[36/46] Add a pattern_stmt_p field to stmt_vec_info
[official-gcc.git] / gcc / tree-vectorizer.h
blob74ea6cf9b0d37e18823738d73e550020905a5f02
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 class stmt_vec_info {
25 public:
26 stmt_vec_info () {}
27 stmt_vec_info (struct _stmt_vec_info *ptr) : m_ptr (ptr) {}
28 struct _stmt_vec_info *operator-> () const { return m_ptr; }
29 struct _stmt_vec_info &operator* () const;
30 operator struct _stmt_vec_info * () const { return m_ptr; }
31 operator gimple * () const;
32 operator void * () const { return m_ptr; }
33 operator bool () const { return m_ptr; }
34 bool operator == (const stmt_vec_info &x) { return x.m_ptr == m_ptr; }
35 bool operator == (_stmt_vec_info *x) { return x == m_ptr; }
36 bool operator != (const stmt_vec_info &x) { return x.m_ptr != m_ptr; }
37 bool operator != (_stmt_vec_info *x) { return x != m_ptr; }
39 private:
40 struct _stmt_vec_info *m_ptr;
43 #define NULL_STMT_VEC_INFO (stmt_vec_info (NULL))
45 #include "tree-data-ref.h"
46 #include "tree-hash-traits.h"
47 #include "target.h"
49 /* Used for naming of new temporaries. */
50 enum vect_var_kind {
51 vect_simple_var,
52 vect_pointer_var,
53 vect_scalar_var,
54 vect_mask_var
57 /* Defines type of operation. */
58 enum operation_type {
59 unary_op = 1,
60 binary_op,
61 ternary_op
64 /* Define type of available alignment support. */
65 enum dr_alignment_support {
66 dr_unaligned_unsupported,
67 dr_unaligned_supported,
68 dr_explicit_realign,
69 dr_explicit_realign_optimized,
70 dr_aligned
73 /* Define type of def-use cross-iteration cycle. */
74 enum vect_def_type {
75 vect_uninitialized_def = 0,
76 vect_constant_def = 1,
77 vect_external_def,
78 vect_internal_def,
79 vect_induction_def,
80 vect_reduction_def,
81 vect_double_reduction_def,
82 vect_nested_cycle,
83 vect_unknown_def_type
86 /* Define type of reduction. */
87 enum vect_reduction_type {
88 TREE_CODE_REDUCTION,
89 COND_REDUCTION,
90 INTEGER_INDUC_COND_REDUCTION,
91 CONST_COND_REDUCTION,
93 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
94 to implement:
96 for (int i = 0; i < VF; ++i)
97 res = cond[i] ? val[i] : res; */
98 EXTRACT_LAST_REDUCTION,
100 /* Use a folding reduction within the loop to implement:
102 for (int i = 0; i < VF; ++i)
103 res = res OP val[i];
105 (with no reassocation). */
106 FOLD_LEFT_REDUCTION
109 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
110 || ((D) == vect_double_reduction_def) \
111 || ((D) == vect_nested_cycle))
113 /* Structure to encapsulate information about a group of like
114 instructions to be presented to the target cost model. */
115 struct stmt_info_for_cost {
116 int count;
117 enum vect_cost_for_stmt kind;
118 enum vect_cost_model_location where;
119 stmt_vec_info stmt_info;
120 int misalign;
123 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
125 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
126 known alignment for that base. */
127 typedef hash_map<tree_operand_hash,
128 innermost_loop_behavior *> vec_base_alignments;
130 /************************************************************************
132 ************************************************************************/
133 typedef struct _slp_tree *slp_tree;
135 /* A computation tree of an SLP instance. Each node corresponds to a group of
136 stmts to be packed in a SIMD stmt. */
137 struct _slp_tree {
138 /* Nodes that contain def-stmts of this node statements operands. */
139 vec<slp_tree> children;
140 /* A group of scalar stmts to be vectorized together. */
141 vec<stmt_vec_info> stmts;
142 /* Load permutation relative to the stores, NULL if there is no
143 permutation. */
144 vec<unsigned> load_permutation;
145 /* Vectorized stmt/s. */
146 vec<stmt_vec_info> vec_stmts;
147 /* Number of vector stmts that are created to replace the group of scalar
148 stmts. It is calculated during the transformation phase as the number of
149 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
150 divided by vector size. */
151 unsigned int vec_stmts_size;
152 /* Whether the scalar computations use two different operators. */
153 bool two_operators;
154 /* The DEF type of this node. */
155 enum vect_def_type def_type;
159 /* SLP instance is a sequence of stmts in a loop that can be packed into
160 SIMD stmts. */
161 typedef struct _slp_instance {
162 /* The root of SLP tree. */
163 slp_tree root;
165 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
166 unsigned int group_size;
168 /* The unrolling factor required to vectorized this SLP instance. */
169 poly_uint64 unrolling_factor;
171 /* The group of nodes that contain loads of this SLP instance. */
172 vec<slp_tree> loads;
174 /* The SLP node containing the reduction PHIs. */
175 slp_tree reduc_phis;
176 } *slp_instance;
179 /* Access Functions. */
180 #define SLP_INSTANCE_TREE(S) (S)->root
181 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
182 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
183 #define SLP_INSTANCE_LOADS(S) (S)->loads
185 #define SLP_TREE_CHILDREN(S) (S)->children
186 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
187 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
188 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
189 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
190 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
191 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
195 /* Describes two objects whose addresses must be unequal for the vectorized
196 loop to be valid. */
197 typedef std::pair<tree, tree> vec_object_pair;
199 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
200 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
201 struct vec_lower_bound {
202 vec_lower_bound () {}
203 vec_lower_bound (tree e, bool u, poly_uint64 m)
204 : expr (e), unsigned_p (u), min_value (m) {}
206 tree expr;
207 bool unsigned_p;
208 poly_uint64 min_value;
211 /* Vectorizer state shared between different analyses like vector sizes
212 of the same CFG region. */
213 struct vec_info_shared {
214 vec_info_shared();
215 ~vec_info_shared();
217 void save_datarefs();
218 void check_datarefs();
220 /* All data references. Freed by free_data_refs, so not an auto_vec. */
221 vec<data_reference_p> datarefs;
222 vec<data_reference> datarefs_copy;
224 /* The loop nest in which the data dependences are computed. */
225 auto_vec<loop_p> loop_nest;
227 /* All data dependences. Freed by free_dependence_relations, so not
228 an auto_vec. */
229 vec<ddr_p> ddrs;
232 /* Vectorizer state common between loop and basic-block vectorization. */
233 struct vec_info {
234 enum vec_kind { bb, loop };
236 vec_info (vec_kind, void *, vec_info_shared *);
237 ~vec_info ();
239 stmt_vec_info add_stmt (gimple *);
240 stmt_vec_info lookup_stmt (gimple *);
241 stmt_vec_info lookup_def (tree);
242 stmt_vec_info lookup_single_use (tree);
244 /* The type of vectorization. */
245 vec_kind kind;
247 /* Shared vectorizer state. */
248 vec_info_shared *shared;
250 /* The mapping of GIMPLE UID to stmt_vec_info. */
251 vec<stmt_vec_info> stmt_vec_infos;
253 /* All SLP instances. */
254 auto_vec<slp_instance> slp_instances;
256 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
257 known alignment for that base. */
258 vec_base_alignments base_alignments;
260 /* All interleaving chains of stores, represented by the first
261 stmt in the chain. */
262 auto_vec<stmt_vec_info> grouped_stores;
264 /* Cost data used by the target cost model. */
265 void *target_cost_data;
268 struct _loop_vec_info;
269 struct _bb_vec_info;
271 template<>
272 template<>
273 inline bool
274 is_a_helper <_loop_vec_info *>::test (vec_info *i)
276 return i->kind == vec_info::loop;
279 template<>
280 template<>
281 inline bool
282 is_a_helper <_bb_vec_info *>::test (vec_info *i)
284 return i->kind == vec_info::bb;
288 /* In general, we can divide the vector statements in a vectorized loop
289 into related groups ("rgroups") and say that for each rgroup there is
290 some nS such that the rgroup operates on nS values from one scalar
291 iteration followed by nS values from the next. That is, if VF is the
292 vectorization factor of the loop, the rgroup operates on a sequence:
294 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
296 where (i,j) represents a scalar value with index j in a scalar
297 iteration with index i.
