- values, and can be passed as is to the back-end without further
3515 -- expansion.
3517 function Flatten
3518 (N : Node_Id;
3519 Ix : Node_Id;
3520 Ixb : Node_Id) return Boolean;
3521 -- Convert the aggregate into a purely positional form if possible. On
3522 -- entry the bounds of all dimensions are known to be static, and the
3523 -- total number of components is safe enough to expand.
3525 function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
3526 -- Return True iff the array N is flat (which is not trivial in the case
3527 -- of multidimensional aggregates).
3529 -----------------------------
3530 -- Check_Static_Components --
3531 -----------------------------
3533 -- Could use some comments in this body ???
3535 procedure Check_Static_Components is
3536 Expr : Node_Id;
3538 begin
3539 Static_Components := True;
3541 if Nkind (N) = N_String_Literal then
3542 null;
3544 elsif Present (Expressions (N)) then
3545 Expr := First (Expressions (N));
3546 while Present (Expr) loop
3547 if Nkind (Expr) /= N_Aggregate
3548 or else not Compile_Time_Known_Aggregate (Expr)
3549 or else Expansion_Delayed (Expr)
3550 then
3551 Static_Components := False;
3552 exit;
3553 end if;
3555 Next (Expr);
3556 end loop;
3557 end if;
3559 if Nkind (N) = N_Aggregate
3560 and then Present (Component_Associations (N))
3561 then
3562 Expr := First (Component_Associations (N));
3563 while Present (Expr) loop
3564 if Nkind_In (Expression (Expr), N_Integer_Literal,
3565 N_Real_Literal)
3566 then
3567 null;
3569 elsif Is_Entity_Name (Expression (Expr))
3570 and then Present (Entity (Expression (Expr)))
3571 and then Ekind (Entity (Expression (Expr))) =
3572 E_Enumeration_Literal
3573 then
3574 null;
3576 elsif Nkind (Expression (Expr)) /= N_Aggregate
3577 or else not Compile_Time_Known_Aggregate (Expression (Expr))
3578 or else Expansion_Delayed (Expression (Expr))
3579 then
3580 Static_Components := False;
3581 exit;
3582 end if;
3584 Next (Expr);
3585 end loop;
3586 end if;
3587 end Check_Static_Components;
3589 -------------
3590 -- Flatten --
3591 -------------
3593 function Flatten
3594 (N : Node_Id;
3595 Ix : Node_Id;
3596 Ixb : Node_Id) return Boolean
3598 Loc : constant Source_Ptr := Sloc (N);
3599 Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
3600 Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
3601 Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
3602 Lov : Uint;
3603 Hiv : Uint;
3605 Others_Present : Boolean := False;
3607 begin
3608 if Nkind (Original_Node (N)) = N_String_Literal then
3609 return True;
3610 end if;
3612 if not Compile_Time_Known_Value (Lo)
3613 or else not Compile_Time_Known_Value (Hi)
3614 then
3615 return False;
3616 end if;
3618 Lov := Expr_Value (Lo);
3619 Hiv := Expr_Value (Hi);
3621 -- Check if there is an others choice
3623 if Present (Component_Associations (N)) then
3624 declare
3625 Assoc : Node_Id;
3626 Choice : Node_Id;
3628 begin
3629 Assoc := First (Component_Associations (N));
3630 while Present (Assoc) loop
3632 -- If this is a box association, flattening is in general
3633 -- not possible because at this point we cannot tell if the
3634 -- default is static or even exists.
3636 if Box_Present (Assoc) then
3637 return False;
3638 end if;
3640 Choice := First (Choices (Assoc));
3642 while Present (Choice) loop
3643 if Nkind (Choice) = N_Others_Choice then
3644 Others_Present := True;
3645 end if;
3647 Next (Choice);
3648 end loop;
3650 Next (Assoc);
3651 end loop;
3652 end;
3653 end if;
3655 -- If the low bound is not known at compile time and others is not
3656 -- present we can proceed since the bounds can be obtained from the
3657 -- aggregate.
3659 -- Note: This case is required in VM platforms since their backends
3660 -- normalize array indexes in the range 0 .. N-1. Hence, if we do
3661 -- not flat an array whose bounds cannot be obtained from the type
3662 -- of the index the backend has no way to properly generate the code.
3663 -- See ACATS c460010 for an example.
3665 if Hiv < Lov
3666 or else (not Compile_Time_Known_Value (Blo) and then Others_Present)
3667 then
3668 return False;
3669 end if;
3671 -- Determine if set of alternatives is suitable for conversion and
3672 -- build an array containing the values in sequence.
3674 declare
3675 Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
3676 of Node_Id := (others => Empty);
3677 -- The values in the aggregate sorted appropriately
3679 Vlist : List_Id;
3680 -- Same data as Vals in list form
3682 Rep_Count : Nat;
3683 -- Used to validate Max_Others_Replicate limit
3685 Elmt : Node_Id;
3686 Num : Int := UI_To_Int (Lov);
3687 Choice_Index : Int;
3688 Choice : Node_Id;
3689 Lo, Hi : Node_Id;
3691 begin
3692 if Present (Expressions (N)) then
3693 Elmt := First (Expressions (N));
3694 while Present (Elmt) loop
3695 if Nkind (Elmt) = N_Aggregate
3696 and then Present (Next_Index (Ix))
3697 and then
3698 not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
3699 then
3700 return False;
3701 end if;
3703 Vals (Num) := Relocate_Node (Elmt);
3704 Num := Num + 1;
3706 Next (Elmt);
3707 end loop;
3708 end if;
3710 if No (Component_Associations (N)) then
3711 return True;
3712 end if;
3714 Elmt := First (Component_Associations (N));
3716 if Nkind (Expression (Elmt)) = N_Aggregate then
3717 if Present (Next_Index (Ix))
3718 and then
3719 not Flatten
3720 (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
3721 then
3722 return False;
3723 end if;
3724 end if;
3726 Component_Loop : while Present (Elmt) loop
3727 Choice := First (Choices (Elmt));
3728 Choice_Loop : while Present (Choice) loop
3730 -- If we have an others choice, fill in the missing elements
3731 -- subject to the limit established by Max_Others_Replicate.
3733 if Nkind (Choice) = N_Others_Choice then
3734 Rep_Count := 0;
3736 for J in Vals'Range loop
3737 if No (Vals (J)) then
3738 Vals (J) := New_Copy_Tree (Expression (Elmt));
3739 Rep_Count := Rep_Count + 1;
3741 -- Check for maximum others replication. Note that
3742 -- we skip this test if either of the restrictions
3743 -- No_Elaboration_Code or No_Implicit_Loops is
3744 -- active, if this is a preelaborable unit or
3745 -- a predefined unit, or if the unit must be
3746 -- placed in data memory. This also ensures that
3747 -- predefined units get the same level of constant
3748 -- folding in Ada 95 and Ada 2005, where their
3749 -- categorization has changed.
3751 declare
3752 P : constant Entity_Id :=
3753 Cunit_Entity (Current_Sem_Unit);
3755 begin
3756 -- Check if duplication OK and if so continue
3757 -- processing.
3759 if Restriction_Active (No_Elaboration_Code)
3760 or else Restriction_Active (No_Implicit_Loops)
3761 or else
3762 (Ekind (Current_Scope) = E_Package
3763 and then Static_Elaboration_Desired
3764 (Current_Scope))
3765 or else Is_Preelaborated (P)
3766 or else (Ekind (P) = E_Package_Body
3767 and then
3768 Is_Preelaborated (Spec_Entity (P)))
3769 or else
3770 Is_Predefined_File_Name
3771 (Unit_File_Name (Get_Source_Unit (P)))
3772 then
3773 null;
3775 -- If duplication not OK, then we return False
3776 -- if the replication count is too high
3778 elsif Rep_Count > Max_Others_Replicate then
3779 return False;
3781 -- Continue on if duplication not OK, but the
3782 -- replication count is not excessive.
3784 else
3785 null;
3786 end if;
3787 end;
3788 end if;
3789 end loop;
3791 exit Component_Loop;
3793 -- Case of a subtype mark, identifier or expanded name
3795 elsif Is_Entity_Name (Choice)
3796 and then Is_Type (Entity (Choice))
3797 then
3798 Lo := Type_Low_Bound (Etype (Choice));
3799 Hi := Type_High_Bound (Etype (Choice));
3801 -- Case of subtype indication
3803 elsif Nkind (Choice) = N_Subtype_Indication then
3804 Lo := Low_Bound (Range_Expression (Constraint (Choice)));
3805 Hi := High_Bound (Range_Expression (Constraint (Choice)));
3807 -- Case of a range
3809 elsif Nkind (Choice) = N_Range then
3810 Lo := Low_Bound (Choice);
3811 Hi := High_Bound (Choice);
3813 -- Normal subexpression case
3815 else pragma Assert (Nkind (Choice) in N_Subexpr);
3816 if not Compile_Time_Known_Value (Choice) then
3817 return False;
3819 else
3820 Choice_Index := UI_To_Int (Expr_Value (Choice));
3822 if Choice_Index in Vals'Range then
3823 Vals (Choice_Index) :=
3824 New_Copy_Tree (Expression (Elmt));
3825 goto Continue;
3827 -- Choice is statically out-of-range, will be
3828 -- rewritten to raise Constraint_Error.
3830 else
3831 return False;
3832 end if;
3833 end if;
3834 end if;
3836 -- Range cases merge with Lo,Hi set
3838 if not Compile_Time_Known_Value (Lo)
3839 or else
3840 not Compile_Time_Known_Value (Hi)
3841 then
3842 return False;
3844 else
3845 for J in UI_To_Int (Expr_Value (Lo)) ..
3846 UI_To_Int (Expr_Value (Hi))
3847 loop
3848 Vals (J) := New_Copy_Tree (Expression (Elmt));
3849 end loop;
3850 end if;
3852 <<Continue>>
3853 Next (Choice);
3854 end loop Choice_Loop;
3856 Next (Elmt);
3857 end loop Component_Loop;
3859 -- If we get here the conversion is possible
3861 Vlist := New_List;
3862 for J in Vals'Range loop
3863 Append (Vals (J), Vlist);
3864 end loop;
3866 Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
3867 Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
3868 return True;
3869 end;
3870 end Flatten;
3872 -------------
3873 -- Is_Flat --
3874 -------------
3876 function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
3877 Elmt : Node_Id;
3879 begin
3880 if Dims = 0 then
3881 return True;
3883 elsif Nkind (N) = N_Aggregate then
3884 if Present (Component_Associations (N)) then
3885 return False;
3887 else
3888 Elmt := First (Expressions (N));
3889 while Present (Elmt) loop
3890 if not Is_Flat (Elmt, Dims - 1) then
3891 return False;
3892 end if;
3894 Next (Elmt);
3895 end loop;
3897 return True;
3898 end if;
3899 else
3900 return True;
3901 end if;
3902 end Is_Flat;
3904 -- Start of processing for Convert_To_Positional
3906 begin
3907 -- Ada 2005 (AI-287): Do not convert in case of default initialized
3908 -- components because in this case will need to call the corresponding
3909 -- IP procedure.
3911 if Has_Default_Init_Comps (N) then
3912 return;
3913 end if;
3915 if Is_Flat (N, Number_Dimensions (Typ)) then
3916 return;
3917 end if;
3919 if Is_Bit_Packed_Array (Typ) and then not Handle_Bit_Packed then
3920 return;
3921 end if;
3923 -- Do not convert to positional if controlled components are involved
3924 -- since these require special processing
3926 if Has_Controlled_Component (Typ) then
3927 return;
3928 end if;
3930 Check_Static_Components;
3932 -- If the size is known, or all the components are static, try to
3933 -- build a fully positional aggregate.
3935 -- The size of the type may not be known for an aggregate with
3936 -- discriminated array components, but if the components are static
3937 -- it is still possible to verify statically that the length is
3938 -- compatible with the upper bound of the type, and therefore it is
3939 -- worth flattening such aggregates as well.
3941 -- For now the back-end expands these aggregates into individual
3942 -- assignments to the target anyway, but it is conceivable that
3943 -- it will eventually be able to treat such aggregates statically???
3945 if Aggr_Size_OK (N, Typ)
3946 and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
3947 then
3948 if Static_Components then
3949 Set_Compile_Time_Known_Aggregate (N);
3950 Set_Expansion_Delayed (N, False);
3951 end if;
3953 Analyze_And_Resolve (N, Typ);
3954 end if;
3956 -- Is Static_Eaboration_Desired has been specified, diagnose aggregates
3957 -- that will still require initialization code.
3959 if (Ekind (Current_Scope) = E_Package
3960 and then Static_Elaboration_Desired (Current_Scope))
3961 and then Nkind (Parent (N)) = N_Object_Declaration
3962 then
3963 declare
3964 Expr : Node_Id;
3966 begin
3967 if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then
3968 Expr := First (Expressions (N));
3969 while Present (Expr) loop
3970 if Nkind_In (Expr, N_Integer_Literal, N_Real_Literal)
3971 or else
3972 (Is_Entity_Name (Expr)
3973 and then Ekind (Entity (Expr)) = E_Enumeration_Literal)
3974 then
3975 null;
3977 else
3978 Error_Msg_N
3979 ("non-static object requires elaboration code??", N);
3980 exit;
3981 end if;
3983 Next (Expr);
3984 end loop;
3986 if Present (Component_Associations (N)) then
3987 Error_Msg_N ("object requires elaboration code??", N);
3988 end if;
3989 end if;
3990 end;
3991 end if;
3992 end Convert_To_Positional;
3994 ----------------------------
3995 -- Expand_Array_Aggregate --
3996 ----------------------------
3998 -- Array aggregate expansion proceeds as follows:
4000 -- 1. If requested we generate code to perform all the array aggregate
4001 -- bound checks, specifically
4003 -- (a) Check that the index range defined by aggregate bounds is
4004 -- compatible with corresponding index subtype.
4006 -- (b) If an others choice is present check that no aggregate
4007 -- index is outside the bounds of the index constraint.
4009 -- (c) For multidimensional arrays make sure that all subaggregates
4010 -- corresponding to the same dimension have the same bounds.
4012 -- 2. Check for packed array aggregate which can be converted to a
4013 -- constant so that the aggregate disappears completely.
