gcc/testsuite/
[official-gcc.git] / gcc / lra-eliminations.c
blobabdf69733103d6c3957cd16c63d9475cf5602c5e
1 /* Code for RTL register eliminations.
2 Copyright (C) 2010-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Eliminable registers (like a soft argument or frame pointer) are
22 widely used in RTL. These eliminable registers should be replaced
23 by real hard registers (like the stack pointer or hard frame
24 pointer) plus some offset. The offsets usually change whenever the
25 stack is expanded. We know the final offsets only at the very end
26 of LRA.
28 Within LRA, we usually keep the RTL in such a state that the
29 eliminable registers can be replaced by just the corresponding hard
30 register (without any offset). To achieve this we should add the
31 initial elimination offset at the beginning of LRA and update the
32 offsets whenever the stack is expanded. We need to do this before
33 every constraint pass because the choice of offset often affects
34 whether a particular address or memory constraint is satisfied.
36 We keep RTL code at most time in such state that the virtual
37 registers can be changed by just the corresponding hard registers
38 (with zero offsets) and we have the right RTL code. To achieve this
39 we should add initial offset at the beginning of LRA work and update
40 offsets after each stack expanding. But actually we update virtual
41 registers to the same virtual registers + corresponding offsets
42 before every constraint pass because it affects constraint
43 satisfaction (e.g. an address displacement became too big for some
44 target).
46 The final change of eliminable registers to the corresponding hard
47 registers are done at the very end of LRA when there were no change
48 in offsets anymore:
50 fp + 42 => sp + 42
54 #include "config.h"
55 #include "system.h"
56 #include "coretypes.h"
57 #include "tm.h"
58 #include "hard-reg-set.h"
59 #include "rtl.h"
60 #include "tm_p.h"
61 #include "regs.h"
62 #include "insn-config.h"
63 #include "insn-codes.h"
64 #include "recog.h"
65 #include "output.h"
66 #include "addresses.h"
67 #include "target.h"
68 #include "function.h"
69 #include "expr.h"
70 #include "basic-block.h"
71 #include "except.h"
72 #include "optabs.h"
73 #include "df.h"
74 #include "ira.h"
75 #include "rtl-error.h"
76 #include "lra-int.h"
78 /* This structure is used to record information about hard register
79 eliminations. */
80 struct elim_table
82 /* Hard register number to be eliminated. */
83 int from;
84 /* Hard register number used as replacement. */
85 int to;
86 /* Difference between values of the two hard registers above on
87 previous iteration. */
88 HOST_WIDE_INT previous_offset;
89 /* Difference between the values on the current iteration. */
90 HOST_WIDE_INT offset;
91 /* Nonzero if this elimination can be done. */
92 bool can_eliminate;
93 /* CAN_ELIMINATE since the last check. */
94 bool prev_can_eliminate;
95 /* REG rtx for the register to be eliminated. We cannot simply
96 compare the number since we might then spuriously replace a hard
97 register corresponding to a pseudo assigned to the reg to be
98 eliminated. */
99 rtx from_rtx;
100 /* REG rtx for the replacement. */
101 rtx to_rtx;
104 /* The elimination table. Each array entry describes one possible way
105 of eliminating a register in favor of another. If there is more
106 than one way of eliminating a particular register, the most
107 preferred should be specified first. */
108 static struct elim_table *reg_eliminate = 0;
110 /* This is an intermediate structure to initialize the table. It has
111 exactly the members provided by ELIMINABLE_REGS. */
112 static const struct elim_table_1
114 const int from;
115 const int to;
116 } reg_eliminate_1[] =
118 /* If a set of eliminable hard registers was specified, define the
119 table from it. Otherwise, default to the normal case of the frame
120 pointer being replaced by the stack pointer. */
122 #ifdef ELIMINABLE_REGS
123 ELIMINABLE_REGS;
124 #else
125 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
126 #endif
128 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
130 /* Print info about elimination table to file F. */
131 static void
132 print_elim_table (FILE *f)
134 struct elim_table *ep;
136 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
137 fprintf (f, "%s eliminate %d to %d (offset=" HOST_WIDE_INT_PRINT_DEC
138 ", prev_offset=" HOST_WIDE_INT_PRINT_DEC ")\n",
139 ep->can_eliminate ? "Can" : "Can't",
140 ep->from, ep->to, ep->offset, ep->previous_offset);
143 /* Print info about elimination table to stderr. */
144 void
145 lra_debug_elim_table (void)
147 print_elim_table (stderr);
150 /* Setup possibility of elimination in elimination table element EP to
151 VALUE. Setup FRAME_POINTER_NEEDED if elimination from frame
152 pointer to stack pointer is not possible anymore. */
153 static void
154 setup_can_eliminate (struct elim_table *ep, bool value)
156 ep->can_eliminate = ep->prev_can_eliminate = value;
157 if (! value
158 && ep->from == FRAME_POINTER_REGNUM && ep->to == STACK_POINTER_REGNUM)
159 frame_pointer_needed = 1;
162 /* Map: eliminable "from" register -> its current elimination,
163 or NULL if none. The elimination table may contain more than
164 one elimination for the same hard register, but this map specifies
165 the one that we are currently using. */
166 static struct elim_table *elimination_map[FIRST_PSEUDO_REGISTER];
168 /* When an eliminable hard register becomes not eliminable, we use the
169 following special structure to restore original offsets for the
170 register. */
171 static struct elim_table self_elim_table;
173 /* Offsets should be used to restore original offsets for eliminable
174 hard register which just became not eliminable. Zero,
175 otherwise. */
176 static HOST_WIDE_INT self_elim_offsets[FIRST_PSEUDO_REGISTER];
178 /* Map: hard regno -> RTL presentation. RTL presentations of all
179 potentially eliminable hard registers are stored in the map. */
180 static rtx eliminable_reg_rtx[FIRST_PSEUDO_REGISTER];
182 /* Set up ELIMINATION_MAP of the currently used eliminations. */
183 static void
184 setup_elimination_map (void)
186 int i;
187 struct elim_table *ep;
189 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
190 elimination_map[i] = NULL;
191 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
192 if (ep->can_eliminate && elimination_map[ep->from] == NULL)
193 elimination_map[ep->from] = ep;
198 /* Compute the sum of X and Y, making canonicalizations assumed in an
199 address, namely: sum constant integers, surround the sum of two
200 constants with a CONST, put the constant as the second operand, and
201 group the constant on the outermost sum.