299 [ We use the term "rgroup" to emphasise that this grouping isn't
300 necessarily the same as the grouping of statements used elsewhere.
301 For example, if we implement a group of scalar loads using gather
302 loads, we'll use a separate gather load for each scalar load, and
303 thus each gather load will belong to its own rgroup. ]
305 In general this sequence will occupy nV vectors concatenated
306 together. If these vectors have nL lanes each, the total number
307 of scalar values N is given by:
309 N = nS * VF = nV * nL
311 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
312 are compile-time constants but VF and nL can be variable (if the target
313 supports variable-length vectors).
315 In classical vectorization, each iteration of the vector loop would
316 handle exactly VF iterations of the original scalar loop. However,
317 in a fully-masked loop, a particular iteration of the vector loop
318 might handle fewer than VF iterations of the scalar loop. The vector
319 lanes that correspond to iterations of the scalar loop are said to be
320 "active" and the other lanes are said to be "inactive".
322 In a fully-masked loop, many rgroups need to be masked to ensure that
323 they have no effect for the inactive lanes. Each such rgroup needs a
324 sequence of booleans in the same order as above, but with each (i,j)
325 replaced by a boolean that indicates whether iteration i is active.
326 This sequence occupies nV vector masks that again have nL lanes each.
327 Thus the mask sequence as a whole consists of VF independent booleans
328 that are each repeated nS times.
330 We make the simplifying assumption that if a sequence of nV masks is
331 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
332 VIEW_CONVERTing it. This holds for all current targets that support
333 fully-masked loops. For example, suppose the scalar loop is:
335 float *f;
336 double *d;
337 for (int i = 0; i < n; ++i)
339 f[i * 2 + 0] += 1.0f;
340 f[i * 2 + 1] += 2.0f;
341 d[i] += 3.0;
344 and suppose that vectors have 256 bits. The vectorized f accesses
345 will belong to one rgroup and the vectorized d access to another:
347 f rgroup: nS = 2, nV = 1, nL = 8
348 d rgroup: nS = 1, nV = 1, nL = 4
349 VF = 4
351 [ In this simple example the rgroups do correspond to the normal
352 SLP grouping scheme. ]
354 If only the first three lanes are active, the masks we need are:
356 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
357 d rgroup: 1 | 1 | 1 | 0
359 Here we can use a mask calculated for f's rgroup for d's, but not
360 vice versa.
362 Thus for each value of nV, it is enough to provide nV masks, with the
363 mask being calculated based on the highest nL (or, equivalently, based
364 on the highest nS) required by any rgroup with that nV. We therefore
365 represent the entire collection of masks as a two-level table, with the
366 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
367 the second being indexed by the mask index 0 <= i < nV. */
369 /* The masks needed by rgroups with nV vectors, according to the
370 description above. */
371 struct rgroup_masks {
372 /* The largest nS for all rgroups that use these masks. */
373 unsigned int max_nscalars_per_iter;
375 /* The type of mask to use, based on the highest nS recorded above. */
376 tree mask_type;
378 /* A vector of nV masks, in iteration order. */
379 vec<tree> masks;
382 typedef auto_vec<rgroup_masks> vec_loop_masks;
384 /*-----------------------------------------------------------------*/
385 /* Info on vectorized loops. */
386 /*-----------------------------------------------------------------*/
387 typedef struct _loop_vec_info : public vec_info {
388 _loop_vec_info (struct loop *, vec_info_shared *);
389 ~_loop_vec_info ();
391 /* The loop to which this info struct refers to. */
392 struct loop *loop;
394 /* The loop basic blocks. */
395 basic_block *bbs;
397 /* Number of latch executions. */
398 tree num_itersm1;
399 /* Number of iterations. */
400 tree num_iters;
401 /* Number of iterations of the original loop. */
402 tree num_iters_unchanged;
403 /* Condition under which this loop is analyzed and versioned. */
404 tree num_iters_assumptions;
406 /* Threshold of number of iterations below which vectorzation will not be
407 performed. It is calculated from MIN_PROFITABLE_ITERS and
408 PARAM_MIN_VECT_LOOP_BOUND. */
409 unsigned int th;
411 /* When applying loop versioning, the vector form should only be used
412 if the number of scalar iterations is >= this value, on top of all
413 the other requirements. Ignored when loop versioning is not being
414 used. */
415 poly_uint64 versioning_threshold;
417 /* Unrolling factor */
418 poly_uint64 vectorization_factor;
420 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
421 if there is no particular limit. */
422 unsigned HOST_WIDE_INT max_vectorization_factor;
424 /* The masks that a fully-masked loop should use to avoid operating
425 on inactive scalars. */
426 vec_loop_masks masks;
428 /* If we are using a loop mask to align memory addresses, this variable
429 contains the number of vector elements that we should skip in the
430 first iteration of the vector loop (i.e. the number of leading
431 elements that should be false in the first mask). */
432 tree mask_skip_niters;
434 /* Type of the variables to use in the WHILE_ULT call for fully-masked
435 loops. */
436 tree mask_compare_type;
438 /* Unknown DRs according to which loop was peeled. */
439 struct data_reference *unaligned_dr;
441 /* peeling_for_alignment indicates whether peeling for alignment will take
442 place, and what the peeling factor should be:
443 peeling_for_alignment = X means:
444 If X=0: Peeling for alignment will not be applied.
445 If X>0: Peel first X iterations.
446 If X=-1: Generate a runtime test to calculate the number of iterations
447 to be peeled, using the dataref recorded in the field
448 unaligned_dr. */
449 int peeling_for_alignment;
451 /* The mask used to check the alignment of pointers or arrays. */
452 int ptr_mask;
454 /* Data Dependence Relations defining address ranges that are candidates
455 for a run-time aliasing check. */
456 auto_vec<ddr_p> may_alias_ddrs;
458 /* Data Dependence Relations defining address ranges together with segment
459 lengths from which the run-time aliasing check is built. */
460 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
462 /* Check that the addresses of each pair of objects is unequal. */
463 auto_vec<vec_object_pair> check_unequal_addrs;
465 /* List of values that are required to be nonzero. This is used to check
466 whether things like "x[i * n] += 1;" are safe and eventually gets added
467 to the checks for lower bounds below. */
468 auto_vec<tree> check_nonzero;
470 /* List of values that need to be checked for a minimum value. */
471 auto_vec<vec_lower_bound> lower_bounds;
473 /* Statements in the loop that have data references that are candidates for a
474 runtime (loop versioning) misalignment check. */
475 auto_vec<stmt_vec_info> may_misalign_stmts;
477 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
478 auto_vec<stmt_vec_info> reductions;
480 /* All reduction chains in the loop, represented by the first
481 stmt in the chain. */
482 auto_vec<stmt_vec_info> reduction_chains;
484 /* Cost vector for a single scalar iteration. */
485 auto_vec<stmt_info_for_cost> scalar_cost_vec;
487 /* Map of IV base/step expressions to inserted name in the preheader. */
488 hash_map<tree_operand_hash, tree> *ivexpr_map;
490 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
491 applied to the loop, i.e., no unrolling is needed, this is 1. */
492 poly_uint64 slp_unrolling_factor;
494 /* Cost of a single scalar iteration. */
495 int single_scalar_iteration_cost;
497 /* Is the loop vectorizable? */
498 bool vectorizable;
500 /* Records whether we still have the option of using a fully-masked loop. */
501 bool can_fully_mask_p;
503 /* True if have decided to use a fully-masked loop. */
504 bool fully_masked_p;
506 /* When we have grouped data accesses with gaps, we may introduce invalid
507 memory accesses. We peel the last iteration of the loop to prevent
508 this. */
509 bool peeling_for_gaps;
511 /* When the number of iterations is not a multiple of the vector size
512 we need to peel off iterations at the end to form an epilogue loop. */
513 bool peeling_for_niter;
515 /* Reductions are canonicalized so that the last operand is the reduction
516 operand. If this places a constant into RHS1, this decanonicalizes
517 GIMPLE for other phases, so we must track when this has occurred and
518 fix it up. */
519 bool operands_swapped;
521 /* True if there are no loop carried data dependencies in the loop.
522 If loop->safelen <= 1, then this is always true, either the loop
523 didn't have any loop carried data dependencies, or the loop is being
524 vectorized guarded with some runtime alias checks, or couldn't
525 be vectorized at all, but then this field shouldn't be used.
526 For loop->safelen >= 2, the user has asserted that there are no
527 backward dependencies, but there still could be loop carried forward
528 dependencies in such loops. This flag will be false if normal
529 vectorizer data dependency analysis would fail or require versioning
530 for alias, but because of loop->safelen >= 2 it has been vectorized
531 even without versioning for alias. E.g. in:
532 #pragma omp simd
533 for (int i = 0; i < m; i++)
534 a[i] = a[i + k] * c;
535 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
536 DTRT even for k > 0 && k < m, but without safelen we would not
537 vectorize this, so this field would be false. */
538 bool no_data_dependencies;
540 /* Mark loops having masked stores. */
541 bool has_mask_store;
543 /* If if-conversion versioned this loop before conversion, this is the
544 loop version without if-conversion. */
545 struct loop *scalar_loop;
547 /* For loops being epilogues of already vectorized loops
548 this points to the original vectorized loop. Otherwise NULL. */
549 _loop_vec_info *orig_loop_info;
551 } *loop_vec_info;
553 /* Access Functions. */
554 #define LOOP_VINFO_LOOP(L) (L)->loop
555 #define LOOP_VINFO_BBS(L) (L)->bbs
556 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
557 #define LOOP_VINFO_NITERS(L) (L)->num_iters
558 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
559 prologue peeling retain total unchanged scalar loop iterations for
560 cost model. */
561 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
562 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
563 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
564 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
565 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
566 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
567 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
568 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
569 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
570 #define LOOP_VINFO_MASKS(L) (L)->masks
571 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
572 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
573 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
574 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
575 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
576 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
577 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
578 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
579 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
580 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
581 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
582 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
583 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
584 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
585 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
586 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
587 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
588 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
589 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
590 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
591 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
592 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
593 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
594 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
595 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
596 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
597 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
598 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
599 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
600 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
602 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
603 ((L)->may_misalign_stmts.length () > 0)
604 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
605 ((L)->comp_alias_ddrs.length () > 0 \
606 || (L)->check_unequal_addrs.length () > 0 \
607 || (L)->lower_bounds.length () > 0)
608 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
609 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
610 #define LOOP_REQUIRES_VERSIONING(L) \
611 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
612 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
613 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
615 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
616 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
618 #define LOOP_VINFO_EPILOGUE_P(L) \
