gcc/testsuite/
[official-gcc.git] / gcc / predict.c
blob165cc4e2ec65cf1817eda19cb244e5a29f906b70
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "calls.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "except.h"
45 #include "diagnostic-core.h"
46 #include "recog.h"
47 #include "expr.h"
48 #include "predict.h"
49 #include "coverage.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "target.h"
53 #include "cfgloop.h"
54 #include "pointer-set.h"
55 #include "tree-ssa-alias.h"
56 #include "internal-fn.h"
57 #include "gimple-expr.h"
58 #include "is-a.h"
59 #include "gimple.h"
60 #include "gimple-iterator.h"
61 #include "gimple-ssa.h"
62 #include "cgraph.h"
63 #include "tree-cfg.h"
64 #include "tree-phinodes.h"
65 #include "ssa-iterators.h"
66 #include "tree-ssa-loop-niter.h"
67 #include "tree-ssa-loop.h"
68 #include "tree-pass.h"
69 #include "tree-scalar-evolution.h"
70 #include "cfgloop.h"
72 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
73 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
74 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
75 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
81 static bool can_predict_insn_p (const_rtx);
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
86 struct predictor_info
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
98 /* Recompute hitrate in percent to our representation. */
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
109 #undef DEF_PREDICTOR
111 /* Return TRUE if frequency FREQ is considered to be hot. */
113 static inline bool
114 maybe_hot_frequency_p (struct function *fun, int freq)
116 struct cgraph_node *node = cgraph_get_node (fun->decl);
117 if (!profile_info || !flag_branch_probabilities)
119 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (node->frequency == NODE_FREQUENCY_HOT)
122 return true;
124 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
125 return true;
126 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
128 return false;
129 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
130 return false;
131 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
132 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
133 return false;
134 return true;
137 static gcov_type min_count = -1;
139 /* Determine the threshold for hot BB counts. */
141 gcov_type
142 get_hot_bb_threshold ()
144 gcov_working_set_t *ws;
145 if (min_count == -1)
147 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
148 gcc_assert (ws);
149 min_count = ws->min_counter;
151 return min_count;
154 /* Set the threshold for hot BB counts. */
156 void
157 set_hot_bb_threshold (gcov_type min)
159 min_count = min;
162 /* Return TRUE if frequency FREQ is considered to be hot. */
164 static inline bool
165 maybe_hot_count_p (struct function *fun, gcov_type count)
167 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
168 return true;
169 /* Code executed at most once is not hot. */
170 if (profile_info->runs >= count)
171 return false;
172 return (count >= get_hot_bb_threshold ());
175 /* Return true in case BB can be CPU intensive and should be optimized
176 for maximal performance. */
178 bool
179 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
181 gcc_checking_assert (fun);
182 if (profile_status_for_fn (fun) == PROFILE_READ)
183 return maybe_hot_count_p (fun, bb->count);
184 return maybe_hot_frequency_p (fun, bb->frequency);
187 /* Return true if the call can be hot. */
189 bool
190 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
192 if (profile_info && flag_branch_probabilities
193 && !maybe_hot_count_p (NULL,
194 edge->count))
195 return false;
196 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
197 || (edge->callee
198 && edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
199 return false;
200 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
201 && (edge->callee
202 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
203 return false;
204 if (optimize_size)
205 return false;
206 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
207 return true;
208 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
209 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
210 return false;
211 if (flag_guess_branch_prob)
213 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0
214 || edge->frequency <= (CGRAPH_FREQ_BASE
215 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
216 return false;
218 return true;
221 /* Return true in case BB can be CPU intensive and should be optimized
222 for maximal performance. */
224 bool
225 maybe_hot_edge_p (edge e)
227 if (profile_status_for_fn (cfun) == PROFILE_READ)
228 return maybe_hot_count_p (cfun, e->count);
229 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
234 /* Return true if profile COUNT and FREQUENCY, or function FUN static
235 node frequency reflects never being executed. */
237 static bool
238 probably_never_executed (struct function *fun,
239 gcov_type count, int frequency)
241 gcc_checking_assert (fun);
242 if (profile_status_for_fn (cfun) == PROFILE_READ)
244 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
245 if (count * unlikely_count_fraction >= profile_info->runs)
246 return false;
247 if (!frequency)
248 return true;
249 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
250 return false;
251 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
253 gcov_type computed_count;
254 /* Check for possibility of overflow, in which case entry bb count
255 is large enough to do the division first without losing much
256 precision. */
257 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count < REG_BR_PROB_BASE *
258 REG_BR_PROB_BASE)
260 gcov_type scaled_count
261 = frequency * ENTRY_BLOCK_PTR_FOR_FN (cfun)->count *
262 unlikely_count_fraction;
263 computed_count = RDIV (scaled_count,
264 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
266 else
268 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count,
269 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
270 computed_count *= frequency * unlikely_count_fraction;
272 if (computed_count >= profile_info->runs)
273 return false;
275 return true;
277 if ((!profile_info || !flag_branch_probabilities)
278 && (cgraph_get_node (fun->decl)->frequency
279 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
280 return true;
281 return false;
285 /* Return true in case BB is probably never executed. */
287 bool
288 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
290 return probably_never_executed (fun, bb->count, bb->frequency);
294 /* Return true in case edge E is probably never executed. */
296 bool
297 probably_never_executed_edge_p (struct function *fun, edge e)
299 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
302 /* Return true if NODE should be optimized for size. */
304 bool
305 cgraph_optimize_for_size_p (struct cgraph_node *node)
307 if (optimize_size)
308 return true;
309 if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
310 return true;
311 else
312 return false;
315 /* Return true when current function should always be optimized for size. */
317 bool
318 optimize_function_for_size_p (struct function *fun)
320 if (optimize_size)
321 return true;
322 if (!fun || !fun->decl)
323 return false;
324 return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
327 /* Return true when current function should always be optimized for speed. */
329 bool
330 optimize_function_for_speed_p (struct function *fun)
332 return !optimize_function_for_size_p (fun);
335 /* Return TRUE when BB should be optimized for size. */
337 bool
338 optimize_bb_for_size_p (const_basic_block bb)
340 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (cfun, bb);
343 /* Return TRUE when BB should be optimized for speed. */
345 bool
346 optimize_bb_for_speed_p (const_basic_block bb)
348 return !optimize_bb_for_size_p (bb);
351 /* Return TRUE when BB should be optimized for size. */
353 bool
354 optimize_edge_for_size_p (edge e)
356 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
359 /* Return TRUE when BB should be optimized for speed. */
361 bool
362 optimize_edge_for_speed_p (edge e)
364 return !optimize_edge_for_size_p (e);
367 /* Return TRUE when BB should be optimized for size. */
369 bool
370 optimize_insn_for_size_p (void)
372 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
375 /* Return TRUE when BB should be optimized for speed. */
377 bool
378 optimize_insn_for_speed_p (void)
380 return !optimize_insn_for_size_p ();
383 /* Return TRUE when LOOP should be optimized for size. */
385 bool
386 optimize_loop_for_size_p (struct loop *loop)
388 return optimize_bb_for_size_p (loop->header);
391 /* Return TRUE when LOOP should be optimized for speed. */
393 bool
394 optimize_loop_for_speed_p (struct loop *loop)
396 return optimize_bb_for_speed_p (loop->header);
399 /* Return TRUE when LOOP nest should be optimized for speed. */
401 bool
402 optimize_loop_nest_for_speed_p (struct loop *loop)
404 struct loop *l = loop;
405 if (optimize_loop_for_speed_p (loop))
406 return true;
407 l = loop->inner;
408 while (l && l != loop)
410 if (optimize_loop_for_speed_p (l))
411 return true;
412 if (l->inner)
413 l = l->inner;
414 else if (l->next)
415 l = l->next;
416 else
418 while (l != loop && !l->next)
419 l = loop_outer (l);
420 if (l != loop)
421 l = l->next;
424 return false;
427 /* Return TRUE when LOOP nest should be optimized for size. */
429 bool
430 optimize_loop_nest_for_size_p (struct loop *loop)
432 return !optimize_loop_nest_for_speed_p (loop);
435 /* Return true when edge E is likely to be well predictable by branch
436 predictor. */
438 bool
439 predictable_edge_p (edge e)
441 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
442 return false;
443 if ((e->probability
444 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
445 || (REG_BR_PROB_BASE - e->probability
446 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
447 return true;
448 return false;
452 /* Set RTL expansion for BB profile. */
454 void
455 rtl_profile_for_bb (basic_block bb)
457 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
460 /* Set RTL expansion for edge profile. */
462 void
463 rtl_profile_for_edge (edge e)
465 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
468 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
469 void
470 default_rtl_profile (void)
472 crtl->maybe_hot_insn_p = true;
475 /* Return true if the one of outgoing edges is already predicted by
476 PREDICTOR. */
478 bool
479 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
481 rtx note;
482 if (!INSN_P (BB_END (bb)))
483 return false;
484 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
485 if (REG_NOTE_KIND (note) == REG_BR_PRED
486 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
487 return true;
488 return false;
491 /* This map contains for a basic block the list of predictions for the
492 outgoing edges. */
494 static struct pointer_map_t *bb_predictions;
496 /* Structure representing predictions in tree level. */
498 struct edge_prediction {
499 struct edge_prediction *ep_next;
500 edge ep_edge;
501 enum br_predictor ep_predictor;
502 int ep_probability;
505 /* Return true if the one of outgoing edges is already predicted by
506 PREDICTOR. */
508 bool
509 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
511 struct edge_prediction *i;
512 void **preds = pointer_map_contains (bb_predictions, bb);
514 if (!preds)
515 return false;
517 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
518 if (i->ep_predictor == predictor)
519 return true;
520 return false;
523 /* Return true when the probability of edge is reliable.
525 The profile guessing code is good at predicting branch outcome (ie.
526 taken/not taken), that is predicted right slightly over 75% of time.
527 It is however notoriously poor on predicting the probability itself.
528 In general the profile appear a lot flatter (with probabilities closer
529 to 50%) than the reality so it is bad idea to use it to drive optimization
530 such as those disabling dynamic branch prediction for well predictable
531 branches.
