gcc/testsuite/
[official-gcc.git] / gcc / modulo-sched.c
blobd3c65c2e78a6a0fbd6edeb5a8e2a07956a8d06b8
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "function.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "except.h"
36 #include "recog.h"
37 #include "sched-int.h"
38 #include "target.h"
39 #include "cfgloop.h"
40 #include "expr.h"
41 #include "params.h"
42 #include "gcov-io.h"
43 #include "ddg.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46 #include "df.h"
48 #ifdef INSN_SCHEDULING
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx insn;
161 typedef struct ps_reg_move_info ps_reg_move_info;
163 /* Holds the partial schedule as an array of II rows. Each entry of the
164 array points to a linked list of PS_INSNs, which represents the
165 instructions that are scheduled for that row. */
166 struct partial_schedule
168 int ii; /* Number of rows in the partial schedule. */
169 int history; /* Threshold for conflict checking using DFA. */
171 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
172 ps_insn_ptr *rows;
174 /* All the moves added for this partial schedule. Index X has
175 a ps_insn id of X + g->num_nodes. */
176 vec<ps_reg_move_info> reg_moves;
178 /* rows_length[i] holds the number of instructions in the row.
179 It is used only (as an optimization) to back off quickly from
180 trying to schedule a node in a full row; that is, to avoid running
181 through futile DFA state transitions. */
182 int *rows_length;
184 /* The earliest absolute cycle of an insn in the partial schedule. */
185 int min_cycle;
187 /* The latest absolute cycle of an insn in the partial schedule. */
188 int max_cycle;
190 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
192 int stage_count; /* The stage count of the partial schedule. */
196 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
197 static void free_partial_schedule (partial_schedule_ptr);
198 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
199 void print_partial_schedule (partial_schedule_ptr, FILE *);
200 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
201 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
202 int, int, sbitmap, sbitmap);
203 static void rotate_partial_schedule (partial_schedule_ptr, int);
204 void set_row_column_for_ps (partial_schedule_ptr);
205 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
206 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
209 /* This page defines constants and structures for the modulo scheduling
210 driver. */
212 static int sms_order_nodes (ddg_ptr, int, int *, int *);
213 static void set_node_sched_params (ddg_ptr);
214 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
215 static void permute_partial_schedule (partial_schedule_ptr, rtx);
216 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
217 rtx, rtx);
218 static int calculate_stage_count (partial_schedule_ptr, int);
219 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
220 int, int, sbitmap, sbitmap, sbitmap);
221 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
222 sbitmap, int, int *, int *, int *);
223 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
224 sbitmap, int *, sbitmap, sbitmap);
225 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
227 #define NODE_ASAP(node) ((node)->aux.count)
229 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
230 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
231 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
232 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
233 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
235 /* The scheduling parameters held for each node. */
236 typedef struct node_sched_params
238 int time; /* The absolute scheduling cycle. */
240 int row; /* Holds time % ii. */
241 int stage; /* Holds time / ii. */
243 /* The column of a node inside the ps. If nodes u, v are on the same row,
244 u will precede v if column (u) < column (v). */
245 int column;
246 } *node_sched_params_ptr;
248 typedef struct node_sched_params node_sched_params;
250 /* The following three functions are copied from the current scheduler
251 code in order to use sched_analyze() for computing the dependencies.
252 They are used when initializing the sched_info structure. */
253 static const char *
254 sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
256 static char tmp[80];
258 sprintf (tmp, "i%4d", INSN_UID (insn));
259 return tmp;
262 static void
263 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
264 regset used ATTRIBUTE_UNUSED)
268 static struct common_sched_info_def sms_common_sched_info;
270 static struct sched_deps_info_def sms_sched_deps_info =
272 compute_jump_reg_dependencies,
273 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
274 NULL,
275 0, 0, 0
278 static struct haifa_sched_info sms_sched_info =
280 NULL,
281 NULL,
282 NULL,
283 NULL,
284 NULL,
285 sms_print_insn,
286 NULL,
287 NULL, /* insn_finishes_block_p */
288 NULL, NULL,
289 NULL, NULL,
290 0, 0,
292 NULL, NULL, NULL, NULL,
293 NULL, NULL,
297 /* Partial schedule instruction ID in PS is a register move. Return
298 information about it. */
299 static struct ps_reg_move_info *
300 ps_reg_move (partial_schedule_ptr ps, int id)
302 gcc_checking_assert (id >= ps->g->num_nodes);
303 return &ps->reg_moves[id - ps->g->num_nodes];
306 /* Return the rtl instruction that is being scheduled by partial schedule
307 instruction ID, which belongs to schedule PS. */
308 static rtx
309 ps_rtl_insn (partial_schedule_ptr ps, int id)
311 if (id < ps->g->num_nodes)
312 return ps->g->nodes[id].insn;
313 else
314 return ps_reg_move (ps, id)->insn;
317 /* Partial schedule instruction ID, which belongs to PS, occurred in
318 the original (unscheduled) loop. Return the first instruction
319 in the loop that was associated with ps_rtl_insn (PS, ID).
320 If the instruction had some notes before it, this is the first
321 of those notes. */
322 static rtx
323 ps_first_note (partial_schedule_ptr ps, int id)
325 gcc_assert (id < ps->g->num_nodes);
326 return ps->g->nodes[id].first_note;
329 /* Return the number of consecutive stages that are occupied by
330 partial schedule instruction ID in PS. */
331 static int
332 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
334 if (id < ps->g->num_nodes)
335 return 1;
336 else
337 return ps_reg_move (ps, id)->num_consecutive_stages;
340 /* Given HEAD and TAIL which are the first and last insns in a loop;
341 return the register which controls the loop. Return zero if it has
342 more than one occurrence in the loop besides the control part or the
343 do-loop pattern is not of the form we expect. */
344 static rtx
345 doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
347 #ifdef HAVE_doloop_end
348 rtx reg, condition, insn, first_insn_not_to_check;
350 if (!JUMP_P (tail))
351 return NULL_RTX;
353 /* TODO: Free SMS's dependence on doloop_condition_get. */
354 condition = doloop_condition_get (tail);
355 if (! condition)
356 return NULL_RTX;
358 if (REG_P (XEXP (condition, 0)))
359 reg = XEXP (condition, 0);
360 else if (GET_CODE (XEXP (condition, 0)) == PLUS
361 && REG_P (XEXP (XEXP (condition, 0), 0)))
362 reg = XEXP (XEXP (condition, 0), 0);
363 else
364 gcc_unreachable ();
366 /* Check that the COUNT_REG has no other occurrences in the loop
367 until the decrement. We assume the control part consists of
368 either a single (parallel) branch-on-count or a (non-parallel)
369 branch immediately preceded by a single (decrement) insn. */
370 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
371 : prev_nondebug_insn (tail));
373 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
374 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
376 if (dump_file)
378 fprintf (dump_file, "SMS count_reg found ");
379 print_rtl_single (dump_file, reg);
380 fprintf (dump_file, " outside control in insn:\n");
381 print_rtl_single (dump_file, insn);
384 return NULL_RTX;
387 return reg;
388 #else
389 return NULL_RTX;
390 #endif
393 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
394 that the number of iterations is a compile-time constant. If so,
395 return the rtx that sets COUNT_REG to a constant, and set COUNT to
396 this constant. Otherwise return 0. */
397 static rtx
398 const_iteration_count (rtx count_reg, basic_block pre_header,
399 HOST_WIDEST_INT * count)
401 rtx insn;
402 rtx head, tail;
404 if (! pre_header)
405 return NULL_RTX;
407 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
409 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
410 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
411 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
413 rtx pat = single_set (insn);
415 if (CONST_INT_P (SET_SRC (pat)))
417 *count = INTVAL (SET_SRC (pat));
418 return insn;
421 return NULL_RTX;
424 return NULL_RTX;
427 /* A very simple resource-based lower bound on the initiation interval.
428 ??? Improve the accuracy of this bound by considering the
429 utilization of various units. */
430 static int
431 res_MII (ddg_ptr g)
433 if (targetm.sched.sms_res_mii)
434 return targetm.sched.sms_res_mii (g);
436 return ((g->num_nodes - g->num_debug) / issue_rate);
440 /* A vector that contains the sched data for each ps_insn. */
441 static vec<node_sched_params> node_sched_param_vec;
443 /* Allocate sched_params for each node and initialize it. */
444 static void
445 set_node_sched_params (ddg_ptr g)
447 node_sched_param_vec.truncate (0);
448 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
451 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
452 static void
453 extend_node_sched_params (partial_schedule_ptr ps)
455 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
456 + ps->reg_moves.length ());
459 /* Update the sched_params (time, row and stage) for node U using the II,
460 the CYCLE of U and MIN_CYCLE.
461 We're not simply taking the following
462 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
463 because the stages may not be aligned on cycle 0. */
464 static void
465 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
467 int sc_until_cycle_zero;
468 int stage;
470 SCHED_TIME (u) = cycle;
471 SCHED_ROW (u) = SMODULO (cycle, ii);
473 /* The calculation of stage count is done adding the number
474 of stages before cycle zero and after cycle zero. */
475 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
477 if (SCHED_TIME (u) < 0)
479 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
480 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
482 else
484 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
485 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
489 static void
490 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
492 int i;
494 if (! file)
495 return;
496 for (i = 0; i < num_nodes; i++)
498 node_sched_params_ptr nsp = SCHED_PARAMS (i);
500 fprintf (file, "Node = %d; INSN = %d\n", i,
501 INSN_UID (ps_rtl_insn (ps, i)));
502 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
503 fprintf (file, " time = %d:\n", nsp->time);
504 fprintf (file, " stage = %d:\n", nsp->stage);
508 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
509 static void
510 set_columns_for_row (partial_schedule_ptr ps, int row)
512 ps_insn_ptr cur_insn;
513 int column;
515 column = 0;
516 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
517 SCHED_COLUMN (cur_insn->id) = column++;
520 /* Set SCHED_COLUMN for each instruction in PS. */
521 static void
522 set_columns_for_ps (partial_schedule_ptr ps)
524 int row;
526 for (row = 0; row < ps->ii; row++)
527 set_columns_for_row (ps, row);
530 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
531 Its single predecessor has already been scheduled, as has its
532 ddg node successors. (The move may have also another move as its
533 successor, in which case that successor will be scheduled later.)
535 The move is part of a chain that satisfies register dependencies
536 between a producing ddg node and various consuming ddg nodes.
537 If some of these dependencies have a distance of 1 (meaning that
538 the use is upward-exposed) then DISTANCE1_USES is nonnull and
539 contains the set of uses with distance-1 dependencies.
540 DISTANCE1_USES is null otherwise.
542 MUST_FOLLOW is a scratch bitmap that is big enough to hold
543 all current ps_insn ids.
