Fix for PR39557
[official-gcc.git] / gcc / ddg.c
blobadecb707749840180520770adf67fb31fe4c3206
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "function.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "recog.h"
38 #include "sched-int.h"
39 #include "target.h"
40 #include "cfglayout.h"
41 #include "cfgloop.h"
42 #include "sbitmap.h"
43 #include "expr.h"
44 #include "bitmap.h"
45 #include "ddg.h"
47 #ifdef INSN_SCHEDULING
49 /* A flag indicating that a ddg edge belongs to an SCC or not. */
50 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
52 /* Forward declarations. */
53 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
54 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
55 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
56 static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
57 ddg_node_ptr, dep_t);
58 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
59 dep_type, dep_data_type, int);
60 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
61 dep_data_type, int, int);
62 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
64 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
65 static bool mem_ref_p;
67 /* Auxiliary function for mem_read_insn_p. */
68 static int
69 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
71 if (MEM_P (*x))
72 mem_ref_p = true;
73 return 0;
76 /* Auxiliary function for mem_read_insn_p. */
77 static void
78 mark_mem_use_1 (rtx *x, void *data)
80 for_each_rtx (x, mark_mem_use, data);
83 /* Returns nonzero if INSN reads from memory. */
84 static bool
85 mem_read_insn_p (rtx insn)
87 mem_ref_p = false;
88 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
89 return mem_ref_p;
92 static void
93 mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
95 if (MEM_P (loc))
96 mem_ref_p = true;
99 /* Returns nonzero if INSN writes to memory. */
100 static bool
101 mem_write_insn_p (rtx insn)
103 mem_ref_p = false;
104 note_stores (PATTERN (insn), mark_mem_store, NULL);
105 return mem_ref_p;
108 /* Returns nonzero if X has access to memory. */
109 static bool
110 rtx_mem_access_p (rtx x)
112 int i, j;
113 const char *fmt;
114 enum rtx_code code;
116 if (x == 0)
117 return false;
119 if (MEM_P (x))
120 return true;
122 code = GET_CODE (x);
123 fmt = GET_RTX_FORMAT (code);
124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
126 if (fmt[i] == 'e')
128 if (rtx_mem_access_p (XEXP (x, i)))
129 return true;
131 else if (fmt[i] == 'E')
132 for (j = 0; j < XVECLEN (x, i); j++)
134 if (rtx_mem_access_p (XVECEXP (x, i, j)))
135 return true;
138 return false;
141 /* Returns nonzero if INSN reads to or writes from memory. */
142 static bool
143 mem_access_insn_p (rtx insn)
145 return rtx_mem_access_p (PATTERN (insn));
148 /* Computes the dependence parameters (latency, distance etc.), creates
149 a ddg_edge and adds it to the given DDG. */
150 static void
151 create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
152 ddg_node_ptr dest_node, dep_t link)
154 ddg_edge_ptr e;
155 int latency, distance = 0;
156 dep_type t = TRUE_DEP;
157 dep_data_type dt = (mem_access_insn_p (src_node->insn)
158 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
159 : REG_DEP);
160 gcc_assert (src_node->cuid < dest_node->cuid);
161 gcc_assert (link);
163 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
164 if (DEP_TYPE (link) == REG_DEP_ANTI)
165 t = ANTI_DEP;
166 else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
167 t = OUTPUT_DEP;
169 /* We currently choose not to create certain anti-deps edges and
170 compensate for that by generating reg-moves based on the life-range
171 analysis. The anti-deps that will be deleted are the ones which
172 have true-deps edges in the opposite direction (in other words
173 the kernel has only one def of the relevant register). TODO:
174 support the removal of all anti-deps edges, i.e. including those
175 whose register has multiple defs in the loop. */
176 if (flag_modulo_sched_allow_regmoves && (t == ANTI_DEP && dt == REG_DEP))
178 rtx set;
180 set = single_set (dest_node->insn);
181 /* TODO: Handle registers that REG_P is not true for them, i.e.