619 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
621 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
622 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
624 static inline loop_vec_info
625 loop_vec_info_for_loop (struct loop *loop)
627 return (loop_vec_info) loop->aux;
630 typedef struct _bb_vec_info : public vec_info
632 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
633 ~_bb_vec_info ();
635 basic_block bb;
636 gimple_stmt_iterator region_begin;
637 gimple_stmt_iterator region_end;
638 } *bb_vec_info;
640 #define BB_VINFO_BB(B) (B)->bb
641 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
642 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
643 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
644 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
645 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
647 static inline bb_vec_info
648 vec_info_for_bb (basic_block bb)
650 return (bb_vec_info) bb->aux;
653 /*-----------------------------------------------------------------*/
654 /* Info on vectorized defs. */
655 /*-----------------------------------------------------------------*/
656 enum stmt_vec_info_type {
657 undef_vec_info_type = 0,
658 load_vec_info_type,
659 store_vec_info_type,
660 shift_vec_info_type,
661 op_vec_info_type,
662 call_vec_info_type,
663 call_simd_clone_vec_info_type,
664 assignment_vec_info_type,
665 condition_vec_info_type,
666 comparison_vec_info_type,
667 reduc_vec_info_type,
668 induc_vec_info_type,
669 type_promotion_vec_info_type,
670 type_demotion_vec_info_type,
671 type_conversion_vec_info_type,
672 loop_exit_ctrl_vec_info_type
675 /* Indicates whether/how a variable is used in the scope of loop/basic
676 block. */
677 enum vect_relevant {
678 vect_unused_in_scope = 0,
680 /* The def is only used outside the loop. */
681 vect_used_only_live,
682 /* The def is in the inner loop, and the use is in the outer loop, and the
683 use is a reduction stmt. */
684 vect_used_in_outer_by_reduction,
685 /* The def is in the inner loop, and the use is in the outer loop (and is
686 not part of reduction). */
687 vect_used_in_outer,
689 /* defs that feed computations that end up (only) in a reduction. These
690 defs may be used by non-reduction stmts, but eventually, any
691 computations/values that are affected by these defs are used to compute
692 a reduction (i.e. don't get stored to memory, for example). We use this
693 to identify computations that we can change the order in which they are
694 computed. */
695 vect_used_by_reduction,
697 vect_used_in_scope
700 /* The type of vectorization that can be applied to the stmt: regular loop-based
701 vectorization; pure SLP - the stmt is a part of SLP instances and does not
702 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
703 a part of SLP instance and also must be loop-based vectorized, since it has
704 uses outside SLP sequences.
706 In the loop context the meanings of pure and hybrid SLP are slightly
707 different. By saying that pure SLP is applied to the loop, we mean that we
708 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
709 vectorized without doing any conceptual unrolling, cause we don't pack
710 together stmts from different iterations, only within a single iteration.
711 Loop hybrid SLP means that we exploit both intra-iteration and
712 inter-iteration parallelism (e.g., number of elements in the vector is 4
713 and the slp-group-size is 2, in which case we don't have enough parallelism
714 within an iteration, so we obtain the rest of the parallelism from subsequent
715 iterations by unrolling the loop by 2). */
716 enum slp_vect_type {
717 loop_vect = 0,
718 pure_slp,
719 hybrid
722 /* Says whether a statement is a load, a store of a vectorized statement
723 result, or a store of an invariant value. */
724 enum vec_load_store_type {
725 VLS_LOAD,
726 VLS_STORE,
727 VLS_STORE_INVARIANT
730 /* Describes how we're going to vectorize an individual load or store,
731 or a group of loads or stores. */
732 enum vect_memory_access_type {
733 /* An access to an invariant address. This is used only for loads. */
734 VMAT_INVARIANT,
736 /* A simple contiguous access. */
737 VMAT_CONTIGUOUS,
739 /* A contiguous access that goes down in memory rather than up,
740 with no additional permutation. This is used only for stores
741 of invariants. */
742 VMAT_CONTIGUOUS_DOWN,
744 /* A simple contiguous access in which the elements need to be permuted
745 after loading or before storing. Only used for loop vectorization;
746 SLP uses separate permutes. */
747 VMAT_CONTIGUOUS_PERMUTE,
749 /* A simple contiguous access in which the elements need to be reversed
750 after loading or before storing. */
751 VMAT_CONTIGUOUS_REVERSE,
753 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
754 VMAT_LOAD_STORE_LANES,
756 /* An access in which each scalar element is loaded or stored
757 individually. */
758 VMAT_ELEMENTWISE,
760 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
761 SLP accesses. Each unrolled iteration uses a contiguous load
762 or store for the whole group, but the groups from separate iterations
763 are combined in the same way as for VMAT_ELEMENTWISE. */
764 VMAT_STRIDED_SLP,
766 /* The access uses gather loads or scatter stores. */
767 VMAT_GATHER_SCATTER
770 struct dataref_aux {
771 /* The misalignment in bytes of the reference, or -1 if not known. */
772 int misalignment;
773 /* The byte alignment that we'd ideally like the reference to have,
774 and the value that misalignment is measured against. */
775 int target_alignment;
776 /* If true the alignment of base_decl needs to be increased. */
777 bool base_misaligned;
778 tree base_decl;
781 typedef struct data_reference *dr_p;
783 struct _stmt_vec_info {
785 enum stmt_vec_info_type type;
787 /* Indicates whether this stmts is part of a computation whose result is
788 used outside the loop. */
789 bool live;
791 /* Stmt is part of some pattern (computation idiom) */
792 bool in_pattern_p;
794 /* True if the statement was created during pattern recognition as
795 part of the replacement for RELATED_STMT. This implies that the
796 statement isn't part of any basic block, although for convenience
797 its gimple_bb is the same as for RELATED_STMT. */
798 bool pattern_stmt_p;
800 /* Is this statement vectorizable or should it be skipped in (partial)
801 vectorization. */
802 bool vectorizable;
804 /* The stmt to which this info struct refers to. */
805 gimple *stmt;
807 /* The vec_info with respect to which STMT is vectorized. */
808 vec_info *vinfo;
810 /* The vector type to be used for the LHS of this statement. */
811 tree vectype;
813 /* The vectorized version of the stmt. */
814 stmt_vec_info vectorized_stmt;
817 /* The following is relevant only for stmts that contain a non-scalar
818 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
819 at most one such data-ref. */
821 /* Information about the data-ref (access function, etc),
822 relative to the inner-most containing loop. */
823 struct data_reference *data_ref_info;
825 dataref_aux dr_aux;
827 /* Information about the data-ref relative to this loop
828 nest (the loop that is being considered for vectorization). */
829 innermost_loop_behavior dr_wrt_vec_loop;
831 /* For loop PHI nodes, the base and evolution part of it. This makes sure
832 this information is still available in vect_update_ivs_after_vectorizer
833 where we may not be able to re-analyze the PHI nodes evolution as
834 peeling for the prologue loop can make it unanalyzable. The evolution
835 part is still correct after peeling, but the base may have changed from
836 the version here. */
837 tree loop_phi_evolution_base_unchanged;
838 tree loop_phi_evolution_part;
840 /* Used for various bookkeeping purposes, generally holding a pointer to
841 some other stmt S that is in some way "related" to this stmt.