545 Return true on success. */
546 static bool
547 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
548 sbitmap distance1_uses, sbitmap must_follow)
550 unsigned int u;
551 int this_time, this_distance, this_start, this_end, this_latency;
552 int start, end, c, ii;
553 sbitmap_iterator sbi;
554 ps_reg_move_info *move;
555 rtx this_insn;
556 ps_insn_ptr psi;
558 move = ps_reg_move (ps, i_reg_move);
559 ii = ps->ii;
560 if (dump_file)
562 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
563 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
564 PS_MIN_CYCLE (ps));
565 print_rtl_single (dump_file, move->insn);
566 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
567 fprintf (dump_file, "=========== =========== =====\n");
570 start = INT_MIN;
571 end = INT_MAX;
573 /* For dependencies of distance 1 between a producer ddg node A
574 and consumer ddg node B, we have a chain of dependencies:
576 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
578 where Mi is the ith move. For dependencies of distance 0 between
579 a producer ddg node A and consumer ddg node C, we have a chain of
580 dependencies:
582 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
584 where Mi' occupies the same position as Mi but occurs a stage later.
585 We can only schedule each move once, so if we have both types of
586 chain, we model the second as:
588 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
590 First handle the dependencies between the previously-scheduled
591 predecessor and the move. */
592 this_insn = ps_rtl_insn (ps, move->def);
593 this_latency = insn_latency (this_insn, move->insn);
594 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
595 this_time = SCHED_TIME (move->def) - this_distance * ii;
596 this_start = this_time + this_latency;
597 this_end = this_time + ii;
598 if (dump_file)
599 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
600 this_start, this_end, SCHED_TIME (move->def),
601 INSN_UID (this_insn), this_latency, this_distance,
602 INSN_UID (move->insn));
604 if (start < this_start)
605 start = this_start;
606 if (end > this_end)
607 end = this_end;
609 /* Handle the dependencies between the move and previously-scheduled
610 successors. */
611 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
613 this_insn = ps_rtl_insn (ps, u);
614 this_latency = insn_latency (move->insn, this_insn);
615 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
616 this_distance = -1;
617 else
618 this_distance = 0;
619 this_time = SCHED_TIME (u) + this_distance * ii;
620 this_start = this_time - ii;
621 this_end = this_time - this_latency;
622 if (dump_file)
623 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
624 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
625 this_latency, this_distance, INSN_UID (this_insn));
627 if (start < this_start)
628 start = this_start;
629 if (end > this_end)
630 end = this_end;
633 if (dump_file)
635 fprintf (dump_file, "----------- ----------- -----\n");
636 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
639 bitmap_clear (must_follow);
640 bitmap_set_bit (must_follow, move->def);
642 start = MAX (start, end - (ii - 1));
643 for (c = end; c >= start; c--)
645 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
646 move->uses, must_follow);
647 if (psi)
649 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
650 if (dump_file)
651 fprintf (dump_file, "\nScheduled register move INSN %d at"
652 " time %d, row %d\n\n", INSN_UID (move->insn), c,
653 SCHED_ROW (i_reg_move));
654 return true;
658 if (dump_file)
659 fprintf (dump_file, "\nNo available slot\n\n");
661 return false;
665 Breaking intra-loop register anti-dependences:
666 Each intra-loop register anti-dependence implies a cross-iteration true
667 dependence of distance 1. Therefore, we can remove such false dependencies
668 and figure out if the partial schedule broke them by checking if (for a
669 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
670 if so generate a register move. The number of such moves is equal to:
671 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
672 nreg_moves = ----------------------------------- + 1 - { dependence.
673 ii { 1 if not.
675 static bool
676 schedule_reg_moves (partial_schedule_ptr ps)
678 ddg_ptr g = ps->g;
679 int ii = ps->ii;
680 int i;
682 for (i = 0; i < g->num_nodes; i++)
684 ddg_node_ptr u = &g->nodes[i];
685 ddg_edge_ptr e;
686 int nreg_moves = 0, i_reg_move;
687 rtx prev_reg, old_reg;
688 int first_move;
689 int distances[2];
690 sbitmap must_follow;
691 sbitmap distance1_uses;
692 rtx set = single_set (u->insn);
694 /* Skip instructions that do not set a register. */
695 if ((set && !REG_P (SET_DEST (set))))
696 continue;
698 /* Compute the number of reg_moves needed for u, by looking at life
699 ranges started at u (excluding self-loops). */
700 distances[0] = distances[1] = false;
701 for (e = u->out; e; e = e->next_out)
702 if (e->type == TRUE_DEP && e->dest != e->src)
704 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
705 - SCHED_TIME (e->src->cuid)) / ii;
707 if (e->distance == 1)
708 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
709 - SCHED_TIME (e->src->cuid) + ii) / ii;
711 /* If dest precedes src in the schedule of the kernel, then dest
712 will read before src writes and we can save one reg_copy. */
713 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
714 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
715 nreg_moves4e--;
717 if (nreg_moves4e >= 1)
719 /* !single_set instructions are not supported yet and
720 thus we do not except to encounter them in the loop
721 except from the doloop part. For the latter case
722 we assume no regmoves are generated as the doloop
723 instructions are tied to the branch with an edge. */
724 gcc_assert (set);
725 /* If the instruction contains auto-inc register then
726 validate that the regmov is being generated for the
727 target regsiter rather then the inc'ed register. */
728 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
731 if (nreg_moves4e)
733 gcc_assert (e->distance < 2);
734 distances[e->distance] = true;
736 nreg_moves = MAX (nreg_moves, nreg_moves4e);
739 if (nreg_moves == 0)
740 continue;
742 /* Create NREG_MOVES register moves. */
743 first_move = ps->reg_moves.length ();
744 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
745 extend_node_sched_params (ps);
747 /* Record the moves associated with this node. */
748 first_move += ps->g->num_nodes;
750 /* Generate each move. */
751 old_reg = prev_reg = SET_DEST (single_set (u->insn));
752 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
754 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
756 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
757 move->uses = sbitmap_alloc (first_move + nreg_moves);
758 move->old_reg = old_reg;
759 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
760 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
761 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
762 bitmap_clear (move->uses);
764 prev_reg = move->new_reg;
767 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
769 if (distance1_uses)
770 bitmap_clear (distance1_uses);
772 /* Every use of the register defined by node may require a different
773 copy of this register, depending on the time the use is scheduled.
774 Record which uses require which move results. */
775 for (e = u->out; e; e = e->next_out)
776 if (e->type == TRUE_DEP && e->dest != e->src)
778 int dest_copy = (SCHED_TIME (e->dest->cuid)
779 - SCHED_TIME (e->src->cuid)) / ii;
781 if (e->distance == 1)
782 dest_copy = (SCHED_TIME (e->dest->cuid)
783 - SCHED_TIME (e->src->cuid) + ii) / ii;
785 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
786 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
787 dest_copy--;
789 if (dest_copy)
791 ps_reg_move_info *move;
793 move = ps_reg_move (ps, first_move + dest_copy - 1);
794 bitmap_set_bit (move->uses, e->dest->cuid);
795 if (e->distance == 1)
796 bitmap_set_bit (distance1_uses, e->dest->cuid);
800 must_follow = sbitmap_alloc (first_move + nreg_moves);
801 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
802 if (!schedule_reg_move (ps, first_move + i_reg_move,
803 distance1_uses, must_follow))
804 break;
805 sbitmap_free (must_follow);
806 if (distance1_uses)
807 sbitmap_free (distance1_uses);
808 if (i_reg_move < nreg_moves)
809 return false;
811 return true;
814 /* Emit the moves associatied with PS. Apply the substitutions
815 associated with them. */
816 static void
817 apply_reg_moves (partial_schedule_ptr ps)
819 ps_reg_move_info *move;
820 int i;
822 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
824 unsigned int i_use;
825 sbitmap_iterator sbi;
827 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
829 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
830 df_insn_rescan (ps->g->nodes[i_use].insn);
835 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
836 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
837 will move to cycle zero. */
838 static void
839 reset_sched_times (partial_schedule_ptr ps, int amount)
841 int row;
842 int ii = ps->ii;
843 ps_insn_ptr crr_insn;
845 for (row = 0; row < ii; row++)
846 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
848 int u = crr_insn->id;
849 int normalized_time = SCHED_TIME (u) - amount;
850 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
852 if (dump_file)
854 /* Print the scheduling times after the rotation. */
855 rtx insn = ps_rtl_insn (ps, u);
857 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
858 "crr_insn->cycle=%d, min_cycle=%d", u,
859 INSN_UID (insn), normalized_time, new_min_cycle);
860 if (JUMP_P (insn))
861 fprintf (dump_file, " (branch)");
862 fprintf (dump_file, "\n");
865 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
866 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
868 crr_insn->cycle = normalized_time;
869 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
873 /* Permute the insns according to their order in PS, from row 0 to
874 row ii-1, and position them right before LAST. This schedules
875 the insns of the loop kernel. */
876 static void
877 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
879 int ii = ps->ii;
880 int row;
881 ps_insn_ptr ps_ij;
883 for (row = 0; row < ii ; row++)
884 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
886 rtx insn = ps_rtl_insn (ps, ps_ij->id);
888 if (PREV_INSN (last) != insn)
890 if (ps_ij->id < ps->g->num_nodes)
891 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
892 PREV_INSN (last));
893 else
894 add_insn_before (insn, last, NULL);
899 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
900 respectively only if cycle C falls on the border of the scheduling
901 window boundaries marked by START and END cycles. STEP is the
902 direction of the window. */
903 static inline void
904 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
905 sbitmap *tmp_precede, sbitmap must_precede, int c,
906 int start, int end, int step)
908 *tmp_precede = NULL;
909 *tmp_follow = NULL;
911 if (c == start)
913 if (step == 1)
914 *tmp_precede = must_precede;
915 else /* step == -1. */
916 *tmp_follow = must_follow;
918 if (c == end - step)
920 if (step == 1)
921 *tmp_follow = must_follow;
922 else /* step == -1. */
923 *tmp_precede = must_precede;
928 /* Return True if the branch can be moved to row ii-1 while
929 normalizing the partial schedule PS to start from cycle zero and thus
930 optimize the SC. Otherwise return False. */
931 static bool
932 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
934 int amount = PS_MIN_CYCLE (ps);
935 sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
936 int start, end, step;
937 int ii = ps->ii;
938 bool ok = false;
939 int stage_count, stage_count_curr;
941 /* Compare the SC after normalization and SC after bringing the branch
942 to row ii-1. If they are equal just bail out. */
943 stage_count = calculate_stage_count (ps, amount);
944 stage_count_curr =
945 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
947 if (stage_count == stage_count_curr)
949 if (dump_file)
950 fprintf (dump_file, "SMS SC already optimized.\n");
952 ok = false;
953 goto clear;
956 if (dump_file)
958 fprintf (dump_file, "SMS Trying to optimize branch location\n");
959 fprintf (dump_file, "SMS partial schedule before trial:\n");
960 print_partial_schedule (ps, dump_file);
963 /* First, normalize the partial scheduling. */
964 reset_sched_times (ps, amount);
965 rotate_partial_schedule (ps, amount);
966 if (dump_file)
968 fprintf (dump_file,
969 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
970 ii, stage_count);
971 print_partial_schedule (ps, dump_file);
974 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
976 ok = true;
977 goto clear;
980 bitmap_ones (sched_nodes);
982 /* Calculate the new placement of the branch. It should be in row
983 ii-1 and fall into it's scheduling window. */
984 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
985 &step, &end) == 0)
987 bool success;
988 ps_insn_ptr next_ps_i;
989 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
990 int row = SMODULO (branch_cycle, ps->ii);
991 int num_splits = 0;
992 sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
993 int c;
995 if (dump_file)
996 fprintf (dump_file, "\nTrying to schedule node %d "
997 "INSN = %d in (%d .. %d) step %d\n",
998 g->closing_branch->cuid,
999 (INSN_UID (g->closing_branch->insn)), start, end, step);
1001 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
1002 if (step == 1)
1004 c = start + ii - SMODULO (start, ii) - 1;
1005 gcc_assert (c >= start);
1006 if (c >= end)
1008 ok = false;
1009 if (dump_file)
1010 fprintf (dump_file,
1011 "SMS failed to schedule branch at cycle: %d\n", c);
1012 goto clear;
1015 else
1017 c = start - SMODULO (start, ii) - 1;
1018 gcc_assert (c <= start);
1020 if (c <= end)
1022 if (dump_file)
1023 fprintf (dump_file,
1024 "SMS failed to schedule branch at cycle: %d\n", c);
1025 ok = false;
1026 goto clear;
1030 must_precede = sbitmap_alloc (g->num_nodes);
1031 must_follow = sbitmap_alloc (g->num_nodes);
1033 /* Try to schedule the branch is it's new cycle. */
1034 calculate_must_precede_follow (g->closing_branch, start, end,
1035 step, ii, sched_nodes,
1036 must_precede, must_follow);
1038 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1039 must_precede, c, start, end, step);
1041 /* Find the element in the partial schedule related to the closing
1042 branch so we can remove it from it's current cycle. */
1043 for (next_ps_i = ps->rows[row];
1044 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1045 if (next_ps_i->id == g->closing_branch->cuid)
1046 break;
1048 remove_node_from_ps (ps, next_ps_i);
1049 success =
1050 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1051 sched_nodes, &num_splits,
1052 tmp_precede, tmp_follow);
1053 gcc_assert (num_splits == 0);
1054 if (!success)
1056 if (dump_file)
1057 fprintf (dump_file,
1058 "SMS failed to schedule branch at cycle: %d, "
1059 "bringing it back to cycle %d\n", c, branch_cycle);
1061 /* The branch was failed to be placed in row ii - 1.