182 subregs and special registers. */
183 if (set && REG_P (SET_DEST (set)))
185 int regno = REGNO (SET_DEST (set));
186 df_ref first_def;
187 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
189 first_def = df_bb_regno_first_def_find (g->bb, regno);
190 gcc_assert (first_def);
192 if (bitmap_bit_p (bb_info->gen, DF_REF_ID (first_def)))
193 return;
197 latency = dep_cost (link);
198 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
199 add_edge_to_ddg (g, e);
202 /* The same as the above function, but it doesn't require a link parameter. */
203 static void
204 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
205 dep_type d_t, dep_data_type d_dt, int distance)
207 ddg_edge_ptr e;
208 int l;
209 enum reg_note dep_kind;
210 struct _dep _dep, *dep = &_dep;
212 if (d_t == ANTI_DEP)
213 dep_kind = REG_DEP_ANTI;
214 else if (d_t == OUTPUT_DEP)
215 dep_kind = REG_DEP_OUTPUT;
216 else
218 gcc_assert (d_t == TRUE_DEP);
220 dep_kind = REG_DEP_TRUE;
223 init_dep (dep, from->insn, to->insn, dep_kind);
225 l = dep_cost (dep);
227 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
228 if (distance > 0)
229 add_backarc_to_ddg (g, e);
230 else
231 add_edge_to_ddg (g, e);
235 /* Given a downwards exposed register def LAST_DEF (which is the last
236 definition of that register in the bb), add inter-loop true dependences
237 to all its uses in the next iteration, an output dependence to the
238 first def of the same register (possibly itself) in the next iteration
239 and anti-dependences from its uses in the current iteration to the
240 first definition in the next iteration. */
241 static void
242 add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def)
244 int regno = DF_REF_REGNO (last_def);
245 struct df_link *r_use;
246 int has_use_in_bb_p = false;
247 rtx def_insn = DF_REF_INSN (last_def);
248 ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
249 ddg_node_ptr use_node;
250 #ifdef ENABLE_CHECKING
251 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
252 #endif
253 df_ref first_def = df_bb_regno_first_def_find (g->bb, regno);
255 gcc_assert (last_def_node);
256 gcc_assert (first_def);
258 #ifdef ENABLE_CHECKING
259 if (DF_REF_ID (last_def) != DF_REF_ID (first_def))
260 gcc_assert (!bitmap_bit_p (bb_info->gen, DF_REF_ID (first_def)));
261 #endif
263 /* Create inter-loop true dependences and anti dependences. */
264 for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
266 rtx use_insn = DF_REF_INSN (r_use->ref);
268 if (BLOCK_FOR_INSN (use_insn) != g->bb)
269 continue;
271 /* ??? Do not handle uses with DF_REF_IN_NOTE notes. */
272 use_node = get_node_of_insn (g, use_insn);
273 gcc_assert (use_node);
274 has_use_in_bb_p = true;
275 if (use_node->cuid <= last_def_node->cuid)
277 /* Add true deps from last_def to it's uses in the next
278 iteration. Any such upwards exposed use appears before
279 the last_def def. */
280 create_ddg_dep_no_link (g, last_def_node, use_node, TRUE_DEP,
281 REG_DEP, 1);
283 else
285 /* Add anti deps from last_def's uses in the current iteration
286 to the first def in the next iteration. We do not add ANTI
287 dep when there is an intra-loop TRUE dep in the opposite
288 direction, but use regmoves to fix such disregarded ANTI
289 deps when broken. If the first_def reaches the USE then
290 there is such a dep. */
291 ddg_node_ptr first_def_node = get_node_of_insn (g,
292 DF_REF_INSN (first_def));
294 gcc_assert (first_def_node);
296 if (DF_REF_ID (last_def) != DF_REF_ID (first_def)
297 || !flag_modulo_sched_allow_regmoves)
298 create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
299 REG_DEP, 1);
303 /* Create an inter-loop output dependence between LAST_DEF (which is the
