gcc/testsuite/
[official-gcc.git] / gcc / alias.c
blob0246dd792f00f5afb901ee087737b5190141fc9a
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "varasm.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "flags.h"
36 #include "diagnostic-core.h"
37 #include "cselib.h"
38 #include "splay-tree.h"
39 #include "langhooks.h"
40 #include "timevar.h"
41 #include "dumpfile.h"
42 #include "target.h"
43 #include "df.h"
44 #include "tree-ssa-alias.h"
45 #include "pointer-set.h"
46 #include "internal-fn.h"
47 #include "gimple-expr.h"
48 #include "is-a.h"
49 #include "gimple.h"
50 #include "gimple-ssa.h"
52 /* The aliasing API provided here solves related but different problems:
54 Say there exists (in c)
56 struct X {
57 struct Y y1;
58 struct Z z2;
59 } x1, *px1, *px2;
61 struct Y y2, *py;
62 struct Z z2, *pz;
65 py = &x1.y1;
66 px2 = &x1;
68 Consider the four questions:
70 Can a store to x1 interfere with px2->y1?
71 Can a store to x1 interfere with px2->z2?
72 Can a store to x1 change the value pointed to by with py?
73 Can a store to x1 change the value pointed to by with pz?
75 The answer to these questions can be yes, yes, yes, and maybe.
77 The first two questions can be answered with a simple examination
78 of the type system. If structure X contains a field of type Y then
79 a store through a pointer to an X can overwrite any field that is
80 contained (recursively) in an X (unless we know that px1 != px2).
82 The last two questions can be solved in the same way as the first
83 two questions but this is too conservative. The observation is
84 that in some cases we can know which (if any) fields are addressed
85 and if those addresses are used in bad ways. This analysis may be
86 language specific. In C, arbitrary operations may be applied to
87 pointers. However, there is some indication that this may be too
88 conservative for some C++ types.
90 The pass ipa-type-escape does this analysis for the types whose
91 instances do not escape across the compilation boundary.
93 Historically in GCC, these two problems were combined and a single
94 data structure that was used to represent the solution to these
95 problems. We now have two similar but different data structures,
96 The data structure to solve the last two questions is similar to
97 the first, but does not contain the fields whose address are never
98 taken. For types that do escape the compilation unit, the data
99 structures will have identical information.
102 /* The alias sets assigned to MEMs assist the back-end in determining
103 which MEMs can alias which other MEMs. In general, two MEMs in
104 different alias sets cannot alias each other, with one important
105 exception. Consider something like:
107 struct S { int i; double d; };
109 a store to an `S' can alias something of either type `int' or type
110 `double'. (However, a store to an `int' cannot alias a `double'
111 and vice versa.) We indicate this via a tree structure that looks
112 like:
113 struct S
116 |/_ _\|
117 int double
119 (The arrows are directed and point downwards.)
120 In this situation we say the alias set for `struct S' is the
121 `superset' and that those for `int' and `double' are `subsets'.
123 To see whether two alias sets can point to the same memory, we must
124 see if either alias set is a subset of the other. We need not trace
125 past immediate descendants, however, since we propagate all
126 grandchildren up one level.
128 Alias set zero is implicitly a superset of all other alias sets.
129 However, this is no actual entry for alias set zero. It is an
130 error to attempt to explicitly construct a subset of zero. */
132 struct GTY(()) alias_set_entry_d {
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
136 /* Nonzero if would have a child of zero: this effectively makes this
137 alias set the same as alias set zero. */
138 int has_zero_child;
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 splay_tree GTY((param1_is (int), param2_is (int))) children;
149 typedef struct alias_set_entry_d *alias_set_entry;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static tree decl_for_component_ref (tree);
161 static int write_dependence_p (const_rtx,
162 const_rtx, enum machine_mode, rtx,
163 bool, bool, bool);
165 static void memory_modified_1 (rtx, const_rtx, void *);
167 /* Set up all info needed to perform alias analysis on memory references. */
169 /* Returns the size in bytes of the mode of X. */
170 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
172 /* Cap the number of passes we make over the insns propagating alias
173 information through set chains.
174 ??? 10 is a completely arbitrary choice. This should be based on the
175 maximum loop depth in the CFG, but we do not have this information
176 available (even if current_loops _is_ available). */
177 #define MAX_ALIAS_LOOP_PASSES 10
179 /* reg_base_value[N] gives an address to which register N is related.
180 If all sets after the first add or subtract to the current value
181 or otherwise modify it so it does not point to a different top level
182 object, reg_base_value[N] is equal to the address part of the source
183 of the first set.
185 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
186 expressions represent three types of base:
188 1. incoming arguments. There is just one ADDRESS to represent all
189 arguments, since we do not know at this level whether accesses
190 based on different arguments can alias. The ADDRESS has id 0.
192 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
193 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
194 Each of these rtxes has a separate ADDRESS associated with it,
195 each with a negative id.
197 GCC is (and is required to be) precise in which register it
198 chooses to access a particular region of stack. We can therefore
199 assume that accesses based on one of these rtxes do not alias
200 accesses based on another of these rtxes.
202 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
203 Each such piece of memory has a separate ADDRESS associated
204 with it, each with an id greater than 0.
206 Accesses based on one ADDRESS do not alias accesses based on other
207 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
208 alias globals either; the ADDRESSes have Pmode to indicate this.
209 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
210 indicate this. */
212 static GTY(()) vec<rtx, va_gc> *reg_base_value;
213 static rtx *new_reg_base_value;
215 /* The single VOIDmode ADDRESS that represents all argument bases.
216 It has id 0. */
217 static GTY(()) rtx arg_base_value;
219 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
220 static int unique_id;
222 /* We preserve the copy of old array around to avoid amount of garbage
223 produced. About 8% of garbage produced were attributed to this
224 array. */
225 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
227 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
228 registers. */
229 #define UNIQUE_BASE_VALUE_SP -1
230 #define UNIQUE_BASE_VALUE_ARGP -2
231 #define UNIQUE_BASE_VALUE_FP -3
232 #define UNIQUE_BASE_VALUE_HFP -4
234 #define static_reg_base_value \
235 (this_target_rtl->x_static_reg_base_value)
237 #define REG_BASE_VALUE(X) \
238 (REGNO (X) < vec_safe_length (reg_base_value) \
239 ? (*reg_base_value)[REGNO (X)] : 0)
241 /* Vector indexed by N giving the initial (unchanging) value known for
242 pseudo-register N. This vector is initialized in init_alias_analysis,
243 and does not change until end_alias_analysis is called. */
244 static GTY(()) vec<rtx, va_gc> *reg_known_value;
246 /* Vector recording for each reg_known_value whether it is due to a
247 REG_EQUIV note. Future passes (viz., reload) may replace the
248 pseudo with the equivalent expression and so we account for the
249 dependences that would be introduced if that happens.
251 The REG_EQUIV notes created in assign_parms may mention the arg
252 pointer, and there are explicit insns in the RTL that modify the
253 arg pointer. Thus we must ensure that such insns don't get
254 scheduled across each other because that would invalidate the
255 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
256 wrong, but solving the problem in the scheduler will likely give
257 better code, so we do it here. */
258 static sbitmap reg_known_equiv_p;
260 /* True when scanning insns from the start of the rtl to the
261 NOTE_INSN_FUNCTION_BEG note. */
262 static bool copying_arguments;
265 /* The splay-tree used to store the various alias set entries. */
266 static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
268 /* Build a decomposed reference object for querying the alias-oracle
269 from the MEM rtx and store it in *REF.
270 Returns false if MEM is not suitable for the alias-oracle. */
272 static bool
273 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
275 tree expr = MEM_EXPR (mem);
276 tree base;
278 if (!expr)
279 return false;
281 ao_ref_init (ref, expr);
283 /* Get the base of the reference and see if we have to reject or
284 adjust it. */
285 base = ao_ref_base (ref);
286 if (base == NULL_TREE)
287 return false;
289 /* The tree oracle doesn't like bases that are neither decls
290 nor indirect references of SSA names. */
291 if (!(DECL_P (base)
292 || (TREE_CODE (base) == MEM_REF
293 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
294 || (TREE_CODE (base) == TARGET_MEM_REF
295 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
296 return false;
298 /* If this is a reference based on a partitioned decl replace the
299 base with a MEM_REF of the pointer representative we
300 created during stack slot partitioning. */
301 if (TREE_CODE (base) == VAR_DECL
302 && ! is_global_var (base)
303 && cfun->gimple_df->decls_to_pointers != NULL)
305 void *namep;
306 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
307 if (namep)
308 ref->base = build_simple_mem_ref (*(tree *)namep);
311 ref->ref_alias_set = MEM_ALIAS_SET (mem);
313 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
314 is conservative, so trust it. */
315 if (!MEM_OFFSET_KNOWN_P (mem)
316 || !MEM_SIZE_KNOWN_P (mem))
317 return true;
319 /* If the base decl is a parameter we can have negative MEM_OFFSET in
320 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
321 here. */
322 if (MEM_OFFSET (mem) < 0
323 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
324 return true;
326 /* Otherwise continue and refine size and offset we got from analyzing
327 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
329 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
330 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
332 /* The MEM may extend into adjacent fields, so adjust max_size if
333 necessary. */
334 if (ref->max_size != -1
335 && ref->size > ref->max_size)
336 ref->max_size = ref->size;
338 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
339 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
340 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
341 && (ref->offset < 0
342 || (DECL_P (ref->base)
343 && (DECL_SIZE (ref->base) == NULL_TREE
344 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
345 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
346 ref->offset + ref->size)))))
347 return false;
349 return true;
352 /* Query the alias-oracle on whether the two memory rtx X and MEM may
353 alias. If TBAA_P is set also apply TBAA. Returns true if the
354 two rtxen may alias, false otherwise. */
356 static bool
357 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
359 ao_ref ref1, ref2;
361 if (!ao_ref_from_mem (&ref1, x)
362 || !ao_ref_from_mem (&ref2, mem))
363 return true;
365 return refs_may_alias_p_1 (&ref1, &ref2,
366 tbaa_p
367 && MEM_ALIAS_SET (x) != 0
368 && MEM_ALIAS_SET (mem) != 0);
371 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
372 such an entry, or NULL otherwise. */
374 static inline alias_set_entry
375 get_alias_set_entry (alias_set_type alias_set)
377 return (*alias_sets)[alias_set];
380 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
381 the two MEMs cannot alias each other. */
383 static inline int
384 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
386 /* Perform a basic sanity check. Namely, that there are no alias sets
387 if we're not using strict aliasing. This helps to catch bugs
388 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
389 where a MEM is allocated in some way other than by the use of
390 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
391 use alias sets to indicate that spilled registers cannot alias each
392 other, we might need to remove this check. */
393 gcc_assert (flag_strict_aliasing
394 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
396 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
399 /* Insert the NODE into the splay tree given by DATA. Used by
400 record_alias_subset via splay_tree_foreach. */
402 static int
403 insert_subset_children (splay_tree_node node, void *data)
405 splay_tree_insert ((splay_tree) data, node->key, node->value);
407 return 0;
410 /* Return true if the first alias set is a subset of the second. */
412 bool
413 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
415 alias_set_entry ase;
417 /* Everything is a subset of the "aliases everything" set. */
418 if (set2 == 0)
419 return true;
421 /* Otherwise, check if set1 is a subset of set2. */
422 ase = get_alias_set_entry (set2);
423 if (ase != 0
424 && (ase->has_zero_child
425 || splay_tree_lookup (ase->children,
426 (splay_tree_key) set1)))
427 return true;
428 return false;
431 /* Return 1 if the two specified alias sets may conflict. */
434 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
436 alias_set_entry ase;
438 /* The easy case. */
439 if (alias_sets_must_conflict_p (set1, set2))
440 return 1;
442 /* See if the first alias set is a subset of the second. */
443 ase = get_alias_set_entry (set1);
444 if (ase != 0
445 && (ase->has_zero_child
446 || splay_tree_lookup (ase->children,
447 (splay_tree_key) set2)))
448 return 1;
450 /* Now do the same, but with the alias sets reversed. */
451 ase = get_alias_set_entry (set2);
452 if (ase != 0
453 && (ase->has_zero_child
454 || splay_tree_lookup (ase->children,
455 (splay_tree_key) set1)))
456 return 1;
458 /* The two alias sets are distinct and neither one is the
459 child of the other. Therefore, they cannot conflict. */
460 return 0;
463 /* Return 1 if the two specified alias sets will always conflict. */
466 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
468 if (set1 == 0 || set2 == 0 || set1 == set2)
469 return 1;
471 return 0;
474 /* Return 1 if any MEM object of type T1 will always conflict (using the
475 dependency routines in this file) with any MEM object of type T2.
