gcc/testsuite/
[official-gcc.git] / gcc / stor-layout.c
blob8fa4dc884b113eeb8e22afe0ab2806cc947ef6a5
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
28 #include "varasm.h"
29 #include "print-tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "diagnostic-core.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimplify.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
54 in the address spaces' address_mode, not pointer_mode. Set only by
55 internal_reference_types called only by a front end. */
56 static int reference_types_internal = 0;
58 static tree self_referential_size (tree);
59 static void finalize_record_size (record_layout_info);
60 static void finalize_type_size (tree);
61 static void place_union_field (record_layout_info, tree);
62 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
63 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
64 HOST_WIDE_INT, tree);
65 #endif
66 extern void debug_rli (record_layout_info);
68 /* Show that REFERENCE_TYPES are internal and should use address_mode.
69 Called only by front end. */
71 void
72 internal_reference_types (void)
74 reference_types_internal = 1;
77 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
78 to serve as the actual size-expression for a type or decl. */
80 tree
81 variable_size (tree size)
83 /* Obviously. */
84 if (TREE_CONSTANT (size))
85 return size;
87 /* If the size is self-referential, we can't make a SAVE_EXPR (see
88 save_expr for the rationale). But we can do something else. */
89 if (CONTAINS_PLACEHOLDER_P (size))
90 return self_referential_size (size);
92 /* If we are in the global binding level, we can't make a SAVE_EXPR
93 since it may end up being shared across functions, so it is up
94 to the front-end to deal with this case. */
95 if (lang_hooks.decls.global_bindings_p ())
96 return size;
98 return save_expr (size);
101 /* An array of functions used for self-referential size computation. */
102 static GTY(()) vec<tree, va_gc> *size_functions;
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
108 static tree
109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
111 enum tree_code code = TREE_CODE (*tp);
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
118 *walk_subtrees = 0;
119 return NULL_TREE;
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
126 *walk_subtrees = 0;
127 return NULL_TREE;
130 /* Default case: the component reference. */
131 else if (code == COMPONENT_REF)
133 tree inner;
134 for (inner = TREE_OPERAND (*tp, 0);
135 REFERENCE_CLASS_P (inner);
136 inner = TREE_OPERAND (inner, 0))
139 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
141 *walk_subtrees = 0;
142 return NULL_TREE;
146 /* We're not supposed to have them in self-referential size trees
147 because we wouldn't properly control when they are evaluated.
148 However, not creating superfluous SAVE_EXPRs requires accurate
149 tracking of readonly-ness all the way down to here, which we
150 cannot always guarantee in practice. So punt in this case. */
151 else if (code == SAVE_EXPR)
152 return error_mark_node;
154 else if (code == STATEMENT_LIST)
155 gcc_unreachable ();
157 return copy_tree_r (tp, walk_subtrees, data);
160 /* Given a SIZE expression that is self-referential, return an equivalent
161 expression to serve as the actual size expression for a type. */
163 static tree
164 self_referential_size (tree size)
166 static unsigned HOST_WIDE_INT fnno = 0;
167 vec<tree> self_refs = vNULL;
168 tree param_type_list = NULL, param_decl_list = NULL;
169 tree t, ref, return_type, fntype, fnname, fndecl;
170 unsigned int i;
171 char buf[128];
172 vec<tree, va_gc> *args = NULL;
174 /* Do not factor out simple operations. */
175 t = skip_simple_constant_arithmetic (size);
176 if (TREE_CODE (t) == CALL_EXPR)
177 return size;
179 /* Collect the list of self-references in the expression. */
180 find_placeholder_in_expr (size, &self_refs);
181 gcc_assert (self_refs.length () > 0);
183 /* Obtain a private copy of the expression. */
184 t = size;
185 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
186 return size;
187 size = t;
189 /* Build the parameter and argument lists in parallel; also
190 substitute the former for the latter in the expression. */
191 vec_alloc (args, self_refs.length ());
192 FOR_EACH_VEC_ELT (self_refs, i, ref)
194 tree subst, param_name, param_type, param_decl;
196 if (DECL_P (ref))
198 /* We shouldn't have true variables here. */
199 gcc_assert (TREE_READONLY (ref));
200 subst = ref;
202 /* This is the pattern built in ada/make_aligning_type. */
203 else if (TREE_CODE (ref) == ADDR_EXPR)
204 subst = ref;
205 /* Default case: the component reference. */
206 else
207 subst = TREE_OPERAND (ref, 1);
209 sprintf (buf, "p%d", i);
210 param_name = get_identifier (buf);
211 param_type = TREE_TYPE (ref);
212 param_decl
213 = build_decl (input_location, PARM_DECL, param_name, param_type);
214 if (targetm.calls.promote_prototypes (NULL_TREE)
215 && INTEGRAL_TYPE_P (param_type)
216 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
217 DECL_ARG_TYPE (param_decl) = integer_type_node;
218 else
219 DECL_ARG_TYPE (param_decl) = param_type;
220 DECL_ARTIFICIAL (param_decl) = 1;
221 TREE_READONLY (param_decl) = 1;
223 size = substitute_in_expr (size, subst, param_decl);
225 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
226 param_decl_list = chainon (param_decl, param_decl_list);
227 args->quick_push (ref);
230 self_refs.release ();
232 /* Append 'void' to indicate that the number of parameters is fixed. */
233 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
235 /* The 3 lists have been created in reverse order. */
236 param_type_list = nreverse (param_type_list);
237 param_decl_list = nreverse (param_decl_list);
239 /* Build the function type. */
240 return_type = TREE_TYPE (size);
241 fntype = build_function_type (return_type, param_type_list);
243 /* Build the function declaration. */
244 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
245 fnname = get_file_function_name (buf);
246 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
247 for (t = param_decl_list; t; t = DECL_CHAIN (t))
248 DECL_CONTEXT (t) = fndecl;
249 DECL_ARGUMENTS (fndecl) = param_decl_list;
250 DECL_RESULT (fndecl)
251 = build_decl (input_location, RESULT_DECL, 0, return_type);
252 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
254 /* The function has been created by the compiler and we don't
255 want to emit debug info for it. */
256 DECL_ARTIFICIAL (fndecl) = 1;
257 DECL_IGNORED_P (fndecl) = 1;
259 /* It is supposed to be "const" and never throw. */
260 TREE_READONLY (fndecl) = 1;
261 TREE_NOTHROW (fndecl) = 1;
263 /* We want it to be inlined when this is deemed profitable, as
264 well as discarded if every call has been integrated. */
265 DECL_DECLARED_INLINE_P (fndecl) = 1;
267 /* It is made up of a unique return statement. */
268 DECL_INITIAL (fndecl) = make_node (BLOCK);
269 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
270 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
271 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
272 TREE_STATIC (fndecl) = 1;
274 /* Put it onto the list of size functions. */
275 vec_safe_push (size_functions, fndecl);
277 /* Replace the original expression with a call to the size function. */
278 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
281 /* Take, queue and compile all the size functions. It is essential that
282 the size functions be gimplified at the very end of the compilation
283 in order to guarantee transparent handling of self-referential sizes.
284 Otherwise the GENERIC inliner would not be able to inline them back
285 at each of their call sites, thus creating artificial non-constant
286 size expressions which would trigger nasty problems later on. */
288 void
289 finalize_size_functions (void)
291 unsigned int i;
292 tree fndecl;
294 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
296 allocate_struct_function (fndecl, false);
297 set_cfun (NULL);
298 dump_function (TDI_original, fndecl);
299 gimplify_function_tree (fndecl);
300 dump_function (TDI_generic, fndecl);
301 cgraph_finalize_function (fndecl, false);
304 vec_free (size_functions);
307 /* Return the machine mode to use for a nonscalar of SIZE bits. The
308 mode must be in class MCLASS, and have exactly that many value bits;
309 it may have padding as well. If LIMIT is nonzero, modes of wider
310 than MAX_FIXED_MODE_SIZE will not be used. */
312 enum machine_mode
313 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
315 enum machine_mode mode;
317 if (limit && size > MAX_FIXED_MODE_SIZE)
318 return BLKmode;
320 /* Get the first mode which has this size, in the specified class. */
321 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
323 if (GET_MODE_PRECISION (mode) == size)
324 return mode;
326 return BLKmode;
329 /* Similar, except passed a tree node. */
331 enum machine_mode
332 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
334 unsigned HOST_WIDE_INT uhwi;
335 unsigned int ui;
337 if (!tree_fits_uhwi_p (size))
338 return BLKmode;
339 uhwi = tree_to_uhwi (size);
340 ui = uhwi;
341 if (uhwi != ui)
342 return BLKmode;
343 return mode_for_size (ui, mclass, limit);
346 /* Similar, but never return BLKmode; return the narrowest mode that
347 contains at least the requested number of value bits. */
349 enum machine_mode
350 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
352 enum machine_mode mode;
354 /* Get the first mode which has at least this size, in the
355 specified class. */
356 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
357 mode = GET_MODE_WIDER_MODE (mode))
358 if (GET_MODE_PRECISION (mode) >= size)
359 return mode;
361 gcc_unreachable ();
364 /* Find an integer mode of the exact same size, or BLKmode on failure. */
366 enum machine_mode
367 int_mode_for_mode (enum machine_mode mode)
369 switch (GET_MODE_CLASS (mode))
371 case MODE_INT:
372 case MODE_PARTIAL_INT:
373 break;
375 case MODE_COMPLEX_INT:
376 case MODE_COMPLEX_FLOAT:
377 case MODE_FLOAT:
378 case MODE_DECIMAL_FLOAT:
379 case MODE_VECTOR_INT:
380 case MODE_VECTOR_FLOAT:
381 case MODE_FRACT:
382 case MODE_ACCUM:
383 case MODE_UFRACT:
384 case MODE_UACCUM:
385 case MODE_VECTOR_FRACT:
386 case MODE_VECTOR_ACCUM:
387 case MODE_VECTOR_UFRACT:
388 case MODE_VECTOR_UACCUM:
389 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
390 break;
392 case MODE_RANDOM:
393 if (mode == BLKmode)
394 break;
396 /* ... fall through ... */
398 case MODE_CC:
399 default:
400 gcc_unreachable ();
403 return mode;
406 /* Find a mode that can be used for efficient bitwise operations on MODE.