533 There are two exceptions - edges leading to noreturn edges and edges
534 predicted by number of iterations heuristics are predicted well. This macro
535 should be able to distinguish those, but at the moment it simply check for
536 noreturn heuristic that is only one giving probability over 99% or bellow
537 1%. In future we might want to propagate reliability information across the
538 CFG if we find this information useful on multiple places. */
539 static bool
540 probability_reliable_p (int prob)
542 return (profile_status_for_fn (cfun) == PROFILE_READ
543 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
544 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
547 /* Same predicate as above, working on edges. */
548 bool
549 edge_probability_reliable_p (const_edge e)
551 return probability_reliable_p (e->probability);
554 /* Same predicate as edge_probability_reliable_p, working on notes. */
555 bool
556 br_prob_note_reliable_p (const_rtx note)
558 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
559 return probability_reliable_p (XINT (note, 0));
562 static void
563 predict_insn (rtx insn, enum br_predictor predictor, int probability)
565 gcc_assert (any_condjump_p (insn));
566 if (!flag_guess_branch_prob)
567 return;
569 add_reg_note (insn, REG_BR_PRED,
570 gen_rtx_CONCAT (VOIDmode,
571 GEN_INT ((int) predictor),
572 GEN_INT ((int) probability)));
575 /* Predict insn by given predictor. */
577 void
578 predict_insn_def (rtx insn, enum br_predictor predictor,
579 enum prediction taken)
581 int probability = predictor_info[(int) predictor].hitrate;
583 if (taken != TAKEN)
584 probability = REG_BR_PROB_BASE - probability;
586 predict_insn (insn, predictor, probability);
589 /* Predict edge E with given probability if possible. */
591 void
592 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
594 rtx last_insn;
595 last_insn = BB_END (e->src);
597 /* We can store the branch prediction information only about
598 conditional jumps. */
599 if (!any_condjump_p (last_insn))
600 return;
602 /* We always store probability of branching. */
603 if (e->flags & EDGE_FALLTHRU)
604 probability = REG_BR_PROB_BASE - probability;
606 predict_insn (last_insn, predictor, probability);
609 /* Predict edge E with the given PROBABILITY. */
610 void
611 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
613 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
614 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
616 && flag_guess_branch_prob && optimize)
618 struct edge_prediction *i = XNEW (struct edge_prediction);
619 void **preds = pointer_map_insert (bb_predictions, e->src);
621 i->ep_next = (struct edge_prediction *) *preds;
622 *preds = i;
623 i->ep_probability = probability;
624 i->ep_predictor = predictor;
625 i->ep_edge = e;
629 /* Remove all predictions on given basic block that are attached
630 to edge E. */
631 void
632 remove_predictions_associated_with_edge (edge e)
634 void **preds;
636 if (!bb_predictions)
637 return;
639 preds = pointer_map_contains (bb_predictions, e->src);
641 if (preds)
643 struct edge_prediction **prediction = (struct edge_prediction **) preds;
644 struct edge_prediction *next;
646 while (*prediction)
648 if ((*prediction)->ep_edge == e)
650 next = (*prediction)->ep_next;
651 free (*prediction);
652 *prediction = next;
654 else
655 prediction = &((*prediction)->ep_next);
660 /* Clears the list of predictions stored for BB. */
662 static void
663 clear_bb_predictions (basic_block bb)
665 void **preds = pointer_map_contains (bb_predictions, bb);
666 struct edge_prediction *pred, *next;
668 if (!preds)
669 return;
671 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
673 next = pred->ep_next;
674 free (pred);
676 *preds = NULL;
679 /* Return true when we can store prediction on insn INSN.
680 At the moment we represent predictions only on conditional
681 jumps, not at computed jump or other complicated cases. */
682 static bool
683 can_predict_insn_p (const_rtx insn)
685 return (JUMP_P (insn)
686 && any_condjump_p (insn)
687 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
690 /* Predict edge E by given predictor if possible. */
692 void
693 predict_edge_def (edge e, enum br_predictor predictor,
694 enum prediction taken)
696 int probability = predictor_info[(int) predictor].hitrate;
698 if (taken != TAKEN)
699 probability = REG_BR_PROB_BASE - probability;
701 predict_edge (e, predictor, probability);
704 /* Invert all branch predictions or probability notes in the INSN. This needs
705 to be done each time we invert the condition used by the jump. */
707 void
708 invert_br_probabilities (rtx insn)
710 rtx note;
712 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
713 if (REG_NOTE_KIND (note) == REG_BR_PROB)
714 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
715 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
716 XEXP (XEXP (note, 0), 1)
717 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
720 /* Dump information about the branch prediction to the output file. */
722 static void
723 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
724 basic_block bb, int used)
726 edge e;
727 edge_iterator ei;
729 if (!file)
730 return;
732 FOR_EACH_EDGE (e, ei, bb->succs)
733 if (! (e->flags & EDGE_FALLTHRU))
734 break;
736 fprintf (file, " %s heuristics%s: %.1f%%",
737 predictor_info[predictor].name,
738 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
740 if (bb->count)
742 fprintf (file, " exec ");
743 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
744 if (e)
746 fprintf (file, " hit ");
747 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
748 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
752 fprintf (file, "\n");
755 /* We can not predict the probabilities of outgoing edges of bb. Set them
756 evenly and hope for the best. */
757 static void
758 set_even_probabilities (basic_block bb)
760 int nedges = 0;
761 edge e;
762 edge_iterator ei;
764 FOR_EACH_EDGE (e, ei, bb->succs)
765 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
766 nedges ++;
767 FOR_EACH_EDGE (e, ei, bb->succs)
768 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
769 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
770 else
771 e->probability = 0;
774 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
775 note if not already present. Remove now useless REG_BR_PRED notes. */
777 static void
778 combine_predictions_for_insn (rtx insn, basic_block bb)
780 rtx prob_note;
781 rtx *pnote;
782 rtx note;
783 int best_probability = PROB_EVEN;
784 enum br_predictor best_predictor = END_PREDICTORS;
785 int combined_probability = REG_BR_PROB_BASE / 2;
786 int d;
787 bool first_match = false;
788 bool found = false;
790 if (!can_predict_insn_p (insn))
792 set_even_probabilities (bb);
793 return;
796 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
797 pnote = &REG_NOTES (insn);
798 if (dump_file)
799 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
800 bb->index);
802 /* We implement "first match" heuristics and use probability guessed
803 by predictor with smallest index. */
804 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
805 if (REG_NOTE_KIND (note) == REG_BR_PRED)
807 enum br_predictor predictor = ((enum br_predictor)
808 INTVAL (XEXP (XEXP (note, 0), 0)));
809 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
811 found = true;
812 if (best_predictor > predictor)
813 best_probability = probability, best_predictor = predictor;
815 d = (combined_probability * probability
816 + (REG_BR_PROB_BASE - combined_probability)
817 * (REG_BR_PROB_BASE - probability));
819 /* Use FP math to avoid overflows of 32bit integers. */
820 if (d == 0)
821 /* If one probability is 0% and one 100%, avoid division by zero. */
822 combined_probability = REG_BR_PROB_BASE / 2;
823 else
824 combined_probability = (((double) combined_probability) * probability
825 * REG_BR_PROB_BASE / d + 0.5);
828 /* Decide which heuristic to use. In case we didn't match anything,
829 use no_prediction heuristic, in case we did match, use either
830 first match or Dempster-Shaffer theory depending on the flags. */
832 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
833 first_match = true;
835 if (!found)
836 dump_prediction (dump_file, PRED_NO_PREDICTION,
837 combined_probability, bb, true);
838 else
840 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
841 bb, !first_match);
842 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
843 bb, first_match);
846 if (first_match)
847 combined_probability = best_probability;
848 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
850 while (*pnote)
852 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
854 enum br_predictor predictor = ((enum br_predictor)
855 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
856 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
858 dump_prediction (dump_file, predictor, probability, bb,
859 !first_match || best_predictor == predictor);
860 *pnote = XEXP (*pnote, 1);
862 else
863 pnote = &XEXP (*pnote, 1);
866 if (!prob_note)
868 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
870 /* Save the prediction into CFG in case we are seeing non-degenerated
871 conditional jump. */
872 if (!single_succ_p (bb))
874 BRANCH_EDGE (bb)->probability = combined_probability;
875 FALLTHRU_EDGE (bb)->probability
876 = REG_BR_PROB_BASE - combined_probability;
879 else if (!single_succ_p (bb))
881 int prob = XINT (prob_note, 0);
883 BRANCH_EDGE (bb)->probability = prob;
884 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
886 else
887 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
890 /* Combine predictions into single probability and store them into CFG.
891 Remove now useless prediction entries. */
893 static void
894 combine_predictions_for_bb (basic_block bb)
896 int best_probability = PROB_EVEN;
897 enum br_predictor best_predictor = END_PREDICTORS;
898 int combined_probability = REG_BR_PROB_BASE / 2;
899 int d;
900 bool first_match = false;
901 bool found = false;
902 struct edge_prediction *pred;
903 int nedges = 0;
904 edge e, first = NULL, second = NULL;
905 edge_iterator ei;
906 void **preds;
908 FOR_EACH_EDGE (e, ei, bb->succs)
909 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
911 nedges ++;
912 if (first && !second)
913 second = e;
914 if (!first)
915 first = e;
918 /* When there is no successor or only one choice, prediction is easy.