476 This is used when allocating temporary storage. If T1 and/or T2 are
477 NULL_TREE, it means we know nothing about the storage. */
480 objects_must_conflict_p (tree t1, tree t2)
482 alias_set_type set1, set2;
484 /* If neither has a type specified, we don't know if they'll conflict
485 because we may be using them to store objects of various types, for
486 example the argument and local variables areas of inlined functions. */
487 if (t1 == 0 && t2 == 0)
488 return 0;
490 /* If they are the same type, they must conflict. */
491 if (t1 == t2
492 /* Likewise if both are volatile. */
493 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
494 return 1;
496 set1 = t1 ? get_alias_set (t1) : 0;
497 set2 = t2 ? get_alias_set (t2) : 0;
499 /* We can't use alias_sets_conflict_p because we must make sure
500 that every subtype of t1 will conflict with every subtype of
501 t2 for which a pair of subobjects of these respective subtypes
502 overlaps on the stack. */
503 return alias_sets_must_conflict_p (set1, set2);
506 /* Return the outermost parent of component present in the chain of
507 component references handled by get_inner_reference in T with the
508 following property:
509 - the component is non-addressable, or
510 - the parent has alias set zero,
511 or NULL_TREE if no such parent exists. In the former cases, the alias
512 set of this parent is the alias set that must be used for T itself. */
514 tree
515 component_uses_parent_alias_set_from (const_tree t)
517 const_tree found = NULL_TREE;
519 while (handled_component_p (t))
521 switch (TREE_CODE (t))
523 case COMPONENT_REF:
524 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
525 found = t;
526 break;
528 case ARRAY_REF:
529 case ARRAY_RANGE_REF:
530 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
531 found = t;
532 break;
534 case REALPART_EXPR:
535 case IMAGPART_EXPR:
536 break;
538 case BIT_FIELD_REF:
539 case VIEW_CONVERT_EXPR:
540 /* Bitfields and casts are never addressable. */
541 found = t;
542 break;
544 default:
545 gcc_unreachable ();
548 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
549 found = t;
551 t = TREE_OPERAND (t, 0);
554 if (found)
555 return TREE_OPERAND (found, 0);
557 return NULL_TREE;
561 /* Return whether the pointer-type T effective for aliasing may
562 access everything and thus the reference has to be assigned
563 alias-set zero. */
565 static bool
566 ref_all_alias_ptr_type_p (const_tree t)
568 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
569 || TYPE_REF_CAN_ALIAS_ALL (t));
572 /* Return the alias set for the memory pointed to by T, which may be
573 either a type or an expression. Return -1 if there is nothing
574 special about dereferencing T. */
576 static alias_set_type
577 get_deref_alias_set_1 (tree t)
579 /* All we care about is the type. */
580 if (! TYPE_P (t))
581 t = TREE_TYPE (t);
583 /* If we have an INDIRECT_REF via a void pointer, we don't
584 know anything about what that might alias. Likewise if the
585 pointer is marked that way. */
586 if (ref_all_alias_ptr_type_p (t))
587 return 0;
589 return -1;
592 /* Return the alias set for the memory pointed to by T, which may be
593 either a type or an expression. */
595 alias_set_type
596 get_deref_alias_set (tree t)
598 /* If we're not doing any alias analysis, just assume everything
599 aliases everything else. */
600 if (!flag_strict_aliasing)
601 return 0;
603 alias_set_type set = get_deref_alias_set_1 (t);
605 /* Fall back to the alias-set of the pointed-to type. */
606 if (set == -1)
608 if (! TYPE_P (t))
609 t = TREE_TYPE (t);
610 set = get_alias_set (TREE_TYPE (t));
613 return set;
616 /* Return the pointer-type relevant for TBAA purposes from the
617 memory reference tree *T or NULL_TREE in which case *T is
618 adjusted to point to the outermost component reference that
619 can be used for assigning an alias set. */
621 static tree
622 reference_alias_ptr_type_1 (tree *t)
624 tree inner;
626 /* Get the base object of the reference. */
627 inner = *t;
628 while (handled_component_p (inner))
630 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
631 the type of any component references that wrap it to
632 determine the alias-set. */
633 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
634 *t = TREE_OPERAND (inner, 0);
635 inner = TREE_OPERAND (inner, 0);
638 /* Handle pointer dereferences here, they can override the
639 alias-set. */
640 if (INDIRECT_REF_P (inner)
641 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
642 return TREE_TYPE (TREE_OPERAND (inner, 0));
643 else if (TREE_CODE (inner) == TARGET_MEM_REF)
644 return TREE_TYPE (TMR_OFFSET (inner));
645 else if (TREE_CODE (inner) == MEM_REF
646 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
647 return TREE_TYPE (TREE_OPERAND (inner, 1));
649 /* If the innermost reference is a MEM_REF that has a
650 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
651 using the memory access type for determining the alias-set. */
652 if (TREE_CODE (inner) == MEM_REF
653 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
654 != TYPE_MAIN_VARIANT
655 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
656 return TREE_TYPE (TREE_OPERAND (inner, 1));
658 /* Otherwise, pick up the outermost object that we could have
659 a pointer to. */
660 tree tem = component_uses_parent_alias_set_from (*t);
661 if (tem)
662 *t = tem;
664 return NULL_TREE;
667 /* Return the pointer-type relevant for TBAA purposes from the
668 gimple memory reference tree T. This is the type to be used for
669 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
670 and guarantees that get_alias_set will return the same alias
671 set for T and the replacement. */
673 tree
674 reference_alias_ptr_type (tree t)
676 tree ptype = reference_alias_ptr_type_1 (&t);
677 /* If there is a given pointer type for aliasing purposes, return it. */
678 if (ptype != NULL_TREE)
679 return ptype;
681 /* Otherwise build one from the outermost component reference we
682 may use. */
683 if (TREE_CODE (t) == MEM_REF
684 || TREE_CODE (t) == TARGET_MEM_REF)
685 return TREE_TYPE (TREE_OPERAND (t, 1));
686 else
687 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
690 /* Return whether the pointer-types T1 and T2 used to determine
691 two alias sets of two references will yield the same answer
692 from get_deref_alias_set. */
694 bool
695 alias_ptr_types_compatible_p (tree t1, tree t2)
697 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
698 return true;
700 if (ref_all_alias_ptr_type_p (t1)
701 || ref_all_alias_ptr_type_p (t2))
702 return false;
704 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
705 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
708 /* Return the alias set for T, which may be either a type or an
709 expression. Call language-specific routine for help, if needed. */
711 alias_set_type
712 get_alias_set (tree t)
714 alias_set_type set;
716 /* If we're not doing any alias analysis, just assume everything
717 aliases everything else. Also return 0 if this or its type is
718 an error. */
719 if (! flag_strict_aliasing || t == error_mark_node
720 || (! TYPE_P (t)
721 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
722 return 0;
724 /* We can be passed either an expression or a type. This and the
725 language-specific routine may make mutually-recursive calls to each other
726 to figure out what to do. At each juncture, we see if this is a tree
727 that the language may need to handle specially. First handle things that
728 aren't types. */
729 if (! TYPE_P (t))
731 /* Give the language a chance to do something with this tree
732 before we look at it. */
733 STRIP_NOPS (t);
734 set = lang_hooks.get_alias_set (t);
735 if (set != -1)
736 return set;
738 /* Get the alias pointer-type to use or the outermost object
739 that we could have a pointer to. */
740 tree ptype = reference_alias_ptr_type_1 (&t);
741 if (ptype != NULL)
742 return get_deref_alias_set (ptype);
744 /* If we've already determined the alias set for a decl, just return
745 it. This is necessary for C++ anonymous unions, whose component
746 variables don't look like union members (boo!). */
747 if (TREE_CODE (t) == VAR_DECL
748 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
749 return MEM_ALIAS_SET (DECL_RTL (t));
751 /* Now all we care about is the type. */
752 t = TREE_TYPE (t);
755 /* Variant qualifiers don't affect the alias set, so get the main
756 variant. */
757 t = TYPE_MAIN_VARIANT (t);
759 /* Always use the canonical type as well. If this is a type that
760 requires structural comparisons to identify compatible types
761 use alias set zero. */
762 if (TYPE_STRUCTURAL_EQUALITY_P (t))
764 /* Allow the language to specify another alias set for this
765 type. */
766 set = lang_hooks.get_alias_set (t);
767 if (set != -1)
768 return set;
769 return 0;
772 t = TYPE_CANONICAL (t);
774 /* The canonical type should not require structural equality checks. */
775 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
777 /* If this is a type with a known alias set, return it. */
778 if (TYPE_ALIAS_SET_KNOWN_P (t))
779 return TYPE_ALIAS_SET (t);
781 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
782 if (!COMPLETE_TYPE_P (t))
784 /* For arrays with unknown size the conservative answer is the
785 alias set of the element type. */
786 if (TREE_CODE (t) == ARRAY_TYPE)
787 return get_alias_set (TREE_TYPE (t));
789 /* But return zero as a conservative answer for incomplete types. */
790 return 0;
793 /* See if the language has special handling for this type. */
794 set = lang_hooks.get_alias_set (t);
795 if (set != -1)
796 return set;
798 /* There are no objects of FUNCTION_TYPE, so there's no point in
799 using up an alias set for them. (There are, of course, pointers
800 and references to functions, but that's different.) */
801 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
802 set = 0;
804 /* Unless the language specifies otherwise, let vector types alias
805 their components. This avoids some nasty type punning issues in
806 normal usage. And indeed lets vectors be treated more like an
807 array slice. */
808 else if (TREE_CODE (t) == VECTOR_TYPE)
809 set = get_alias_set (TREE_TYPE (t));
811 /* Unless the language specifies otherwise, treat array types the
812 same as their components. This avoids the asymmetry we get
813 through recording the components. Consider accessing a
814 character(kind=1) through a reference to a character(kind=1)[1:1].