407 Return BLKmode if no such mode exists. */
409 enum machine_mode
410 bitwise_mode_for_mode (enum machine_mode mode)
412 /* Quick exit if we already have a suitable mode. */
413 unsigned int bitsize = GET_MODE_BITSIZE (mode);
414 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
415 return mode;
417 /* Reuse the sanity checks from int_mode_for_mode. */
418 gcc_checking_assert ((int_mode_for_mode (mode), true));
420 /* Try to replace complex modes with complex modes. In general we
421 expect both components to be processed independently, so we only
422 care whether there is a register for the inner mode. */
423 if (COMPLEX_MODE_P (mode))
425 enum machine_mode trial = mode;
426 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
427 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
428 if (trial != BLKmode
429 && have_regs_of_mode[GET_MODE_INNER (trial)])
430 return trial;
433 /* Try to replace vector modes with vector modes. Also try using vector
434 modes if an integer mode would be too big. */
435 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
437 enum machine_mode trial = mode;
438 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
439 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
440 if (trial != BLKmode
441 && have_regs_of_mode[trial]
442 && targetm.vector_mode_supported_p (trial))
443 return trial;
446 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
447 return mode_for_size (bitsize, MODE_INT, true);
450 /* Find a type that can be used for efficient bitwise operations on MODE.
451 Return null if no such mode exists. */
453 tree
454 bitwise_type_for_mode (enum machine_mode mode)
456 mode = bitwise_mode_for_mode (mode);
457 if (mode == BLKmode)
458 return NULL_TREE;
460 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
461 tree inner_type = build_nonstandard_integer_type (inner_size, true);
463 if (VECTOR_MODE_P (mode))
464 return build_vector_type_for_mode (inner_type, mode);
466 if (COMPLEX_MODE_P (mode))
467 return build_complex_type (inner_type);
469 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
470 return inner_type;
473 /* Find a mode that is suitable for representing a vector with
474 NUNITS elements of mode INNERMODE. Returns BLKmode if there
475 is no suitable mode. */
477 enum machine_mode
478 mode_for_vector (enum machine_mode innermode, unsigned nunits)
480 enum machine_mode mode;
482 /* First, look for a supported vector type. */
483 if (SCALAR_FLOAT_MODE_P (innermode))
484 mode = MIN_MODE_VECTOR_FLOAT;
485 else if (SCALAR_FRACT_MODE_P (innermode))
486 mode = MIN_MODE_VECTOR_FRACT;
487 else if (SCALAR_UFRACT_MODE_P (innermode))
488 mode = MIN_MODE_VECTOR_UFRACT;
489 else if (SCALAR_ACCUM_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_ACCUM;
491 else if (SCALAR_UACCUM_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_UACCUM;
493 else
494 mode = MIN_MODE_VECTOR_INT;
496 /* Do not check vector_mode_supported_p here. We'll do that
497 later in vector_type_mode. */
498 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
499 if (GET_MODE_NUNITS (mode) == nunits
500 && GET_MODE_INNER (mode) == innermode)
501 break;
503 /* For integers, try mapping it to a same-sized scalar mode. */
504 if (mode == VOIDmode
505 && GET_MODE_CLASS (innermode) == MODE_INT)
506 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
507 MODE_INT, 0);
509 if (mode == VOIDmode
510 || (GET_MODE_CLASS (mode) == MODE_INT
511 && !have_regs_of_mode[mode]))
512 return BLKmode;
514 return mode;
517 /* Return the alignment of MODE. This will be bounded by 1 and
518 BIGGEST_ALIGNMENT. */
520 unsigned int
521 get_mode_alignment (enum machine_mode mode)
523 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
526 /* Return the precision of the mode, or for a complex or vector mode the
527 precision of the mode of its elements. */
529 unsigned int
530 element_precision (enum machine_mode mode)
532 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
533 mode = GET_MODE_INNER (mode);
535 return GET_MODE_PRECISION (mode);
538 /* Return the natural mode of an array, given that it is SIZE bytes in
539 total and has elements of type ELEM_TYPE. */
541 static enum machine_mode
542 mode_for_array (tree elem_type, tree size)
544 tree elem_size;
545 unsigned HOST_WIDE_INT int_size, int_elem_size;
546 bool limit_p;
548 /* One-element arrays get the component type's mode. */
549 elem_size = TYPE_SIZE (elem_type);
550 if (simple_cst_equal (size, elem_size))
551 return TYPE_MODE (elem_type);
553 limit_p = true;
554 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
556 int_size = tree_to_uhwi (size);
557 int_elem_size = tree_to_uhwi (elem_size);
558 if (int_elem_size > 0
559 && int_size % int_elem_size == 0
560 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
561 int_size / int_elem_size))
562 limit_p = false;
564 return mode_for_size_tree (size, MODE_INT, limit_p);
567 /* Subroutine of layout_decl: Force alignment required for the data type.
568 But if the decl itself wants greater alignment, don't override that. */
570 static inline void
571 do_type_align (tree type, tree decl)
573 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
575 DECL_ALIGN (decl) = TYPE_ALIGN (type);
576 if (TREE_CODE (decl) == FIELD_DECL)
577 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
581 /* Set the size, mode and alignment of a ..._DECL node.
582 TYPE_DECL does need this for C++.
583 Note that LABEL_DECL and CONST_DECL nodes do not need this,
584 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
585 Don't call layout_decl for them.
587 KNOWN_ALIGN is the amount of alignment we can assume this
588 decl has with no special effort. It is relevant only for FIELD_DECLs
589 and depends on the previous fields.
590 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
591 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
592 the record will be aligned to suit. */
594 void
595 layout_decl (tree decl, unsigned int known_align)
597 tree type = TREE_TYPE (decl);
598 enum tree_code code = TREE_CODE (decl);
599 rtx rtl = NULL_RTX;
600 location_t loc = DECL_SOURCE_LOCATION (decl);
602 if (code == CONST_DECL)
603 return;
605 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
606 || code == TYPE_DECL ||code == FIELD_DECL);
608 rtl = DECL_RTL_IF_SET (decl);
610 if (type == error_mark_node)
611 type = void_type_node;
613 /* Usually the size and mode come from the data type without change,
614 however, the front-end may set the explicit width of the field, so its
615 size may not be the same as the size of its type. This happens with
616 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
617 also happens with other fields. For example, the C++ front-end creates
618 zero-sized fields corresponding to empty base classes, and depends on
619 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
620 size in bytes from the size in bits. If we have already set the mode,
621 don't set it again since we can be called twice for FIELD_DECLs. */
623 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
624 if (DECL_MODE (decl) == VOIDmode)
625 DECL_MODE (decl) = TYPE_MODE (type);
627 if (DECL_SIZE (decl) == 0)
629 DECL_SIZE (decl) = TYPE_SIZE (type);
630 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
632 else if (DECL_SIZE_UNIT (decl) == 0)
633 DECL_SIZE_UNIT (decl)
634 = fold_convert_loc (loc, sizetype,
635 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
636 bitsize_unit_node));
638 if (code != FIELD_DECL)
639 /* For non-fields, update the alignment from the type. */
640 do_type_align (type, decl);
641 else
642 /* For fields, it's a bit more complicated... */
644 bool old_user_align = DECL_USER_ALIGN (decl);
645 bool zero_bitfield = false;
646 bool packed_p = DECL_PACKED (decl);
647 unsigned int mfa;
649 if (DECL_BIT_FIELD (decl))
651 DECL_BIT_FIELD_TYPE (decl) = type;
653 /* A zero-length bit-field affects the alignment of the next
654 field. In essence such bit-fields are not influenced by
655 any packing due to #pragma pack or attribute packed. */
656 if (integer_zerop (DECL_SIZE (decl))
657 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
659 zero_bitfield = true;
660 packed_p = false;
661 #ifdef PCC_BITFIELD_TYPE_MATTERS
662 if (PCC_BITFIELD_TYPE_MATTERS)
663 do_type_align (type, decl);
664 else
665 #endif
667 #ifdef EMPTY_FIELD_BOUNDARY
668 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
670 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
671 DECL_USER_ALIGN (decl) = 0;
673 #endif
677 /* See if we can use an ordinary integer mode for a bit-field.
678 Conditions are: a fixed size that is correct for another mode,
679 occupying a complete byte or bytes on proper boundary. */
680 if (TYPE_SIZE (type) != 0
681 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
682 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
684 enum machine_mode xmode
685 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
686 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
688 if (xmode != BLKmode
689 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
690 && (known_align == 0 || known_align >= xalign))
692 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
693 DECL_MODE (decl) = xmode;
694 DECL_BIT_FIELD (decl) = 0;
698 /* Turn off DECL_BIT_FIELD if we won't need it set. */
699 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
700 && known_align >= TYPE_ALIGN (type)
701 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
702 DECL_BIT_FIELD (decl) = 0;
704 else if (packed_p && DECL_USER_ALIGN (decl))
705 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
706 round up; we'll reduce it again below. We want packing to
707 supersede USER_ALIGN inherited from the type, but defer to
708 alignment explicitly specified on the field decl. */;
709 else
710 do_type_align (type, decl);
712 /* If the field is packed and not explicitly aligned, give it the
713 minimum alignment. Note that do_type_align may set
714 DECL_USER_ALIGN, so we need to check old_user_align instead. */
715 if (packed_p
716 && !old_user_align)
717 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
719 if (! packed_p && ! DECL_USER_ALIGN (decl))
721 /* Some targets (i.e. i386, VMS) limit struct field alignment
722 to a lower boundary than alignment of variables unless
723 it was overridden by attribute aligned. */
724 #ifdef BIGGEST_FIELD_ALIGNMENT
725 DECL_ALIGN (decl)
726 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
727 #endif
728 #ifdef ADJUST_FIELD_ALIGN
729 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
730 #endif
733 if (zero_bitfield)
734 mfa = initial_max_fld_align * BITS_PER_UNIT;
735 else
736 mfa = maximum_field_alignment;
737 /* Should this be controlled by DECL_USER_ALIGN, too? */
738 if (mfa != 0)
739 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
742 /* Evaluate nonconstant size only once, either now or as soon as safe. */
743 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
744 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
745 if (DECL_SIZE_UNIT (decl) != 0
746 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
747 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
749 /* If requested, warn about definitions of large data objects. */
750 if (warn_larger_than
751 && (code == VAR_DECL || code == PARM_DECL)
752 && ! DECL_EXTERNAL (decl))
754 tree size = DECL_SIZE_UNIT (decl);
756 if (size != 0 && TREE_CODE (size) == INTEGER_CST
757 && compare_tree_int (size, larger_than_size) > 0)
759 int size_as_int = TREE_INT_CST_LOW (size);
761 if (compare_tree_int (size, size_as_int) == 0)
762 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
763 else
764 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
765 decl, larger_than_size);
769 /* If the RTL was already set, update its mode and mem attributes. */
770 if (rtl)
772 PUT_MODE (rtl, DECL_MODE (decl));
773 SET_DECL_RTL (decl, 0);
774 set_mem_attributes (rtl, decl, 1);
775 SET_DECL_RTL (decl, rtl);
779 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
780 a previous call to layout_decl and calls it again. */
782 void
783 relayout_decl (tree decl)
785 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
786 DECL_MODE (decl) = VOIDmode;
787 if (!DECL_USER_ALIGN (decl))
788 DECL_ALIGN (decl) = 0;
789 SET_DECL_RTL (decl, 0);
791 layout_decl (decl, 0);
794 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
795 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
796 is to be passed to all other layout functions for this record. It is the
797 responsibility of the caller to call `free' for the storage returned.
