Remove unused variable and field
[official-gcc.git] / gcc / tree-ssa-ccp.c
blob6472f484e3349eca8a6744c51e763703d1e4ef5b
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
101 References:
103 Constant propagation with conditional branches,
104 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106 Building an Optimizing Compiler,
107 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109 Advanced Compiler Design and Implementation,
110 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
112 #include "config.h"
113 #include "system.h"
114 #include "coretypes.h"
115 #include "tm.h"
116 #include "tree.h"
117 #include "flags.h"
118 #include "tm_p.h"
119 #include "basic-block.h"
120 #include "function.h"
121 #include "gimple-pretty-print.h"
122 #include "tree-flow.h"
123 #include "tree-pass.h"
124 #include "tree-ssa-propagate.h"
125 #include "value-prof.h"
126 #include "langhooks.h"
127 #include "target.h"
128 #include "diagnostic-core.h"
129 #include "dbgcnt.h"
130 #include "gimple-fold.h"
131 #include "params.h"
132 #include "hash-table.h"
135 /* Possible lattice values. */
136 typedef enum
138 UNINITIALIZED,
139 UNDEFINED,
140 CONSTANT,
141 VARYING
142 } ccp_lattice_t;
144 struct prop_value_d {
145 /* Lattice value. */
146 ccp_lattice_t lattice_val;
148 /* Propagated value. */
149 tree value;
151 /* Mask that applies to the propagated value during CCP. For
152 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
153 double_int mask;
156 typedef struct prop_value_d prop_value_t;
158 /* Array of propagated constant values. After propagation,
159 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
160 the constant is held in an SSA name representing a memory store
161 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
162 memory reference used to store (i.e., the LHS of the assignment
163 doing the store). */
164 static prop_value_t *const_val;
165 static unsigned n_const_val;
167 static void canonicalize_float_value (prop_value_t *);
168 static bool ccp_fold_stmt (gimple_stmt_iterator *);
170 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
172 static void
173 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
175 switch (val.lattice_val)
177 case UNINITIALIZED:
178 fprintf (outf, "%sUNINITIALIZED", prefix);
179 break;
180 case UNDEFINED:
181 fprintf (outf, "%sUNDEFINED", prefix);
182 break;
183 case VARYING:
184 fprintf (outf, "%sVARYING", prefix);
185 break;
186 case CONSTANT:
187 if (TREE_CODE (val.value) != INTEGER_CST
188 || val.mask.is_zero ())
190 fprintf (outf, "%sCONSTANT ", prefix);
191 print_generic_expr (outf, val.value, dump_flags);
193 else
195 double_int cval = tree_to_double_int (val.value).and_not (val.mask);
196 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
197 prefix, cval.high, cval.low);
198 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
199 val.mask.high, val.mask.low);
201 break;
202 default:
203 gcc_unreachable ();
208 /* Print lattice value VAL to stderr. */
210 void debug_lattice_value (prop_value_t val);
212 DEBUG_FUNCTION void
213 debug_lattice_value (prop_value_t val)
215 dump_lattice_value (stderr, "", val);
216 fprintf (stderr, "\n");
220 /* Compute a default value for variable VAR and store it in the
221 CONST_VAL array. The following rules are used to get default
222 values:
224 1- Global and static variables that are declared constant are
225 considered CONSTANT.
227 2- Any other value is considered UNDEFINED. This is useful when
228 considering PHI nodes. PHI arguments that are undefined do not
229 change the constant value of the PHI node, which allows for more
230 constants to be propagated.
232 3- Variables defined by statements other than assignments and PHI
233 nodes are considered VARYING.
235 4- Initial values of variables that are not GIMPLE registers are
236 considered VARYING. */
238 static prop_value_t
239 get_default_value (tree var)
241 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
242 gimple stmt;
244 stmt = SSA_NAME_DEF_STMT (var);
246 if (gimple_nop_p (stmt))
248 /* Variables defined by an empty statement are those used
249 before being initialized. If VAR is a local variable, we
250 can assume initially that it is UNDEFINED, otherwise we must
251 consider it VARYING. */
252 if (!virtual_operand_p (var)
253 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
254 val.lattice_val = UNDEFINED;
255 else
257 val.lattice_val = VARYING;
258 val.mask = double_int_minus_one;
261 else if (is_gimple_assign (stmt)
262 /* Value-returning GIMPLE_CALL statements assign to
263 a variable, and are treated similarly to GIMPLE_ASSIGN. */
264 || (is_gimple_call (stmt)
265 && gimple_call_lhs (stmt) != NULL_TREE)
266 || gimple_code (stmt) == GIMPLE_PHI)
268 tree cst;
269 if (gimple_assign_single_p (stmt)
270 && DECL_P (gimple_assign_rhs1 (stmt))
271 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
273 val.lattice_val = CONSTANT;
274 val.value = cst;
276 else
277 /* Any other variable defined by an assignment or a PHI node
278 is considered UNDEFINED. */
279 val.lattice_val = UNDEFINED;
281 else
283 /* Otherwise, VAR will never take on a constant value. */
284 val.lattice_val = VARYING;
285 val.mask = double_int_minus_one;
288 return val;
292 /* Get the constant value associated with variable VAR. */
294 static inline prop_value_t *
295 get_value (tree var)
297 prop_value_t *val;
299 if (const_val == NULL
300 || SSA_NAME_VERSION (var) >= n_const_val)
301 return NULL;
303 val = &const_val[SSA_NAME_VERSION (var)];
304 if (val->lattice_val == UNINITIALIZED)
305 *val = get_default_value (var);
307 canonicalize_float_value (val);
309 return val;
312 /* Return the constant tree value associated with VAR. */
314 static inline tree
315 get_constant_value (tree var)
317 prop_value_t *val;
318 if (TREE_CODE (var) != SSA_NAME)
320 if (is_gimple_min_invariant (var))
321 return var;
322 return NULL_TREE;
324 val = get_value (var);
325 if (val
326 && val->lattice_val == CONSTANT
327 && (TREE_CODE (val->value) != INTEGER_CST
328 || val->mask.is_zero ()))
329 return val->value;
330 return NULL_TREE;
333 /* Sets the value associated with VAR to VARYING. */
335 static inline void
336 set_value_varying (tree var)
338 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
340 val->lattice_val = VARYING;
341 val->value = NULL_TREE;
342 val->mask = double_int_minus_one;
345 /* For float types, modify the value of VAL to make ccp work correctly
346 for non-standard values (-0, NaN):
348 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
349 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
350 This is to fix the following problem (see PR 29921): Suppose we have
352 x = 0.0 * y
354 and we set value of y to NaN. This causes value of x to be set to NaN.
355 When we later determine that y is in fact VARYING, fold uses the fact
356 that HONOR_NANS is false, and we try to change the value of x to 0,
357 causing an ICE. With HONOR_NANS being false, the real appearance of
358 NaN would cause undefined behavior, though, so claiming that y (and x)
359 are UNDEFINED initially is correct. */
361 static void
362 canonicalize_float_value (prop_value_t *val)
364 enum machine_mode mode;
365 tree type;
366 REAL_VALUE_TYPE d;
368 if (val->lattice_val != CONSTANT
369 || TREE_CODE (val->value) != REAL_CST)
370 return;
372 d = TREE_REAL_CST (val->value);
373 type = TREE_TYPE (val->value);
374 mode = TYPE_MODE (type);
376 if (!HONOR_SIGNED_ZEROS (mode)
377 && REAL_VALUE_MINUS_ZERO (d))
379 val->value = build_real (type, dconst0);
380 return;
383 if (!HONOR_NANS (mode)
384 && REAL_VALUE_ISNAN (d))
386 val->lattice_val = UNDEFINED;
387 val->value = NULL;
388 return;
392 /* Return whether the lattice transition is valid. */
394 static bool
395 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
397 /* Lattice transitions must always be monotonically increasing in
398 value. */
399 if (old_val.lattice_val < new_val.lattice_val)
400 return true;
402 if (old_val.lattice_val != new_val.lattice_val)
403 return false;
405 if (!old_val.value && !new_val.value)
406 return true;
408 /* Now both lattice values are CONSTANT. */
410 /* Allow transitioning from PHI <&x, not executable> == &x
411 to PHI <&x, &y> == common alignment. */
412 if (TREE_CODE (old_val.value) != INTEGER_CST
413 && TREE_CODE (new_val.value) == INTEGER_CST)
414 return true;
416 /* Bit-lattices have to agree in the still valid bits. */
417 if (TREE_CODE (old_val.value) == INTEGER_CST
418 && TREE_CODE (new_val.value) == INTEGER_CST)
419 return tree_to_double_int (old_val.value).and_not (new_val.mask)
420 == tree_to_double_int (new_val.value).and_not (new_val.mask);
422 /* Otherwise constant values have to agree. */
423 return operand_equal_p (old_val.value, new_val.value, 0);
426 /* Set the value for variable VAR to NEW_VAL. Return true if the new
427 value is different from VAR's previous value. */
429 static bool
430 set_lattice_value (tree var, prop_value_t new_val)
432 /* We can deal with old UNINITIALIZED values just fine here. */
433 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
435 canonicalize_float_value (&new_val);
437 /* We have to be careful to not go up the bitwise lattice
438 represented by the mask.