815 Or consider if we want to assign integer(kind=4)[0:D.1387] and
816 integer(kind=4)[4] the same alias set or not.
817 Just be pragmatic here and make sure the array and its element
818 type get the same alias set assigned. */
819 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
820 set = get_alias_set (TREE_TYPE (t));
822 /* From the former common C and C++ langhook implementation:
824 Unfortunately, there is no canonical form of a pointer type.
825 In particular, if we have `typedef int I', then `int *', and
826 `I *' are different types. So, we have to pick a canonical
827 representative. We do this below.
829 Technically, this approach is actually more conservative that
830 it needs to be. In particular, `const int *' and `int *'
831 should be in different alias sets, according to the C and C++
832 standard, since their types are not the same, and so,
833 technically, an `int **' and `const int **' cannot point at
834 the same thing.
836 But, the standard is wrong. In particular, this code is
837 legal C++:
839 int *ip;
840 int **ipp = &ip;
841 const int* const* cipp = ipp;
842 And, it doesn't make sense for that to be legal unless you
843 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
844 the pointed-to types. This issue has been reported to the
845 C++ committee.
847 In addition to the above canonicalization issue, with LTO
848 we should also canonicalize `T (*)[]' to `T *' avoiding
849 alias issues with pointer-to element types and pointer-to
850 array types.
852 Likewise we need to deal with the situation of incomplete
853 pointed-to types and make `*(struct X **)&a' and
854 `*(struct X {} **)&a' alias. Otherwise we will have to
855 guarantee that all pointer-to incomplete type variants
856 will be replaced by pointer-to complete type variants if
857 they are available.
859 With LTO the convenient situation of using `void *' to
860 access and store any pointer type will also become
861 more apparent (and `void *' is just another pointer-to
862 incomplete type). Assigning alias-set zero to `void *'
863 and all pointer-to incomplete types is a not appealing
864 solution. Assigning an effective alias-set zero only
865 affecting pointers might be - by recording proper subset
866 relationships of all pointer alias-sets.
868 Pointer-to function types are another grey area which
869 needs caution. Globbing them all into one alias-set
870 or the above effective zero set would work.
872 For now just assign the same alias-set to all pointers.
873 That's simple and avoids all the above problems. */
874 else if (POINTER_TYPE_P (t)
875 && t != ptr_type_node)
876 set = get_alias_set (ptr_type_node);
878 /* Otherwise make a new alias set for this type. */
879 else
881 /* Each canonical type gets its own alias set, so canonical types
882 shouldn't form a tree. It doesn't really matter for types
883 we handle specially above, so only check it where it possibly
884 would result in a bogus alias set. */
885 gcc_checking_assert (TYPE_CANONICAL (t) == t);
887 set = new_alias_set ();
890 TYPE_ALIAS_SET (t) = set;
892 /* If this is an aggregate type or a complex type, we must record any
893 component aliasing information. */
894 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
895 record_component_aliases (t);
897 return set;
900 /* Return a brand-new alias set. */
902 alias_set_type
903 new_alias_set (void)
905 if (flag_strict_aliasing)
907 if (alias_sets == 0)
908 vec_safe_push (alias_sets, (alias_set_entry) 0);
909 vec_safe_push (alias_sets, (alias_set_entry) 0);
910 return alias_sets->length () - 1;
912 else
913 return 0;
916 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
917 not everything that aliases SUPERSET also aliases SUBSET. For example,
918 in C, a store to an `int' can alias a load of a structure containing an
919 `int', and vice versa. But it can't alias a load of a 'double' member
920 of the same structure. Here, the structure would be the SUPERSET and
921 `int' the SUBSET. This relationship is also described in the comment at
922 the beginning of this file.
924 This function should be called only once per SUPERSET/SUBSET pair.
926 It is illegal for SUPERSET to be zero; everything is implicitly a
927 subset of alias set zero. */
929 void
930 record_alias_subset (alias_set_type superset, alias_set_type subset)
932 alias_set_entry superset_entry;
933 alias_set_entry subset_entry;
935 /* It is possible in complex type situations for both sets to be the same,
936 in which case we can ignore this operation. */
937 if (superset == subset)
938 return;
940 gcc_assert (superset);
942 superset_entry = get_alias_set_entry (superset);
943 if (superset_entry == 0)
945 /* Create an entry for the SUPERSET, so that we have a place to
946 attach the SUBSET. */
947 superset_entry = ggc_cleared_alloc<alias_set_entry_d> ();
948 superset_entry->alias_set = superset;
949 superset_entry->children
950 = splay_tree_new_ggc (splay_tree_compare_ints,
951 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
952 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
953 superset_entry->has_zero_child = 0;
954 (*alias_sets)[superset] = superset_entry;
957 if (subset == 0)
958 superset_entry->has_zero_child = 1;
959 else
961 subset_entry = get_alias_set_entry (subset);
962 /* If there is an entry for the subset, enter all of its children
963 (if they are not already present) as children of the SUPERSET. */
964 if (subset_entry)
966 if (subset_entry->has_zero_child)
967 superset_entry->has_zero_child = 1;
969 splay_tree_foreach (subset_entry->children, insert_subset_children,
970 superset_entry->children);
973 /* Enter the SUBSET itself as a child of the SUPERSET. */
974 splay_tree_insert (superset_entry->children,
975 (splay_tree_key) subset, 0);
979 /* Record that component types of TYPE, if any, are part of that type for
980 aliasing purposes. For record types, we only record component types
981 for fields that are not marked non-addressable. For array types, we
982 only record the component type if it is not marked non-aliased. */
984 void
985 record_component_aliases (tree type)
987 alias_set_type superset = get_alias_set (type);
988 tree field;
990 if (superset == 0)
991 return;
993 switch (TREE_CODE (type))
995 case RECORD_TYPE:
996 case UNION_TYPE:
997 case QUAL_UNION_TYPE:
998 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
999 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1000 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
1001 break;
1003 case COMPLEX_TYPE:
1004 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1005 break;
1007 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1008 element type. */
1010 default:
1011 break;
1015 /* Allocate an alias set for use in storing and reading from the varargs
1016 spill area. */
1018 static GTY(()) alias_set_type varargs_set = -1;
1020 alias_set_type
1021 get_varargs_alias_set (void)
1023 #if 1
1024 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1025 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1026 consistently use the varargs alias set for loads from the varargs
1027 area. So don't use it anywhere. */
1028 return 0;
1029 #else
1030 if (varargs_set == -1)
1031 varargs_set = new_alias_set ();
1033 return varargs_set;
1034 #endif
1037 /* Likewise, but used for the fixed portions of the frame, e.g., register
1038 save areas. */
1040 static GTY(()) alias_set_type frame_set = -1;
1042 alias_set_type
1043 get_frame_alias_set (void)
1045 if (frame_set == -1)
1046 frame_set = new_alias_set ();
1048 return frame_set;
1051 /* Create a new, unique base with id ID. */
1053 static rtx
1054 unique_base_value (HOST_WIDE_INT id)
1056 return gen_rtx_ADDRESS (Pmode, id);
1059 /* Return true if accesses based on any other base value cannot alias
1060 those based on X. */
1062 static bool
1063 unique_base_value_p (rtx x)
1065 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1068 /* Return true if X is known to be a base value. */
1070 static bool
1071 known_base_value_p (rtx x)
1073 switch (GET_CODE (x))
1075 case LABEL_REF:
1076 case SYMBOL_REF:
1077 return true;
1079 case ADDRESS:
1080 /* Arguments may or may not be bases; we don't know for sure. */
1081 return GET_MODE (x) != VOIDmode;
1083 default:
1084 return false;
1088 /* Inside SRC, the source of a SET, find a base address. */
1090 static rtx
1091 find_base_value (rtx src)
1093 unsigned int regno;
1095 #if defined (FIND_BASE_TERM)
1096 /* Try machine-dependent ways to find the base term. */
1097 src = FIND_BASE_TERM (src);
1098 #endif
1100 switch (GET_CODE (src))
1102 case SYMBOL_REF:
1103 case LABEL_REF:
1104 return src;
1106 case REG:
1107 regno = REGNO (src);
1108 /* At the start of a function, argument registers have known base
1109 values which may be lost later. Returning an ADDRESS
1110 expression here allows optimization based on argument values
1111 even when the argument registers are used for other purposes. */
1112 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1113 return new_reg_base_value[regno];
1115 /* If a pseudo has a known base value, return it. Do not do this
1116 for non-fixed hard regs since it can result in a circular
1117 dependency chain for registers which have values at function entry.