203 This routine assumes both inputs are already in canonical form. */
204 static rtx
205 form_sum (rtx x, rtx y)
207 rtx tem;
208 enum machine_mode mode = GET_MODE (x);
210 if (mode == VOIDmode)
211 mode = GET_MODE (y);
213 if (mode == VOIDmode)
214 mode = Pmode;
216 if (CONST_INT_P (x))
217 return plus_constant (mode, y, INTVAL (x));
218 else if (CONST_INT_P (y))
219 return plus_constant (mode, x, INTVAL (y));
220 else if (CONSTANT_P (x))
221 tem = x, x = y, y = tem;
223 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
224 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
226 /* Note that if the operands of Y are specified in the opposite
227 order in the recursive calls below, infinite recursion will
228 occur. */
229 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
230 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
232 /* If both constant, encapsulate sum. Otherwise, just form sum. A
233 constant will have been placed second. */
234 if (CONSTANT_P (x) && CONSTANT_P (y))
236 if (GET_CODE (x) == CONST)
237 x = XEXP (x, 0);
238 if (GET_CODE (y) == CONST)
239 y = XEXP (y, 0);
241 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
244 return gen_rtx_PLUS (mode, x, y);
247 /* Return the current substitution hard register of the elimination of
248 HARD_REGNO. If HARD_REGNO is not eliminable, return itself. */
250 lra_get_elimination_hard_regno (int hard_regno)
252 struct elim_table *ep;
254 if (hard_regno < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
255 return hard_regno;
256 if ((ep = elimination_map[hard_regno]) == NULL)
257 return hard_regno;
258 return ep->to;
261 /* Return elimination which will be used for hard reg REG, NULL
262 otherwise. */
263 static struct elim_table *
264 get_elimination (rtx reg)
266 int hard_regno;
267 struct elim_table *ep;
268 HOST_WIDE_INT offset;
270 lra_assert (REG_P (reg));
271 if ((hard_regno = REGNO (reg)) < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
272 return NULL;
273 if ((ep = elimination_map[hard_regno]) != NULL)
274 return ep->from_rtx != reg ? NULL : ep;
275 if ((offset = self_elim_offsets[hard_regno]) == 0)
276 return NULL;
277 /* This is an iteration to restore offsets just after HARD_REGNO
278 stopped to be eliminable. */
279 self_elim_table.from = self_elim_table.to = hard_regno;
280 self_elim_table.from_rtx
281 = self_elim_table.to_rtx
282 = eliminable_reg_rtx[hard_regno];
283 lra_assert (self_elim_table.from_rtx != NULL);
284 self_elim_table.offset = offset;
285 return &self_elim_table;
288 /* Scan X and replace any eliminable registers (such as fp) with a
289 replacement (such as sp) if SUBST_P, plus an offset. The offset is
290 a change in the offset between the eliminable register and its
291 substitution if UPDATE_P, or the full offset if FULL_P, or
292 otherwise zero. If FULL_P, we also use the SP offsets for
293 elimination to SP.
295 MEM_MODE is the mode of an enclosing MEM. We need this to know how
296 much to adjust a register for, e.g., PRE_DEC. Also, if we are
297 inside a MEM, we are allowed to replace a sum of a hard register
298 and the constant zero with the hard register, which we cannot do
299 outside a MEM. In addition, we need to record the fact that a
300 hard register is referenced outside a MEM.
302 If we make full substitution to SP for non-null INSN, add the insn
303 sp offset. */
305 lra_eliminate_regs_1 (rtx insn, rtx x, enum machine_mode mem_mode,
306 bool subst_p, bool update_p, bool full_p)
308 enum rtx_code code = GET_CODE (x);
309 struct elim_table *ep;
310 rtx new_rtx;
311 int i, j;
312 const char *fmt;
313 int copied = 0;
315 gcc_assert (!update_p || !full_p);
316 if (! current_function_decl)
317 return x;
319 switch (code)
321 CASE_CONST_ANY:
322 case CONST:
323 case SYMBOL_REF:
324 case CODE_LABEL:
325 case PC:
326 case CC0:
327 case ASM_INPUT:
328 case ADDR_VEC:
329 case ADDR_DIFF_VEC:
330 case RETURN:
331 return x;
333 case REG:
334 /* First handle the case where we encounter a bare hard register
335 that is eliminable. Replace it with a PLUS. */
336 if ((ep = get_elimination (x)) != NULL)
338 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
340 if (update_p)
341 return plus_constant (Pmode, to, ep->offset - ep->previous_offset);
342 else if (full_p)
343 return plus_constant (Pmode, to,
344 ep->offset
345 - (insn != NULL_RTX
346 && ep->to_rtx == stack_pointer_rtx
347 ? lra_get_insn_recog_data (insn)->sp_offset
348 : 0));
349 else
350 return to;
352 return x;
354 case PLUS:
355 /* If this is the sum of an eliminable register and a constant, rework
356 the sum. */
357 if (REG_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
359 if ((ep = get_elimination (XEXP (x, 0))) != NULL)
361 HOST_WIDE_INT offset;
362 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
364 if (! update_p && ! full_p)
365 return gen_rtx_PLUS (Pmode, to, XEXP (x, 1));
367 offset = (update_p
368 ? ep->offset - ep->previous_offset : ep->offset);
369 if (full_p && insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
370 offset -= lra_get_insn_recog_data (insn)->sp_offset;
371 if (CONST_INT_P (XEXP (x, 1))
372 && INTVAL (XEXP (x, 1)) == -offset)
373 return to;
374 else
375 return gen_rtx_PLUS (Pmode, to,
376 plus_constant (Pmode,
377 XEXP (x, 1), offset));
380 /* If the hard register is not eliminable, we are done since
381 the other operand is a constant. */
382 return x;
385 /* If this is part of an address, we want to bring any constant
386 to the outermost PLUS. We will do this by doing hard
387 register replacement in our operands and seeing if a constant
388 shows up in one of them.