304 last def in its block, being downwards exposed) and the first def in
305 its block. Avoid creating a self output dependence. Avoid creating
306 an output dependence if there is a dependence path between the two
307 defs starting with a true dependence to a use which can be in the
308 next iteration; followed by an anti dependence of that use to the
309 first def (i.e. if there is a use between the two defs.) */
310 if (!has_use_in_bb_p)
312 ddg_node_ptr dest_node;
314 if (DF_REF_ID (last_def) == DF_REF_ID (first_def))
315 return;
317 dest_node = get_node_of_insn (g, DF_REF_INSN (first_def));
318 gcc_assert (dest_node);
319 create_ddg_dep_no_link (g, last_def_node, dest_node,
320 OUTPUT_DEP, REG_DEP, 1);
323 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
324 static void
325 build_inter_loop_deps (ddg_ptr g)
327 unsigned rd_num;
328 struct df_rd_bb_info *rd_bb_info;
329 bitmap_iterator bi;
331 rd_bb_info = DF_RD_BB_INFO (g->bb);
333 /* Find inter-loop register output, true and anti deps. */
334 EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
336 df_ref rd = DF_DEFS_GET (rd_num);
338 add_cross_iteration_register_deps (g, rd);
343 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
344 to ddg G. */
345 static void
346 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
348 if (!insn_alias_sets_conflict_p (from->insn, to->insn))
349 /* Do not create edge if memory references have disjoint alias sets. */
350 return;
352 if (mem_write_insn_p (from->insn))
354 if (mem_read_insn_p (to->insn))
355 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
356 else if (from->cuid != to->cuid)
357 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
359 else
361 if (mem_read_insn_p (to->insn))
362 return;
363 else if (from->cuid != to->cuid)
365 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
366 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
372 /* Perform intra-block Data Dependency analysis and connect the nodes in
373 the DDG. We assume the loop has a single basic block. */
374 static void
375 build_intra_loop_deps (ddg_ptr g)
377 int i;
378 /* Hold the dependency analysis state during dependency calculations. */
379 struct deps tmp_deps;
380 rtx head, tail;
382 /* Build the dependence information, using the sched_analyze function. */
383 init_deps_global ();
384 init_deps (&tmp_deps);
386 /* Do the intra-block data dependence analysis for the given block. */
387 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
388 sched_analyze (&tmp_deps, head, tail);
390 /* Build intra-loop data dependencies using the scheduler dependency
391 analysis. */
392 for (i = 0; i < g->num_nodes; i++)
394 ddg_node_ptr dest_node = &g->nodes[i];
395 sd_iterator_def sd_it;
396 dep_t dep;
398 if (! INSN_P (dest_node->insn))
399 continue;
401 FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
403 ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep));
405 if (!src_node)
406 continue;
408 create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
411 /* If this insn modifies memory, add an edge to all insns that access
412 memory. */
413 if (mem_access_insn_p (dest_node->insn))
415 int j;
417 for (j = 0; j <= i; j++)
419 ddg_node_ptr j_node = &g->nodes[j];
420 if (mem_access_insn_p (j_node->insn))
421 /* Don't bother calculating inter-loop dep if an intra-loop dep
422 already exists. */
423 if (! TEST_BIT (dest_node->successors, j))
424 add_inter_loop_mem_dep (g, dest_node, j_node);
429 /* Free the INSN_LISTs. */
430 finish_deps_global ();
431 free_deps (&tmp_deps);
433 /* Free dependencies. */
434 sched_free_deps (head, tail, false);
438 /* Given a basic block, create its DDG and return a pointer to a variable
439 of ddg type that represents it.