4015 -- 3. Check case of nested aggregate. Generally nested aggregates are
4016 -- handled during the processing of the parent aggregate.
4018 -- 4. Check if the aggregate can be statically processed. If this is the
4019 -- case pass it as is to Gigi. Note that a necessary condition for
4020 -- static processing is that the aggregate be fully positional.
4022 -- 5. If in place aggregate expansion is possible (i.e. no need to create
4023 -- a temporary) then mark the aggregate as such and return. Otherwise
4024 -- create a new temporary and generate the appropriate initialization
4025 -- code.
4027 procedure Expand_Array_Aggregate (N : Node_Id) is
4028 Loc : constant Source_Ptr := Sloc (N);
4030 Typ : constant Entity_Id := Etype (N);
4031 Ctyp : constant Entity_Id := Component_Type (Typ);
4032 -- Typ is the correct constrained array subtype of the aggregate
4033 -- Ctyp is the corresponding component type.
4035 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
4036 -- Number of aggregate index dimensions
4038 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
4039 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
4040 -- Low and High bounds of the constraint for each aggregate index
4042 Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
4043 -- The type of each index
4045 In_Place_Assign_OK_For_Declaration : Boolean := False;
4046 -- True if we are to generate an in place assignment for a declaration
4048 Maybe_In_Place_OK : Boolean;
4049 -- If the type is neither controlled nor packed and the aggregate
4050 -- is the expression in an assignment, assignment in place may be
4051 -- possible, provided other conditions are met on the LHS.
4053 Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
4054 (others => False);
4055 -- If Others_Present (J) is True, then there is an others choice
4056 -- in one of the sub-aggregates of N at dimension J.
4058 function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean;
4059 -- Returns true if an aggregate assignment can be done by the back end
4061 procedure Build_Constrained_Type (Positional : Boolean);
4062 -- If the subtype is not static or unconstrained, build a constrained
4063 -- type using the computable sizes of the aggregate and its sub-
4064 -- aggregates.
4066 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
4067 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
4068 -- by Index_Bounds.
4070 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
4071 -- Checks that in a multi-dimensional array aggregate all subaggregates
4072 -- corresponding to the same dimension have the same bounds.
4073 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
4074 -- corresponding to the sub-aggregate.
4076 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
4077 -- Computes the values of array Others_Present. Sub_Aggr is the
4078 -- array sub-aggregate we start the computation from. Dim is the
4079 -- dimension corresponding to the sub-aggregate.
4081 function In_Place_Assign_OK return Boolean;
4082 -- Simple predicate to determine whether an aggregate assignment can
4083 -- be done in place, because none of the new values can depend on the
4084 -- components of the target of the assignment.
4086 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
4087 -- Checks that if an others choice is present in any sub-aggregate no
4088 -- aggregate index is outside the bounds of the index constraint.
4089 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
4090 -- corresponding to the sub-aggregate.
4092 function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
4093 -- In addition to Maybe_In_Place_OK, in order for an aggregate to be
4094 -- built directly into the target of the assignment it must be free
4095 -- of side-effects.
4097 ------------------------------------
4098 -- Aggr_Assignment_OK_For_Backend --
4099 ------------------------------------
4101 -- Backend processing by Gigi/gcc is possible only if all the following
4102 -- conditions are met:
4104 -- 1. N consists of a single OTHERS choice, possibly recursively
4106 -- 2. The array type is not packed
4108 -- 3. The array type has no atomic components
4110 -- 4. The array type has no null ranges (the purpose of this is to
4111 -- avoid a bogus warning for an out-of-range value).
4113 -- 5. The component type is discrete
4115 -- 6. The component size is Storage_Unit or the value is of the form
4116 -- M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit)
4117 -- and M in 1 .. A-1. This can also be viewed as K occurrences of
4118 -- the 8-bit value M, concatenated together.
4120 -- The ultimate goal is to generate a call to a fast memset routine
4121 -- specifically optimized for the target.
4123 function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean is
4124 Ctyp : Entity_Id;
4125 Index : Entity_Id;
4126 Expr : Node_Id := N;
4127 Low : Node_Id;
4128 High : Node_Id;
4129 Remainder : Uint;
4130 Value : Uint;
4131 Nunits : Nat;
4133 begin
4134 -- Recurse as far as possible to find the innermost component type
4136 Ctyp := Etype (N);
4137 while Is_Array_Type (Ctyp) loop
4138 if Nkind (Expr) /= N_Aggregate
4139 or else not Is_Others_Aggregate (Expr)
4140 then
4141 return False;
4142 end if;
4144 if Present (Packed_Array_Impl_Type (Ctyp)) then
4145 return False;
4146 end if;
4148 if Has_Atomic_Components (Ctyp) then
4149 return False;
4150 end if;
4152 Index := First_Index (Ctyp);
4153 while Present (Index) loop
4154 Get_Index_Bounds (Index, Low, High);
4156 if Is_Null_Range (Low, High) then
4157 return False;
4158 end if;
4160 Next_Index (Index);
4161 end loop;
4163 Expr := Expression (First (Component_Associations (Expr)));
4165 for J in 1 .. Number_Dimensions (Ctyp) - 1 loop
4166 if Nkind (Expr) /= N_Aggregate
4167 or else not Is_Others_Aggregate (Expr)
4168 then
4169 return False;
4170 end if;
4172 Expr := Expression (First (Component_Associations (Expr)));
4173 end loop;
4175 Ctyp := Component_Type (Ctyp);
4177 if Is_Atomic_Or_VFA (Ctyp) then
4178 return False;
4179 end if;
4180 end loop;
4182 if not Is_Discrete_Type (Ctyp) then
4183 return False;
4184 end if;
4186 -- The expression needs to be analyzed if True is returned
4188 Analyze_And_Resolve (Expr, Ctyp);
4190 -- The back end uses the Esize as the precision of the type
4192 Nunits := UI_To_Int (Esize (Ctyp)) / System_Storage_Unit;
4194 if Nunits = 1 then
4195 return True;
4196 end if;
4198 if not Compile_Time_Known_Value (Expr) then
4199 return False;
4200 end if;
4202 Value := Expr_Value (Expr);
4204 if Has_Biased_Representation (Ctyp) then
4205 Value := Value - Expr_Value (Type_Low_Bound (Ctyp));
4206 end if;
4208 -- Values 0 and -1 immediately satisfy the last check
4210 if Value = Uint_0 or else Value = Uint_Minus_1 then
4211 return True;
4212 end if;
4214 -- We need to work with an unsigned value
4216 if Value < 0 then
4217 Value := Value + 2**(System_Storage_Unit * Nunits);
4218 end if;
4220 Remainder := Value rem 2**System_Storage_Unit;
4222 for J in 1 .. Nunits - 1 loop
4223 Value := Value / 2**System_Storage_Unit;
4225 if Value rem 2**System_Storage_Unit /= Remainder then
4226 return False;
4227 end if;
4228 end loop;
4230 return True;
4231 end Aggr_Assignment_OK_For_Backend;
4233 ----------------------------
4234 -- Build_Constrained_Type --
4235 ----------------------------
4237 procedure Build_Constrained_Type (Positional : Boolean) is
4238 Loc : constant Source_Ptr := Sloc (N);
4239 Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
4240 Comp : Node_Id;
4241 Decl : Node_Id;
4242 Typ : constant Entity_Id := Etype (N);
4243 Indexes : constant List_Id := New_List;
4244 Num : Int;
4245 Sub_Agg : Node_Id;
4247 begin
4248 -- If the aggregate is purely positional, all its subaggregates
4249 -- have the same size. We collect the dimensions from the first
4250 -- subaggregate at each level.
4252 if Positional then
4253 Sub_Agg := N;
4255 for D in 1 .. Number_Dimensions (Typ) loop
4256 Sub_Agg := First (Expressions (Sub_Agg));
4258 Comp := Sub_Agg;
4259 Num := 0;
4260 while Present (Comp) loop
4261 Num := Num + 1;
4262 Next (Comp);
4263 end loop;
4265 Append_To (Indexes,
4266 Make_Range (Loc,
4267 Low_Bound => Make_Integer_Literal (Loc, 1),
4268 High_Bound => Make_Integer_Literal (Loc, Num)));
4269 end loop;
4271 else
4272 -- We know the aggregate type is unconstrained and the aggregate
4273 -- is not processable by the back end, therefore not necessarily
4274 -- positional. Retrieve each dimension bounds (computed earlier).
4276 for D in 1 .. Number_Dimensions (Typ) loop
4277 Append_To (Indexes,
4278 Make_Range (Loc,
4279 Low_Bound => Aggr_Low (D),
4280 High_Bound => Aggr_High (D)));
4281 end loop;
4282 end if;
4284 Decl :=
4285 Make_Full_Type_Declaration (Loc,
4286 Defining_Identifier => Agg_Type,
4287 Type_Definition =>
4288 Make_Constrained_Array_Definition (Loc,
4289 Discrete_Subtype_Definitions => Indexes,
4290 Component_Definition =>
4291 Make_Component_Definition (Loc,
4292 Aliased_Present => False,
4293 Subtype_Indication =>
4294 New_Occurrence_Of (Component_Type (Typ), Loc))));
4296 Insert_Action (N, Decl);
4297 Analyze (Decl);
4298 Set_Etype (N, Agg_Type);
4299 Set_Is_Itype (Agg_Type);
4300 Freeze_Itype (Agg_Type, N);
4301 end Build_Constrained_Type;
4303 ------------------
4304 -- Check_Bounds --
4305 ------------------
4307 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
4308 Aggr_Lo : Node_Id;
4309 Aggr_Hi : Node_Id;
4311 Ind_Lo : Node_Id;
4312 Ind_Hi : Node_Id;
4314 Cond : Node_Id := Empty;
4316 begin
4317 Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
4318 Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
4320 -- Generate the following test:
4322 -- [constraint_error when
4323 -- Aggr_Lo <= Aggr_Hi and then
4324 -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
4326 -- As an optimization try to see if some tests are trivially vacuous
4327 -- because we are comparing an expression against itself.
4329 if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
4330 Cond := Empty;
4332 elsif Aggr_Hi = Ind_Hi then
4333 Cond :=
4334 Make_Op_Lt (Loc,
4335 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4336 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
4338 elsif Aggr_Lo = Ind_Lo then
4339 Cond :=
4340 Make_Op_Gt (Loc,
4341 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4342 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
4344 else
4345 Cond :=
4346 Make_Or_Else (Loc,
4347 Left_Opnd =>
4348 Make_Op_Lt (Loc,
4349 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4350 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
4352 Right_Opnd =>
4353 Make_Op_Gt (Loc,
4354 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
4355 Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
4356 end if;
4358 if Present (Cond) then
4359 Cond :=
4360 Make_And_Then (Loc,
4361 Left_Opnd =>
4362 Make_Op_Le (Loc,
4363 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4364 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
4366 Right_Opnd => Cond);
4368 Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
4369 Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
4370 Insert_Action (N,
4371 Make_Raise_Constraint_Error (Loc,
4372 Condition => Cond,
4373 Reason => CE_Range_Check_Failed));
4374 end if;
4375 end Check_Bounds;
4377 ----------------------------
4378 -- Check_Same_Aggr_Bounds --
4379 ----------------------------
4381 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
4382 Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
4383 Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
4384 -- The bounds of this specific sub-aggregate
4386 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4387 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4388 -- The bounds of the aggregate for this dimension
4390 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4391 -- The index type for this dimension.xxx
4393 Cond : Node_Id := Empty;
4394 Assoc : Node_Id;
4395 Expr : Node_Id;
4397 begin
4398 -- If index checks are on generate the test
4400 -- [constraint_error when
4401 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
4403 -- As an optimization try to see if some tests are trivially vacuos
4404 -- because we are comparing an expression against itself. Also for
4405 -- the first dimension the test is trivially vacuous because there
4406 -- is just one aggregate for dimension 1.
4408 if Index_Checks_Suppressed (Ind_Typ) then
4409 Cond := Empty;
4411 elsif Dim = 1 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
4412 then
4413 Cond := Empty;
4415 elsif Aggr_Hi = Sub_Hi then
4416 Cond :=
4417 Make_Op_Ne (Loc,
4418 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4419 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
4421 elsif Aggr_Lo = Sub_Lo then
4422 Cond :=
4423 Make_Op_Ne (Loc,
4424 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4425 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
4427 else
4428 Cond :=
4429 Make_Or_Else (Loc,
4430 Left_Opnd =>
4431 Make_Op_Ne (Loc,
4432 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4433 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
4435 Right_Opnd =>
4436 Make_Op_Ne (Loc,
4437 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
4438 Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
4439 end if;
4441 if Present (Cond) then
4442 Insert_Action (N,
4443 Make_Raise_Constraint_Error (Loc,
4444 Condition => Cond,
4445 Reason => CE_Length_Check_Failed));
4446 end if;
4448 -- Now look inside the sub-aggregate to see if there is more work
4450 if Dim < Aggr_Dimension then
4452 -- Process positional components
4454 if Present (Expressions (Sub_Aggr)) then
4455 Expr := First (Expressions (Sub_Aggr));
4456 while Present (Expr) loop
4457 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4458 Next (Expr);
4459 end loop;
4460 end if;
4462 -- Process component associations
4464 if Present (Component_Associations (Sub_Aggr)) then
4465 Assoc := First (Component_Associations (Sub_Aggr));
4466 while Present (Assoc) loop
4467 Expr := Expression (Assoc);
4468 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4469 Next (Assoc);
4470 end loop;
4471 end if;
4472 end if;
4473 end Check_Same_Aggr_Bounds;
4475 ----------------------------
4476 -- Compute_Others_Present --
4477 ----------------------------
4479 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
4480 Assoc : Node_Id;
4481 Expr : Node_Id;
4483 begin
4484 if Present (Component_Associations (Sub_Aggr)) then
4485 Assoc := Last (Component_Associations (Sub_Aggr));
4487 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4488 Others_Present (Dim) := True;
4489 end if;
4490 end if;
4492 -- Now look inside the sub-aggregate to see if there is more work
4494 if Dim < Aggr_Dimension then
4496 -- Process positional components
4498 if Present (Expressions (Sub_Aggr)) then
4499 Expr := First (Expressions (Sub_Aggr));
4500 while Present (Expr) loop
4501 Compute_Others_Present (Expr, Dim + 1);
4502 Next (Expr);
4503 end loop;
4504 end if;
4506 -- Process component associations
4508 if Present (Component_Associations (Sub_Aggr)) then
4509 Assoc := First (Component_Associations (Sub_Aggr));
4510 while Present (Assoc) loop
4511 Expr := Expression (Assoc);
4512 Compute_Others_Present (Expr, Dim + 1);
4513 Next (Assoc);
4514 end loop;
4515 end if;
4516 end if;
4517 end Compute_Others_Present;
4519 ------------------------
4520 -- In_Place_Assign_OK --
4521 ------------------------
4523 function In_Place_Assign_OK return Boolean is
4524 Aggr_In : Node_Id;
4525 Aggr_Lo : Node_Id;
4526 Aggr_Hi : Node_Id;
4527 Obj_In : Node_Id;
4528 Obj_Lo : Node_Id;
4529 Obj_Hi : Node_Id;
4531 function Safe_Aggregate (Aggr : Node_Id) return Boolean;
4532 -- Check recursively that each component of a (sub)aggregate does
4533 -- not depend on the variable being assigned to.