798 Note that garbage collection is not permitted until we finish laying
799 out the record. */
801 record_layout_info
802 start_record_layout (tree t)
804 record_layout_info rli = XNEW (struct record_layout_info_s);
806 rli->t = t;
808 /* If the type has a minimum specified alignment (via an attribute
809 declaration, for example) use it -- otherwise, start with a
810 one-byte alignment. */
811 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
812 rli->unpacked_align = rli->record_align;
813 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
815 #ifdef STRUCTURE_SIZE_BOUNDARY
816 /* Packed structures don't need to have minimum size. */
817 if (! TYPE_PACKED (t))
819 unsigned tmp;
821 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
822 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
823 if (maximum_field_alignment != 0)
824 tmp = MIN (tmp, maximum_field_alignment);
825 rli->record_align = MAX (rli->record_align, tmp);
827 #endif
829 rli->offset = size_zero_node;
830 rli->bitpos = bitsize_zero_node;
831 rli->prev_field = 0;
832 rli->pending_statics = 0;
833 rli->packed_maybe_necessary = 0;
834 rli->remaining_in_alignment = 0;
836 return rli;
839 /* Return the combined bit position for the byte offset OFFSET and the
840 bit position BITPOS.
842 These functions operate on byte and bit positions present in FIELD_DECLs
843 and assume that these expressions result in no (intermediate) overflow.
844 This assumption is necessary to fold the expressions as much as possible,
845 so as to avoid creating artificially variable-sized types in languages
846 supporting variable-sized types like Ada. */
848 tree
849 bit_from_pos (tree offset, tree bitpos)
851 if (TREE_CODE (offset) == PLUS_EXPR)
852 offset = size_binop (PLUS_EXPR,
853 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
854 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
855 else
856 offset = fold_convert (bitsizetype, offset);
857 return size_binop (PLUS_EXPR, bitpos,
858 size_binop (MULT_EXPR, offset, bitsize_unit_node));
861 /* Return the combined truncated byte position for the byte offset OFFSET and
862 the bit position BITPOS. */
864 tree
865 byte_from_pos (tree offset, tree bitpos)
867 tree bytepos;
868 if (TREE_CODE (bitpos) == MULT_EXPR
869 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
870 bytepos = TREE_OPERAND (bitpos, 0);
871 else
872 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
873 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
876 /* Split the bit position POS into a byte offset *POFFSET and a bit
877 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
879 void
880 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
881 tree pos)
883 tree toff_align = bitsize_int (off_align);
884 if (TREE_CODE (pos) == MULT_EXPR
885 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
887 *poffset = size_binop (MULT_EXPR,
888 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
889 size_int (off_align / BITS_PER_UNIT));
890 *pbitpos = bitsize_zero_node;
892 else
894 *poffset = size_binop (MULT_EXPR,
895 fold_convert (sizetype,
896 size_binop (FLOOR_DIV_EXPR, pos,
897 toff_align)),
898 size_int (off_align / BITS_PER_UNIT));
899 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
903 /* Given a pointer to bit and byte offsets and an offset alignment,
904 normalize the offsets so they are within the alignment. */
906 void
907 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
909 /* If the bit position is now larger than it should be, adjust it
910 downwards. */
911 if (compare_tree_int (*pbitpos, off_align) >= 0)
913 tree offset, bitpos;
914 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
915 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
916 *pbitpos = bitpos;
920 /* Print debugging information about the information in RLI. */
922 DEBUG_FUNCTION void
923 debug_rli (record_layout_info rli)
925 print_node_brief (stderr, "type", rli->t, 0);
926 print_node_brief (stderr, "\noffset", rli->offset, 0);
927 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
929 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
930 rli->record_align, rli->unpacked_align,
931 rli->offset_align);
933 /* The ms_struct code is the only that uses this. */
934 if (targetm.ms_bitfield_layout_p (rli->t))
935 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
937 if (rli->packed_maybe_necessary)
938 fprintf (stderr, "packed may be necessary\n");
940 if (!vec_safe_is_empty (rli->pending_statics))
942 fprintf (stderr, "pending statics:\n");
943 debug_vec_tree (rli->pending_statics);
947 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
948 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
950 void
951 normalize_rli (record_layout_info rli)
953 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
956 /* Returns the size in bytes allocated so far. */
958 tree
959 rli_size_unit_so_far (record_layout_info rli)
961 return byte_from_pos (rli->offset, rli->bitpos);
964 /* Returns the size in bits allocated so far. */
966 tree
967 rli_size_so_far (record_layout_info rli)
969 return bit_from_pos (rli->offset, rli->bitpos);
972 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
973 the next available location within the record is given by KNOWN_ALIGN.
974 Update the variable alignment fields in RLI, and return the alignment
975 to give the FIELD. */
977 unsigned int
978 update_alignment_for_field (record_layout_info rli, tree field,
979 unsigned int known_align)
981 /* The alignment required for FIELD. */
982 unsigned int desired_align;
983 /* The type of this field. */
984 tree type = TREE_TYPE (field);
985 /* True if the field was explicitly aligned by the user. */
986 bool user_align;
987 bool is_bitfield;
989 /* Do not attempt to align an ERROR_MARK node */
990 if (TREE_CODE (type) == ERROR_MARK)
991 return 0;
993 /* Lay out the field so we know what alignment it needs. */
994 layout_decl (field, known_align);
995 desired_align = DECL_ALIGN (field);
996 user_align = DECL_USER_ALIGN (field);
998 is_bitfield = (type != error_mark_node
999 && DECL_BIT_FIELD_TYPE (field)
1000 && ! integer_zerop (TYPE_SIZE (type)));
1002 /* Record must have at least as much alignment as any field.
1003 Otherwise, the alignment of the field within the record is
1004 meaningless. */
1005 if (targetm.ms_bitfield_layout_p (rli->t))
1007 /* Here, the alignment of the underlying type of a bitfield can
1008 affect the alignment of a record; even a zero-sized field
1009 can do this. The alignment should be to the alignment of
1010 the type, except that for zero-size bitfields this only
1011 applies if there was an immediately prior, nonzero-size
1012 bitfield. (That's the way it is, experimentally.) */
1013 if ((!is_bitfield && !DECL_PACKED (field))
1014 || ((DECL_SIZE (field) == NULL_TREE
1015 || !integer_zerop (DECL_SIZE (field)))
1016 ? !DECL_PACKED (field)
1017 : (rli->prev_field
1018 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1019 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1021 unsigned int type_align = TYPE_ALIGN (type);
1022 type_align = MAX (type_align, desired_align);
1023 if (maximum_field_alignment != 0)
1024 type_align = MIN (type_align, maximum_field_alignment);
1025 rli->record_align = MAX (rli->record_align, type_align);
1026 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1029 #ifdef PCC_BITFIELD_TYPE_MATTERS
1030 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1032 /* Named bit-fields cause the entire structure to have the
1033 alignment implied by their type. Some targets also apply the same
1034 rules to unnamed bitfields. */
1035 if (DECL_NAME (field) != 0
1036 || targetm.align_anon_bitfield ())
1038 unsigned int type_align = TYPE_ALIGN (type);
1040 #ifdef ADJUST_FIELD_ALIGN
1041 if (! TYPE_USER_ALIGN (type))
1042 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1043 #endif
1045 /* Targets might chose to handle unnamed and hence possibly
1046 zero-width bitfield. Those are not influenced by #pragmas
1047 or packed attributes. */
1048 if (integer_zerop (DECL_SIZE (field)))
1050 if (initial_max_fld_align)
1051 type_align = MIN (type_align,
1052 initial_max_fld_align * BITS_PER_UNIT);
1054 else if (maximum_field_alignment != 0)
1055 type_align = MIN (type_align, maximum_field_alignment);
1056 else if (DECL_PACKED (field))
1057 type_align = MIN (type_align, BITS_PER_UNIT);
1059 /* The alignment of the record is increased to the maximum
1060 of the current alignment, the alignment indicated on the
1061 field (i.e., the alignment specified by an __aligned__
1062 attribute), and the alignment indicated by the type of
1063 the field. */
1064 rli->record_align = MAX (rli->record_align, desired_align);
1065 rli->record_align = MAX (rli->record_align, type_align);
1067 if (warn_packed)
1068 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1069 user_align |= TYPE_USER_ALIGN (type);
1072 #endif
1073 else
1075 rli->record_align = MAX (rli->record_align, desired_align);
1076 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1079 TYPE_USER_ALIGN (rli->t) |= user_align;
1081 return desired_align;
1084 /* Called from place_field to handle unions. */
1086 static void
1087 place_union_field (record_layout_info rli, tree field)
1089 update_alignment_for_field (rli, field, /*known_align=*/0);
1091 DECL_FIELD_OFFSET (field) = size_zero_node;
1092 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1093 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1095 /* If this is an ERROR_MARK return *after* having set the
1096 field at the start of the union. This helps when parsing
1097 invalid fields. */
1098 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1099 return;
1101 /* We assume the union's size will be a multiple of a byte so we don't
1102 bother with BITPOS. */
1103 if (TREE_CODE (rli->t) == UNION_TYPE)
1104 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1105 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1106 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1107 DECL_SIZE_UNIT (field), rli->offset);
1110 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1111 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1112 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1113 units of alignment than the underlying TYPE. */
1114 static int
1115 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1116 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1118 /* Note that the calculation of OFFSET might overflow; we calculate it so
1119 that we still get the right result as long as ALIGN is a power of two. */
1120 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1122 offset = offset % align;
1123 return ((offset + size + align - 1) / align