920 We are lazy for now and predict only basic blocks with two outgoing
921 edges. It is possible to predict generic case too, but we have to
922 ignore first match heuristics and do more involved combining. Implement
923 this later. */
924 if (nedges != 2)
926 if (!bb->count)
927 set_even_probabilities (bb);
928 clear_bb_predictions (bb);
929 if (dump_file)
930 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
931 nedges, bb->index);
932 return;
935 if (dump_file)
936 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
938 preds = pointer_map_contains (bb_predictions, bb);
939 if (preds)
941 /* We implement "first match" heuristics and use probability guessed
942 by predictor with smallest index. */
943 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
945 enum br_predictor predictor = pred->ep_predictor;
946 int probability = pred->ep_probability;
948 if (pred->ep_edge != first)
949 probability = REG_BR_PROB_BASE - probability;
951 found = true;
952 /* First match heuristics would be widly confused if we predicted
953 both directions. */
954 if (best_predictor > predictor)
956 struct edge_prediction *pred2;
957 int prob = probability;
959 for (pred2 = (struct edge_prediction *) *preds;
960 pred2; pred2 = pred2->ep_next)
961 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
963 int probability2 = pred->ep_probability;
965 if (pred2->ep_edge != first)
966 probability2 = REG_BR_PROB_BASE - probability2;
968 if ((probability < REG_BR_PROB_BASE / 2) !=
969 (probability2 < REG_BR_PROB_BASE / 2))
970 break;
972 /* If the same predictor later gave better result, go for it! */
973 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
974 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
975 prob = probability2;
977 if (!pred2)
978 best_probability = prob, best_predictor = predictor;
981 d = (combined_probability * probability
982 + (REG_BR_PROB_BASE - combined_probability)
983 * (REG_BR_PROB_BASE - probability));
985 /* Use FP math to avoid overflows of 32bit integers. */
986 if (d == 0)
987 /* If one probability is 0% and one 100%, avoid division by zero. */
988 combined_probability = REG_BR_PROB_BASE / 2;
989 else
990 combined_probability = (((double) combined_probability)
991 * probability
992 * REG_BR_PROB_BASE / d + 0.5);
996 /* Decide which heuristic to use. In case we didn't match anything,
997 use no_prediction heuristic, in case we did match, use either
998 first match or Dempster-Shaffer theory depending on the flags. */
1000 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
1001 first_match = true;
1003 if (!found)
1004 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
1005 else
1007 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1008 !first_match);
1009 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1010 first_match);
1013 if (first_match)
1014 combined_probability = best_probability;
1015 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
1017 if (preds)
1019 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1021 enum br_predictor predictor = pred->ep_predictor;
1022 int probability = pred->ep_probability;
1024 if (pred->ep_edge != EDGE_SUCC (bb, 0))
1025 probability = REG_BR_PROB_BASE - probability;
1026 dump_prediction (dump_file, predictor, probability, bb,
1027 !first_match || best_predictor == predictor);
1030 clear_bb_predictions (bb);
1032 if (!bb->count)
1034 first->probability = combined_probability;
1035 second->probability = REG_BR_PROB_BASE - combined_probability;
1039 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1040 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1042 T1 and T2 should be one of the following cases:
1043 1. T1 is SSA_NAME, T2 is NULL
1044 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1045 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1047 static tree
1048 strips_small_constant (tree t1, tree t2)
1050 tree ret = NULL;
1051 int value = 0;
1053 if (!t1)
1054 return NULL;
1055 else if (TREE_CODE (t1) == SSA_NAME)
1056 ret = t1;
1057 else if (tree_fits_shwi_p (t1))
1058 value = tree_to_shwi (t1);
1059 else
1060 return NULL;
1062 if (!t2)
1063 return ret;
1064 else if (tree_fits_shwi_p (t2))
1065 value = tree_to_shwi (t2);
1066 else if (TREE_CODE (t2) == SSA_NAME)
1068 if (ret)
1069 return NULL;
1070 else
1071 ret = t2;
1074 if (value <= 4 && value >= -4)
1075 return ret;
1076 else
1077 return NULL;
1080 /* Return the SSA_NAME in T or T's operands.
1081 Return NULL if SSA_NAME cannot be found. */
1083 static tree
1084 get_base_value (tree t)
1086 if (TREE_CODE (t) == SSA_NAME)
1087 return t;
1089 if (!BINARY_CLASS_P (t))
1090 return NULL;
1092 switch (TREE_OPERAND_LENGTH (t))
1094 case 1:
1095 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1096 case 2:
1097 return strips_small_constant (TREE_OPERAND (t, 0),
1098 TREE_OPERAND (t, 1));
1099 default:
1100 return NULL;
1104 /* Check the compare STMT in LOOP. If it compares an induction
1105 variable to a loop invariant, return true, and save
1106 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1107 Otherwise return false and set LOOP_INVAIANT to NULL. */
1109 static bool
1110 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1111 tree *loop_invariant,
1112 enum tree_code *compare_code,
1113 tree *loop_step,
1114 tree *loop_iv_base)
1116 tree op0, op1, bound, base;
1117 affine_iv iv0, iv1;
1118 enum tree_code code;
1119 tree step;
1121 code = gimple_cond_code (stmt);
1122 *loop_invariant = NULL;
1124 switch (code)
1126 case GT_EXPR:
1127 case GE_EXPR:
1128 case NE_EXPR:
1129 case LT_EXPR:
1130 case LE_EXPR:
1131 case EQ_EXPR:
1132 break;
1134 default:
1135 return false;
1138 op0 = gimple_cond_lhs (stmt);
1139 op1 = gimple_cond_rhs (stmt);
1141 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1142 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1143 return false;
1144 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1145 return false;
1146 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1147 return false;
1148 if (TREE_CODE (iv0.step) != INTEGER_CST
1149 || TREE_CODE (iv1.step) != INTEGER_CST)
1150 return false;
1151 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1152 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1153 return false;
1155 if (integer_zerop (iv0.step))
1157 if (code != NE_EXPR && code != EQ_EXPR)
1158 code = invert_tree_comparison (code, false);
1159 bound = iv0.base;
1160 base = iv1.base;
1161 if (tree_fits_shwi_p (iv1.step))
1162 step = iv1.step;
1163 else
1164 return false;
1166 else
1168 bound = iv1.base;
1169 base = iv0.base;
1170 if (tree_fits_shwi_p (iv0.step))
1171 step = iv0.step;
1172 else
1173 return false;
1176 if (TREE_CODE (bound) != INTEGER_CST)
1177 bound = get_base_value (bound);
1178 if (!bound)
1179 return false;
1180 if (TREE_CODE (base) != INTEGER_CST)
1181 base = get_base_value (base);
1182 if (!base)
1183 return false;
1185 *loop_invariant = bound;
1186 *compare_code = code;
1187 *loop_step = step;
1188 *loop_iv_base = base;
1189 return true;
1192 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1194 static bool
1195 expr_coherent_p (tree t1, tree t2)
1197 gimple stmt;
1198 tree ssa_name_1 = NULL;
1199 tree ssa_name_2 = NULL;
1201 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1202 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1204 if (t1 == t2)
1205 return true;
1207 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1208 return true;
1209 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1210 return false;
1212 /* Check to see if t1 is expressed/defined with t2. */
1213 stmt = SSA_NAME_DEF_STMT (t1);
1214 gcc_assert (stmt != NULL);
1215 if (is_gimple_assign (stmt))
1217 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1218 if (ssa_name_1 && ssa_name_1 == t2)
1219 return true;
1222 /* Check to see if t2 is expressed/defined with t1. */
1223 stmt = SSA_NAME_DEF_STMT (t2);
1224 gcc_assert (stmt != NULL);
1225 if (is_gimple_assign (stmt))
1227 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1228 if (ssa_name_2 && ssa_name_2 == t1)
1229 return true;
1232 /* Compare if t1 and t2's def_stmts are identical. */
1233 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1234 return true;
1235 else
1236 return false;
1239 /* Predict branch probability of BB when BB contains a branch that compares
1240 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1241 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1243 E.g.
1244 for (int i = 0; i < bound; i++) {
1245 if (i < bound - 2)
1246 computation_1();
1247 else
1248 computation_2();
1251 In this loop, we will predict the branch inside the loop to be taken. */
1253 static void
1254 predict_iv_comparison (struct loop *loop, basic_block bb,
1255 tree loop_bound_var,
1256 tree loop_iv_base_var,
1257 enum tree_code loop_bound_code,
1258 int loop_bound_step)
1260 gimple stmt;
1261 tree compare_var, compare_base;
1262 enum tree_code compare_code;
1263 tree compare_step_var;
1264 edge then_edge;
1265 edge_iterator ei;
1267 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1268 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1269 || predicted_by_p (bb, PRED_LOOP_EXIT))
1270 return;
1272 stmt = last_stmt (bb);
1273 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1274 return;
1275 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1276 &compare_code,
1277 &compare_step_var,
1278 &compare_base))
1279 return;
1281 /* Find the taken edge. */
1282 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1283 if (then_edge->flags & EDGE_TRUE_VALUE)
1284 break;
1286 /* When comparing an IV to a loop invariant, NE is more likely to be
1287 taken while EQ is more likely to be not-taken. */
1288 if (compare_code == NE_EXPR)
1290 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1291 return;
1293 else if (compare_code == EQ_EXPR)
1295 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1296 return;
1299 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1300 return;
1302 /* If loop bound, base and compare bound are all constants, we can
1303 calculate the probability directly. */
1304 if (tree_fits_shwi_p (loop_bound_var)
1305 && tree_fits_shwi_p (compare_var)
1306 && tree_fits_shwi_p (compare_base))
1308 int probability;
1309 bool overflow, overall_overflow = false;
1310 widest_int compare_count, tem;
1312 /* (loop_bound - base) / compare_step */
1313 tem = wi::sub (wi::to_widest (loop_bound_var),
1314 wi::to_widest (compare_base), SIGNED, &overflow);
1315 overall_overflow |= overflow;
1316 widest_int loop_count = wi::div_trunc (tem,
1317 wi::to_widest (compare_step_var),
1318 SIGNED, &overflow);
1319 overall_overflow |= overflow;
1321 if (!wi::neg_p (wi::to_widest (compare_step_var))
1322 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1324 /* (loop_bound - compare_bound) / compare_step */
1325 tem = wi::sub (wi::to_widest (loop_bound_var),
1326 wi::to_widest (compare_var), SIGNED, &overflow);
1327 overall_overflow |= overflow;
1328 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1329 SIGNED, &overflow);
1330 overall_overflow |= overflow;
1332 else
1334 /* (compare_bound - base) / compare_step */
1335 tem = wi::sub (wi::to_widest (compare_var),
1336 wi::to_widest (compare_base), SIGNED, &overflow);
1337 overall_overflow |= overflow;
1338 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1339 SIGNED, &overflow);
1340 overall_overflow |= overflow;
1342 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1343 ++compare_count;
1344 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1345 ++loop_count;
1346 if (wi::neg_p (compare_count))
1347 compare_count = 0;
1348 if (wi::neg_p (loop_count))
1349 loop_count = 0;
1350 if (loop_count == 0)
1351 probability = 0;
1352 else if (wi::cmps (compare_count, loop_count) == 1)
1353 probability = REG_BR_PROB_BASE;
1354 else
1356 tem = compare_count * REG_BR_PROB_BASE;
1357 tem = wi::udiv_trunc (tem, loop_count);
1358 probability = tem.to_uhwi ();
1361 if (!overall_overflow)
1362 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1364 return;
1367 if (expr_coherent_p (loop_bound_var, compare_var))
1369 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1370 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1371 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1372 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1373 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1374 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1375 else if (loop_bound_code == NE_EXPR)
1377 /* If the loop backedge condition is "(i != bound)", we do
1378 the comparison based on the step of IV:
1379 * step < 0 : backedge condition is like (i > bound)
1380 * step > 0 : backedge condition is like (i < bound) */
1381 gcc_assert (loop_bound_step != 0);
1382 if (loop_bound_step > 0
1383 && (compare_code == LT_EXPR
1384 || compare_code == LE_EXPR))
1385 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1386 else if (loop_bound_step < 0
1387 && (compare_code == GT_EXPR
1388 || compare_code == GE_EXPR))
1389 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1390 else
1391 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1393 else
1394 /* The branch is predicted not-taken if loop_bound_code is
1395 opposite with compare_code. */
1396 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1398 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1400 /* For cases like:
1401 for (i = s; i < h; i++)
1402 if (i > s + 2) ....
