Remove unused variable and field
[official-gcc.git] / gcc / tree-affine.c
blob46a183a07b4ddd10e0bb1bb3b1807e37ac0b6fcc
1 /* Operations with affine combinations of trees.
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tree.h"
24 #include "tree-pretty-print.h"
25 #include "pointer-set.h"
26 #include "tree-affine.h"
27 #include "gimple.h"
28 #include "flags.h"
29 #include "dumpfile.h"
31 /* Extends CST as appropriate for the affine combinations COMB. */
33 double_int
34 double_int_ext_for_comb (double_int cst, aff_tree *comb)
36 return cst.sext (TYPE_PRECISION (comb->type));
39 /* Initializes affine combination COMB so that its value is zero in TYPE. */
41 static void
42 aff_combination_zero (aff_tree *comb, tree type)
44 comb->type = type;
45 comb->offset = double_int_zero;
46 comb->n = 0;
47 comb->rest = NULL_TREE;
50 /* Sets COMB to CST. */
52 void
53 aff_combination_const (aff_tree *comb, tree type, double_int cst)
55 aff_combination_zero (comb, type);
56 comb->offset = double_int_ext_for_comb (cst, comb);
59 /* Sets COMB to single element ELT. */
61 void
62 aff_combination_elt (aff_tree *comb, tree type, tree elt)
64 aff_combination_zero (comb, type);
66 comb->n = 1;
67 comb->elts[0].val = elt;
68 comb->elts[0].coef = double_int_one;
71 /* Scales COMB by SCALE. */
73 void
74 aff_combination_scale (aff_tree *comb, double_int scale)
76 unsigned i, j;
78 scale = double_int_ext_for_comb (scale, comb);
79 if (scale.is_one ())
80 return;
82 if (scale.is_zero ())
84 aff_combination_zero (comb, comb->type);
85 return;
88 comb->offset
89 = double_int_ext_for_comb (scale * comb->offset, comb);
90 for (i = 0, j = 0; i < comb->n; i++)
92 double_int new_coef;
94 new_coef
95 = double_int_ext_for_comb (scale * comb->elts[i].coef, comb);
96 /* A coefficient may become zero due to overflow. Remove the zero
97 elements. */
98 if (new_coef.is_zero ())
99 continue;
100 comb->elts[j].coef = new_coef;
101 comb->elts[j].val = comb->elts[i].val;
102 j++;
104 comb->n = j;
106 if (comb->rest)
108 tree type = comb->type;
109 if (POINTER_TYPE_P (type))
110 type = sizetype;
111 if (comb->n < MAX_AFF_ELTS)
113 comb->elts[comb->n].coef = scale;
114 comb->elts[comb->n].val = comb->rest;
115 comb->rest = NULL_TREE;
116 comb->n++;
118 else
119 comb->rest = fold_build2 (MULT_EXPR, type, comb->rest,
120 double_int_to_tree (type, scale));
124 /* Adds ELT * SCALE to COMB. */
126 void
127 aff_combination_add_elt (aff_tree *comb, tree elt, double_int scale)
129 unsigned i;
130 tree type;
132 scale = double_int_ext_for_comb (scale, comb);
133 if (scale.is_zero ())
134 return;
136 for (i = 0; i < comb->n; i++)
137 if (operand_equal_p (comb->elts[i].val, elt, 0))
139 double_int new_coef;
141 new_coef = comb->elts[i].coef + scale;
142 new_coef = double_int_ext_for_comb (new_coef, comb);
143 if (!new_coef.is_zero ())
145 comb->elts[i].coef = new_coef;
146 return;
149 comb->n--;
150 comb->elts[i] = comb->elts[comb->n];
152 if (comb->rest)
154 gcc_assert (comb->n == MAX_AFF_ELTS - 1);
155 comb->elts[comb->n].coef = double_int_one;
156 comb->elts[comb->n].val = comb->rest;
157 comb->rest = NULL_TREE;
158 comb->n++;
160 return;
162 if (comb->n < MAX_AFF_ELTS)
164 comb->elts[comb->n].coef = scale;
165 comb->elts[comb->n].val = elt;
166 comb->n++;
167 return;
170 type = comb->type;
171 if (POINTER_TYPE_P (type))
172 type = sizetype;
174 if (scale.is_one ())
175 elt = fold_convert (type, elt);
176 else
177 elt = fold_build2 (MULT_EXPR, type,
178 fold_convert (type, elt),
179 double_int_to_tree (type, scale));
181 if (comb->rest)