4535 function Safe_Component (Expr : Node_Id) return Boolean;
4536 -- Verify that an expression cannot depend on the variable being
4537 -- assigned to. Room for improvement here (but less than before).
4539 --------------------
4540 -- Safe_Aggregate --
4541 --------------------
4543 function Safe_Aggregate (Aggr : Node_Id) return Boolean is
4544 Expr : Node_Id;
4546 begin
4547 if Present (Expressions (Aggr)) then
4548 Expr := First (Expressions (Aggr));
4549 while Present (Expr) loop
4550 if Nkind (Expr) = N_Aggregate then
4551 if not Safe_Aggregate (Expr) then
4552 return False;
4553 end if;
4555 elsif not Safe_Component (Expr) then
4556 return False;
4557 end if;
4559 Next (Expr);
4560 end loop;
4561 end if;
4563 if Present (Component_Associations (Aggr)) then
4564 Expr := First (Component_Associations (Aggr));
4565 while Present (Expr) loop
4566 if Nkind (Expression (Expr)) = N_Aggregate then
4567 if not Safe_Aggregate (Expression (Expr)) then
4568 return False;
4569 end if;
4571 -- If association has a box, no way to determine yet
4572 -- whether default can be assigned in place.
4574 elsif Box_Present (Expr) then
4575 return False;
4577 elsif not Safe_Component (Expression (Expr)) then
4578 return False;
4579 end if;
4581 Next (Expr);
4582 end loop;
4583 end if;
4585 return True;
4586 end Safe_Aggregate;
4588 --------------------
4589 -- Safe_Component --
4590 --------------------
4592 function Safe_Component (Expr : Node_Id) return Boolean is
4593 Comp : Node_Id := Expr;
4595 function Check_Component (Comp : Node_Id) return Boolean;
4596 -- Do the recursive traversal, after copy
4598 ---------------------
4599 -- Check_Component --
4600 ---------------------
4602 function Check_Component (Comp : Node_Id) return Boolean is
4603 begin
4604 if Is_Overloaded (Comp) then
4605 return False;
4606 end if;
4608 return Compile_Time_Known_Value (Comp)
4610 or else (Is_Entity_Name (Comp)
4611 and then Present (Entity (Comp))
4612 and then No (Renamed_Object (Entity (Comp))))
4614 or else (Nkind (Comp) = N_Attribute_Reference
4615 and then Check_Component (Prefix (Comp)))
4617 or else (Nkind (Comp) in N_Binary_Op
4618 and then Check_Component (Left_Opnd (Comp))
4619 and then Check_Component (Right_Opnd (Comp)))
4621 or else (Nkind (Comp) in N_Unary_Op
4622 and then Check_Component (Right_Opnd (Comp)))
4624 or else (Nkind (Comp) = N_Selected_Component
4625 and then Check_Component (Prefix (Comp)))
4627 or else (Nkind (Comp) = N_Unchecked_Type_Conversion
4628 and then Check_Component (Expression (Comp)));
4629 end Check_Component;
4631 -- Start of processing for Safe_Component
4633 begin
4634 -- If the component appears in an association that may correspond
4635 -- to more than one element, it is not analyzed before expansion
4636 -- into assignments, to avoid side effects. We analyze, but do not
4637 -- resolve the copy, to obtain sufficient entity information for
4638 -- the checks that follow. If component is overloaded we assume
4639 -- an unsafe function call.
4641 if not Analyzed (Comp) then
4642 if Is_Overloaded (Expr) then
4643 return False;
4645 elsif Nkind (Expr) = N_Aggregate
4646 and then not Is_Others_Aggregate (Expr)
4647 then
4648 return False;
4650 elsif Nkind (Expr) = N_Allocator then
4652 -- For now, too complex to analyze
4654 return False;
4655 end if;
4657 Comp := New_Copy_Tree (Expr);
4658 Set_Parent (Comp, Parent (Expr));
4659 Analyze (Comp);
4660 end if;
4662 if Nkind (Comp) = N_Aggregate then
4663 return Safe_Aggregate (Comp);
4664 else
4665 return Check_Component (Comp);
4666 end if;
4667 end Safe_Component;
4669 -- Start of processing for In_Place_Assign_OK
4671 begin
4672 if Present (Component_Associations (N)) then
4674 -- On assignment, sliding can take place, so we cannot do the
4675 -- assignment in place unless the bounds of the aggregate are
4676 -- statically equal to those of the target.
4678 -- If the aggregate is given by an others choice, the bounds are
4679 -- derived from the left-hand side, and the assignment is safe if
4680 -- the expression is.
4682 if Is_Others_Aggregate (N) then
4683 return
4684 Safe_Component
4685 (Expression (First (Component_Associations (N))));
4686 end if;
4688 Aggr_In := First_Index (Etype (N));
4690 if Nkind (Parent (N)) = N_Assignment_Statement then
4691 Obj_In := First_Index (Etype (Name (Parent (N))));
4693 else
4694 -- Context is an allocator. Check bounds of aggregate against
4695 -- given type in qualified expression.
4697 pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
4698 Obj_In :=
4699 First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
4700 end if;
4702 while Present (Aggr_In) loop
4703 Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
4704 Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
4706 if not Compile_Time_Known_Value (Aggr_Lo)
4707 or else not Compile_Time_Known_Value (Aggr_Hi)
4708 or else not Compile_Time_Known_Value (Obj_Lo)
4709 or else not Compile_Time_Known_Value (Obj_Hi)
4710 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
4711 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
4712 then
4713 return False;
4714 end if;
4716 Next_Index (Aggr_In);
4717 Next_Index (Obj_In);
4718 end loop;
4719 end if;
4721 -- Now check the component values themselves
4723 return Safe_Aggregate (N);
4724 end In_Place_Assign_OK;
4726 ------------------
4727 -- Others_Check --
4728 ------------------
4730 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
4731 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4732 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4733 -- The bounds of the aggregate for this dimension
4735 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4736 -- The index type for this dimension
4738 Need_To_Check : Boolean := False;
4740 Choices_Lo : Node_Id := Empty;
4741 Choices_Hi : Node_Id := Empty;
4742 -- The lowest and highest discrete choices for a named sub-aggregate
4744 Nb_Choices : Int := -1;
4745 -- The number of discrete non-others choices in this sub-aggregate
4747 Nb_Elements : Uint := Uint_0;
4748 -- The number of elements in a positional aggregate
4750 Cond : Node_Id := Empty;
4752 Assoc : Node_Id;
4753 Choice : Node_Id;
4754 Expr : Node_Id;
4756 begin
4757 -- Check if we have an others choice. If we do make sure that this
4758 -- sub-aggregate contains at least one element in addition to the
4759 -- others choice.
4761 if Range_Checks_Suppressed (Ind_Typ) then
4762 Need_To_Check := False;
4764 elsif Present (Expressions (Sub_Aggr))
4765 and then Present (Component_Associations (Sub_Aggr))
4766 then
4767 Need_To_Check := True;
4769 elsif Present (Component_Associations (Sub_Aggr)) then
4770 Assoc := Last (Component_Associations (Sub_Aggr));
4772 if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
4773 Need_To_Check := False;
4775 else
4776 -- Count the number of discrete choices. Start with -1 because
4777 -- the others choice does not count.
4779 -- Is there some reason we do not use List_Length here ???
4781 Nb_Choices := -1;
4782 Assoc := First (Component_Associations (Sub_Aggr));
4783 while Present (Assoc) loop
4784 Choice := First (Choices (Assoc));
4785 while Present (Choice) loop
4786 Nb_Choices := Nb_Choices + 1;
4787 Next (Choice);
4788 end loop;
4790 Next (Assoc);
4791 end loop;
4793 -- If there is only an others choice nothing to do
4795 Need_To_Check := (Nb_Choices > 0);
4796 end if;
4798 else
4799 Need_To_Check := False;
4800 end if;
4802 -- If we are dealing with a positional sub-aggregate with an others
4803 -- choice then compute the number or positional elements.
4805 if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
4806 Expr := First (Expressions (Sub_Aggr));
4807 Nb_Elements := Uint_0;
4808 while Present (Expr) loop
4809 Nb_Elements := Nb_Elements + 1;
4810 Next (Expr);
4811 end loop;
4813 -- If the aggregate contains discrete choices and an others choice
4814 -- compute the smallest and largest discrete choice values.
4816 elsif Need_To_Check then
4817 Compute_Choices_Lo_And_Choices_Hi : declare
4819 Table : Case_Table_Type (1 .. Nb_Choices);
4820 -- Used to sort all the different choice values
4822 J : Pos := 1;
4823 Low : Node_Id;
4824 High : Node_Id;
4826 begin
4827 Assoc := First (Component_Associations (Sub_Aggr));
4828 while Present (Assoc) loop
4829 Choice := First (Choices (Assoc));
4830 while Present (Choice) loop
4831 if Nkind (Choice) = N_Others_Choice then
4832 exit;
4833 end if;
4835 Get_Index_Bounds (Choice, Low, High);
4836 Table (J).Choice_Lo := Low;
4837 Table (J).Choice_Hi := High;
4839 J := J + 1;
4840 Next (Choice);
4841 end loop;
4843 Next (Assoc);
4844 end loop;
4846 -- Sort the discrete choices
4848 Sort_Case_Table (Table);
4850 Choices_Lo := Table (1).Choice_Lo;
4851 Choices_Hi := Table (Nb_Choices).Choice_Hi;
4852 end Compute_Choices_Lo_And_Choices_Hi;
4853 end if;
4855 -- If no others choice in this sub-aggregate, or the aggregate
4856 -- comprises only an others choice, nothing to do.
4858 if not Need_To_Check then
4859 Cond := Empty;
4861 -- If we are dealing with an aggregate containing an others choice
4862 -- and positional components, we generate the following test:
4864 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
4865 -- Ind_Typ'Pos (Aggr_Hi)
4866 -- then
4867 -- raise Constraint_Error;
4868 -- end if;
4870 elsif Nb_Elements > Uint_0 then
4871 Cond :=
4872 Make_Op_Gt (Loc,
4873 Left_Opnd =>
4874 Make_Op_Add (Loc,
4875 Left_Opnd =>
4876 Make_Attribute_Reference (Loc,
4877 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
4878 Attribute_Name => Name_Pos,
4879 Expressions =>
4880 New_List
4881 (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
4882 Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
4884 Right_Opnd =>
4885 Make_Attribute_Reference (Loc,
4886 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
4887 Attribute_Name => Name_Pos,
4888 Expressions => New_List (
4889 Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
4891 -- If we are dealing with an aggregate containing an others choice
4892 -- and discrete choices we generate the following test:
4894 -- [constraint_error when
4895 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
4897 else
4898 Cond :=
4899 Make_Or_Else (Loc,
4900 Left_Opnd =>
4901 Make_Op_Lt (Loc,
4902 Left_Opnd => Duplicate_Subexpr_Move_Checks (Choices_Lo),
4903 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
4905 Right_Opnd =>
4906 Make_Op_Gt (Loc,
4907 Left_Opnd => Duplicate_Subexpr (Choices_Hi),
4908 Right_Opnd => Duplicate_Subexpr (Aggr_Hi)));
4909 end if;
4911 if Present (Cond) then
4912 Insert_Action (N,
4913 Make_Raise_Constraint_Error (Loc,
4914 Condition => Cond,
4915 Reason => CE_Length_Check_Failed));
4916 -- Questionable reason code, shouldn't that be a
4917 -- CE_Range_Check_Failed ???
4918 end if;
4920 -- Now look inside the sub-aggregate to see if there is more work
4922 if Dim < Aggr_Dimension then
4924 -- Process positional components
4926 if Present (Expressions (Sub_Aggr)) then
4927 Expr := First (Expressions (Sub_Aggr));
4928 while Present (Expr) loop
4929 Others_Check (Expr, Dim + 1);
4930 Next (Expr);
4931 end loop;
4932 end if;
4934 -- Process component associations
4936 if Present (Component_Associations (Sub_Aggr)) then
4937 Assoc := First (Component_Associations (Sub_Aggr));
4938 while Present (Assoc) loop
4939 Expr := Expression (Assoc);
4940 Others_Check (Expr, Dim + 1);
4941 Next (Assoc);
4942 end loop;
4943 end if;
4944 end if;
4945 end Others_Check;
4947 -------------------------
4948 -- Safe_Left_Hand_Side --
4949 -------------------------
4951 function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
4952 function Is_Safe_Index (Indx : Node_Id) return Boolean;
4953 -- If the left-hand side includes an indexed component, check that
4954 -- the indexes are free of side-effect.