1403 The branch should be predicted taken. */
1404 if (loop_bound_step > 0
1405 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1406 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1407 else if (loop_bound_step < 0
1408 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1409 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1410 else
1411 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1415 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1416 exits are resulted from short-circuit conditions that will generate an
1417 if_tmp. E.g.:
1419 if (foo() || global > 10)
1420 break;
1422 This will be translated into:
1424 BB3:
1425 loop header...
1426 BB4:
1427 if foo() goto BB6 else goto BB5
1428 BB5:
1429 if global > 10 goto BB6 else goto BB7
1430 BB6:
1431 goto BB7
1432 BB7:
1433 iftmp = (PHI 0(BB5), 1(BB6))
1434 if iftmp == 1 goto BB8 else goto BB3
1435 BB8:
1436 outside of the loop...
1438 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1439 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1440 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1441 exits to predict them using PRED_LOOP_EXIT. */
1443 static void
1444 predict_extra_loop_exits (edge exit_edge)
1446 unsigned i;
1447 bool check_value_one;
1448 gimple phi_stmt;
1449 tree cmp_rhs, cmp_lhs;
1450 gimple cmp_stmt = last_stmt (exit_edge->src);
1452 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1453 return;
1454 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1455 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1456 if (!TREE_CONSTANT (cmp_rhs)
1457 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1458 return;
1459 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1460 return;
1462 /* If check_value_one is true, only the phi_args with value '1' will lead
1463 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1464 loop exit. */
1465 check_value_one = (((integer_onep (cmp_rhs))
1466 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1467 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1469 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1470 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1471 return;
1473 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1475 edge e1;
1476 edge_iterator ei;
1477 tree val = gimple_phi_arg_def (phi_stmt, i);
1478 edge e = gimple_phi_arg_edge (phi_stmt, i);
1480 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1481 continue;
1482 if ((check_value_one ^ integer_onep (val)) == 1)
1483 continue;
1484 if (EDGE_COUNT (e->src->succs) != 1)
1486 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1487 continue;
1490 FOR_EACH_EDGE (e1, ei, e->src->preds)
1491 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1495 /* Predict edge probabilities by exploiting loop structure. */
1497 static void
1498 predict_loops (void)
1500 struct loop *loop;
1502 /* Try to predict out blocks in a loop that are not part of a
1503 natural loop. */
1504 FOR_EACH_LOOP (loop, 0)
1506 basic_block bb, *bbs;
1507 unsigned j, n_exits;
1508 vec<edge> exits;
1509 struct tree_niter_desc niter_desc;
1510 edge ex;
1511 struct nb_iter_bound *nb_iter;
1512 enum tree_code loop_bound_code = ERROR_MARK;
1513 tree loop_bound_step = NULL;
1514 tree loop_bound_var = NULL;
1515 tree loop_iv_base = NULL;
1516 gimple stmt = NULL;
1518 exits = get_loop_exit_edges (loop);
1519 n_exits = exits.length ();
1520 if (!n_exits)
1522 exits.release ();
1523 continue;
1526 FOR_EACH_VEC_ELT (exits, j, ex)
1528 tree niter = NULL;
1529 HOST_WIDE_INT nitercst;
1530 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1531 int probability;
1532 enum br_predictor predictor;
1534 predict_extra_loop_exits (ex);
1536 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1537 niter = niter_desc.niter;
1538 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1539 niter = loop_niter_by_eval (loop, ex);
1541 if (TREE_CODE (niter) == INTEGER_CST)
1543 if (tree_fits_uhwi_p (niter)
1544 && max
1545 && compare_tree_int (niter, max - 1) == -1)
1546 nitercst = tree_to_uhwi (niter) + 1;
1547 else
1548 nitercst = max;
1549 predictor = PRED_LOOP_ITERATIONS;
1551 /* If we have just one exit and we can derive some information about
1552 the number of iterations of the loop from the statements inside
1553 the loop, use it to predict this exit. */
1554 else if (n_exits == 1)
1556 nitercst = estimated_stmt_executions_int (loop);
1557 if (nitercst < 0)
1558 continue;
1559 if (nitercst > max)
1560 nitercst = max;
1562 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1564 else
1565 continue;
1567 /* If the prediction for number of iterations is zero, do not
1568 predict the exit edges. */
1569 if (nitercst == 0)
1570 continue;
1572 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1573 predict_edge (ex, predictor, probability);
1575 exits.release ();
1577 /* Find information about loop bound variables. */
1578 for (nb_iter = loop->bounds; nb_iter;
1579 nb_iter = nb_iter->next)
1580 if (nb_iter->stmt
1581 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1583 stmt = nb_iter->stmt;
1584 break;
1586 if (!stmt && last_stmt (loop->header)
1587 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1588 stmt = last_stmt (loop->header);
1589 if (stmt)
1590 is_comparison_with_loop_invariant_p (stmt, loop,
1591 &loop_bound_var,
1592 &loop_bound_code,
1593 &loop_bound_step,
1594 &loop_iv_base);
1596 bbs = get_loop_body (loop);
1598 for (j = 0; j < loop->num_nodes; j++)
1600 int header_found = 0;
1601 edge e;
1602 edge_iterator ei;
1604 bb = bbs[j];
1606 /* Bypass loop heuristics on continue statement. These
1607 statements construct loops via "non-loop" constructs
1608 in the source language and are better to be handled
1609 separately. */
1610 if (predicted_by_p (bb, PRED_CONTINUE))
1611 continue;
1613 /* Loop branch heuristics - predict an edge back to a
1614 loop's head as taken. */
1615 if (bb == loop->latch)
1617 e = find_edge (loop->latch, loop->header);
1618 if (e)
1620 header_found = 1;
1621 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1625 /* Loop exit heuristics - predict an edge exiting the loop if the
1626 conditional has no loop header successors as not taken. */
1627 if (!header_found
1628 /* If we already used more reliable loop exit predictors, do not
1629 bother with PRED_LOOP_EXIT. */
1630 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1631 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1633 /* For loop with many exits we don't want to predict all exits
1634 with the pretty large probability, because if all exits are
1635 considered in row, the loop would be predicted to iterate
1636 almost never. The code to divide probability by number of
1637 exits is very rough. It should compute the number of exits
1638 taken in each patch through function (not the overall number
1639 of exits that might be a lot higher for loops with wide switch
1640 statements in them) and compute n-th square root.
1642 We limit the minimal probability by 2% to avoid
1643 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1644 as this was causing regression in perl benchmark containing such
1645 a wide loop. */
1647 int probability = ((REG_BR_PROB_BASE
1648 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1649 / n_exits);
1650 if (probability < HITRATE (2))
1651 probability = HITRATE (2);
1652 FOR_EACH_EDGE (e, ei, bb->succs)
1653 if (e->dest->index < NUM_FIXED_BLOCKS
1654 || !flow_bb_inside_loop_p (loop, e->dest))
1655 predict_edge (e, PRED_LOOP_EXIT, probability);
1657 if (loop_bound_var)
1658 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1659 loop_bound_code,
1660 tree_to_shwi (loop_bound_step));
1663 /* Free basic blocks from get_loop_body. */
1664 free (bbs);
1668 /* Attempt to predict probabilities of BB outgoing edges using local
1669 properties. */
1670 static void
1671 bb_estimate_probability_locally (basic_block bb)
1673 rtx last_insn = BB_END (bb);
1674 rtx cond;
1676 if (! can_predict_insn_p (last_insn))
1677 return;
1678 cond = get_condition (last_insn, NULL, false, false);
1679 if (! cond)
1680 return;
1682 /* Try "pointer heuristic."
1683 A comparison ptr == 0 is predicted as false.
1684 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1685 if (COMPARISON_P (cond)
1686 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1687 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1689 if (GET_CODE (cond) == EQ)
1690 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1691 else if (GET_CODE (cond) == NE)
1692 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1694 else
1696 /* Try "opcode heuristic."