440 Initialize the ddg structure fields to the appropriate values. */
441 ddg_ptr
442 create_ddg (basic_block bb, int closing_branch_deps)
444 ddg_ptr g;
445 rtx insn, first_note;
446 int i;
447 int num_nodes = 0;
449 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
451 g->bb = bb;
452 g->closing_branch_deps = closing_branch_deps;
454 /* Count the number of insns in the BB. */
455 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
456 insn = NEXT_INSN (insn))
458 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
459 continue;
461 if (mem_read_insn_p (insn))
462 g->num_loads++;
463 if (mem_write_insn_p (insn))
464 g->num_stores++;
465 num_nodes++;
468 /* There is nothing to do for this BB. */
469 if (num_nodes <= 1)
471 free (g);
472 return NULL;
475 /* Allocate the nodes array, and initialize the nodes. */
476 g->num_nodes = num_nodes;
477 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
478 g->closing_branch = NULL;
479 i = 0;
480 first_note = NULL_RTX;
481 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
482 insn = NEXT_INSN (insn))
484 if (! INSN_P (insn))
486 if (! first_note && NOTE_P (insn)
487 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK)
488 first_note = insn;
489 continue;
491 if (JUMP_P (insn))
493 gcc_assert (!g->closing_branch);
494 g->closing_branch = &g->nodes[i];
496 else if (GET_CODE (PATTERN (insn)) == USE)
498 if (! first_note)
499 first_note = insn;
500 continue;
503 g->nodes[i].cuid = i;
504 g->nodes[i].successors = sbitmap_alloc (num_nodes);
505 sbitmap_zero (g->nodes[i].successors);
506 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
507 sbitmap_zero (g->nodes[i].predecessors);
508 g->nodes[i].first_note = (first_note ? first_note : insn);
509 g->nodes[i++].insn = insn;
510 first_note = NULL_RTX;
513 /* We must have found a branch in DDG. */
514 gcc_assert (g->closing_branch);
517 /* Build the data dependency graph. */
518 build_intra_loop_deps (g);
519 build_inter_loop_deps (g);
520 return g;
523 /* Free all the memory allocated for the DDG. */
524 void
525 free_ddg (ddg_ptr g)
527 int i;
529 if (!g)
530 return;
532 for (i = 0; i < g->num_nodes; i++)
534 ddg_edge_ptr e = g->nodes[i].out;
536 while (e)
538 ddg_edge_ptr next = e->next_out;
540 free (e);
541 e = next;
543 sbitmap_free (g->nodes[i].successors);
544 sbitmap_free (g->nodes[i].predecessors);
546 if (g->num_backarcs > 0)
547 free (g->backarcs);
548 free (g->nodes);
549 free (g);
552 void
553 print_ddg_edge (FILE *file, ddg_edge_ptr e)
555 char dep_c;
557 switch (e->type)
559 case OUTPUT_DEP :
560 dep_c = 'O';
561 break;
562 case ANTI_DEP :
563 dep_c = 'A';
564 break;
565 default:
566 dep_c = 'T';
569 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
570 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
573 /* Print the DDG nodes with there in/out edges to the dump file. */
574 void
575 print_ddg (FILE *file, ddg_ptr g)
577 int i;
579 for (i = 0; i < g->num_nodes; i++)
581 ddg_edge_ptr e;
583 fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
584 print_rtl_single (file, g->nodes[i].insn);
585 fprintf (file, "OUT ARCS: ");
586 for (e = g->nodes[i].out; e; e = e->next_out)
587 print_ddg_edge (file, e);
589 fprintf (file, "\nIN ARCS: ");
590 for (e = g->nodes[i].in; e; e = e->next_in)
591 print_ddg_edge (file, e);
593 fprintf (file, "\n");
597 /* Print the given DDG in VCG format. */
598 void
599 vcg_print_ddg (FILE *file, ddg_ptr g)
601 int src_cuid;
603 fprintf (file, "graph: {\n");
604 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
606 ddg_edge_ptr e;
607 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
609 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
610 print_rtl_single (file, g->nodes[src_cuid].insn);
611 fprintf (file, "\"}\n");
612 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
614 int dst_uid = INSN_UID (e->dest->insn);
615 int dst_cuid = e->dest->cuid;
617 /* Give the backarcs a different color. */
618 if (e->distance > 0)
619 fprintf (file, "backedge: {color: red ");
620 else
621 fprintf (file, "edge: { ");
623 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