842 Current use of this field is:
843 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
844 true): S is the "pattern stmt" that represents (and replaces) the
845 sequence of stmts that constitutes the pattern. Similarly, the
846 related_stmt of the "pattern stmt" points back to this stmt (which is
847 the last stmt in the original sequence of stmts that constitutes the
848 pattern). */
849 stmt_vec_info related_stmt;
851 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
852 The sequence is attached to the original statement rather than the
853 pattern statement. */
854 gimple_seq pattern_def_seq;
856 /* List of datarefs that are known to have the same alignment as the dataref
857 of this stmt. */
858 vec<dr_p> same_align_refs;
860 /* Selected SIMD clone's function info. First vector element
861 is SIMD clone's function decl, followed by a pair of trees (base + step)
862 for linear arguments (pair of NULLs for other arguments). */
863 vec<tree> simd_clone_info;
865 /* Classify the def of this stmt. */
866 enum vect_def_type def_type;
868 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
869 enum slp_vect_type slp_type;
871 /* Interleaving and reduction chains info. */
872 /* First element in the group. */
873 stmt_vec_info first_element;
874 /* Pointer to the next element in the group. */
875 stmt_vec_info next_element;
876 /* For data-refs, in case that two or more stmts share data-ref, this is the
877 pointer to the previously detected stmt with the same dr. */
878 stmt_vec_info same_dr_stmt;
879 /* The size of the group. */
880 unsigned int size;
881 /* For stores, number of stores from this group seen. We vectorize the last
882 one. */
883 unsigned int store_count;
884 /* For loads only, the gap from the previous load. For consecutive loads, GAP
885 is 1. */
886 unsigned int gap;
888 /* The minimum negative dependence distance this stmt participates in
889 or zero if none. */
890 unsigned int min_neg_dist;
892 /* Not all stmts in the loop need to be vectorized. e.g, the increment
893 of the loop induction variable and computation of array indexes. relevant
894 indicates whether the stmt needs to be vectorized. */
895 enum vect_relevant relevant;
897 /* For loads if this is a gather, for stores if this is a scatter. */
898 bool gather_scatter_p;
900 /* True if this is an access with loop-invariant stride. */
901 bool strided_p;
903 /* For both loads and stores. */
904 bool simd_lane_access_p;
906 /* Classifies how the load or store is going to be implemented
907 for loop vectorization. */
908 vect_memory_access_type memory_access_type;
910 /* For reduction loops, this is the type of reduction. */
911 enum vect_reduction_type v_reduc_type;
913 /* For CONST_COND_REDUCTION, record the reduc code. */
914 enum tree_code const_cond_reduc_code;
916 /* On a reduction PHI the reduction type as detected by
917 vect_force_simple_reduction. */
918 enum vect_reduction_type reduc_type;
920 /* On a reduction PHI the def returned by vect_force_simple_reduction.
921 On the def returned by vect_force_simple_reduction the
922 corresponding PHI. */
923 stmt_vec_info reduc_def;
925 /* The number of scalar stmt references from active SLP instances. */
926 unsigned int num_slp_uses;
928 /* If nonzero, the lhs of the statement could be truncated to this
929 many bits without affecting any users of the result. */
930 unsigned int min_output_precision;
932 /* If nonzero, all non-boolean input operands have the same precision,
933 and they could each be truncated to this many bits without changing
934 the result. */
935 unsigned int min_input_precision;
937 /* If OPERATION_BITS is nonzero, the statement could be performed on
938 an integer with the sign and number of bits given by OPERATION_SIGN
939 and OPERATION_BITS without changing the result. */
940 unsigned int operation_precision;
941 signop operation_sign;
944 /* Information about a gather/scatter call. */
945 struct gather_scatter_info {
946 /* The internal function to use for the gather/scatter operation,
947 or IFN_LAST if a built-in function should be used instead. */
948 internal_fn ifn;
950 /* The FUNCTION_DECL for the built-in gather/scatter function,
951 or null if an internal function should be used instead. */
952 tree decl;
954 /* The loop-invariant base value. */
955 tree base;
957 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
958 tree offset;
960 /* Each offset element should be multiplied by this amount before
961 being added to the base. */
962 int scale;
964 /* The definition type for the vectorized offset. */
965 enum vect_def_type offset_dt;
967 /* The type of the vectorized offset. */
968 tree offset_vectype;
970 /* The type of the scalar elements after loading or before storing. */
971 tree element_type;
973 /* The type of the scalar elements being loaded or stored. */
974 tree memory_type;
977 /* Access Functions. */
978 #define STMT_VINFO_TYPE(S) (S)->type
979 #define STMT_VINFO_STMT(S) (S)->stmt
980 inline loop_vec_info
981 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
983 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
984 return loop_vinfo;
985 return NULL;
987 inline bb_vec_info
988 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
990 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
991 return bb_vinfo;
992 return NULL;
994 #define STMT_VINFO_RELEVANT(S) (S)->relevant
995 #define STMT_VINFO_LIVE_P(S) (S)->live
996 #define STMT_VINFO_VECTYPE(S) (S)->vectype
997 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
998 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
999 #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info
1000 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1001 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1002 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1003 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1004 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
1005 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
1007 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1008 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1009 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1010 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1011 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1012 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1013 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1014 (S)->dr_wrt_vec_loop.base_misalignment
1015 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1016 (S)->dr_wrt_vec_loop.offset_alignment
1017 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1018 (S)->dr_wrt_vec_loop.step_alignment
