gcc/testsuite/
[official-gcc.git] / gcc / tree-complex.c
blobcf542fd230c943a77ec57b620f9ce66a62585ff6
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "flags.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "tree-eh.h"
31 #include "gimple-expr.h"
32 #include "is-a.h"
33 #include "gimple.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-ssa.h"
38 #include "tree-cfg.h"
39 #include "tree-phinodes.h"
40 #include "ssa-iterators.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "expr.h"
44 #include "tree-dfa.h"
45 #include "tree-ssa.h"
46 #include "tree-iterator.h"
47 #include "tree-pass.h"
48 #include "tree-ssa-propagate.h"
49 #include "tree-hasher.h"
50 #include "cfgloop.h"
53 /* For each complex ssa name, a lattice value. We're interested in finding
54 out whether a complex number is degenerate in some way, having only real
55 or only complex parts. */
57 enum
59 UNINITIALIZED = 0,
60 ONLY_REAL = 1,
61 ONLY_IMAG = 2,
62 VARYING = 3
65 /* The type complex_lattice_t holds combinations of the above
66 constants. */
67 typedef int complex_lattice_t;
69 #define PAIR(a, b) ((a) << 2 | (b))
72 static vec<complex_lattice_t> complex_lattice_values;
74 /* For each complex variable, a pair of variables for the components exists in
75 the hashtable. */
76 static int_tree_htab_type complex_variable_components;
78 /* For each complex SSA_NAME, a pair of ssa names for the components. */
79 static vec<tree> complex_ssa_name_components;
81 /* Lookup UID in the complex_variable_components hashtable and return the
82 associated tree. */
83 static tree
84 cvc_lookup (unsigned int uid)
86 struct int_tree_map *h, in;
87 in.uid = uid;
88 h = complex_variable_components.find_with_hash (&in, uid);
89 return h ? h->to : NULL;
92 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
94 static void
95 cvc_insert (unsigned int uid, tree to)
97 struct int_tree_map *h;
98 int_tree_map **loc;
100 h = XNEW (struct int_tree_map);
101 h->uid = uid;
102 h->to = to;
103 loc = complex_variable_components.find_slot_with_hash (h, uid, INSERT);
104 *loc = h;
107 /* Return true if T is not a zero constant. In the case of real values,
108 we're only interested in +0.0. */
110 static int
111 some_nonzerop (tree t)
113 int zerop = false;
115 /* Operations with real or imaginary part of a complex number zero
116 cannot be treated the same as operations with a real or imaginary
117 operand if we care about the signs of zeros in the result. */
118 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
119 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
120 else if (TREE_CODE (t) == FIXED_CST)
121 zerop = fixed_zerop (t);
122 else if (TREE_CODE (t) == INTEGER_CST)
123 zerop = integer_zerop (t);
125 return !zerop;
129 /* Compute a lattice value from the components of a complex type REAL
130 and IMAG. */
132 static complex_lattice_t
133 find_lattice_value_parts (tree real, tree imag)
135 int r, i;
136 complex_lattice_t ret;
138 r = some_nonzerop (real);
139 i = some_nonzerop (imag);
140 ret = r * ONLY_REAL + i * ONLY_IMAG;
142 /* ??? On occasion we could do better than mapping 0+0i to real, but we
143 certainly don't want to leave it UNINITIALIZED, which eventually gets
144 mapped to VARYING. */
145 if (ret == UNINITIALIZED)
146 ret = ONLY_REAL;
148 return ret;
152 /* Compute a lattice value from gimple_val T. */
154 static complex_lattice_t
155 find_lattice_value (tree t)
157 tree real, imag;
159 switch (TREE_CODE (t))
161 case SSA_NAME:
162 return complex_lattice_values[SSA_NAME_VERSION (t)];
164 case COMPLEX_CST:
165 real = TREE_REALPART (t);
166 imag = TREE_IMAGPART (t);
167 break;
169 default:
170 gcc_unreachable ();
173 return find_lattice_value_parts (real, imag);
176 /* Determine if LHS is something for which we're interested in seeing
177 simulation results. */
179 static bool
180 is_complex_reg (tree lhs)
182 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
185 /* Mark the incoming parameters to the function as VARYING. */
187 static void
188 init_parameter_lattice_values (void)
190 tree parm, ssa_name;
192 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
193 if (is_complex_reg (parm)
194 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
195 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
198 /* Initialize simulation state for each statement. Return false if we
199 found no statements we want to simulate, and thus there's nothing
200 for the entire pass to do. */
202 static bool
203 init_dont_simulate_again (void)
205 basic_block bb;
206 gimple_stmt_iterator gsi;
207 gimple phi;
208 bool saw_a_complex_op = false;
210 FOR_EACH_BB_FN (bb, cfun)
212 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
214 phi = gsi_stmt (gsi);
215 prop_set_simulate_again (phi,
216 is_complex_reg (gimple_phi_result (phi)));
219 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
221 gimple stmt;
222 tree op0, op1;
223 bool sim_again_p;
225 stmt = gsi_stmt (gsi);
226 op0 = op1 = NULL_TREE;
228 /* Most control-altering statements must be initially
229 simulated, else we won't cover the entire cfg. */
230 sim_again_p = stmt_ends_bb_p (stmt);