390 Note that there is no risk of modifying the structure of the
391 insn, since we only get called for its operands, thus we are
392 either modifying the address inside a MEM, or something like
393 an address operand of a load-address insn. */
396 rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
397 subst_p, update_p, full_p);
398 rtx new1 = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
399 subst_p, update_p, full_p);
401 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
402 return form_sum (new0, new1);
404 return x;
406 case MULT:
407 /* If this is the product of an eliminable hard register and a
408 constant, apply the distribute law and move the constant out
409 so that we have (plus (mult ..) ..). This is needed in order
410 to keep load-address insns valid. This case is pathological.
411 We ignore the possibility of overflow here. */
412 if (REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1))
413 && (ep = get_elimination (XEXP (x, 0))) != NULL)
415 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
417 if (update_p)
418 return
419 plus_constant (Pmode,
420 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
421 (ep->offset - ep->previous_offset)
422 * INTVAL (XEXP (x, 1)));
423 else if (full_p)
425 HOST_WIDE_INT offset = ep->offset;
427 if (insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
428 offset -= lra_get_insn_recog_data (insn)->sp_offset;
429 return
430 plus_constant (Pmode,
431 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
432 offset * INTVAL (XEXP (x, 1)));
434 else
435 return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
438 /* ... fall through ... */
440 case CALL:
441 case COMPARE:
442 /* See comments before PLUS about handling MINUS. */
443 case MINUS:
444 case DIV: case UDIV:
445 case MOD: case UMOD:
446 case AND: case IOR: case XOR:
447 case ROTATERT: case ROTATE:
448 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
449 case NE: case EQ:
450 case GE: case GT: case GEU: case GTU:
451 case LE: case LT: case LEU: case LTU:
453 rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
454 subst_p, update_p, full_p);
455 rtx new1 = XEXP (x, 1)
456 ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
457 subst_p, update_p, full_p) : 0;
459 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
460 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
462 return x;
464 case EXPR_LIST:
465 /* If we have something in XEXP (x, 0), the usual case,
466 eliminate it. */
467 if (XEXP (x, 0))
469 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
470 subst_p, update_p, full_p);
471 if (new_rtx != XEXP (x, 0))
473 /* If this is a REG_DEAD note, it is not valid anymore.
474 Using the eliminated version could result in creating a
475 REG_DEAD note for the stack or frame pointer. */
476 if (REG_NOTE_KIND (x) == REG_DEAD)
477 return (XEXP (x, 1)
478 ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
479 subst_p, update_p, full_p)
480 : NULL_RTX);
482 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
486 /* ... fall through ... */
488 case INSN_LIST:
489 case INT_LIST:
490 /* Now do eliminations in the rest of the chain. If this was
491 an EXPR_LIST, this might result in allocating more memory than is
492 strictly needed, but it simplifies the code. */
493 if (XEXP (x, 1))
495 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
496 subst_p, update_p, full_p);
497 if (new_rtx != XEXP (x, 1))
498 return
499 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x),
500 XEXP (x, 0), new_rtx);
502 return x;
504 case PRE_INC:
505 case POST_INC:
506 case PRE_DEC:
507 case POST_DEC:
508 /* We do not support elimination of a register that is modified.
509 elimination_effects has already make sure that this does not
510 happen. */
511 return x;
513 case PRE_MODIFY:
514 case POST_MODIFY:
515 /* We do not support elimination of a hard register that is
516 modified. LRA has already make sure that this does not
517 happen. The only remaining case we need to consider here is
518 that the increment value may be an eliminable register. */
519 if (GET_CODE (XEXP (x, 1)) == PLUS
520 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
522 rtx new_rtx = lra_eliminate_regs_1 (insn, XEXP (XEXP (x, 1), 1),
523 mem_mode,
524 subst_p, update_p, full_p);
526 if (new_rtx != XEXP (XEXP (x, 1), 1))
527 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
528 gen_rtx_PLUS (GET_MODE (x),
529 XEXP (x, 0), new_rtx));
531 return x;
533 case STRICT_LOW_PART:
534 case NEG: case NOT:
535 case SIGN_EXTEND: case ZERO_EXTEND:
536 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
537 case FLOAT: case FIX:
538 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
539 case ABS:
540 case SQRT:
541 case FFS:
542 case CLZ:
543 case CTZ:
544 case POPCOUNT:
545 case PARITY:
546 case BSWAP:
547 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
548 subst_p, update_p, full_p);
549 if (new_rtx != XEXP (x, 0))
550 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
551 return x;
553 case SUBREG:
554 new_rtx = lra_eliminate_regs_1 (insn, SUBREG_REG (x), mem_mode,
555 subst_p, update_p, full_p);
557 if (new_rtx != SUBREG_REG (x))
559 int x_size = GET_MODE_SIZE (GET_MODE (x));
560 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
562 if (MEM_P (new_rtx) && x_size <= new_size)
564 SUBREG_REG (x) = new_rtx;
565 alter_subreg (&x, false);
566 return x;
568 else
569 return simplify_gen_subreg (GET_MODE (x), new_rtx,
570 GET_MODE (new_rtx), SUBREG_BYTE (x));