1119 The test above is not sufficient because the scheduler may move
1120 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1121 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1122 && regno < vec_safe_length (reg_base_value))
1124 /* If we're inside init_alias_analysis, use new_reg_base_value
1125 to reduce the number of relaxation iterations. */
1126 if (new_reg_base_value && new_reg_base_value[regno]
1127 && DF_REG_DEF_COUNT (regno) == 1)
1128 return new_reg_base_value[regno];
1130 if ((*reg_base_value)[regno])
1131 return (*reg_base_value)[regno];
1134 return 0;
1136 case MEM:
1137 /* Check for an argument passed in memory. Only record in the
1138 copying-arguments block; it is too hard to track changes
1139 otherwise. */
1140 if (copying_arguments
1141 && (XEXP (src, 0) == arg_pointer_rtx
1142 || (GET_CODE (XEXP (src, 0)) == PLUS
1143 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1144 return arg_base_value;
1145 return 0;
1147 case CONST:
1148 src = XEXP (src, 0);
1149 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1150 break;
1152 /* ... fall through ... */
1154 case PLUS:
1155 case MINUS:
1157 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1159 /* If either operand is a REG that is a known pointer, then it
1160 is the base. */
1161 if (REG_P (src_0) && REG_POINTER (src_0))
1162 return find_base_value (src_0);
1163 if (REG_P (src_1) && REG_POINTER (src_1))
1164 return find_base_value (src_1);
1166 /* If either operand is a REG, then see if we already have
1167 a known value for it. */
1168 if (REG_P (src_0))
1170 temp = find_base_value (src_0);
1171 if (temp != 0)
1172 src_0 = temp;
1175 if (REG_P (src_1))
1177 temp = find_base_value (src_1);
1178 if (temp!= 0)
1179 src_1 = temp;
1182 /* If either base is named object or a special address
1183 (like an argument or stack reference), then use it for the
1184 base term. */
1185 if (src_0 != 0 && known_base_value_p (src_0))
1186 return src_0;
1188 if (src_1 != 0 && known_base_value_p (src_1))
1189 return src_1;
1191 /* Guess which operand is the base address:
1192 If either operand is a symbol, then it is the base. If
1193 either operand is a CONST_INT, then the other is the base. */
1194 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1195 return find_base_value (src_0);
1196 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1197 return find_base_value (src_1);
1199 return 0;
1202 case LO_SUM:
1203 /* The standard form is (lo_sum reg sym) so look only at the
1204 second operand. */
1205 return find_base_value (XEXP (src, 1));
1207 case AND:
1208 /* If the second operand is constant set the base
1209 address to the first operand. */
1210 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1211 return find_base_value (XEXP (src, 0));
1212 return 0;
1214 case TRUNCATE:
1215 /* As we do not know which address space the pointer is referring to, we can
1216 handle this only if the target does not support different pointer or
1217 address modes depending on the address space. */
1218 if (!target_default_pointer_address_modes_p ())
1219 break;
1220 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1221 break;
1222 /* Fall through. */
1223 case HIGH:
1224 case PRE_INC:
1225 case PRE_DEC:
1226 case POST_INC:
1227 case POST_DEC:
1228 case PRE_MODIFY:
1229 case POST_MODIFY:
1230 return find_base_value (XEXP (src, 0));
1232 case ZERO_EXTEND:
1233 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1234 /* As we do not know which address space the pointer is referring to, we can
1235 handle this only if the target does not support different pointer or
1236 address modes depending on the address space. */
1237 if (!target_default_pointer_address_modes_p ())
1238 break;
1241 rtx temp = find_base_value (XEXP (src, 0));
1243 if (temp != 0 && CONSTANT_P (temp))
1244 temp = convert_memory_address (Pmode, temp);
1246 return temp;
1249 default:
1250 break;
1253 return 0;
1256 /* Called from init_alias_analysis indirectly through note_stores,
1257 or directly if DEST is a register with a REG_NOALIAS note attached.
1258 SET is null in the latter case. */
1260 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1261 register N has been set in this function. */
1262 static sbitmap reg_seen;
1264 static void
1265 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1267 unsigned regno;
1268 rtx src;
1269 int n;
1271 if (!REG_P (dest))
1272 return;
1274 regno = REGNO (dest);
1276 gcc_checking_assert (regno < reg_base_value->length ());
1278 /* If this spans multiple hard registers, then we must indicate that every
1279 register has an unusable value. */
1280 if (regno < FIRST_PSEUDO_REGISTER)
1281 n = hard_regno_nregs[regno][GET_MODE (dest)];
1282 else
1283 n = 1;
1284 if (n != 1)
1286 while (--n >= 0)
1288 bitmap_set_bit (reg_seen, regno + n);
1289 new_reg_base_value[regno + n] = 0;
1291 return;
1294 if (set)
1296 /* A CLOBBER wipes out any old value but does not prevent a previously
1297 unset register from acquiring a base address (i.e. reg_seen is not
1298 set). */
1299 if (GET_CODE (set) == CLOBBER)
1301 new_reg_base_value[regno] = 0;
1302 return;
1304 src = SET_SRC (set);
1306 else
1308 /* There's a REG_NOALIAS note against DEST. */
1309 if (bitmap_bit_p (reg_seen, regno))
1311 new_reg_base_value[regno] = 0;
1312 return;
1314 bitmap_set_bit (reg_seen, regno);
1315 new_reg_base_value[regno] = unique_base_value (unique_id++);
1316 return;
1319 /* If this is not the first set of REGNO, see whether the new value
1320 is related to the old one. There are two cases of interest:
1322 (1) The register might be assigned an entirely new value
1323 that has the same base term as the original set.
1325 (2) The set might be a simple self-modification that
1326 cannot change REGNO's base value.
1328 If neither case holds, reject the original base value as invalid.
1329 Note that the following situation is not detected:
1331 extern int x, y; int *p = &x; p += (&y-&x);
1333 ANSI C does not allow computing the difference of addresses
1334 of distinct top level objects. */
1335 if (new_reg_base_value[regno] != 0
1336 && find_base_value (src) != new_reg_base_value[regno])
1337 switch (GET_CODE (src))
1339 case LO_SUM:
1340 case MINUS:
1341 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1342 new_reg_base_value[regno] = 0;
1343 break;
1344 case PLUS:
1345 /* If the value we add in the PLUS is also a valid base value,
1346 this might be the actual base value, and the original value
1347 an index. */
1349 rtx other = NULL_RTX;
1351 if (XEXP (src, 0) == dest)
1352 other = XEXP (src, 1);
1353 else if (XEXP (src, 1) == dest)
1354 other = XEXP (src, 0);
1356 if (! other || find_base_value (other))
1357 new_reg_base_value[regno] = 0;
1358 break;
1360 case AND:
1361 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1362 new_reg_base_value[regno] = 0;
1363 break;
1364 default:
1365 new_reg_base_value[regno] = 0;
1366 break;
1368 /* If this is the first set of a register, record the value. */
1369 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1370 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1371 new_reg_base_value[regno] = find_base_value (src);
1373 bitmap_set_bit (reg_seen, regno);
1376 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1377 using hard registers with non-null REG_BASE_VALUE for renaming. */
1379 get_reg_base_value (unsigned int regno)
1381 return (*reg_base_value)[regno];
1384 /* If a value is known for REGNO, return it. */
1387 get_reg_known_value (unsigned int regno)
1389 if (regno >= FIRST_PSEUDO_REGISTER)
1391 regno -= FIRST_PSEUDO_REGISTER;
1392 if (regno < vec_safe_length (reg_known_value))
1393 return (*reg_known_value)[regno];
1395 return NULL;
1398 /* Set it. */
1400 static void
1401 set_reg_known_value (unsigned int regno, rtx val)
1403 if (regno >= FIRST_PSEUDO_REGISTER)
1405 regno -= FIRST_PSEUDO_REGISTER;
1406 if (regno < vec_safe_length (reg_known_value))
1407 (*reg_known_value)[regno] = val;
1411 /* Similarly for reg_known_equiv_p. */
1413 bool
1414 get_reg_known_equiv_p (unsigned int regno)
1416 if (regno >= FIRST_PSEUDO_REGISTER)
1418 regno -= FIRST_PSEUDO_REGISTER;
1419 if (regno < vec_safe_length (reg_known_value))
1420 return bitmap_bit_p (reg_known_equiv_p, regno);
1422 return false;
1425 static void
1426 set_reg_known_equiv_p (unsigned int regno, bool val)
1428 if (regno >= FIRST_PSEUDO_REGISTER)
1430 regno -= FIRST_PSEUDO_REGISTER;
1431 if (regno < vec_safe_length (reg_known_value))
1433 if (val)
1434 bitmap_set_bit (reg_known_equiv_p, regno);
1435 else
1436 bitmap_clear_bit (reg_known_equiv_p, regno);
1442 /* Returns a canonical version of X, from the point of view alias
1443 analysis. (For example, if X is a MEM whose address is a register,
1444 and the register has a known value (say a SYMBOL_REF), then a MEM
1445 whose address is the SYMBOL_REF is returned.) */
1448 canon_rtx (rtx x)
1450 /* Recursively look for equivalences. */
1451 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1453 rtx t = get_reg_known_value (REGNO (x));
1454 if (t == x)
1455 return x;
1456 if (t)
1457 return canon_rtx (t);
1460 if (GET_CODE (x) == PLUS)
1462 rtx x0 = canon_rtx (XEXP (x, 0));
1463 rtx x1 = canon_rtx (XEXP (x, 1));
1465 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1467 if (CONST_INT_P (x0))
1468 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1469 else if (CONST_INT_P (x1))
1470 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1471 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1475 /* This gives us much better alias analysis when called from
1476 the loop optimizer. Note we want to leave the original
1477 MEM alone, but need to return the canonicalized MEM with
1478 all the flags with their original values. */
1479 else if (MEM_P (x))
1480 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1482 return x;
1485 /* Return 1 if X and Y are identical-looking rtx's.
1486 Expect that X and Y has been already canonicalized.
1488 We use the data in reg_known_value above to see if two registers with
1489 different numbers are, in fact, equivalent. */
1491 static int
1492 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1494 int i;
1495 int j;
1496 enum rtx_code code;
1497 const char *fmt;
1499 if (x == 0 && y == 0)
1500 return 1;
1501 if (x == 0 || y == 0)
1502 return 0;
1504 if (x == y)
1505 return 1;
1507 code = GET_CODE (x);
1508 /* Rtx's of different codes cannot be equal. */
1509 if (code != GET_CODE (y))
1510 return 0;
1512 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1513 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1515 if (GET_MODE (x) != GET_MODE (y))
1516 return 0;
1518 /* Some RTL can be compared without a recursive examination. */
1519 switch (code)
1521 case REG:
1522 return REGNO (x) == REGNO (y);
1524 case LABEL_REF:
1525 return XEXP (x, 0) == XEXP (y, 0);
1527 case SYMBOL_REF:
1528 return XSTR (x, 0) == XSTR (y, 0);
1530 case ENTRY_VALUE:
1531 /* This is magic, don't go through canonicalization et al. */
1532 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1534 case VALUE:
1535 CASE_CONST_UNIQUE:
1536 /* Pointer equality guarantees equality for these nodes. */
1537 return 0;
1539 default:
1540 break;
1543 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1544 if (code == PLUS)
1545 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1546 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1547 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1548 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1549 /* For commutative operations, the RTX match if the operand match in any
1550 order. Also handle the simple binary and unary cases without a loop. */
1551 if (COMMUTATIVE_P (x))
1553 rtx xop0 = canon_rtx (XEXP (x, 0));
1554 rtx yop0 = canon_rtx (XEXP (y, 0));
1555 rtx yop1 = canon_rtx (XEXP (y, 1));
1557 return ((rtx_equal_for_memref_p (xop0, yop0)
1558 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1559 || (rtx_equal_for_memref_p (xop0, yop1)
1560 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1562 else if (NON_COMMUTATIVE_P (x))
1564 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1565 canon_rtx (XEXP (y, 0)))
1566 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1567 canon_rtx (XEXP (y, 1))));
1569 else if (UNARY_P (x))
1570 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1571 canon_rtx (XEXP (y, 0)));
1573 /* Compare the elements. If any pair of corresponding elements
1574 fail to match, return 0 for the whole things.