1062 Put it back in it's original place in the partial
1063 schedualing. */
1064 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1065 must_precede, branch_cycle, start, end,
1066 step);
1067 success =
1068 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1069 branch_cycle, sched_nodes,
1070 &num_splits, tmp_precede,
1071 tmp_follow);
1072 gcc_assert (success && (num_splits == 0));
1073 ok = false;
1075 else
1077 /* The branch is placed in row ii - 1. */
1078 if (dump_file)
1079 fprintf (dump_file,
1080 "SMS success in moving branch to cycle %d\n", c);
1082 update_node_sched_params (g->closing_branch->cuid, ii, c,
1083 PS_MIN_CYCLE (ps));
1084 ok = true;
1087 free (must_precede);
1088 free (must_follow);
1091 clear:
1092 free (sched_nodes);
1093 return ok;
1096 static void
1097 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1098 int to_stage, rtx count_reg)
1100 int row;
1101 ps_insn_ptr ps_ij;
1103 for (row = 0; row < ps->ii; row++)
1104 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1106 int u = ps_ij->id;
1107 int first_u, last_u;
1108 rtx u_insn;
1110 /* Do not duplicate any insn which refers to count_reg as it
1111 belongs to the control part.
1112 The closing branch is scheduled as well and thus should
1113 be ignored.
1114 TODO: This should be done by analyzing the control part of
1115 the loop. */
1116 u_insn = ps_rtl_insn (ps, u);
1117 if (reg_mentioned_p (count_reg, u_insn)
1118 || JUMP_P (u_insn))
1119 continue;
1121 first_u = SCHED_STAGE (u);
1122 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1123 if (from_stage <= last_u && to_stage >= first_u)
1125 if (u < ps->g->num_nodes)
1126 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1127 else
1128 emit_insn (copy_rtx (PATTERN (u_insn)));
1134 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1135 static void
1136 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1137 rtx count_reg, rtx count_init)
1139 int i;
1140 int last_stage = PS_STAGE_COUNT (ps) - 1;
1141 edge e;
1143 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1144 start_sequence ();
1146 if (!count_init)
1148 /* Generate instructions at the beginning of the prolog to
1149 adjust the loop count by STAGE_COUNT. If loop count is constant
1150 (count_init), this constant is adjusted by STAGE_COUNT in
1151 generate_prolog_epilog function. */
1152 rtx sub_reg = NULL_RTX;
1154 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1155 gen_int_mode (last_stage,
1156 GET_MODE (count_reg)),
1157 count_reg, 1, OPTAB_DIRECT);
1158 gcc_assert (REG_P (sub_reg));
1159 if (REGNO (sub_reg) != REGNO (count_reg))
1160 emit_move_insn (count_reg, sub_reg);
1163 for (i = 0; i < last_stage; i++)
1164 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1166 /* Put the prolog on the entry edge. */
1167 e = loop_preheader_edge (loop);
1168 split_edge_and_insert (e, get_insns ());
1169 if (!flag_resched_modulo_sched)
1170 e->dest->flags |= BB_DISABLE_SCHEDULE;
1172 end_sequence ();
1174 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1175 start_sequence ();
1177 for (i = 0; i < last_stage; i++)
1178 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1180 /* Put the epilogue on the exit edge. */
1181 gcc_assert (single_exit (loop));
1182 e = single_exit (loop);
1183 split_edge_and_insert (e, get_insns ());
1184 if (!flag_resched_modulo_sched)
1185 e->dest->flags |= BB_DISABLE_SCHEDULE;
1187 end_sequence ();
1190 /* Mark LOOP as software pipelined so the later
1191 scheduling passes don't touch it. */
1192 static void
1193 mark_loop_unsched (struct loop *loop)
1195 unsigned i;
1196 basic_block *bbs = get_loop_body (loop);
1198 for (i = 0; i < loop->num_nodes; i++)
1199 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1201 free (bbs);
1204 /* Return true if all the BBs of the loop are empty except the
1205 loop header. */
1206 static bool
1207 loop_single_full_bb_p (struct loop *loop)
1209 unsigned i;
1210 basic_block *bbs = get_loop_body (loop);
1212 for (i = 0; i < loop->num_nodes ; i++)
1214 rtx head, tail;
1215 bool empty_bb = true;
1217 if (bbs[i] == loop->header)
1218 continue;
1220 /* Make sure that basic blocks other than the header
1221 have only notes labels or jumps. */
1222 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1223 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1225 if (NOTE_P (head) || LABEL_P (head)
1226 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1227 continue;
1228 empty_bb = false;
1229 break;
1232 if (! empty_bb)
1234 free (bbs);
1235 return false;
1238 free (bbs);
1239 return true;
1242 /* Dump file:line from INSN's location info to dump_file. */
1244 static void
1245 dump_insn_location (rtx insn)
1247 if (dump_file && INSN_LOCATION (insn))
1249 const char *file = insn_file (insn);
1250 if (file)
1251 fprintf (dump_file, " %s:%i", file, insn_line (insn));
1255 /* A simple loop from SMS point of view; it is a loop that is composed of
1256 either a single basic block or two BBs - a header and a latch. */
1257 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1258 && (EDGE_COUNT (loop->latch->preds) == 1) \
1259 && (EDGE_COUNT (loop->latch->succs) == 1))
1261 /* Return true if the loop is in its canonical form and false if not.
1262 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1263 static bool
1264 loop_canon_p (struct loop *loop)
1267 if (loop->inner || !loop_outer (loop))
1269 if (dump_file)
1270 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1271 return false;
1274 if (!single_exit (loop))
1276 if (dump_file)
1278 rtx insn = BB_END (loop->header);
1280 fprintf (dump_file, "SMS loop many exits");
1281 dump_insn_location (insn);
1282 fprintf (dump_file, "\n");
1284 return false;
1287 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1289 if (dump_file)
1291 rtx insn = BB_END (loop->header);
1293 fprintf (dump_file, "SMS loop many BBs.");
1294 dump_insn_location (insn);
1295 fprintf (dump_file, "\n");
1297 return false;
1300 return true;
1303 /* If there are more than one entry for the loop,
1304 make it one by splitting the first entry edge and
1305 redirecting the others to the new BB. */
1306 static void
1307 canon_loop (struct loop *loop)
1309 edge e;
1310 edge_iterator i;
1312 /* Avoid annoying special cases of edges going to exit
1313 block. */
1314 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1315 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1316 split_edge (e);
1318 if (loop->latch == loop->header
1319 || EDGE_COUNT (loop->latch->succs) > 1)
1321 FOR_EACH_EDGE (e, i, loop->header->preds)
1322 if (e->src == loop->latch)
1323 break;
1324 split_edge (e);
1328 /* Setup infos. */
1329 static void
1330 setup_sched_infos (void)
1332 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1333 sizeof (sms_common_sched_info));
1334 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1335 common_sched_info = &sms_common_sched_info;
1337 sched_deps_info = &sms_sched_deps_info;
1338 current_sched_info = &sms_sched_info;
1341 /* Probability in % that the sms-ed loop rolls enough so that optimized
1342 version may be entered. Just a guess. */
1343 #define PROB_SMS_ENOUGH_ITERATIONS 80
1345 /* Used to calculate the upper bound of ii. */
1346 #define MAXII_FACTOR 2
1348 /* Main entry point, perform SMS scheduling on the loops of the function
1349 that consist of single basic blocks. */
1350 static void
1351 sms_schedule (void)
1353 rtx insn;
1354 ddg_ptr *g_arr, g;
1355 int * node_order;
1356 int maxii, max_asap;
1357 partial_schedule_ptr ps;
1358 basic_block bb = NULL;
1359 struct loop *loop;
1360 basic_block condition_bb = NULL;
1361 edge latch_edge;
1362 gcov_type trip_count = 0;
1364 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1365 | LOOPS_HAVE_RECORDED_EXITS);
1366 if (number_of_loops (cfun) <= 1)
1368 loop_optimizer_finalize ();
1369 return; /* There are no loops to schedule. */
1372 /* Initialize issue_rate. */
1373 if (targetm.sched.issue_rate)
1375 int temp = reload_completed;
1377 reload_completed = 1;
1378 issue_rate = targetm.sched.issue_rate ();
1379 reload_completed = temp;
1381 else
1382 issue_rate = 1;
1384 /* Initialize the scheduler. */
1385 setup_sched_infos ();
1386 haifa_sched_init ();
1388 /* Allocate memory to hold the DDG array one entry for each loop.