182 comb->rest = fold_build2 (PLUS_EXPR, type, comb->rest,
183 elt);
184 else
185 comb->rest = elt;
188 /* Adds CST to C. */
190 static void
191 aff_combination_add_cst (aff_tree *c, double_int cst)
193 c->offset = double_int_ext_for_comb (c->offset + cst, c);
196 /* Adds COMB2 to COMB1. */
198 void
199 aff_combination_add (aff_tree *comb1, aff_tree *comb2)
201 unsigned i;
203 aff_combination_add_cst (comb1, comb2->offset);
204 for (i = 0; i < comb2->n; i++)
205 aff_combination_add_elt (comb1, comb2->elts[i].val, comb2->elts[i].coef);
206 if (comb2->rest)
207 aff_combination_add_elt (comb1, comb2->rest, double_int_one);
210 /* Converts affine combination COMB to TYPE. */
212 void
213 aff_combination_convert (aff_tree *comb, tree type)
215 unsigned i, j;
216 tree comb_type = comb->type;
218 if (TYPE_PRECISION (type) > TYPE_PRECISION (comb_type))
220 tree val = fold_convert (type, aff_combination_to_tree (comb));
221 tree_to_aff_combination (val, type, comb);
222 return;
225 comb->type = type;
226 if (comb->rest && !POINTER_TYPE_P (type))
227 comb->rest = fold_convert (type, comb->rest);
229 if (TYPE_PRECISION (type) == TYPE_PRECISION (comb_type))
230 return;
232 comb->offset = double_int_ext_for_comb (comb->offset, comb);
233 for (i = j = 0; i < comb->n; i++)
235 double_int new_coef = double_int_ext_for_comb (comb->elts[i].coef, comb);
236 if (new_coef.is_zero ())
237 continue;
238 comb->elts[j].coef = new_coef;
239 comb->elts[j].val = fold_convert (type, comb->elts[i].val);
240 j++;
243 comb->n = j;
244 if (comb->n < MAX_AFF_ELTS && comb->rest)
246 comb->elts[comb->n].coef = double_int_one;
247 comb->elts[comb->n].val = comb->rest;
248 comb->rest = NULL_TREE;
249 comb->n++;
253 /* Splits EXPR into an affine combination of parts. */
255 void
256 tree_to_aff_combination (tree expr, tree type, aff_tree *comb)
258 aff_tree tmp;
259 enum tree_code code;
260 tree cst, core, toffset;
261 HOST_WIDE_INT bitpos, bitsize;
262 enum machine_mode mode;
263 int unsignedp, volatilep;
265 STRIP_NOPS (expr);
267 code = TREE_CODE (expr);
268 switch (code)
270 case INTEGER_CST:
271 aff_combination_const (comb, type, tree_to_double_int (expr));
272 return;
274 case POINTER_PLUS_EXPR:
275 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
276 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
277 aff_combination_add (comb, &tmp);
278 return;
280 case PLUS_EXPR:
281 case MINUS_EXPR:
282 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
283 tree_to_aff_combination (TREE_OPERAND (expr, 1), type, &tmp);
284 if (code == MINUS_EXPR)
285 aff_combination_scale (&tmp, double_int_minus_one);
286 aff_combination_add (comb, &tmp);
287 return;
289 case MULT_EXPR:
290 cst = TREE_OPERAND (expr, 1);
291 if (TREE_CODE (cst) != INTEGER_CST)
292 break;
293 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
294 aff_combination_scale (comb, tree_to_double_int (cst));
295 return;
297 case NEGATE_EXPR:
298 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
299 aff_combination_scale (comb, double_int_minus_one);
300 return;
302 case BIT_NOT_EXPR:
303 /* ~x = -x - 1 */
304 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
305 aff_combination_scale (comb, double_int_minus_one);
306 aff_combination_add_cst (comb, double_int_minus_one);
307 return;
309 case ADDR_EXPR:
310 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
311 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
313 expr = TREE_OPERAND (expr, 0);
314 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
315 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
316 aff_combination_add (comb, &tmp);