4956 -------------------
4957 -- Is_Safe_Index --
4958 -------------------
4960 function Is_Safe_Index (Indx : Node_Id) return Boolean is
4961 begin
4962 if Is_Entity_Name (Indx) then
4963 return True;
4965 elsif Nkind (Indx) = N_Integer_Literal then
4966 return True;
4968 elsif Nkind (Indx) = N_Function_Call
4969 and then Is_Entity_Name (Name (Indx))
4970 and then Has_Pragma_Pure_Function (Entity (Name (Indx)))
4971 then
4972 return True;
4974 elsif Nkind (Indx) = N_Type_Conversion
4975 and then Is_Safe_Index (Expression (Indx))
4976 then
4977 return True;
4979 else
4980 return False;
4981 end if;
4982 end Is_Safe_Index;
4984 -- Start of processing for Safe_Left_Hand_Side
4986 begin
4987 if Is_Entity_Name (N) then
4988 return True;
4990 elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
4991 and then Safe_Left_Hand_Side (Prefix (N))
4992 then
4993 return True;
4995 elsif Nkind (N) = N_Indexed_Component
4996 and then Safe_Left_Hand_Side (Prefix (N))
4997 and then Is_Safe_Index (First (Expressions (N)))
4998 then
4999 return True;
5001 elsif Nkind (N) = N_Unchecked_Type_Conversion then
5002 return Safe_Left_Hand_Side (Expression (N));
5004 else
5005 return False;
5006 end if;
5007 end Safe_Left_Hand_Side;
5009 -- Local variables
5011 Tmp : Entity_Id;
5012 -- Holds the temporary aggregate value
5014 Tmp_Decl : Node_Id;
5015 -- Holds the declaration of Tmp
5017 Aggr_Code : List_Id;
5018 Parent_Node : Node_Id;
5019 Parent_Kind : Node_Kind;
5021 -- Start of processing for Expand_Array_Aggregate
5023 begin
5024 -- Do not touch the special aggregates of attributes used for Asm calls
5026 if Is_RTE (Ctyp, RE_Asm_Input_Operand)
5027 or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
5028 then
5029 return;
5031 -- Do not expand an aggregate for an array type which contains tasks if
5032 -- the aggregate is associated with an unexpanded return statement of a
5033 -- build-in-place function. The aggregate is expanded when the related
5034 -- return statement (rewritten into an extended return) is processed.
5035 -- This delay ensures that any temporaries and initialization code
5036 -- generated for the aggregate appear in the proper return block and
5037 -- use the correct _chain and _master.
5039 elsif Has_Task (Base_Type (Etype (N)))
5040 and then Nkind (Parent (N)) = N_Simple_Return_Statement
5041 and then Is_Build_In_Place_Function
5042 (Return_Applies_To (Return_Statement_Entity (Parent (N))))
5043 then
5044 return;
5046 -- Do not attempt expansion if error already detected. We may reach this
5047 -- point in spite of previous errors when compiling with -gnatq, to
5048 -- force all possible errors (this is the usual ACATS mode).
5050 elsif Error_Posted (N) then
5051 return;
5052 end if;
5054 -- If the semantic analyzer has determined that aggregate N will raise
5055 -- Constraint_Error at run time, then the aggregate node has been
5056 -- replaced with an N_Raise_Constraint_Error node and we should
5057 -- never get here.
5059 pragma Assert (not Raises_Constraint_Error (N));
5061 -- STEP 1a
5063 -- Check that the index range defined by aggregate bounds is
5064 -- compatible with corresponding index subtype.
5066 Index_Compatibility_Check : declare
5067 Aggr_Index_Range : Node_Id := First_Index (Typ);
5068 -- The current aggregate index range
5070 Index_Constraint : Node_Id := First_Index (Etype (Typ));
5071 -- The corresponding index constraint against which we have to
5072 -- check the above aggregate index range.
5074 begin
5075 Compute_Others_Present (N, 1);
5077 for J in 1 .. Aggr_Dimension loop
5078 -- There is no need to emit a check if an others choice is present
5079 -- for this array aggregate dimension since in this case one of
5080 -- N's sub-aggregates has taken its bounds from the context and
5081 -- these bounds must have been checked already. In addition all
5082 -- sub-aggregates corresponding to the same dimension must all
5083 -- have the same bounds (checked in (c) below).
5085 if not Range_Checks_Suppressed (Etype (Index_Constraint))
5086 and then not Others_Present (J)
5087 then
5088 -- We don't use Checks.Apply_Range_Check here because it emits
5089 -- a spurious check. Namely it checks that the range defined by
5090 -- the aggregate bounds is non empty. But we know this already
5091 -- if we get here.
5093 Check_Bounds (Aggr_Index_Range, Index_Constraint);
5094 end if;
5096 -- Save the low and high bounds of the aggregate index as well as
5097 -- the index type for later use in checks (b) and (c) below.
5099 Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
5100 Aggr_High (J) := High_Bound (Aggr_Index_Range);
5102 Aggr_Index_Typ (J) := Etype (Index_Constraint);
5104 Next_Index (Aggr_Index_Range);
5105 Next_Index (Index_Constraint);
5106 end loop;
5107 end Index_Compatibility_Check;
5109 -- STEP 1b
5111 -- If an others choice is present check that no aggregate index is
5112 -- outside the bounds of the index constraint.
5114 Others_Check (N, 1);
5116 -- STEP 1c
5118 -- For multidimensional arrays make sure that all subaggregates
5119 -- corresponding to the same dimension have the same bounds.
5121 if Aggr_Dimension > 1 then
5122 Check_Same_Aggr_Bounds (N, 1);
5123 end if;
5125 -- STEP 1d
5127 -- If we have a default component value, or simple initialization is
5128 -- required for the component type, then we replace <> in component
5129 -- associations by the required default value.
5131 declare
5132 Default_Val : Node_Id;
5133 Assoc : Node_Id;
5135 begin
5136 if (Present (Default_Aspect_Component_Value (Typ))
5137 or else Needs_Simple_Initialization (Ctyp))
5138 and then Present (Component_Associations (N))
5139 then
5140 Assoc := First (Component_Associations (N));
5141 while Present (Assoc) loop
5142 if Nkind (Assoc) = N_Component_Association
5143 and then Box_Present (Assoc)
5144 then
5145 Set_Box_Present (Assoc, False);
5147 if Present (Default_Aspect_Component_Value (Typ)) then
5148 Default_Val := Default_Aspect_Component_Value (Typ);
5149 else
5150 Default_Val := Get_Simple_Init_Val (Ctyp, N);
5151 end if;
5153 Set_Expression (Assoc, New_Copy_Tree (Default_Val));
5154 Analyze_And_Resolve (Expression (Assoc), Ctyp);
5155 end if;
5157 Next (Assoc);
5158 end loop;
5159 end if;
5160 end;
5162 -- STEP 2
5164 -- Here we test for is packed array aggregate that we can handle at
5165 -- compile time. If so, return with transformation done. Note that we do
5166 -- this even if the aggregate is nested, because once we have done this
5167 -- processing, there is no more nested aggregate.
5169 if Packed_Array_Aggregate_Handled (N) then
5170 return;
5171 end if;
5173 -- At this point we try to convert to positional form
5175 if Ekind (Current_Scope) = E_Package
5176 and then Static_Elaboration_Desired (Current_Scope)
5177 then
5178 Convert_To_Positional (N, Max_Others_Replicate => 100);
5179 else
5180 Convert_To_Positional (N);
5181 end if;
5183 -- if the result is no longer an aggregate (e.g. it may be a string
5184 -- literal, or a temporary which has the needed value), then we are
5185 -- done, since there is no longer a nested aggregate.
5187 if Nkind (N) /= N_Aggregate then
5188 return;
5190 -- We are also done if the result is an analyzed aggregate, indicating
5191 -- that Convert_To_Positional succeeded and reanalyzed the rewritten
5192 -- aggregate.
5194 elsif Analyzed (N) and then N /= Original_Node (N) then
5195 return;
5196 end if;
5198 -- If all aggregate components are compile-time known and the aggregate
5199 -- has been flattened, nothing left to do. The same occurs if the
5200 -- aggregate is used to initialize the components of a statically
5201 -- allocated dispatch table.
5203 if Compile_Time_Known_Aggregate (N)
5204 or else Is_Static_Dispatch_Table_Aggregate (N)
5205 then
5206 Set_Expansion_Delayed (N, False);
5207 return;
5208 end if;
5210 -- Now see if back end processing is possible
5212 if Backend_Processing_Possible (N) then
5214 -- If the aggregate is static but the constraints are not, build
5215 -- a static subtype for the aggregate, so that Gigi can place it
5216 -- in static memory. Perform an unchecked_conversion to the non-
5217 -- static type imposed by the context.
5219 declare
5220 Itype : constant Entity_Id := Etype (N);
5221 Index : Node_Id;
5222 Needs_Type : Boolean := False;
5224 begin
5225 Index := First_Index (Itype);
5226 while Present (Index) loop
5227 if not Is_OK_Static_Subtype (Etype (Index)) then
5228 Needs_Type := True;
5229 exit;
5230 else
5231 Next_Index (Index);
5232 end if;
5233 end loop;
5235 if Needs_Type then
5236 Build_Constrained_Type (Positional => True);
5237 Rewrite (N, Unchecked_Convert_To (Itype, N));
5238 Analyze (N);
5239 end if;
5240 end;
5242 return;
5243 end if;
5245 -- STEP 3
5247 -- Delay expansion for nested aggregates: it will be taken care of
5248 -- when the parent aggregate is expanded.
5250 Parent_Node := Parent (N);
5251 Parent_Kind := Nkind (Parent_Node);
5253 if Parent_Kind = N_Qualified_Expression then
5254 Parent_Node := Parent (Parent_Node);
5255 Parent_Kind := Nkind (Parent_Node);
5256 end if;
5258 if Parent_Kind = N_Aggregate
5259 or else Parent_Kind = N_Extension_Aggregate
5260 or else Parent_Kind = N_Component_Association
5261 or else (Parent_Kind = N_Object_Declaration
5262 and then Needs_Finalization (Typ))
5263 or else (Parent_Kind = N_Assignment_Statement
5264 and then Inside_Init_Proc)
5265 then
5266 if Static_Array_Aggregate (N)
5267 or else Compile_Time_Known_Aggregate (N)
5268 then
5269 Set_Expansion_Delayed (N, False);
5270 return;
5271 else
5272 Set_Expansion_Delayed (N);
5273 return;
5274 end if;
5275 end if;
5277 -- STEP 4
5279 -- Look if in place aggregate expansion is possible
5281 -- For object declarations we build the aggregate in place, unless
5282 -- the array is bit-packed or the component is controlled.
5284 -- For assignments we do the assignment in place if all the component
5285 -- associations have compile-time known values. For other cases we
5286 -- create a temporary. The analysis for safety of on-line assignment
5287 -- is delicate, i.e. we don't know how to do it fully yet ???
5289 -- For allocators we assign to the designated object in place if the
5290 -- aggregate meets the same conditions as other in-place assignments.
5291 -- In this case the aggregate may not come from source but was created
5292 -- for default initialization, e.g. with Initialize_Scalars.
5294 if Requires_Transient_Scope (Typ) then
5295 Establish_Transient_Scope
5296 (N, Sec_Stack => Has_Controlled_Component (Typ));
5297 end if;
5299 if Has_Default_Init_Comps (N) then
5300 Maybe_In_Place_OK := False;
5302 elsif Is_Bit_Packed_Array (Typ)
5303 or else Has_Controlled_Component (Typ)
5304 then
5305 Maybe_In_Place_OK := False;
5307 else
5308 Maybe_In_Place_OK :=
5309 (Nkind (Parent (N)) = N_Assignment_Statement
5310 and then In_Place_Assign_OK)
5312 or else
5313 (Nkind (Parent (Parent (N))) = N_Allocator
5314 and then In_Place_Assign_OK);
5315 end if;
5317 -- If this is an array of tasks, it will be expanded into build-in-place
5318 -- assignments. Build an activation chain for the tasks now.
5320 if Has_Task (Etype (N)) then
5321 Build_Activation_Chain_Entity (N);
5322 end if;
5324 -- Perform in-place expansion of aggregate in an object declaration.
5325 -- Note: actions generated for the aggregate will be captured in an
5326 -- expression-with-actions statement so that they can be transferred
5327 -- to freeze actions later if there is an address clause for the
5328 -- object. (Note: we don't use a block statement because this would
5329 -- cause generated freeze nodes to be elaborated in the wrong scope).
5331 -- Should document these individual tests ???
5333 if not Has_Default_Init_Comps (N)
5334 and then Comes_From_Source (Parent_Node)
5335 and then Parent_Kind = N_Object_Declaration
5336 and then not
5337 Must_Slide (Etype (Defining_Identifier (Parent_Node)), Typ)
5338 and then N = Expression (Parent_Node)
5339 and then not Is_Bit_Packed_Array (Typ)
5340 and then not Has_Controlled_Component (Typ)
5341 then
5342 In_Place_Assign_OK_For_Declaration := True;
5343 Tmp := Defining_Identifier (Parent (N));
5344 Set_No_Initialization (Parent (N));
5345 Set_Expression (Parent (N), Empty);
5347 -- Set kind and type of the entity, for use in the analysis
5348 -- of the subsequent assignments. If the nominal type is not
5349 -- constrained, build a subtype from the known bounds of the
5350 -- aggregate. If the declaration has a subtype mark, use it,
5351 -- otherwise use the itype of the aggregate.
5353 Set_Ekind (Tmp, E_Variable);
5355 if not Is_Constrained (Typ) then
5356 Build_Constrained_Type (Positional => False);
5358 elsif Is_Entity_Name (Object_Definition (Parent (N)))
5359 and then Is_Constrained (Entity (Object_Definition (Parent (N))))
5360 then
5361 Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
5363 else
5364 Set_Size_Known_At_Compile_Time (Typ, False);
5365 Set_Etype (Tmp, Typ);
5366 end if;
5368 elsif Maybe_In_Place_OK
5369 and then Nkind (Parent (N)) = N_Qualified_Expression
5370 and then Nkind (Parent (Parent (N))) = N_Allocator
5371 then
5372 Set_Expansion_Delayed (N);
5373 return;
5375 -- In the remaining cases the aggregate is the RHS of an assignment
5377 elsif Maybe_In_Place_OK
5378 and then Safe_Left_Hand_Side (Name (Parent (N)))
5379 then
5380 Tmp := Name (Parent (N));
5382 if Etype (Tmp) /= Etype (N) then
5383 Apply_Length_Check (N, Etype (Tmp));
5385 if Nkind (N) = N_Raise_Constraint_Error then
5387 -- Static error, nothing further to expand
5389 return;
5390 end if;
5391 end if;
5393 -- If a slice assignment has an aggregate with a single others_choice,
5394 -- the assignment can be done in place even if bounds are not static,
5395 -- by converting it into a loop over the discrete range of the slice.