1389 We use loop->num as index into this array. */
1390 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1392 if (dump_file)
1394 fprintf (dump_file, "\n\nSMS analysis phase\n");
1395 fprintf (dump_file, "===================\n\n");
1398 /* Build DDGs for all the relevant loops and hold them in G_ARR
1399 indexed by the loop index. */
1400 FOR_EACH_LOOP (loop, 0)
1402 rtx head, tail;
1403 rtx count_reg;
1405 /* For debugging. */
1406 if (dbg_cnt (sms_sched_loop) == false)
1408 if (dump_file)
1409 fprintf (dump_file, "SMS reached max limit... \n");
1411 break;
1414 if (dump_file)
1416 rtx insn = BB_END (loop->header);
1418 fprintf (dump_file, "SMS loop num: %d", loop->num);
1419 dump_insn_location (insn);
1420 fprintf (dump_file, "\n");
1423 if (! loop_canon_p (loop))
1424 continue;
1426 if (! loop_single_full_bb_p (loop))
1428 if (dump_file)
1429 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1430 continue;
1433 bb = loop->header;
1435 get_ebb_head_tail (bb, bb, &head, &tail);
1436 latch_edge = loop_latch_edge (loop);
1437 gcc_assert (single_exit (loop));
1438 if (single_exit (loop)->count)
1439 trip_count = latch_edge->count / single_exit (loop)->count;
1441 /* Perform SMS only on loops that their average count is above threshold. */
1443 if ( latch_edge->count
1444 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1446 if (dump_file)
1448 dump_insn_location (tail);
1449 fprintf (dump_file, "\nSMS single-bb-loop\n");
1450 if (profile_info && flag_branch_probabilities)
1452 fprintf (dump_file, "SMS loop-count ");
1453 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1454 (HOST_WIDEST_INT) bb->count);
1455 fprintf (dump_file, "\n");
1456 fprintf (dump_file, "SMS trip-count ");
1457 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1458 (HOST_WIDEST_INT) trip_count);
1459 fprintf (dump_file, "\n");
1460 fprintf (dump_file, "SMS profile-sum-max ");
1461 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1462 (HOST_WIDEST_INT) profile_info->sum_max);
1463 fprintf (dump_file, "\n");
1466 continue;
1469 /* Make sure this is a doloop. */
1470 if ( !(count_reg = doloop_register_get (head, tail)))
1472 if (dump_file)
1473 fprintf (dump_file, "SMS doloop_register_get failed\n");
1474 continue;
1477 /* Don't handle BBs with calls or barriers
1478 or !single_set with the exception of instructions that include
1479 count_reg---these instructions are part of the control part
1480 that do-loop recognizes.
1481 ??? Should handle insns defining subregs. */
1482 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1484 rtx set;
1486 if (CALL_P (insn)
1487 || BARRIER_P (insn)
1488 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1489 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1490 && !reg_mentioned_p (count_reg, insn))
1491 || (INSN_P (insn) && (set = single_set (insn))
1492 && GET_CODE (SET_DEST (set)) == SUBREG))
1493 break;
1496 if (insn != NEXT_INSN (tail))
1498 if (dump_file)
1500 if (CALL_P (insn))
1501 fprintf (dump_file, "SMS loop-with-call\n");
1502 else if (BARRIER_P (insn))
1503 fprintf (dump_file, "SMS loop-with-barrier\n");
1504 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1505 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1506 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1507 else
1508 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1509 print_rtl_single (dump_file, insn);
1512 continue;
1515 /* Always schedule the closing branch with the rest of the
1516 instructions. The branch is rotated to be in row ii-1 at the
1517 end of the scheduling procedure to make sure it's the last
1518 instruction in the iteration. */
1519 if (! (g = create_ddg (bb, 1)))
1521 if (dump_file)
1522 fprintf (dump_file, "SMS create_ddg failed\n");
1523 continue;
1526 g_arr[loop->num] = g;
1527 if (dump_file)
1528 fprintf (dump_file, "...OK\n");
1531 if (dump_file)
1533 fprintf (dump_file, "\nSMS transformation phase\n");
1534 fprintf (dump_file, "=========================\n\n");
1537 /* We don't want to perform SMS on new loops - created by versioning. */
1538 FOR_EACH_LOOP (loop, 0)
1540 rtx head, tail;
1541 rtx count_reg, count_init;
1542 int mii, rec_mii, stage_count, min_cycle;
1543 HOST_WIDEST_INT loop_count = 0;
1544 bool opt_sc_p;
1546 if (! (g = g_arr[loop->num]))
1547 continue;
1549 if (dump_file)
1551 rtx insn = BB_END (loop->header);
1553 fprintf (dump_file, "SMS loop num: %d", loop->num);
1554 dump_insn_location (insn);
1555 fprintf (dump_file, "\n");
1557 print_ddg (dump_file, g);
1560 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1562 latch_edge = loop_latch_edge (loop);
1563 gcc_assert (single_exit (loop));
1564 if (single_exit (loop)->count)
1565 trip_count = latch_edge->count / single_exit (loop)->count;
1567 if (dump_file)
1569 dump_insn_location (tail);
1570 fprintf (dump_file, "\nSMS single-bb-loop\n");
1571 if (profile_info && flag_branch_probabilities)
1573 fprintf (dump_file, "SMS loop-count ");
1574 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1575 (HOST_WIDEST_INT) bb->count);
1576 fprintf (dump_file, "\n");
1577 fprintf (dump_file, "SMS profile-sum-max ");
1578 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1579 (HOST_WIDEST_INT) profile_info->sum_max);
1580 fprintf (dump_file, "\n");
1582 fprintf (dump_file, "SMS doloop\n");
1583 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1584 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1585 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1589 /* In case of th loop have doloop register it gets special
1590 handling. */
1591 count_init = NULL_RTX;
1592 if ((count_reg = doloop_register_get (head, tail)))
1594 basic_block pre_header;
1596 pre_header = loop_preheader_edge (loop)->src;
1597 count_init = const_iteration_count (count_reg, pre_header,
1598 &loop_count);
1600 gcc_assert (count_reg);
1602 if (dump_file && count_init)
1604 fprintf (dump_file, "SMS const-doloop ");
1605 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1606 loop_count);
1607 fprintf (dump_file, "\n");
1610 node_order = XNEWVEC (int, g->num_nodes);
1612 mii = 1; /* Need to pass some estimate of mii. */
1613 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1614 mii = MAX (res_MII (g), rec_mii);
1615 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1617 if (dump_file)
1618 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1619 rec_mii, mii, maxii);
1621 for (;;)
1623 set_node_sched_params (g);
1625 stage_count = 0;
1626 opt_sc_p = false;
1627 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1629 if (ps)
1631 /* Try to achieve optimized SC by normalizing the partial
1632 schedule (having the cycles start from cycle zero).
1633 The branch location must be placed in row ii-1 in the
1634 final scheduling. If failed, shift all instructions to
1635 position the branch in row ii-1. */
1636 opt_sc_p = optimize_sc (ps, g);
1637 if (opt_sc_p)
1638 stage_count = calculate_stage_count (ps, 0);
1639 else
1641 /* Bring the branch to cycle ii-1. */
1642 int amount = (SCHED_TIME (g->closing_branch->cuid)
1643 - (ps->ii - 1));
1645 if (dump_file)
1646 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1648 stage_count = calculate_stage_count (ps, amount);
1651 gcc_assert (stage_count >= 1);
1654 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1655 1 means that there is no interleaving between iterations thus
1656 we let the scheduling passes do the job in this case. */
1657 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1658 || (count_init && (loop_count <= stage_count))
1659 || (flag_branch_probabilities && (trip_count <= stage_count)))
1661 if (dump_file)
1663 fprintf (dump_file, "SMS failed... \n");
1664 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1665 " loop-count=", stage_count);
1666 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
1667 fprintf (dump_file, ", trip-count=");
1668 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
1669 fprintf (dump_file, ")\n");
1671 break;
1674 if (!opt_sc_p)
1676 /* Rotate the partial schedule to have the branch in row ii-1. */
1677 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1679 reset_sched_times (ps, amount);
1680 rotate_partial_schedule (ps, amount);
1683 set_columns_for_ps (ps);
1685 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1686 if (!schedule_reg_moves (ps))
1688 mii = ps->ii + 1;
1689 free_partial_schedule (ps);
1690 continue;
1693 /* Moves that handle incoming values might have been added
1694 to a new first stage. Bump the stage count if so.
1696 ??? Perhaps we could consider rotating the schedule here
1697 instead? */
1698 if (PS_MIN_CYCLE (ps) < min_cycle)
1700 reset_sched_times (ps, 0);
1701 stage_count++;
1704 /* The stage count should now be correct without rotation. */
1705 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1706 PS_STAGE_COUNT (ps) = stage_count;
1708 canon_loop (loop);
1710 if (dump_file)
1712 dump_insn_location (tail);
1713 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1714 ps->ii, stage_count);
1715 print_partial_schedule (ps, dump_file);
1718 /* case the BCT count is not known , Do loop-versioning */
1719 if (count_reg && ! count_init)
1721 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1722 gen_int_mode (stage_count,
1723 GET_MODE (count_reg)));
1724 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1725 * REG_BR_PROB_BASE) / 100;
1727 loop_version (loop, comp_rtx, &condition_bb,
1728 prob, prob, REG_BR_PROB_BASE - prob,
1729 true);
1732 /* Set new iteration count of loop kernel. */
1733 if (count_reg && count_init)
1734 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1735 - stage_count + 1);
1737 /* Now apply the scheduled kernel to the RTL of the loop. */
1738 permute_partial_schedule (ps, g->closing_branch->first_note);
1740 /* Mark this loop as software pipelined so the later
1741 scheduling passes don't touch it. */
1742 if (! flag_resched_modulo_sched)
1743 mark_loop_unsched (loop);
1745 /* The life-info is not valid any more. */
1746 df_set_bb_dirty (g->bb);
1748 apply_reg_moves (ps);
1749 if (dump_file)
1750 print_node_sched_params (dump_file, g->num_nodes, ps);
1751 /* Generate prolog and epilog. */
1752 generate_prolog_epilog (ps, loop, count_reg, count_init);
1753 break;
1756 free_partial_schedule (ps);
1757 node_sched_param_vec.release ();
1758 free (node_order);
1759 free_ddg (g);
1762 free (g_arr);
1764 /* Release scheduler data, needed until now because of DFA. */
1765 haifa_sched_finish ();
1766 loop_optimizer_finalize ();
1769 /* The SMS scheduling algorithm itself
1770 -----------------------------------
1771 Input: 'O' an ordered list of insns of a loop.
1772 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1774 'Q' is the empty Set
1775 'PS' is the partial schedule; it holds the currently scheduled nodes with
1776 their cycle/slot.
1777 'PSP' previously scheduled predecessors.
1778 'PSS' previously scheduled successors.
1779 't(u)' the cycle where u is scheduled.
1780 'l(u)' is the latency of u.
1781 'd(v,u)' is the dependence distance from v to u.
1782 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1783 the node ordering phase.
1784 'check_hardware_resources_conflicts(u, PS, c)'
1785 run a trace around cycle/slot through DFA model
1786 to check resource conflicts involving instruction u
1787 at cycle c given the partial schedule PS.
1788 'add_to_partial_schedule_at_time(u, PS, c)'
1789 Add the node/instruction u to the partial schedule
1790 PS at time c.
1791 'calculate_register_pressure(PS)'
1792 Given a schedule of instructions, calculate the register
1793 pressure it implies. One implementation could be the
1794 maximum number of overlapping live ranges.