1576 Limit cases to types which actually appear in addresses. */
1578 fmt = GET_RTX_FORMAT (code);
1579 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1581 switch (fmt[i])
1583 case 'i':
1584 if (XINT (x, i) != XINT (y, i))
1585 return 0;
1586 break;
1588 case 'E':
1589 /* Two vectors must have the same length. */
1590 if (XVECLEN (x, i) != XVECLEN (y, i))
1591 return 0;
1593 /* And the corresponding elements must match. */
1594 for (j = 0; j < XVECLEN (x, i); j++)
1595 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1596 canon_rtx (XVECEXP (y, i, j))) == 0)
1597 return 0;
1598 break;
1600 case 'e':
1601 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1602 canon_rtx (XEXP (y, i))) == 0)
1603 return 0;
1604 break;
1606 /* This can happen for asm operands. */
1607 case 's':
1608 if (strcmp (XSTR (x, i), XSTR (y, i)))
1609 return 0;
1610 break;
1612 /* This can happen for an asm which clobbers memory. */
1613 case '0':
1614 break;
1616 /* It is believed that rtx's at this level will never
1617 contain anything but integers and other rtx's,
1618 except for within LABEL_REFs and SYMBOL_REFs. */
1619 default:
1620 gcc_unreachable ();
1623 return 1;
1626 static rtx
1627 find_base_term (rtx x)
1629 cselib_val *val;
1630 struct elt_loc_list *l, *f;
1631 rtx ret;
1633 #if defined (FIND_BASE_TERM)
1634 /* Try machine-dependent ways to find the base term. */
1635 x = FIND_BASE_TERM (x);
1636 #endif
1638 switch (GET_CODE (x))
1640 case REG:
1641 return REG_BASE_VALUE (x);
1643 case TRUNCATE:
1644 /* As we do not know which address space the pointer is referring to, we can
1645 handle this only if the target does not support different pointer or
1646 address modes depending on the address space. */
1647 if (!target_default_pointer_address_modes_p ())
1648 return 0;
1649 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1650 return 0;
1651 /* Fall through. */
1652 case HIGH:
1653 case PRE_INC:
1654 case PRE_DEC:
1655 case POST_INC:
1656 case POST_DEC:
1657 case PRE_MODIFY:
1658 case POST_MODIFY:
1659 return find_base_term (XEXP (x, 0));
1661 case ZERO_EXTEND:
1662 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1663 /* As we do not know which address space the pointer is referring to, we can
1664 handle this only if the target does not support different pointer or
1665 address modes depending on the address space. */
1666 if (!target_default_pointer_address_modes_p ())
1667 return 0;
1670 rtx temp = find_base_term (XEXP (x, 0));
1672 if (temp != 0 && CONSTANT_P (temp))
1673 temp = convert_memory_address (Pmode, temp);
1675 return temp;
1678 case VALUE:
1679 val = CSELIB_VAL_PTR (x);
1680 ret = NULL_RTX;
1682 if (!val)
1683 return ret;
1685 if (cselib_sp_based_value_p (val))
1686 return static_reg_base_value[STACK_POINTER_REGNUM];
1688 f = val->locs;
1689 /* Temporarily reset val->locs to avoid infinite recursion. */
1690 val->locs = NULL;
1692 for (l = f; l; l = l->next)
1693 if (GET_CODE (l->loc) == VALUE
1694 && CSELIB_VAL_PTR (l->loc)->locs
1695 && !CSELIB_VAL_PTR (l->loc)->locs->next
1696 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1697 continue;
1698 else if ((ret = find_base_term (l->loc)) != 0)
1699 break;
1701 val->locs = f;
1702 return ret;
1704 case LO_SUM:
1705 /* The standard form is (lo_sum reg sym) so look only at the
1706 second operand. */
1707 return find_base_term (XEXP (x, 1));
1709 case CONST:
1710 x = XEXP (x, 0);
1711 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1712 return 0;
1713 /* Fall through. */
1714 case PLUS:
1715 case MINUS:
1717 rtx tmp1 = XEXP (x, 0);
1718 rtx tmp2 = XEXP (x, 1);
1720 /* This is a little bit tricky since we have to determine which of
1721 the two operands represents the real base address. Otherwise this
1722 routine may return the index register instead of the base register.
1724 That may cause us to believe no aliasing was possible, when in
1725 fact aliasing is possible.
1727 We use a few simple tests to guess the base register. Additional
1728 tests can certainly be added. For example, if one of the operands
1729 is a shift or multiply, then it must be the index register and the
1730 other operand is the base register. */
1732 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1733 return find_base_term (tmp2);
1735 /* If either operand is known to be a pointer, then prefer it
1736 to determine the base term. */
1737 if (REG_P (tmp1) && REG_POINTER (tmp1))
1739 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1741 rtx tem = tmp1;
1742 tmp1 = tmp2;
1743 tmp2 = tem;
1746 /* Go ahead and find the base term for both operands. If either base
1747 term is from a pointer or is a named object or a special address
1748 (like an argument or stack reference), then use it for the
1749 base term. */
1750 rtx base = find_base_term (tmp1);
1751 if (base != NULL_RTX
1752 && ((REG_P (tmp1) && REG_POINTER (tmp1))
1753 || known_base_value_p (base)))
1754 return base;
1755 base = find_base_term (tmp2);
1756 if (base != NULL_RTX
1757 && ((REG_P (tmp2) && REG_POINTER (tmp2))
1758 || known_base_value_p (base)))
1759 return base;
1761 /* We could not determine which of the two operands was the
1762 base register and which was the index. So we can determine
1763 nothing from the base alias check. */
1764 return 0;
1767 case AND:
1768 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1769 return find_base_term (XEXP (x, 0));
1770 return 0;
1772 case SYMBOL_REF:
1773 case LABEL_REF:
1774 return x;
1776 default:
1777 return 0;
1781 /* Return true if accesses to address X may alias accesses based
1782 on the stack pointer. */
1784 bool
1785 may_be_sp_based_p (rtx x)
1787 rtx base = find_base_term (x);
1788 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1791 /* Return 0 if the addresses X and Y are known to point to different
1792 objects, 1 if they might be pointers to the same object. */
1794 static int
1795 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
1796 enum machine_mode x_mode, enum machine_mode y_mode)
1798 /* If the address itself has no known base see if a known equivalent
1799 value has one. If either address still has no known base, nothing
1800 is known about aliasing. */
1801 if (x_base == 0)
1803 rtx x_c;
1805 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1806 return 1;
1808 x_base = find_base_term (x_c);
1809 if (x_base == 0)
1810 return 1;
1813 if (y_base == 0)
1815 rtx y_c;
1816 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1817 return 1;
1819 y_base = find_base_term (y_c);
1820 if (y_base == 0)
1821 return 1;
1824 /* If the base addresses are equal nothing is known about aliasing. */
1825 if (rtx_equal_p (x_base, y_base))
1826 return 1;
1828 /* The base addresses are different expressions. If they are not accessed
1829 via AND, there is no conflict. We can bring knowledge of object
1830 alignment into play here. For example, on alpha, "char a, b;" can
1831 alias one another, though "char a; long b;" cannot. AND addesses may
1832 implicitly alias surrounding objects; i.e. unaligned access in DImode
1833 via AND address can alias all surrounding object types except those
1834 with aligment 8 or higher. */
1835 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1836 return 1;
1837 if (GET_CODE (x) == AND
1838 && (!CONST_INT_P (XEXP (x, 1))
1839 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1840 return 1;
1841 if (GET_CODE (y) == AND
1842 && (!CONST_INT_P (XEXP (y, 1))
1843 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1844 return 1;
1846 /* Differing symbols not accessed via AND never alias. */
1847 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1848 return 0;
1850 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1851 return 0;
1853 return 1;
1856 /* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1857 whose UID is greater than the int uid that D points to. */
1859 static int
1860 refs_newer_value_cb (rtx *x, void *d)
1862 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1863 return 1;
1865 return 0;
1868 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1869 that of V. */
1871 static bool
1872 refs_newer_value_p (rtx expr, rtx v)
1874 int minuid = CSELIB_VAL_PTR (v)->uid;
1876 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1879 /* Convert the address X into something we can use. This is done by returning
1880 it unchanged unless it is a value; in the latter case we call cselib to get
1881 a more useful rtx. */
1884 get_addr (rtx x)
1886 cselib_val *v;
1887 struct elt_loc_list *l;
1889 if (GET_CODE (x) != VALUE)
1890 return x;
1891 v = CSELIB_VAL_PTR (x);
1892 if (v)
1894 bool have_equivs = cselib_have_permanent_equivalences ();
1895 if (have_equivs)
1896 v = canonical_cselib_val (v);
1897 for (l = v->locs; l; l = l->next)
1898 if (CONSTANT_P (l->loc))
1899 return l->loc;
1900 for (l = v->locs; l; l = l->next)
1901 if (!REG_P (l->loc) && !MEM_P (l->loc)
1902 /* Avoid infinite recursion when potentially dealing with
1903 var-tracking artificial equivalences, by skipping the
1904 equivalences themselves, and not choosing expressions
1905 that refer to newer VALUEs. */
1906 && (!have_equivs
1907 || (GET_CODE (l->loc) != VALUE
1908 && !refs_newer_value_p (l->loc, x))))
1909 return l->loc;
1910 if (have_equivs)
1912 for (l = v->locs; l; l = l->next)
1913 if (REG_P (l->loc)
1914 || (GET_CODE (l->loc) != VALUE
1915 && !refs_newer_value_p (l->loc, x)))
1916 return l->loc;
1917 /* Return the canonical value. */
1918 return v->val_rtx;
1920 if (v->locs)
1921 return v->locs->loc;
1923 return x;
1926 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1927 where SIZE is the size in bytes of the memory reference. If ADDR
1928 is not modified by the memory reference then ADDR is returned. */
1930 static rtx
1931 addr_side_effect_eval (rtx addr, int size, int n_refs)
1933 int offset = 0;
1935 switch (GET_CODE (addr))
1937 case PRE_INC:
1938 offset = (n_refs + 1) * size;
1939 break;
1940 case PRE_DEC:
1941 offset = -(n_refs + 1) * size;
1942 break;
1943 case POST_INC:
1944 offset = n_refs * size;
1945 break;
1946 case POST_DEC:
1947 offset = -n_refs * size;
1948 break;
1950 default:
1951 return addr;
1954 if (offset)
1955 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1956 gen_int_mode (offset, GET_MODE (addr)));
1957 else
1958 addr = XEXP (addr, 0);
1959 addr = canon_rtx (addr);
1961 return addr;
1964 /* Return TRUE if an object X sized at XSIZE bytes and another object
1965 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
1966 any of the sizes is zero, assume an overlap, otherwise use the
1967 absolute value of the sizes as the actual sizes. */
1969 static inline bool
1970 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
1972 return (xsize == 0 || ysize == 0
1973 || (c >= 0
1974 ? (abs (xsize) > c)
1975 : (abs (ysize) > -c)));
1978 /* Return one if X and Y (memory addresses) reference the
1979 same location in memory or if the references overlap.