1020 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1021 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1022 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1023 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1024 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1025 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1026 #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->data_ref_info && DR_GROUP_FIRST_ELEMENT(S))
1027 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1028 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1029 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1030 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1031 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1032 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1034 #define DR_GROUP_FIRST_ELEMENT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->first_element)
1035 #define DR_GROUP_NEXT_ELEMENT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->next_element)
1036 #define DR_GROUP_SIZE(S) (gcc_checking_assert ((S)->data_ref_info), (S)->size)
1037 #define DR_GROUP_STORE_COUNT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->store_count)
1038 #define DR_GROUP_GAP(S) (gcc_checking_assert ((S)->data_ref_info), (S)->gap)
1039 #define DR_GROUP_SAME_DR_STMT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->same_dr_stmt)
1041 #define REDUC_GROUP_FIRST_ELEMENT(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->first_element)
1042 #define REDUC_GROUP_NEXT_ELEMENT(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->next_element)
1043 #define REDUC_GROUP_SIZE(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->size)
1045 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1047 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1048 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1049 #define STMT_SLP_TYPE(S) (S)->slp_type
1051 #define DR_VECT_AUX(dr) (&vinfo_for_stmt (DR_STMT (dr))->dr_aux)
1053 #define VECT_MAX_COST 1000
1055 /* The maximum number of intermediate steps required in multi-step type
1056 conversion. */
1057 #define MAX_INTERM_CVT_STEPS 3
1059 #define MAX_VECTORIZATION_FACTOR INT_MAX
1061 /* Nonzero if TYPE represents a (scalar) boolean type or type
1062 in the middle-end compatible with it (unsigned precision 1 integral
1063 types). Used to determine which types should be vectorized as
1064 VECTOR_BOOLEAN_TYPE_P. */
1066 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1067 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1068 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1069 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1070 && TYPE_PRECISION (TYPE) == 1 \
1071 && TYPE_UNSIGNED (TYPE)))
1073 inline _stmt_vec_info &
1074 stmt_vec_info::operator* () const
1076 return *m_ptr;
1079 inline stmt_vec_info::operator gimple * () const
1081 return m_ptr ? m_ptr->stmt : NULL;
1084 extern vec<stmt_vec_info> *stmt_vec_info_vec;
1086 void set_stmt_vec_info_vec (vec<stmt_vec_info> *);
1087 void free_stmt_vec_infos (vec<stmt_vec_info> *);
1089 /* Return a stmt_vec_info corresponding to STMT. */
1091 static inline stmt_vec_info
1092 vinfo_for_stmt (gimple *stmt)
1094 int uid = gimple_uid (stmt);
1095 if (uid <= 0)
1096 return NULL;
1098 return (*stmt_vec_info_vec)[uid - 1];
1101 /* Set vectorizer information INFO for STMT. */
1103 static inline void
1104 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
1106 unsigned int uid = gimple_uid (stmt);
1107 if (uid == 0)
1109 gcc_checking_assert (info);
1110 uid = stmt_vec_info_vec->length () + 1;
1111 gimple_set_uid (stmt, uid);
1112 stmt_vec_info_vec->safe_push (info);
1114 else
1116 gcc_checking_assert (info == NULL_STMT_VEC_INFO);
1117 (*stmt_vec_info_vec)[uid - 1] = info;
1121 static inline bool
1122 nested_in_vect_loop_p (struct loop *loop, stmt_vec_info stmt_info)
1124 return (loop->inner
1125 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1128 /* Return the earlier statement between STMT1_INFO and STMT2_INFO. */
1130 static inline stmt_vec_info
1131 get_earlier_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1133 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (stmt1_info)
1134 || !STMT_VINFO_RELATED_STMT (stmt1_info))
1135 && (STMT_VINFO_IN_PATTERN_P (stmt2_info)
1136 || !STMT_VINFO_RELATED_STMT (stmt2_info)));
1138 if (gimple_uid (stmt1_info->stmt) < gimple_uid (stmt2_info->stmt))
1139 return stmt1_info;
1140 else
1141 return stmt2_info;
1144 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1146 static inline stmt_vec_info
1147 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1149 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (stmt1_info)
1150 || !STMT_VINFO_RELATED_STMT (stmt1_info))
1151 && (STMT_VINFO_IN_PATTERN_P (stmt2_info)
1152 || !STMT_VINFO_RELATED_STMT (stmt2_info)));
1154 if (gimple_uid (stmt1_info->stmt) > gimple_uid (stmt2_info->stmt))
1155 return stmt1_info;
1156 else
1157 return stmt2_info;
1160 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1161 pattern. */
1163 static inline bool
1164 is_pattern_stmt_p (stmt_vec_info stmt_info)
1166 return stmt_info->pattern_stmt_p;
1169 /* Return true if BB is a loop header. */
1171 static inline bool
1172 is_loop_header_bb_p (basic_block bb)
1174 if (bb == (bb->loop_father)->header)
1175 return true;
1176 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1177 return false;
1180 /* Return pow2 (X). */
1182 static inline int
1183 vect_pow2 (int x)
1185 int i, res = 1;
1187 for (i = 0; i < x; i++)
1188 res *= 2;
1190 return res;
1193 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1195 static inline int
1196 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1197 tree vectype, int misalign)
1199 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1200 vectype, misalign);
1203 /* Get cost by calling cost target builtin. */
1205 static inline
1206 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1208 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1211 /* Alias targetm.vectorize.init_cost. */
1213 static inline void *
1214 init_cost (struct loop *loop_info)
1216 return targetm.vectorize.init_cost (loop_info);
1219 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1220 stmt_vec_info, int, enum vect_cost_model_location);
1222 /* Alias targetm.vectorize.add_stmt_cost. */
1224 static inline unsigned
1225 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1226 stmt_vec_info stmt_info, int misalign,
1227 enum vect_cost_model_location where)
1229 if (dump_file && (dump_flags & TDF_DETAILS))
1230 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign, where);
1231 return targetm.vectorize.add_stmt_cost (data, count, kind,
1232 stmt_info, misalign, where);
1235 /* Alias targetm.vectorize.finish_cost. */
1237 static inline void
1238 finish_cost (void *data, unsigned *prologue_cost,
1239 unsigned *body_cost, unsigned *epilogue_cost)