439 ??? This doesn't seem to be the best place to enforce this. */
440 if (new_val.lattice_val == CONSTANT
441 && old_val->lattice_val == CONSTANT
442 && TREE_CODE (new_val.value) == INTEGER_CST
443 && TREE_CODE (old_val->value) == INTEGER_CST)
445 double_int diff;
446 diff = tree_to_double_int (new_val.value)
447 ^ tree_to_double_int (old_val->value);
448 new_val.mask = new_val.mask | old_val->mask | diff;
451 gcc_assert (valid_lattice_transition (*old_val, new_val));
453 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
454 caller that this was a non-transition. */
455 if (old_val->lattice_val != new_val.lattice_val
456 || (new_val.lattice_val == CONSTANT
457 && TREE_CODE (new_val.value) == INTEGER_CST
458 && (TREE_CODE (old_val->value) != INTEGER_CST
459 || new_val.mask != old_val->mask)))
461 /* ??? We would like to delay creation of INTEGER_CSTs from
462 partially constants here. */
464 if (dump_file && (dump_flags & TDF_DETAILS))
466 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
467 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
470 *old_val = new_val;
472 gcc_assert (new_val.lattice_val != UNINITIALIZED);
473 return true;
476 return false;
479 static prop_value_t get_value_for_expr (tree, bool);
480 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
481 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
482 tree, double_int, double_int,
483 tree, double_int, double_int);
485 /* Return a double_int that can be used for bitwise simplifications
486 from VAL. */
488 static double_int
489 value_to_double_int (prop_value_t val)
491 if (val.value
492 && TREE_CODE (val.value) == INTEGER_CST)
493 return tree_to_double_int (val.value);
494 else
495 return double_int_zero;
498 /* Return the value for the address expression EXPR based on alignment
499 information. */
501 static prop_value_t
502 get_value_from_alignment (tree expr)
504 tree type = TREE_TYPE (expr);
505 prop_value_t val;
506 unsigned HOST_WIDE_INT bitpos;
507 unsigned int align;
509 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
511 get_pointer_alignment_1 (expr, &align, &bitpos);
512 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
513 ? double_int::mask (TYPE_PRECISION (type))
514 : double_int_minus_one)
515 .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
516 val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
517 if (val.lattice_val == CONSTANT)
518 val.value
519 = double_int_to_tree (type,
520 double_int::from_uhwi (bitpos / BITS_PER_UNIT));
521 else
522 val.value = NULL_TREE;
524 return val;
527 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
528 return constant bits extracted from alignment information for
529 invariant addresses. */
531 static prop_value_t
532 get_value_for_expr (tree expr, bool for_bits_p)
534 prop_value_t val;
536 if (TREE_CODE (expr) == SSA_NAME)
538 val = *get_value (expr);
539 if (for_bits_p
540 && val.lattice_val == CONSTANT
541 && TREE_CODE (val.value) == ADDR_EXPR)
542 val = get_value_from_alignment (val.value);
544 else if (is_gimple_min_invariant (expr)
545 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
547 val.lattice_val = CONSTANT;
548 val.value = expr;
549 val.mask = double_int_zero;
550 canonicalize_float_value (&val);
552 else if (TREE_CODE (expr) == ADDR_EXPR)
553 val = get_value_from_alignment (expr);
554 else
556 val.lattice_val = VARYING;
557 val.mask = double_int_minus_one;
558 val.value = NULL_TREE;
560 return val;
563 /* Return the likely CCP lattice value for STMT.
565 If STMT has no operands, then return CONSTANT.
567 Else if undefinedness of operands of STMT cause its value to be
568 undefined, then return UNDEFINED.
570 Else if any operands of STMT are constants, then return CONSTANT.
572 Else return VARYING. */
574 static ccp_lattice_t
575 likely_value (gimple stmt)
577 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
578 tree use;
579 ssa_op_iter iter;
580 unsigned i;
582 enum gimple_code code = gimple_code (stmt);
584 /* This function appears to be called only for assignments, calls,
585 conditionals, and switches, due to the logic in visit_stmt. */
586 gcc_assert (code == GIMPLE_ASSIGN
587 || code == GIMPLE_CALL
588 || code == GIMPLE_COND
589 || code == GIMPLE_SWITCH);
591 /* If the statement has volatile operands, it won't fold to a
592 constant value. */
593 if (gimple_has_volatile_ops (stmt))
594 return VARYING;
596 /* Arrive here for more complex cases. */
597 has_constant_operand = false;
598 has_undefined_operand = false;
599 all_undefined_operands = true;
600 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
602 prop_value_t *val = get_value (use);
604 if (val->lattice_val == UNDEFINED)
605 has_undefined_operand = true;
606 else
607 all_undefined_operands = false;
609 if (val->lattice_val == CONSTANT)
610 has_constant_operand = true;
613 /* There may be constants in regular rhs operands. For calls we
614 have to ignore lhs, fndecl and static chain, otherwise only
615 the lhs. */
616 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
617 i < gimple_num_ops (stmt); ++i)
619 tree op = gimple_op (stmt, i);
620 if (!op || TREE_CODE (op) == SSA_NAME)
621 continue;
622 if (is_gimple_min_invariant (op))
623 has_constant_operand = true;
626 if (has_constant_operand)
627 all_undefined_operands = false;
629 /* If the operation combines operands like COMPLEX_EXPR make sure to
630 not mark the result UNDEFINED if only one part of the result is
631 undefined. */
632 if (has_undefined_operand && all_undefined_operands)
633 return UNDEFINED;
634 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
636 switch (gimple_assign_rhs_code (stmt))
638 /* Unary operators are handled with all_undefined_operands. */
639 case PLUS_EXPR:
640 case MINUS_EXPR:
641 case POINTER_PLUS_EXPR:
642 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
643 Not bitwise operators, one VARYING operand may specify the
644 result completely. Not logical operators for the same reason.
645 Not COMPLEX_EXPR as one VARYING operand makes the result partly
646 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
647 the undefined operand may be promoted. */
648 return UNDEFINED;
650 case ADDR_EXPR:
651 /* If any part of an address is UNDEFINED, like the index
652 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
653 return UNDEFINED;
655 default:
659 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
660 fall back to CONSTANT. During iteration UNDEFINED may still drop
661 to CONSTANT. */
662 if (has_undefined_operand)
663 return CONSTANT;
665 /* We do not consider virtual operands here -- load from read-only
666 memory may have only VARYING virtual operands, but still be
667 constant. */
668 if (has_constant_operand
669 || gimple_references_memory_p (stmt))
670 return CONSTANT;
672 return VARYING;
675 /* Returns true if STMT cannot be constant. */
677 static bool
678 surely_varying_stmt_p (gimple stmt)
680 /* If the statement has operands that we cannot handle, it cannot be
681 constant. */
682 if (gimple_has_volatile_ops (stmt))
683 return true;
685 /* If it is a call and does not return a value or is not a
686 builtin and not an indirect call, it is varying. */
687 if (is_gimple_call (stmt))
689 tree fndecl;
690 if (!gimple_call_lhs (stmt)
691 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
692 && !DECL_BUILT_IN (fndecl)))
693 return true;
696 /* Any other store operation is not interesting. */
697 else if (gimple_vdef (stmt))
698 return true;
700 /* Anything other than assignments and conditional jumps are not
701 interesting for CCP. */
702 if (gimple_code (stmt) != GIMPLE_ASSIGN
703 && gimple_code (stmt) != GIMPLE_COND
704 && gimple_code (stmt) != GIMPLE_SWITCH
705 && gimple_code (stmt) != GIMPLE_CALL)
706 return true;
708 return false;
711 /* Initialize local data structures for CCP. */
713 static void
714 ccp_initialize (void)
716 basic_block bb;
718 n_const_val = num_ssa_names;
719 const_val = XCNEWVEC (prop_value_t, n_const_val);
721 /* Initialize simulation flags for PHI nodes and statements. */
722 FOR_EACH_BB (bb)
724 gimple_stmt_iterator i;
726 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
728 gimple stmt = gsi_stmt (i);
729 bool is_varying;
731 /* If the statement is a control insn, then we do not
732 want to avoid simulating the statement once. Failure
733 to do so means that those edges will never get added. */
734 if (stmt_ends_bb_p (stmt))
735 is_varying = false;
736 else
737 is_varying = surely_varying_stmt_p (stmt);
739 if (is_varying)
741 tree def;
742 ssa_op_iter iter;
744 /* If the statement will not produce a constant, mark
745 all its outputs VARYING. */
746 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
747 set_value_varying (def);
749 prop_set_simulate_again (stmt, !is_varying);
753 /* Now process PHI nodes. We never clear the simulate_again flag on
754 phi nodes, since we do not know which edges are executable yet,
755 except for phi nodes for virtual operands when we do not do store ccp. */
756 FOR_EACH_BB (bb)
758 gimple_stmt_iterator i;
760 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
762 gimple phi = gsi_stmt (i);
764 if (virtual_operand_p (gimple_phi_result (phi)))
765 prop_set_simulate_again (phi, false);
766 else
767 prop_set_simulate_again (phi, true);
772 /* Debug count support. Reset the values of ssa names
773 VARYING when the total number ssa names analyzed is
774 beyond the debug count specified. */
776 static void
777 do_dbg_cnt (void)
779 unsigned i;
780 for (i = 0; i < num_ssa_names; i++)
782 if (!dbg_cnt (ccp))
784 const_val[i].lattice_val = VARYING;
785 const_val[i].mask = double_int_minus_one;
786 const_val[i].value = NULL_TREE;
792 /* Do final substitution of propagated values, cleanup the flowgraph and
793 free allocated storage.