1124 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1126 #endif
1128 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1129 is a FIELD_DECL to be added after those fields already present in
1130 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1131 callers that desire that behavior must manually perform that step.) */
1133 void
1134 place_field (record_layout_info rli, tree field)
1136 /* The alignment required for FIELD. */
1137 unsigned int desired_align;
1138 /* The alignment FIELD would have if we just dropped it into the
1139 record as it presently stands. */
1140 unsigned int known_align;
1141 unsigned int actual_align;
1142 /* The type of this field. */
1143 tree type = TREE_TYPE (field);
1145 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1147 /* If FIELD is static, then treat it like a separate variable, not
1148 really like a structure field. If it is a FUNCTION_DECL, it's a
1149 method. In both cases, all we do is lay out the decl, and we do
1150 it *after* the record is laid out. */
1151 if (TREE_CODE (field) == VAR_DECL)
1153 vec_safe_push (rli->pending_statics, field);
1154 return;
1157 /* Enumerators and enum types which are local to this class need not
1158 be laid out. Likewise for initialized constant fields. */
1159 else if (TREE_CODE (field) != FIELD_DECL)
1160 return;
1162 /* Unions are laid out very differently than records, so split
1163 that code off to another function. */
1164 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1166 place_union_field (rli, field);
1167 return;
1170 else if (TREE_CODE (type) == ERROR_MARK)
1172 /* Place this field at the current allocation position, so we
1173 maintain monotonicity. */
1174 DECL_FIELD_OFFSET (field) = rli->offset;
1175 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1176 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1177 return;
1180 /* Work out the known alignment so far. Note that A & (-A) is the
1181 value of the least-significant bit in A that is one. */
1182 if (! integer_zerop (rli->bitpos))
1183 known_align = (tree_to_uhwi (rli->bitpos)
1184 & - tree_to_uhwi (rli->bitpos));
1185 else if (integer_zerop (rli->offset))
1186 known_align = 0;
1187 else if (tree_fits_uhwi_p (rli->offset))
1188 known_align = (BITS_PER_UNIT
1189 * (tree_to_uhwi (rli->offset)
1190 & - tree_to_uhwi (rli->offset)));
1191 else
1192 known_align = rli->offset_align;
1194 desired_align = update_alignment_for_field (rli, field, known_align);
1195 if (known_align == 0)
1196 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1198 if (warn_packed && DECL_PACKED (field))
1200 if (known_align >= TYPE_ALIGN (type))
1202 if (TYPE_ALIGN (type) > desired_align)
1204 if (STRICT_ALIGNMENT)
1205 warning (OPT_Wattributes, "packed attribute causes "
1206 "inefficient alignment for %q+D", field);
1207 /* Don't warn if DECL_PACKED was set by the type. */
1208 else if (!TYPE_PACKED (rli->t))
1209 warning (OPT_Wattributes, "packed attribute is "
1210 "unnecessary for %q+D", field);
1213 else
1214 rli->packed_maybe_necessary = 1;
1217 /* Does this field automatically have alignment it needs by virtue
1218 of the fields that precede it and the record's own alignment? */
1219 if (known_align < desired_align)
1221 /* No, we need to skip space before this field.
1222 Bump the cumulative size to multiple of field alignment. */
1224 if (!targetm.ms_bitfield_layout_p (rli->t)
1225 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1226 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1228 /* If the alignment is still within offset_align, just align
1229 the bit position. */
1230 if (desired_align < rli->offset_align)
1231 rli->bitpos = round_up (rli->bitpos, desired_align);
1232 else
1234 /* First adjust OFFSET by the partial bits, then align. */
1235 rli->offset
1236 = size_binop (PLUS_EXPR, rli->offset,
1237 fold_convert (sizetype,
1238 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1239 bitsize_unit_node)));
1240 rli->bitpos = bitsize_zero_node;
1242 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1245 if (! TREE_CONSTANT (rli->offset))
1246 rli->offset_align = desired_align;
1247 if (targetm.ms_bitfield_layout_p (rli->t))
1248 rli->prev_field = NULL;
1251 /* Handle compatibility with PCC. Note that if the record has any
1252 variable-sized fields, we need not worry about compatibility. */
1253 #ifdef PCC_BITFIELD_TYPE_MATTERS
1254 if (PCC_BITFIELD_TYPE_MATTERS
1255 && ! targetm.ms_bitfield_layout_p (rli->t)
1256 && TREE_CODE (field) == FIELD_DECL
1257 && type != error_mark_node
1258 && DECL_BIT_FIELD (field)
1259 && (! DECL_PACKED (field)
1260 /* Enter for these packed fields only to issue a warning. */
1261 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1262 && maximum_field_alignment == 0
1263 && ! integer_zerop (DECL_SIZE (field))
1264 && tree_fits_uhwi_p (DECL_SIZE (field))
1265 && tree_fits_uhwi_p (rli->offset)
1266 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1268 unsigned int type_align = TYPE_ALIGN (type);
1269 tree dsize = DECL_SIZE (field);
1270 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1271 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1272 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1274 #ifdef ADJUST_FIELD_ALIGN
1275 if (! TYPE_USER_ALIGN (type))
1276 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1277 #endif
1279 /* A bit field may not span more units of alignment of its type
1280 than its type itself. Advance to next boundary if necessary. */
1281 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1283 if (DECL_PACKED (field))
1285 if (warn_packed_bitfield_compat == 1)
1286 inform
1287 (input_location,
1288 "offset of packed bit-field %qD has changed in GCC 4.4",
1289 field);
1291 else
1292 rli->bitpos = round_up (rli->bitpos, type_align);
1295 if (! DECL_PACKED (field))
1296 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1298 #endif
1300 #ifdef BITFIELD_NBYTES_LIMITED
1301 if (BITFIELD_NBYTES_LIMITED
1302 && ! targetm.ms_bitfield_layout_p (rli->t)
1303 && TREE_CODE (field) == FIELD_DECL
1304 && type != error_mark_node
1305 && DECL_BIT_FIELD_TYPE (field)
1306 && ! DECL_PACKED (field)
1307 && ! integer_zerop (DECL_SIZE (field))
1308 && tree_fits_uhwi_p (DECL_SIZE (field))
1309 && tree_fits_uhwi_p (rli->offset)
1310 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1312 unsigned int type_align = TYPE_ALIGN (type);
1313 tree dsize = DECL_SIZE (field);
1314 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1315 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1316 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1318 #ifdef ADJUST_FIELD_ALIGN
1319 if (! TYPE_USER_ALIGN (type))
1320 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1321 #endif
1323 if (maximum_field_alignment != 0)
1324 type_align = MIN (type_align, maximum_field_alignment);
1325 /* ??? This test is opposite the test in the containing if
1326 statement, so this code is unreachable currently. */
1327 else if (DECL_PACKED (field))
1328 type_align = MIN (type_align, BITS_PER_UNIT);
1330 /* A bit field may not span the unit of alignment of its type.
1331 Advance to next boundary if necessary. */
1332 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1333 rli->bitpos = round_up (rli->bitpos, type_align);
1335 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1337 #endif
1339 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1340 A subtlety:
1341 When a bit field is inserted into a packed record, the whole
1342 size of the underlying type is used by one or more same-size
1343 adjacent bitfields. (That is, if its long:3, 32 bits is
1344 used in the record, and any additional adjacent long bitfields are
1345 packed into the same chunk of 32 bits. However, if the size
1346 changes, a new field of that size is allocated.) In an unpacked
1347 record, this is the same as using alignment, but not equivalent
1348 when packing.
1350 Note: for compatibility, we use the type size, not the type alignment
1351 to determine alignment, since that matches the documentation */
1353 if (targetm.ms_bitfield_layout_p (rli->t))
1355 tree prev_saved = rli->prev_field;
1356 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1358 /* This is a bitfield if it exists. */
1359 if (rli->prev_field)
1361 /* If both are bitfields, nonzero, and the same size, this is
1362 the middle of a run. Zero declared size fields are special
1363 and handled as "end of run". (Note: it's nonzero declared
1364 size, but equal type sizes!) (Since we know that both
1365 the current and previous fields are bitfields by the
1366 time we check it, DECL_SIZE must be present for both.) */
1367 if (DECL_BIT_FIELD_TYPE (field)
1368 && !integer_zerop (DECL_SIZE (field))
1369 && !integer_zerop (DECL_SIZE (rli->prev_field))
1370 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1371 && tree_fits_uhwi_p (TYPE_SIZE (type))
1372 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1374 /* We're in the middle of a run of equal type size fields; make
1375 sure we realign if we run out of bits. (Not decl size,
1376 type size!) */
1377 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1379 if (rli->remaining_in_alignment < bitsize)
1381 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1383 /* out of bits; bump up to next 'word'. */
1384 rli->bitpos
1385 = size_binop (PLUS_EXPR, rli->bitpos,
1386 bitsize_int (rli->remaining_in_alignment));
1387 rli->prev_field = field;
1388 if (typesize < bitsize)
1389 rli->remaining_in_alignment = 0;
1390 else
1391 rli->remaining_in_alignment = typesize - bitsize;
1393 else
1394 rli->remaining_in_alignment -= bitsize;
1396 else
1398 /* End of a run: if leaving a run of bitfields of the same type
1399 size, we have to "use up" the rest of the bits of the type
1400 size.
1402 Compute the new position as the sum of the size for the prior
1403 type and where we first started working on that type.
1404 Note: since the beginning of the field was aligned then
1405 of course the end will be too. No round needed. */
1407 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1409 rli->bitpos
1410 = size_binop (PLUS_EXPR, rli->bitpos,
1411 bitsize_int (rli->remaining_in_alignment));
1413 else
1414 /* We "use up" size zero fields; the code below should behave
1415 as if the prior field was not a bitfield. */
1416 prev_saved = NULL;
1418 /* Cause a new bitfield to be captured, either this time (if
1419 currently a bitfield) or next time we see one. */
1420 if (!DECL_BIT_FIELD_TYPE (field)
1421 || integer_zerop (DECL_SIZE (field)))
1422 rli->prev_field = NULL;
1425 normalize_rli (rli);
1428 /* If we're starting a new run of same type size bitfields
1429 (or a run of non-bitfields), set up the "first of the run"
1430 fields.