573 return x;
575 case MEM:
576 /* Our only special processing is to pass the mode of the MEM to our
577 recursive call and copy the flags. While we are here, handle this
578 case more efficiently. */
579 return
580 replace_equiv_address_nv
582 lra_eliminate_regs_1 (insn, XEXP (x, 0), GET_MODE (x),
583 subst_p, update_p, full_p));
585 case USE:
586 /* Handle insn_list USE that a call to a pure function may generate. */
587 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), VOIDmode,
588 subst_p, update_p, full_p);
589 if (new_rtx != XEXP (x, 0))
590 return gen_rtx_USE (GET_MODE (x), new_rtx);
591 return x;
593 case CLOBBER:
594 case SET:
595 gcc_unreachable ();
597 default:
598 break;
601 /* Process each of our operands recursively. If any have changed, make a
602 copy of the rtx. */
603 fmt = GET_RTX_FORMAT (code);
604 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
606 if (*fmt == 'e')
608 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, i), mem_mode,
609 subst_p, update_p, full_p);
610 if (new_rtx != XEXP (x, i) && ! copied)
612 x = shallow_copy_rtx (x);
613 copied = 1;
615 XEXP (x, i) = new_rtx;
617 else if (*fmt == 'E')
619 int copied_vec = 0;
620 for (j = 0; j < XVECLEN (x, i); j++)
622 new_rtx = lra_eliminate_regs_1 (insn, XVECEXP (x, i, j), mem_mode,
623 subst_p, update_p, full_p);
624 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
626 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
627 XVEC (x, i)->elem);
628 if (! copied)
630 x = shallow_copy_rtx (x);
631 copied = 1;
633 XVEC (x, i) = new_v;
634 copied_vec = 1;
636 XVECEXP (x, i, j) = new_rtx;
641 return x;
644 /* This function is used externally in subsequent passes of GCC. It
645 always does a full elimination of X. */
647 lra_eliminate_regs (rtx x, enum machine_mode mem_mode,
648 rtx insn ATTRIBUTE_UNUSED)
650 return lra_eliminate_regs_1 (NULL_RTX, x, mem_mode, true, false, true);
653 /* Stack pointer offset before the current insn relative to one at the
654 func start. RTL insns can change SP explicitly. We keep the
655 changes from one insn to another through this variable. */
656 static HOST_WIDE_INT curr_sp_change;
658 /* Scan rtx X for references to elimination source or target registers
659 in contexts that would prevent the elimination from happening.
660 Update the table of eliminables to reflect the changed state.
661 MEM_MODE is the mode of an enclosing MEM rtx, or VOIDmode if not
662 within a MEM. */
663 static void
664 mark_not_eliminable (rtx x, enum machine_mode mem_mode)
666 enum rtx_code code = GET_CODE (x);
667 struct elim_table *ep;
668 int i, j;
669 const char *fmt;
671 switch (code)
673 case PRE_INC:
674 case POST_INC:
675 case PRE_DEC:
676 case POST_DEC:
677 case POST_MODIFY:
678 case PRE_MODIFY:
679 if (XEXP (x, 0) == stack_pointer_rtx
680 && ((code != PRE_MODIFY && code != POST_MODIFY)
681 || (GET_CODE (XEXP (x, 1)) == PLUS
682 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
683 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))))
685 int size = GET_MODE_SIZE (mem_mode);
687 #ifdef PUSH_ROUNDING
688 /* If more bytes than MEM_MODE are pushed, account for
689 them. */
690 size = PUSH_ROUNDING (size);
691 #endif
692 if (code == PRE_DEC || code == POST_DEC)
693 curr_sp_change -= size;
694 else if (code == PRE_INC || code == POST_INC)
695 curr_sp_change += size;
696 else if (code == PRE_MODIFY || code == POST_MODIFY)
697 curr_sp_change += INTVAL (XEXP (XEXP (x, 1), 1));
699 else if (REG_P (XEXP (x, 0))
700 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
702 /* If we modify the source of an elimination rule, disable
703 it. Do the same if it is the destination and not the
704 hard frame register. */
705 for (ep = reg_eliminate;
706 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
707 ep++)
708 if (ep->from_rtx == XEXP (x, 0)
709 || (ep->to_rtx == XEXP (x, 0)
710 && ep->to_rtx != hard_frame_pointer_rtx))
711 setup_can_eliminate (ep, false);
713 return;
715 case USE:
716 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
717 /* If using a hard register that is the source of an eliminate
718 we still think can be performed, note it cannot be
719 performed since we don't know how this hard register is
720 used. */
721 for (ep = reg_eliminate;
722 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
723 ep++)
724 if (ep->from_rtx == XEXP (x, 0)
725 && ep->to_rtx != hard_frame_pointer_rtx)
726 setup_can_eliminate (ep, false);
727 return;
729 case CLOBBER:
730 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
731 /* If clobbering a hard register that is the replacement
732 register for an elimination we still think can be
733 performed, note that it cannot be performed. Otherwise, we
734 need not be concerned about it. */
735 for (ep = reg_eliminate;
736 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
737 ep++)
738 if (ep->to_rtx == XEXP (x, 0)
739 && ep->to_rtx != hard_frame_pointer_rtx)
740 setup_can_eliminate (ep, false);
741 return;
743 case SET:
744 if (SET_DEST (x) == stack_pointer_rtx
745 && GET_CODE (SET_SRC (x)) == PLUS
746 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
747 && CONST_INT_P (XEXP (SET_SRC (x), 1)))
749 curr_sp_change += INTVAL (XEXP (SET_SRC (x), 1));
750 return;
752 if (! REG_P (SET_DEST (x))
753 || REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
754 mark_not_eliminable (SET_DEST (x), mem_mode);
755 else
757 /* See if this is setting the replacement hard register for
758 an elimination.