317 return;
319 core = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, &bitpos,
320 &toffset, &mode, &unsignedp, &volatilep,
321 false);
322 if (bitpos % BITS_PER_UNIT != 0)
323 break;
324 aff_combination_const (comb, type,
325 double_int::from_uhwi (bitpos / BITS_PER_UNIT));
326 core = build_fold_addr_expr (core);
327 if (TREE_CODE (core) == ADDR_EXPR)
328 aff_combination_add_elt (comb, core, double_int_one);
329 else
331 tree_to_aff_combination (core, type, &tmp);
332 aff_combination_add (comb, &tmp);
334 if (toffset)
336 tree_to_aff_combination (toffset, type, &tmp);
337 aff_combination_add (comb, &tmp);
339 return;
341 case MEM_REF:
342 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
343 tree_to_aff_combination (TREE_OPERAND (TREE_OPERAND (expr, 0), 0),
344 type, comb);
345 else if (integer_zerop (TREE_OPERAND (expr, 1)))
347 aff_combination_elt (comb, type, expr);
348 return;
350 else
351 aff_combination_elt (comb, type,
352 build2 (MEM_REF, TREE_TYPE (expr),
353 TREE_OPERAND (expr, 0),
354 build_int_cst
355 (TREE_TYPE (TREE_OPERAND (expr, 1)), 0)));
356 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
357 aff_combination_add (comb, &tmp);
358 return;
360 default:
361 break;
364 aff_combination_elt (comb, type, expr);
367 /* Creates EXPR + ELT * SCALE in TYPE. EXPR is taken from affine
368 combination COMB. */
370 static tree
371 add_elt_to_tree (tree expr, tree type, tree elt, double_int scale,
372 aff_tree *comb)
374 enum tree_code code;
375 tree type1 = type;
376 if (POINTER_TYPE_P (type))
377 type1 = sizetype;
379 scale = double_int_ext_for_comb (scale, comb);
380 elt = fold_convert (type1, elt);
382 if (scale.is_one ())
384 if (!expr)
385 return fold_convert (type, elt);
387 if (POINTER_TYPE_P (type))
388 return fold_build_pointer_plus (expr, elt);
389 return fold_build2 (PLUS_EXPR, type, expr, elt);
392 if (scale.is_minus_one ())
394 if (!expr)
395 return fold_convert (type, fold_build1 (NEGATE_EXPR, type1, elt));
397 if (POINTER_TYPE_P (type))
399 elt = fold_build1 (NEGATE_EXPR, type1, elt);
400 return fold_build_pointer_plus (expr, elt);
402 return fold_build2 (MINUS_EXPR, type, expr, elt);
405 if (!expr)
406 return fold_convert (type,
407 fold_build2 (MULT_EXPR, type1, elt,
408 double_int_to_tree (type1, scale)));
410 if (scale.is_negative ())
412 code = MINUS_EXPR;
413 scale = -scale;
415 else
416 code = PLUS_EXPR;
418 elt = fold_build2 (MULT_EXPR, type1, elt,
419 double_int_to_tree (type1, scale));
420 if (POINTER_TYPE_P (type))
422 if (code == MINUS_EXPR)
423 elt = fold_build1 (NEGATE_EXPR, type1, elt);
424 return fold_build_pointer_plus (expr, elt);
426 return fold_build2 (code, type, expr, elt);
429 /* Makes tree from the affine combination COMB. */
431 tree
432 aff_combination_to_tree (aff_tree *comb)
434 tree type = comb->type;
435 tree expr = NULL_TREE;
436 unsigned i;
437 double_int off, sgn;
438 tree type1 = type;
439 if (POINTER_TYPE_P (type))
440 type1 = sizetype;
442 gcc_assert (comb->n == MAX_AFF_ELTS || comb->rest == NULL_TREE);
444 for (i = 0; i < comb->n; i++)
445 expr = add_elt_to_tree (expr, type, comb->elts[i].val, comb->elts[i].coef,
446 comb);
448 if (comb->rest)
449 expr = add_elt_to_tree (expr, type, comb->rest, double_int_one, comb);
451 /* Ensure that we get x - 1, not x + (-1) or x + 0xff..f if x is
452 unsigned. */
453 if (comb->offset.is_negative ())
455 off = -comb->offset;
456 sgn = double_int_minus_one;
458 else
460 off = comb->offset;
461 sgn = double_int_one;
463 return add_elt_to_tree (expr, type, double_int_to_tree (type1, off), sgn,
464 comb);