1241 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1244 /* Alias targetm.vectorize.destroy_cost_data. */
1246 static inline void
1247 destroy_cost_data (void *data)
1249 targetm.vectorize.destroy_cost_data (data);
1252 inline void
1253 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1255 stmt_info_for_cost *cost;
1256 unsigned i;
1257 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1258 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1259 cost->misalign, cost->where);
1262 /*-----------------------------------------------------------------*/
1263 /* Info on data references alignment. */
1264 /*-----------------------------------------------------------------*/
1265 #define DR_MISALIGNMENT_UNKNOWN (-1)
1266 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1268 inline void
1269 set_dr_misalignment (struct data_reference *dr, int val)
1271 dataref_aux *data_aux = DR_VECT_AUX (dr);
1272 data_aux->misalignment = val;
1275 inline int
1276 dr_misalignment (struct data_reference *dr)
1278 int misalign = DR_VECT_AUX (dr)->misalignment;
1279 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1280 return misalign;
1283 /* Reflects actual alignment of first access in the vectorized loop,
1284 taking into account peeling/versioning if applied. */
1285 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1286 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1288 /* Only defined once DR_MISALIGNMENT is defined. */
1289 #define DR_TARGET_ALIGNMENT(DR) DR_VECT_AUX (DR)->target_alignment
1291 /* Return true if data access DR is aligned to its target alignment
1292 (which may be less than a full vector). */
1294 static inline bool
1295 aligned_access_p (struct data_reference *data_ref_info)
1297 return (DR_MISALIGNMENT (data_ref_info) == 0);
1300 /* Return TRUE if the alignment of the data access is known, and FALSE
1301 otherwise. */
1303 static inline bool
1304 known_alignment_for_access_p (struct data_reference *data_ref_info)
1306 return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN);
1309 /* Return the minimum alignment in bytes that the vectorized version
1310 of DR is guaranteed to have. */
1312 static inline unsigned int
1313 vect_known_alignment_in_bytes (struct data_reference *dr)
1315 if (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT_UNKNOWN)
1316 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
1317 if (DR_MISALIGNMENT (dr) == 0)
1318 return DR_TARGET_ALIGNMENT (dr);
1319 return DR_MISALIGNMENT (dr) & -DR_MISALIGNMENT (dr);
1322 /* Return the behavior of DR with respect to the vectorization context
1323 (which for outer loop vectorization might not be the behavior recorded
1324 in DR itself). */
1326 static inline innermost_loop_behavior *
1327 vect_dr_behavior (data_reference *dr)
1329 gimple *stmt = DR_STMT (dr);
1330 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1331 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1332 if (loop_vinfo == NULL
1333 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1334 return &DR_INNERMOST (dr);
1335 else
1336 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1339 /* Return the stmt DR is in. For DR_STMT that have been replaced by
1340 a pattern this returns the corresponding pattern stmt. Otherwise
1341 DR_STMT is returned. */
1343 inline stmt_vec_info
1344 vect_dr_stmt (data_reference *dr)
1346 gimple *stmt = DR_STMT (dr);
1347 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1348 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1349 return STMT_VINFO_RELATED_STMT (stmt_info);
1350 /* DR_STMT should never refer to a stmt in a pattern replacement. */
1351 gcc_checking_assert (!STMT_VINFO_RELATED_STMT (stmt_info));
1352 return stmt_info;
1355 /* Return true if the vect cost model is unlimited. */
1356 static inline bool
1357 unlimited_cost_model (loop_p loop)
1359 if (loop != NULL && loop->force_vectorize
1360 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1361 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1362 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1365 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1366 if the first iteration should use a partial mask in order to achieve
1367 alignment. */
1369 static inline bool
1370 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1372 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1373 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1376 /* Return the number of vectors of type VECTYPE that are needed to get
1377 NUNITS elements. NUNITS should be based on the vectorization factor,
1378 so it is always a known multiple of the number of elements in VECTYPE. */
1380 static inline unsigned int
1381 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1383 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1386 /* Return the number of copies needed for loop vectorization when
1387 a statement operates on vectors of type VECTYPE. This is the
1388 vectorization factor divided by the number of elements in
1389 VECTYPE and is always known at compile time. */
1391 static inline unsigned int
1392 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1394 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1397 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1398 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1399 if we haven't yet recorded any vector types. */
1401 static inline void
1402 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1404 /* All unit counts have the form current_vector_size * X for some
1405 rational X, so two unit sizes must have a common multiple.
1406 Everything is a multiple of the initial value of 1. */
1407 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1408 *max_nunits = force_common_multiple (*max_nunits, nunits);
1411 /* Return the vectorization factor that should be used for costing
1412 purposes while vectorizing the loop described by LOOP_VINFO.
1413 Pick a reasonable estimate if the vectorization factor isn't
1414 known at compile time. */
1416 static inline unsigned int
1417 vect_vf_for_cost (loop_vec_info loop_vinfo)
1419 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1422 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1423 Pick a reasonable estimate if the exact number isn't known at
1424 compile time. */
1426 static inline unsigned int
1427 vect_nunits_for_cost (tree vec_type)
1429 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1432 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1434 static inline unsigned HOST_WIDE_INT
1435 vect_max_vf (loop_vec_info loop_vinfo)
1437 unsigned HOST_WIDE_INT vf;
1438 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1439 return vf;
1440 return MAX_VECTORIZATION_FACTOR;
1443 /* Return the size of the value accessed by unvectorized data reference DR.