760 If DEST is the hard frame pointer, we do nothing because
761 we assume that all assignments to the frame pointer are
762 for non-local gotos and are being done at a time when
763 they are valid and do not disturb anything else. Some
764 machines want to eliminate a fake argument pointer (or
765 even a fake frame pointer) with either the real frame
766 pointer or the stack pointer. Assignments to the hard
767 frame pointer must not prevent this elimination. */
768 for (ep = reg_eliminate;
769 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
770 ep++)
771 if (ep->to_rtx == SET_DEST (x)
772 && SET_DEST (x) != hard_frame_pointer_rtx)
773 setup_can_eliminate (ep, false);
776 mark_not_eliminable (SET_SRC (x), mem_mode);
777 return;
779 case MEM:
780 /* Our only special processing is to pass the mode of the MEM to
781 our recursive call. */
782 mark_not_eliminable (XEXP (x, 0), GET_MODE (x));
783 return;
785 default:
786 break;
789 fmt = GET_RTX_FORMAT (code);
790 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
792 if (*fmt == 'e')
793 mark_not_eliminable (XEXP (x, i), mem_mode);
794 else if (*fmt == 'E')
795 for (j = 0; j < XVECLEN (x, i); j++)
796 mark_not_eliminable (XVECEXP (x, i, j), mem_mode);
802 #ifdef HARD_FRAME_POINTER_REGNUM
804 /* Find offset equivalence note for reg WHAT in INSN and return the
805 found elmination offset. If the note is not found, return NULL.
806 Remove the found note. */
807 static rtx
808 remove_reg_equal_offset_note (rtx insn, rtx what)
810 rtx link, *link_loc;
812 for (link_loc = &REG_NOTES (insn);
813 (link = *link_loc) != NULL_RTX;
814 link_loc = &XEXP (link, 1))
815 if (REG_NOTE_KIND (link) == REG_EQUAL
816 && GET_CODE (XEXP (link, 0)) == PLUS
817 && XEXP (XEXP (link, 0), 0) == what
818 && CONST_INT_P (XEXP (XEXP (link, 0), 1)))
820 *link_loc = XEXP (link, 1);
821 return XEXP (XEXP (link, 0), 1);
823 return NULL_RTX;
826 #endif
828 /* Scan INSN and eliminate all eliminable hard registers in it.
830 If REPLACE_P is true, do the replacement destructively. Also
831 delete the insn as dead it if it is setting an eliminable register.
833 If REPLACE_P is false, just update the offsets while keeping the
834 base register the same. If FIRST_P, use the sp offset for
835 elimination to sp. Attach the note about used elimination for
836 insns setting frame pointer to update elimination easy (without
837 parsing already generated elimination insns to find offset
838 previously used) in future. */
840 static void
841 eliminate_regs_in_insn (rtx insn, bool replace_p, bool first_p)
843 int icode = recog_memoized (insn);
844 rtx old_set = single_set (insn);
845 bool validate_p;
846 int i;
847 rtx substed_operand[MAX_RECOG_OPERANDS];
848 rtx orig_operand[MAX_RECOG_OPERANDS];
849 struct elim_table *ep;
850 rtx plus_src, plus_cst_src;
851 lra_insn_recog_data_t id;
852 struct lra_static_insn_data *static_id;
854 if (icode < 0 && asm_noperands (PATTERN (insn)) < 0 && ! DEBUG_INSN_P (insn))
856 lra_assert (GET_CODE (PATTERN (insn)) == USE
857 || GET_CODE (PATTERN (insn)) == CLOBBER
858 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
859 return;
862 /* Check for setting an eliminable register. */
863 if (old_set != 0 && REG_P (SET_DEST (old_set))
864 && (ep = get_elimination (SET_DEST (old_set))) != NULL)
866 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
867 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
869 bool delete_p = replace_p;
871 #ifdef HARD_FRAME_POINTER_REGNUM
872 if (ep->from == FRAME_POINTER_REGNUM
873 && ep->to == HARD_FRAME_POINTER_REGNUM)
874 /* If this is setting the frame pointer register to the
875 hardware frame pointer register and this is an
876 elimination that will be done (tested above), this
877 insn is really adjusting the frame pointer downward
878 to compensate for the adjustment done before a
879 nonlocal goto. */
881 rtx src = SET_SRC (old_set);
882 rtx off = remove_reg_equal_offset_note (insn, ep->to_rtx);
884 if (off != NULL_RTX
885 || src == ep->to_rtx
886 || (GET_CODE (src) == PLUS
887 && XEXP (src, 0) == ep->to_rtx
888 && CONST_INT_P (XEXP (src, 1))))
890 HOST_WIDE_INT offset;
892 if (replace_p)
894 SET_DEST (old_set) = ep->to_rtx;
895 lra_update_insn_recog_data (insn);
896 return;
898 offset = (off != NULL_RTX ? INTVAL (off)
899 : src == ep->to_rtx ? 0 : INTVAL (XEXP (src, 1)));
900 offset -= (ep->offset - ep->previous_offset);
901 src = plus_constant (Pmode, ep->to_rtx, offset);
903 /* First see if this insn remains valid when we
904 make the change. If not, keep the INSN_CODE
905 the same and let the constraint pass fit it
906 up. */
907 validate_change (insn, &SET_SRC (old_set), src, 1);
908 validate_change (insn, &SET_DEST (old_set),
909 ep->from_rtx, 1);
910 if (! apply_change_group ())
912 SET_SRC (old_set) = src;