624 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
625 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
628 fprintf (file, "}\n");
631 /* Dump the sccs in SCCS. */
632 void
633 print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
635 unsigned int u = 0;
636 sbitmap_iterator sbi;
637 int i;
639 if (!file)
640 return;
642 fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
643 for (i = 0; i < sccs->num_sccs; i++)
645 fprintf (file, "SCC number: %d\n", i);
646 EXECUTE_IF_SET_IN_SBITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
648 fprintf (file, "insn num %d\n", u);
649 print_rtl_single (file, g->nodes[u].insn);
652 fprintf (file, "\n");
655 /* Create an edge and initialize it with given values. */
656 static ddg_edge_ptr
657 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
658 dep_type t, dep_data_type dt, int l, int d)
660 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
662 e->src = src;
663 e->dest = dest;
664 e->type = t;
665 e->data_type = dt;
666 e->latency = l;
667 e->distance = d;
668 e->next_in = e->next_out = NULL;
669 e->aux.info = 0;
670 return e;
673 /* Add the given edge to the in/out linked lists of the DDG nodes. */
674 static void
675 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
677 ddg_node_ptr src = e->src;
678 ddg_node_ptr dest = e->dest;
680 /* Should have allocated the sbitmaps. */
681 gcc_assert (src->successors && dest->predecessors);
683 SET_BIT (src->successors, dest->cuid);
684 SET_BIT (dest->predecessors, src->cuid);
685 e->next_in = dest->in;
686 dest->in = e;
687 e->next_out = src->out;
688 src->out = e;
693 /* Algorithm for computing the recurrence_length of an scc. We assume at
694 for now that cycles in the data dependence graph contain a single backarc.
695 This simplifies the algorithm, and can be generalized later. */
696 static void
697 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
699 int j;
700 int result = -1;
702 for (j = 0; j < scc->num_backarcs; j++)
704 ddg_edge_ptr backarc = scc->backarcs[j];
705 int length;
706 int distance = backarc->distance;
707 ddg_node_ptr src = backarc->dest;
708 ddg_node_ptr dest = backarc->src;
710 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
711 if (length < 0 )
713 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
714 continue;
716 length += backarc->latency;
717 result = MAX (result, (length / distance));
719 scc->recurrence_length = result;
722 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
723 and mark edges that belong to this scc as IN_SCC. */
724 static ddg_scc_ptr
725 create_scc (ddg_ptr g, sbitmap nodes)
727 ddg_scc_ptr scc;
728 unsigned int u = 0;
729 sbitmap_iterator sbi;
731 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
732 scc->backarcs = NULL;
733 scc->num_backarcs = 0;
734 scc->nodes = sbitmap_alloc (g->num_nodes);
735 sbitmap_copy (scc->nodes, nodes);
737 /* Mark the backarcs that belong to this SCC. */
738 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
740 ddg_edge_ptr e;
741 ddg_node_ptr n = &g->nodes[u];
743 for (e = n->out; e; e = e->next_out)
744 if (TEST_BIT (nodes, e->dest->cuid))
746 e->aux.count = IN_SCC;
747 if (e->distance > 0)
748 add_backarc_to_scc (scc, e);
752 set_recurrence_length (scc, g);
753 return scc;
756 /* Cleans the memory allocation of a given SCC. */
757 static void
758 free_scc (ddg_scc_ptr scc)
760 if (!scc)
761 return;
763 sbitmap_free (scc->nodes);
764 if (scc->num_backarcs > 0)
765 free (scc->backarcs);
766 free (scc);
770 /* Add a given edge known to be a backarc to the given DDG. */
771 static void
772 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
774 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
776 add_edge_to_ddg (g, e);
777 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
778 g->backarcs[g->num_backarcs++] = e;
781 /* Add backarc to an SCC. */
782 static void
783 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
785 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
787 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
788 scc->backarcs[scc->num_backarcs++] = e;