1795 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1796 registers available in the hardware.
1798 1. II = MII.
1799 2. PS = empty list
1800 3. for each node u in O in pre-computed order
1801 4. if (PSP(u) != Q && PSS(u) == Q) then
1802 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1803 6. start = Early_start; end = Early_start + II - 1; step = 1
1804 11. else if (PSP(u) == Q && PSS(u) != Q) then
1805 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1806 13. start = Late_start; end = Late_start - II + 1; step = -1
1807 14. else if (PSP(u) != Q && PSS(u) != Q) then
1808 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1809 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1810 17. start = Early_start;
1811 18. end = min(Early_start + II - 1 , Late_start);
1812 19. step = 1
1813 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1814 21. start = ASAP(u); end = start + II - 1; step = 1
1815 22. endif
1817 23. success = false
1818 24. for (c = start ; c != end ; c += step)
1819 25. if check_hardware_resources_conflicts(u, PS, c) then
1820 26. add_to_partial_schedule_at_time(u, PS, c)
1821 27. success = true
1822 28. break
1823 29. endif
1824 30. endfor
1825 31. if (success == false) then
1826 32. II = II + 1
1827 33. if (II > maxII) then
1828 34. finish - failed to schedule
1829 35. endif
1830 36. goto 2.
1831 37. endif
1832 38. endfor
1833 39. if (calculate_register_pressure(PS) > maxRP) then
1834 40. goto 32.
1835 41. endif
1836 42. compute epilogue & prologue
1837 43. finish - succeeded to schedule
1839 ??? The algorithm restricts the scheduling window to II cycles.
1840 In rare cases, it may be better to allow windows of II+1 cycles.
1841 The window would then start and end on the same row, but with
1842 different "must precede" and "must follow" requirements. */
1844 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1845 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1846 set to 0 to save compile time. */
1847 #define DFA_HISTORY SMS_DFA_HISTORY
1849 /* A threshold for the number of repeated unsuccessful attempts to insert
1850 an empty row, before we flush the partial schedule and start over. */
1851 #define MAX_SPLIT_NUM 10
1852 /* Given the partial schedule PS, this function calculates and returns the
1853 cycles in which we can schedule the node with the given index I.
1854 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1855 noticed that there are several cases in which we fail to SMS the loop
1856 because the sched window of a node is empty due to tight data-deps. In
1857 such cases we want to unschedule some of the predecessors/successors
1858 until we get non-empty scheduling window. It returns -1 if the
1859 scheduling window is empty and zero otherwise. */
1861 static int
1862 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1863 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1864 int *end_p)
1866 int start, step, end;
1867 int early_start, late_start;
1868 ddg_edge_ptr e;
1869 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1870 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1871 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1872 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1873 int psp_not_empty;
1874 int pss_not_empty;
1875 int count_preds;
1876 int count_succs;
1878 /* 1. compute sched window for u (start, end, step). */
1879 bitmap_clear (psp);
1880 bitmap_clear (pss);
1881 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1882 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1884 /* We first compute a forward range (start <= end), then decide whether
1885 to reverse it. */
1886 early_start = INT_MIN;
1887 late_start = INT_MAX;
1888 start = INT_MIN;
1889 end = INT_MAX;
1890 step = 1;
1892 count_preds = 0;
1893 count_succs = 0;
1895 if (dump_file && (psp_not_empty || pss_not_empty))
1897 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1898 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1899 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1900 "start", "early start", "late start", "end", "time");
1901 fprintf (dump_file, "=========== =========== =========== ==========="
1902 " =====\n");
1904 /* Calculate early_start and limit end. Both bounds are inclusive. */
1905 if (psp_not_empty)
1906 for (e = u_node->in; e != 0; e = e->next_in)
1908 int v = e->src->cuid;
1910 if (bitmap_bit_p (sched_nodes, v))
1912 int p_st = SCHED_TIME (v);
1913 int earliest = p_st + e->latency - (e->distance * ii);
1914 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1916 if (dump_file)
1918 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1919 "", earliest, "", latest, p_st);
1920 print_ddg_edge (dump_file, e);
1921 fprintf (dump_file, "\n");
1924 early_start = MAX (early_start, earliest);
1925 end = MIN (end, latest);
1927 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1928 count_preds++;
1932 /* Calculate late_start and limit start. Both bounds are inclusive. */
1933 if (pss_not_empty)
1934 for (e = u_node->out; e != 0; e = e->next_out)
1936 int v = e->dest->cuid;
1938 if (bitmap_bit_p (sched_nodes, v))
1940 int s_st = SCHED_TIME (v);
1941 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1942 int latest = s_st - e->latency + (e->distance * ii);
1944 if (dump_file)
1946 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1947 earliest, "", latest, "", s_st);
1948 print_ddg_edge (dump_file, e);
1949 fprintf (dump_file, "\n");
1952 start = MAX (start, earliest);
1953 late_start = MIN (late_start, latest);
1955 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1956 count_succs++;
1960 if (dump_file && (psp_not_empty || pss_not_empty))
1962 fprintf (dump_file, "----------- ----------- ----------- -----------"
1963 " -----\n");
1964 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1965 start, early_start, late_start, end, "",
1966 "(max, max, min, min)");
1969 /* Get a target scheduling window no bigger than ii. */
1970 if (early_start == INT_MIN && late_start == INT_MAX)
1971 early_start = NODE_ASAP (u_node);
1972 else if (early_start == INT_MIN)
1973 early_start = late_start - (ii - 1);
1974 late_start = MIN (late_start, early_start + (ii - 1));
1976 /* Apply memory dependence limits. */
1977 start = MAX (start, early_start);
1978 end = MIN (end, late_start);
1980 if (dump_file && (psp_not_empty || pss_not_empty))
1981 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1982 "", start, end, "", "");
1984 /* If there are at least as many successors as predecessors, schedule the
1985 node close to its successors. */
1986 if (pss_not_empty && count_succs >= count_preds)
1988 int tmp = end;
1989 end = start;
1990 start = tmp;
1991 step = -1;
1994 /* Now that we've finalized the window, make END an exclusive rather
1995 than an inclusive bound. */
1996 end += step;
1998 *start_p = start;
1999 *step_p = step;
2000 *end_p = end;
2001 sbitmap_free (psp);
2002 sbitmap_free (pss);
2004 if ((start >= end && step == 1) || (start <= end && step == -1))
2006 if (dump_file)
2007 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2008 start, end, step);
2009 return -1;
2012 return 0;
2015 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2016 node currently been scheduled. At the end of the calculation
2017 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2018 U_NODE which are (1) already scheduled in the first/last row of
2019 U_NODE's scheduling window, (2) whose dependence inequality with U
2020 becomes an equality when U is scheduled in this same row, and (3)
2021 whose dependence latency is zero.
2023 The first and last rows are calculated using the following parameters:
2024 START/END rows - The cycles that begins/ends the traversal on the window;
2025 searching for an empty cycle to schedule U_NODE.
2026 STEP - The direction in which we traverse the window.
2027 II - The initiation interval. */
2029 static void
2030 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2031 int step, int ii, sbitmap sched_nodes,
2032 sbitmap must_precede, sbitmap must_follow)
2034 ddg_edge_ptr e;
2035 int first_cycle_in_window, last_cycle_in_window;
2037 gcc_assert (must_precede && must_follow);
2039 /* Consider the following scheduling window:
2040 {first_cycle_in_window, first_cycle_in_window+1, ...,
2041 last_cycle_in_window}. If step is 1 then the following will be
2042 the order we traverse the window: {start=first_cycle_in_window,
2043 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2044 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2045 end=first_cycle_in_window-1} if step is -1. */
2046 first_cycle_in_window = (step == 1) ? start : end - step;
2047 last_cycle_in_window = (step == 1) ? end - step : start;
2049 bitmap_clear (must_precede);
2050 bitmap_clear (must_follow);
2052 if (dump_file)
2053 fprintf (dump_file, "\nmust_precede: ");
2055 /* Instead of checking if:
2056 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2057 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2058 first_cycle_in_window)
2059 && e->latency == 0
2060 we use the fact that latency is non-negative:
2061 SCHED_TIME (e->src) - (e->distance * ii) <=
2062 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2063 first_cycle_in_window
2064 and check only if
2065 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2066 for (e = u_node->in; e != 0; e = e->next_in)
2067 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2068 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2069 first_cycle_in_window))
2071 if (dump_file)
2072 fprintf (dump_file, "%d ", e->src->cuid);
2074 bitmap_set_bit (must_precede, e->src->cuid);
2077 if (dump_file)
2078 fprintf (dump_file, "\nmust_follow: ");
2080 /* Instead of checking if:
2081 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2082 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2083 last_cycle_in_window)
2084 && e->latency == 0
2085 we use the fact that latency is non-negative:
2086 SCHED_TIME (e->dest) + (e->distance * ii) >=
2087 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2088 last_cycle_in_window
2089 and check only if
2090 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2091 for (e = u_node->out; e != 0; e = e->next_out)
2092 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2093 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2094 last_cycle_in_window))
2096 if (dump_file)
2097 fprintf (dump_file, "%d ", e->dest->cuid);
2099 bitmap_set_bit (must_follow, e->dest->cuid);
2102 if (dump_file)
2103 fprintf (dump_file, "\n");
2106 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2107 parameters to decide if that's possible:
2108 PS - The partial schedule.
2109 U - The serial number of U_NODE.
2110 NUM_SPLITS - The number of row splits made so far.
2111 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2112 the first row of the scheduling window)
2113 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2114 last row of the scheduling window) */
2116 static bool
2117 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2118 int u, int cycle, sbitmap sched_nodes,
2119 int *num_splits, sbitmap must_precede,
2120 sbitmap must_follow)
2122 ps_insn_ptr psi;
2123 bool success = 0;
2125 verify_partial_schedule (ps, sched_nodes);
2126 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2127 if (psi)
2129 SCHED_TIME (u) = cycle;
2130 bitmap_set_bit (sched_nodes, u);
2131 success = 1;
2132 *num_splits = 0;
2133 if (dump_file)
2134 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2138 return success;
2141 /* This function implements the scheduling algorithm for SMS according to the
2142 above algorithm. */
2143 static partial_schedule_ptr
2144 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2146 int ii = mii;
2147 int i, c, success, num_splits = 0;
2148 int flush_and_start_over = true;
2149 int num_nodes = g->num_nodes;
2150 int start, end, step; /* Place together into one struct? */
2151 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
2152 sbitmap must_precede = sbitmap_alloc (num_nodes);
2153 sbitmap must_follow = sbitmap_alloc (num_nodes);
2154 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
2156 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2158 bitmap_ones (tobe_scheduled);
2159 bitmap_clear (sched_nodes);
2161 while (flush_and_start_over && (ii < maxii))
2164 if (dump_file)
2165 fprintf (dump_file, "Starting with ii=%d\n", ii);
2166 flush_and_start_over = false;
2167 bitmap_clear (sched_nodes);
2169 for (i = 0; i < num_nodes; i++)
2171 int u = nodes_order[i];
2172 ddg_node_ptr u_node = &ps->g->nodes[u];
2173 rtx insn = u_node->insn;
2175 if (!NONDEBUG_INSN_P (insn))
2177 bitmap_clear_bit (tobe_scheduled, u);
2178 continue;
2181 if (bitmap_bit_p (sched_nodes, u))
2182 continue;
2184 /* Try to get non-empty scheduling window. */
2185 success = 0;
2186 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2187 &step, &end) == 0)
2189 if (dump_file)
2190 fprintf (dump_file, "\nTrying to schedule node %d "
2191 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2192 (g->nodes[u].insn)), start, end, step);
2194 gcc_assert ((step > 0 && start < end)
2195 || (step < 0 && start > end));
2197 calculate_must_precede_follow (u_node, start, end, step, ii,
2198 sched_nodes, must_precede,
2199 must_follow);
2201 for (c = start; c != end; c += step)
2203 sbitmap tmp_precede, tmp_follow;
2205 set_must_precede_follow (&tmp_follow, must_follow,
2206 &tmp_precede, must_precede,
2207 c, start, end, step);
2208 success =
2209 try_scheduling_node_in_cycle (ps, u, c,
2210 sched_nodes,
2211 &num_splits, tmp_precede,
2212 tmp_follow);
2213 if (success)
2214 break;
2217 verify_partial_schedule (ps, sched_nodes);
2219 if (!success)
2221 int split_row;
2223 if (ii++ == maxii)
2224 break;
2226 if (num_splits >= MAX_SPLIT_NUM)
2228 num_splits = 0;
2229 flush_and_start_over = true;
2230 verify_partial_schedule (ps, sched_nodes);
2231 reset_partial_schedule (ps, ii);
2232 verify_partial_schedule (ps, sched_nodes);
2233 break;
2236 num_splits++;
2237 /* The scheduling window is exclusive of 'end'
2238 whereas compute_split_window() expects an inclusive,
2239 ordered range. */
2240 if (step == 1)
2241 split_row = compute_split_row (sched_nodes, start, end - 1,
2242 ps->ii, u_node);
2243 else
2244 split_row = compute_split_row (sched_nodes, end + 1, start,
2245 ps->ii, u_node);
2247 ps_insert_empty_row (ps, split_row, sched_nodes);
2248 i--; /* Go back and retry node i. */
2250 if (dump_file)
2251 fprintf (dump_file, "num_splits=%d\n", num_splits);
2254 /* ??? If (success), check register pressure estimates. */
2255 } /* Continue with next node. */
2256 } /* While flush_and_start_over. */
2257 if (ii >= maxii)
2259 free_partial_schedule (ps);
2260 ps = NULL;
2262 else
2263 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2265 sbitmap_free (sched_nodes);
2266 sbitmap_free (must_precede);
2267 sbitmap_free (must_follow);
2268 sbitmap_free (tobe_scheduled);
2270 return ps;
2273 /* This function inserts a new empty row into PS at the position
2274 according to SPLITROW, keeping all already scheduled instructions
2275 intact and updating their SCHED_TIME and cycle accordingly. */
2276 static void
2277 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2278 sbitmap sched_nodes)
2280 ps_insn_ptr crr_insn;
2281 ps_insn_ptr *rows_new;
2282 int ii = ps->ii;
2283 int new_ii = ii + 1;
2284 int row;
2285 int *rows_length_new;
2287 verify_partial_schedule (ps, sched_nodes);
2289 /* We normalize sched_time and rotate ps to have only non-negative sched
2290 times, for simplicity of updating cycles after inserting new row. */
2291 split_row -= ps->min_cycle;
2292 split_row = SMODULO (split_row, ii);
2293 if (dump_file)
2294 fprintf (dump_file, "split_row=%d\n", split_row);
2296 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2297 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2299 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2300 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2301 for (row = 0; row < split_row; row++)
2303 rows_new[row] = ps->rows[row];
2304 rows_length_new[row] = ps->rows_length[row];
2305 ps->rows[row] = NULL;
2306 for (crr_insn = rows_new[row];
2307 crr_insn; crr_insn = crr_insn->next_in_row)
2309 int u = crr_insn->id;
2310 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2312 SCHED_TIME (u) = new_time;
2313 crr_insn->cycle = new_time;
2314 SCHED_ROW (u) = new_time % new_ii;
2315 SCHED_STAGE (u) = new_time / new_ii;
2320 rows_new[split_row] = NULL;
2322 for (row = split_row; row < ii; row++)
2324 rows_new[row + 1] = ps->rows[row];
2325 rows_length_new[row + 1] = ps->rows_length[row];
2326 ps->rows[row] = NULL;
2327 for (crr_insn = rows_new[row + 1];
2328 crr_insn; crr_insn = crr_insn->next_in_row)
2330 int u = crr_insn->id;
2331 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2333 SCHED_TIME (u) = new_time;
2334 crr_insn->cycle = new_time;
2335 SCHED_ROW (u) = new_time % new_ii;
2336 SCHED_STAGE (u) = new_time / new_ii;
2340 /* Updating ps. */
2341 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2342 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2343 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2344 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2345 free (ps->rows);
2346 ps->rows = rows_new;
2347 free (ps->rows_length);
2348 ps->rows_length = rows_length_new;
2349 ps->ii = new_ii;
2350 gcc_assert (ps->min_cycle >= 0);
2352 verify_partial_schedule (ps, sched_nodes);
2354 if (dump_file)
2355 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2356 ps->max_cycle);
2359 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2360 UP which are the boundaries of it's scheduling window; compute using
2361 SCHED_NODES and II a row in the partial schedule that can be split
2362 which will separate a critical predecessor from a critical successor
2363 thereby expanding the window, and return it. */
2364 static int
2365 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2366 ddg_node_ptr u_node)
2368 ddg_edge_ptr e;
2369 int lower = INT_MIN, upper = INT_MAX;
2370 int crit_pred = -1;
2371 int crit_succ = -1;
2372 int crit_cycle;
2374 for (e = u_node->in; e != 0; e = e->next_in)
2376 int v = e->src->cuid;
2378 if (bitmap_bit_p (sched_nodes, v)
2379 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2380 if (SCHED_TIME (v) > lower)
2382 crit_pred = v;
2383 lower = SCHED_TIME (v);
2387 if (crit_pred >= 0)
2389 crit_cycle = SCHED_TIME (crit_pred) + 1;
2390 return SMODULO (crit_cycle, ii);
2393 for (e = u_node->out; e != 0; e = e->next_out)
2395 int v = e->dest->cuid;
2397 if (bitmap_bit_p (sched_nodes, v)
2398 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2399 if (SCHED_TIME (v) < upper)
2401 crit_succ = v;
2402 upper = SCHED_TIME (v);
2406 if (crit_succ >= 0)
2408 crit_cycle = SCHED_TIME (crit_succ);
2409 return SMODULO (crit_cycle, ii);
2412 if (dump_file)
2413 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2415 return SMODULO ((low + up + 1) / 2, ii);
2418 static void
2419 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2421 int row;
2422 ps_insn_ptr crr_insn;
2424 for (row = 0; row < ps->ii; row++)
2426 int length = 0;
2428 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2430 int u = crr_insn->id;
2432 length++;
2433 gcc_assert (bitmap_bit_p (sched_nodes, u));
2434 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2435 popcount (sched_nodes) == number of insns in ps. */
2436 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2437 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2440 gcc_assert (ps->rows_length[row] == length);
2445 /* This page implements the algorithm for ordering the nodes of a DDG
2446 for modulo scheduling, activated through the
2447 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2449 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2450 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2451 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2452 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2453 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2454 #define DEPTH(x) (ASAP ((x)))
2456 typedef struct node_order_params * nopa;
2458 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2459 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2460 static nopa calculate_order_params (ddg_ptr, int, int *);
2461 static int find_max_asap (ddg_ptr, sbitmap);
2462 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2463 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2465 enum sms_direction {BOTTOMUP, TOPDOWN};
2467 struct node_order_params
2469 int asap;
2470 int alap;
2471 int height;
2474 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2475 static void
2476 check_nodes_order (int *node_order, int num_nodes)
2478 int i;
2479 sbitmap tmp = sbitmap_alloc (num_nodes);
2481 bitmap_clear (tmp);
2483 if (dump_file)
2484 fprintf (dump_file, "SMS final nodes order: \n");
2486 for (i = 0; i < num_nodes; i++)
2488 int u = node_order[i];
2490 if (dump_file)
2491 fprintf (dump_file, "%d ", u);
2492 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2494 bitmap_set_bit (tmp, u);
2497 if (dump_file)
2498 fprintf (dump_file, "\n");
2500 sbitmap_free (tmp);
2503 /* Order the nodes of G for scheduling and pass the result in
2504 NODE_ORDER. Also set aux.count of each node to ASAP.
2505 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2506 static int
2507 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2509 int i;
2510 int rec_mii = 0;
2511 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2513 nopa nops = calculate_order_params (g, mii, pmax_asap);
2515 if (dump_file)
2516 print_sccs (dump_file, sccs, g);
2518 order_nodes_of_sccs (sccs, node_order);
2520 if (sccs->num_sccs > 0)
2521 /* First SCC has the largest recurrence_length. */
2522 rec_mii = sccs->sccs[0]->recurrence_length;
2524 /* Save ASAP before destroying node_order_params. */
2525 for (i = 0; i < g->num_nodes; i++)
2527 ddg_node_ptr v = &g->nodes[i];
2528 v->aux.count = ASAP (v);
2531 free (nops);
2532 free_ddg_all_sccs (sccs);
2533 check_nodes_order (node_order, g->num_nodes);
2535 return rec_mii;
2538 static void
2539 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2541 int i, pos = 0;
2542 ddg_ptr g = all_sccs->ddg;
2543 int num_nodes = g->num_nodes;
2544 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2545 sbitmap on_path = sbitmap_alloc (num_nodes);
2546 sbitmap tmp = sbitmap_alloc (num_nodes);
2547 sbitmap ones = sbitmap_alloc (num_nodes);
2549 bitmap_clear (prev_sccs);
2550 bitmap_ones (ones);
2552 /* Perform the node ordering starting from the SCC with the highest recMII.