913 SET_DEST (old_set) = ep->from_rtx;
915 lra_update_insn_recog_data (insn);
916 /* Add offset note for future updates. */
917 add_reg_note (insn, REG_EQUAL, src);
918 return;
921 #endif
923 /* This insn isn't serving a useful purpose. We delete it
924 when REPLACE is set. */
925 if (delete_p)
926 lra_delete_dead_insn (insn);
927 return;
931 /* We allow one special case which happens to work on all machines we
932 currently support: a single set with the source or a REG_EQUAL
933 note being a PLUS of an eliminable register and a constant. */
934 plus_src = plus_cst_src = 0;
935 if (old_set && REG_P (SET_DEST (old_set)))
937 if (GET_CODE (SET_SRC (old_set)) == PLUS)
938 plus_src = SET_SRC (old_set);
939 /* First see if the source is of the form (plus (...) CST). */
940 if (plus_src
941 && CONST_INT_P (XEXP (plus_src, 1)))
942 plus_cst_src = plus_src;
943 /* Check that the first operand of the PLUS is a hard reg or
944 the lowpart subreg of one. */
945 if (plus_cst_src)
947 rtx reg = XEXP (plus_cst_src, 0);
949 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
950 reg = SUBREG_REG (reg);
952 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
953 plus_cst_src = 0;
956 if (plus_cst_src)
958 rtx reg = XEXP (plus_cst_src, 0);
959 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
961 if (GET_CODE (reg) == SUBREG)
962 reg = SUBREG_REG (reg);
964 if (REG_P (reg) && (ep = get_elimination (reg)) != NULL)
966 rtx to_rtx = replace_p ? ep->to_rtx : ep->from_rtx;
968 if (! replace_p)
970 offset += (ep->offset - ep->previous_offset);
971 if (first_p && ep->to_rtx == stack_pointer_rtx)
972 offset -= lra_get_insn_recog_data (insn)->sp_offset;
973 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
976 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
977 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)), to_rtx);
978 /* If we have a nonzero offset, and the source is already a
979 simple REG, the following transformation would increase
980 the cost of the insn by replacing a simple REG with (plus
981 (reg sp) CST). So try only when we already had a PLUS
982 before. */
983 if (offset == 0 || plus_src)
985 rtx new_src = plus_constant (GET_MODE (to_rtx), to_rtx, offset);
987 old_set = single_set (insn);
989 /* First see if this insn remains valid when we make the
990 change. If not, try to replace the whole pattern
991 with a simple set (this may help if the original insn
992 was a PARALLEL that was only recognized as single_set
993 due to REG_UNUSED notes). If this isn't valid
994 either, keep the INSN_CODE the same and let the
995 constraint pass fix it up. */
996 if (! validate_change (insn, &SET_SRC (old_set), new_src, 0))
998 rtx new_pat = gen_rtx_SET (VOIDmode,
999 SET_DEST (old_set), new_src);
1001 if (! validate_change (insn, &PATTERN (insn), new_pat, 0))
1002 SET_SRC (old_set) = new_src;
1004 lra_update_insn_recog_data (insn);
1005 /* This can't have an effect on elimination offsets, so skip
1006 right to the end. */
1007 return;
1012 /* Eliminate all eliminable registers occurring in operands that
1013 can be handled by the constraint pass. */
1014 id = lra_get_insn_recog_data (insn);
1015 static_id = id->insn_static_data;
1016 validate_p = false;
1017 for (i = 0; i < static_id->n_operands; i++)
1019 orig_operand[i] = *id->operand_loc[i];
1020 substed_operand[i] = *id->operand_loc[i];
1022 /* For an asm statement, every operand is eliminable. */
1023 if (icode < 0 || insn_data[icode].operand[i].eliminable)
1025 /* Check for setting a hard register that we know about. */
1026 if (static_id->operand[i].type != OP_IN
1027 && REG_P (orig_operand[i]))
1029 /* If we are assigning to a hard register that can be
1030 eliminated, it must be as part of a PARALLEL, since
1031 the code above handles single SETs. This reg can not
1032 be longer eliminated -- it is forced by
1033 mark_not_eliminable. */
1034 for (ep = reg_eliminate;
1035 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
1036 ep++)
1037 lra_assert (ep->from_rtx != orig_operand[i]
1038 || ! ep->can_eliminate);
1041 /* Companion to the above plus substitution, we can allow
1042 invariants as the source of a plain move. */
1043 substed_operand[i]
1044 = lra_eliminate_regs_1 (insn, *id->operand_loc[i], VOIDmode,
1045 replace_p, ! replace_p && ! first_p,
1046 first_p);
1047 if (substed_operand[i] != orig_operand[i])
1048 validate_p = true;
1052 if (! validate_p)
1053 return;
1055 /* Substitute the operands; the new values are in the substed_operand
1056 array. */
1057 for (i = 0; i < static_id->n_operands; i++)
1058 *id->operand_loc[i] = substed_operand[i];
1059 for (i = 0; i < static_id->n_dups; i++)
1060 *id->dup_loc[i] = substed_operand[(int) static_id->dup_num[i]];
1062 /* If we had a move insn but now we don't, re-recognize it.