791 /* Add the given SCC to the DDG. */
792 static void
793 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
795 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
797 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
798 g->sccs[g->num_sccs++] = scc;
801 /* Given the instruction INSN return the node that represents it. */
802 ddg_node_ptr
803 get_node_of_insn (ddg_ptr g, rtx insn)
805 int i;
807 for (i = 0; i < g->num_nodes; i++)
808 if (insn == g->nodes[i].insn)
809 return &g->nodes[i];
810 return NULL;
813 /* Given a set OPS of nodes in the DDG, find the set of their successors
814 which are not in OPS, and set their bits in SUCC. Bits corresponding to
815 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
816 void
817 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
819 unsigned int i = 0;
820 sbitmap_iterator sbi;
822 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
824 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
825 sbitmap_a_or_b (succ, succ, node_succ);
828 /* We want those that are not in ops. */
829 sbitmap_difference (succ, succ, ops);
832 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
833 which are not in OPS, and set their bits in PREDS. Bits corresponding to
834 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
835 void
836 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
838 unsigned int i = 0;
839 sbitmap_iterator sbi;
841 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
843 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
844 sbitmap_a_or_b (preds, preds, node_preds);
847 /* We want those that are not in ops. */
848 sbitmap_difference (preds, preds, ops);
852 /* Compare function to be passed to qsort to order the backarcs in descending
853 recMII order. */
854 static int
855 compare_sccs (const void *s1, const void *s2)
857 const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
858 const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
859 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
863 /* Order the backarcs in descending recMII order using compare_sccs. */
864 static void
865 order_sccs (ddg_all_sccs_ptr g)
867 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
868 (int (*) (const void *, const void *)) compare_sccs);
871 #ifdef ENABLE_CHECKING
872 /* Check that every node in SCCS belongs to exactly one strongly connected
873 component and that no element of SCCS is empty. */
874 static void
875 check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
877 int i = 0;
878 sbitmap tmp = sbitmap_alloc (num_nodes);
880 sbitmap_zero (tmp);
881 for (i = 0; i < sccs->num_sccs; i++)
883 gcc_assert (!sbitmap_empty_p (sccs->sccs[i]->nodes));
884 /* Verify that every node in sccs is in exactly one strongly
885 connected component. */
886 gcc_assert (!sbitmap_any_common_bits (tmp, sccs->sccs[i]->nodes));
887 sbitmap_a_or_b (tmp, tmp, sccs->sccs[i]->nodes);
889 sbitmap_free (tmp);
891 #endif
893 /* Perform the Strongly Connected Components decomposing algorithm on the
894 DDG and return DDG_ALL_SCCS structure that contains them. */
895 ddg_all_sccs_ptr
896 create_ddg_all_sccs (ddg_ptr g)
898 int i;
899 int num_nodes = g->num_nodes;
900 sbitmap from = sbitmap_alloc (num_nodes);
901 sbitmap to = sbitmap_alloc (num_nodes);
902 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
903 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
904 xmalloc (sizeof (struct ddg_all_sccs));
906 sccs->ddg = g;
907 sccs->sccs = NULL;
908 sccs->num_sccs = 0;
910 for (i = 0; i < g->num_backarcs; i++)
912 ddg_scc_ptr scc;
913 ddg_edge_ptr backarc = g->backarcs[i];
914 ddg_node_ptr src = backarc->src;
915 ddg_node_ptr dest = backarc->dest;
917 /* If the backarc already belongs to an SCC, continue. */
918 if (backarc->aux.count == IN_SCC)
919 continue;
921 sbitmap_zero (scc_nodes);
922 sbitmap_zero (from);
923 sbitmap_zero (to);
924 SET_BIT (from, dest->cuid);
925 SET_BIT (to, src->cuid);
927 if (find_nodes_on_paths (scc_nodes, g, from, to))
929 scc = create_scc (g, scc_nodes);
930 add_scc_to_ddg (sccs, scc);
933 order_sccs (sccs);