1444 This is only valid once STMT_VINFO_VECTYPE has been calculated for the
1445 associated gimple statement, since that guarantees that DR accesses
1446 either a scalar or a scalar equivalent. ("Scalar equivalent" here
1447 includes things like V1SI, which can be vectorized in the same way
1448 as a plain SI.) */
1450 inline unsigned int
1451 vect_get_scalar_dr_size (struct data_reference *dr)
1453 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
1456 /* Source location + hotness information. */
1457 extern dump_user_location_t vect_location;
1459 /* A macro for calling:
1460 dump_begin_scope (MSG, vect_location);
1461 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1462 and then calling
1463 dump_end_scope ();
1464 once the object goes out of scope, thus capturing the nesting of
1465 the scopes. */
1467 #define DUMP_VECT_SCOPE(MSG) \
1468 AUTO_DUMP_SCOPE (MSG, vect_location)
1470 /*-----------------------------------------------------------------*/
1471 /* Function prototypes. */
1472 /*-----------------------------------------------------------------*/
1474 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1475 in tree-vect-loop-manip.c. */
1476 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1477 tree, tree, tree, bool);
1478 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1479 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1480 struct loop *, edge);
1481 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1482 poly_uint64);
1483 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1484 tree *, tree *, tree *, int, bool, bool);
1485 extern void vect_prepare_for_masked_peels (loop_vec_info);
1486 extern dump_user_location_t find_loop_location (struct loop *);
1487 extern bool vect_can_advance_ivs_p (loop_vec_info);
1489 /* In tree-vect-stmts.c. */
1490 extern poly_uint64 current_vector_size;
1491 extern tree get_vectype_for_scalar_type (tree);
1492 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1493 extern tree get_mask_type_for_scalar_type (tree);
1494 extern tree get_same_sized_vectype (tree, tree);
1495 extern bool vect_get_loop_mask_type (loop_vec_info);
1496 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1497 stmt_vec_info * = NULL, gimple ** = NULL);
1498 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1499 tree *, stmt_vec_info * = NULL,
1500 gimple ** = NULL);
1501 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1502 tree, tree, enum tree_code *,
1503 enum tree_code *, int *,
1504 vec<tree> *);
1505 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1506 enum tree_code *,
1507 int *, vec<tree> *);
1508 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1509 extern void free_stmt_vec_info (gimple *stmt);
1510 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1511 enum vect_cost_for_stmt, stmt_vec_info,
1512 int, enum vect_cost_model_location);
1513 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1514 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1515 gimple_stmt_iterator *);
1516 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1517 extern tree vect_get_store_rhs (stmt_vec_info);
1518 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1519 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1520 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1521 vec<tree> *, slp_tree);
1522 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1523 vec<tree> *, vec<tree> *);
1524 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1525 gimple_stmt_iterator *);
1526 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1527 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1528 bool *, slp_tree, slp_instance);
1529 extern void vect_remove_stores (stmt_vec_info);
1530 extern bool vect_analyze_stmt (stmt_vec_info, bool *, slp_tree, slp_instance,
1531 stmt_vector_for_cost *);
1532 extern bool vectorizable_condition (stmt_vec_info, gimple_stmt_iterator *,
1533 stmt_vec_info *, tree, int, slp_tree,
1534 stmt_vector_for_cost *);
1535 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1536 unsigned int *, unsigned int *,
1537 stmt_vector_for_cost *,
1538 stmt_vector_for_cost *, bool);
1539 extern void vect_get_store_cost (stmt_vec_info, int,
1540 unsigned int *, stmt_vector_for_cost *);
1541 extern bool vect_supportable_shift (enum tree_code, tree);
1542 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1543 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1544 extern void optimize_mask_stores (struct loop*);
1545 extern gcall *vect_gen_while (tree, tree, tree);
1546 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1547 extern bool vect_get_vector_types_for_stmt (stmt_vec_info, tree *, tree *);
1548 extern tree vect_get_mask_type_for_stmt (stmt_vec_info);
1550 /* In tree-vect-data-refs.c. */
1551 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1552 extern enum dr_alignment_support vect_supportable_dr_alignment
1553 (struct data_reference *, bool);
1554 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1555 HOST_WIDE_INT *);
1556 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1557 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1558 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1559 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1560 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1561 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1562 extern bool vect_analyze_data_ref_accesses (vec_info *);
1563 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1564 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1565 signop, int, internal_fn *, tree *);
1566 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1567 gather_scatter_info *);
1568 extern bool vect_find_stmt_data_reference (loop_p, gimple *,
1569 vec<data_reference_p> *);
1570 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1571 extern void vect_record_base_alignments (vec_info *);
1572 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, struct loop *, tree,
1573 tree *, gimple_stmt_iterator *,
1574 gimple **, bool, bool *,
1575 tree = NULL_TREE, tree = NULL_TREE);
1576 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1577 stmt_vec_info, tree);
1578 extern void vect_copy_ref_info (tree, tree);
1579 extern tree vect_create_destination_var (tree, tree);
1580 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1581 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1582 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1583 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1584 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1585 gimple_stmt_iterator *, vec<tree> *);
1586 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1587 tree *, enum dr_alignment_support, tree,
1588 struct loop **);
1589 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1590 gimple_stmt_iterator *);
1591 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1592 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1593 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1594 const char * = NULL);
1595 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1596 tree, tree = NULL_TREE);
1598 /* In tree-vect-loop.c. */
1599 /* FORNOW: Used in tree-parloops.c. */
1600 extern stmt_vec_info vect_force_simple_reduction (loop_vec_info, stmt_vec_info,
1601 bool *, bool);
1602 /* Used in gimple-loop-interchange.c. */
1603 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1604 enum tree_code);
1605 /* Drive for loop analysis stage. */
1606 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info,
1607 vec_info_shared *);
1608 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1609 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1610 tree *, bool);
1611 extern tree vect_halve_mask_nunits (tree);
1612 extern tree vect_double_mask_nunits (tree);
1613 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1614 unsigned int, tree);
1615 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1616 unsigned int, tree, unsigned int);
1618 /* Drive for loop transformation stage. */
1619 extern struct loop *vect_transform_loop (loop_vec_info);
1620 extern loop_vec_info vect_analyze_loop_form (struct loop *, vec_info_shared *);
1621 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1622 slp_tree, int, stmt_vec_info *,
1623 stmt_vector_for_cost *);
1624 extern bool vectorizable_reduction (stmt_vec_info, gimple_stmt_iterator *,
1625 stmt_vec_info *, slp_tree, slp_instance,
1626 stmt_vector_for_cost *);
1627 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1628 stmt_vec_info *, slp_tree,
1629 stmt_vector_for_cost *);
1630 extern tree get_initial_def_for_reduction (stmt_vec_info, tree, tree *);
1631 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1632 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1633 stmt_vector_for_cost *,
1634 stmt_vector_for_cost *,
1635 stmt_vector_for_cost *);
1636 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1638 /* In tree-vect-slp.c. */
1639 extern void vect_free_slp_instance (slp_instance, bool);
1640 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1641 gimple_stmt_iterator *, poly_uint64,
1642 slp_instance, bool, unsigned *);
1643 extern bool vect_slp_analyze_operations (vec_info *);
1644 extern bool vect_schedule_slp (vec_info *);
1645 extern bool vect_analyze_slp (vec_info *, unsigned);
1646 extern bool vect_make_slp_decision (loop_vec_info);
1647 extern void vect_detect_hybrid_slp (loop_vec_info);
1648 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1649 extern bool vect_slp_bb (basic_block);
1650 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1651 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1652 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1653 unsigned int * = NULL,
1654 tree * = NULL, tree * = NULL);
1655 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1656 unsigned int, vec<tree> &);
1657 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1659 /* In tree-vect-patterns.c. */
1660 /* Pattern recognition functions.
1661 Additional pattern recognition functions can (and will) be added
1662 in the future. */
1663 void vect_pattern_recog (vec_info *);
1665 /* In tree-vectorizer.c. */
1666 unsigned vectorize_loops (void);
1667 bool vect_stmt_in_region_p (vec_info *, gimple *);
1668 void vect_free_loop_info_assumptions (struct loop *);
1670 #endif /* GCC_TREE_VECTORIZER_H */