232 switch (gimple_code (stmt))
234 case GIMPLE_CALL:
235 if (gimple_call_lhs (stmt))
236 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
237 break;
239 case GIMPLE_ASSIGN:
240 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
241 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
242 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
243 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
244 else
245 op0 = gimple_assign_rhs1 (stmt);
246 if (gimple_num_ops (stmt) > 2)
247 op1 = gimple_assign_rhs2 (stmt);
248 break;
250 case GIMPLE_COND:
251 op0 = gimple_cond_lhs (stmt);
252 op1 = gimple_cond_rhs (stmt);
253 break;
255 default:
256 break;
259 if (op0 || op1)
260 switch (gimple_expr_code (stmt))
262 case EQ_EXPR:
263 case NE_EXPR:
264 case PLUS_EXPR:
265 case MINUS_EXPR:
266 case MULT_EXPR:
267 case TRUNC_DIV_EXPR:
268 case CEIL_DIV_EXPR:
269 case FLOOR_DIV_EXPR:
270 case ROUND_DIV_EXPR:
271 case RDIV_EXPR:
272 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
273 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
274 saw_a_complex_op = true;
275 break;
277 case NEGATE_EXPR:
278 case CONJ_EXPR:
279 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
280 saw_a_complex_op = true;
281 break;
283 case REALPART_EXPR:
284 case IMAGPART_EXPR:
285 /* The total store transformation performed during
286 gimplification creates such uninitialized loads
287 and we need to lower the statement to be able
288 to fix things up. */
289 if (TREE_CODE (op0) == SSA_NAME
290 && ssa_undefined_value_p (op0))
291 saw_a_complex_op = true;
292 break;
294 default:
295 break;
298 prop_set_simulate_again (stmt, sim_again_p);
302 return saw_a_complex_op;
306 /* Evaluate statement STMT against the complex lattice defined above. */
308 static enum ssa_prop_result
309 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
310 tree *result_p)
312 complex_lattice_t new_l, old_l, op1_l, op2_l;
313 unsigned int ver;
314 tree lhs;
316 lhs = gimple_get_lhs (stmt);
317 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
318 if (!lhs)
319 return SSA_PROP_VARYING;
321 /* These conditions should be satisfied due to the initial filter
322 set up in init_dont_simulate_again. */
323 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
324 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
326 *result_p = lhs;
327 ver = SSA_NAME_VERSION (lhs);
328 old_l = complex_lattice_values[ver];
330 switch (gimple_expr_code (stmt))
332 case SSA_NAME:
333 case COMPLEX_CST:
334 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
335 break;
337 case COMPLEX_EXPR:
338 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
339 gimple_assign_rhs2 (stmt));
340 break;
342 case PLUS_EXPR:
343 case MINUS_EXPR:
344 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
345 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
347 /* We've set up the lattice values such that IOR neatly
348 models addition. */
349 new_l = op1_l | op2_l;
350 break;
352 case MULT_EXPR:
353 case RDIV_EXPR:
354 case TRUNC_DIV_EXPR:
355 case CEIL_DIV_EXPR:
356 case FLOOR_DIV_EXPR:
357 case ROUND_DIV_EXPR:
358 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
359 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
361 /* Obviously, if either varies, so does the result. */
362 if (op1_l == VARYING || op2_l == VARYING)
363 new_l = VARYING;
364 /* Don't prematurely promote variables if we've not yet seen
365 their inputs. */
366 else if (op1_l == UNINITIALIZED)
367 new_l = op2_l;
368 else if (op2_l == UNINITIALIZED)
369 new_l = op1_l;
370 else
372 /* At this point both numbers have only one component. If the
373 numbers are of opposite kind, the result is imaginary,
374 otherwise the result is real. The add/subtract translates
375 the real/imag from/to 0/1; the ^ performs the comparison. */
376 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
378 /* Don't allow the lattice value to flip-flop indefinitely. */
379 new_l |= old_l;
381 break;
383 case NEGATE_EXPR:
384 case CONJ_EXPR:
385 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
386 break;
388 default:
389 new_l = VARYING;
390 break;
393 /* If nothing changed this round, let the propagator know. */
394 if (new_l == old_l)
395 return SSA_PROP_NOT_INTERESTING;
397 complex_lattice_values[ver] = new_l;
398 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
401 /* Evaluate a PHI node against the complex lattice defined above. */
403 static enum ssa_prop_result
404 complex_visit_phi (gimple phi)
406 complex_lattice_t new_l, old_l;
407 unsigned int ver;
408 tree lhs;
409 int i;
411 lhs = gimple_phi_result (phi);
413 /* This condition should be satisfied due to the initial filter
414 set up in init_dont_simulate_again. */
415 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
417 /* We've set up the lattice values such that IOR neatly models PHI meet. */
418 new_l = UNINITIALIZED;
419 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
420 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
422 ver = SSA_NAME_VERSION (lhs);
423 old_l = complex_lattice_values[ver];
425 if (new_l == old_l)
426 return SSA_PROP_NOT_INTERESTING;