1432 That is, if the current field is not a bitfield, or if there
1433 was a prior bitfield the type sizes differ, or if there wasn't
1434 a prior bitfield the size of the current field is nonzero.
1436 Note: we must be sure to test ONLY the type size if there was
1437 a prior bitfield and ONLY for the current field being zero if
1438 there wasn't. */
1440 if (!DECL_BIT_FIELD_TYPE (field)
1441 || (prev_saved != NULL
1442 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1443 : !integer_zerop (DECL_SIZE (field)) ))
1445 /* Never smaller than a byte for compatibility. */
1446 unsigned int type_align = BITS_PER_UNIT;
1448 /* (When not a bitfield), we could be seeing a flex array (with
1449 no DECL_SIZE). Since we won't be using remaining_in_alignment
1450 until we see a bitfield (and come by here again) we just skip
1451 calculating it. */
1452 if (DECL_SIZE (field) != NULL
1453 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1454 && tree_fits_uhwi_p (DECL_SIZE (field)))
1456 unsigned HOST_WIDE_INT bitsize
1457 = tree_to_uhwi (DECL_SIZE (field));
1458 unsigned HOST_WIDE_INT typesize
1459 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1461 if (typesize < bitsize)
1462 rli->remaining_in_alignment = 0;
1463 else
1464 rli->remaining_in_alignment = typesize - bitsize;
1467 /* Now align (conventionally) for the new type. */
1468 type_align = TYPE_ALIGN (TREE_TYPE (field));
1470 if (maximum_field_alignment != 0)
1471 type_align = MIN (type_align, maximum_field_alignment);
1473 rli->bitpos = round_up (rli->bitpos, type_align);
1475 /* If we really aligned, don't allow subsequent bitfields
1476 to undo that. */
1477 rli->prev_field = NULL;
1481 /* Offset so far becomes the position of this field after normalizing. */
1482 normalize_rli (rli);
1483 DECL_FIELD_OFFSET (field) = rli->offset;
1484 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1485 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1487 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1488 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1489 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1491 /* If this field ended up more aligned than we thought it would be (we
1492 approximate this by seeing if its position changed), lay out the field
1493 again; perhaps we can use an integral mode for it now. */
1494 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1495 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1496 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1497 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1498 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1499 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1500 actual_align = (BITS_PER_UNIT
1501 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1502 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1503 else
1504 actual_align = DECL_OFFSET_ALIGN (field);
1505 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1506 store / extract bit field operations will check the alignment of the
1507 record against the mode of bit fields. */
1509 if (known_align != actual_align)
1510 layout_decl (field, actual_align);
1512 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1513 rli->prev_field = field;
1515 /* Now add size of this field to the size of the record. If the size is
1516 not constant, treat the field as being a multiple of bytes and just
1517 adjust the offset, resetting the bit position. Otherwise, apportion the
1518 size amongst the bit position and offset. First handle the case of an
1519 unspecified size, which can happen when we have an invalid nested struct
1520 definition, such as struct j { struct j { int i; } }. The error message
1521 is printed in finish_struct. */
1522 if (DECL_SIZE (field) == 0)
1523 /* Do nothing. */;
1524 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1525 || TREE_OVERFLOW (DECL_SIZE (field)))
1527 rli->offset
1528 = size_binop (PLUS_EXPR, rli->offset,
1529 fold_convert (sizetype,
1530 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1531 bitsize_unit_node)));
1532 rli->offset
1533 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1534 rli->bitpos = bitsize_zero_node;
1535 rli->offset_align = MIN (rli->offset_align, desired_align);
1537 else if (targetm.ms_bitfield_layout_p (rli->t))
1539 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1541 /* If we ended a bitfield before the full length of the type then
1542 pad the struct out to the full length of the last type. */
1543 if ((DECL_CHAIN (field) == NULL
1544 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1545 && DECL_BIT_FIELD_TYPE (field)
1546 && !integer_zerop (DECL_SIZE (field)))
1547 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1548 bitsize_int (rli->remaining_in_alignment));
1550 normalize_rli (rli);
1552 else
1554 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1555 normalize_rli (rli);
1559 /* Assuming that all the fields have been laid out, this function uses
1560 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1561 indicated by RLI. */
1563 static void
1564 finalize_record_size (record_layout_info rli)
1566 tree unpadded_size, unpadded_size_unit;
1568 /* Now we want just byte and bit offsets, so set the offset alignment
1569 to be a byte and then normalize. */
1570 rli->offset_align = BITS_PER_UNIT;
1571 normalize_rli (rli);
1573 /* Determine the desired alignment. */
1574 #ifdef ROUND_TYPE_ALIGN
1575 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1576 rli->record_align);
1577 #else
1578 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1579 #endif
1581 /* Compute the size so far. Be sure to allow for extra bits in the
1582 size in bytes. We have guaranteed above that it will be no more
1583 than a single byte. */
1584 unpadded_size = rli_size_so_far (rli);
1585 unpadded_size_unit = rli_size_unit_so_far (rli);
1586 if (! integer_zerop (rli->bitpos))
1587 unpadded_size_unit
1588 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1590 /* Round the size up to be a multiple of the required alignment. */
1591 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1592 TYPE_SIZE_UNIT (rli->t)
1593 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1595 if (TREE_CONSTANT (unpadded_size)
1596 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1597 && input_location != BUILTINS_LOCATION)
1598 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1600 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1601 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1602 && TREE_CONSTANT (unpadded_size))
1604 tree unpacked_size;
1606 #ifdef ROUND_TYPE_ALIGN
1607 rli->unpacked_align
1608 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1609 #else
1610 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1611 #endif
1613 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1614 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1616 if (TYPE_NAME (rli->t))
1618 tree name;
1620 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1621 name = TYPE_NAME (rli->t);
1622 else
1623 name = DECL_NAME (TYPE_NAME (rli->t));
1625 if (STRICT_ALIGNMENT)
1626 warning (OPT_Wpacked, "packed attribute causes inefficient "
1627 "alignment for %qE", name);
1628 else
1629 warning (OPT_Wpacked,
1630 "packed attribute is unnecessary for %qE", name);
1632 else
1634 if (STRICT_ALIGNMENT)
1635 warning (OPT_Wpacked,
1636 "packed attribute causes inefficient alignment");
1637 else
1638 warning (OPT_Wpacked, "packed attribute is unnecessary");
1644 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1646 void
1647 compute_record_mode (tree type)
1649 tree field;
1650 enum machine_mode mode = VOIDmode;
1652 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1653 However, if possible, we use a mode that fits in a register
1654 instead, in order to allow for better optimization down the
1655 line. */
1656 SET_TYPE_MODE (type, BLKmode);
1658 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1659 return;
1661 /* A record which has any BLKmode members must itself be
1662 BLKmode; it can't go in a register. Unless the member is
1663 BLKmode only because it isn't aligned. */
1664 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1666 if (TREE_CODE (field) != FIELD_DECL)
1667 continue;
1669 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1670 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1671 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1672 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1673 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1674 || ! tree_fits_uhwi_p (bit_position (field))
1675 || DECL_SIZE (field) == 0
1676 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1677 return;
1679 /* If this field is the whole struct, remember its mode so
1680 that, say, we can put a double in a class into a DF
1681 register instead of forcing it to live in the stack. */
1682 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1683 mode = DECL_MODE (field);
1685 /* With some targets, it is sub-optimal to access an aligned
1686 BLKmode structure as a scalar. */
1687 if (targetm.member_type_forces_blk (field, mode))
1688 return;
1691 /* If we only have one real field; use its mode if that mode's size
1692 matches the type's size. This only applies to RECORD_TYPE. This
1693 does not apply to unions. */
1694 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1695 && tree_fits_uhwi_p (TYPE_SIZE (type))
1696 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1697 SET_TYPE_MODE (type, mode);
1698 else
1699 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1701 /* If structure's known alignment is less than what the scalar
1702 mode would need, and it matters, then stick with BLKmode. */
1703 if (TYPE_MODE (type) != BLKmode
1704 && STRICT_ALIGNMENT
1705 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1706 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1708 /* If this is the only reason this type is BLKmode, then
1709 don't force containing types to be BLKmode. */
1710 TYPE_NO_FORCE_BLK (type) = 1;
1711 SET_TYPE_MODE (type, BLKmode);
1715 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1716 out. */
1718 static void
1719 finalize_type_size (tree type)
1721 /* Normally, use the alignment corresponding to the mode chosen.
1722 However, where strict alignment is not required, avoid
1723 over-aligning structures, since most compilers do not do this
1724 alignment. */
1726 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1727 && (STRICT_ALIGNMENT
1728 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1729 && TREE_CODE (type) != QUAL_UNION_TYPE
1730 && TREE_CODE (type) != ARRAY_TYPE)))
1732 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1734 /* Don't override a larger alignment requirement coming from a user
1735 alignment of one of the fields. */
1736 if (mode_align >= TYPE_ALIGN (type))
1738 TYPE_ALIGN (type) = mode_align;
1739 TYPE_USER_ALIGN (type) = 0;
1743 /* Do machine-dependent extra alignment. */
1744 #ifdef ROUND_TYPE_ALIGN
1745 TYPE_ALIGN (type)
1746 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1747 #endif
1749 /* If we failed to find a simple way to calculate the unit size
1750 of the type, find it by division. */
1751 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1752 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1753 result will fit in sizetype. We will get more efficient code using
1754 sizetype, so we force a conversion. */
1755 TYPE_SIZE_UNIT (type)
1756 = fold_convert (sizetype,
1757 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1758 bitsize_unit_node));
1760 if (TYPE_SIZE (type) != 0)
1762 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1763 TYPE_SIZE_UNIT (type)
1764 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1767 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1768 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1769 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1770 if (TYPE_SIZE_UNIT (type) != 0
1771 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1772 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1774 /* Also layout any other variants of the type. */
1775 if (TYPE_NEXT_VARIANT (type)
1776 || type != TYPE_MAIN_VARIANT (type))
1778 tree variant;
1779 /* Record layout info of this variant. */
1780 tree size = TYPE_SIZE (type);
1781 tree size_unit = TYPE_SIZE_UNIT (type);
1782 unsigned int align = TYPE_ALIGN (type);
1783 unsigned int user_align = TYPE_USER_ALIGN (type);
1784 enum machine_mode mode = TYPE_MODE (type);
1786 /* Copy it into all variants. */
1787 for (variant = TYPE_MAIN_VARIANT (type);
1788 variant != 0;
1789 variant = TYPE_NEXT_VARIANT (variant))
1791 TYPE_SIZE (variant) = size;
1792 TYPE_SIZE_UNIT (variant) = size_unit;
1793 TYPE_ALIGN (variant) = align;
1794 TYPE_USER_ALIGN (variant) = user_align;
1795 SET_TYPE_MODE (variant, mode);
1800 /* Return a new underlying object for a bitfield started with FIELD. */
1802 static tree
1803 start_bitfield_representative (tree field)
1805 tree repr = make_node (FIELD_DECL);
1806 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1807 /* Force the representative to begin at a BITS_PER_UNIT aligned
1808 boundary - C++ may use tail-padding of a base object to
1809 continue packing bits so the bitfield region does not start
1810 at bit zero (see g++.dg/abi/bitfield5.C for example).