467 /* Copies the tree elements of COMB to ensure that they are not shared. */
469 void
470 unshare_aff_combination (aff_tree *comb)
472 unsigned i;
474 for (i = 0; i < comb->n; i++)
475 comb->elts[i].val = unshare_expr (comb->elts[i].val);
476 if (comb->rest)
477 comb->rest = unshare_expr (comb->rest);
480 /* Remove M-th element from COMB. */
482 void
483 aff_combination_remove_elt (aff_tree *comb, unsigned m)
485 comb->n--;
486 if (m <= comb->n)
487 comb->elts[m] = comb->elts[comb->n];
488 if (comb->rest)
490 comb->elts[comb->n].coef = double_int_one;
491 comb->elts[comb->n].val = comb->rest;
492 comb->rest = NULL_TREE;
493 comb->n++;
497 /* Adds C * COEF * VAL to R. VAL may be NULL, in that case only
498 C * COEF is added to R. */
501 static void
502 aff_combination_add_product (aff_tree *c, double_int coef, tree val,
503 aff_tree *r)
505 unsigned i;
506 tree aval, type;
508 for (i = 0; i < c->n; i++)
510 aval = c->elts[i].val;
511 if (val)
513 type = TREE_TYPE (aval);
514 aval = fold_build2 (MULT_EXPR, type, aval,
515 fold_convert (type, val));
518 aff_combination_add_elt (r, aval, coef * c->elts[i].coef);
521 if (c->rest)
523 aval = c->rest;
524 if (val)
526 type = TREE_TYPE (aval);
527 aval = fold_build2 (MULT_EXPR, type, aval,
528 fold_convert (type, val));
531 aff_combination_add_elt (r, aval, coef);
534 if (val)
535 aff_combination_add_elt (r, val, coef * c->offset);
536 else
537 aff_combination_add_cst (r, coef * c->offset);
540 /* Multiplies C1 by C2, storing the result to R */
542 void
543 aff_combination_mult (aff_tree *c1, aff_tree *c2, aff_tree *r)
545 unsigned i;
546 gcc_assert (TYPE_PRECISION (c1->type) == TYPE_PRECISION (c2->type));
548 aff_combination_zero (r, c1->type);
550 for (i = 0; i < c2->n; i++)
551 aff_combination_add_product (c1, c2->elts[i].coef, c2->elts[i].val, r);
552 if (c2->rest)
553 aff_combination_add_product (c1, double_int_one, c2->rest, r);
554 aff_combination_add_product (c1, c2->offset, NULL, r);
557 /* Returns the element of COMB whose value is VAL, or NULL if no such
558 element exists. If IDX is not NULL, it is set to the index of VAL in
559 COMB. */
561 static struct aff_comb_elt *
562 aff_combination_find_elt (aff_tree *comb, tree val, unsigned *idx)
564 unsigned i;
566 for (i = 0; i < comb->n; i++)
567 if (operand_equal_p (comb->elts[i].val, val, 0))
569 if (idx)
570 *idx = i;
572 return &comb->elts[i];
575 return NULL;
578 /* Element of the cache that maps ssa name NAME to its expanded form
579 as an affine expression EXPANSION. */
581 struct name_expansion
583 aff_tree expansion;
585 /* True if the expansion for the name is just being generated. */
586 unsigned in_progress : 1;
589 /* Expands SSA names in COMB recursively. CACHE is used to cache the
590 results. */
592 void
593 aff_combination_expand (aff_tree *comb ATTRIBUTE_UNUSED,
594 struct pointer_map_t **cache ATTRIBUTE_UNUSED)
596 unsigned i;
597 aff_tree to_add, current, curre;
598 tree e, rhs;
599 gimple def;
600 double_int scale;
601 void **slot;
602 struct name_expansion *exp;
604 aff_combination_zero (&to_add, comb->type);
605 for (i = 0; i < comb->n; i++)
607 tree type, name;
608 enum tree_code code;
610 e = comb->elts[i].val;
611 type = TREE_TYPE (e);
612 name = e;
613 /* Look through some conversions. */
614 if (TREE_CODE (e) == NOP_EXPR
615 && (TYPE_PRECISION (type)
616 >= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (e, 0)))))
617 name = TREE_OPERAND (e, 0);
618 if (TREE_CODE (name) != SSA_NAME)
619 continue;
620 def = SSA_NAME_DEF_STMT (name);
621 if (!is_gimple_assign (def) || gimple_assign_lhs (def) != name)