428 complex_lattice_values[ver] = new_l;
429 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
432 /* Create one backing variable for a complex component of ORIG. */
434 static tree
435 create_one_component_var (tree type, tree orig, const char *prefix,
436 const char *suffix, enum tree_code code)
438 tree r = create_tmp_var (type, prefix);
440 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
441 DECL_ARTIFICIAL (r) = 1;
443 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
445 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
447 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
449 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
450 DECL_HAS_DEBUG_EXPR_P (r) = 1;
451 DECL_IGNORED_P (r) = 0;
452 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
454 else
456 DECL_IGNORED_P (r) = 1;
457 TREE_NO_WARNING (r) = 1;
460 return r;
463 /* Retrieve a value for a complex component of VAR. */
465 static tree
466 get_component_var (tree var, bool imag_p)
468 size_t decl_index = DECL_UID (var) * 2 + imag_p;
469 tree ret = cvc_lookup (decl_index);
471 if (ret == NULL)
473 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
474 imag_p ? "CI" : "CR",
475 imag_p ? "$imag" : "$real",
476 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
477 cvc_insert (decl_index, ret);
480 return ret;
483 /* Retrieve a value for a complex component of SSA_NAME. */
485 static tree
486 get_component_ssa_name (tree ssa_name, bool imag_p)
488 complex_lattice_t lattice = find_lattice_value (ssa_name);
489 size_t ssa_name_index;
490 tree ret;
492 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
494 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
495 if (SCALAR_FLOAT_TYPE_P (inner_type))
496 return build_real (inner_type, dconst0);
497 else
498 return build_int_cst (inner_type, 0);
501 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
502 ret = complex_ssa_name_components[ssa_name_index];
503 if (ret == NULL)
505 if (SSA_NAME_VAR (ssa_name))
506 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
507 else
508 ret = TREE_TYPE (TREE_TYPE (ssa_name));
509 ret = make_ssa_name (ret, NULL);
511 /* Copy some properties from the original. In particular, whether it
512 is used in an abnormal phi, and whether it's uninitialized. */
513 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
514 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
515 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
516 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
518 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
519 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
522 complex_ssa_name_components[ssa_name_index] = ret;
525 return ret;
528 /* Set a value for a complex component of SSA_NAME, return a
529 gimple_seq of stuff that needs doing. */
531 static gimple_seq
532 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
534 complex_lattice_t lattice = find_lattice_value (ssa_name);
535 size_t ssa_name_index;
536 tree comp;
537 gimple last;
538 gimple_seq list;
540 /* We know the value must be zero, else there's a bug in our lattice
541 analysis. But the value may well be a variable known to contain
542 zero. We should be safe ignoring it. */
543 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
544 return NULL;
546 /* If we've already assigned an SSA_NAME to this component, then this
547 means that our walk of the basic blocks found a use before the set.
548 This is fine. Now we should create an initialization for the value
549 we created earlier. */
550 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
551 comp = complex_ssa_name_components[ssa_name_index];
552 if (comp)
555 /* If we've nothing assigned, and the value we're given is already stable,
556 then install that as the value for this SSA_NAME. This preemptively
557 copy-propagates the value, which avoids unnecessary memory allocation. */
558 else if (is_gimple_min_invariant (value)
559 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
561 complex_ssa_name_components[ssa_name_index] = value;
562 return NULL;
564 else if (TREE_CODE (value) == SSA_NAME
565 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
567 /* Replace an anonymous base value with the variable from cvc_lookup.
568 This should result in better debug info. */
569 if (SSA_NAME_VAR (ssa_name)
570 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
571 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
573 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
574 replace_ssa_name_symbol (value, comp);
577 complex_ssa_name_components[ssa_name_index] = value;
578 return NULL;
581 /* Finally, we need to stabilize the result by installing the value into
582 a new ssa name. */
583 else
584 comp = get_component_ssa_name (ssa_name, imag_p);
586 /* Do all the work to assign VALUE to COMP. */
587 list = NULL;
588 value = force_gimple_operand (value, &list, false, NULL);
589 last = gimple_build_assign (comp, value);
590 gimple_seq_add_stmt (&list, last);
591 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
593 return list;
596 /* Extract the real or imaginary part of a complex variable or constant.