1697 EQ tests are usually false and NE tests are usually true. Also,
1698 most quantities are positive, so we can make the appropriate guesses
1699 about signed comparisons against zero. */
1700 switch (GET_CODE (cond))
1702 case CONST_INT:
1703 /* Unconditional branch. */
1704 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1705 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1706 break;
1708 case EQ:
1709 case UNEQ:
1710 /* Floating point comparisons appears to behave in a very
1711 unpredictable way because of special role of = tests in
1712 FP code. */
1713 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1715 /* Comparisons with 0 are often used for booleans and there is
1716 nothing useful to predict about them. */
1717 else if (XEXP (cond, 1) == const0_rtx
1718 || XEXP (cond, 0) == const0_rtx)
1720 else
1721 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1722 break;
1724 case NE:
1725 case LTGT:
1726 /* Floating point comparisons appears to behave in a very
1727 unpredictable way because of special role of = tests in
1728 FP code. */
1729 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1731 /* Comparisons with 0 are often used for booleans and there is
1732 nothing useful to predict about them. */
1733 else if (XEXP (cond, 1) == const0_rtx
1734 || XEXP (cond, 0) == const0_rtx)
1736 else
1737 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1738 break;
1740 case ORDERED:
1741 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1742 break;
1744 case UNORDERED:
1745 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1746 break;
1748 case LE:
1749 case LT:
1750 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1751 || XEXP (cond, 1) == constm1_rtx)
1752 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1753 break;
1755 case GE:
1756 case GT:
1757 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1758 || XEXP (cond, 1) == constm1_rtx)
1759 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1760 break;
1762 default:
1763 break;
1767 /* Set edge->probability for each successor edge of BB. */
1768 void
1769 guess_outgoing_edge_probabilities (basic_block bb)
1771 bb_estimate_probability_locally (bb);
1772 combine_predictions_for_insn (BB_END (bb), bb);
1775 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1777 /* Helper function for expr_expected_value. */
1779 static tree
1780 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1781 tree op1, bitmap visited, enum br_predictor *predictor)
1783 gimple def;
1785 if (predictor)
1786 *predictor = PRED_UNCONDITIONAL;
1788 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1790 if (TREE_CONSTANT (op0))
1791 return op0;
1793 if (code != SSA_NAME)
1794 return NULL_TREE;
1796 def = SSA_NAME_DEF_STMT (op0);
1798 /* If we were already here, break the infinite cycle. */
1799 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1800 return NULL;
1802 if (gimple_code (def) == GIMPLE_PHI)
1804 /* All the arguments of the PHI node must have the same constant
1805 length. */
1806 int i, n = gimple_phi_num_args (def);
1807 tree val = NULL, new_val;
1809 for (i = 0; i < n; i++)
1811 tree arg = PHI_ARG_DEF (def, i);
1812 enum br_predictor predictor2;
1814 /* If this PHI has itself as an argument, we cannot
1815 determine the string length of this argument. However,
1816 if we can find an expected constant value for the other
1817 PHI args then we can still be sure that this is
1818 likely a constant. So be optimistic and just
1819 continue with the next argument. */
1820 if (arg == PHI_RESULT (def))
1821 continue;
1823 new_val = expr_expected_value (arg, visited, &predictor2);
1825 /* It is difficult to combine value predictors. Simply assume
1826 that later predictor is weaker and take its prediction. */
1827 if (predictor && *predictor < predictor2)
1828 *predictor = predictor2;
1829 if (!new_val)
1830 return NULL;
1831 if (!val)
1832 val = new_val;
1833 else if (!operand_equal_p (val, new_val, false))
1834 return NULL;
1836 return val;
1838 if (is_gimple_assign (def))
1840 if (gimple_assign_lhs (def) != op0)
1841 return NULL;
1843 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1844 gimple_assign_rhs1 (def),
1845 gimple_assign_rhs_code (def),
1846 gimple_assign_rhs2 (def),
1847 visited, predictor);
1850 if (is_gimple_call (def))
1852 tree decl = gimple_call_fndecl (def);
1853 if (!decl)
1855 if (gimple_call_internal_p (def)
1856 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1858 gcc_assert (gimple_call_num_args (def) == 3);
1859 tree val = gimple_call_arg (def, 0);
1860 if (TREE_CONSTANT (val))
1861 return val;
1862 if (predictor)
1864 *predictor = PRED_BUILTIN_EXPECT;
1865 tree val2 = gimple_call_arg (def, 2);
1866 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1867 && tree_fits_uhwi_p (val2)
1868 && tree_to_uhwi (val2) < END_PREDICTORS);
1869 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1871 return gimple_call_arg (def, 1);
1873 return NULL;
1875 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1876 switch (DECL_FUNCTION_CODE (decl))
1878 case BUILT_IN_EXPECT:
1880 tree val;
1881 if (gimple_call_num_args (def) != 2)
1882 return NULL;
1883 val = gimple_call_arg (def, 0);
1884 if (TREE_CONSTANT (val))
1885 return val;
1886 if (predictor)
1887 *predictor = PRED_BUILTIN_EXPECT;
1888 return gimple_call_arg (def, 1);
1891 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1892 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1893 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1894 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1895 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1896 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1897 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1898 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1899 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1900 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1901 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1902 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1903 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1904 /* Assume that any given atomic operation has low contention,
1905 and thus the compare-and-swap operation succeeds. */
1906 if (predictor)
1907 *predictor = PRED_COMPARE_AND_SWAP;
1908 return boolean_true_node;
1912 return NULL;
1915 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1917 tree res;
1918 enum br_predictor predictor2;
1919 op0 = expr_expected_value (op0, visited, predictor);
1920 if (!op0)
1921 return NULL;
1922 op1 = expr_expected_value (op1, visited, &predictor2);
1923 if (predictor && *predictor < predictor2)
1924 *predictor = predictor2;
1925 if (!op1)
1926 return NULL;
1927 res = fold_build2 (code, type, op0, op1);
1928 if (TREE_CONSTANT (res))
1929 return res;
1930 return NULL;
1932 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1934 tree res;
1935 op0 = expr_expected_value (op0, visited, predictor);
1936 if (!op0)
1937 return NULL;
1938 res = fold_build1 (code, type, op0);
1939 if (TREE_CONSTANT (res))
1940 return res;
1941 return NULL;
1943 return NULL;
1946 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1947 The function is used by builtin_expect branch predictor so the evidence
1948 must come from this construct and additional possible constant folding.
1950 We may want to implement more involved value guess (such as value range
1951 propagation based prediction), but such tricks shall go to new
1952 implementation. */
1954 static tree
1955 expr_expected_value (tree expr, bitmap visited,
1956 enum br_predictor *predictor)
1958 enum tree_code code;
1959 tree op0, op1;
1961 if (TREE_CONSTANT (expr))
1963 if (predictor)
1964 *predictor = PRED_UNCONDITIONAL;
1965 return expr;
1968 extract_ops_from_tree (expr, &code, &op0, &op1);
1969 return expr_expected_value_1 (TREE_TYPE (expr),
1970 op0, code, op1, visited, predictor);
1973 /* Predict using opcode of the last statement in basic block. */
1974 static void
1975 tree_predict_by_opcode (basic_block bb)
1977 gimple stmt = last_stmt (bb);
1978 edge then_edge;
1979 tree op0, op1;
1980 tree type;
1981 tree val;
1982 enum tree_code cmp;
1983 bitmap visited;
1984 edge_iterator ei;
1985 enum br_predictor predictor;
1987 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1988 return;
1989 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1990 if (then_edge->flags & EDGE_TRUE_VALUE)
1991 break;
1992 op0 = gimple_cond_lhs (stmt);
1993 op1 = gimple_cond_rhs (stmt);
1994 cmp = gimple_cond_code (stmt);
1995 type = TREE_TYPE (op0);
1996 visited = BITMAP_ALLOC (NULL);
1997 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
1998 &predictor);
1999 BITMAP_FREE (visited);
2000 if (val && TREE_CODE (val) == INTEGER_CST)
2002 if (predictor == PRED_BUILTIN_EXPECT)
2004 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2006 gcc_assert (percent >= 0 && percent <= 100);
2007 if (integer_zerop (val))
2008 percent = 100 - percent;
2009 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2011 else
2012 predict_edge (then_edge, predictor,
2013 integer_zerop (val) ? NOT_TAKEN : TAKEN);
2015 /* Try "pointer heuristic."
2016 A comparison ptr == 0 is predicted as false.
2017 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2018 if (POINTER_TYPE_P (type))
2020 if (cmp == EQ_EXPR)
2021 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2022 else if (cmp == NE_EXPR)
2023 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2025 else
2027 /* Try "opcode heuristic."
2028 EQ tests are usually false and NE tests are usually true. Also,
2029 most quantities are positive, so we can make the appropriate guesses
2030 about signed comparisons against zero. */
2031 switch (cmp)
2033 case EQ_EXPR:
2034 case UNEQ_EXPR:
2035 /* Floating point comparisons appears to behave in a very
2036 unpredictable way because of special role of = tests in
2037 FP code. */
2038 if (FLOAT_TYPE_P (type))
2040 /* Comparisons with 0 are often used for booleans and there is
2041 nothing useful to predict about them. */
2042 else if (integer_zerop (op0) || integer_zerop (op1))
2044 else
2045 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2046 break;
2048 case NE_EXPR:
2049 case LTGT_EXPR:
2050 /* Floating point comparisons appears to behave in a very
2051 unpredictable way because of special role of = tests in
2052 FP code. */
2053 if (FLOAT_TYPE_P (type))
2055 /* Comparisons with 0 are often used for booleans and there is
2056 nothing useful to predict about them. */
2057 else if (integer_zerop (op0)
2058 || integer_zerop (op1))
2060 else
2061 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2062 break;
2064 case ORDERED_EXPR:
2065 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2066 break;
2068 case UNORDERED_EXPR:
2069 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2070 break;
2072 case LE_EXPR:
2073 case LT_EXPR:
2074 if (integer_zerop (op1)
2075 || integer_onep (op1)
2076 || integer_all_onesp (op1)
2077 || real_zerop (op1)
2078 || real_onep (op1)
2079 || real_minus_onep (op1))
2080 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2081 break;
2083 case GE_EXPR:
2084 case GT_EXPR:
2085 if (integer_zerop (op1)
2086 || integer_onep (op1)
2087 || integer_all_onesp (op1)
2088 || real_zerop (op1)
2089 || real_onep (op1)
2090 || real_minus_onep (op1))
2091 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2092 break;
2094 default:
2095 break;
2099 /* Try to guess whether the value of return means error code. */
2101 static enum br_predictor
2102 return_prediction (tree val, enum prediction *prediction)
2104 /* VOID. */
2105 if (!val)
2106 return PRED_NO_PREDICTION;
2107 /* Different heuristics for pointers and scalars. */
2108 if (POINTER_TYPE_P (TREE_TYPE (val)))
2110 /* NULL is usually not returned. */
2111 if (integer_zerop (val))
2113 *prediction = NOT_TAKEN;
2114 return PRED_NULL_RETURN;
2117 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2119 /* Negative return values are often used to indicate
2120 errors. */
2121 if (TREE_CODE (val) == INTEGER_CST
2122 && tree_int_cst_sgn (val) < 0)
2124 *prediction = NOT_TAKEN;
2125 return PRED_NEGATIVE_RETURN;
2127 /* Constant return values seems to be commonly taken.