795 Return TRUE when something was optimized. */
797 static bool
798 ccp_finalize (void)
800 bool something_changed;
801 unsigned i;
803 do_dbg_cnt ();
805 /* Derive alignment and misalignment information from partially
806 constant pointers in the lattice. */
807 for (i = 1; i < num_ssa_names; ++i)
809 tree name = ssa_name (i);
810 prop_value_t *val;
811 unsigned int tem, align;
813 if (!name
814 || !POINTER_TYPE_P (TREE_TYPE (name)))
815 continue;
817 val = get_value (name);
818 if (val->lattice_val != CONSTANT
819 || TREE_CODE (val->value) != INTEGER_CST)
820 continue;
822 /* Trailing constant bits specify the alignment, trailing value
823 bits the misalignment. */
824 tem = val->mask.low;
825 align = (tem & -tem);
826 if (align > 1)
827 set_ptr_info_alignment (get_ptr_info (name), align,
828 TREE_INT_CST_LOW (val->value) & (align - 1));
831 /* Perform substitutions based on the known constant values. */
832 something_changed = substitute_and_fold (get_constant_value,
833 ccp_fold_stmt, true);
835 free (const_val);
836 const_val = NULL;
837 return something_changed;;
841 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
842 in VAL1.
844 any M UNDEFINED = any
845 any M VARYING = VARYING
846 Ci M Cj = Ci if (i == j)
847 Ci M Cj = VARYING if (i != j)
850 static void
851 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
853 if (val1->lattice_val == UNDEFINED)
855 /* UNDEFINED M any = any */
856 *val1 = *val2;
858 else if (val2->lattice_val == UNDEFINED)
860 /* any M UNDEFINED = any
861 Nothing to do. VAL1 already contains the value we want. */
864 else if (val1->lattice_val == VARYING
865 || val2->lattice_val == VARYING)
867 /* any M VARYING = VARYING. */
868 val1->lattice_val = VARYING;
869 val1->mask = double_int_minus_one;
870 val1->value = NULL_TREE;
872 else if (val1->lattice_val == CONSTANT
873 && val2->lattice_val == CONSTANT
874 && TREE_CODE (val1->value) == INTEGER_CST
875 && TREE_CODE (val2->value) == INTEGER_CST)
877 /* Ci M Cj = Ci if (i == j)
878 Ci M Cj = VARYING if (i != j)
880 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
881 drop to varying. */
882 val1->mask = val1->mask | val2->mask
883 | (tree_to_double_int (val1->value)
884 ^ tree_to_double_int (val2->value));
885 if (val1->mask.is_minus_one ())
887 val1->lattice_val = VARYING;
888 val1->value = NULL_TREE;
891 else if (val1->lattice_val == CONSTANT
892 && val2->lattice_val == CONSTANT
893 && simple_cst_equal (val1->value, val2->value) == 1)
895 /* Ci M Cj = Ci if (i == j)
896 Ci M Cj = VARYING if (i != j)
898 VAL1 already contains the value we want for equivalent values. */
900 else if (val1->lattice_val == CONSTANT
901 && val2->lattice_val == CONSTANT
902 && (TREE_CODE (val1->value) == ADDR_EXPR
903 || TREE_CODE (val2->value) == ADDR_EXPR))
905 /* When not equal addresses are involved try meeting for
906 alignment. */
907 prop_value_t tem = *val2;
908 if (TREE_CODE (val1->value) == ADDR_EXPR)
909 *val1 = get_value_for_expr (val1->value, true);
910 if (TREE_CODE (val2->value) == ADDR_EXPR)
911 tem = get_value_for_expr (val2->value, true);
912 ccp_lattice_meet (val1, &tem);
914 else
916 /* Any other combination is VARYING. */
917 val1->lattice_val = VARYING;
918 val1->mask = double_int_minus_one;
919 val1->value = NULL_TREE;
924 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
925 lattice values to determine PHI_NODE's lattice value. The value of a
926 PHI node is determined calling ccp_lattice_meet with all the arguments
927 of the PHI node that are incoming via executable edges. */
929 static enum ssa_prop_result
930 ccp_visit_phi_node (gimple phi)
932 unsigned i;
933 prop_value_t *old_val, new_val;
935 if (dump_file && (dump_flags & TDF_DETAILS))
937 fprintf (dump_file, "\nVisiting PHI node: ");
938 print_gimple_stmt (dump_file, phi, 0, dump_flags);
941 old_val = get_value (gimple_phi_result (phi));
942 switch (old_val->lattice_val)
944 case VARYING:
945 return SSA_PROP_VARYING;
947 case CONSTANT:
948 new_val = *old_val;
949 break;
951 case UNDEFINED:
952 new_val.lattice_val = UNDEFINED;
953 new_val.value = NULL_TREE;
954 break;
956 default:
957 gcc_unreachable ();
960 for (i = 0; i < gimple_phi_num_args (phi); i++)
962 /* Compute the meet operator over all the PHI arguments flowing
963 through executable edges. */
964 edge e = gimple_phi_arg_edge (phi, i);
966 if (dump_file && (dump_flags & TDF_DETAILS))
968 fprintf (dump_file,
969 "\n Argument #%d (%d -> %d %sexecutable)\n",
970 i, e->src->index, e->dest->index,
971 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
974 /* If the incoming edge is executable, Compute the meet operator for
975 the existing value of the PHI node and the current PHI argument. */
976 if (e->flags & EDGE_EXECUTABLE)
978 tree arg = gimple_phi_arg (phi, i)->def;
979 prop_value_t arg_val = get_value_for_expr (arg, false);
981 ccp_lattice_meet (&new_val, &arg_val);
983 if (dump_file && (dump_flags & TDF_DETAILS))
985 fprintf (dump_file, "\t");
986 print_generic_expr (dump_file, arg, dump_flags);
987 dump_lattice_value (dump_file, "\tValue: ", arg_val);
988 fprintf (dump_file, "\n");
991 if (new_val.lattice_val == VARYING)
992 break;
996 if (dump_file && (dump_flags & TDF_DETAILS))
998 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
999 fprintf (dump_file, "\n\n");
1002 /* Make the transition to the new value. */
1003 if (set_lattice_value (gimple_phi_result (phi), new_val))
1005 if (new_val.lattice_val == VARYING)
1006 return SSA_PROP_VARYING;
1007 else
1008 return SSA_PROP_INTERESTING;
1010 else
1011 return SSA_PROP_NOT_INTERESTING;
1014 /* Return the constant value for OP or OP otherwise. */
1016 static tree
1017 valueize_op (tree op)
1019 if (TREE_CODE (op) == SSA_NAME)
1021 tree tem = get_constant_value (op);
1022 if (tem)
1023 return tem;
1025 return op;
1028 /* CCP specific front-end to the non-destructive constant folding
1029 routines.
1031 Attempt to simplify the RHS of STMT knowing that one or more
1032 operands are constants.