1063 This will cause spurious re-recognition if the old move had a
1064 PARALLEL since the new one still will, but we can't call
1065 single_set without having put new body into the insn and the
1066 re-recognition won't hurt in this rare case. */
1067 id = lra_update_insn_recog_data (insn);
1068 static_id = id->insn_static_data;
1071 /* Spill pseudos which are assigned to hard registers in SET. Add
1072 affected insns for processing in the subsequent constraint
1073 pass. */
1074 static void
1075 spill_pseudos (HARD_REG_SET set)
1077 int i;
1078 bitmap_head to_process;
1079 rtx insn;
1081 if (hard_reg_set_empty_p (set))
1082 return;
1083 if (lra_dump_file != NULL)
1085 fprintf (lra_dump_file, " Spilling non-eliminable hard regs:");
1086 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1087 if (TEST_HARD_REG_BIT (set, i))
1088 fprintf (lra_dump_file, " %d", i);
1089 fprintf (lra_dump_file, "\n");
1091 bitmap_initialize (&to_process, &reg_obstack);
1092 for (i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
1093 if (lra_reg_info[i].nrefs != 0 && reg_renumber[i] >= 0
1094 && overlaps_hard_reg_set_p (set,
1095 PSEUDO_REGNO_MODE (i), reg_renumber[i]))
1097 if (lra_dump_file != NULL)
1098 fprintf (lra_dump_file, " Spilling r%d(%d)\n",
1099 i, reg_renumber[i]);
1100 reg_renumber[i] = -1;
1101 bitmap_ior_into (&to_process, &lra_reg_info[i].insn_bitmap);
1103 IOR_HARD_REG_SET (lra_no_alloc_regs, set);
1104 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
1105 if (bitmap_bit_p (&to_process, INSN_UID (insn)))
1107 lra_push_insn (insn);
1108 lra_set_used_insn_alternative (insn, -1);
1110 bitmap_clear (&to_process);
1113 /* Update all offsets and possibility for elimination on eliminable
1114 registers. Spill pseudos assigned to registers which are
1115 uneliminable, update LRA_NO_ALLOC_REGS and ELIMINABLE_REG_SET. Add
1116 insns to INSNS_WITH_CHANGED_OFFSETS containing eliminable hard
1117 registers whose offsets should be changed. Return true if any
1118 elimination offset changed. */
1119 static bool
1120 update_reg_eliminate (bitmap insns_with_changed_offsets)
1122 bool prev, result;
1123 struct elim_table *ep, *ep1;
1124 HARD_REG_SET temp_hard_reg_set;
1126 /* Clear self elimination offsets. */
1127 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1128 self_elim_offsets[ep->from] = 0;
1129 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1131 /* If it is a currently used elimination: update the previous
1132 offset. */
1133 if (elimination_map[ep->from] == ep)
1134 ep->previous_offset = ep->offset;
1136 prev = ep->prev_can_eliminate;
1137 setup_can_eliminate (ep, targetm.can_eliminate (ep->from, ep->to));
1138 if (ep->can_eliminate && ! prev)
1140 /* It is possible that not eliminable register becomes
1141 eliminable because we took other reasons into account to
1142 set up eliminable regs in the initial set up. Just
1143 ignore new eliminable registers. */
1144 setup_can_eliminate (ep, false);
1145 continue;
1147 if (ep->can_eliminate != prev && elimination_map[ep->from] == ep)
1149 /* We cannot use this elimination anymore -- find another
1150 one. */
1151 if (lra_dump_file != NULL)
1152 fprintf (lra_dump_file,
1153 " Elimination %d to %d is not possible anymore\n",
1154 ep->from, ep->to);
1155 /* If after processing RTL we decides that SP can be used as
1156 a result of elimination, it can not be changed. */
1157 gcc_assert (ep->to_rtx != stack_pointer_rtx);
1158 /* Mark that is not eliminable anymore. */
1159 elimination_map[ep->from] = NULL;
1160 for (ep1 = ep + 1; ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep1++)
1161 if (ep1->can_eliminate && ep1->from == ep->from)
1162 break;
1163 if (ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS])
1165 if (lra_dump_file != NULL)
1166 fprintf (lra_dump_file, " Using elimination %d to %d now\n",
1167 ep1->from, ep1->to);
1168 lra_assert (ep1->previous_offset == 0);
1169 ep1->previous_offset = ep->offset;
1171 else
1173 /* There is no elimination anymore just use the hard
1174 register `from' itself. Setup self elimination
1175 offset to restore the original offset values. */
1176 if (lra_dump_file != NULL)
1177 fprintf (lra_dump_file, " %d is not eliminable at all\n",
1178 ep->from);
1179 self_elim_offsets[ep->from] = -ep->offset;
1180 if (ep->offset != 0)
1181 bitmap_ior_into (insns_with_changed_offsets,
1182 &lra_reg_info[ep->from].insn_bitmap);
1186 #ifdef ELIMINABLE_REGS
1187 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->offset);
1188 #else
1189 INITIAL_FRAME_POINTER_OFFSET (ep->offset);
1190 #endif
1192 setup_elimination_map ();
1193 result = false;
1194 CLEAR_HARD_REG_SET (temp_hard_reg_set);
1195 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1196 if (elimination_map[ep->from] == NULL)
1197 SET_HARD_REG_BIT (temp_hard_reg_set, ep->from);
1198 else if (elimination_map[ep->from] == ep)
1200 /* Prevent the hard register into which we eliminate from
1201 the usage for pseudos. */
1202 if (ep->from != ep->to)
1203 SET_HARD_REG_BIT (temp_hard_reg_set, ep->to);
1204 if (ep->previous_offset != ep->offset)
1206 bitmap_ior_into (insns_with_changed_offsets,
1207 &lra_reg_info[ep->from].insn_bitmap);
1209 /* Update offset when the eliminate offset have been
1210 changed. */
1211 lra_update_reg_val_offset (lra_reg_info[ep->from].val,
1212 ep->offset - ep->previous_offset);
1213 result = true;
1216 IOR_HARD_REG_SET (lra_no_alloc_regs, temp_hard_reg_set);
1217 AND_COMPL_HARD_REG_SET (eliminable_regset, temp_hard_reg_set);
1218 spill_pseudos (temp_hard_reg_set);
1219 return result;
1222 /* Initialize the table of hard registers to eliminate.