1980 Return zero if they do not overlap, else return
1981 minus one in which case they still might reference the same location.
1983 C is an offset accumulator. When
1984 C is nonzero, we are testing aliases between X and Y + C.
1985 XSIZE is the size in bytes of the X reference,
1986 similarly YSIZE is the size in bytes for Y.
1987 Expect that canon_rtx has been already called for X and Y.
1989 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1990 referenced (the reference was BLKmode), so make the most pessimistic
1991 assumptions.
1993 If XSIZE or YSIZE is negative, we may access memory outside the object
1994 being referenced as a side effect. This can happen when using AND to
1995 align memory references, as is done on the Alpha.
1997 Nice to notice that varying addresses cannot conflict with fp if no
1998 local variables had their addresses taken, but that's too hard now.
2000 ??? Contrary to the tree alias oracle this does not return
2001 one for X + non-constant and Y + non-constant when X and Y are equal.
2002 If that is fixed the TBAA hack for union type-punning can be removed. */
2004 static int
2005 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2007 if (GET_CODE (x) == VALUE)
2009 if (REG_P (y))
2011 struct elt_loc_list *l = NULL;
2012 if (CSELIB_VAL_PTR (x))
2013 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2014 l; l = l->next)
2015 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2016 break;
2017 if (l)
2018 x = y;
2019 else
2020 x = get_addr (x);
2022 /* Don't call get_addr if y is the same VALUE. */
2023 else if (x != y)
2024 x = get_addr (x);
2026 if (GET_CODE (y) == VALUE)
2028 if (REG_P (x))
2030 struct elt_loc_list *l = NULL;
2031 if (CSELIB_VAL_PTR (y))
2032 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2033 l; l = l->next)
2034 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2035 break;
2036 if (l)
2037 y = x;
2038 else
2039 y = get_addr (y);
2041 /* Don't call get_addr if x is the same VALUE. */
2042 else if (y != x)
2043 y = get_addr (y);
2045 if (GET_CODE (x) == HIGH)
2046 x = XEXP (x, 0);
2047 else if (GET_CODE (x) == LO_SUM)
2048 x = XEXP (x, 1);
2049 else
2050 x = addr_side_effect_eval (x, abs (xsize), 0);
2051 if (GET_CODE (y) == HIGH)
2052 y = XEXP (y, 0);
2053 else if (GET_CODE (y) == LO_SUM)
2054 y = XEXP (y, 1);
2055 else
2056 y = addr_side_effect_eval (y, abs (ysize), 0);
2058 if (rtx_equal_for_memref_p (x, y))
2060 return offset_overlap_p (c, xsize, ysize);
2063 /* This code used to check for conflicts involving stack references and
2064 globals but the base address alias code now handles these cases. */
2066 if (GET_CODE (x) == PLUS)
2068 /* The fact that X is canonicalized means that this
2069 PLUS rtx is canonicalized. */
2070 rtx x0 = XEXP (x, 0);
2071 rtx x1 = XEXP (x, 1);
2073 if (GET_CODE (y) == PLUS)
2075 /* The fact that Y is canonicalized means that this
2076 PLUS rtx is canonicalized. */
2077 rtx y0 = XEXP (y, 0);
2078 rtx y1 = XEXP (y, 1);
2080 if (rtx_equal_for_memref_p (x1, y1))
2081 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2082 if (rtx_equal_for_memref_p (x0, y0))
2083 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2084 if (CONST_INT_P (x1))
2086 if (CONST_INT_P (y1))
2087 return memrefs_conflict_p (xsize, x0, ysize, y0,
2088 c - INTVAL (x1) + INTVAL (y1));
2089 else
2090 return memrefs_conflict_p (xsize, x0, ysize, y,
2091 c - INTVAL (x1));
2093 else if (CONST_INT_P (y1))
2094 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2096 return -1;
2098 else if (CONST_INT_P (x1))
2099 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2101 else if (GET_CODE (y) == PLUS)
2103 /* The fact that Y is canonicalized means that this
2104 PLUS rtx is canonicalized. */
2105 rtx y0 = XEXP (y, 0);
2106 rtx y1 = XEXP (y, 1);
2108 if (CONST_INT_P (y1))
2109 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2110 else
2111 return -1;
2114 if (GET_CODE (x) == GET_CODE (y))
2115 switch (GET_CODE (x))
2117 case MULT:
2119 /* Handle cases where we expect the second operands to be the
2120 same, and check only whether the first operand would conflict
2121 or not. */
2122 rtx x0, y0;
2123 rtx x1 = canon_rtx (XEXP (x, 1));
2124 rtx y1 = canon_rtx (XEXP (y, 1));
2125 if (! rtx_equal_for_memref_p (x1, y1))
2126 return -1;
2127 x0 = canon_rtx (XEXP (x, 0));
2128 y0 = canon_rtx (XEXP (y, 0));
2129 if (rtx_equal_for_memref_p (x0, y0))
2130 return offset_overlap_p (c, xsize, ysize);
2132 /* Can't properly adjust our sizes. */
2133 if (!CONST_INT_P (x1))
2134 return -1;
2135 xsize /= INTVAL (x1);
2136 ysize /= INTVAL (x1);
2137 c /= INTVAL (x1);
2138 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2141 default:
2142 break;
2145 /* Deal with alignment ANDs by adjusting offset and size so as to
2146 cover the maximum range, without taking any previously known
2147 alignment into account. Make a size negative after such an
2148 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2149 assume a potential overlap, because they may end up in contiguous
2150 memory locations and the stricter-alignment access may span over
2151 part of both. */
2152 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2154 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2155 unsigned HOST_WIDE_INT uc = sc;
2156 if (sc < 0 && -uc == (uc & -uc))
2158 if (xsize > 0)
2159 xsize = -xsize;
2160 if (xsize)
2161 xsize += sc + 1;
2162 c -= sc + 1;
2163 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2164 ysize, y, c);
2167 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2169 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2170 unsigned HOST_WIDE_INT uc = sc;
2171 if (sc < 0 && -uc == (uc & -uc))
2173 if (ysize > 0)
2174 ysize = -ysize;
2175 if (ysize)
2176 ysize += sc + 1;
2177 c += sc + 1;
2178 return memrefs_conflict_p (xsize, x,
2179 ysize, canon_rtx (XEXP (y, 0)), c);
2183 if (CONSTANT_P (x))
2185 if (CONST_INT_P (x) && CONST_INT_P (y))
2187 c += (INTVAL (y) - INTVAL (x));
2188 return offset_overlap_p (c, xsize, ysize);
2191 if (GET_CODE (x) == CONST)
2193 if (GET_CODE (y) == CONST)
2194 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2195 ysize, canon_rtx (XEXP (y, 0)), c);
2196 else
2197 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2198 ysize, y, c);
2200 if (GET_CODE (y) == CONST)
2201 return memrefs_conflict_p (xsize, x, ysize,
2202 canon_rtx (XEXP (y, 0)), c);
2204 /* Assume a potential overlap for symbolic addresses that went
2205 through alignment adjustments (i.e., that have negative
2206 sizes), because we can't know how far they are from each
2207 other. */
2208 if (CONSTANT_P (y))
2209 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2211 return -1;
2214 return -1;
2217 /* Functions to compute memory dependencies.
2219 Since we process the insns in execution order, we can build tables
2220 to keep track of what registers are fixed (and not aliased), what registers
2221 are varying in known ways, and what registers are varying in unknown
2222 ways.
2224 If both memory references are volatile, then there must always be a
2225 dependence between the two references, since their order can not be
2226 changed. A volatile and non-volatile reference can be interchanged
2227 though.
2229 We also must allow AND addresses, because they may generate accesses
2230 outside the object being referenced. This is used to generate aligned
2231 addresses from unaligned addresses, for instance, the alpha
2232 storeqi_unaligned pattern. */
2234 /* Read dependence: X is read after read in MEM takes place. There can
2235 only be a dependence here if both reads are volatile, or if either is
2236 an explicit barrier. */
2239 read_dependence (const_rtx mem, const_rtx x)
2241 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2242 return true;
2243 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2244 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2245 return true;
2246 return false;
2249 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2251 static tree
2252 decl_for_component_ref (tree x)
2256 x = TREE_OPERAND (x, 0);
2258 while (x && TREE_CODE (x) == COMPONENT_REF);
2260 return x && DECL_P (x) ? x : NULL_TREE;
2263 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2264 for the offset of the field reference. *KNOWN_P says whether the
2265 offset is known. */
2267 static void
2268 adjust_offset_for_component_ref (tree x, bool *known_p,
2269 HOST_WIDE_INT *offset)
2271 if (!*known_p)
2272 return;
2275 tree xoffset = component_ref_field_offset (x);
2276 tree field = TREE_OPERAND (x, 1);
2277 if (TREE_CODE (xoffset) != INTEGER_CST)
2279 *known_p = false;
2280 return;
2283 offset_int woffset
2284 = (wi::to_offset (xoffset)
2285 + wi::lrshift (wi::to_offset (DECL_FIELD_BIT_OFFSET (field)),
2286 LOG2_BITS_PER_UNIT));
2287 if (!wi::fits_uhwi_p (woffset))
2289 *known_p = false;
2290 return;
2292 *offset += woffset.to_uhwi ();
2294 x = TREE_OPERAND (x, 0);
2296 while (x && TREE_CODE (x) == COMPONENT_REF);
2299 /* Return nonzero if we can determine the exprs corresponding to memrefs
2300 X and Y and they do not overlap.
2301 If LOOP_VARIANT is set, skip offset-based disambiguation */
2304 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2306 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2307 rtx rtlx, rtly;
2308 rtx basex, basey;
2309 bool moffsetx_known_p, moffsety_known_p;
2310 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2311 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2313 /* Unless both have exprs, we can't tell anything. */
2314 if (exprx == 0 || expry == 0)
2315 return 0;
2317 /* For spill-slot accesses make sure we have valid offsets. */
2318 if ((exprx == get_spill_slot_decl (false)
2319 && ! MEM_OFFSET_KNOWN_P (x))
2320 || (expry == get_spill_slot_decl (false)
2321 && ! MEM_OFFSET_KNOWN_P (y)))
2322 return 0;
2324 /* If the field reference test failed, look at the DECLs involved. */
2325 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2326 if (moffsetx_known_p)
2327 moffsetx = MEM_OFFSET (x);
2328 if (TREE_CODE (exprx) == COMPONENT_REF)
2330 tree t = decl_for_component_ref (exprx);
2331 if (! t)
2332 return 0;
2333 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2334 exprx = t;
2337 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2338 if (moffsety_known_p)
2339 moffsety = MEM_OFFSET (y);
2340 if (TREE_CODE (expry) == COMPONENT_REF)
2342 tree t = decl_for_component_ref (expry);
2343 if (! t)
2344 return 0;
2345 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2346 expry = t;
2349 if (! DECL_P (exprx) || ! DECL_P (expry))
2350 return 0;
2352 /* With invalid code we can end up storing into the constant pool.