5397 elsif Maybe_In_Place_OK
5398 and then Nkind (Name (Parent (N))) = N_Slice
5399 and then Is_Others_Aggregate (N)
5400 then
5401 Tmp := Name (Parent (N));
5403 -- Set type of aggregate to be type of lhs in assignment, in order
5404 -- to suppress redundant length checks.
5406 Set_Etype (N, Etype (Tmp));
5408 -- Step 5
5410 -- In place aggregate expansion is not possible
5412 else
5413 Maybe_In_Place_OK := False;
5414 Tmp := Make_Temporary (Loc, 'A', N);
5415 Tmp_Decl :=
5416 Make_Object_Declaration (Loc,
5417 Defining_Identifier => Tmp,
5418 Object_Definition => New_Occurrence_Of (Typ, Loc));
5419 Set_No_Initialization (Tmp_Decl, True);
5421 -- If we are within a loop, the temporary will be pushed on the
5422 -- stack at each iteration. If the aggregate is the expression for an
5423 -- allocator, it will be immediately copied to the heap and can
5424 -- be reclaimed at once. We create a transient scope around the
5425 -- aggregate for this purpose.
5427 if Ekind (Current_Scope) = E_Loop
5428 and then Nkind (Parent (Parent (N))) = N_Allocator
5429 then
5430 Establish_Transient_Scope (N, False);
5431 end if;
5433 Insert_Action (N, Tmp_Decl);
5434 end if;
5436 -- Construct and insert the aggregate code. We can safely suppress index
5437 -- checks because this code is guaranteed not to raise CE on index
5438 -- checks. However we should *not* suppress all checks.
5440 declare
5441 Target : Node_Id;
5443 begin
5444 if Nkind (Tmp) = N_Defining_Identifier then
5445 Target := New_Occurrence_Of (Tmp, Loc);
5447 else
5448 if Has_Default_Init_Comps (N) then
5450 -- Ada 2005 (AI-287): This case has not been analyzed???
5452 raise Program_Error;
5453 end if;
5455 -- Name in assignment is explicit dereference
5457 Target := New_Copy (Tmp);
5458 end if;
5460 -- If we are to generate an in place assignment for a declaration or
5461 -- an assignment statement, and the assignment can be done directly
5462 -- by the back end, then do not expand further.
5464 -- ??? We can also do that if in place expansion is not possible but
5465 -- then we could go into an infinite recursion.
5467 if (In_Place_Assign_OK_For_Declaration or else Maybe_In_Place_OK)
5468 and then VM_Target = No_VM
5469 and then not AAMP_On_Target
5470 and then not Generate_SCIL
5471 and then not Possible_Bit_Aligned_Component (Target)
5472 and then not Is_Possibly_Unaligned_Slice (Target)
5473 and then Aggr_Assignment_OK_For_Backend (N)
5474 then
5475 if Maybe_In_Place_OK then
5476 return;
5477 end if;
5479 Aggr_Code :=
5480 New_List (
5481 Make_Assignment_Statement (Loc,
5482 Name => Target,
5483 Expression => New_Copy (N)));
5485 else
5486 Aggr_Code :=
5487 Build_Array_Aggr_Code (N,
5488 Ctype => Ctyp,
5489 Index => First_Index (Typ),
5490 Into => Target,
5491 Scalar_Comp => Is_Scalar_Type (Ctyp));
5492 end if;
5494 -- Save the last assignment statement associated with the aggregate
5495 -- when building a controlled object. This reference is utilized by
5496 -- the finalization machinery when marking an object as successfully
5497 -- initialized.
5499 if Needs_Finalization (Typ)
5500 and then Is_Entity_Name (Target)
5501 and then Present (Entity (Target))
5502 and then Ekind_In (Entity (Target), E_Constant, E_Variable)
5503 then
5504 Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
5505 end if;
5506 end;
5508 -- If the aggregate is the expression in a declaration, the expanded
5509 -- code must be inserted after it. The defining entity might not come
5510 -- from source if this is part of an inlined body, but the declaration
5511 -- itself will.
5513 if Comes_From_Source (Tmp)
5514 or else
5515 (Nkind (Parent (N)) = N_Object_Declaration
5516 and then Comes_From_Source (Parent (N))
5517 and then Tmp = Defining_Entity (Parent (N)))
5518 then
5519 declare
5520 Node_After : constant Node_Id := Next (Parent_Node);
5522 begin
5523 Insert_Actions_After (Parent_Node, Aggr_Code);
5525 if Parent_Kind = N_Object_Declaration then
5526 Collect_Initialization_Statements
5527 (Obj => Tmp, N => Parent_Node, Node_After => Node_After);
5528 end if;
5529 end;
5531 else
5532 Insert_Actions (N, Aggr_Code);
5533 end if;
5535 -- If the aggregate has been assigned in place, remove the original
5536 -- assignment.
5538 if Nkind (Parent (N)) = N_Assignment_Statement
5539 and then Maybe_In_Place_OK
5540 then
5541 Rewrite (Parent (N), Make_Null_Statement (Loc));
5543 elsif Nkind (Parent (N)) /= N_Object_Declaration
5544 or else Tmp /= Defining_Identifier (Parent (N))
5545 then
5546 Rewrite (N, New_Occurrence_Of (Tmp, Loc));
5547 Analyze_And_Resolve (N, Typ);
5548 end if;
5549 end Expand_Array_Aggregate;
5551 ------------------------
5552 -- Expand_N_Aggregate --
5553 ------------------------
5555 procedure Expand_N_Aggregate (N : Node_Id) is
5556 begin
5557 -- Record aggregate case
5559 if Is_Record_Type (Etype (N)) then
5560 Expand_Record_Aggregate (N);
5562 -- Array aggregate case
5564 else
5565 -- A special case, if we have a string subtype with bounds 1 .. N,
5566 -- where N is known at compile time, and the aggregate is of the
5567 -- form (others => 'x'), with a single choice and no expressions,
5568 -- and N is less than 80 (an arbitrary limit for now), then replace
5569 -- the aggregate by the equivalent string literal (but do not mark
5570 -- it as static since it is not).
5572 -- Note: this entire circuit is redundant with respect to code in
5573 -- Expand_Array_Aggregate that collapses others choices to positional
5574 -- form, but there are two problems with that circuit:
5576 -- a) It is limited to very small cases due to ill-understood
5577 -- interactions with bootstrapping. That limit is removed by
5578 -- use of the No_Implicit_Loops restriction.
5580 -- b) It incorrectly ends up with the resulting expressions being
5581 -- considered static when they are not. For example, the
5582 -- following test should fail:
5584 -- pragma Restrictions (No_Implicit_Loops);
5585 -- package NonSOthers4 is
5586 -- B : constant String (1 .. 6) := (others => 'A');
5587 -- DH : constant String (1 .. 8) := B & "BB";
5588 -- X : Integer;
5589 -- pragma Export (C, X, Link_Name => DH);
5590 -- end;
5592 -- But it succeeds (DH looks static to pragma Export)
5594 -- To be sorted out ???
5596 if Present (Component_Associations (N)) then
5597 declare
5598 CA : constant Node_Id := First (Component_Associations (N));
5599 MX : constant := 80;
5601 begin
5602 if Nkind (First (Choices (CA))) = N_Others_Choice
5603 and then Nkind (Expression (CA)) = N_Character_Literal
5604 and then No (Expressions (N))
5605 then
5606 declare
5607 T : constant Entity_Id := Etype (N);
5608 X : constant Node_Id := First_Index (T);
5609 EC : constant Node_Id := Expression (CA);
5610 CV : constant Uint := Char_Literal_Value (EC);
5611 CC : constant Int := UI_To_Int (CV);
5613 begin
5614 if Nkind (X) = N_Range
5615 and then Compile_Time_Known_Value (Low_Bound (X))
5616 and then Expr_Value (Low_Bound (X)) = 1
5617 and then Compile_Time_Known_Value (High_Bound (X))
5618 then
5619 declare
5620 Hi : constant Uint := Expr_Value (High_Bound (X));
5622 begin
5623 if Hi <= MX then
5624 Start_String;
5626 for J in 1 .. UI_To_Int (Hi) loop
5627 Store_String_Char (Char_Code (CC));
5628 end loop;
5630 Rewrite (N,
5631 Make_String_Literal (Sloc (N),
5632 Strval => End_String));
5634 if CC >= Int (2 ** 16) then
5635 Set_Has_Wide_Wide_Character (N);
5636 elsif CC >= Int (2 ** 8) then
5637 Set_Has_Wide_Character (N);
5638 end if;
5640 Analyze_And_Resolve (N, T);
5641 Set_Is_Static_Expression (N, False);
5642 return;
5643 end if;
5644 end;
5645 end if;
5646 end;
5647 end if;
5648 end;
5649 end if;
5651 -- Not that special case, so normal expansion of array aggregate
5653 Expand_Array_Aggregate (N);
5654 end if;
5656 exception
5657 when RE_Not_Available =>
5658 return;
5659 end Expand_N_Aggregate;
5661 ----------------------------------
5662 -- Expand_N_Extension_Aggregate --
5663 ----------------------------------
5665 -- If the ancestor part is an expression, add a component association for
5666 -- the parent field. If the type of the ancestor part is not the direct
5667 -- parent of the expected type, build recursively the needed ancestors.
5668 -- If the ancestor part is a subtype_mark, replace aggregate with a decla-
5669 -- ration for a temporary of the expected type, followed by individual
5670 -- assignments to the given components.
5672 procedure Expand_N_Extension_Aggregate (N : Node_Id) is
5673 Loc : constant Source_Ptr := Sloc (N);
5674 A : constant Node_Id := Ancestor_Part (N);
5675 Typ : constant Entity_Id := Etype (N);
5677 begin
5678 -- If the ancestor is a subtype mark, an init proc must be called
5679 -- on the resulting object which thus has to be materialized in
5680 -- the front-end
5682 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
5683 Convert_To_Assignments (N, Typ);
5685 -- The extension aggregate is transformed into a record aggregate
5686 -- of the following form (c1 and c2 are inherited components)
5688 -- (Exp with c3 => a, c4 => b)
5689 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
5691 else
5692 Set_Etype (N, Typ);
5694 if Tagged_Type_Expansion then
5695 Expand_Record_Aggregate (N,
5696 Orig_Tag =>
5697 New_Occurrence_Of
5698 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
5699 Parent_Expr => A);
5701 -- No tag is needed in the case of a VM
5703 else
5704 Expand_Record_Aggregate (N, Parent_Expr => A);
5705 end if;
5706 end if;
5708 exception
5709 when RE_Not_Available =>
5710 return;
5711 end Expand_N_Extension_Aggregate;
5713 -----------------------------
5714 -- Expand_Record_Aggregate --
5715 -----------------------------
5717 procedure Expand_Record_Aggregate
5718 (N : Node_Id;
5719 Orig_Tag : Node_Id := Empty;
5720 Parent_Expr : Node_Id := Empty)
5722 Loc : constant Source_Ptr := Sloc (N);
5723 Comps : constant List_Id := Component_Associations (N);
5724 Typ : constant Entity_Id := Etype (N);
5725 Base_Typ : constant Entity_Id := Base_Type (Typ);
5727 Static_Components : Boolean := True;
5728 -- Flag to indicate whether all components are compile-time known,
5729 -- and the aggregate can be constructed statically and handled by
5730 -- the back-end.
5732 function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
5733 -- Returns true if N is an expression of composite type which can be
5734 -- fully evaluated at compile time without raising constraint error.
5735 -- Such expressions can be passed as is to Gigi without any expansion.
5737 -- This returns true for N_Aggregate with Compile_Time_Known_Aggregate
5738 -- set and constants whose expression is such an aggregate, recursively.
5740 function Component_Not_OK_For_Backend return Boolean;
5741 -- Check for presence of a component which makes it impossible for the
5742 -- backend to process the aggregate, thus requiring the use of a series
5743 -- of assignment statements. Cases checked for are a nested aggregate
5744 -- needing Late_Expansion, the presence of a tagged component which may
5745 -- need tag adjustment, and a bit unaligned component reference.
5747 -- We also force expansion into assignments if a component is of a
5748 -- mutable type (including a private type with discriminants) because
5749 -- in that case the size of the component to be copied may be smaller
5750 -- than the side of the target, and there is no simple way for gigi
5751 -- to compute the size of the object to be copied.
5753 -- NOTE: This is part of the ongoing work to define precisely the
5754 -- interface between front-end and back-end handling of aggregates.
5755 -- In general it is desirable to pass aggregates as they are to gigi,
5756 -- in order to minimize elaboration code. This is one case where the
5757 -- semantics of Ada complicate the analysis and lead to anomalies in
5758 -- the gcc back-end if the aggregate is not expanded into assignments.
5760 function Has_Visible_Private_Ancestor (Id : E) return Boolean;
5761 -- If any ancestor of the current type is private, the aggregate
5762 -- cannot be built in place. We cannot rely on Has_Private_Ancestor,
5763 -- because it will not be set when type and its parent are in the
5764 -- same scope, and the parent component needs expansion.
5766 function Top_Level_Aggregate (N : Node_Id) return Node_Id;
5767 -- For nested aggregates return the ultimate enclosing aggregate; for
5768 -- non-nested aggregates return N.
5770 ----------------------------------------
5771 -- Compile_Time_Known_Composite_Value --
5772 ----------------------------------------
5774 function Compile_Time_Known_Composite_Value
5775 (N : Node_Id) return Boolean
5777 begin
5778 -- If we have an entity name, then see if it is the name of a
5779 -- constant and if so, test the corresponding constant value.