934 sbitmap_free (from);
935 sbitmap_free (to);
936 sbitmap_free (scc_nodes);
937 #ifdef ENABLE_CHECKING
938 check_sccs (sccs, num_nodes);
939 #endif
940 return sccs;
943 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
944 void
945 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
947 int i;
949 if (!all_sccs)
950 return;
952 for (i = 0; i < all_sccs->num_sccs; i++)
953 free_scc (all_sccs->sccs[i]);
955 free (all_sccs);
959 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
960 nodes - find all nodes that lie on paths from FROM to TO (not excluding
961 nodes from FROM and TO). Return nonzero if nodes exist. */
963 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
965 int answer;
966 int change;
967 unsigned int u = 0;
968 int num_nodes = g->num_nodes;
969 sbitmap_iterator sbi;
971 sbitmap workset = sbitmap_alloc (num_nodes);
972 sbitmap reachable_from = sbitmap_alloc (num_nodes);
973 sbitmap reach_to = sbitmap_alloc (num_nodes);
974 sbitmap tmp = sbitmap_alloc (num_nodes);
976 sbitmap_copy (reachable_from, from);
977 sbitmap_copy (tmp, from);
979 change = 1;
980 while (change)
982 change = 0;
983 sbitmap_copy (workset, tmp);
984 sbitmap_zero (tmp);
985 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
987 ddg_edge_ptr e;
988 ddg_node_ptr u_node = &g->nodes[u];
990 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
992 ddg_node_ptr v_node = e->dest;
993 int v = v_node->cuid;
995 if (!TEST_BIT (reachable_from, v))
997 SET_BIT (reachable_from, v);
998 SET_BIT (tmp, v);
999 change = 1;
1005 sbitmap_copy (reach_to, to);
1006 sbitmap_copy (tmp, to);
1008 change = 1;
1009 while (change)
1011 change = 0;
1012 sbitmap_copy (workset, tmp);
1013 sbitmap_zero (tmp);
1014 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1016 ddg_edge_ptr e;
1017 ddg_node_ptr u_node = &g->nodes[u];
1019 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
1021 ddg_node_ptr v_node = e->src;
1022 int v = v_node->cuid;
1024 if (!TEST_BIT (reach_to, v))
1026 SET_BIT (reach_to, v);
1027 SET_BIT (tmp, v);
1028 change = 1;
1034 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
1035 sbitmap_free (workset);
1036 sbitmap_free (reachable_from);
1037 sbitmap_free (reach_to);
1038 sbitmap_free (tmp);
1039 return answer;
1043 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
1044 at-least as large as the count of U_NODE plus the latency between them.
1045 Sets a bit in TMP for each successor whose count was changed (increased).
1046 Returns nonzero if any count was changed. */
1047 static int
1048 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
1050 ddg_edge_ptr e;
1051 int result = 0;
1053 for (e = u_node->out; e; e = e->next_out)
1055 ddg_node_ptr v_node = e->dest;
1056 int v = v_node->cuid;
1058 if (TEST_BIT (nodes, v)
1059 && (e->distance == 0)
1060 && (v_node->aux.count < u_node->aux.count + e->latency))
1062 v_node->aux.count = u_node->aux.count + e->latency;
1063 SET_BIT (tmp, v);
1064 result = 1;
1067 return result;
1071 /* Find the length of a longest path from SRC to DEST in G,
1072 going only through NODES, and disregarding backarcs. */
1074 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1076 int i;
1077 unsigned int u = 0;
1078 int change = 1;
1079 int result;
1080 int num_nodes = g->num_nodes;
1081 sbitmap workset = sbitmap_alloc (num_nodes);
1082 sbitmap tmp = sbitmap_alloc (num_nodes);
1085 /* Data will hold the distance of the longest path found so far from
1086 src to each node. Initialize to -1 = less than minimum. */
1087 for (i = 0; i < g->num_nodes; i++)
1088 g->nodes[i].aux.count = -1;
1089 g->nodes[src].aux.count = 0;
1091 sbitmap_zero (tmp);
1092 SET_BIT (tmp, src);
1094 while (change)
1096 sbitmap_iterator sbi;
1098 change = 0;
1099 sbitmap_copy (workset, tmp);
1100 sbitmap_zero (tmp);
1101 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1103 ddg_node_ptr u_node = &g->nodes[u];
1105 change |= update_dist_to_successors (u_node, nodes, tmp);
1108 result = g->nodes[dest].aux.count;
1109 sbitmap_free (workset);
1110 sbitmap_free (tmp);
1111 return result;
1114 #endif /* INSN_SCHEDULING */