622 continue;
624 code = gimple_assign_rhs_code (def);
625 if (code != SSA_NAME
626 && !IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
627 && (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
628 || !is_gimple_min_invariant (gimple_assign_rhs1 (def))))
629 continue;
631 /* We do not know whether the reference retains its value at the
632 place where the expansion is used. */
633 if (TREE_CODE_CLASS (code) == tcc_reference)
634 continue;
636 if (!*cache)
637 *cache = pointer_map_create ();
638 slot = pointer_map_insert (*cache, e);
639 exp = (struct name_expansion *) *slot;
641 if (!exp)
643 exp = XNEW (struct name_expansion);
644 exp->in_progress = 1;
645 *slot = exp;
646 /* In principle this is a generally valid folding, but
647 it is not unconditionally an optimization, so do it
648 here and not in fold_unary. */
649 /* Convert (T1)(X *+- CST) into (T1)X *+- (T1)CST if T1 is wider
650 than the type of X and overflow for the type of X is
651 undefined. */
652 if (e != name
653 && INTEGRAL_TYPE_P (type)
654 && INTEGRAL_TYPE_P (TREE_TYPE (name))
655 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (name))
656 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (name))
657 && (code == PLUS_EXPR || code == MINUS_EXPR || code == MULT_EXPR)
658 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
659 rhs = fold_build2 (code, type,
660 fold_convert (type, gimple_assign_rhs1 (def)),
661 fold_convert (type, gimple_assign_rhs2 (def)));
662 else
664 rhs = gimple_assign_rhs_to_tree (def);
665 if (e != name)
666 rhs = fold_convert (type, rhs);
668 tree_to_aff_combination_expand (rhs, comb->type, &current, cache);
669 exp->expansion = current;
670 exp->in_progress = 0;
672 else
674 /* Since we follow the definitions in the SSA form, we should not
675 enter a cycle unless we pass through a phi node. */
676 gcc_assert (!exp->in_progress);
677 current = exp->expansion;
680 /* Accumulate the new terms to TO_ADD, so that we do not modify
681 COMB while traversing it; include the term -coef * E, to remove
682 it from COMB. */
683 scale = comb->elts[i].coef;
684 aff_combination_zero (&curre, comb->type);
685 aff_combination_add_elt (&curre, e, -scale);
686 aff_combination_scale (&current, scale);
687 aff_combination_add (&to_add, &current);
688 aff_combination_add (&to_add, &curre);
690 aff_combination_add (comb, &to_add);
693 /* Similar to tree_to_aff_combination, but follows SSA name definitions
694 and expands them recursively. CACHE is used to cache the expansions
695 of the ssa names, to avoid exponential time complexity for cases
696 like
698 a1 = a0 + a0;
699 a2 = a1 + a1;
700 a3 = a2 + a2;
701 ... */
703 void
704 tree_to_aff_combination_expand (tree expr, tree type, aff_tree *comb,
705 struct pointer_map_t **cache)
707 tree_to_aff_combination (expr, type, comb);
708 aff_combination_expand (comb, cache);
711 /* Frees memory occupied by struct name_expansion in *VALUE. Callback for
712 pointer_map_traverse. */
714 static bool
715 free_name_expansion (const void *key ATTRIBUTE_UNUSED, void **value,
716 void *data ATTRIBUTE_UNUSED)
718 struct name_expansion *const exp = (struct name_expansion *) *value;
720 free (exp);
721 return true;
724 /* Frees memory allocated for the CACHE used by
725 tree_to_aff_combination_expand. */
727 void
728 free_affine_expand_cache (struct pointer_map_t **cache)
730 if (!*cache)
731 return;
733 pointer_map_traverse (*cache, free_name_expansion, NULL);
734 pointer_map_destroy (*cache);
735 *cache = NULL;
738 /* If VAL != CST * DIV for any constant CST, returns false.