5781 if Is_Entity_Name (N) then
5782 declare
5783 E : constant Entity_Id := Entity (N);
5784 V : Node_Id;
5785 begin
5786 if Ekind (E) /= E_Constant then
5787 return False;
5788 else
5789 V := Constant_Value (E);
5790 return Present (V)
5791 and then Compile_Time_Known_Composite_Value (V);
5792 end if;
5793 end;
5795 -- We have a value, see if it is compile time known
5797 else
5798 if Nkind (N) = N_Aggregate then
5799 return Compile_Time_Known_Aggregate (N);
5800 end if;
5802 -- All other types of values are not known at compile time
5804 return False;
5805 end if;
5807 end Compile_Time_Known_Composite_Value;
5809 ----------------------------------
5810 -- Component_Not_OK_For_Backend --
5811 ----------------------------------
5813 function Component_Not_OK_For_Backend return Boolean is
5814 C : Node_Id;
5815 Expr_Q : Node_Id;
5817 begin
5818 if No (Comps) then
5819 return False;
5820 end if;
5822 C := First (Comps);
5823 while Present (C) loop
5825 -- If the component has box initialization, expansion is needed
5826 -- and component is not ready for backend.
5828 if Box_Present (C) then
5829 return True;
5830 end if;
5832 if Nkind (Expression (C)) = N_Qualified_Expression then
5833 Expr_Q := Expression (Expression (C));
5834 else
5835 Expr_Q := Expression (C);
5836 end if;
5838 -- Return true if the aggregate has any associations for tagged
5839 -- components that may require tag adjustment.
5841 -- These are cases where the source expression may have a tag that
5842 -- could differ from the component tag (e.g., can occur for type
5843 -- conversions and formal parameters). (Tag adjustment not needed
5844 -- if VM_Target because object tags are implicit in the machine.)
5846 if Is_Tagged_Type (Etype (Expr_Q))
5847 and then (Nkind (Expr_Q) = N_Type_Conversion
5848 or else (Is_Entity_Name (Expr_Q)
5849 and then
5850 Ekind (Entity (Expr_Q)) in Formal_Kind))
5851 and then Tagged_Type_Expansion
5852 then
5853 Static_Components := False;
5854 return True;
5856 elsif Is_Delayed_Aggregate (Expr_Q) then
5857 Static_Components := False;
5858 return True;
5860 elsif Possible_Bit_Aligned_Component (Expr_Q) then
5861 Static_Components := False;
5862 return True;
5863 end if;
5865 if Is_Elementary_Type (Etype (Expr_Q)) then
5866 if not Compile_Time_Known_Value (Expr_Q) then
5867 Static_Components := False;
5868 end if;
5870 elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
5871 Static_Components := False;
5873 if Is_Private_Type (Etype (Expr_Q))
5874 and then Has_Discriminants (Etype (Expr_Q))
5875 then
5876 return True;
5877 end if;
5878 end if;
5880 Next (C);
5881 end loop;
5883 return False;
5884 end Component_Not_OK_For_Backend;
5886 -----------------------------------
5887 -- Has_Visible_Private_Ancestor --
5888 -----------------------------------
5890 function Has_Visible_Private_Ancestor (Id : E) return Boolean is
5891 R : constant Entity_Id := Root_Type (Id);
5892 T1 : Entity_Id := Id;
5894 begin
5895 loop
5896 if Is_Private_Type (T1) then
5897 return True;
5899 elsif T1 = R then
5900 return False;
5902 else
5903 T1 := Etype (T1);
5904 end if;
5905 end loop;
5906 end Has_Visible_Private_Ancestor;
5908 -------------------------
5909 -- Top_Level_Aggregate --
5910 -------------------------
5912 function Top_Level_Aggregate (N : Node_Id) return Node_Id is
5913 Aggr : Node_Id;
5915 begin
5916 Aggr := N;
5917 while Present (Parent (Aggr))
5918 and then Nkind_In (Parent (Aggr), N_Component_Association,
5919 N_Aggregate)
5920 loop
5921 Aggr := Parent (Aggr);
5922 end loop;
5924 return Aggr;
5925 end Top_Level_Aggregate;
5927 -- Local variables
5929 Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
5930 Tag_Value : Node_Id;
5931 Comp : Entity_Id;
5932 New_Comp : Node_Id;
5934 -- Start of processing for Expand_Record_Aggregate
5936 begin
5937 -- If the aggregate is to be assigned to an atomic/VFA variable, we have
5938 -- to prevent a piecemeal assignment even if the aggregate is to be
5939 -- expanded. We create a temporary for the aggregate, and assign the
5940 -- temporary instead, so that the back end can generate an atomic move
5941 -- for it.
5943 if Is_Atomic_Or_VFA (Typ)
5944 and then Comes_From_Source (Parent (N))
5945 and then Is_Atomic_VFA_Aggregate (N, Typ)
5946 then
5947 return;
5949 -- No special management required for aggregates used to initialize
5950 -- statically allocated dispatch tables
5952 elsif Is_Static_Dispatch_Table_Aggregate (N) then
5953 return;
5954 end if;
5956 -- Ada 2005 (AI-318-2): We need to convert to assignments if components
5957 -- are build-in-place function calls. The assignments will each turn
5958 -- into a build-in-place function call. If components are all static,
5959 -- we can pass the aggregate to the backend regardless of limitedness.
5961 -- Extension aggregates, aggregates in extended return statements, and
5962 -- aggregates for C++ imported types must be expanded.
5964 if Ada_Version >= Ada_2005 and then Is_Limited_View (Typ) then
5965 if not Nkind_In (Parent (N), N_Object_Declaration,
5966 N_Component_Association)
5967 then
5968 Convert_To_Assignments (N, Typ);
5970 elsif Nkind (N) = N_Extension_Aggregate
5971 or else Convention (Typ) = Convention_CPP
5972 then
5973 Convert_To_Assignments (N, Typ);
5975 elsif not Size_Known_At_Compile_Time (Typ)
5976 or else Component_Not_OK_For_Backend
5977 or else not Static_Components
5978 then
5979 Convert_To_Assignments (N, Typ);
5981 else
5982 Set_Compile_Time_Known_Aggregate (N);
5983 Set_Expansion_Delayed (N, False);
5984 end if;
5986 -- Gigi doesn't properly handle temporaries of variable size so we
5987 -- generate it in the front-end
5989 elsif not Size_Known_At_Compile_Time (Typ)
5990 and then Tagged_Type_Expansion
5991 then
5992 Convert_To_Assignments (N, Typ);
5994 -- An aggregate used to initialize a controlled object must be turned
5995 -- into component assignments as the components themselves may require
5996 -- finalization actions such as adjustment.
5998 elsif Needs_Finalization (Typ) then
5999 Convert_To_Assignments (N, Typ);
6001 -- Ada 2005 (AI-287): In case of default initialized components we
6002 -- convert the aggregate into assignments.
6004 elsif Has_Default_Init_Comps (N) then
6005 Convert_To_Assignments (N, Typ);
6007 -- Check components
6009 elsif Component_Not_OK_For_Backend then
6010 Convert_To_Assignments (N, Typ);
6012 -- If an ancestor is private, some components are not inherited and we
6013 -- cannot expand into a record aggregate.
6015 elsif Has_Visible_Private_Ancestor (Typ) then
6016 Convert_To_Assignments (N, Typ);
6018 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
6019 -- is not able to handle the aggregate for Late_Request.
6021 elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
6022 Convert_To_Assignments (N, Typ);
6024 -- If the tagged types covers interface types we need to initialize all
6025 -- hidden components containing pointers to secondary dispatch tables.
6027 elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
6028 Convert_To_Assignments (N, Typ);
6030 -- If some components are mutable, the size of the aggregate component
6031 -- may be distinct from the default size of the type component, so
6032 -- we need to expand to insure that the back-end copies the proper
6033 -- size of the data. However, if the aggregate is the initial value of
6034 -- a constant, the target is immutable and might be built statically
6035 -- if components are appropriate.
6037 elsif Has_Mutable_Components (Typ)
6038 and then
6039 (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
6040 or else not Constant_Present (Parent (Top_Level_Aggr))
6041 or else not Static_Components)
6042 then
6043 Convert_To_Assignments (N, Typ);
6045 -- If the type involved has bit aligned components, then we are not sure
6046 -- that the back end can handle this case correctly.
6048 elsif Type_May_Have_Bit_Aligned_Components (Typ) then
6049 Convert_To_Assignments (N, Typ);
6051 -- In all other cases, build a proper aggregate to be handled by gigi
6053 else
6054 if Nkind (N) = N_Aggregate then
6056 -- If the aggregate is static and can be handled by the back-end,
6057 -- nothing left to do.
6059 if Static_Components then
6060 Set_Compile_Time_Known_Aggregate (N);
6061 Set_Expansion_Delayed (N, False);
6062 end if;
6063 end if;
6065 -- If no discriminants, nothing special to do
6067 if not Has_Discriminants (Typ) then
6068 null;
6070 -- Case of discriminants present
6072 elsif Is_Derived_Type (Typ) then
6074 -- For untagged types, non-stored discriminants are replaced
6075 -- with stored discriminants, which are the ones that gigi uses
6076 -- to describe the type and its components.
6078 Generate_Aggregate_For_Derived_Type : declare
6079 Constraints : constant List_Id := New_List;
6080 First_Comp : Node_Id;
6081 Discriminant : Entity_Id;
6082 Decl : Node_Id;
6083 Num_Disc : Int := 0;
6084 Num_Gird : Int := 0;
6086 procedure Prepend_Stored_Values (T : Entity_Id);
6087 -- Scan the list of stored discriminants of the type, and add
6088 -- their values to the aggregate being built.
6090 ---------------------------
6091 -- Prepend_Stored_Values --
6092 ---------------------------
6094 procedure Prepend_Stored_Values (T : Entity_Id) is
6095 begin
6096 Discriminant := First_Stored_Discriminant (T);
6097 while Present (Discriminant) loop
6098 New_Comp :=
6099 Make_Component_Association (Loc,
6100 Choices =>
6101 New_List (New_Occurrence_Of (Discriminant, Loc)),
6103 Expression =>
6104 New_Copy_Tree
6105 (Get_Discriminant_Value
6106 (Discriminant,
6107 Typ,
6108 Discriminant_Constraint (Typ))));
6110 if No (First_Comp) then
6111 Prepend_To (Component_Associations (N), New_Comp);
6112 else
6113 Insert_After (First_Comp, New_Comp);
6114 end if;
6116 First_Comp := New_Comp;
6117 Next_Stored_Discriminant (Discriminant);
6118 end loop;
6119 end Prepend_Stored_Values;
6121 -- Start of processing for Generate_Aggregate_For_Derived_Type
6123 begin
6124 -- Remove the associations for the discriminant of derived type
6126 First_Comp := First (Component_Associations (N));
6127 while Present (First_Comp) loop
6128 Comp := First_Comp;
6129 Next (First_Comp);
6131 if Ekind (Entity (First (Choices (Comp)))) = E_Discriminant
6132 then
6133 Remove (Comp);
6134 Num_Disc := Num_Disc + 1;
6135 end if;
6136 end loop;
6138 -- Insert stored discriminant associations in the correct
6139 -- order. If there are more stored discriminants than new
6140 -- discriminants, there is at least one new discriminant that
6141 -- constrains more than one of the stored discriminants. In
6142 -- this case we need to construct a proper subtype of the
6143 -- parent type, in order to supply values to all the
6144 -- components. Otherwise there is one-one correspondence
6145 -- between the constraints and the stored discriminants.
6147 First_Comp := Empty;
6149 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
6150 while Present (Discriminant) loop
6151 Num_Gird := Num_Gird + 1;
6152 Next_Stored_Discriminant (Discriminant);
6153 end loop;
6155 -- Case of more stored discriminants than new discriminants
6157 if Num_Gird > Num_Disc then
6159 -- Create a proper subtype of the parent type, which is the
6160 -- proper implementation type for the aggregate, and convert
6161 -- it to the intended target type.
6163 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
6164 while Present (Discriminant) loop
6165 New_Comp :=
6166 New_Copy_Tree
6167 (Get_Discriminant_Value
6168 (Discriminant,
6169 Typ,
6170 Discriminant_Constraint (Typ)));
6171 Append (New_Comp, Constraints);
6172 Next_Stored_Discriminant (Discriminant);
6173 end loop;
6175 Decl :=
6176 Make_Subtype_Declaration (Loc,
6177 Defining_Identifier => Make_Temporary (Loc, 'T'),
6178 Subtype_Indication =>
6179 Make_Subtype_Indication (Loc,
6180 Subtype_Mark =>
6181 New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
6182 Constraint =>
6183 Make_Index_Or_Discriminant_Constraint
6184 (Loc, Constraints)));
6186 Insert_Action (N, Decl);
6187 Prepend_Stored_Values (Base_Type (Typ));
6189 Set_Etype (N, Defining_Identifier (Decl));
6190 Set_Analyzed (N);
6192 Rewrite (N, Unchecked_Convert_To (Typ, N));
6193 Analyze (N);
6195 -- Case where we do not have fewer new discriminants than
6196 -- stored discriminants, so in this case we can simply use the
6197 -- stored discriminants of the subtype.
6199 else
6200 Prepend_Stored_Values (Typ);
6201 end if;
6202 end Generate_Aggregate_For_Derived_Type;
6203 end if;
6205 if Is_Tagged_Type (Typ) then
6207 -- In the tagged case, _parent and _tag component must be created
6209 -- Reset Null_Present unconditionally. Tagged records always have
6210 -- at least one field (the tag or the parent).
6212 Set_Null_Record_Present (N, False);
6214 -- When the current aggregate comes from the expansion of an
6215 -- extension aggregate, the parent expr is replaced by an
6216 -- aggregate formed by selected components of this expr.
6218 if Present (Parent_Expr) and then Is_Empty_List (Comps) then
6219 Comp := First_Component_Or_Discriminant (Typ);
6220 while Present (Comp) loop
6222 -- Skip all expander-generated components
6224 if not Comes_From_Source (Original_Record_Component (Comp))
6225 then
6226 null;
6228 else
6229 New_Comp :=
6230 Make_Selected_Component (Loc,
6231 Prefix =>
6232 Unchecked_Convert_To (Typ,
6233 Duplicate_Subexpr (Parent_Expr, True)),
6234 Selector_Name => New_Occurrence_Of (Comp, Loc));
6236 Append_To (Comps,
6237 Make_Component_Association (Loc,
6238 Choices =>
6239 New_List (New_Occurrence_Of (Comp, Loc)),
6240 Expression => New_Comp));
6242 Analyze_And_Resolve (New_Comp, Etype (Comp));
6243 end if;
6245 Next_Component_Or_Discriminant (Comp);
6246 end loop;
6247 end if;
6249 -- Compute the value for the Tag now, if the type is a root it
6250 -- will be included in the aggregate right away, otherwise it will
6251 -- be propagated to the parent aggregate.
