Add assember CFI directives to millicode division and remainder routines.
[official-gcc.git] / gcc / tree-vectorizer.cc
blob89cd0b88b6117c7bb79a91c8997635232525aaf9
1 /* Vectorizer
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Loop and basic block vectorizer.
23 This file contains drivers for the three vectorizers:
24 (1) loop vectorizer (inter-iteration parallelism),
25 (2) loop-aware SLP (intra-iteration parallelism) (invoked by the loop
26 vectorizer)
27 (3) BB vectorizer (out-of-loops), aka SLP
29 The rest of the vectorizer's code is organized as follows:
30 - tree-vect-loop.cc - loop specific parts such as reductions, etc. These are
31 used by drivers (1) and (2).
32 - tree-vect-loop-manip.cc - vectorizer's loop control-flow utilities, used by
33 drivers (1) and (2).
34 - tree-vect-slp.cc - BB vectorization specific analysis and transformation,
35 used by drivers (2) and (3).
36 - tree-vect-stmts.cc - statements analysis and transformation (used by all).
37 - tree-vect-data-refs.cc - vectorizer specific data-refs analysis and
38 manipulations (used by all).
39 - tree-vect-patterns.cc - vectorizable code patterns detector (used by all)
41 Here's a poor attempt at illustrating that:
43 tree-vectorizer.cc:
44 loop_vect() loop_aware_slp() slp_vect()
45 | / \ /
46 | / \ /
47 tree-vect-loop.cc tree-vect-slp.cc
48 | \ \ / / |
49 | \ \/ / |
50 | \ /\ / |
51 | \ / \ / |
52 tree-vect-stmts.cc tree-vect-data-refs.cc
53 \ /
54 tree-vect-patterns.cc
57 #include "config.h"
58 #include "system.h"
59 #include "coretypes.h"
60 #include "backend.h"
61 #include "tree.h"
62 #include "gimple.h"
63 #include "predict.h"
64 #include "tree-pass.h"
65 #include "ssa.h"
66 #include "cgraph.h"
67 #include "fold-const.h"
68 #include "stor-layout.h"
69 #include "gimple-iterator.h"
70 #include "gimple-walk.h"
71 #include "tree-ssa-loop-manip.h"
72 #include "tree-ssa-loop-niter.h"
73 #include "tree-cfg.h"
74 #include "cfgloop.h"
75 #include "tree-vectorizer.h"
76 #include "tree-ssa-propagate.h"
77 #include "dbgcnt.h"
78 #include "tree-scalar-evolution.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "gimple-pretty-print.h"
82 #include "opt-problem.h"
83 #include "internal-fn.h"
84 #include "tree-ssa-sccvn.h"
85 #include "tree-into-ssa.h"
87 /* Loop or bb location, with hotness information. */
88 dump_user_location_t vect_location;
90 /* auto_purge_vect_location's dtor: reset the vect_location
91 global, to avoid stale location_t values that could reference
92 GC-ed blocks. */
94 auto_purge_vect_location::~auto_purge_vect_location ()
96 vect_location = dump_user_location_t ();
99 /* Dump a cost entry according to args to F. */
101 void
102 dump_stmt_cost (FILE *f, int count, enum vect_cost_for_stmt kind,
103 stmt_vec_info stmt_info, slp_tree node, tree,
104 int misalign, unsigned cost,
105 enum vect_cost_model_location where)
107 if (stmt_info)
109 print_gimple_expr (f, STMT_VINFO_STMT (stmt_info), 0, TDF_SLIM);
110 fprintf (f, " ");
112 else if (node)
113 fprintf (f, "node %p ", (void *)node);
114 else
115 fprintf (f, "<unknown> ");
116 fprintf (f, "%d times ", count);
117 const char *ks = "unknown";
118 switch (kind)
120 case scalar_stmt:
121 ks = "scalar_stmt";
122 break;
123 case scalar_load:
124 ks = "scalar_load";
125 break;
126 case scalar_store:
127 ks = "scalar_store";
128 break;
129 case vector_stmt:
130 ks = "vector_stmt";
131 break;
132 case vector_load:
133 ks = "vector_load";
134 break;
135 case vector_gather_load:
136 ks = "vector_gather_load";
137 break;
138 case unaligned_load:
139 ks = "unaligned_load";
140 break;
141 case unaligned_store:
142 ks = "unaligned_store";
143 break;
144 case vector_store:
145 ks = "vector_store";
146 break;
147 case vector_scatter_store:
148 ks = "vector_scatter_store";
149 break;
150 case vec_to_scalar:
151 ks = "vec_to_scalar";