2128 Zero/one often represent booleans so exclude them from the
2129 heuristics. */
2130 if (TREE_CONSTANT (val)
2131 && (!integer_zerop (val) && !integer_onep (val)))
2133 *prediction = TAKEN;
2134 return PRED_CONST_RETURN;
2137 return PRED_NO_PREDICTION;
2140 /* Find the basic block with return expression and look up for possible
2141 return value trying to apply RETURN_PREDICTION heuristics. */
2142 static void
2143 apply_return_prediction (void)
2145 gimple return_stmt = NULL;
2146 tree return_val;
2147 edge e;
2148 gimple phi;
2149 int phi_num_args, i;
2150 enum br_predictor pred;
2151 enum prediction direction;
2152 edge_iterator ei;
2154 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2156 return_stmt = last_stmt (e->src);
2157 if (return_stmt
2158 && gimple_code (return_stmt) == GIMPLE_RETURN)
2159 break;
2161 if (!e)
2162 return;
2163 return_val = gimple_return_retval (return_stmt);
2164 if (!return_val)
2165 return;
2166 if (TREE_CODE (return_val) != SSA_NAME
2167 || !SSA_NAME_DEF_STMT (return_val)
2168 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2169 return;
2170 phi = SSA_NAME_DEF_STMT (return_val);
2171 phi_num_args = gimple_phi_num_args (phi);
2172 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2174 /* Avoid the degenerate case where all return values form the function
2175 belongs to same category (ie they are all positive constants)
2176 so we can hardly say something about them. */
2177 for (i = 1; i < phi_num_args; i++)
2178 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2179 break;
2180 if (i != phi_num_args)
2181 for (i = 0; i < phi_num_args; i++)
2183 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2184 if (pred != PRED_NO_PREDICTION)
2185 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2186 direction);
2190 /* Look for basic block that contains unlikely to happen events
2191 (such as noreturn calls) and mark all paths leading to execution
2192 of this basic blocks as unlikely. */
2194 static void
2195 tree_bb_level_predictions (void)
2197 basic_block bb;
2198 bool has_return_edges = false;
2199 edge e;
2200 edge_iterator ei;
2202 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2203 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2205 has_return_edges = true;
2206 break;
2209 apply_return_prediction ();
2211 FOR_EACH_BB_FN (bb, cfun)
2213 gimple_stmt_iterator gsi;
2215 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2217 gimple stmt = gsi_stmt (gsi);
2218 tree decl;
2220 if (is_gimple_call (stmt))
2222 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2223 && has_return_edges)
2224 predict_paths_leading_to (bb, PRED_NORETURN,
2225 NOT_TAKEN);
2226 decl = gimple_call_fndecl (stmt);
2227 if (decl
2228 && lookup_attribute ("cold",
2229 DECL_ATTRIBUTES (decl)))
2230 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2231 NOT_TAKEN);
2233 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2235 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2236 gimple_predict_outcome (stmt));
2237 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2238 hints to callers. */
2244 #ifdef ENABLE_CHECKING
2246 /* Callback for pointer_map_traverse, asserts that the pointer map is
2247 empty. */
2249 static bool
2250 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
2251 void *data ATTRIBUTE_UNUSED)
2253 gcc_assert (!*value);
2254 return false;
2256 #endif
2258 /* Predict branch probabilities and estimate profile for basic block BB. */
2260 static void
2261 tree_estimate_probability_bb (basic_block bb)
2263 edge e;
2264 edge_iterator ei;
2265 gimple last;
2267 FOR_EACH_EDGE (e, ei, bb->succs)
2269 /* Predict edges to user labels with attributes. */
2270 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2272 gimple_stmt_iterator gi;
2273 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2275 gimple stmt = gsi_stmt (gi);
2276 tree decl;
2278 if (gimple_code (stmt) != GIMPLE_LABEL)
2279 break;
2280 decl = gimple_label_label (stmt);
2281 if (DECL_ARTIFICIAL (decl))
2282 continue;
2284 /* Finally, we have a user-defined label. */
2285 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2286 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2287 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2288 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2292 /* Predict early returns to be probable, as we've already taken
2293 care for error returns and other cases are often used for
2294 fast paths through function.
2296 Since we've already removed the return statements, we are
2297 looking for CFG like:
2299 if (conditional)
2302 goto return_block
2304 some other blocks
2305 return_block:
2306 return_stmt. */
2307 if (e->dest != bb->next_bb
2308 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2309 && single_succ_p (e->dest)
2310 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2311 && (last = last_stmt (e->dest)) != NULL
2312 && gimple_code (last) == GIMPLE_RETURN)
2314 edge e1;
2315 edge_iterator ei1;
2317 if (single_succ_p (bb))
2319 FOR_EACH_EDGE (e1, ei1, bb->preds)
2320 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2321 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2322 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2323 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2325 else
2326 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2327 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2328 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2329 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2332 /* Look for block we are guarding (ie we dominate it,
2333 but it doesn't postdominate us). */
2334 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2335 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2336 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2338 gimple_stmt_iterator bi;
2340 /* The call heuristic claims that a guarded function call
2341 is improbable. This is because such calls are often used
2342 to signal exceptional situations such as printing error
2343 messages. */
2344 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2345 gsi_next (&bi))
2347 gimple stmt = gsi_stmt (bi);
2348 if (is_gimple_call (stmt)
2349 /* Constant and pure calls are hardly used to signalize
2350 something exceptional. */
2351 && gimple_has_side_effects (stmt))
2353 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2354 break;
2359 tree_predict_by_opcode (bb);
2362 /* Predict branch probabilities and estimate profile of the tree CFG.
2363 This function can be called from the loop optimizers to recompute
2364 the profile information. */
2366 void
2367 tree_estimate_probability (void)
2369 basic_block bb;
2371 add_noreturn_fake_exit_edges ();
2372 connect_infinite_loops_to_exit ();
2373 /* We use loop_niter_by_eval, which requires that the loops have
2374 preheaders. */
2375 create_preheaders (CP_SIMPLE_PREHEADERS);
2376 calculate_dominance_info (CDI_POST_DOMINATORS);
2378 bb_predictions = pointer_map_create ();
2379 tree_bb_level_predictions ();
2380 record_loop_exits ();
2382 if (number_of_loops (cfun) > 1)
2383 predict_loops ();
2385 FOR_EACH_BB_FN (bb, cfun)
2386 tree_estimate_probability_bb (bb);
2388 FOR_EACH_BB_FN (bb, cfun)
2389 combine_predictions_for_bb (bb);
2391 #ifdef ENABLE_CHECKING
2392 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
2393 #endif
2394 pointer_map_destroy (bb_predictions);
2395 bb_predictions = NULL;
2397 estimate_bb_frequencies (false);
2398 free_dominance_info (CDI_POST_DOMINATORS);
2399 remove_fake_exit_edges ();
2402 /* Predict edges to successors of CUR whose sources are not postdominated by
2403 BB by PRED and recurse to all postdominators. */
2405 static void
2406 predict_paths_for_bb (basic_block cur, basic_block bb,
2407 enum br_predictor pred,
2408 enum prediction taken,
2409 bitmap visited)
2411 edge e;
2412 edge_iterator ei;
2413 basic_block son;
2415 /* We are looking for all edges forming edge cut induced by
2416 set of all blocks postdominated by BB. */
2417 FOR_EACH_EDGE (e, ei, cur->preds)
2418 if (e->src->index >= NUM_FIXED_BLOCKS
2419 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2421 edge e2;
2422 edge_iterator ei2;
2423 bool found = false;
2425 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2426 if (e->flags & (EDGE_EH | EDGE_FAKE))
2427 continue;
2428 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2430 /* See if there is an edge from e->src that is not abnormal
2431 and does not lead to BB. */
2432 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2433 if (e2 != e
2434 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2435 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2437 found = true;
2438 break;
2441 /* If there is non-abnormal path leaving e->src, predict edge
2442 using predictor. Otherwise we need to look for paths
2443 leading to e->src.
2445 The second may lead to infinite loop in the case we are predicitng
2446 regions that are only reachable by abnormal edges. We simply
2447 prevent visiting given BB twice. */
2448 if (found)
2449 predict_edge_def (e, pred, taken);
2450 else if (bitmap_set_bit (visited, e->src->index))
2451 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2453 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2454 son;
2455 son = next_dom_son (CDI_POST_DOMINATORS, son))
2456 predict_paths_for_bb (son, bb, pred, taken, visited);
2459 /* Sets branch probabilities according to PREDiction and
2460 FLAGS. */
2462 static void
2463 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2464 enum prediction taken)
2466 bitmap visited = BITMAP_ALLOC (NULL);
2467 predict_paths_for_bb (bb, bb, pred, taken, visited);
2468 BITMAP_FREE (visited);
2471 /* Like predict_paths_leading_to but take edge instead of basic block. */
2473 static void
2474 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2475 enum prediction taken)
2477 bool has_nonloop_edge = false;
2478 edge_iterator ei;
2479 edge e2;
2481 basic_block bb = e->src;
2482 FOR_EACH_EDGE (e2, ei, bb->succs)
2483 if (e2->dest != e->src && e2->dest != e->dest
2484 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2485 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2487 has_nonloop_edge = true;
2488 break;
2490 if (!has_nonloop_edge)
2492 bitmap visited = BITMAP_ALLOC (NULL);
2493 predict_paths_for_bb (bb, bb, pred, taken, visited);
2494 BITMAP_FREE (visited);
2496 else
2497 predict_edge_def (e, pred, taken);
2500 /* This is used to carry information about basic blocks. It is
2501 attached to the AUX field of the standard CFG block. */
2503 typedef struct block_info_def
2505 /* Estimated frequency of execution of basic_block. */
2506 sreal frequency;
2508 /* To keep queue of basic blocks to process. */
2509 basic_block next;
2511 /* Number of predecessors we need to visit first. */
2512 int npredecessors;
2513 } *block_info;
2515 /* Similar information for edges. */
2516 typedef struct edge_info_def
2518 /* In case edge is a loopback edge, the probability edge will be reached
2519 in case header is. Estimated number of iterations of the loop can be
2520 then computed as 1 / (1 - back_edge_prob). */
2521 sreal back_edge_prob;
2522 /* True if the edge is a loopback edge in the natural loop. */
2523 unsigned int back_edge:1;
2524 } *edge_info;
2526 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2527 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2529 /* Helper function for estimate_bb_frequencies.