2353 Bail out to avoid ICEing when creating RTL for this.
2354 See gfortran.dg/lto/20091028-2_0.f90. */
2355 if (TREE_CODE (exprx) == CONST_DECL
2356 || TREE_CODE (expry) == CONST_DECL)
2357 return 1;
2359 rtlx = DECL_RTL (exprx);
2360 rtly = DECL_RTL (expry);
2362 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2363 can't overlap unless they are the same because we never reuse that part
2364 of the stack frame used for locals for spilled pseudos. */
2365 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2366 && ! rtx_equal_p (rtlx, rtly))
2367 return 1;
2369 /* If we have MEMs referring to different address spaces (which can
2370 potentially overlap), we cannot easily tell from the addresses
2371 whether the references overlap. */
2372 if (MEM_P (rtlx) && MEM_P (rtly)
2373 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2374 return 0;
2376 /* Get the base and offsets of both decls. If either is a register, we
2377 know both are and are the same, so use that as the base. The only
2378 we can avoid overlap is if we can deduce that they are nonoverlapping
2379 pieces of that decl, which is very rare. */
2380 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2381 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2382 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2384 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2385 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2386 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2388 /* If the bases are different, we know they do not overlap if both
2389 are constants or if one is a constant and the other a pointer into the
2390 stack frame. Otherwise a different base means we can't tell if they
2391 overlap or not. */
2392 if (! rtx_equal_p (basex, basey))
2393 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2394 || (CONSTANT_P (basex) && REG_P (basey)
2395 && REGNO_PTR_FRAME_P (REGNO (basey)))
2396 || (CONSTANT_P (basey) && REG_P (basex)
2397 && REGNO_PTR_FRAME_P (REGNO (basex))));
2399 /* Offset based disambiguation not appropriate for loop invariant */
2400 if (loop_invariant)
2401 return 0;
2403 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2404 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2405 : -1);
2406 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2407 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2408 : -1);
2410 /* If we have an offset for either memref, it can update the values computed
2411 above. */
2412 if (moffsetx_known_p)
2413 offsetx += moffsetx, sizex -= moffsetx;
2414 if (moffsety_known_p)
2415 offsety += moffsety, sizey -= moffsety;
2417 /* If a memref has both a size and an offset, we can use the smaller size.
2418 We can't do this if the offset isn't known because we must view this
2419 memref as being anywhere inside the DECL's MEM. */
2420 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2421 sizex = MEM_SIZE (x);
2422 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2423 sizey = MEM_SIZE (y);
2425 /* Put the values of the memref with the lower offset in X's values. */
2426 if (offsetx > offsety)
2428 tem = offsetx, offsetx = offsety, offsety = tem;
2429 tem = sizex, sizex = sizey, sizey = tem;
2432 /* If we don't know the size of the lower-offset value, we can't tell
2433 if they conflict. Otherwise, we do the test. */
2434 return sizex >= 0 && offsety >= offsetx + sizex;
2437 /* Helper for true_dependence and canon_true_dependence.
2438 Checks for true dependence: X is read after store in MEM takes place.
2440 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2441 NULL_RTX, and the canonical addresses of MEM and X are both computed
2442 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2444 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2446 Returns 1 if there is a true dependence, 0 otherwise. */
2448 static int
2449 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2450 const_rtx x, rtx x_addr, bool mem_canonicalized)
2452 rtx base;
2453 int ret;
2455 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2456 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2458 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2459 return 1;
2461 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2462 This is used in epilogue deallocation functions, and in cselib. */
2463 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2464 return 1;
2465 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2466 return 1;
2467 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2468 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2469 return 1;
2471 /* Read-only memory is by definition never modified, and therefore can't
2472 conflict with anything. We don't expect to find read-only set on MEM,
2473 but stupid user tricks can produce them, so don't die. */
2474 if (MEM_READONLY_P (x))
2475 return 0;
2477 /* If we have MEMs referring to different address spaces (which can
2478 potentially overlap), we cannot easily tell from the addresses
2479 whether the references overlap. */
2480 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2481 return 1;
2483 if (! mem_addr)
2485 mem_addr = XEXP (mem, 0);
2486 if (mem_mode == VOIDmode)
2487 mem_mode = GET_MODE (mem);
2490 if (! x_addr)
2492 x_addr = XEXP (x, 0);
2493 if (!((GET_CODE (x_addr) == VALUE
2494 && GET_CODE (mem_addr) != VALUE
2495 && reg_mentioned_p (x_addr, mem_addr))
2496 || (GET_CODE (x_addr) != VALUE
2497 && GET_CODE (mem_addr) == VALUE
2498 && reg_mentioned_p (mem_addr, x_addr))))
2500 x_addr = get_addr (x_addr);
2501 if (! mem_canonicalized)
2502 mem_addr = get_addr (mem_addr);
2506 base = find_base_term (x_addr);
2507 if (base && (GET_CODE (base) == LABEL_REF
2508 || (GET_CODE (base) == SYMBOL_REF
2509 && CONSTANT_POOL_ADDRESS_P (base))))
2510 return 0;
2512 rtx mem_base = find_base_term (mem_addr);
2513 if (! base_alias_check (x_addr, base, mem_addr, mem_base,
2514 GET_MODE (x), mem_mode))
2515 return 0;
2517 x_addr = canon_rtx (x_addr);
2518 if (!mem_canonicalized)
2519 mem_addr = canon_rtx (mem_addr);
2521 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2522 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2523 return ret;
2525 if (mems_in_disjoint_alias_sets_p (x, mem))
2526 return 0;
2528 if (nonoverlapping_memrefs_p (mem, x, false))
2529 return 0;
2531 return rtx_refs_may_alias_p (x, mem, true);
2534 /* True dependence: X is read after store in MEM takes place. */
2537 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2539 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2540 x, NULL_RTX, /*mem_canonicalized=*/false);
2543 /* Canonical true dependence: X is read after store in MEM takes place.
2544 Variant of true_dependence which assumes MEM has already been
2545 canonicalized (hence we no longer do that here).
2546 The mem_addr argument has been added, since true_dependence_1 computed
2547 this value prior to canonicalizing. */
2550 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2551 const_rtx x, rtx x_addr)
2553 return true_dependence_1 (mem, mem_mode, mem_addr,
2554 x, x_addr, /*mem_canonicalized=*/true);
2557 /* Returns nonzero if a write to X might alias a previous read from
2558 (or, if WRITEP is true, a write to) MEM.
2559 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2560 and X_MODE the mode for that access.
2561 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2563 static int
2564 write_dependence_p (const_rtx mem,
2565 const_rtx x, enum machine_mode x_mode, rtx x_addr,
2566 bool mem_canonicalized, bool x_canonicalized, bool writep)
2568 rtx mem_addr;
2569 rtx base;
2570 int ret;
2572 gcc_checking_assert (x_canonicalized
2573 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2574 : (x_addr == NULL_RTX && x_mode == VOIDmode));
2576 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2577 return 1;
2579 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2580 This is used in epilogue deallocation functions. */
2581 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2582 return 1;
2583 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2584 return 1;
2585 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2586 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2587 return 1;
2589 /* A read from read-only memory can't conflict with read-write memory. */
2590 if (!writep && MEM_READONLY_P (mem))
2591 return 0;
2593 /* If we have MEMs referring to different address spaces (which can
2594 potentially overlap), we cannot easily tell from the addresses
2595 whether the references overlap. */
2596 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2597 return 1;
2599 mem_addr = XEXP (mem, 0);
2600 if (!x_addr)
2602 x_addr = XEXP (x, 0);
2603 if (!((GET_CODE (x_addr) == VALUE
2604 && GET_CODE (mem_addr) != VALUE
2605 && reg_mentioned_p (x_addr, mem_addr))
2606 || (GET_CODE (x_addr) != VALUE
2607 && GET_CODE (mem_addr) == VALUE
2608 && reg_mentioned_p (mem_addr, x_addr))))
2610 x_addr = get_addr (x_addr);
2611 if (!mem_canonicalized)
2612 mem_addr = get_addr (mem_addr);
2616 base = find_base_term (mem_addr);
2617 if (! writep
2618 && base
2619 && (GET_CODE (base) == LABEL_REF
2620 || (GET_CODE (base) == SYMBOL_REF
2621 && CONSTANT_POOL_ADDRESS_P (base))))
2622 return 0;
2624 rtx x_base = find_base_term (x_addr);
2625 if (! base_alias_check (x_addr, x_base, mem_addr, base, GET_MODE (x),
2626 GET_MODE (mem)))
2627 return 0;
2629 if (!x_canonicalized)
2631 x_addr = canon_rtx (x_addr);
2632 x_mode = GET_MODE (x);
2634 if (!mem_canonicalized)
2635 mem_addr = canon_rtx (mem_addr);
2637 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2638 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
2639 return ret;
2641 if (nonoverlapping_memrefs_p (x, mem, false))
2642 return 0;
2644 return rtx_refs_may_alias_p (x, mem, false);
2647 /* Anti dependence: X is written after read in MEM takes place. */
2650 anti_dependence (const_rtx mem, const_rtx x)
2652 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2653 /*mem_canonicalized=*/false,
2654 /*x_canonicalized*/false, /*writep=*/false);
2657 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2658 Also, consider X in X_MODE (which might be from an enclosing