152 break;
153 case scalar_to_vec:
154 ks = "scalar_to_vec";
155 break;
156 case cond_branch_not_taken:
157 ks = "cond_branch_not_taken";
158 break;
159 case cond_branch_taken:
160 ks = "cond_branch_taken";
161 break;
162 case vec_perm:
163 ks = "vec_perm";
164 break;
165 case vec_promote_demote:
166 ks = "vec_promote_demote";
167 break;
168 case vec_construct:
169 ks = "vec_construct";
170 break;
172 fprintf (f, "%s ", ks);
173 if (kind == unaligned_load || kind == unaligned_store)
174 fprintf (f, "(misalign %d) ", misalign);
175 fprintf (f, "costs %u ", cost);
176 const char *ws = "unknown";
177 switch (where)
179 case vect_prologue:
180 ws = "prologue";
181 break;
182 case vect_body:
183 ws = "body";
184 break;
185 case vect_epilogue:
186 ws = "epilogue";
187 break;
189 fprintf (f, "in %s\n", ws);
192 /* For mapping simduid to vectorization factor. */
194 class simduid_to_vf : public free_ptr_hash<simduid_to_vf>
196 public:
197 unsigned int simduid;
198 poly_uint64 vf;
200 /* hash_table support. */
201 static inline hashval_t hash (const simduid_to_vf *);
202 static inline int equal (const simduid_to_vf *, const simduid_to_vf *);
205 inline hashval_t
206 simduid_to_vf::hash (const simduid_to_vf *p)
208 return p->simduid;
211 inline int
212 simduid_to_vf::equal (const simduid_to_vf *p1, const simduid_to_vf *p2)
214 return p1->simduid == p2->simduid;
217 /* This hash maps the OMP simd array to the corresponding simduid used
218 to index into it. Like thus,
220 _7 = GOMP_SIMD_LANE (simduid.0)
223 D.1737[_7] = stuff;
226 This hash maps from the OMP simd array (D.1737[]) to DECL_UID of
227 simduid.0. */
229 struct simd_array_to_simduid : free_ptr_hash<simd_array_to_simduid>
231 tree decl;
232 unsigned int simduid;
234 /* hash_table support. */
235 static inline hashval_t hash (const simd_array_to_simduid *);
236 static inline int equal (const simd_array_to_simduid *,
237 const simd_array_to_simduid *);
240 inline hashval_t
241 simd_array_to_simduid::hash (const simd_array_to_simduid *p)
243 return DECL_UID (p->decl);
246 inline int
247 simd_array_to_simduid::equal (const simd_array_to_simduid *p1,
248 const simd_array_to_simduid *p2)
250 return p1->decl == p2->decl;
253 /* Fold IFN_GOMP_SIMD_LANE, IFN_GOMP_SIMD_VF, IFN_GOMP_SIMD_LAST_LANE,
254 into their corresponding constants and remove
255 IFN_GOMP_SIMD_ORDERED_{START,END}. */
257 static void
258 adjust_simduid_builtins (hash_table<simduid_to_vf> *htab, function *fun)
260 basic_block bb;
262 FOR_EACH_BB_FN (bb, fun)
264 gimple_stmt_iterator i;
266 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
268 poly_uint64 vf = 1;
269 enum internal_fn ifn;
270 gimple *stmt = gsi_stmt (i);
271 tree t;
272 if (!is_gimple_call (stmt)
273 || !gimple_call_internal_p (stmt))
275 gsi_next (&i);
276 continue;
278 ifn = gimple_call_internal_fn (stmt);
279 switch (ifn)
281 case IFN_GOMP_SIMD_LANE:
282 case IFN_GOMP_SIMD_VF:
283 case IFN_GOMP_SIMD_LAST_LANE:
284 break;
285 case IFN_GOMP_SIMD_ORDERED_START:
286 case IFN_GOMP_SIMD_ORDERED_END:
287 if (integer_onep (gimple_call_arg (stmt, 0)))
289 enum built_in_function bcode
290 = (ifn == IFN_GOMP_SIMD_ORDERED_START
291 ? BUILT_IN_GOMP_ORDERED_START
292 : BUILT_IN_GOMP_ORDERED_END);
293 gimple *g
294 = gimple_build_call (builtin_decl_explicit (bcode), 0);
295 gimple_move_vops (g, stmt);
296 gsi_replace (&i, g, true);
297 continue;
299 gsi_remove (&i, true);
300 unlink_stmt_vdef (stmt);
301 continue;
302 default:
303 gsi_next (&i);
304 continue;
306 tree arg = gimple_call_arg (stmt, 0);
307 gcc_assert (arg != NULL_TREE);
308 gcc_assert (TREE_CODE (arg) == SSA_NAME);
309 simduid_to_vf *p = NULL, data;
310 data.simduid = DECL_UID (SSA_NAME_VAR (arg));
311 /* Need to nullify loop safelen field since it's value is not
312 valid after transformation. */
313 if (bb->loop_father && bb->loop_father->safelen > 0)