739 Otherwise, if *MULT_SET is true, additionally compares CST and MULT,
740 and if they are different, returns false. Finally, if neither of these
741 two cases occur, true is returned, and CST is stored to MULT and MULT_SET
742 is set to true. */
744 static bool
745 double_int_constant_multiple_p (double_int val, double_int div,
746 bool *mult_set, double_int *mult)
748 double_int rem, cst;
750 if (val.is_zero ())
752 if (*mult_set && !mult->is_zero ())
753 return false;
754 *mult_set = true;
755 *mult = double_int_zero;
756 return true;
759 if (div.is_zero ())
760 return false;
762 cst = val.sdivmod (div, FLOOR_DIV_EXPR, &rem);
763 if (!rem.is_zero ())
764 return false;
766 if (*mult_set && *mult != cst)
767 return false;
769 *mult_set = true;
770 *mult = cst;
771 return true;
774 /* Returns true if VAL = X * DIV for some constant X. If this is the case,
775 X is stored to MULT. */
777 bool
778 aff_combination_constant_multiple_p (aff_tree *val, aff_tree *div,
779 double_int *mult)
781 bool mult_set = false;
782 unsigned i;
784 if (val->n == 0 && val->offset.is_zero ())
786 *mult = double_int_zero;
787 return true;
789 if (val->n != div->n)
790 return false;
792 if (val->rest || div->rest)
793 return false;
795 if (!double_int_constant_multiple_p (val->offset, div->offset,
796 &mult_set, mult))
797 return false;
799 for (i = 0; i < div->n; i++)
801 struct aff_comb_elt *elt
802 = aff_combination_find_elt (val, div->elts[i].val, NULL);
803 if (!elt)
804 return false;
805 if (!double_int_constant_multiple_p (elt->coef, div->elts[i].coef,
806 &mult_set, mult))
807 return false;
810 gcc_assert (mult_set);
811 return true;
814 /* Prints the affine VAL to the FILE. */
816 static void
817 print_aff (FILE *file, aff_tree *val)
819 unsigned i;
820 bool uns = TYPE_UNSIGNED (val->type);
821 if (POINTER_TYPE_P (val->type))
822 uns = false;
823 fprintf (file, "{\n type = ");
824 print_generic_expr (file, val->type, TDF_VOPS|TDF_MEMSYMS);
825 fprintf (file, "\n offset = ");
826 dump_double_int (file, val->offset, uns);
827 if (val->n > 0)
829 fprintf (file, "\n elements = {\n");
830 for (i = 0; i < val->n; i++)
832 fprintf (file, " [%d] = ", i);
833 print_generic_expr (file, val->elts[i].val, TDF_VOPS|TDF_MEMSYMS);
835 fprintf (file, " * ");
836 dump_double_int (file, val->elts[i].coef, uns);
837 if (i != val->n - 1)
838 fprintf (file, ", \n");
840 fprintf (file, "\n }");
842 if (val->rest)
844 fprintf (file, "\n rest = ");
845 print_generic_expr (file, val->rest, TDF_VOPS|TDF_MEMSYMS);
847 fprintf (file, "\n}");
850 /* Prints the affine VAL to the standard error, used for debugging. */
852 DEBUG_FUNCTION void
853 debug_aff (aff_tree *val)
855 print_aff (stderr, val);
856 fprintf (stderr, "\n");
859 /* Returns address of the reference REF in ADDR. The size of the accessed
860 location is stored to SIZE. */
862 void
863 get_inner_reference_aff (tree ref, aff_tree *addr, double_int *size)
865 HOST_WIDE_INT bitsize, bitpos;
866 tree toff;
867 enum machine_mode mode;
868 int uns, vol;
869 aff_tree tmp;
870 tree base = get_inner_reference (ref, &bitsize, &bitpos, &toff, &mode,
871 &uns, &vol, false);
872 tree base_addr = build_fold_addr_expr (base);
874 /* ADDR = &BASE + TOFF + BITPOS / BITS_PER_UNIT. */
876 tree_to_aff_combination (base_addr, sizetype, addr);
878 if (toff)
880 tree_to_aff_combination (toff, sizetype, &tmp);
881 aff_combination_add (addr, &tmp);
884 aff_combination_const (&tmp, sizetype,
885 double_int::from_shwi (bitpos / BITS_PER_UNIT));
886 aff_combination_add (addr, &tmp);
888 *size = double_int::from_shwi ((bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT);
891 /* Returns true if a region of size SIZE1 at position 0 and a region of
892 size SIZE2 at position DIFF cannot overlap. */
894 bool
895 aff_comb_cannot_overlap_p (aff_tree *diff, double_int size1, double_int size2)
897 double_int d, bound;
899 /* Unless the difference is a constant, we fail. */
900 if (diff->n != 0)
901 return false;
903 d = diff->offset;
904 if (d.is_negative ())
906 /* The second object is before the first one, we succeed if the last
907 element of the second object is before the start of the first one. */
908 bound = d + size2 + double_int_minus_one;
909 return bound.is_negative ();
911 else
913 /* We succeed if the second object starts after the first one ends. */
914 return size1.sle (d);