1811 Unallocated bits may happen for other reasons as well,
1812 for example Ada which allows explicit bit-granular structure layout. */
1813 DECL_FIELD_BIT_OFFSET (repr)
1814 = size_binop (BIT_AND_EXPR,
1815 DECL_FIELD_BIT_OFFSET (field),
1816 bitsize_int (~(BITS_PER_UNIT - 1)));
1817 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1818 DECL_SIZE (repr) = DECL_SIZE (field);
1819 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1820 DECL_PACKED (repr) = DECL_PACKED (field);
1821 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1822 return repr;
1825 /* Finish up a bitfield group that was started by creating the underlying
1826 object REPR with the last field in the bitfield group FIELD. */
1828 static void
1829 finish_bitfield_representative (tree repr, tree field)
1831 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1832 enum machine_mode mode;
1833 tree nextf, size;
1835 size = size_diffop (DECL_FIELD_OFFSET (field),
1836 DECL_FIELD_OFFSET (repr));
1837 gcc_assert (tree_fits_uhwi_p (size));
1838 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1839 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1840 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1841 + tree_to_uhwi (DECL_SIZE (field)));
1843 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1844 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1846 /* Now nothing tells us how to pad out bitsize ... */
1847 nextf = DECL_CHAIN (field);
1848 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1849 nextf = DECL_CHAIN (nextf);
1850 if (nextf)
1852 tree maxsize;
1853 /* If there was an error, the field may be not laid out
1854 correctly. Don't bother to do anything. */
1855 if (TREE_TYPE (nextf) == error_mark_node)
1856 return;
1857 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1858 DECL_FIELD_OFFSET (repr));
1859 if (tree_fits_uhwi_p (maxsize))
1861 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1862 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1863 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1864 /* If the group ends within a bitfield nextf does not need to be
1865 aligned to BITS_PER_UNIT. Thus round up. */
1866 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1868 else
1869 maxbitsize = bitsize;
1871 else
1873 /* ??? If you consider that tail-padding of this struct might be
1874 re-used when deriving from it we cannot really do the following
1875 and thus need to set maxsize to bitsize? Also we cannot
1876 generally rely on maxsize to fold to an integer constant, so
1877 use bitsize as fallback for this case. */
1878 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1879 DECL_FIELD_OFFSET (repr));
1880 if (tree_fits_uhwi_p (maxsize))
1881 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1882 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1883 else
1884 maxbitsize = bitsize;
1887 /* Only if we don't artificially break up the representative in
1888 the middle of a large bitfield with different possibly
1889 overlapping representatives. And all representatives start
1890 at byte offset. */
1891 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1893 /* Find the smallest nice mode to use. */
1894 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1895 mode = GET_MODE_WIDER_MODE (mode))
1896 if (GET_MODE_BITSIZE (mode) >= bitsize)
1897 break;
1898 if (mode != VOIDmode
1899 && (GET_MODE_BITSIZE (mode) > maxbitsize
1900 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1901 mode = VOIDmode;
1903 if (mode == VOIDmode)
1905 /* We really want a BLKmode representative only as a last resort,
1906 considering the member b in
1907 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1908 Otherwise we simply want to split the representative up
1909 allowing for overlaps within the bitfield region as required for
1910 struct { int a : 7; int b : 7;
1911 int c : 10; int d; } __attribute__((packed));
1912 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1913 DECL_SIZE (repr) = bitsize_int (bitsize);
1914 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1915 DECL_MODE (repr) = BLKmode;
1916 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1917 bitsize / BITS_PER_UNIT);
1919 else
1921 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1922 DECL_SIZE (repr) = bitsize_int (modesize);
1923 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1924 DECL_MODE (repr) = mode;
1925 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1928 /* Remember whether the bitfield group is at the end of the
1929 structure or not. */
1930 DECL_CHAIN (repr) = nextf;
1933 /* Compute and set FIELD_DECLs for the underlying objects we should
1934 use for bitfield access for the structure laid out with RLI. */
1936 static void
1937 finish_bitfield_layout (record_layout_info rli)
1939 tree field, prev;
1940 tree repr = NULL_TREE;
1942 /* Unions would be special, for the ease of type-punning optimizations
1943 we could use the underlying type as hint for the representative
1944 if the bitfield would fit and the representative would not exceed
1945 the union in size. */
1946 if (TREE_CODE (rli->t) != RECORD_TYPE)
1947 return;
1949 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1950 field; field = DECL_CHAIN (field))
1952 if (TREE_CODE (field) != FIELD_DECL)
1953 continue;
1955 /* In the C++ memory model, consecutive bit fields in a structure are
1956 considered one memory location and updating a memory location
1957 may not store into adjacent memory locations. */
1958 if (!repr
1959 && DECL_BIT_FIELD_TYPE (field))
1961 /* Start new representative. */
1962 repr = start_bitfield_representative (field);
1964 else if (repr
1965 && ! DECL_BIT_FIELD_TYPE (field))
1967 /* Finish off new representative. */
1968 finish_bitfield_representative (repr, prev);
1969 repr = NULL_TREE;
1971 else if (DECL_BIT_FIELD_TYPE (field))
1973 gcc_assert (repr != NULL_TREE);
1975 /* Zero-size bitfields finish off a representative and
1976 do not have a representative themselves. This is
1977 required by the C++ memory model. */
1978 if (integer_zerop (DECL_SIZE (field)))
1980 finish_bitfield_representative (repr, prev);
1981 repr = NULL_TREE;
1984 /* We assume that either DECL_FIELD_OFFSET of the representative
1985 and each bitfield member is a constant or they are equal.
1986 This is because we need to be able to compute the bit-offset
1987 of each field relative to the representative in get_bit_range
1988 during RTL expansion.
1989 If these constraints are not met, simply force a new
1990 representative to be generated. That will at most
1991 generate worse code but still maintain correctness with
1992 respect to the C++ memory model. */
1993 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1994 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1995 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1996 DECL_FIELD_OFFSET (field), 0)))
1998 finish_bitfield_representative (repr, prev);
1999 repr = start_bitfield_representative (field);
2002 else
2003 continue;
2005 if (repr)
2006 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2008 prev = field;
2011 if (repr)
2012 finish_bitfield_representative (repr, prev);
2015 /* Do all of the work required to layout the type indicated by RLI,
2016 once the fields have been laid out. This function will call `free'
2017 for RLI, unless FREE_P is false. Passing a value other than false
2018 for FREE_P is bad practice; this option only exists to support the
2019 G++ 3.2 ABI. */
2021 void
2022 finish_record_layout (record_layout_info rli, int free_p)
2024 tree variant;
2026 /* Compute the final size. */
2027 finalize_record_size (rli);
2029 /* Compute the TYPE_MODE for the record. */
2030 compute_record_mode (rli->t);
2032 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2033 finalize_type_size (rli->t);
2035 /* Compute bitfield representatives. */
2036 finish_bitfield_layout (rli);
2038 /* Propagate TYPE_PACKED to variants. With C++ templates,
2039 handle_packed_attribute is too early to do this. */
2040 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2041 variant = TYPE_NEXT_VARIANT (variant))
2042 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2044 /* Lay out any static members. This is done now because their type
2045 may use the record's type. */
2046 while (!vec_safe_is_empty (rli->pending_statics))
2047 layout_decl (rli->pending_statics->pop (), 0);
2049 /* Clean up. */
2050 if (free_p)
2052 vec_free (rli->pending_statics);
2053 free (rli);
2058 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2059 NAME, its fields are chained in reverse on FIELDS.
2061 If ALIGN_TYPE is non-null, it is given the same alignment as
2062 ALIGN_TYPE. */
2064 void
2065 finish_builtin_struct (tree type, const char *name, tree fields,
2066 tree align_type)
2068 tree tail, next;
2070 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2072 DECL_FIELD_CONTEXT (fields) = type;
2073 next = DECL_CHAIN (fields);
2074 DECL_CHAIN (fields) = tail;
2076 TYPE_FIELDS (type) = tail;
2078 if (align_type)
2080 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2081 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2084 layout_type (type);
2085 #if 0 /* not yet, should get fixed properly later */
2086 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2087 #else
2088 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2089 TYPE_DECL, get_identifier (name), type);
2090 #endif
2091 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2092 layout_decl (TYPE_NAME (type), 0);
2095 /* Calculate the mode, size, and alignment for TYPE.
2096 For an array type, calculate the element separation as well.
2097 Record TYPE on the chain of permanent or temporary types
2098 so that dbxout will find out about it.
2100 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2101 layout_type does nothing on such a type.