597 Make sure that it's a proper gimple_val and gimplify it if not.
598 Emit any new code before gsi. */
600 static tree
601 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
602 bool gimple_p)
604 switch (TREE_CODE (t))
606 case COMPLEX_CST:
607 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
609 case COMPLEX_EXPR:
610 gcc_unreachable ();
612 case VAR_DECL:
613 case RESULT_DECL:
614 case PARM_DECL:
615 case COMPONENT_REF:
616 case ARRAY_REF:
617 case VIEW_CONVERT_EXPR:
618 case MEM_REF:
620 tree inner_type = TREE_TYPE (TREE_TYPE (t));
622 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
623 inner_type, unshare_expr (t));
625 if (gimple_p)
626 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
627 GSI_SAME_STMT);
629 return t;
632 case SSA_NAME:
633 return get_component_ssa_name (t, imagpart_p);
635 default:
636 gcc_unreachable ();
640 /* Update the complex components of the ssa name on the lhs of STMT. */
642 static void
643 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
644 tree i)
646 tree lhs;
647 gimple_seq list;
649 lhs = gimple_get_lhs (stmt);
651 list = set_component_ssa_name (lhs, false, r);
652 if (list)
653 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
655 list = set_component_ssa_name (lhs, true, i);
656 if (list)
657 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
660 static void
661 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
663 gimple_seq list;
665 list = set_component_ssa_name (lhs, false, r);
666 if (list)
667 gsi_insert_seq_on_edge (e, list);
669 list = set_component_ssa_name (lhs, true, i);
670 if (list)
671 gsi_insert_seq_on_edge (e, list);
675 /* Update an assignment to a complex variable in place. */
677 static void
678 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
680 gimple stmt;
682 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
683 stmt = gsi_stmt (*gsi);
684 update_stmt (stmt);
685 if (maybe_clean_eh_stmt (stmt))
686 gimple_purge_dead_eh_edges (gimple_bb (stmt));
688 if (gimple_in_ssa_p (cfun))
689 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
693 /* Generate code at the entry point of the function to initialize the
694 component variables for a complex parameter. */
696 static void
697 update_parameter_components (void)
699 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
700 tree parm;
702 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
704 tree type = TREE_TYPE (parm);
705 tree ssa_name, r, i;
707 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
708 continue;
710 type = TREE_TYPE (type);
711 ssa_name = ssa_default_def (cfun, parm);
712 if (!ssa_name)
713 continue;
715 r = build1 (REALPART_EXPR, type, ssa_name);
716 i = build1 (IMAGPART_EXPR, type, ssa_name);
717 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
721 /* Generate code to set the component variables of a complex variable
722 to match the PHI statements in block BB. */
724 static void
725 update_phi_components (basic_block bb)
727 gimple_stmt_iterator gsi;
729 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
731 gimple phi = gsi_stmt (gsi);
733 if (is_complex_reg (gimple_phi_result (phi)))
735 tree lr, li;
736 gimple pr = NULL, pi = NULL;
737 unsigned int i, n;
739 lr = get_component_ssa_name (gimple_phi_result (phi), false);
740 if (TREE_CODE (lr) == SSA_NAME)
741 pr = create_phi_node (lr, bb);
743 li = get_component_ssa_name (gimple_phi_result (phi), true);
744 if (TREE_CODE (li) == SSA_NAME)
745 pi = create_phi_node (li, bb);
747 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
749 tree comp, arg = gimple_phi_arg_def (phi, i);
750 if (pr)
752 comp = extract_component (NULL, arg, false, false);
753 SET_PHI_ARG_DEF (pr, i, comp);
755 if (pi)
757 comp = extract_component (NULL, arg, true, false);
758 SET_PHI_ARG_DEF (pi, i, comp);
765 /* Expand a complex move to scalars. */
767 static void
768 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
770 tree inner_type = TREE_TYPE (type);
771 tree r, i, lhs, rhs;
772 gimple stmt = gsi_stmt (*gsi);
774 if (is_gimple_assign (stmt))
776 lhs = gimple_assign_lhs (stmt);
777 if (gimple_num_ops (stmt) == 2)
778 rhs = gimple_assign_rhs1 (stmt);
779 else
780 rhs = NULL_TREE;
782 else if (is_gimple_call (stmt))
784 lhs = gimple_call_lhs (stmt);
785 rhs = NULL_TREE;
787 else
788 gcc_unreachable ();
790 if (TREE_CODE (lhs) == SSA_NAME)
792 if (is_ctrl_altering_stmt (stmt))
794 edge e;
796 /* The value is not assigned on the exception edges, so we need not
797 concern ourselves there. We do need to update on the fallthru
798 edge. Find it. */
799 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
800 if (!e)
801 gcc_unreachable ();
803 r = build1 (REALPART_EXPR, inner_type, lhs);
804 i = build1 (IMAGPART_EXPR, inner_type, lhs);
805 update_complex_components_on_edge (e, lhs, r, i);
807 else if (is_gimple_call (stmt)
808 || gimple_has_side_effects (stmt)
809 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
811 r = build1 (REALPART_EXPR, inner_type, lhs);
812 i = build1 (IMAGPART_EXPR, inner_type, lhs);
813 update_complex_components (gsi, stmt, r, i);
815 else
817 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
819 r = extract_component (gsi, rhs, 0, true);
820 i = extract_component (gsi, rhs, 1, true);
822 else
824 r = gimple_assign_rhs1 (stmt);
825 i = gimple_assign_rhs2 (stmt);
827 update_complex_assignment (gsi, r, i);
830 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
832 tree x;
833 gimple t;
834 location_t loc;
836 loc = gimple_location (stmt);
837 r = extract_component (gsi, rhs, 0, false);
838 i = extract_component (gsi, rhs, 1, false);
840 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
841 t = gimple_build_assign (x, r);
842 gimple_set_location (t, loc);
843 gsi_insert_before (gsi, t, GSI_SAME_STMT);
845 if (stmt == gsi_stmt (*gsi))
847 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
848 gimple_assign_set_lhs (stmt, x);
849 gimple_assign_set_rhs1 (stmt, i);
851 else
853 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
854 t = gimple_build_assign (x, i);
855 gimple_set_location (t, loc);
856 gsi_insert_before (gsi, t, GSI_SAME_STMT);
858 stmt = gsi_stmt (*gsi);
859 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
860 gimple_return_set_retval (stmt, lhs);
863 update_stmt (stmt);
867 /* Expand complex addition to scalars:
868 a + b = (ar + br) + i(ai + bi)