2530 Propagate the frequencies in blocks marked in
2531 TOVISIT, starting in HEAD. */
2533 static void
2534 propagate_freq (basic_block head, bitmap tovisit)
2536 basic_block bb;
2537 basic_block last;
2538 unsigned i;
2539 edge e;
2540 basic_block nextbb;
2541 bitmap_iterator bi;
2543 /* For each basic block we need to visit count number of his predecessors
2544 we need to visit first. */
2545 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2547 edge_iterator ei;
2548 int count = 0;
2550 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2552 FOR_EACH_EDGE (e, ei, bb->preds)
2554 bool visit = bitmap_bit_p (tovisit, e->src->index);
2556 if (visit && !(e->flags & EDGE_DFS_BACK))
2557 count++;
2558 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2559 fprintf (dump_file,
2560 "Irreducible region hit, ignoring edge to %i->%i\n",
2561 e->src->index, bb->index);
2563 BLOCK_INFO (bb)->npredecessors = count;
2564 /* When function never returns, we will never process exit block. */
2565 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2566 bb->count = bb->frequency = 0;
2569 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2570 last = head;
2571 for (bb = head; bb; bb = nextbb)
2573 edge_iterator ei;
2574 sreal cyclic_probability, frequency;
2576 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2577 memcpy (&frequency, &real_zero, sizeof (real_zero));
2579 nextbb = BLOCK_INFO (bb)->next;
2580 BLOCK_INFO (bb)->next = NULL;
2582 /* Compute frequency of basic block. */
2583 if (bb != head)
2585 #ifdef ENABLE_CHECKING
2586 FOR_EACH_EDGE (e, ei, bb->preds)
2587 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2588 || (e->flags & EDGE_DFS_BACK));
2589 #endif
2591 FOR_EACH_EDGE (e, ei, bb->preds)
2592 if (EDGE_INFO (e)->back_edge)
2594 sreal_add (&cyclic_probability, &cyclic_probability,
2595 &EDGE_INFO (e)->back_edge_prob);
2597 else if (!(e->flags & EDGE_DFS_BACK))
2599 sreal tmp;
2601 /* frequency += (e->probability
2602 * BLOCK_INFO (e->src)->frequency /
2603 REG_BR_PROB_BASE); */
2605 sreal_init (&tmp, e->probability, 0);
2606 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2607 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2608 sreal_add (&frequency, &frequency, &tmp);
2611 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2613 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2614 sizeof (frequency));
2616 else
2618 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2620 memcpy (&cyclic_probability, &real_almost_one,
2621 sizeof (real_almost_one));
2624 /* BLOCK_INFO (bb)->frequency = frequency
2625 / (1 - cyclic_probability) */
2627 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2628 sreal_div (&BLOCK_INFO (bb)->frequency,
2629 &frequency, &cyclic_probability);
2633 bitmap_clear_bit (tovisit, bb->index);
2635 e = find_edge (bb, head);
2636 if (e)
2638 sreal tmp;
2640 /* EDGE_INFO (e)->back_edge_prob
2641 = ((e->probability * BLOCK_INFO (bb)->frequency)
2642 / REG_BR_PROB_BASE); */
2644 sreal_init (&tmp, e->probability, 0);
2645 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2646 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2647 &tmp, &real_inv_br_prob_base);
2650 /* Propagate to successor blocks. */
2651 FOR_EACH_EDGE (e, ei, bb->succs)
2652 if (!(e->flags & EDGE_DFS_BACK)
2653 && BLOCK_INFO (e->dest)->npredecessors)
2655 BLOCK_INFO (e->dest)->npredecessors--;
2656 if (!BLOCK_INFO (e->dest)->npredecessors)
2658 if (!nextbb)
2659 nextbb = e->dest;
2660 else
2661 BLOCK_INFO (last)->next = e->dest;
2663 last = e->dest;
2669 /* Estimate frequencies in loops at same nest level. */
2671 static void
2672 estimate_loops_at_level (struct loop *first_loop)
2674 struct loop *loop;
2676 for (loop = first_loop; loop; loop = loop->next)
2678 edge e;
2679 basic_block *bbs;
2680 unsigned i;
2681 bitmap tovisit = BITMAP_ALLOC (NULL);
2683 estimate_loops_at_level (loop->inner);
2685 /* Find current loop back edge and mark it. */
2686 e = loop_latch_edge (loop);
2687 EDGE_INFO (e)->back_edge = 1;
2689 bbs = get_loop_body (loop);
2690 for (i = 0; i < loop->num_nodes; i++)
2691 bitmap_set_bit (tovisit, bbs[i]->index);
2692 free (bbs);
2693 propagate_freq (loop->header, tovisit);
2694 BITMAP_FREE (tovisit);
2698 /* Propagates frequencies through structure of loops. */
2700 static void
2701 estimate_loops (void)
2703 bitmap tovisit = BITMAP_ALLOC (NULL);
2704 basic_block bb;
2706 /* Start by estimating the frequencies in the loops. */
2707 if (number_of_loops (cfun) > 1)
2708 estimate_loops_at_level (current_loops->tree_root->inner);
2710 /* Now propagate the frequencies through all the blocks. */
2711 FOR_ALL_BB_FN (bb, cfun)
2713 bitmap_set_bit (tovisit, bb->index);
2715 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2716 BITMAP_FREE (tovisit);
2719 /* Drop the profile for NODE to guessed, and update its frequency based on
2720 whether it is expected to be hot given the CALL_COUNT. */
2722 static void
2723 drop_profile (struct cgraph_node *node, gcov_type call_count)
2725 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2726 /* In the case where this was called by another function with a
2727 dropped profile, call_count will be 0. Since there are no
2728 non-zero call counts to this function, we don't know for sure
2729 whether it is hot, and therefore it will be marked normal below. */
2730 bool hot = maybe_hot_count_p (NULL, call_count);
2732 if (dump_file)
2733 fprintf (dump_file,
2734 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2735 node->name (), node->order,
2736 hot ? "Function is hot" : "Function is normal");
2737 /* We only expect to miss profiles for functions that are reached
2738 via non-zero call edges in cases where the function may have
2739 been linked from another module or library (COMDATs and extern
2740 templates). See the comments below for handle_missing_profiles.
2741 Also, only warn in cases where the missing counts exceed the
2742 number of training runs. In certain cases with an execv followed
2743 by a no-return call the profile for the no-return call is not
2744 dumped and there can be a mismatch. */
2745 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2746 && call_count > profile_info->runs)
2748 if (flag_profile_correction)
2750 if (dump_file)
2751 fprintf (dump_file,
2752 "Missing counts for called function %s/%i\n",
2753 node->name (), node->order);
2755 else
2756 warning (0, "Missing counts for called function %s/%i",
2757 node->name (), node->order);
2760 profile_status_for_fn (fn)
2761 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2762 node->frequency
2763 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2766 /* In the case of COMDAT routines, multiple object files will contain the same
2767 function and the linker will select one for the binary. In that case
2768 all the other copies from the profile instrument binary will be missing
2769 profile counts. Look for cases where this happened, due to non-zero
2770 call counts going to 0-count functions, and drop the profile to guessed
2771 so that we can use the estimated probabilities and avoid optimizing only
2772 for size.
2774 The other case where the profile may be missing is when the routine
2775 is not going to be emitted to the object file, e.g. for "extern template"
2776 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2777 all other cases of non-zero calls to 0-count functions. */
2779 void
2780 handle_missing_profiles (void)
2782 struct cgraph_node *node;
2783 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2784 vec<struct cgraph_node *> worklist;
2785 worklist.create (64);
2787 /* See if 0 count function has non-0 count callers. In this case we
2788 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2789 FOR_EACH_DEFINED_FUNCTION (node)
2791 struct cgraph_edge *e;
2792 gcov_type call_count = 0;
2793 gcov_type max_tp_first_run = 0;
2794 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2796 if (node->count)
2797 continue;
2798 for (e = node->callers; e; e = e->next_caller)
2800 call_count += e->count;
2802 if (e->caller->tp_first_run > max_tp_first_run)
2803 max_tp_first_run = e->caller->tp_first_run;
2806 /* If time profile is missing, let assign the maximum that comes from
2807 caller functions. */
2808 if (!node->tp_first_run && max_tp_first_run)
2809 node->tp_first_run = max_tp_first_run + 1;
2811 if (call_count
2812 && fn && fn->cfg
2813 && (call_count * unlikely_count_fraction >= profile_info->runs))
2815 drop_profile (node, call_count);
2816 worklist.safe_push (node);
2820 /* Propagate the profile dropping to other 0-count COMDATs that are
2821 potentially called by COMDATs we already dropped the profile on. */
2822 while (worklist.length () > 0)
2824 struct cgraph_edge *e;
2826 node = worklist.pop ();
2827 for (e = node->callees; e; e = e->next_caller)
2829 struct cgraph_node *callee = e->callee;
2830 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2832 if (callee->count > 0)
2833 continue;
2834 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2835 && profile_status_for_fn (fn) == PROFILE_READ)
2837 drop_profile (node, 0);
2838 worklist.safe_push (callee);
2842 worklist.release ();
2845 /* Convert counts measured by profile driven feedback to frequencies.