2553 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2554 for (i = 0; i < all_sccs->num_sccs; i++)
2556 ddg_scc_ptr scc = all_sccs->sccs[i];
2558 /* Add nodes on paths from previous SCCs to the current SCC. */
2559 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2560 bitmap_ior (tmp, scc->nodes, on_path);
2562 /* Add nodes on paths from the current SCC to previous SCCs. */
2563 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2564 bitmap_ior (tmp, tmp, on_path);
2566 /* Remove nodes of previous SCCs from current extended SCC. */
2567 bitmap_and_compl (tmp, tmp, prev_sccs);
2569 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2570 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2573 /* Handle the remaining nodes that do not belong to any scc. Each call
2574 to order_nodes_in_scc handles a single connected component. */
2575 while (pos < g->num_nodes)
2577 bitmap_and_compl (tmp, ones, prev_sccs);
2578 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2580 sbitmap_free (prev_sccs);
2581 sbitmap_free (on_path);
2582 sbitmap_free (tmp);
2583 sbitmap_free (ones);
2586 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2587 static struct node_order_params *
2588 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2590 int u;
2591 int max_asap;
2592 int num_nodes = g->num_nodes;
2593 ddg_edge_ptr e;
2594 /* Allocate a place to hold ordering params for each node in the DDG. */
2595 nopa node_order_params_arr;
2597 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2598 node_order_params_arr = (nopa) xcalloc (num_nodes,
2599 sizeof (struct node_order_params));
2601 /* Set the aux pointer of each node to point to its order_params structure. */
2602 for (u = 0; u < num_nodes; u++)
2603 g->nodes[u].aux.info = &node_order_params_arr[u];
2605 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2606 calculate ASAP, ALAP, mobility, distance, and height for each node
2607 in the dependence (direct acyclic) graph. */
2609 /* We assume that the nodes in the array are in topological order. */
2611 max_asap = 0;
2612 for (u = 0; u < num_nodes; u++)
2614 ddg_node_ptr u_node = &g->nodes[u];
2616 ASAP (u_node) = 0;
2617 for (e = u_node->in; e; e = e->next_in)
2618 if (e->distance == 0)
2619 ASAP (u_node) = MAX (ASAP (u_node),
2620 ASAP (e->src) + e->latency);
2621 max_asap = MAX (max_asap, ASAP (u_node));
2624 for (u = num_nodes - 1; u > -1; u--)
2626 ddg_node_ptr u_node = &g->nodes[u];
2628 ALAP (u_node) = max_asap;
2629 HEIGHT (u_node) = 0;
2630 for (e = u_node->out; e; e = e->next_out)
2631 if (e->distance == 0)
2633 ALAP (u_node) = MIN (ALAP (u_node),
2634 ALAP (e->dest) - e->latency);
2635 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2636 HEIGHT (e->dest) + e->latency);
2639 if (dump_file)
2641 fprintf (dump_file, "\nOrder params\n");
2642 for (u = 0; u < num_nodes; u++)
2644 ddg_node_ptr u_node = &g->nodes[u];
2646 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2647 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2651 *pmax_asap = max_asap;
2652 return node_order_params_arr;
2655 static int
2656 find_max_asap (ddg_ptr g, sbitmap nodes)
2658 unsigned int u = 0;
2659 int max_asap = -1;
2660 int result = -1;
2661 sbitmap_iterator sbi;
2663 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2665 ddg_node_ptr u_node = &g->nodes[u];
2667 if (max_asap < ASAP (u_node))
2669 max_asap = ASAP (u_node);
2670 result = u;
2673 return result;
2676 static int
2677 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2679 unsigned int u = 0;
2680 int max_hv = -1;
2681 int min_mob = INT_MAX;
2682 int result = -1;
2683 sbitmap_iterator sbi;
2685 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2687 ddg_node_ptr u_node = &g->nodes[u];
2689 if (max_hv < HEIGHT (u_node))
2691 max_hv = HEIGHT (u_node);
2692 min_mob = MOB (u_node);
2693 result = u;
2695 else if ((max_hv == HEIGHT (u_node))
2696 && (min_mob > MOB (u_node)))
2698 min_mob = MOB (u_node);
2699 result = u;
2702 return result;
2705 static int
2706 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2708 unsigned int u = 0;
2709 int max_dv = -1;
2710 int min_mob = INT_MAX;
2711 int result = -1;
2712 sbitmap_iterator sbi;
2714 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2716 ddg_node_ptr u_node = &g->nodes[u];
2718 if (max_dv < DEPTH (u_node))
2720 max_dv = DEPTH (u_node);
2721 min_mob = MOB (u_node);
2722 result = u;
2724 else if ((max_dv == DEPTH (u_node))
2725 && (min_mob > MOB (u_node)))
2727 min_mob = MOB (u_node);
2728 result = u;
2731 return result;
2734 /* Places the nodes of SCC into the NODE_ORDER array starting
2735 at position POS, according to the SMS ordering algorithm.
2736 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2737 the NODE_ORDER array, starting from position zero. */
2738 static int
2739 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2740 int * node_order, int pos)
2742 enum sms_direction dir;
2743 int num_nodes = g->num_nodes;
2744 sbitmap workset = sbitmap_alloc (num_nodes);
2745 sbitmap tmp = sbitmap_alloc (num_nodes);
2746 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2747 sbitmap predecessors = sbitmap_alloc (num_nodes);
2748 sbitmap successors = sbitmap_alloc (num_nodes);
2750 bitmap_clear (predecessors);
2751 find_predecessors (predecessors, g, nodes_ordered);
2753 bitmap_clear (successors);
2754 find_successors (successors, g, nodes_ordered);
2756 bitmap_clear (tmp);
2757 if (bitmap_and (tmp, predecessors, scc))
2759 bitmap_copy (workset, tmp);
2760 dir = BOTTOMUP;
2762 else if (bitmap_and (tmp, successors, scc))
2764 bitmap_copy (workset, tmp);
2765 dir = TOPDOWN;
2767 else
2769 int u;
2771 bitmap_clear (workset);
2772 if ((u = find_max_asap (g, scc)) >= 0)
2773 bitmap_set_bit (workset, u);
2774 dir = BOTTOMUP;
2777 bitmap_clear (zero_bitmap);
2778 while (!bitmap_equal_p (workset, zero_bitmap))
2780 int v;
2781 ddg_node_ptr v_node;
2782 sbitmap v_node_preds;
2783 sbitmap v_node_succs;
2785 if (dir == TOPDOWN)
2787 while (!bitmap_equal_p (workset, zero_bitmap))
2789 v = find_max_hv_min_mob (g, workset);
2790 v_node = &g->nodes[v];
2791 node_order[pos++] = v;
2792 v_node_succs = NODE_SUCCESSORS (v_node);
2793 bitmap_and (tmp, v_node_succs, scc);
2795 /* Don't consider the already ordered successors again. */
2796 bitmap_and_compl (tmp, tmp, nodes_ordered);
2797 bitmap_ior (workset, workset, tmp);
2798 bitmap_clear_bit (workset, v);
2799 bitmap_set_bit (nodes_ordered, v);
2801 dir = BOTTOMUP;
2802 bitmap_clear (predecessors);
2803 find_predecessors (predecessors, g, nodes_ordered);
2804 bitmap_and (workset, predecessors, scc);
2806 else
2808 while (!bitmap_equal_p (workset, zero_bitmap))
2810 v = find_max_dv_min_mob (g, workset);
2811 v_node = &g->nodes[v];
2812 node_order[pos++] = v;
2813 v_node_preds = NODE_PREDECESSORS (v_node);
2814 bitmap_and (tmp, v_node_preds, scc);
2816 /* Don't consider the already ordered predecessors again. */
2817 bitmap_and_compl (tmp, tmp, nodes_ordered);
2818 bitmap_ior (workset, workset, tmp);
2819 bitmap_clear_bit (workset, v);
2820 bitmap_set_bit (nodes_ordered, v);
2822 dir = TOPDOWN;
2823 bitmap_clear (successors);
2824 find_successors (successors, g, nodes_ordered);
2825 bitmap_and (workset, successors, scc);
2828 sbitmap_free (tmp);
2829 sbitmap_free (workset);
2830 sbitmap_free (zero_bitmap);
2831 sbitmap_free (predecessors);
2832 sbitmap_free (successors);
2833 return pos;
2837 /* This page contains functions for manipulating partial-schedules during
2838 modulo scheduling. */
2840 /* Create a partial schedule and allocate a memory to hold II rows. */
2842 static partial_schedule_ptr
2843 create_partial_schedule (int ii, ddg_ptr g, int history)
2845 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2846 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2847 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2848 ps->reg_moves.create (0);
2849 ps->ii = ii;
2850 ps->history = history;
2851 ps->min_cycle = INT_MAX;
2852 ps->max_cycle = INT_MIN;
2853 ps->g = g;
2855 return ps;
2858 /* Free the PS_INSNs in rows array of the given partial schedule.