869 a - b = (ar - br) + i(ai + bi)
872 static void
873 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
874 tree ar, tree ai, tree br, tree bi,
875 enum tree_code code,
876 complex_lattice_t al, complex_lattice_t bl)
878 tree rr, ri;
880 switch (PAIR (al, bl))
882 case PAIR (ONLY_REAL, ONLY_REAL):
883 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
884 ri = ai;
885 break;
887 case PAIR (ONLY_REAL, ONLY_IMAG):
888 rr = ar;
889 if (code == MINUS_EXPR)
890 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
891 else
892 ri = bi;
893 break;
895 case PAIR (ONLY_IMAG, ONLY_REAL):
896 if (code == MINUS_EXPR)
897 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
898 else
899 rr = br;
900 ri = ai;
901 break;
903 case PAIR (ONLY_IMAG, ONLY_IMAG):
904 rr = ar;
905 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
906 break;
908 case PAIR (VARYING, ONLY_REAL):
909 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
910 ri = ai;
911 break;
913 case PAIR (VARYING, ONLY_IMAG):
914 rr = ar;
915 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
916 break;
918 case PAIR (ONLY_REAL, VARYING):
919 if (code == MINUS_EXPR)
920 goto general;
921 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
922 ri = bi;
923 break;
925 case PAIR (ONLY_IMAG, VARYING):
926 if (code == MINUS_EXPR)
927 goto general;
928 rr = br;
929 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
930 break;
932 case PAIR (VARYING, VARYING):
933 general:
934 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
935 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
936 break;
938 default:
939 gcc_unreachable ();
942 update_complex_assignment (gsi, rr, ri);
945 /* Expand a complex multiplication or division to a libcall to the c99
946 compliant routines. */
948 static void
949 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
950 tree br, tree bi, enum tree_code code)
952 enum machine_mode mode;
953 enum built_in_function bcode;
954 tree fn, type, lhs;
955 gimple old_stmt, stmt;
957 old_stmt = gsi_stmt (*gsi);
958 lhs = gimple_assign_lhs (old_stmt);
959 type = TREE_TYPE (lhs);
961 mode = TYPE_MODE (type);
962 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
964 if (code == MULT_EXPR)
965 bcode = ((enum built_in_function)
966 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
967 else if (code == RDIV_EXPR)
968 bcode = ((enum built_in_function)
969 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
970 else
971 gcc_unreachable ();
972 fn = builtin_decl_explicit (bcode);
974 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
975 gimple_call_set_lhs (stmt, lhs);
976 update_stmt (stmt);
977 gsi_replace (gsi, stmt, false);
979 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
980 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
982 if (gimple_in_ssa_p (cfun))
984 type = TREE_TYPE (type);
985 update_complex_components (gsi, stmt,
986 build1 (REALPART_EXPR, type, lhs),
987 build1 (IMAGPART_EXPR, type, lhs));
988 SSA_NAME_DEF_STMT (lhs) = stmt;
992 /* Expand complex multiplication to scalars:
993 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
996 static void
997 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
998 tree ar, tree ai, tree br, tree bi,
999 complex_lattice_t al, complex_lattice_t bl)
1001 tree rr, ri;
1003 if (al < bl)
1005 complex_lattice_t tl;
1006 rr = ar, ar = br, br = rr;
1007 ri = ai, ai = bi, bi = ri;
1008 tl = al, al = bl, bl = tl;
1011 switch (PAIR (al, bl))
1013 case PAIR (ONLY_REAL, ONLY_REAL):
1014 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1015 ri = ai;
1016 break;
1018 case PAIR (ONLY_IMAG, ONLY_REAL):
1019 rr = ar;
1020 if (TREE_CODE (ai) == REAL_CST
1021 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1022 ri = br;
1023 else
1024 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1025 break;
1027 case PAIR (ONLY_IMAG, ONLY_IMAG):
1028 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1029 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1030 ri = ar;
1031 break;
1033 case PAIR (VARYING, ONLY_REAL):
1034 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1035 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1036 break;
1038 case PAIR (VARYING, ONLY_IMAG):
1039 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1040 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1041 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1042 break;
1044 case PAIR (VARYING, VARYING):
1045 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1047 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1048 return;
1050 else
1052 tree t1, t2, t3, t4;
1054 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1055 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1056 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1058 /* Avoid expanding redundant multiplication for the common
1059 case of squaring a complex number. */
1060 if (ar == br && ai == bi)
1061 t4 = t3;
1062 else
1063 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1065 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1066 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1068 break;
1070 default:
1071 gcc_unreachable ();
1074 update_complex_assignment (gsi, rr, ri);
1077 /* Keep this algorithm in sync with fold-const.c:const_binop().
1079 Expand complex division to scalars, straightforward algorithm.
1080 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1081 t = br*br + bi*bi
1084 static void
1085 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1086 tree ar, tree ai, tree br, tree bi,
1087 enum tree_code code)
1089 tree rr, ri, div, t1, t2, t3;
1091 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1092 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1093 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1095 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1096 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1097 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1098 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1100 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1101 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1102 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1103 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1105 update_complex_assignment (gsi, rr, ri);
1108 /* Keep this algorithm in sync with fold-const.c:const_binop().