2103 If the type is incomplete, its TYPE_SIZE remains zero. */
2105 void
2106 layout_type (tree type)
2108 gcc_assert (type);
2110 if (type == error_mark_node)
2111 return;
2113 /* Do nothing if type has been laid out before. */
2114 if (TYPE_SIZE (type))
2115 return;
2117 switch (TREE_CODE (type))
2119 case LANG_TYPE:
2120 /* This kind of type is the responsibility
2121 of the language-specific code. */
2122 gcc_unreachable ();
2124 case BOOLEAN_TYPE:
2125 case INTEGER_TYPE:
2126 case ENUMERAL_TYPE:
2127 SET_TYPE_MODE (type,
2128 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2129 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2130 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2131 break;
2133 case REAL_TYPE:
2134 SET_TYPE_MODE (type,
2135 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2136 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2137 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2138 break;
2140 case FIXED_POINT_TYPE:
2141 /* TYPE_MODE (type) has been set already. */
2142 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2143 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2144 break;
2146 case COMPLEX_TYPE:
2147 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2148 SET_TYPE_MODE (type,
2149 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2150 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2151 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2152 0));
2153 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2154 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2155 break;
2157 case VECTOR_TYPE:
2159 int nunits = TYPE_VECTOR_SUBPARTS (type);
2160 tree innertype = TREE_TYPE (type);
2162 gcc_assert (!(nunits & (nunits - 1)));
2164 /* Find an appropriate mode for the vector type. */
2165 if (TYPE_MODE (type) == VOIDmode)
2166 SET_TYPE_MODE (type,
2167 mode_for_vector (TYPE_MODE (innertype), nunits));
2169 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2170 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2171 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2172 TYPE_SIZE_UNIT (innertype),
2173 size_int (nunits));
2174 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2175 bitsize_int (nunits));
2177 /* For vector types, we do not default to the mode's alignment.
2178 Instead, query a target hook, defaulting to natural alignment.
2179 This prevents ABI changes depending on whether or not native
2180 vector modes are supported. */
2181 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2183 /* However, if the underlying mode requires a bigger alignment than
2184 what the target hook provides, we cannot use the mode. For now,
2185 simply reject that case. */
2186 gcc_assert (TYPE_ALIGN (type)
2187 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2188 break;
2191 case VOID_TYPE:
2192 /* This is an incomplete type and so doesn't have a size. */
2193 TYPE_ALIGN (type) = 1;
2194 TYPE_USER_ALIGN (type) = 0;
2195 SET_TYPE_MODE (type, VOIDmode);
2196 break;
2198 case OFFSET_TYPE:
2199 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2200 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2201 /* A pointer might be MODE_PARTIAL_INT,
2202 but ptrdiff_t must be integral. */
2203 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2204 TYPE_PRECISION (type) = POINTER_SIZE;
2205 break;
2207 case FUNCTION_TYPE:
2208 case METHOD_TYPE:
2209 /* It's hard to see what the mode and size of a function ought to
2210 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2211 make it consistent with that. */
2212 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2213 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2214 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2215 break;
2217 case POINTER_TYPE:
2218 case REFERENCE_TYPE:
2220 enum machine_mode mode = TYPE_MODE (type);
2221 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2223 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2224 mode = targetm.addr_space.address_mode (as);
2227 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2228 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2229 TYPE_UNSIGNED (type) = 1;
2230 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2232 break;
2234 case ARRAY_TYPE:
2236 tree index = TYPE_DOMAIN (type);
2237 tree element = TREE_TYPE (type);
2239 build_pointer_type (element);
2241 /* We need to know both bounds in order to compute the size. */
2242 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2243 && TYPE_SIZE (element))
2245 tree ub = TYPE_MAX_VALUE (index);
2246 tree lb = TYPE_MIN_VALUE (index);
2247 tree element_size = TYPE_SIZE (element);
2248 tree length;
2250 /* Make sure that an array of zero-sized element is zero-sized
2251 regardless of its extent. */
2252 if (integer_zerop (element_size))
2253 length = size_zero_node;
2255 /* The computation should happen in the original signedness so
2256 that (possible) negative values are handled appropriately
2257 when determining overflow. */
2258 else
2260 /* ??? When it is obvious that the range is signed
2261 represent it using ssizetype. */
2262 if (TREE_CODE (lb) == INTEGER_CST
2263 && TREE_CODE (ub) == INTEGER_CST
2264 && TYPE_UNSIGNED (TREE_TYPE (lb))
2265 && tree_int_cst_lt (ub, lb))
2267 lb = wide_int_to_tree (ssizetype,
2268 offset_int::from (lb, SIGNED));
2269 ub = wide_int_to_tree (ssizetype,
2270 offset_int::from (ub, SIGNED));
2272 length
2273 = fold_convert (sizetype,
2274 size_binop (PLUS_EXPR,
2275 build_int_cst (TREE_TYPE (lb), 1),
2276 size_binop (MINUS_EXPR, ub, lb)));
2279 /* ??? We have no way to distinguish a null-sized array from an
2280 array spanning the whole sizetype range, so we arbitrarily
2281 decide that [0, -1] is the only valid representation. */
2282 if (integer_zerop (length)
2283 && TREE_OVERFLOW (length)
2284 && integer_zerop (lb))
2285 length = size_zero_node;
2287 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2288 fold_convert (bitsizetype,
2289 length));
2291 /* If we know the size of the element, calculate the total size
2292 directly, rather than do some division thing below. This
2293 optimization helps Fortran assumed-size arrays (where the
2294 size of the array is determined at runtime) substantially. */
2295 if (TYPE_SIZE_UNIT (element))
2296 TYPE_SIZE_UNIT (type)
2297 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2300 /* Now round the alignment and size,
2301 using machine-dependent criteria if any. */
2303 #ifdef ROUND_TYPE_ALIGN
2304 TYPE_ALIGN (type)
2305 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2306 #else
2307 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2308 #endif
2309 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2310 SET_TYPE_MODE (type, BLKmode);
2311 if (TYPE_SIZE (type) != 0
2312 && ! targetm.member_type_forces_blk (type, VOIDmode)
2313 /* BLKmode elements force BLKmode aggregate;
2314 else extract/store fields may lose. */
2315 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2316 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2318 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2319 TYPE_SIZE (type)));
2320 if (TYPE_MODE (type) != BLKmode
2321 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2322 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2324 TYPE_NO_FORCE_BLK (type) = 1;
2325 SET_TYPE_MODE (type, BLKmode);
2328 /* When the element size is constant, check that it is at least as
2329 large as the element alignment. */
2330 if (TYPE_SIZE_UNIT (element)
2331 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2332 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2333 TYPE_ALIGN_UNIT. */
2334 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2335 && !integer_zerop (TYPE_SIZE_UNIT (element))
2336 && compare_tree_int (TYPE_SIZE_UNIT (element),
2337 TYPE_ALIGN_UNIT (element)) < 0)
2338 error ("alignment of array elements is greater than element size");
2339 break;
2342 case RECORD_TYPE:
2343 case UNION_TYPE:
2344 case QUAL_UNION_TYPE:
2346 tree field;
2347 record_layout_info rli;
2349 /* Initialize the layout information. */
2350 rli = start_record_layout (type);
2352 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2353 in the reverse order in building the COND_EXPR that denotes
2354 its size. We reverse them again later. */
2355 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2356 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2358 /* Place all the fields. */
2359 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2360 place_field (rli, field);
2362 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2363 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2365 /* Finish laying out the record. */
2366 finish_record_layout (rli, /*free_p=*/true);
2368 break;
2370 default:
2371 gcc_unreachable ();
2374 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2375 records and unions, finish_record_layout already called this
2376 function. */
2377 if (TREE_CODE (type) != RECORD_TYPE
2378 && TREE_CODE (type) != UNION_TYPE
2379 && TREE_CODE (type) != QUAL_UNION_TYPE)
2380 finalize_type_size (type);
2382 /* We should never see alias sets on incomplete aggregates. And we
2383 should not call layout_type on not incomplete aggregates. */
2384 if (AGGREGATE_TYPE_P (type))
2385 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2388 /* Vector types need to re-check the target flags each time we report
2389 the machine mode. We need to do this because attribute target can
2390 change the result of vector_mode_supported_p and have_regs_of_mode
2391 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2392 change on a per-function basis. */
2393 /* ??? Possibly a better solution is to run through all the types
2394 referenced by a function and re-compute the TYPE_MODE once, rather
2395 than make the TYPE_MODE macro call a function. */
2397 enum machine_mode
2398 vector_type_mode (const_tree t)
2400 enum machine_mode mode;
2402 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2404 mode = t->type_common.mode;
2405 if (VECTOR_MODE_P (mode)
2406 && (!targetm.vector_mode_supported_p (mode)
2407 || !have_regs_of_mode[mode]))
2409 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2411 /* For integers, try mapping it to a same-sized scalar mode. */
2412 if (GET_MODE_CLASS (innermode) == MODE_INT)
2414 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2415 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2417 if (mode != VOIDmode && have_regs_of_mode[mode])
2418 return mode;
2421 return BLKmode;
2424 return mode;
2427 /* Create and return a type for signed integers of PRECISION bits. */
2429 tree
2430 make_signed_type (int precision)
2432 tree type = make_node (INTEGER_TYPE);
2434 TYPE_PRECISION (type) = precision;
2436 fixup_signed_type (type);
2437 return type;
2440 /* Create and return a type for unsigned integers of PRECISION bits. */
2442 tree
2443 make_unsigned_type (int precision)
2445 tree type = make_node (INTEGER_TYPE);
2447 TYPE_PRECISION (type) = precision;
2449 fixup_unsigned_type (type);
2450 return type;
2453 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2454 and SATP. */
2456 tree
2457 make_fract_type (int precision, int unsignedp, int satp)
2459 tree type = make_node (FIXED_POINT_TYPE);
2461 TYPE_PRECISION (type) = precision;
2463 if (satp)
2464 TYPE_SATURATING (type) = 1;
2466 /* Lay out the type: set its alignment, size, etc. */
2467 if (unsignedp)
2469 TYPE_UNSIGNED (type) = 1;
2470 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2472 else
2473 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2474 layout_type (type);
2476 return type;
2479 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2480 and SATP. */
2482 tree
2483 make_accum_type (int precision, int unsignedp, int satp)
2485 tree type = make_node (FIXED_POINT_TYPE);
2487 TYPE_PRECISION (type) = precision;
2489 if (satp)
2490 TYPE_SATURATING (type) = 1;
2492 /* Lay out the type: set its alignment, size, etc. */
2493 if (unsignedp)
2495 TYPE_UNSIGNED (type) = 1;
2496 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2498 else
2499 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2500 layout_type (type);
2502 return type;
2505 /* Initialize sizetypes so layout_type can use them. */
2507 void
2508 initialize_sizetypes (void)
2510 int precision, bprecision;
2512 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2513 if (strcmp (SIZETYPE, "unsigned int") == 0)
2514 precision = INT_TYPE_SIZE;
2515 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2516 precision = LONG_TYPE_SIZE;
2517 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2518 precision = LONG_LONG_TYPE_SIZE;
2519 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2520 precision = SHORT_TYPE_SIZE;
2521 else
2522 gcc_unreachable ();
2524 bprecision
2525 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2526 bprecision
2527 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2528 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2529 bprecision = HOST_BITS_PER_DOUBLE_INT;
2531 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2532 sizetype = make_node (INTEGER_TYPE);
2533 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2534 TYPE_PRECISION (sizetype) = precision;
2535 TYPE_UNSIGNED (sizetype) = 1;
2536 bitsizetype = make_node (INTEGER_TYPE);
2537 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2538 TYPE_PRECISION (bitsizetype) = bprecision;
2539 TYPE_UNSIGNED (bitsizetype) = 1;
2541 /* Now layout both types manually. */
2542 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2543 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2544 TYPE_SIZE (sizetype) = bitsize_int (precision);
2545 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2546 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2548 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2549 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2550 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2551 TYPE_SIZE_UNIT (bitsizetype)
2552 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2553 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2555 /* Create the signed variants of *sizetype. */
2556 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2557 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2558 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2559 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2562 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2563 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2564 for TYPE, based on the PRECISION and whether or not the TYPE
2565 IS_UNSIGNED. PRECISION need not correspond to a width supported
2566 natively by the hardware; for example, on a machine with 8-bit,
2567 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2568 61. */
2570 void
2571 set_min_and_max_values_for_integral_type (tree type,
2572 int precision,
2573 signop sgn)
2575 /* For bitfields with zero width we end up creating integer types
2576 with zero precision. Don't assign any minimum/maximum values
2577 to those types, they don't have any valid value. */
2578 if (precision < 1)
2579 return;
2581 TYPE_MIN_VALUE (type)
2582 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2583 TYPE_MAX_VALUE (type)
2584 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2587 /* Set the extreme values of TYPE based on its precision in bits,
2588 then lay it out. Used when make_signed_type won't do
2589 because the tree code is not INTEGER_TYPE.