1034 If simplification is possible, return the simplified RHS,
1035 otherwise return the original RHS or NULL_TREE. */
1037 static tree
1038 ccp_fold (gimple stmt)
1040 location_t loc = gimple_location (stmt);
1041 switch (gimple_code (stmt))
1043 case GIMPLE_COND:
1045 /* Handle comparison operators that can appear in GIMPLE form. */
1046 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1047 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1048 enum tree_code code = gimple_cond_code (stmt);
1049 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1052 case GIMPLE_SWITCH:
1054 /* Return the constant switch index. */
1055 return valueize_op (gimple_switch_index (stmt));
1058 case GIMPLE_ASSIGN:
1059 case GIMPLE_CALL:
1060 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1062 default:
1063 gcc_unreachable ();
1067 /* Apply the operation CODE in type TYPE to the value, mask pair
1068 RVAL and RMASK representing a value of type RTYPE and set
1069 the value, mask pair *VAL and *MASK to the result. */
1071 static void
1072 bit_value_unop_1 (enum tree_code code, tree type,
1073 double_int *val, double_int *mask,
1074 tree rtype, double_int rval, double_int rmask)
1076 switch (code)
1078 case BIT_NOT_EXPR:
1079 *mask = rmask;
1080 *val = ~rval;
1081 break;
1083 case NEGATE_EXPR:
1085 double_int temv, temm;
1086 /* Return ~rval + 1. */
1087 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1088 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1089 type, temv, temm,
1090 type, double_int_one, double_int_zero);
1091 break;
1094 CASE_CONVERT:
1096 bool uns;
1098 /* First extend mask and value according to the original type. */
1099 uns = TYPE_UNSIGNED (rtype);
1100 *mask = rmask.ext (TYPE_PRECISION (rtype), uns);
1101 *val = rval.ext (TYPE_PRECISION (rtype), uns);
1103 /* Then extend mask and value according to the target type. */
1104 uns = TYPE_UNSIGNED (type);
1105 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1106 *val = (*val).ext (TYPE_PRECISION (type), uns);
1107 break;
1110 default:
1111 *mask = double_int_minus_one;
1112 break;
1116 /* Apply the operation CODE in type TYPE to the value, mask pairs
1117 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1118 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1120 static void
1121 bit_value_binop_1 (enum tree_code code, tree type,
1122 double_int *val, double_int *mask,
1123 tree r1type, double_int r1val, double_int r1mask,
1124 tree r2type, double_int r2val, double_int r2mask)
1126 bool uns = TYPE_UNSIGNED (type);
1127 /* Assume we'll get a constant result. Use an initial varying value,
1128 we fall back to varying in the end if necessary. */
1129 *mask = double_int_minus_one;
1130 switch (code)
1132 case BIT_AND_EXPR:
1133 /* The mask is constant where there is a known not
1134 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1135 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1136 *val = r1val & r2val;
1137 break;
1139 case BIT_IOR_EXPR:
1140 /* The mask is constant where there is a known
1141 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1142 *mask = (r1mask | r2mask)
1143 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1144 *val = r1val | r2val;
1145 break;
1147 case BIT_XOR_EXPR:
1148 /* m1 | m2 */
1149 *mask = r1mask | r2mask;
1150 *val = r1val ^ r2val;
1151 break;
1153 case LROTATE_EXPR:
1154 case RROTATE_EXPR:
1155 if (r2mask.is_zero ())
1157 HOST_WIDE_INT shift = r2val.low;
1158 if (code == RROTATE_EXPR)
1159 shift = -shift;
1160 *mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
1161 *val = r1val.lrotate (shift, TYPE_PRECISION (type));
1163 break;
1165 case LSHIFT_EXPR:
1166 case RSHIFT_EXPR:
1167 /* ??? We can handle partially known shift counts if we know
1168 its sign. That way we can tell that (x << (y | 8)) & 255
1169 is zero. */
1170 if (r2mask.is_zero ())
1172 HOST_WIDE_INT shift = r2val.low;
1173 if (code == RSHIFT_EXPR)
1174 shift = -shift;
1175 /* We need to know if we are doing a left or a right shift
1176 to properly shift in zeros for left shift and unsigned
1177 right shifts and the sign bit for signed right shifts.
1178 For signed right shifts we shift in varying in case
1179 the sign bit was varying. */
1180 if (shift > 0)
1182 *mask = r1mask.llshift (shift, TYPE_PRECISION (type));
1183 *val = r1val.llshift (shift, TYPE_PRECISION (type));
1185 else if (shift < 0)
1187 shift = -shift;
1188 *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
1189 *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
1191 else
1193 *mask = r1mask;
1194 *val = r1val;
1197 break;
1199 case PLUS_EXPR:
1200 case POINTER_PLUS_EXPR:
1202 double_int lo, hi;
1203 /* Do the addition with unknown bits set to zero, to give carry-ins of
1204 zero wherever possible. */
1205 lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1206 lo = lo.ext (TYPE_PRECISION (type), uns);
1207 /* Do the addition with unknown bits set to one, to give carry-ins of
1208 one wherever possible. */
1209 hi = (r1val | r1mask) + (r2val | r2mask);
1210 hi = hi.ext (TYPE_PRECISION (type), uns);
1211 /* Each bit in the result is known if (a) the corresponding bits in
1212 both inputs are known, and (b) the carry-in to that bit position
1213 is known. We can check condition (b) by seeing if we got the same
1214 result with minimised carries as with maximised carries. */
1215 *mask = r1mask | r2mask | (lo ^ hi);
1216 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1217 /* It shouldn't matter whether we choose lo or hi here. */
1218 *val = lo;
1219 break;
1222 case MINUS_EXPR:
1224 double_int temv, temm;
1225 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1226 r2type, r2val, r2mask);
1227 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1228 r1type, r1val, r1mask,
1229 r2type, temv, temm);
1230 break;
1233 case MULT_EXPR:
1235 /* Just track trailing zeros in both operands and transfer
1236 them to the other. */
1237 int r1tz = (r1val | r1mask).trailing_zeros ();
1238 int r2tz = (r2val | r2mask).trailing_zeros ();
1239 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1241 *mask = double_int_zero;
1242 *val = double_int_zero;
1244 else if (r1tz + r2tz > 0)
1246 *mask = ~double_int::mask (r1tz + r2tz);
1247 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1248 *val = double_int_zero;
1250 break;
1253 case EQ_EXPR:
1254 case NE_EXPR:
1256 double_int m = r1mask | r2mask;
1257 if (r1val.and_not (m) != r2val.and_not (m))
1259 *mask = double_int_zero;
1260 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1262 else
1264 /* We know the result of a comparison is always one or zero. */
1265 *mask = double_int_one;
1266 *val = double_int_zero;
1268 break;
1271 case GE_EXPR:
1272 case GT_EXPR:
1274 double_int tem = r1val;
1275 r1val = r2val;
1276 r2val = tem;
1277 tem = r1mask;
1278 r1mask = r2mask;
1279 r2mask = tem;
1280 code = swap_tree_comparison (code);
1282 /* Fallthru. */
1283 case LT_EXPR:
1284 case LE_EXPR:
1286 int minmax, maxmin;
1287 /* If the most significant bits are not known we know nothing. */
1288 if (r1mask.is_negative () || r2mask.is_negative ())
1289 break;
1291 /* For comparisons the signedness is in the comparison operands. */
1292 uns = TYPE_UNSIGNED (r1type);
1294 /* If we know the most significant bits we know the values
1295 value ranges by means of treating varying bits as zero
1296 or one. Do a cross comparison of the max/min pairs. */
1297 maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
1298 minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
1299 if (maxmin < 0) /* r1 is less than r2. */
1301 *mask = double_int_zero;
1302 *val = double_int_one;
1304 else if (minmax > 0) /* r1 is not less or equal to r2. */
1306 *mask = double_int_zero;
1307 *val = double_int_zero;
1309 else if (maxmin == minmax) /* r1 and r2 are equal. */
1311 /* This probably should never happen as we'd have
1312 folded the thing during fully constant value folding. */
1313 *mask = double_int_zero;
1314 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1316 else
1318 /* We know the result of a comparison is always one or zero. */
1319 *mask = double_int_one;
1320 *val = double_int_zero;
1322 break;
1325 default:;
1329 /* Return the propagation value when applying the operation CODE to
1330 the value RHS yielding type TYPE. */
1332 static prop_value_t
1333 bit_value_unop (enum tree_code code, tree type, tree rhs)
1335 prop_value_t rval = get_value_for_expr (rhs, true);
1336 double_int value, mask;
1337 prop_value_t val;
1339 if (rval.lattice_val == UNDEFINED)
1340 return rval;
1342 gcc_assert ((rval.lattice_val == CONSTANT
1343 && TREE_CODE (rval.value) == INTEGER_CST)
1344 || rval.mask.is_minus_one ());
1345 bit_value_unop_1 (code, type, &value, &mask,
1346 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1347 if (!mask.is_minus_one ())
1349 val.lattice_val = CONSTANT;
1350 val.mask = mask;