2659 STRICT_LOW_PART / ZERO_EXTRACT).
2660 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2663 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
2664 const_rtx x, enum machine_mode x_mode, rtx x_addr)
2666 return write_dependence_p (mem, x, x_mode, x_addr,
2667 mem_canonicalized, /*x_canonicalized=*/true,
2668 /*writep=*/false);
2671 /* Output dependence: X is written after store in MEM takes place. */
2674 output_dependence (const_rtx mem, const_rtx x)
2676 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2677 /*mem_canonicalized=*/false,
2678 /*x_canonicalized*/false, /*writep=*/true);
2683 /* Check whether X may be aliased with MEM. Don't do offset-based
2684 memory disambiguation & TBAA. */
2686 may_alias_p (const_rtx mem, const_rtx x)
2688 rtx x_addr, mem_addr;
2690 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2691 return 1;
2693 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2694 This is used in epilogue deallocation functions. */
2695 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2696 return 1;
2697 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2698 return 1;
2699 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2700 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2701 return 1;
2703 /* Read-only memory is by definition never modified, and therefore can't
2704 conflict with anything. We don't expect to find read-only set on MEM,
2705 but stupid user tricks can produce them, so don't die. */
2706 if (MEM_READONLY_P (x))
2707 return 0;
2709 /* If we have MEMs referring to different address spaces (which can
2710 potentially overlap), we cannot easily tell from the addresses
2711 whether the references overlap. */
2712 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2713 return 1;
2715 x_addr = XEXP (x, 0);
2716 mem_addr = XEXP (mem, 0);
2717 if (!((GET_CODE (x_addr) == VALUE
2718 && GET_CODE (mem_addr) != VALUE
2719 && reg_mentioned_p (x_addr, mem_addr))
2720 || (GET_CODE (x_addr) != VALUE
2721 && GET_CODE (mem_addr) == VALUE
2722 && reg_mentioned_p (mem_addr, x_addr))))
2724 x_addr = get_addr (x_addr);
2725 mem_addr = get_addr (mem_addr);
2728 rtx x_base = find_base_term (x_addr);
2729 rtx mem_base = find_base_term (mem_addr);
2730 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
2731 GET_MODE (x), GET_MODE (mem_addr)))
2732 return 0;
2734 x_addr = canon_rtx (x_addr);
2735 mem_addr = canon_rtx (mem_addr);
2737 if (nonoverlapping_memrefs_p (mem, x, true))
2738 return 0;
2740 /* TBAA not valid for loop_invarint */
2741 return rtx_refs_may_alias_p (x, mem, false);
2744 void
2745 init_alias_target (void)
2747 int i;
2749 if (!arg_base_value)
2750 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2752 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2754 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2755 /* Check whether this register can hold an incoming pointer
2756 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2757 numbers, so translate if necessary due to register windows. */
2758 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2759 && HARD_REGNO_MODE_OK (i, Pmode))
2760 static_reg_base_value[i] = arg_base_value;
2762 static_reg_base_value[STACK_POINTER_REGNUM]
2763 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2764 static_reg_base_value[ARG_POINTER_REGNUM]
2765 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2766 static_reg_base_value[FRAME_POINTER_REGNUM]
2767 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2768 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2769 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2770 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2771 #endif
2774 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2775 to be memory reference. */
2776 static bool memory_modified;
2777 static void
2778 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2780 if (MEM_P (x))
2782 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2783 memory_modified = true;
2788 /* Return true when INSN possibly modify memory contents of MEM
2789 (i.e. address can be modified). */
2790 bool
2791 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2793 if (!INSN_P (insn))
2794 return false;
2795 memory_modified = false;
2796 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2797 return memory_modified;
2800 /* Return TRUE if the destination of a set is rtx identical to
2801 ITEM. */
2802 static inline bool
2803 set_dest_equal_p (const_rtx set, const_rtx item)
2805 rtx dest = SET_DEST (set);
2806 return rtx_equal_p (dest, item);
2809 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2810 *DEFINITELY* modify the memory contents of MEM. */
2811 bool
2812 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2814 if (!INSN_P (insn))
2815 return false;
2816 insn = PATTERN (insn);
2817 if (GET_CODE (insn) == SET)
2818 return set_dest_equal_p (insn, mem);
2819 else if (GET_CODE (insn) == PARALLEL)
2821 int i;
2822 for (i = 0; i < XVECLEN (insn, 0); i++)
2824 rtx sub = XVECEXP (insn, 0, i);
2825 if (GET_CODE (sub) == SET
2826 && set_dest_equal_p (sub, mem))
2827 return true;
2830 return false;
2833 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2834 array. */
2836 void
2837 init_alias_analysis (void)
2839 unsigned int maxreg = max_reg_num ();
2840 int changed, pass;
2841 int i;
2842 unsigned int ui;
2843 rtx insn, val;
2844 int rpo_cnt;
2845 int *rpo;
2847 timevar_push (TV_ALIAS_ANALYSIS);
2849 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
2850 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2851 bitmap_clear (reg_known_equiv_p);
2853 /* If we have memory allocated from the previous run, use it. */
2854 if (old_reg_base_value)
2855 reg_base_value = old_reg_base_value;
2857 if (reg_base_value)
2858 reg_base_value->truncate (0);
2860 vec_safe_grow_cleared (reg_base_value, maxreg);
2862 new_reg_base_value = XNEWVEC (rtx, maxreg);
2863 reg_seen = sbitmap_alloc (maxreg);
2865 /* The basic idea is that each pass through this loop will use the
2866 "constant" information from the previous pass to propagate alias
2867 information through another level of assignments.
2869 The propagation is done on the CFG in reverse post-order, to propagate
2870 things forward as far as possible in each iteration.
2872 This could get expensive if the assignment chains are long. Maybe
2873 we should throttle the number of iterations, possibly based on
2874 the optimization level or flag_expensive_optimizations.
2876 We could propagate more information in the first pass by making use
2877 of DF_REG_DEF_COUNT to determine immediately that the alias information
2878 for a pseudo is "constant".
2880 A program with an uninitialized variable can cause an infinite loop
2881 here. Instead of doing a full dataflow analysis to detect such problems
2882 we just cap the number of iterations for the loop.
2884 The state of the arrays for the set chain in question does not matter
2885 since the program has undefined behavior. */
2887 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2888 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2890 pass = 0;
2893 /* Assume nothing will change this iteration of the loop. */
2894 changed = 0;
2896 /* We want to assign the same IDs each iteration of this loop, so
2897 start counting from one each iteration of the loop. */
2898 unique_id = 1;
2900 /* We're at the start of the function each iteration through the
2901 loop, so we're copying arguments. */
2902 copying_arguments = true;
2904 /* Wipe the potential alias information clean for this pass. */
2905 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2907 /* Wipe the reg_seen array clean. */
2908 bitmap_clear (reg_seen);
2910 /* Initialize the alias information for this pass. */
2911 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2912 if (static_reg_base_value[i])
2914 new_reg_base_value[i] = static_reg_base_value[i];
2915 bitmap_set_bit (reg_seen, i);
2918 /* Walk the insns adding values to the new_reg_base_value array. */
2919 for (i = 0; i < rpo_cnt; i++)
2921 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
2922 FOR_BB_INSNS (bb, insn)
2924 if (NONDEBUG_INSN_P (insn))
2926 rtx note, set;
2928 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2929 /* The prologue/epilogue insns are not threaded onto the
2930 insn chain until after reload has completed. Thus,
2931 there is no sense wasting time checking if INSN is in
2932 the prologue/epilogue until after reload has completed. */
2933 if (reload_completed
2934 && prologue_epilogue_contains (insn))
2935 continue;
2936 #endif
2938 /* If this insn has a noalias note, process it, Otherwise,
2939 scan for sets. A simple set will have no side effects
2940 which could change the base value of any other register. */
2942 if (GET_CODE (PATTERN (insn)) == SET
2943 && REG_NOTES (insn) != 0
2944 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2945 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2946 else
2947 note_stores (PATTERN (insn), record_set, NULL);
2949 set = single_set (insn);
2951 if (set != 0
2952 && REG_P (SET_DEST (set))
2953 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2955 unsigned int regno = REGNO (SET_DEST (set));
2956 rtx src = SET_SRC (set);
2957 rtx t;
2959 note = find_reg_equal_equiv_note (insn);
2960 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2961 && DF_REG_DEF_COUNT (regno) != 1)
2962 note = NULL_RTX;
2964 if (note != NULL_RTX
2965 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2966 && ! rtx_varies_p (XEXP (note, 0), 1)
2967 && ! reg_overlap_mentioned_p (SET_DEST (set),
2968 XEXP (note, 0)))
2970 set_reg_known_value (regno, XEXP (note, 0));
2971 set_reg_known_equiv_p (regno,
2972 REG_NOTE_KIND (note) == REG_EQUIV);
2974 else if (DF_REG_DEF_COUNT (regno) == 1
2975 && GET_CODE (src) == PLUS
2976 && REG_P (XEXP (src, 0))
2977 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2978 && CONST_INT_P (XEXP (src, 1)))
2980 t = plus_constant (GET_MODE (src), t,
2981 INTVAL (XEXP (src, 1)));
2982 set_reg_known_value (regno, t);
2983 set_reg_known_equiv_p (regno, false);
2985 else if (DF_REG_DEF_COUNT (regno) == 1
2986 && ! rtx_varies_p (src, 1))
2988 set_reg_known_value (regno, src);
2989 set_reg_known_equiv_p (regno, false);
2993 else if (NOTE_P (insn)
2994 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2995 copying_arguments = false;
2999 /* Now propagate values from new_reg_base_value to reg_base_value. */
3000 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3002 for (ui = 0; ui < maxreg; ui++)
3004 if (new_reg_base_value[ui]
3005 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3006 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3008 (*reg_base_value)[ui] = new_reg_base_value[ui];
3009 changed = 1;
3013 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3014 XDELETEVEC (rpo);
3016 /* Fill in the remaining entries. */
3017 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3019 int regno = i + FIRST_PSEUDO_REGISTER;
3020 if (! val)
3021 set_reg_known_value (regno, regno_reg_rtx[regno]);
3024 /* Clean up. */
3025 free (new_reg_base_value);
3026 new_reg_base_value = 0;
3027 sbitmap_free (reg_seen);
3028 reg_seen = 0;
3029 timevar_pop (TV_ALIAS_ANALYSIS);
3032 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3033 Special API for var-tracking pass purposes. */
3035 void
3036 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3038 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3041 void
3042 end_alias_analysis (void)
3044 old_reg_base_value = reg_base_value;
3045 vec_free (reg_known_value);
3046 sbitmap_free (reg_known_equiv_p);
3049 #include "gt-alias.h"