314 bb->loop_father->safelen = 0;
315 if (htab)
317 p = htab->find (&data);
318 if (p)
319 vf = p->vf;
321 switch (ifn)
323 case IFN_GOMP_SIMD_VF:
324 t = build_int_cst (unsigned_type_node, vf);
325 break;
326 case IFN_GOMP_SIMD_LANE:
327 t = build_int_cst (unsigned_type_node, 0);
328 break;
329 case IFN_GOMP_SIMD_LAST_LANE:
330 t = gimple_call_arg (stmt, 1);
331 break;
332 default:
333 gcc_unreachable ();
335 tree lhs = gimple_call_lhs (stmt);
336 if (lhs)
337 replace_uses_by (lhs, t);
338 release_defs (stmt);
339 gsi_remove (&i, true);
344 /* Helper structure for note_simd_array_uses. */
346 struct note_simd_array_uses_struct
348 hash_table<simd_array_to_simduid> **htab;
349 unsigned int simduid;
352 /* Callback for note_simd_array_uses, called through walk_gimple_op. */
354 static tree
355 note_simd_array_uses_cb (tree *tp, int *walk_subtrees, void *data)
357 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
358 struct note_simd_array_uses_struct *ns
359 = (struct note_simd_array_uses_struct *) wi->info;
361 if (TYPE_P (*tp))
362 *walk_subtrees = 0;
363 else if (VAR_P (*tp)
364 && lookup_attribute ("omp simd array", DECL_ATTRIBUTES (*tp))
365 && DECL_CONTEXT (*tp) == current_function_decl)
367 simd_array_to_simduid data;
368 if (!*ns->htab)
369 *ns->htab = new hash_table<simd_array_to_simduid> (15);
370 data.decl = *tp;
371 data.simduid = ns->simduid;
372 simd_array_to_simduid **slot = (*ns->htab)->find_slot (&data, INSERT);
373 if (*slot == NULL)
375 simd_array_to_simduid *p = XNEW (simd_array_to_simduid);
376 *p = data;
377 *slot = p;
379 else if ((*slot)->simduid != ns->simduid)
380 (*slot)->simduid = -1U;
381 *walk_subtrees = 0;
383 return NULL_TREE;
386 /* Find "omp simd array" temporaries and map them to corresponding
387 simduid. */
389 static void
390 note_simd_array_uses (hash_table<simd_array_to_simduid> **htab, function *fun)
392 basic_block bb;
393 gimple_stmt_iterator gsi;
394 struct walk_stmt_info wi;
395 struct note_simd_array_uses_struct ns;
397 memset (&wi, 0, sizeof (wi));
398 wi.info = &ns;
399 ns.htab = htab;
401 FOR_EACH_BB_FN (bb, fun)
402 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
404 gimple *stmt = gsi_stmt (gsi);
405 if (!is_gimple_call (stmt) || !gimple_call_internal_p (stmt))
406 continue;
407 switch (gimple_call_internal_fn (stmt))
409 case IFN_GOMP_SIMD_LANE:
410 case IFN_GOMP_SIMD_VF:
411 case IFN_GOMP_SIMD_LAST_LANE:
412 break;
413 default:
414 continue;
416 tree lhs = gimple_call_lhs (stmt);
417 if (lhs == NULL_TREE)
418 continue;
419 imm_use_iterator use_iter;
420 gimple *use_stmt;
421 ns.simduid = DECL_UID (SSA_NAME_VAR (gimple_call_arg (stmt, 0)));
422 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, lhs)
423 if (!is_gimple_debug (use_stmt))
424 walk_gimple_op (use_stmt, note_simd_array_uses_cb, &wi);
428 /* Shrink arrays with "omp simd array" attribute to the corresponding
429 vectorization factor. */
431 static void
432 shrink_simd_arrays
433 (hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab,
434 hash_table<simduid_to_vf> *simduid_to_vf_htab)
436 for (hash_table<simd_array_to_simduid>::iterator iter
437 = simd_array_to_simduid_htab->begin ();
438 iter != simd_array_to_simduid_htab->end (); ++iter)
439 if ((*iter)->simduid != -1U)
441 tree decl = (*iter)->decl;
442 poly_uint64 vf = 1;
443 if (simduid_to_vf_htab)
445 simduid_to_vf *p = NULL, data;
446 data.simduid = (*iter)->simduid;
447 p = simduid_to_vf_htab->find (&data);
448 if (p)
449 vf = p->vf;
451 tree atype
452 = build_array_type_nelts (TREE_TYPE (TREE_TYPE (decl)), vf);
453 TREE_TYPE (decl) = atype;
454 relayout_decl (decl);
457 delete simd_array_to_simduid_htab;
460 /* Initialize the vec_info with kind KIND_IN and target cost data
461 TARGET_COST_DATA_IN. */
463 vec_info::vec_info (vec_info::vec_kind kind_in, vec_info_shared *shared_)