1351 /* ??? Delay building trees here. */
1352 val.value = double_int_to_tree (type, value);
1354 else
1356 val.lattice_val = VARYING;
1357 val.value = NULL_TREE;
1358 val.mask = double_int_minus_one;
1360 return val;
1363 /* Return the propagation value when applying the operation CODE to
1364 the values RHS1 and RHS2 yielding type TYPE. */
1366 static prop_value_t
1367 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1369 prop_value_t r1val = get_value_for_expr (rhs1, true);
1370 prop_value_t r2val = get_value_for_expr (rhs2, true);
1371 double_int value, mask;
1372 prop_value_t val;
1374 if (r1val.lattice_val == UNDEFINED
1375 || r2val.lattice_val == UNDEFINED)
1377 val.lattice_val = VARYING;
1378 val.value = NULL_TREE;
1379 val.mask = double_int_minus_one;
1380 return val;
1383 gcc_assert ((r1val.lattice_val == CONSTANT
1384 && TREE_CODE (r1val.value) == INTEGER_CST)
1385 || r1val.mask.is_minus_one ());
1386 gcc_assert ((r2val.lattice_val == CONSTANT
1387 && TREE_CODE (r2val.value) == INTEGER_CST)
1388 || r2val.mask.is_minus_one ());
1389 bit_value_binop_1 (code, type, &value, &mask,
1390 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1391 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1392 if (!mask.is_minus_one ())
1394 val.lattice_val = CONSTANT;
1395 val.mask = mask;
1396 /* ??? Delay building trees here. */
1397 val.value = double_int_to_tree (type, value);
1399 else
1401 val.lattice_val = VARYING;
1402 val.value = NULL_TREE;
1403 val.mask = double_int_minus_one;
1405 return val;
1408 /* Return the propagation value when applying __builtin_assume_aligned to
1409 its arguments. */
1411 static prop_value_t
1412 bit_value_assume_aligned (gimple stmt)
1414 tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
1415 tree type = TREE_TYPE (ptr);
1416 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1417 prop_value_t ptrval = get_value_for_expr (ptr, true);
1418 prop_value_t alignval;
1419 double_int value, mask;
1420 prop_value_t val;
1421 if (ptrval.lattice_val == UNDEFINED)
1422 return ptrval;
1423 gcc_assert ((ptrval.lattice_val == CONSTANT
1424 && TREE_CODE (ptrval.value) == INTEGER_CST)
1425 || ptrval.mask.is_minus_one ());
1426 align = gimple_call_arg (stmt, 1);
1427 if (!host_integerp (align, 1))
1428 return ptrval;
1429 aligni = tree_low_cst (align, 1);
1430 if (aligni <= 1
1431 || (aligni & (aligni - 1)) != 0)
1432 return ptrval;
1433 if (gimple_call_num_args (stmt) > 2)
1435 misalign = gimple_call_arg (stmt, 2);
1436 if (!host_integerp (misalign, 1))
1437 return ptrval;
1438 misaligni = tree_low_cst (misalign, 1);
1439 if (misaligni >= aligni)
1440 return ptrval;
1442 align = build_int_cst_type (type, -aligni);
1443 alignval = get_value_for_expr (align, true);
1444 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1445 type, value_to_double_int (ptrval), ptrval.mask,
1446 type, value_to_double_int (alignval), alignval.mask);
1447 if (!mask.is_minus_one ())
1449 val.lattice_val = CONSTANT;
1450 val.mask = mask;
1451 gcc_assert ((mask.low & (aligni - 1)) == 0);
1452 gcc_assert ((value.low & (aligni - 1)) == 0);
1453 value.low |= misaligni;
1454 /* ??? Delay building trees here. */
1455 val.value = double_int_to_tree (type, value);
1457 else
1459 val.lattice_val = VARYING;
1460 val.value = NULL_TREE;
1461 val.mask = double_int_minus_one;
1463 return val;
1466 /* Evaluate statement STMT.
1467 Valid only for assignments, calls, conditionals, and switches. */
1469 static prop_value_t
1470 evaluate_stmt (gimple stmt)
1472 prop_value_t val;
1473 tree simplified = NULL_TREE;
1474 ccp_lattice_t likelyvalue = likely_value (stmt);
1475 bool is_constant = false;
1476 unsigned int align;
1478 if (dump_file && (dump_flags & TDF_DETAILS))
1480 fprintf (dump_file, "which is likely ");
1481 switch (likelyvalue)
1483 case CONSTANT:
1484 fprintf (dump_file, "CONSTANT");
1485 break;
1486 case UNDEFINED:
1487 fprintf (dump_file, "UNDEFINED");
1488 break;
1489 case VARYING:
1490 fprintf (dump_file, "VARYING");
1491 break;
1492 default:;
1494 fprintf (dump_file, "\n");
1497 /* If the statement is likely to have a CONSTANT result, then try
1498 to fold the statement to determine the constant value. */
1499 /* FIXME. This is the only place that we call ccp_fold.
1500 Since likely_value never returns CONSTANT for calls, we will
1501 not attempt to fold them, including builtins that may profit. */
1502 if (likelyvalue == CONSTANT)
1504 fold_defer_overflow_warnings ();
1505 simplified = ccp_fold (stmt);
1506 is_constant = simplified && is_gimple_min_invariant (simplified);
1507 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1508 if (is_constant)
1510 /* The statement produced a constant value. */
1511 val.lattice_val = CONSTANT;
1512 val.value = simplified;
1513 val.mask = double_int_zero;
1516 /* If the statement is likely to have a VARYING result, then do not
1517 bother folding the statement. */
1518 else if (likelyvalue == VARYING)
1520 enum gimple_code code = gimple_code (stmt);
1521 if (code == GIMPLE_ASSIGN)
1523 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1525 /* Other cases cannot satisfy is_gimple_min_invariant
1526 without folding. */
1527 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1528 simplified = gimple_assign_rhs1 (stmt);
1530 else if (code == GIMPLE_SWITCH)
1531 simplified = gimple_switch_index (stmt);
1532 else
1533 /* These cannot satisfy is_gimple_min_invariant without folding. */
1534 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1535 is_constant = simplified && is_gimple_min_invariant (simplified);
1536 if (is_constant)
1538 /* The statement produced a constant value. */
1539 val.lattice_val = CONSTANT;
1540 val.value = simplified;
1541 val.mask = double_int_zero;
1545 /* Resort to simplification for bitwise tracking. */
1546 if (flag_tree_bit_ccp
1547 && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1548 && !is_constant)
1550 enum gimple_code code = gimple_code (stmt);
1551 val.lattice_val = VARYING;
1552 val.value = NULL_TREE;
1553 val.mask = double_int_minus_one;
1554 if (code == GIMPLE_ASSIGN)
1556 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1557 tree rhs1 = gimple_assign_rhs1 (stmt);
1558 switch (get_gimple_rhs_class (subcode))
1560 case GIMPLE_SINGLE_RHS:
1561 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1562 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1563 val = get_value_for_expr (rhs1, true);
1564 break;
1566 case GIMPLE_UNARY_RHS:
1567 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1568 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1569 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1570 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1571 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1572 break;
1574 case GIMPLE_BINARY_RHS:
1575 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1576 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1578 tree lhs = gimple_assign_lhs (stmt);
1579 tree rhs2 = gimple_assign_rhs2 (stmt);
1580 val = bit_value_binop (subcode,
1581 TREE_TYPE (lhs), rhs1, rhs2);
1583 break;
1585 default:;
1588 else if (code == GIMPLE_COND)
1590 enum tree_code code = gimple_cond_code (stmt);
1591 tree rhs1 = gimple_cond_lhs (stmt);
1592 tree rhs2 = gimple_cond_rhs (stmt);
1593 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1594 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1595 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1597 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1599 tree fndecl = gimple_call_fndecl (stmt);
1600 switch (DECL_FUNCTION_CODE (fndecl))
1602 case BUILT_IN_MALLOC:
1603 case BUILT_IN_REALLOC:
1604 case BUILT_IN_CALLOC:
1605 case BUILT_IN_STRDUP:
1606 case BUILT_IN_STRNDUP:
1607 val.lattice_val = CONSTANT;
1608 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1609 val.mask = double_int::from_shwi
1610 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1611 / BITS_PER_UNIT - 1));
1612 break;
1614 case BUILT_IN_ALLOCA:
1615 case BUILT_IN_ALLOCA_WITH_ALIGN:
1616 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1617 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1618 : BIGGEST_ALIGNMENT);
1619 val.lattice_val = CONSTANT;
1620 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1621 val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
1622 / BITS_PER_UNIT - 1));
1623 break;
1625 /* These builtins return their first argument, unmodified. */
1626 case BUILT_IN_MEMCPY:
1627 case BUILT_IN_MEMMOVE:
1628 case BUILT_IN_MEMSET:
1629 case BUILT_IN_STRCPY:
1630 case BUILT_IN_STRNCPY:
1631 case BUILT_IN_MEMCPY_CHK:
1632 case BUILT_IN_MEMMOVE_CHK:
1633 case BUILT_IN_MEMSET_CHK:
1634 case BUILT_IN_STRCPY_CHK:
1635 case BUILT_IN_STRNCPY_CHK:
1636 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1637 break;
1639 case BUILT_IN_ASSUME_ALIGNED:
1640 val = bit_value_assume_aligned (stmt);
1641 break;
1643 default:;