6253 if Present (Orig_Tag) then
6254 Tag_Value := Orig_Tag;
6255 elsif not Tagged_Type_Expansion then
6256 Tag_Value := Empty;
6257 else
6258 Tag_Value :=
6259 New_Occurrence_Of
6260 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
6261 end if;
6263 -- For a derived type, an aggregate for the parent is formed with
6264 -- all the inherited components.
6266 if Is_Derived_Type (Typ) then
6268 declare
6269 First_Comp : Node_Id;
6270 Parent_Comps : List_Id;
6271 Parent_Aggr : Node_Id;
6272 Parent_Name : Node_Id;
6274 begin
6275 -- Remove the inherited component association from the
6276 -- aggregate and store them in the parent aggregate
6278 First_Comp := First (Component_Associations (N));
6279 Parent_Comps := New_List;
6280 while Present (First_Comp)
6281 and then
6282 Scope (Original_Record_Component
6283 (Entity (First (Choices (First_Comp))))) /=
6284 Base_Typ
6285 loop
6286 Comp := First_Comp;
6287 Next (First_Comp);
6288 Remove (Comp);
6289 Append (Comp, Parent_Comps);
6290 end loop;
6292 Parent_Aggr :=
6293 Make_Aggregate (Loc,
6294 Component_Associations => Parent_Comps);
6295 Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
6297 -- Find the _parent component
6299 Comp := First_Component (Typ);
6300 while Chars (Comp) /= Name_uParent loop
6301 Comp := Next_Component (Comp);
6302 end loop;
6304 Parent_Name := New_Occurrence_Of (Comp, Loc);
6306 -- Insert the parent aggregate
6308 Prepend_To (Component_Associations (N),
6309 Make_Component_Association (Loc,
6310 Choices => New_List (Parent_Name),
6311 Expression => Parent_Aggr));
6313 -- Expand recursively the parent propagating the right Tag
6315 Expand_Record_Aggregate
6316 (Parent_Aggr, Tag_Value, Parent_Expr);
6318 -- The ancestor part may be a nested aggregate that has
6319 -- delayed expansion: recheck now.
6321 if Component_Not_OK_For_Backend then
6322 Convert_To_Assignments (N, Typ);
6323 end if;
6324 end;
6326 -- For a root type, the tag component is added (unless compiling
6327 -- for the VMs, where tags are implicit).
6329 elsif Tagged_Type_Expansion then
6330 declare
6331 Tag_Name : constant Node_Id :=
6332 New_Occurrence_Of (First_Tag_Component (Typ), Loc);
6333 Typ_Tag : constant Entity_Id := RTE (RE_Tag);
6334 Conv_Node : constant Node_Id :=
6335 Unchecked_Convert_To (Typ_Tag, Tag_Value);
6337 begin
6338 Set_Etype (Conv_Node, Typ_Tag);
6339 Prepend_To (Component_Associations (N),
6340 Make_Component_Association (Loc,
6341 Choices => New_List (Tag_Name),
6342 Expression => Conv_Node));
6343 end;
6344 end if;
6345 end if;
6346 end if;
6348 end Expand_Record_Aggregate;
6350 ----------------------------
6351 -- Has_Default_Init_Comps --
6352 ----------------------------
6354 function Has_Default_Init_Comps (N : Node_Id) return Boolean is
6355 Comps : constant List_Id := Component_Associations (N);
6356 C : Node_Id;
6357 Expr : Node_Id;
6359 begin
6360 pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
6362 if No (Comps) then
6363 return False;
6364 end if;
6366 if Has_Self_Reference (N) then
6367 return True;
6368 end if;
6370 -- Check if any direct component has default initialized components
6372 C := First (Comps);
6373 while Present (C) loop
6374 if Box_Present (C) then
6375 return True;
6376 end if;
6378 Next (C);
6379 end loop;
6381 -- Recursive call in case of aggregate expression
6383 C := First (Comps);
6384 while Present (C) loop
6385 Expr := Expression (C);
6387 if Present (Expr)
6388 and then Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
6389 and then Has_Default_Init_Comps (Expr)
6390 then
6391 return True;
6392 end if;
6394 Next (C);
6395 end loop;
6397 return False;
6398 end Has_Default_Init_Comps;
6400 --------------------------
6401 -- Is_Delayed_Aggregate --
6402 --------------------------
6404 function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
6405 Node : Node_Id := N;
6406 Kind : Node_Kind := Nkind (Node);
6408 begin
6409 if Kind = N_Qualified_Expression then
6410 Node := Expression (Node);
6411 Kind := Nkind (Node);
6412 end if;
6414 if not Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate) then
6415 return False;
6416 else
6417 return Expansion_Delayed (Node);
6418 end if;
6419 end Is_Delayed_Aggregate;
6421 ----------------------------------------
6422 -- Is_Static_Dispatch_Table_Aggregate --
6423 ----------------------------------------
6425 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
6426 Typ : constant Entity_Id := Base_Type (Etype (N));
6428 begin
6429 return Static_Dispatch_Tables
6430 and then Tagged_Type_Expansion
6431 and then RTU_Loaded (Ada_Tags)
6433 -- Avoid circularity when rebuilding the compiler
6435 and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
6436 and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
6437 or else
6438 Typ = RTE (RE_Address_Array)
6439 or else
6440 Typ = RTE (RE_Type_Specific_Data)
6441 or else
6442 Typ = RTE (RE_Tag_Table)
6443 or else
6444 (RTE_Available (RE_Interface_Data)
6445 and then Typ = RTE (RE_Interface_Data))
6446 or else
6447 (RTE_Available (RE_Interfaces_Array)
6448 and then Typ = RTE (RE_Interfaces_Array))
6449 or else
6450 (RTE_Available (RE_Interface_Data_Element)
6451 and then Typ = RTE (RE_Interface_Data_Element)));
6452 end Is_Static_Dispatch_Table_Aggregate;
6454 -----------------------------
6455 -- Is_Two_Dim_Packed_Array --
6456 -----------------------------
6458 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is
6459 C : constant Int := UI_To_Int (Component_Size (Typ));
6460 begin
6461 return Number_Dimensions (Typ) = 2
6462 and then Is_Bit_Packed_Array (Typ)
6463 and then (C = 1 or else C = 2 or else C = 4);
6464 end Is_Two_Dim_Packed_Array;
6466 --------------------
6467 -- Late_Expansion --
6468 --------------------
6470 function Late_Expansion
6471 (N : Node_Id;
6472 Typ : Entity_Id;
6473 Target : Node_Id) return List_Id
6475 Aggr_Code : List_Id;
6477 begin
6478 if Is_Record_Type (Etype (N)) then
6479 Aggr_Code := Build_Record_Aggr_Code (N, Typ, Target);
6481 else pragma Assert (Is_Array_Type (Etype (N)));
6482 Aggr_Code :=
6483 Build_Array_Aggr_Code
6484 (N => N,
6485 Ctype => Component_Type (Etype (N)),
6486 Index => First_Index (Typ),
6487 Into => Target,
6488 Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
6489 Indexes => No_List);
6490 end if;
6492 -- Save the last assignment statement associated with the aggregate
6493 -- when building a controlled object. This reference is utilized by
6494 -- the finalization machinery when marking an object as successfully
6495 -- initialized.
6497 if Needs_Finalization (Typ)
6498 and then Is_Entity_Name (Target)
6499 and then Present (Entity (Target))
6500 and then Ekind_In (Entity (Target), E_Constant, E_Variable)
6501 then
6502 Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
6503 end if;
6505 return Aggr_Code;
6506 end Late_Expansion;
6508 ----------------------------------
6509 -- Make_OK_Assignment_Statement --
6510 ----------------------------------
6512 function Make_OK_Assignment_Statement
6513 (Sloc : Source_Ptr;
6514 Name : Node_Id;
6515 Expression : Node_Id) return Node_Id
6517 begin
6518 Set_Assignment_OK (Name);
6519 return Make_Assignment_Statement (Sloc, Name, Expression);
6520 end Make_OK_Assignment_Statement;
6522 -----------------------
6523 -- Number_Of_Choices --
6524 -----------------------
6526 function Number_Of_Choices (N : Node_Id) return Nat is
6527 Assoc : Node_Id;
6528 Choice : Node_Id;
6530 Nb_Choices : Nat := 0;
6532 begin
6533 if Present (Expressions (N)) then
6534 return 0;
6535 end if;
6537 Assoc := First (Component_Associations (N));
6538 while Present (Assoc) loop
6539 Choice := First (Choices (Assoc));
6540 while Present (Choice) loop
6541 if Nkind (Choice) /= N_Others_Choice then
6542 Nb_Choices := Nb_Choices + 1;
6543 end if;
6545 Next (Choice);
6546 end loop;
6548 Next (Assoc);
6549 end loop;
6551 return Nb_Choices;
6552 end Number_Of_Choices;
6554 ------------------------------------
6555 -- Packed_Array_Aggregate_Handled --
6556 ------------------------------------
6558 -- The current version of this procedure will handle at compile time
6559 -- any array aggregate that meets these conditions:
6561 -- One and two dimensional, bit packed
6562 -- Underlying packed type is modular type
6563 -- Bounds are within 32-bit Int range
6564 -- All bounds and values are static
6566 -- Note: for now, in the 2-D case, we only handle component sizes of
6567 -- 1, 2, 4 (cases where an integral number of elements occupies a byte).
6569 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
6570 Loc : constant Source_Ptr := Sloc (N);
6571 Typ : constant Entity_Id := Etype (N);
6572 Ctyp : constant Entity_Id := Component_Type (Typ);
6574 Not_Handled : exception;
6575 -- Exception raised if this aggregate cannot be handled
6577 begin
6578 -- Handle one- or two dimensional bit packed array
6580 if not Is_Bit_Packed_Array (Typ)
6581 or else Number_Dimensions (Typ) > 2
6582 then
6583 return False;
6584 end if;
6586 -- If two-dimensional, check whether it can be folded, and transformed
6587 -- into a one-dimensional aggregate for the Packed_Array_Impl_Type of
6588 -- the original type.
6590 if Number_Dimensions (Typ) = 2 then
6591 return Two_Dim_Packed_Array_Handled (N);
6592 end if;
6594 if not Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)) then
6595 return False;
6596 end if;
6598 if not Is_Scalar_Type (Component_Type (Typ))
6599 and then Has_Non_Standard_Rep (Component_Type (Typ))
6600 then
6601 return False;
6602 end if;
6604 declare
6605 Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
6607 Lo : Node_Id;
6608 Hi : Node_Id;
6609 -- Bounds of index type
6611 Lob : Uint;
6612 Hib : Uint;
6613 -- Values of bounds if compile time known
6615 function Get_Component_Val (N : Node_Id) return Uint;
6616 -- Given a expression value N of the component type Ctyp, returns a
6617 -- value of Csiz (component size) bits representing this value. If
6618 -- the value is non-static or any other reason exists why the value
6619 -- cannot be returned, then Not_Handled is raised.
6621 -----------------------
6622 -- Get_Component_Val --
6623 -----------------------
6625 function Get_Component_Val (N : Node_Id) return Uint is
6626 Val : Uint;
6628 begin
6629 -- We have to analyze the expression here before doing any further
6630 -- processing here. The analysis of such expressions is deferred
6631 -- till expansion to prevent some problems of premature analysis.
6633 Analyze_And_Resolve (N, Ctyp);
6635 -- Must have a compile time value. String literals have to be
6636 -- converted into temporaries as well, because they cannot easily
6637 -- be converted into their bit representation.
6639 if not Compile_Time_Known_Value (N)
6640 or else Nkind (N) = N_String_Literal
6641 then
6642 raise Not_Handled;
6643 end if;
6645 Val := Expr_Rep_Value (N);
6647 -- Adjust for bias, and strip proper number of bits
6649 if Has_Biased_Representation (Ctyp) then
6650 Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
6651 end if;
6653 return Val mod Uint_2 ** Csiz;
6654 end Get_Component_Val;
6656 -- Here we know we have a one dimensional bit packed array
6658 begin
6659 Get_Index_Bounds (First_Index (Typ), Lo, Hi);
6661 -- Cannot do anything if bounds are dynamic
6663 if not Compile_Time_Known_Value (Lo)
6664 or else
6665 not Compile_Time_Known_Value (Hi)
6666 then
6667 return False;
6668 end if;
6670 -- Or are silly out of range of int bounds
6672 Lob := Expr_Value (Lo);
6673 Hib := Expr_Value (Hi);
6675 if not UI_Is_In_Int_Range (Lob)
6676 or else
6677 not UI_Is_In_Int_Range (Hib)
6678 then
6679 return False;
6680 end if;
6682 -- At this stage we have a suitable aggregate for handling at compile
6683 -- time. The only remaining checks are that the values of expressions
6684 -- in the aggregate are compile-time known (checks are performed by
6685 -- Get_Component_Val), and that any subtypes or ranges are statically
6686 -- known.
6688 -- If the aggregate is not fully positional at this stage, then
6689 -- convert it to positional form. Either this will fail, in which
6690 -- case we can do nothing, or it will succeed, in which case we have
6691 -- succeeded in handling the aggregate and transforming it into a
6692 -- modular value, or it will stay an aggregate, in which case we
6693 -- have failed to create a packed value for it.
6695 if Present (Component_Associations (N)) then
6696 Convert_To_Positional
6697 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6698 return Nkind (N) /= N_Aggregate;
6699 end if;
6701 -- Otherwise we are all positional, so convert to proper value
6703 declare
6704 Lov : constant Int := UI_To_Int (Lob);
6705 Hiv : constant Int := UI_To_Int (Hib);
6707 Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
6708 -- The length of the array (number of elements)
6710 Aggregate_Val : Uint;
6711 -- Value of aggregate. The value is set in the low order bits of
6712 -- this value. For the little-endian case, the values are stored
6713 -- from low-order to high-order and for the big-endian case the
6714 -- values are stored from high-order to low-order. Note that gigi
6715 -- will take care of the conversions to left justify the value in
6716 -- the big endian case (because of left justified modular type
6717 -- processing), so we do not have to worry about that here.