1223 Pre-condition: global flag frame_pointer_needed has been set before
1224 calling this function. */
1225 static void
1226 init_elim_table (void)
1228 struct elim_table *ep;
1229 #ifdef ELIMINABLE_REGS
1230 bool value_p;
1231 const struct elim_table_1 *ep1;
1232 #endif
1234 if (!reg_eliminate)
1235 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
1237 memset (self_elim_offsets, 0, sizeof (self_elim_offsets));
1238 /* Initiate member values which will be never changed. */
1239 self_elim_table.can_eliminate = self_elim_table.prev_can_eliminate = true;
1240 self_elim_table.previous_offset = 0;
1241 #ifdef ELIMINABLE_REGS
1242 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
1243 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
1245 ep->offset = ep->previous_offset = 0;
1246 ep->from = ep1->from;
1247 ep->to = ep1->to;
1248 value_p = (targetm.can_eliminate (ep->from, ep->to)
1249 && ! (ep->to == STACK_POINTER_REGNUM
1250 && frame_pointer_needed
1251 && (! SUPPORTS_STACK_ALIGNMENT
1252 || ! stack_realign_fp)));
1253 setup_can_eliminate (ep, value_p);
1255 #else
1256 reg_eliminate[0].offset = reg_eliminate[0].previous_offset = 0;
1257 reg_eliminate[0].from = reg_eliminate_1[0].from;
1258 reg_eliminate[0].to = reg_eliminate_1[0].to;
1259 setup_can_eliminate (&reg_eliminate[0], ! frame_pointer_needed);
1260 #endif
1262 /* Build the FROM and TO REG rtx's. Note that code in gen_rtx_REG
1263 will cause, e.g., gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to
1264 equal stack_pointer_rtx. We depend on this. Threfore we switch
1265 off that we are in LRA temporarily. */
1266 lra_in_progress = 0;
1267 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1269 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
1270 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
1271 eliminable_reg_rtx[ep->from] = ep->from_rtx;
1273 lra_in_progress = 1;
1276 /* Function for initialization of elimination once per function. It
1277 sets up sp offset for each insn. */
1278 static void
1279 init_elimination (void)
1281 bool stop_to_sp_elimination_p;
1282 basic_block bb;
1283 rtx insn;
1284 struct elim_table *ep;
1286 init_elim_table ();
1287 FOR_EACH_BB_FN (bb, cfun)
1289 curr_sp_change = 0;
1290 stop_to_sp_elimination_p = false;
1291 FOR_BB_INSNS (bb, insn)
1292 if (INSN_P (insn))
1294 lra_get_insn_recog_data (insn)->sp_offset = curr_sp_change;
1295 if (NONDEBUG_INSN_P (insn))
1297 mark_not_eliminable (PATTERN (insn), VOIDmode);
1298 if (curr_sp_change != 0
1299 && find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX))
1300 stop_to_sp_elimination_p = true;
1303 if (! frame_pointer_needed
1304 && (curr_sp_change != 0 || stop_to_sp_elimination_p)
1305 && bb->succs && bb->succs->length () != 0)
1306 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1307 if (ep->to == STACK_POINTER_REGNUM)
1308 setup_can_eliminate (ep, false);
1310 setup_elimination_map ();
1313 /* Eliminate hard reg given by its location LOC. */
1314 void
1315 lra_eliminate_reg_if_possible (rtx *loc)
1317 int regno;
1318 struct elim_table *ep;
1320 lra_assert (REG_P (*loc));
1321 if ((regno = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
1322 || ! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno))
1323 return;
1324 if ((ep = get_elimination (*loc)) != NULL)
1325 *loc = ep->to_rtx;
1328 /* Do (final if FINAL_P or first if FIRST_P) elimination in INSN. Add
1329 the insn for subsequent processing in the constraint pass, update
1330 the insn info. */
1331 static void
1332 process_insn_for_elimination (rtx insn, bool final_p, bool first_p)
1334 eliminate_regs_in_insn (insn, final_p, first_p);
1335 if (! final_p)
1337 /* Check that insn changed its code. This is a case when a move
1338 insn becomes an add insn and we do not want to process the
1339 insn as a move anymore. */
1340 int icode = recog (PATTERN (insn), insn, 0);
1342 if (icode >= 0 && icode != INSN_CODE (insn))
1344 INSN_CODE (insn) = icode;
1345 lra_update_insn_recog_data (insn);
1347 lra_update_insn_regno_info (insn);
1348 lra_push_insn (insn);
1349 lra_set_used_insn_alternative (insn, -1);
1353 /* Entry function to do final elimination if FINAL_P or to update
1354 elimination register offsets (FIRST_P if we are doing it the first
1355 time). */
1356 void
1357 lra_eliminate (bool final_p, bool first_p)
1359 unsigned int uid;
1360 bitmap_head insns_with_changed_offsets;
1361 bitmap_iterator bi;
1362 struct elim_table *ep;
1364 gcc_assert (! final_p || ! first_p);
1366 timevar_push (TV_LRA_ELIMINATE);
1368 if (first_p)
1369 init_elimination ();
1371 bitmap_initialize (&insns_with_changed_offsets, &reg_obstack);
1372 if (final_p)
1374 #ifdef ENABLE_CHECKING
1375 update_reg_eliminate (&insns_with_changed_offsets);
1376 if (! bitmap_empty_p (&insns_with_changed_offsets))
1377 gcc_unreachable ();
1378 #endif
1379 /* We change eliminable hard registers in insns so we should do
1380 this for all insns containing any eliminable hard
1381 register. */
1382 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1383 if (elimination_map[ep->from] != NULL)
1384 bitmap_ior_into (&insns_with_changed_offsets,
1385 &lra_reg_info[ep->from].insn_bitmap);
1387 else if (! update_reg_eliminate (&insns_with_changed_offsets))
1388 goto lra_eliminate_done;
1389 if (lra_dump_file != NULL)
1391 fprintf (lra_dump_file, "New elimination table:\n");
1392 print_elim_table (lra_dump_file);
1394 EXECUTE_IF_SET_IN_BITMAP (&insns_with_changed_offsets, 0, uid, bi)
1395 /* A dead insn can be deleted in process_insn_for_elimination. */
1396 if (lra_insn_recog_data[uid] != NULL)
1397 process_insn_for_elimination (lra_insn_recog_data[uid]->insn,
1398 final_p, first_p);
1399 bitmap_clear (&insns_with_changed_offsets);
1401 lra_eliminate_done:
1402 timevar_pop (TV_LRA_ELIMINATE);