1646 is_constant = (val.lattice_val == CONSTANT);
1649 if (!is_constant)
1651 /* The statement produced a nonconstant value. If the statement
1652 had UNDEFINED operands, then the result of the statement
1653 should be UNDEFINED. Otherwise, the statement is VARYING. */
1654 if (likelyvalue == UNDEFINED)
1656 val.lattice_val = likelyvalue;
1657 val.mask = double_int_zero;
1659 else
1661 val.lattice_val = VARYING;
1662 val.mask = double_int_minus_one;
1665 val.value = NULL_TREE;
1668 return val;
1671 typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab;
1673 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1674 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1676 static void
1677 insert_clobber_before_stack_restore (tree saved_val, tree var,
1678 gimple_htab *visited)
1680 gimple stmt, clobber_stmt;
1681 tree clobber;
1682 imm_use_iterator iter;
1683 gimple_stmt_iterator i;
1684 gimple *slot;
1686 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1687 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1689 clobber = build_constructor (TREE_TYPE (var),
1690 NULL);
1691 TREE_THIS_VOLATILE (clobber) = 1;
1692 clobber_stmt = gimple_build_assign (var, clobber);
1694 i = gsi_for_stmt (stmt);
1695 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1697 else if (gimple_code (stmt) == GIMPLE_PHI)
1699 if (!visited->is_created ())
1700 visited->create (10);
1702 slot = visited->find_slot (stmt, INSERT);
1703 if (*slot != NULL)
1704 continue;
1706 *slot = stmt;
1707 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1708 visited);
1710 else
1711 gcc_assert (is_gimple_debug (stmt));
1714 /* Advance the iterator to the previous non-debug gimple statement in the same
1715 or dominating basic block. */
1717 static inline void
1718 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1720 basic_block dom;
1722 gsi_prev_nondebug (i);
1723 while (gsi_end_p (*i))
1725 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1726 if (dom == NULL || dom == ENTRY_BLOCK_PTR)
1727 return;
1729 *i = gsi_last_bb (dom);
1733 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1734 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1736 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1737 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1738 that case the function gives up without inserting the clobbers. */
1740 static void
1741 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1743 gimple stmt;
1744 tree saved_val;
1745 gimple_htab visited;
1747 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1749 stmt = gsi_stmt (i);
1751 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1752 continue;
1754 saved_val = gimple_call_lhs (stmt);
1755 if (saved_val == NULL_TREE)
1756 continue;
1758 insert_clobber_before_stack_restore (saved_val, var, &visited);
1759 break;
1762 if (visited.is_created ())
1763 visited.dispose ();
1766 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1767 fixed-size array and returns the address, if found, otherwise returns
1768 NULL_TREE. */
1770 static tree
1771 fold_builtin_alloca_with_align (gimple stmt)
1773 unsigned HOST_WIDE_INT size, threshold, n_elem;
1774 tree lhs, arg, block, var, elem_type, array_type;
1776 /* Get lhs. */
1777 lhs = gimple_call_lhs (stmt);
1778 if (lhs == NULL_TREE)
1779 return NULL_TREE;
1781 /* Detect constant argument. */
1782 arg = get_constant_value (gimple_call_arg (stmt, 0));
1783 if (arg == NULL_TREE
1784 || TREE_CODE (arg) != INTEGER_CST
1785 || !host_integerp (arg, 1))
1786 return NULL_TREE;
1788 size = TREE_INT_CST_LOW (arg);
1790 /* Heuristic: don't fold large allocas. */
1791 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1792 /* In case the alloca is located at function entry, it has the same lifetime
1793 as a declared array, so we allow a larger size. */
1794 block = gimple_block (stmt);
1795 if (!(cfun->after_inlining
1796 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1797 threshold /= 10;
1798 if (size > threshold)
1799 return NULL_TREE;
1801 /* Declare array. */
1802 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1803 n_elem = size * 8 / BITS_PER_UNIT;
1804 array_type = build_array_type_nelts (elem_type, n_elem);
1805 var = create_tmp_var (array_type, NULL);
1806 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1808 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1809 if (pi != NULL && !pi->pt.anything)
1811 bool singleton_p;
1812 unsigned uid;
1813 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1814 gcc_assert (singleton_p);
1815 SET_DECL_PT_UID (var, uid);
1819 /* Fold alloca to the address of the array. */
1820 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1823 /* Fold the stmt at *GSI with CCP specific information that propagating
1824 and regular folding does not catch. */
1826 static bool
1827 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1829 gimple stmt = gsi_stmt (*gsi);
1831 switch (gimple_code (stmt))
1833 case GIMPLE_COND:
1835 prop_value_t val;
1836 /* Statement evaluation will handle type mismatches in constants
1837 more gracefully than the final propagation. This allows us to
1838 fold more conditionals here. */
1839 val = evaluate_stmt (stmt);
1840 if (val.lattice_val != CONSTANT
1841 || !val.mask.is_zero ())
1842 return false;
1844 if (dump_file)
1846 fprintf (dump_file, "Folding predicate ");
1847 print_gimple_expr (dump_file, stmt, 0, 0);
1848 fprintf (dump_file, " to ");
1849 print_generic_expr (dump_file, val.value, 0);
1850 fprintf (dump_file, "\n");
1853 if (integer_zerop (val.value))
1854 gimple_cond_make_false (stmt);
1855 else
1856 gimple_cond_make_true (stmt);
1858 return true;
1861 case GIMPLE_CALL:
1863 tree lhs = gimple_call_lhs (stmt);
1864 int flags = gimple_call_flags (stmt);
1865 tree val;
1866 tree argt;
1867 bool changed = false;
1868 unsigned i;
1870 /* If the call was folded into a constant make sure it goes
1871 away even if we cannot propagate into all uses because of
1872 type issues. */
1873 if (lhs
1874 && TREE_CODE (lhs) == SSA_NAME
1875 && (val = get_constant_value (lhs))
1876 /* Don't optimize away calls that have side-effects. */
1877 && (flags & (ECF_CONST|ECF_PURE)) != 0
1878 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
1880 tree new_rhs = unshare_expr (val);
1881 bool res;
1882 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1883 TREE_TYPE (new_rhs)))
1884 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1885 res = update_call_from_tree (gsi, new_rhs);
1886 gcc_assert (res);
1887 return true;
1890 /* Internal calls provide no argument types, so the extra laxity
1891 for normal calls does not apply. */
1892 if (gimple_call_internal_p (stmt))
1893 return false;
1895 /* The heuristic of fold_builtin_alloca_with_align differs before and
1896 after inlining, so we don't require the arg to be changed into a
1897 constant for folding, but just to be constant. */
1898 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1900 tree new_rhs = fold_builtin_alloca_with_align (stmt);
1901 if (new_rhs)
1903 bool res = update_call_from_tree (gsi, new_rhs);
1904 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
1905 gcc_assert (res);
1906 insert_clobbers_for_var (*gsi, var);
1907 return true;
1911 /* Propagate into the call arguments. Compared to replace_uses_in
1912 this can use the argument slot types for type verification
1913 instead of the current argument type. We also can safely
1914 drop qualifiers here as we are dealing with constants anyway. */
1915 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
1916 for (i = 0; i < gimple_call_num_args (stmt) && argt;
1917 ++i, argt = TREE_CHAIN (argt))
1919 tree arg = gimple_call_arg (stmt, i);
1920 if (TREE_CODE (arg) == SSA_NAME
1921 && (val = get_constant_value (arg))
1922 && useless_type_conversion_p
1923 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
1924 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1926 gimple_call_set_arg (stmt, i, unshare_expr (val));
1927 changed = true;
1931 return changed;
1934 case GIMPLE_ASSIGN:
1936 tree lhs = gimple_assign_lhs (stmt);
1937 tree val;
1939 /* If we have a load that turned out to be constant replace it
1940 as we cannot propagate into all uses in all cases. */
1941 if (gimple_assign_single_p (stmt)
1942 && TREE_CODE (lhs) == SSA_NAME
1943 && (val = get_constant_value (lhs)))
1945 tree rhs = unshare_expr (val);
1946 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
1947 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
1948 gimple_assign_set_rhs_from_tree (gsi, rhs);
1949 return true;
1952 return false;
1955 default:
1956 return false;
1960 /* Visit the assignment statement STMT. Set the value of its LHS to the
1961 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1962 creates virtual definitions, set the value of each new name to that
1963 of the RHS (if we can derive a constant out of the RHS).