1110 Expand complex division to scalars, modified algorithm to minimize
1111 overflow with wide input ranges. */
1113 static void
1114 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1115 tree ar, tree ai, tree br, tree bi,
1116 enum tree_code code)
1118 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1119 basic_block bb_cond, bb_true, bb_false, bb_join;
1120 gimple stmt;
1122 /* Examine |br| < |bi|, and branch. */
1123 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1124 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1125 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1126 LT_EXPR, boolean_type_node, t1, t2);
1127 STRIP_NOPS (compare);
1129 bb_cond = bb_true = bb_false = bb_join = NULL;
1130 rr = ri = tr = ti = NULL;
1131 if (TREE_CODE (compare) != INTEGER_CST)
1133 edge e;
1134 gimple stmt;
1135 tree cond, tmp;
1137 tmp = create_tmp_var (boolean_type_node, NULL);
1138 stmt = gimple_build_assign (tmp, compare);
1139 if (gimple_in_ssa_p (cfun))
1141 tmp = make_ssa_name (tmp, stmt);
1142 gimple_assign_set_lhs (stmt, tmp);
1145 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1147 cond = fold_build2_loc (gimple_location (stmt),
1148 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1149 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1150 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1152 /* Split the original block, and create the TRUE and FALSE blocks. */
1153 e = split_block (gsi_bb (*gsi), stmt);
1154 bb_cond = e->src;
1155 bb_join = e->dest;
1156 bb_true = create_empty_bb (bb_cond);
1157 bb_false = create_empty_bb (bb_true);
1159 /* Wire the blocks together. */
1160 e->flags = EDGE_TRUE_VALUE;
1161 redirect_edge_succ (e, bb_true);
1162 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1163 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1164 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1165 if (current_loops)
1167 add_bb_to_loop (bb_true, bb_cond->loop_father);
1168 add_bb_to_loop (bb_false, bb_cond->loop_father);
1171 /* Update dominance info. Note that bb_join's data was
1172 updated by split_block. */
1173 if (dom_info_available_p (CDI_DOMINATORS))
1175 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1176 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1179 rr = create_tmp_reg (inner_type, NULL);
1180 ri = create_tmp_reg (inner_type, NULL);
1183 /* In the TRUE branch, we compute
1184 ratio = br/bi;
1185 div = (br * ratio) + bi;
1186 tr = (ar * ratio) + ai;
1187 ti = (ai * ratio) - ar;
1188 tr = tr / div;
1189 ti = ti / div; */
1190 if (bb_true || integer_nonzerop (compare))
1192 if (bb_true)
1194 *gsi = gsi_last_bb (bb_true);
1195 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1198 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1200 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1201 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1203 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1204 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1206 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1207 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1209 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1210 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1212 if (bb_true)
1214 stmt = gimple_build_assign (rr, tr);
1215 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1216 stmt = gimple_build_assign (ri, ti);
1217 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1218 gsi_remove (gsi, true);
1222 /* In the FALSE branch, we compute
1223 ratio = d/c;
1224 divisor = (d * ratio) + c;
1225 tr = (b * ratio) + a;
1226 ti = b - (a * ratio);
1227 tr = tr / div;
1228 ti = ti / div; */
1229 if (bb_false || integer_zerop (compare))
1231 if (bb_false)
1233 *gsi = gsi_last_bb (bb_false);
1234 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1237 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1239 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1240 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1242 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1243 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1245 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1246 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1248 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1249 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1251 if (bb_false)
1253 stmt = gimple_build_assign (rr, tr);
1254 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1255 stmt = gimple_build_assign (ri, ti);
1256 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1257 gsi_remove (gsi, true);
1261 if (bb_join)
1262 *gsi = gsi_start_bb (bb_join);
1263 else
1264 rr = tr, ri = ti;
1266 update_complex_assignment (gsi, rr, ri);
1269 /* Expand complex division to scalars. */
1271 static void
1272 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1273 tree ar, tree ai, tree br, tree bi,
1274 enum tree_code code,
1275 complex_lattice_t al, complex_lattice_t bl)
1277 tree rr, ri;
1279 switch (PAIR (al, bl))
1281 case PAIR (ONLY_REAL, ONLY_REAL):
1282 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1283 ri = ai;
1284 break;
1286 case PAIR (ONLY_REAL, ONLY_IMAG):
1287 rr = ai;
1288 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1289 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1290 break;
1292 case PAIR (ONLY_IMAG, ONLY_REAL):
1293 rr = ar;
1294 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1295 break;