6719 Lit : Node_Id;
6720 -- Integer literal for resulting constructed value
6722 Shift : Nat;
6723 -- Shift count from low order for next value
6725 Incr : Int;
6726 -- Shift increment for loop
6728 Expr : Node_Id;
6729 -- Next expression from positional parameters of aggregate
6731 Left_Justified : Boolean;
6732 -- Set True if we are filling the high order bits of the target
6733 -- value (i.e. the value is left justified).
6735 begin
6736 -- For little endian, we fill up the low order bits of the target
6737 -- value. For big endian we fill up the high order bits of the
6738 -- target value (which is a left justified modular value).
6740 Left_Justified := Bytes_Big_Endian;
6742 -- Switch justification if using -gnatd8
6744 if Debug_Flag_8 then
6745 Left_Justified := not Left_Justified;
6746 end if;
6748 -- Switch justfification if reverse storage order
6750 if Reverse_Storage_Order (Base_Type (Typ)) then
6751 Left_Justified := not Left_Justified;
6752 end if;
6754 if Left_Justified then
6755 Shift := Csiz * (Len - 1);
6756 Incr := -Csiz;
6757 else
6758 Shift := 0;
6759 Incr := +Csiz;
6760 end if;
6762 -- Loop to set the values
6764 if Len = 0 then
6765 Aggregate_Val := Uint_0;
6766 else
6767 Expr := First (Expressions (N));
6768 Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
6770 for J in 2 .. Len loop
6771 Shift := Shift + Incr;
6772 Next (Expr);
6773 Aggregate_Val :=
6774 Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
6775 end loop;
6776 end if;
6778 -- Now we can rewrite with the proper value
6780 Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val);
6781 Set_Print_In_Hex (Lit);
6783 -- Construct the expression using this literal. Note that it is
6784 -- important to qualify the literal with its proper modular type
6785 -- since universal integer does not have the required range and
6786 -- also this is a left justified modular type, which is important
6787 -- in the big-endian case.
6789 Rewrite (N,
6790 Unchecked_Convert_To (Typ,
6791 Make_Qualified_Expression (Loc,
6792 Subtype_Mark =>
6793 New_Occurrence_Of (Packed_Array_Impl_Type (Typ), Loc),
6794 Expression => Lit)));
6796 Analyze_And_Resolve (N, Typ);
6797 return True;
6798 end;
6799 end;
6801 exception
6802 when Not_Handled =>
6803 return False;
6804 end Packed_Array_Aggregate_Handled;
6806 ----------------------------
6807 -- Has_Mutable_Components --
6808 ----------------------------
6810 function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
6811 Comp : Entity_Id;
6813 begin
6814 Comp := First_Component (Typ);
6815 while Present (Comp) loop
6816 if Is_Record_Type (Etype (Comp))
6817 and then Has_Discriminants (Etype (Comp))
6818 and then not Is_Constrained (Etype (Comp))
6819 then
6820 return True;
6821 end if;
6823 Next_Component (Comp);
6824 end loop;
6826 return False;
6827 end Has_Mutable_Components;
6829 ------------------------------
6830 -- Initialize_Discriminants --
6831 ------------------------------
6833 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
6834 Loc : constant Source_Ptr := Sloc (N);
6835 Bas : constant Entity_Id := Base_Type (Typ);
6836 Par : constant Entity_Id := Etype (Bas);
6837 Decl : constant Node_Id := Parent (Par);
6838 Ref : Node_Id;
6840 begin
6841 if Is_Tagged_Type (Bas)
6842 and then Is_Derived_Type (Bas)
6843 and then Has_Discriminants (Par)
6844 and then Has_Discriminants (Bas)
6845 and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
6846 and then Nkind (Decl) = N_Full_Type_Declaration
6847 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
6848 and then
6849 Present (Variant_Part (Component_List (Type_Definition (Decl))))
6850 and then Nkind (N) /= N_Extension_Aggregate
6851 then
6853 -- Call init proc to set discriminants.
6854 -- There should eventually be a special procedure for this ???
6856 Ref := New_Occurrence_Of (Defining_Identifier (N), Loc);
6857 Insert_Actions_After (N,
6858 Build_Initialization_Call (Sloc (N), Ref, Typ));
6859 end if;
6860 end Initialize_Discriminants;
6862 ----------------
6863 -- Must_Slide --
6864 ----------------
6866 function Must_Slide
6867 (Obj_Type : Entity_Id;
6868 Typ : Entity_Id) return Boolean
6870 L1, L2, H1, H2 : Node_Id;
6872 begin
6873 -- No sliding if the type of the object is not established yet, if it is
6874 -- an unconstrained type whose actual subtype comes from the aggregate,
6875 -- or if the two types are identical.
6877 if not Is_Array_Type (Obj_Type) then
6878 return False;
6880 elsif not Is_Constrained (Obj_Type) then
6881 return False;
6883 elsif Typ = Obj_Type then
6884 return False;
6886 else
6887 -- Sliding can only occur along the first dimension
6889 Get_Index_Bounds (First_Index (Typ), L1, H1);
6890 Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
6892 if not Is_OK_Static_Expression (L1) or else
6893 not Is_OK_Static_Expression (L2) or else
6894 not Is_OK_Static_Expression (H1) or else
6895 not Is_OK_Static_Expression (H2)
6896 then
6897 return False;
6898 else
6899 return Expr_Value (L1) /= Expr_Value (L2)
6900 or else
6901 Expr_Value (H1) /= Expr_Value (H2);
6902 end if;
6903 end if;
6904 end Must_Slide;
6906 ----------------------------------
6907 -- Two_Dim_Packed_Array_Handled --
6908 ----------------------------------
6910 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is
6911 Loc : constant Source_Ptr := Sloc (N);
6912 Typ : constant Entity_Id := Etype (N);
6913 Ctyp : constant Entity_Id := Component_Type (Typ);
6914 Comp_Size : constant Int := UI_To_Int (Component_Size (Typ));
6915 Packed_Array : constant Entity_Id :=
6916 Packed_Array_Impl_Type (Base_Type (Typ));
6918 One_Comp : Node_Id;
6919 -- Expression in original aggregate
6921 One_Dim : Node_Id;
6922 -- One-dimensional subaggregate
6924 begin
6926 -- For now, only deal with cases where an integral number of elements
6927 -- fit in a single byte. This includes the most common boolean case.
6929 if not (Comp_Size = 1 or else
6930 Comp_Size = 2 or else
6931 Comp_Size = 4)
6932 then
6933 return False;
6934 end if;
6936 Convert_To_Positional
6937 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6939 -- Verify that all components are static
6941 if Nkind (N) = N_Aggregate
6942 and then Compile_Time_Known_Aggregate (N)
6943 then
6944 null;
6946 -- The aggregate may have been re-analyzed and converted already
6948 elsif Nkind (N) /= N_Aggregate then
6949 return True;
6951 -- If component associations remain, the aggregate is not static
6953 elsif Present (Component_Associations (N)) then
6954 return False;
6956 else
6957 One_Dim := First (Expressions (N));
6958 while Present (One_Dim) loop
6959 if Present (Component_Associations (One_Dim)) then
6960 return False;
6961 end if;
6963 One_Comp := First (Expressions (One_Dim));
6964 while Present (One_Comp) loop
6965 if not Is_OK_Static_Expression (One_Comp) then
6966 return False;
6967 end if;
6969 Next (One_Comp);
6970 end loop;
6972 Next (One_Dim);
6973 end loop;
6974 end if;
6976 -- Two-dimensional aggregate is now fully positional so pack one
6977 -- dimension to create a static one-dimensional array, and rewrite
6978 -- as an unchecked conversion to the original type.
6980 declare
6981 Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array));
6982 -- The packed array type is a byte array
6984 Packed_Num : Int;
6985 -- Number of components accumulated in current byte
6987 Comps : List_Id;
6988 -- Assembled list of packed values for equivalent aggregate
6990 Comp_Val : Uint;
6991 -- integer value of component
6993 Incr : Int;
6994 -- Step size for packing
6996 Init_Shift : Int;
6997 -- Endian-dependent start position for packing
6999 Shift : Int;
7000 -- Current insertion position
7002 Val : Int;
7003 -- Component of packed array being assembled.
7005 begin
7006 Comps := New_List;
7007 Val := 0;
7008 Packed_Num := 0;
7010 -- Account for endianness. See corresponding comment in
7011 -- Packed_Array_Aggregate_Handled concerning the following.
7013 if Bytes_Big_Endian
7014 xor Debug_Flag_8
7015 xor Reverse_Storage_Order (Base_Type (Typ))
7016 then
7017 Init_Shift := Byte_Size - Comp_Size;
7018 Incr := -Comp_Size;
7019 else
7020 Init_Shift := 0;
7021 Incr := +Comp_Size;
7022 end if;
7024 -- Iterate over each subaggregate
7026 Shift := Init_Shift;
7027 One_Dim := First (Expressions (N));
7028 while Present (One_Dim) loop
7029 One_Comp := First (Expressions (One_Dim));
7030 while Present (One_Comp) loop
7031 if Packed_Num = Byte_Size / Comp_Size then
7033 -- Byte is complete, add to list of expressions
7035 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
7036 Val := 0;
7037 Shift := Init_Shift;
7038 Packed_Num := 0;
7040 else
7041 Comp_Val := Expr_Rep_Value (One_Comp);
7043 -- Adjust for bias, and strip proper number of bits
7045 if Has_Biased_Representation (Ctyp) then
7046 Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp));
7047 end if;
7049 Comp_Val := Comp_Val mod Uint_2 ** Comp_Size;
7050 Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift);
7051 Shift := Shift + Incr;
7052 One_Comp := Next (One_Comp);
7053 Packed_Num := Packed_Num + 1;
7054 end if;
7055 end loop;
7057 One_Dim := Next (One_Dim);
7058 end loop;
7060 if Packed_Num > 0 then
7062 -- Add final incomplete byte if present
7064 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
7065 end if;
7067 Rewrite (N,
7068 Unchecked_Convert_To (Typ,
7069 Make_Qualified_Expression (Loc,
7070 Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc),
7071 Expression => Make_Aggregate (Loc, Expressions => Comps))));
7072 Analyze_And_Resolve (N);
7073 return True;
7074 end;
7075 end Two_Dim_Packed_Array_Handled;
7077 ---------------------
7078 -- Sort_Case_Table --
7079 ---------------------
7081 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
7082 L : constant Int := Case_Table'First;
7083 U : constant Int := Case_Table'Last;
7084 K : Int;
7085 J : Int;
7086 T : Case_Bounds;
7088 begin
7089 K := L;
7090 while K /= U loop
7091 T := Case_Table (K + 1);
7093 J := K + 1;
7094 while J /= L
7095 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
7096 Expr_Value (T.Choice_Lo)
7097 loop
7098 Case_Table (J) := Case_Table (J - 1);
7099 J := J - 1;
7100 end loop;
7102 Case_Table (J) := T;
7103 K := K + 1;
7104 end loop;
7105 end Sort_Case_Table;
7107 ----------------------------
7108 -- Static_Array_Aggregate --
7109 ----------------------------
7111 function Static_Array_Aggregate (N : Node_Id) return Boolean is
7112 Bounds : constant Node_Id := Aggregate_Bounds (N);
7114 Typ : constant Entity_Id := Etype (N);
7115 Comp_Type : constant Entity_Id := Component_Type (Typ);
7116 Agg : Node_Id;
7117 Expr : Node_Id;
7118 Lo : Node_Id;
7119 Hi : Node_Id;
7121 begin
7122 if Is_Tagged_Type (Typ)
7123 or else Is_Controlled (Typ)
7124 or else Is_Packed (Typ)
7125 then
7126 return False;
7127 end if;
7129 if Present (Bounds)
7130 and then Nkind (Bounds) = N_Range
7131 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
7132 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
7133 then
7134 Lo := Low_Bound (Bounds);
7135 Hi := High_Bound (Bounds);
7137 if No (Component_Associations (N)) then
7139 -- Verify that all components are static integers
7141 Expr := First (Expressions (N));
7142 while Present (Expr) loop
7143 if Nkind (Expr) /= N_Integer_Literal then
7144 return False;
7145 end if;
7147 Next (Expr);
7148 end loop;
7150 return True;
7152 else
7153 -- We allow only a single named association, either a static
7154 -- range or an others_clause, with a static expression.
7156 Expr := First (Component_Associations (N));
7158 if Present (Expressions (N)) then
7159 return False;
7161 elsif Present (Next (Expr)) then
7162 return False;
7164 elsif Present (Next (First (Choices (Expr)))) then
7165 return False;
7167 else
7168 -- The aggregate is static if all components are literals,
7169 -- or else all its components are static aggregates for the
7170 -- component type. We also limit the size of a static aggregate
7171 -- to prevent runaway static expressions.
7173 if Is_Array_Type (Comp_Type)
7174 or else Is_Record_Type (Comp_Type)
7175 then
7176 if Nkind (Expression (Expr)) /= N_Aggregate
7177 or else
7178 not Compile_Time_Known_Aggregate (Expression (Expr))
7179 then
7180 return False;
7181 end if;
7183 elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
7184 return False;
7185 end if;
7187 if not Aggr_Size_OK (N, Typ) then
7188 return False;
7189 end if;
7191 -- Create a positional aggregate with the right number of
7192 -- copies of the expression.
7194 Agg := Make_Aggregate (Sloc (N), New_List, No_List);
7196 for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
7197 loop
7198 Append_To (Expressions (Agg), New_Copy (Expression (Expr)));
7200 -- The copied expression must be analyzed and resolved.
7201 -- Besides setting the type, this ensures that static
7202 -- expressions are appropriately marked as such.
7204 Analyze_And_Resolve
7205 (Last (Expressions (Agg)), Component_Type (Typ));
7206 end loop;
7208 Set_Aggregate_Bounds (Agg, Bounds);
7209 Set_Etype (Agg, Typ);
7210 Set_Analyzed (Agg);
7211 Rewrite (N, Agg);
7212 Set_Compile_Time_Known_Aggregate (N);
7214 return True;
7215 end if;
7216 end if;
7218 else
7219 return False;
7220 end if;
7221 end Static_Array_Aggregate;
7223 end Exp_Aggr;