1964 Value-returning call statements also perform an assignment, and
1965 are handled here. */
1967 static enum ssa_prop_result
1968 visit_assignment (gimple stmt, tree *output_p)
1970 prop_value_t val;
1971 enum ssa_prop_result retval;
1973 tree lhs = gimple_get_lhs (stmt);
1975 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
1976 || gimple_call_lhs (stmt) != NULL_TREE);
1978 if (gimple_assign_single_p (stmt)
1979 && gimple_assign_rhs_code (stmt) == SSA_NAME)
1980 /* For a simple copy operation, we copy the lattice values. */
1981 val = *get_value (gimple_assign_rhs1 (stmt));
1982 else
1983 /* Evaluate the statement, which could be
1984 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1985 val = evaluate_stmt (stmt);
1987 retval = SSA_PROP_NOT_INTERESTING;
1989 /* Set the lattice value of the statement's output. */
1990 if (TREE_CODE (lhs) == SSA_NAME)
1992 /* If STMT is an assignment to an SSA_NAME, we only have one
1993 value to set. */
1994 if (set_lattice_value (lhs, val))
1996 *output_p = lhs;
1997 if (val.lattice_val == VARYING)
1998 retval = SSA_PROP_VARYING;
1999 else
2000 retval = SSA_PROP_INTERESTING;
2004 return retval;
2008 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2009 if it can determine which edge will be taken. Otherwise, return
2010 SSA_PROP_VARYING. */
2012 static enum ssa_prop_result
2013 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2015 prop_value_t val;
2016 basic_block block;
2018 block = gimple_bb (stmt);
2019 val = evaluate_stmt (stmt);
2020 if (val.lattice_val != CONSTANT
2021 || !val.mask.is_zero ())
2022 return SSA_PROP_VARYING;
2024 /* Find which edge out of the conditional block will be taken and add it
2025 to the worklist. If no single edge can be determined statically,
2026 return SSA_PROP_VARYING to feed all the outgoing edges to the
2027 propagation engine. */
2028 *taken_edge_p = find_taken_edge (block, val.value);
2029 if (*taken_edge_p)
2030 return SSA_PROP_INTERESTING;
2031 else
2032 return SSA_PROP_VARYING;
2036 /* Evaluate statement STMT. If the statement produces an output value and
2037 its evaluation changes the lattice value of its output, return
2038 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2039 output value.
2041 If STMT is a conditional branch and we can determine its truth
2042 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2043 value, return SSA_PROP_VARYING. */
2045 static enum ssa_prop_result
2046 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2048 tree def;
2049 ssa_op_iter iter;
2051 if (dump_file && (dump_flags & TDF_DETAILS))
2053 fprintf (dump_file, "\nVisiting statement:\n");
2054 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2057 switch (gimple_code (stmt))
2059 case GIMPLE_ASSIGN:
2060 /* If the statement is an assignment that produces a single
2061 output value, evaluate its RHS to see if the lattice value of
2062 its output has changed. */
2063 return visit_assignment (stmt, output_p);
2065 case GIMPLE_CALL:
2066 /* A value-returning call also performs an assignment. */
2067 if (gimple_call_lhs (stmt) != NULL_TREE)
2068 return visit_assignment (stmt, output_p);
2069 break;
2071 case GIMPLE_COND:
2072 case GIMPLE_SWITCH:
2073 /* If STMT is a conditional branch, see if we can determine
2074 which branch will be taken. */
2075 /* FIXME. It appears that we should be able to optimize
2076 computed GOTOs here as well. */
2077 return visit_cond_stmt (stmt, taken_edge_p);
2079 default:
2080 break;
2083 /* Any other kind of statement is not interesting for constant
2084 propagation and, therefore, not worth simulating. */
2085 if (dump_file && (dump_flags & TDF_DETAILS))
2086 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2088 /* Definitions made by statements other than assignments to
2089 SSA_NAMEs represent unknown modifications to their outputs.
2090 Mark them VARYING. */
2091 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2093 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2094 set_lattice_value (def, v);
2097 return SSA_PROP_VARYING;
2101 /* Main entry point for SSA Conditional Constant Propagation. */
2103 static unsigned int
2104 do_ssa_ccp (void)
2106 unsigned int todo = 0;
2107 calculate_dominance_info (CDI_DOMINATORS);
2108 ccp_initialize ();
2109 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2110 if (ccp_finalize ())
2111 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2112 free_dominance_info (CDI_DOMINATORS);
2113 return todo;
2117 static bool
2118 gate_ccp (void)
2120 return flag_tree_ccp != 0;
2124 namespace {
2126 const pass_data pass_data_ccp =
2128 GIMPLE_PASS, /* type */
2129 "ccp", /* name */
2130 OPTGROUP_NONE, /* optinfo_flags */
2131 true, /* has_gate */
2132 true, /* has_execute */
2133 TV_TREE_CCP, /* tv_id */
2134 ( PROP_cfg | PROP_ssa ), /* properties_required */
2135 0, /* properties_provided */
2136 0, /* properties_destroyed */
2137 0, /* todo_flags_start */
2138 ( TODO_verify_ssa | TODO_update_address_taken
2139 | TODO_verify_stmts ), /* todo_flags_finish */
2142 class pass_ccp : public gimple_opt_pass
2144 public:
2145 pass_ccp(gcc::context *ctxt)
2146 : gimple_opt_pass(pass_data_ccp, ctxt)
2149 /* opt_pass methods: */
2150 opt_pass * clone () { return new pass_ccp (ctxt_); }
2151 bool gate () { return gate_ccp (); }
2152 unsigned int execute () { return do_ssa_ccp (); }
2154 }; // class pass_ccp
2156 } // anon namespace
2158 gimple_opt_pass *
2159 make_pass_ccp (gcc::context *ctxt)
2161 return new pass_ccp (ctxt);
2166 /* Try to optimize out __builtin_stack_restore. Optimize it out
2167 if there is another __builtin_stack_restore in the same basic
2168 block and no calls or ASM_EXPRs are in between, or if this block's
2169 only outgoing edge is to EXIT_BLOCK and there are no calls or
2170 ASM_EXPRs after this __builtin_stack_restore. */
2172 static tree
2173 optimize_stack_restore (gimple_stmt_iterator i)
2175 tree callee;
2176 gimple stmt;
2178 basic_block bb = gsi_bb (i);
2179 gimple call = gsi_stmt (i);
2181 if (gimple_code (call) != GIMPLE_CALL
2182 || gimple_call_num_args (call) != 1
2183 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2184 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2185 return NULL_TREE;
2187 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2189 stmt = gsi_stmt (i);
2190 if (gimple_code (stmt) == GIMPLE_ASM)
2191 return NULL_TREE;
2192 if (gimple_code (stmt) != GIMPLE_CALL)
2193 continue;
2195 callee = gimple_call_fndecl (stmt);
2196 if (!callee
2197 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2198 /* All regular builtins are ok, just obviously not alloca. */
2199 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2200 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2201 return NULL_TREE;
2203 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2204 goto second_stack_restore;
2207 if (!gsi_end_p (i))
2208 return NULL_TREE;
2210 /* Allow one successor of the exit block, or zero successors. */
2211 switch (EDGE_COUNT (bb->succs))
2213 case 0:
2214 break;
2215 case 1:
2216 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2217 return NULL_TREE;
2218 break;
2219 default:
2220 return NULL_TREE;
2222 second_stack_restore:
2224 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2225 If there are multiple uses, then the last one should remove the call.