1297 case PAIR (ONLY_IMAG, ONLY_IMAG):
1298 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1299 ri = ar;
1300 break;
1302 case PAIR (VARYING, ONLY_REAL):
1303 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1304 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1305 break;
1307 case PAIR (VARYING, ONLY_IMAG):
1308 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1309 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1310 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1312 case PAIR (ONLY_REAL, VARYING):
1313 case PAIR (ONLY_IMAG, VARYING):
1314 case PAIR (VARYING, VARYING):
1315 switch (flag_complex_method)
1317 case 0:
1318 /* straightforward implementation of complex divide acceptable. */
1319 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1320 break;
1322 case 2:
1323 if (SCALAR_FLOAT_TYPE_P (inner_type))
1325 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1326 break;
1328 /* FALLTHRU */
1330 case 1:
1331 /* wide ranges of inputs must work for complex divide. */
1332 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1333 break;
1335 default:
1336 gcc_unreachable ();
1338 return;
1340 default:
1341 gcc_unreachable ();
1344 update_complex_assignment (gsi, rr, ri);
1347 /* Expand complex negation to scalars:
1348 -a = (-ar) + i(-ai)
1351 static void
1352 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1353 tree ar, tree ai)
1355 tree rr, ri;
1357 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1358 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1360 update_complex_assignment (gsi, rr, ri);
1363 /* Expand complex conjugate to scalars:
1364 ~a = (ar) + i(-ai)
1367 static void
1368 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1369 tree ar, tree ai)
1371 tree ri;
1373 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1375 update_complex_assignment (gsi, ar, ri);
1378 /* Expand complex comparison (EQ or NE only). */
1380 static void
1381 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1382 tree br, tree bi, enum tree_code code)
1384 tree cr, ci, cc, type;
1385 gimple stmt;
1387 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1388 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1389 cc = gimplify_build2 (gsi,
1390 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1391 boolean_type_node, cr, ci);
1393 stmt = gsi_stmt (*gsi);
1395 switch (gimple_code (stmt))
1397 case GIMPLE_RETURN:
1398 type = TREE_TYPE (gimple_return_retval (stmt));
1399 gimple_return_set_retval (stmt, fold_convert (type, cc));
1400 break;
1402 case GIMPLE_ASSIGN:
1403 type = TREE_TYPE (gimple_assign_lhs (stmt));
1404 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1405 stmt = gsi_stmt (*gsi);
1406 break;
1408 case GIMPLE_COND:
1409 gimple_cond_set_code (stmt, EQ_EXPR);
1410 gimple_cond_set_lhs (stmt, cc);
1411 gimple_cond_set_rhs (stmt, boolean_true_node);
1412 break;
1414 default:
1415 gcc_unreachable ();
1418 update_stmt (stmt);
1421 /* Expand inline asm that sets some complex SSA_NAMEs. */
1423 static void
1424 expand_complex_asm (gimple_stmt_iterator *gsi)
1426 gimple stmt = gsi_stmt (*gsi);
1427 unsigned int i;
1429 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1431 tree link = gimple_asm_output_op (stmt, i);
1432 tree op = TREE_VALUE (link);
1433 if (TREE_CODE (op) == SSA_NAME
1434 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1436 tree type = TREE_TYPE (op);
1437 tree inner_type = TREE_TYPE (type);
1438 tree r = build1 (REALPART_EXPR, inner_type, op);
1439 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1440 gimple_seq list = set_component_ssa_name (op, false, r);
1442 if (list)
1443 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1445 list = set_component_ssa_name (op, true, i);
1446 if (list)
1447 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1452 /* Process one statement. If we identify a complex operation, expand it. */
1454 static void
1455 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1457 gimple stmt = gsi_stmt (*gsi);
1458 tree type, inner_type, lhs;
1459 tree ac, ar, ai, bc, br, bi;
1460 complex_lattice_t al, bl;
1461 enum tree_code code;
1463 if (gimple_code (stmt) == GIMPLE_ASM)
1465 expand_complex_asm (gsi);
1466 return;
1469 lhs = gimple_get_lhs (stmt);
1470 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1471 return;
1473 type = TREE_TYPE (gimple_op (stmt, 0));
1474 code = gimple_expr_code (stmt);
1476 /* Initial filter for operations we handle. */
1477 switch (code)
1479 case PLUS_EXPR:
1480 case MINUS_EXPR:
1481 case MULT_EXPR:
1482 case TRUNC_DIV_EXPR:
1483 case CEIL_DIV_EXPR:
1484 case FLOOR_DIV_EXPR:
1485 case ROUND_DIV_EXPR:
1486 case RDIV_EXPR:
1487 case NEGATE_EXPR:
1488 case CONJ_EXPR:
1489 if (TREE_CODE (type) != COMPLEX_TYPE)
1490 return;
1491 inner_type = TREE_TYPE (type);
1492 break;
1494 case EQ_EXPR:
1495 case NE_EXPR:
1496 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1497 subcode, so we need to access the operands using gimple_op. */
1498 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1499 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1500 return;
1501 break;
1503 default:
1505 tree rhs;
1507 /* GIMPLE_COND may also fallthru here, but we do not need to
1508 do anything with it. */
1509 if (gimple_code (stmt) == GIMPLE_COND)
1510 return;
1512 if (TREE_CODE (type) == COMPLEX_TYPE)
1513 expand_complex_move (gsi, type);
1514 else if (is_gimple_assign (stmt)