2859 ??? Consider caching the PS_INSN's. */
2860 static void
2861 free_ps_insns (partial_schedule_ptr ps)
2863 int i;
2865 for (i = 0; i < ps->ii; i++)
2867 while (ps->rows[i])
2869 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2871 free (ps->rows[i]);
2872 ps->rows[i] = ps_insn;
2874 ps->rows[i] = NULL;
2878 /* Free all the memory allocated to the partial schedule. */
2880 static void
2881 free_partial_schedule (partial_schedule_ptr ps)
2883 ps_reg_move_info *move;
2884 unsigned int i;
2886 if (!ps)
2887 return;
2889 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2890 sbitmap_free (move->uses);
2891 ps->reg_moves.release ();
2893 free_ps_insns (ps);
2894 free (ps->rows);
2895 free (ps->rows_length);
2896 free (ps);
2899 /* Clear the rows array with its PS_INSNs, and create a new one with
2900 NEW_II rows. */
2902 static void
2903 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2905 if (!ps)
2906 return;
2907 free_ps_insns (ps);
2908 if (new_ii == ps->ii)
2909 return;
2910 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2911 * sizeof (ps_insn_ptr));
2912 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2913 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2914 memset (ps->rows_length, 0, new_ii * sizeof (int));
2915 ps->ii = new_ii;
2916 ps->min_cycle = INT_MAX;
2917 ps->max_cycle = INT_MIN;
2920 /* Prints the partial schedule as an ii rows array, for each rows
2921 print the ids of the insns in it. */
2922 void
2923 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2925 int i;
2927 for (i = 0; i < ps->ii; i++)
2929 ps_insn_ptr ps_i = ps->rows[i];
2931 fprintf (dump, "\n[ROW %d ]: ", i);
2932 while (ps_i)
2934 rtx insn = ps_rtl_insn (ps, ps_i->id);
2936 if (JUMP_P (insn))
2937 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2938 else
2939 fprintf (dump, "%d, ", INSN_UID (insn));
2941 ps_i = ps_i->next_in_row;
2946 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2947 static ps_insn_ptr
2948 create_ps_insn (int id, int cycle)
2950 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2952 ps_i->id = id;
2953 ps_i->next_in_row = NULL;
2954 ps_i->prev_in_row = NULL;
2955 ps_i->cycle = cycle;
2957 return ps_i;
2961 /* Removes the given PS_INSN from the partial schedule. */
2962 static void
2963 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2965 int row;
2967 gcc_assert (ps && ps_i);
2969 row = SMODULO (ps_i->cycle, ps->ii);
2970 if (! ps_i->prev_in_row)
2972 gcc_assert (ps_i == ps->rows[row]);
2973 ps->rows[row] = ps_i->next_in_row;
2974 if (ps->rows[row])
2975 ps->rows[row]->prev_in_row = NULL;
2977 else
2979 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2980 if (ps_i->next_in_row)
2981 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2984 ps->rows_length[row] -= 1;
2985 free (ps_i);
2986 return;
2989 /* Unlike what literature describes for modulo scheduling (which focuses
2990 on VLIW machines) the order of the instructions inside a cycle is
2991 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2992 where the current instruction should go relative to the already
2993 scheduled instructions in the given cycle. Go over these
2994 instructions and find the first possible column to put it in. */
2995 static bool
2996 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2997 sbitmap must_precede, sbitmap must_follow)
2999 ps_insn_ptr next_ps_i;
3000 ps_insn_ptr first_must_follow = NULL;
3001 ps_insn_ptr last_must_precede = NULL;
3002 ps_insn_ptr last_in_row = NULL;
3003 int row;
3005 if (! ps_i)
3006 return false;
3008 row = SMODULO (ps_i->cycle, ps->ii);
3010 /* Find the first must follow and the last must precede
3011 and insert the node immediately after the must precede
3012 but make sure that it there is no must follow after it. */
3013 for (next_ps_i = ps->rows[row];
3014 next_ps_i;
3015 next_ps_i = next_ps_i->next_in_row)
3017 if (must_follow
3018 && bitmap_bit_p (must_follow, next_ps_i->id)
3019 && ! first_must_follow)
3020 first_must_follow = next_ps_i;
3021 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
3023 /* If we have already met a node that must follow, then
3024 there is no possible column. */
3025 if (first_must_follow)
3026 return false;
3027 else
3028 last_must_precede = next_ps_i;
3030 /* The closing branch must be the last in the row. */
3031 if (must_precede
3032 && bitmap_bit_p (must_precede, next_ps_i->id)
3033 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3034 return false;
3036 last_in_row = next_ps_i;
3039 /* The closing branch is scheduled as well. Make sure there is no
3040 dependent instruction after it as the branch should be the last
3041 instruction in the row. */
3042 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3044 if (first_must_follow)
3045 return false;
3046 if (last_in_row)
3048 /* Make the branch the last in the row. New instructions
3049 will be inserted at the beginning of the row or after the
3050 last must_precede instruction thus the branch is guaranteed
3051 to remain the last instruction in the row. */
3052 last_in_row->next_in_row = ps_i;
3053 ps_i->prev_in_row = last_in_row;
3054 ps_i->next_in_row = NULL;
3056 else
3057 ps->rows[row] = ps_i;
3058 return true;
3061 /* Now insert the node after INSERT_AFTER_PSI. */
3063 if (! last_must_precede)
3065 ps_i->next_in_row = ps->rows[row];
3066 ps_i->prev_in_row = NULL;
3067 if (ps_i->next_in_row)
3068 ps_i->next_in_row->prev_in_row = ps_i;
3069 ps->rows[row] = ps_i;
3071 else
3073 ps_i->next_in_row = last_must_precede->next_in_row;
3074 last_must_precede->next_in_row = ps_i;
3075 ps_i->prev_in_row = last_must_precede;
3076 if (ps_i->next_in_row)
3077 ps_i->next_in_row->prev_in_row = ps_i;
3080 return true;
3083 /* Advances the PS_INSN one column in its current row; returns false
3084 in failure and true in success. Bit N is set in MUST_FOLLOW if
3085 the node with cuid N must be come after the node pointed to by
3086 PS_I when scheduled in the same cycle. */
3087 static int
3088 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3089 sbitmap must_follow)
3091 ps_insn_ptr prev, next;
3092 int row;
3094 if (!ps || !ps_i)
3095 return false;
3097 row = SMODULO (ps_i->cycle, ps->ii);
3099 if (! ps_i->next_in_row)
3100 return false;
3102 /* Check if next_in_row is dependent on ps_i, both having same sched
3103 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3104 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3105 return false;
3107 /* Advance PS_I over its next_in_row in the doubly linked list. */
3108 prev = ps_i->prev_in_row;
3109 next = ps_i->next_in_row;
3111 if (ps_i == ps->rows[row])
3112 ps->rows[row] = next;
3114 ps_i->next_in_row = next->next_in_row;
3116 if (next->next_in_row)
3117 next->next_in_row->prev_in_row = ps_i;
3119 next->next_in_row = ps_i;
3120 ps_i->prev_in_row = next;
3122 next->prev_in_row = prev;
3123 if (prev)
3124 prev->next_in_row = next;
3126 return true;
3129 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3130 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3131 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3132 before/after (respectively) the node pointed to by PS_I when scheduled
3133 in the same cycle. */
3134 static ps_insn_ptr
3135 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3136 sbitmap must_precede, sbitmap must_follow)
3138 ps_insn_ptr ps_i;
3139 int row = SMODULO (cycle, ps->ii);
3141 if (ps->rows_length[row] >= issue_rate)
3142 return NULL;
3144 ps_i = create_ps_insn (id, cycle);
3146 /* Finds and inserts PS_I according to MUST_FOLLOW and
3147 MUST_PRECEDE. */
3148 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3150 free (ps_i);
3151 return NULL;
3154 ps->rows_length[row] += 1;
3155 return ps_i;
3158 /* Advance time one cycle. Assumes DFA is being used. */
3159 static void
3160 advance_one_cycle (void)
3162 if (targetm.sched.dfa_pre_cycle_insn)
3163 state_transition (curr_state,
3164 targetm.sched.dfa_pre_cycle_insn ());
3166 state_transition (curr_state, NULL);
3168 if (targetm.sched.dfa_post_cycle_insn)
3169 state_transition (curr_state,
3170 targetm.sched.dfa_post_cycle_insn ());
3175 /* Checks if PS has resource conflicts according to DFA, starting from
3176 FROM cycle to TO cycle; returns true if there are conflicts and false
3177 if there are no conflicts. Assumes DFA is being used. */
3178 static int
3179 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3181 int cycle;
3183 state_reset (curr_state);
3185 for (cycle = from; cycle <= to; cycle++)
3187 ps_insn_ptr crr_insn;
3188 /* Holds the remaining issue slots in the current row. */
3189 int can_issue_more = issue_rate;
3191 /* Walk through the DFA for the current row. */
3192 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3193 crr_insn;
3194 crr_insn = crr_insn->next_in_row)
3196 rtx insn = ps_rtl_insn (ps, crr_insn->id);
3198 if (!NONDEBUG_INSN_P (insn))
3199 continue;
3201 /* Check if there is room for the current insn. */
3202 if (!can_issue_more || state_dead_lock_p (curr_state))
3203 return true;
3205 /* Update the DFA state and return with failure if the DFA found
3206 resource conflicts. */
3207 if (state_transition (curr_state, insn) >= 0)
3208 return true;
3210 if (targetm.sched.variable_issue)
3211 can_issue_more =
3212 targetm.sched.variable_issue (sched_dump, sched_verbose,
3213 insn, can_issue_more);
3214 /* A naked CLOBBER or USE generates no instruction, so don't
3215 let them consume issue slots. */
3216 else if (GET_CODE (PATTERN (insn)) != USE
3217 && GET_CODE (PATTERN (insn)) != CLOBBER)
3218 can_issue_more--;
3221 /* Advance the DFA to the next cycle. */
3222 advance_one_cycle ();
3224 return false;
3227 /* Checks if the given node causes resource conflicts when added to PS at
3228 cycle C. If not the node is added to PS and returned; otherwise zero
3229 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3230 cuid N must be come before/after (respectively) the node pointed to by
3231 PS_I when scheduled in the same cycle. */
3232 ps_insn_ptr
3233 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3234 int c, sbitmap must_precede,
3235 sbitmap must_follow)
3237 int has_conflicts = 0;
3238 ps_insn_ptr ps_i;
3240 /* First add the node to the PS, if this succeeds check for
3241 conflicts, trying different issue slots in the same row. */
3242 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3243 return NULL; /* Failed to insert the node at the given cycle. */
3245 has_conflicts = ps_has_conflicts (ps, c, c)
3246 || (ps->history > 0
3247 && ps_has_conflicts (ps,
3248 c - ps->history,
3249 c + ps->history));
3251 /* Try different issue slots to find one that the given node can be
3252 scheduled in without conflicts. */
3253 while (has_conflicts)
3255 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3256 break;
3257 has_conflicts = ps_has_conflicts (ps, c, c)
3258 || (ps->history > 0
3259 && ps_has_conflicts (ps,
3260 c - ps->history,
3261 c + ps->history));
3264 if (has_conflicts)
3266 remove_node_from_ps (ps, ps_i);
3267 return NULL;
3270 ps->min_cycle = MIN (ps->min_cycle, c);
3271 ps->max_cycle = MAX (ps->max_cycle, c);
3272 return ps_i;
3275 /* Calculate the stage count of the partial schedule PS. The calculation
3276 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3278 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3280 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3281 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3282 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3284 /* The calculation of stage count is done adding the number of stages
3285 before cycle zero and after cycle zero. */
3286 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3288 return stage_count;
3291 /* Rotate the rows of PS such that insns scheduled at time
3292 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3293 void
3294 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3296 int i, row, backward_rotates;
3297 int last_row = ps->ii - 1;
3299 if (start_cycle == 0)
3300 return;
3302 backward_rotates = SMODULO (start_cycle, ps->ii);
3304 /* Revisit later and optimize this into a single loop. */
3305 for (i = 0; i < backward_rotates; i++)
3307 ps_insn_ptr first_row = ps->rows[0];
3308 int first_row_length = ps->rows_length[0];
3310 for (row = 0; row < last_row; row++)
3312 ps->rows[row] = ps->rows[row + 1];
3313 ps->rows_length[row] = ps->rows_length[row + 1];
3316 ps->rows[last_row] = first_row;
3317 ps->rows_length[last_row] = first_row_length;
3320 ps->max_cycle -= start_cycle;
3321 ps->min_cycle -= start_cycle;
3324 #endif /* INSN_SCHEDULING */
3326 /* Run instruction scheduler. */
3327 /* Perform SMS module scheduling. */
3329 namespace {
3331 const pass_data pass_data_sms =
3333 RTL_PASS, /* type */
3334 "sms", /* name */
3335 OPTGROUP_NONE, /* optinfo_flags */
3336 true, /* has_execute */
3337 TV_SMS, /* tv_id */
3338 0, /* properties_required */
3339 0, /* properties_provided */
3340 0, /* properties_destroyed */
3341 0, /* todo_flags_start */
3342 TODO_df_finish, /* todo_flags_finish */
3345 class pass_sms : public rtl_opt_pass
3347 public:
3348 pass_sms (gcc::context *ctxt)
3349 : rtl_opt_pass (pass_data_sms, ctxt)
3352 /* opt_pass methods: */
3353 virtual bool gate (function *)
3355 return (optimize > 0 && flag_modulo_sched);
3358 virtual unsigned int execute (function *);
3360 }; // class pass_sms
3362 unsigned int
3363 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3365 #ifdef INSN_SCHEDULING
3366 basic_block bb;
3368 /* Collect loop information to be used in SMS. */
3369 cfg_layout_initialize (0);
3370 sms_schedule ();
3372 /* Update the life information, because we add pseudos. */
3373 max_regno = max_reg_num ();
3375 /* Finalize layout changes. */
3376 FOR_EACH_BB_FN (bb, fun)
3377 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3378 bb->aux = bb->next_bb;
3379 free_dominance_info (CDI_DOMINATORS);
3380 cfg_layout_finalize ();
3381 #endif /* INSN_SCHEDULING */
3382 return 0;
3385 } // anon namespace
3387 rtl_opt_pass *
3388 make_pass_sms (gcc::context *ctxt)
3390 return new pass_sms (ctxt);