2846 Return nonzero iff there was any nonzero execution count. */
2849 counts_to_freqs (void)
2851 gcov_type count_max, true_count_max = 0;
2852 basic_block bb;
2854 /* Don't overwrite the estimated frequencies when the profile for
2855 the function is missing. We may drop this function PROFILE_GUESSED
2856 later in drop_profile (). */
2857 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2858 return 0;
2860 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2861 true_count_max = MAX (bb->count, true_count_max);
2863 count_max = MAX (true_count_max, 1);
2864 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2865 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2867 return true_count_max;
2870 /* Return true if function is likely to be expensive, so there is no point to
2871 optimize performance of prologue, epilogue or do inlining at the expense
2872 of code size growth. THRESHOLD is the limit of number of instructions
2873 function can execute at average to be still considered not expensive. */
2875 bool
2876 expensive_function_p (int threshold)
2878 unsigned int sum = 0;
2879 basic_block bb;
2880 unsigned int limit;
2882 /* We can not compute accurately for large thresholds due to scaled
2883 frequencies. */
2884 gcc_assert (threshold <= BB_FREQ_MAX);
2886 /* Frequencies are out of range. This either means that function contains
2887 internal loop executing more than BB_FREQ_MAX times or profile feedback
2888 is available and function has not been executed at all. */
2889 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2890 return true;
2892 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2893 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2894 FOR_EACH_BB_FN (bb, cfun)
2896 rtx insn;
2898 FOR_BB_INSNS (bb, insn)
2899 if (active_insn_p (insn))
2901 sum += bb->frequency;
2902 if (sum > limit)
2903 return true;
2907 return false;
2910 /* Estimate and propagate basic block frequencies using the given branch
2911 probabilities. If FORCE is true, the frequencies are used to estimate
2912 the counts even when there are already non-zero profile counts. */
2914 void
2915 estimate_bb_frequencies (bool force)
2917 basic_block bb;
2918 sreal freq_max;
2920 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2922 static int real_values_initialized = 0;
2924 if (!real_values_initialized)
2926 real_values_initialized = 1;
2927 sreal_init (&real_zero, 0, 0);
2928 sreal_init (&real_one, 1, 0);
2929 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2930 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2931 sreal_init (&real_one_half, 1, -1);
2932 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2933 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2936 mark_dfs_back_edges ();
2938 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2939 REG_BR_PROB_BASE;
2941 /* Set up block info for each basic block. */
2942 alloc_aux_for_blocks (sizeof (struct block_info_def));
2943 alloc_aux_for_edges (sizeof (struct edge_info_def));
2944 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2946 edge e;
2947 edge_iterator ei;
2949 FOR_EACH_EDGE (e, ei, bb->succs)
2951 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2952 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2953 &EDGE_INFO (e)->back_edge_prob,
2954 &real_inv_br_prob_base);
2958 /* First compute frequencies locally for each loop from innermost
2959 to outermost to examine frequencies for back edges. */
2960 estimate_loops ();
2962 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2963 FOR_EACH_BB_FN (bb, cfun)
2964 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2965 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2967 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2968 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2970 sreal tmp;
2972 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2973 sreal_add (&tmp, &tmp, &real_one_half);
2974 bb->frequency = sreal_to_int (&tmp);
2977 free_aux_for_blocks ();
2978 free_aux_for_edges ();
2980 compute_function_frequency ();
2983 /* Decide whether function is hot, cold or unlikely executed. */
2984 void
2985 compute_function_frequency (void)
2987 basic_block bb;
2988 struct cgraph_node *node = cgraph_get_node (current_function_decl);
2990 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2991 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2992 node->only_called_at_startup = true;
2993 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2994 node->only_called_at_exit = true;
2996 if (profile_status_for_fn (cfun) != PROFILE_READ)
2998 int flags = flags_from_decl_or_type (current_function_decl);
2999 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3000 != NULL)
3001 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3002 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3003 != NULL)
3004 node->frequency = NODE_FREQUENCY_HOT;
3005 else if (flags & ECF_NORETURN)
3006 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3007 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3008 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3009 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3010 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3011 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3012 return;
3015 /* Only first time try to drop function into unlikely executed.
3016 After inlining the roundoff errors may confuse us.
3017 Ipa-profile pass will drop functions only called from unlikely
3018 functions to unlikely and that is most of what we care about. */
3019 if (!cfun->after_inlining)
3020 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3021 FOR_EACH_BB_FN (bb, cfun)
3023 if (maybe_hot_bb_p (cfun, bb))
3025 node->frequency = NODE_FREQUENCY_HOT;
3026 return;
3028 if (!probably_never_executed_bb_p (cfun, bb))
3029 node->frequency = NODE_FREQUENCY_NORMAL;
3033 /* Build PREDICT_EXPR. */
3034 tree
3035 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3037 tree t = build1 (PREDICT_EXPR, void_type_node,
3038 build_int_cst (integer_type_node, predictor));
3039 SET_PREDICT_EXPR_OUTCOME (t, taken);
3040 return t;
3043 const char *
3044 predictor_name (enum br_predictor predictor)
3046 return predictor_info[predictor].name;
3049 /* Predict branch probabilities and estimate profile of the tree CFG. */
3051 namespace {
3053 const pass_data pass_data_profile =
3055 GIMPLE_PASS, /* type */
3056 "profile_estimate", /* name */
3057 OPTGROUP_NONE, /* optinfo_flags */
3058 true, /* has_execute */
3059 TV_BRANCH_PROB, /* tv_id */
3060 PROP_cfg, /* properties_required */
3061 0, /* properties_provided */
3062 0, /* properties_destroyed */
3063 0, /* todo_flags_start */
3064 0, /* todo_flags_finish */
3067 class pass_profile : public gimple_opt_pass
3069 public:
3070 pass_profile (gcc::context *ctxt)
3071 : gimple_opt_pass (pass_data_profile, ctxt)
3074 /* opt_pass methods: */
3075 virtual bool gate (function *) { return flag_guess_branch_prob; }
3076 virtual unsigned int execute (function *);
3078 }; // class pass_profile
3080 unsigned int
3081 pass_profile::execute (function *fun)
3083 unsigned nb_loops;
3085 loop_optimizer_init (LOOPS_NORMAL);
3086 if (dump_file && (dump_flags & TDF_DETAILS))
3087 flow_loops_dump (dump_file, NULL, 0);
3089 mark_irreducible_loops ();
3091 nb_loops = number_of_loops (fun);
3092 if (nb_loops > 1)
3093 scev_initialize ();
3095 tree_estimate_probability ();
3097 if (nb_loops > 1)
3098 scev_finalize ();
3100 loop_optimizer_finalize ();
3101 if (dump_file && (dump_flags & TDF_DETAILS))
3102 gimple_dump_cfg (dump_file, dump_flags);
3103 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3104 profile_status_for_fn (fun) = PROFILE_GUESSED;
3105 return 0;
3108 } // anon namespace
3110 gimple_opt_pass *
3111 make_pass_profile (gcc::context *ctxt)
3113 return new pass_profile (ctxt);
3116 namespace {
3118 const pass_data pass_data_strip_predict_hints =
3120 GIMPLE_PASS, /* type */
3121 "*strip_predict_hints", /* name */
3122 OPTGROUP_NONE, /* optinfo_flags */
3123 true, /* has_execute */
3124 TV_BRANCH_PROB, /* tv_id */
3125 PROP_cfg, /* properties_required */
3126 0, /* properties_provided */
3127 0, /* properties_destroyed */
3128 0, /* todo_flags_start */
3129 0, /* todo_flags_finish */
3132 class pass_strip_predict_hints : public gimple_opt_pass
3134 public:
3135 pass_strip_predict_hints (gcc::context *ctxt)
3136 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3139 /* opt_pass methods: */
3140 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3141 virtual unsigned int execute (function *);
3143 }; // class pass_strip_predict_hints
3145 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3146 we no longer need. */
3147 unsigned int
3148 pass_strip_predict_hints::execute (function *fun)
3150 basic_block bb;
3151 gimple ass_stmt;
3152 tree var;
3154 FOR_EACH_BB_FN (bb, fun)
3156 gimple_stmt_iterator bi;
3157 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3159 gimple stmt = gsi_stmt (bi);
3161 if (gimple_code (stmt) == GIMPLE_PREDICT)
3163 gsi_remove (&bi, true);
3164 continue;
3166 else if (is_gimple_call (stmt))
3168 tree fndecl = gimple_call_fndecl (stmt);
3170 if ((fndecl
3171 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3172 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3173 && gimple_call_num_args (stmt) == 2)
3174 || (gimple_call_internal_p (stmt)
3175 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3177 var = gimple_call_lhs (stmt);
3178 if (var)
3180 ass_stmt
3181 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3182 gsi_replace (&bi, ass_stmt, true);
3184 else
3186 gsi_remove (&bi, true);
3187 continue;
3191 gsi_next (&bi);
3194 return 0;
3197 } // anon namespace
3199 gimple_opt_pass *
3200 make_pass_strip_predict_hints (gcc::context *ctxt)
3202 return new pass_strip_predict_hints (ctxt);
3205 /* Rebuild function frequencies. Passes are in general expected to
3206 maintain profile by hand, however in some cases this is not possible:
3207 for example when inlining several functions with loops freuqencies might run
3208 out of scale and thus needs to be recomputed. */
3210 void
3211 rebuild_frequencies (void)
3213 timevar_push (TV_REBUILD_FREQUENCIES);
3215 /* When the max bb count in the function is small, there is a higher
3216 chance that there were truncation errors in the integer scaling
3217 of counts by inlining and other optimizations. This could lead
3218 to incorrect classification of code as being cold when it isn't.
3219 In that case, force the estimation of bb counts/frequencies from the
3220 branch probabilities, rather than computing frequencies from counts,
3221 which may also lead to frequencies incorrectly reduced to 0. There
3222 is less precision in the probabilities, so we only do this for small
3223 max counts. */
3224 gcov_type count_max = 0;
3225 basic_block bb;
3226 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3227 count_max = MAX (bb->count, count_max);
3229 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3230 || (profile_status_for_fn (cfun) == PROFILE_READ && count_max < REG_BR_PROB_BASE/10))
3232 loop_optimizer_init (0);
3233 add_noreturn_fake_exit_edges ();
3234 mark_irreducible_loops ();
3235 connect_infinite_loops_to_exit ();
3236 estimate_bb_frequencies (true);
3237 remove_fake_exit_edges ();
3238 loop_optimizer_finalize ();
3240 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3241 counts_to_freqs ();
3242 else
3243 gcc_unreachable ();
3244 timevar_pop (TV_REBUILD_FREQUENCIES);