1515 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1516 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1517 && TREE_CODE (lhs) == SSA_NAME)
1519 rhs = gimple_assign_rhs1 (stmt);
1520 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1521 gimple_assign_rhs_code (stmt)
1522 == IMAGPART_EXPR,
1523 false);
1524 gimple_assign_set_rhs_from_tree (gsi, rhs);
1525 stmt = gsi_stmt (*gsi);
1526 update_stmt (stmt);
1529 return;
1532 /* Extract the components of the two complex values. Make sure and
1533 handle the common case of the same value used twice specially. */
1534 if (is_gimple_assign (stmt))
1536 ac = gimple_assign_rhs1 (stmt);
1537 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1539 /* GIMPLE_CALL can not get here. */
1540 else
1542 ac = gimple_cond_lhs (stmt);
1543 bc = gimple_cond_rhs (stmt);
1546 ar = extract_component (gsi, ac, false, true);
1547 ai = extract_component (gsi, ac, true, true);
1549 if (ac == bc)
1550 br = ar, bi = ai;
1551 else if (bc)
1553 br = extract_component (gsi, bc, 0, true);
1554 bi = extract_component (gsi, bc, 1, true);
1556 else
1557 br = bi = NULL_TREE;
1559 if (gimple_in_ssa_p (cfun))
1561 al = find_lattice_value (ac);
1562 if (al == UNINITIALIZED)
1563 al = VARYING;
1565 if (TREE_CODE_CLASS (code) == tcc_unary)
1566 bl = UNINITIALIZED;
1567 else if (ac == bc)
1568 bl = al;
1569 else
1571 bl = find_lattice_value (bc);
1572 if (bl == UNINITIALIZED)
1573 bl = VARYING;
1576 else
1577 al = bl = VARYING;
1579 switch (code)
1581 case PLUS_EXPR:
1582 case MINUS_EXPR:
1583 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1584 break;
1586 case MULT_EXPR:
1587 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1588 break;
1590 case TRUNC_DIV_EXPR:
1591 case CEIL_DIV_EXPR:
1592 case FLOOR_DIV_EXPR:
1593 case ROUND_DIV_EXPR:
1594 case RDIV_EXPR:
1595 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1596 break;
1598 case NEGATE_EXPR:
1599 expand_complex_negation (gsi, inner_type, ar, ai);
1600 break;
1602 case CONJ_EXPR:
1603 expand_complex_conjugate (gsi, inner_type, ar, ai);
1604 break;
1606 case EQ_EXPR:
1607 case NE_EXPR:
1608 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1609 break;
1611 default:
1612 gcc_unreachable ();
1617 /* Entry point for complex operation lowering during optimization. */
1619 static unsigned int
1620 tree_lower_complex (void)
1622 int old_last_basic_block;
1623 gimple_stmt_iterator gsi;
1624 basic_block bb;
1626 if (!init_dont_simulate_again ())
1627 return 0;
1629 complex_lattice_values.create (num_ssa_names);
1630 complex_lattice_values.safe_grow_cleared (num_ssa_names);
1632 init_parameter_lattice_values ();
1633 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1635 complex_variable_components.create (10);
1637 complex_ssa_name_components.create (2 * num_ssa_names);
1638 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1640 update_parameter_components ();
1642 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1643 old_last_basic_block = last_basic_block_for_fn (cfun);
1644 FOR_EACH_BB_FN (bb, cfun)
1646 if (bb->index >= old_last_basic_block)
1647 continue;
1649 update_phi_components (bb);
1650 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1651 expand_complex_operations_1 (&gsi);
1654 gsi_commit_edge_inserts ();
1656 complex_variable_components.dispose ();
1657 complex_ssa_name_components.release ();
1658 complex_lattice_values.release ();
1659 return 0;
1662 namespace {
1664 const pass_data pass_data_lower_complex =
1666 GIMPLE_PASS, /* type */
1667 "cplxlower", /* name */
1668 OPTGROUP_NONE, /* optinfo_flags */
1669 true, /* has_execute */
1670 TV_NONE, /* tv_id */
1671 PROP_ssa, /* properties_required */
1672 PROP_gimple_lcx, /* properties_provided */
1673 0, /* properties_destroyed */
1674 0, /* todo_flags_start */
1675 TODO_update_ssa, /* todo_flags_finish */
1678 class pass_lower_complex : public gimple_opt_pass
1680 public:
1681 pass_lower_complex (gcc::context *ctxt)
1682 : gimple_opt_pass (pass_data_lower_complex, ctxt)
1685 /* opt_pass methods: */
1686 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1687 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1689 }; // class pass_lower_complex
1691 } // anon namespace
1693 gimple_opt_pass *
1694 make_pass_lower_complex (gcc::context *ctxt)
1696 return new pass_lower_complex (ctxt);
1700 namespace {
1702 const pass_data pass_data_lower_complex_O0 =
1704 GIMPLE_PASS, /* type */
1705 "cplxlower0", /* name */
1706 OPTGROUP_NONE, /* optinfo_flags */
1707 true, /* has_execute */
1708 TV_NONE, /* tv_id */
1709 PROP_cfg, /* properties_required */
1710 PROP_gimple_lcx, /* properties_provided */
1711 0, /* properties_destroyed */
1712 0, /* todo_flags_start */
1713 TODO_update_ssa, /* todo_flags_finish */
1716 class pass_lower_complex_O0 : public gimple_opt_pass
1718 public:
1719 pass_lower_complex_O0 (gcc::context *ctxt)
1720 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1723 /* opt_pass methods: */
1724 virtual bool gate (function *fun)
1726 /* With errors, normal optimization passes are not run. If we don't
1727 lower complex operations at all, rtl expansion will abort. */
1728 return !(fun->curr_properties & PROP_gimple_lcx);
1731 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1733 }; // class pass_lower_complex_O0
1735 } // anon namespace
1737 gimple_opt_pass *
1738 make_pass_lower_complex_O0 (gcc::context *ctxt)
1740 return new pass_lower_complex_O0 (ctxt);