2590 E.g. for Pascal, when the -fsigned-char option is given. */
2592 void
2593 fixup_signed_type (tree type)
2595 int precision = TYPE_PRECISION (type);
2597 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2599 /* Lay out the type: set its alignment, size, etc. */
2600 layout_type (type);
2603 /* Set the extreme values of TYPE based on its precision in bits,
2604 then lay it out. This is used both in `make_unsigned_type'
2605 and for enumeral types. */
2607 void
2608 fixup_unsigned_type (tree type)
2610 int precision = TYPE_PRECISION (type);
2612 TYPE_UNSIGNED (type) = 1;
2614 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2616 /* Lay out the type: set its alignment, size, etc. */
2617 layout_type (type);
2620 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2621 starting at BITPOS.
2623 BITREGION_START is the bit position of the first bit in this
2624 sequence of bit fields. BITREGION_END is the last bit in this
2625 sequence. If these two fields are non-zero, we should restrict the
2626 memory access to that range. Otherwise, we are allowed to touch
2627 any adjacent non bit-fields.
2629 ALIGN is the alignment of the underlying object in bits.
2630 VOLATILEP says whether the bitfield is volatile. */
2632 bit_field_mode_iterator
2633 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2634 HOST_WIDE_INT bitregion_start,
2635 HOST_WIDE_INT bitregion_end,
2636 unsigned int align, bool volatilep)
2637 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2638 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2639 m_bitregion_end (bitregion_end), m_align (align),
2640 m_volatilep (volatilep), m_count (0)
2642 if (!m_bitregion_end)
2644 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2645 the bitfield is mapped and won't trap, provided that ALIGN isn't
2646 too large. The cap is the biggest required alignment for data,
2647 or at least the word size. And force one such chunk at least. */
2648 unsigned HOST_WIDE_INT units
2649 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2650 if (bitsize <= 0)
2651 bitsize = 1;
2652 m_bitregion_end = bitpos + bitsize + units - 1;
2653 m_bitregion_end -= m_bitregion_end % units + 1;
2657 /* Calls to this function return successively larger modes that can be used
2658 to represent the bitfield. Return true if another bitfield mode is
2659 available, storing it in *OUT_MODE if so. */
2661 bool
2662 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2664 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2666 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2668 /* Skip modes that don't have full precision. */
2669 if (unit != GET_MODE_PRECISION (m_mode))
2670 continue;
2672 /* Stop if the mode is too wide to handle efficiently. */
2673 if (unit > MAX_FIXED_MODE_SIZE)
2674 break;
2676 /* Don't deliver more than one multiword mode; the smallest one
2677 should be used. */
2678 if (m_count > 0 && unit > BITS_PER_WORD)
2679 break;
2681 /* Skip modes that are too small. */
2682 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2683 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2684 if (subend > unit)
2685 continue;
2687 /* Stop if the mode goes outside the bitregion. */
2688 HOST_WIDE_INT start = m_bitpos - substart;
2689 if (m_bitregion_start && start < m_bitregion_start)
2690 break;
2691 HOST_WIDE_INT end = start + unit;
2692 if (end > m_bitregion_end + 1)
2693 break;
2695 /* Stop if the mode requires too much alignment. */
2696 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2697 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2698 break;
2700 *out_mode = m_mode;
2701 m_mode = GET_MODE_WIDER_MODE (m_mode);
2702 m_count++;
2703 return true;
2705 return false;
2708 /* Return true if smaller modes are generally preferred for this kind
2709 of bitfield. */
2711 bool
2712 bit_field_mode_iterator::prefer_smaller_modes ()
2714 return (m_volatilep
2715 ? targetm.narrow_volatile_bitfield ()
2716 : !SLOW_BYTE_ACCESS);
2719 /* Find the best machine mode to use when referencing a bit field of length
2720 BITSIZE bits starting at BITPOS.
2722 BITREGION_START is the bit position of the first bit in this
2723 sequence of bit fields. BITREGION_END is the last bit in this
2724 sequence. If these two fields are non-zero, we should restrict the
2725 memory access to that range. Otherwise, we are allowed to touch
2726 any adjacent non bit-fields.
2728 The underlying object is known to be aligned to a boundary of ALIGN bits.
2729 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2730 larger than LARGEST_MODE (usually SImode).
2732 If no mode meets all these conditions, we return VOIDmode.
2734 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2735 smallest mode meeting these conditions.
2737 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2738 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2739 all the conditions.
2741 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2742 decide which of the above modes should be used. */
2744 enum machine_mode
2745 get_best_mode (int bitsize, int bitpos,
2746 unsigned HOST_WIDE_INT bitregion_start,
2747 unsigned HOST_WIDE_INT bitregion_end,
2748 unsigned int align,
2749 enum machine_mode largest_mode, bool volatilep)
2751 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2752 bitregion_end, align, volatilep);
2753 enum machine_mode widest_mode = VOIDmode;
2754 enum machine_mode mode;
2755 while (iter.next_mode (&mode)
2756 /* ??? For historical reasons, reject modes that would normally
2757 receive greater alignment, even if unaligned accesses are
2758 acceptable. This has both advantages and disadvantages.
2759 Removing this check means that something like:
2761 struct s { unsigned int x; unsigned int y; };
2762 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2764 can be implemented using a single load and compare on
2765 64-bit machines that have no alignment restrictions.
2766 For example, on powerpc64-linux-gnu, we would generate:
2768 ld 3,0(3)
2769 cntlzd 3,3
2770 srdi 3,3,6
2773 rather than:
2775 lwz 9,0(3)
2776 cmpwi 7,9,0
2777 bne 7,.L3
2778 lwz 3,4(3)
2779 cntlzw 3,3
2780 srwi 3,3,5
2781 extsw 3,3
2783 .p2align 4,,15
2784 .L3:
2785 li 3,0
2788 However, accessing more than one field can make life harder
2789 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2790 has a series of unsigned short copies followed by a series of
2791 unsigned short comparisons. With this check, both the copies
2792 and comparisons remain 16-bit accesses and FRE is able
2793 to eliminate the latter. Without the check, the comparisons
2794 can be done using 2 64-bit operations, which FRE isn't able
2795 to handle in the same way.
2797 Either way, it would probably be worth disabling this check
2798 during expand. One particular example where removing the
2799 check would help is the get_best_mode call in store_bit_field.
2800 If we are given a memory bitregion of 128 bits that is aligned
2801 to a 64-bit boundary, and the bitfield we want to modify is
2802 in the second half of the bitregion, this check causes
2803 store_bitfield to turn the memory into a 64-bit reference
2804 to the _first_ half of the region. We later use
2805 adjust_bitfield_address to get a reference to the correct half,
2806 but doing so looks to adjust_bitfield_address as though we are
2807 moving past the end of the original object, so it drops the
2808 associated MEM_EXPR and MEM_OFFSET. Removing the check
2809 causes store_bit_field to keep a 128-bit memory reference,
2810 so that the final bitfield reference still has a MEM_EXPR
2811 and MEM_OFFSET. */
2812 && GET_MODE_ALIGNMENT (mode) <= align
2813 && (largest_mode == VOIDmode
2814 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2816 widest_mode = mode;
2817 if (iter.prefer_smaller_modes ())
2818 break;
2820 return widest_mode;
2823 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2824 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2826 void
2827 get_mode_bounds (enum machine_mode mode, int sign,
2828 enum machine_mode target_mode,
2829 rtx *mmin, rtx *mmax)
2831 unsigned size = GET_MODE_PRECISION (mode);
2832 unsigned HOST_WIDE_INT min_val, max_val;
2834 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2836 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2837 if (mode == BImode)
2839 if (STORE_FLAG_VALUE < 0)
2841 min_val = STORE_FLAG_VALUE;
2842 max_val = 0;
2844 else
2846 min_val = 0;
2847 max_val = STORE_FLAG_VALUE;
2850 else if (sign)
2852 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2853 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2855 else
2857 min_val = 0;
2858 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2861 *mmin = gen_int_mode (min_val, target_mode);
2862 *mmax = gen_int_mode (max_val, target_mode);
2865 #include "gt-stor-layout.h"