2226 In any case, whether the call to __builtin_stack_save can be removed
2227 or not is irrelevant to removing the call to __builtin_stack_restore. */
2228 if (has_single_use (gimple_call_arg (call, 0)))
2230 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2231 if (is_gimple_call (stack_save))
2233 callee = gimple_call_fndecl (stack_save);
2234 if (callee
2235 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2236 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2238 gimple_stmt_iterator stack_save_gsi;
2239 tree rhs;
2241 stack_save_gsi = gsi_for_stmt (stack_save);
2242 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2243 update_call_from_tree (&stack_save_gsi, rhs);
2248 /* No effect, so the statement will be deleted. */
2249 return integer_zero_node;
2252 /* If va_list type is a simple pointer and nothing special is needed,
2253 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2254 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2255 pointer assignment. */
2257 static tree
2258 optimize_stdarg_builtin (gimple call)
2260 tree callee, lhs, rhs, cfun_va_list;
2261 bool va_list_simple_ptr;
2262 location_t loc = gimple_location (call);
2264 if (gimple_code (call) != GIMPLE_CALL)
2265 return NULL_TREE;
2267 callee = gimple_call_fndecl (call);
2269 cfun_va_list = targetm.fn_abi_va_list (callee);
2270 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2271 && (TREE_TYPE (cfun_va_list) == void_type_node
2272 || TREE_TYPE (cfun_va_list) == char_type_node);
2274 switch (DECL_FUNCTION_CODE (callee))
2276 case BUILT_IN_VA_START:
2277 if (!va_list_simple_ptr
2278 || targetm.expand_builtin_va_start != NULL
2279 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2280 return NULL_TREE;
2282 if (gimple_call_num_args (call) != 2)
2283 return NULL_TREE;
2285 lhs = gimple_call_arg (call, 0);
2286 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2287 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2288 != TYPE_MAIN_VARIANT (cfun_va_list))
2289 return NULL_TREE;
2291 lhs = build_fold_indirect_ref_loc (loc, lhs);
2292 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2293 1, integer_zero_node);
2294 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2295 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2297 case BUILT_IN_VA_COPY:
2298 if (!va_list_simple_ptr)
2299 return NULL_TREE;
2301 if (gimple_call_num_args (call) != 2)
2302 return NULL_TREE;
2304 lhs = gimple_call_arg (call, 0);
2305 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2306 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2307 != TYPE_MAIN_VARIANT (cfun_va_list))
2308 return NULL_TREE;
2310 lhs = build_fold_indirect_ref_loc (loc, lhs);
2311 rhs = gimple_call_arg (call, 1);
2312 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2313 != TYPE_MAIN_VARIANT (cfun_va_list))
2314 return NULL_TREE;
2316 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2317 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2319 case BUILT_IN_VA_END:
2320 /* No effect, so the statement will be deleted. */
2321 return integer_zero_node;
2323 default:
2324 gcc_unreachable ();
2328 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2329 the incoming jumps. Return true if at least one jump was changed. */
2331 static bool
2332 optimize_unreachable (gimple_stmt_iterator i)
2334 basic_block bb = gsi_bb (i);
2335 gimple_stmt_iterator gsi;
2336 gimple stmt;
2337 edge_iterator ei;
2338 edge e;
2339 bool ret;
2341 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2343 stmt = gsi_stmt (gsi);
2345 if (is_gimple_debug (stmt))
2346 continue;
2348 if (gimple_code (stmt) == GIMPLE_LABEL)
2350 /* Verify we do not need to preserve the label. */
2351 if (FORCED_LABEL (gimple_label_label (stmt)))
2352 return false;
2354 continue;
2357 /* Only handle the case that __builtin_unreachable is the first statement
2358 in the block. We rely on DCE to remove stmts without side-effects
2359 before __builtin_unreachable. */
2360 if (gsi_stmt (gsi) != gsi_stmt (i))
2361 return false;
2364 ret = false;
2365 FOR_EACH_EDGE (e, ei, bb->preds)
2367 gsi = gsi_last_bb (e->src);
2368 if (gsi_end_p (gsi))
2369 continue;
2371 stmt = gsi_stmt (gsi);
2372 if (gimple_code (stmt) == GIMPLE_COND)
2374 if (e->flags & EDGE_TRUE_VALUE)
2375 gimple_cond_make_false (stmt);
2376 else if (e->flags & EDGE_FALSE_VALUE)
2377 gimple_cond_make_true (stmt);
2378 else
2379 gcc_unreachable ();
2380 update_stmt (stmt);
2382 else
2384 /* Todo: handle other cases, f.i. switch statement. */
2385 continue;
2388 ret = true;
2391 return ret;
2394 /* A simple pass that attempts to fold all builtin functions. This pass
2395 is run after we've propagated as many constants as we can. */
2397 static unsigned int
2398 execute_fold_all_builtins (void)
2400 bool cfg_changed = false;
2401 basic_block bb;
2402 unsigned int todoflags = 0;
2404 FOR_EACH_BB (bb)
2406 gimple_stmt_iterator i;
2407 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2409 gimple stmt, old_stmt;
2410 tree callee, result;
2411 enum built_in_function fcode;
2413 stmt = gsi_stmt (i);
2415 if (gimple_code (stmt) != GIMPLE_CALL)
2417 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2418 after the last GIMPLE DSE they aren't needed and might
2419 unnecessarily keep the SSA_NAMEs live. */
2420 if (gimple_clobber_p (stmt))
2422 tree lhs = gimple_assign_lhs (stmt);
2423 if (TREE_CODE (lhs) == MEM_REF
2424 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2426 unlink_stmt_vdef (stmt);
2427 gsi_remove (&i, true);
2428 release_defs (stmt);
2429 continue;
2432 gsi_next (&i);
2433 continue;
2435 callee = gimple_call_fndecl (stmt);
2436 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2438 gsi_next (&i);
2439 continue;
2441 fcode = DECL_FUNCTION_CODE (callee);
2443 result = gimple_fold_builtin (stmt);
2445 if (result)
2446 gimple_remove_stmt_histograms (cfun, stmt);
2448 if (!result)
2449 switch (DECL_FUNCTION_CODE (callee))
2451 case BUILT_IN_CONSTANT_P:
2452 /* Resolve __builtin_constant_p. If it hasn't been
2453 folded to integer_one_node by now, it's fairly
2454 certain that the value simply isn't constant. */
2455 result = integer_zero_node;
2456 break;
2458 case BUILT_IN_ASSUME_ALIGNED:
2459 /* Remove __builtin_assume_aligned. */
2460 result = gimple_call_arg (stmt, 0);
2461 break;
2463 case BUILT_IN_STACK_RESTORE:
2464 result = optimize_stack_restore (i);
2465 if (result)
2466 break;
2467 gsi_next (&i);
2468 continue;
2470 case BUILT_IN_UNREACHABLE:
2471 if (optimize_unreachable (i))
2472 cfg_changed = true;
2473 break;
2475 case BUILT_IN_VA_START:
2476 case BUILT_IN_VA_END:
2477 case BUILT_IN_VA_COPY:
2478 /* These shouldn't be folded before pass_stdarg. */
2479 result = optimize_stdarg_builtin (stmt);
2480 if (result)
2481 break;
2482 /* FALLTHRU */
2484 default:
2485 gsi_next (&i);
2486 continue;
2489 if (result == NULL_TREE)
2490 break;
2492 if (dump_file && (dump_flags & TDF_DETAILS))
2494 fprintf (dump_file, "Simplified\n ");
2495 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2498 old_stmt = stmt;
2499 if (!update_call_from_tree (&i, result))
2501 gimplify_and_update_call_from_tree (&i, result);
2502 todoflags |= TODO_update_address_taken;
2505 stmt = gsi_stmt (i);
2506 update_stmt (stmt);
2508 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2509 && gimple_purge_dead_eh_edges (bb))
2510 cfg_changed = true;
2512 if (dump_file && (dump_flags & TDF_DETAILS))
2514 fprintf (dump_file, "to\n ");
2515 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2516 fprintf (dump_file, "\n");
2519 /* Retry the same statement if it changed into another
2520 builtin, there might be new opportunities now. */
2521 if (gimple_code (stmt) != GIMPLE_CALL)
2523 gsi_next (&i);
2524 continue;
2526 callee = gimple_call_fndecl (stmt);
2527 if (!callee
2528 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2529 || DECL_FUNCTION_CODE (callee) == fcode)
2530 gsi_next (&i);
2534 /* Delete unreachable blocks. */
2535 if (cfg_changed)
2536 todoflags |= TODO_cleanup_cfg;
2538 return todoflags;
2542 namespace {
2544 const pass_data pass_data_fold_builtins =
2546 GIMPLE_PASS, /* type */
2547 "fab", /* name */
2548 OPTGROUP_NONE, /* optinfo_flags */
2549 false, /* has_gate */
2550 true, /* has_execute */
2551 TV_NONE, /* tv_id */
2552 ( PROP_cfg | PROP_ssa ), /* properties_required */
2553 0, /* properties_provided */
2554 0, /* properties_destroyed */
2555 0, /* todo_flags_start */
2556 ( TODO_verify_ssa | TODO_update_ssa ), /* todo_flags_finish */
2559 class pass_fold_builtins : public gimple_opt_pass
2561 public:
2562 pass_fold_builtins(gcc::context *ctxt)
2563 : gimple_opt_pass(pass_data_fold_builtins, ctxt)
2566 /* opt_pass methods: */
2567 opt_pass * clone () { return new pass_fold_builtins (ctxt_); }
2568 unsigned int execute () { return execute_fold_all_builtins (); }
2570 }; // class pass_fold_builtins
2572 } // anon namespace
2574 gimple_opt_pass *
2575 make_pass_fold_builtins (gcc::context *ctxt)
2577 return new pass_fold_builtins (ctxt);