464 : kind (kind_in),
465 shared (shared_),
466 stmt_vec_info_ro (false)
468 stmt_vec_infos.create (50);
471 vec_info::~vec_info ()
473 for (slp_instance &instance : slp_instances)
474 vect_free_slp_instance (instance);
476 free_stmt_vec_infos ();
479 vec_info_shared::vec_info_shared ()
480 : n_stmts (0),
481 datarefs (vNULL),
482 datarefs_copy (vNULL),
483 ddrs (vNULL)
487 vec_info_shared::~vec_info_shared ()
489 free_data_refs (datarefs);
490 free_dependence_relations (ddrs);
491 datarefs_copy.release ();
494 void
495 vec_info_shared::save_datarefs ()
497 if (!flag_checking)
498 return;
499 datarefs_copy.reserve_exact (datarefs.length ());
500 for (unsigned i = 0; i < datarefs.length (); ++i)
501 datarefs_copy.quick_push (*datarefs[i]);
504 void
505 vec_info_shared::check_datarefs ()
507 if (!flag_checking)
508 return;
509 gcc_assert (datarefs.length () == datarefs_copy.length ());
510 for (unsigned i = 0; i < datarefs.length (); ++i)
511 if (memcmp (&datarefs_copy[i], datarefs[i],
512 offsetof (data_reference, alt_indices)) != 0)
513 gcc_unreachable ();
516 /* Record that STMT belongs to the vectorizable region. Create and return
517 an associated stmt_vec_info. */
519 stmt_vec_info
520 vec_info::add_stmt (gimple *stmt)
522 stmt_vec_info res = new_stmt_vec_info (stmt);
523 set_vinfo_for_stmt (stmt, res);
524 return res;
527 /* Record that STMT belongs to the vectorizable region. Create a new
528 stmt_vec_info and mark VECINFO as being related and return the new
529 stmt_vec_info. */
531 stmt_vec_info
532 vec_info::add_pattern_stmt (gimple *stmt, stmt_vec_info stmt_info)
534 stmt_vec_info res = new_stmt_vec_info (stmt);
535 set_vinfo_for_stmt (stmt, res, false);
536 STMT_VINFO_RELATED_STMT (res) = stmt_info;
537 return res;
540 /* If STMT has an associated stmt_vec_info, return that vec_info, otherwise
541 return null. It is safe to call this function on any statement, even if
542 it might not be part of the vectorizable region. */
544 stmt_vec_info
545 vec_info::lookup_stmt (gimple *stmt)
547 unsigned int uid = gimple_uid (stmt);
548 if (uid > 0 && uid - 1 < stmt_vec_infos.length ())
550 stmt_vec_info res = stmt_vec_infos[uid - 1];
551 if (res && res->stmt == stmt)
552 return res;
554 return NULL;
557 /* If NAME is an SSA_NAME and its definition has an associated stmt_vec_info,
558 return that stmt_vec_info, otherwise return null. It is safe to call
559 this on arbitrary operands. */
561 stmt_vec_info
562 vec_info::lookup_def (tree name)
564 if (TREE_CODE (name) == SSA_NAME
565 && !SSA_NAME_IS_DEFAULT_DEF (name))
566 return lookup_stmt (SSA_NAME_DEF_STMT (name));
567 return NULL;
570 /* See whether there is a single non-debug statement that uses LHS and
571 whether that statement has an associated stmt_vec_info. Return the
572 stmt_vec_info if so, otherwise return null. */
574 stmt_vec_info
575 vec_info::lookup_single_use (tree lhs)
577 use_operand_p dummy;
578 gimple *use_stmt;
579 if (single_imm_use (lhs, &dummy, &use_stmt))
580 return lookup_stmt (use_stmt);
581 return NULL;
584 /* Return vectorization information about DR. */
586 dr_vec_info *
587 vec_info::lookup_dr (data_reference *dr)
589 stmt_vec_info stmt_info = lookup_stmt (DR_STMT (dr));
590 /* DR_STMT should never refer to a stmt in a pattern replacement. */
591 gcc_checking_assert (!is_pattern_stmt_p (stmt_info));
592 return STMT_VINFO_DR_INFO (stmt_info->dr_aux.stmt);
595 /* Record that NEW_STMT_INFO now implements the same data reference
596 as OLD_STMT_INFO. */
598 void
599 vec_info::move_dr (stmt_vec_info new_stmt_info, stmt_vec_info old_stmt_info)
601 gcc_assert (!is_pattern_stmt_p (old_stmt_info));
602 STMT_VINFO_DR_INFO (old_stmt_info)->stmt = new_stmt_info;
603 new_stmt_info->dr_aux = old_stmt_info->dr_aux;
604 STMT_VINFO_DR_WRT_VEC_LOOP (new_stmt_info)
605 = STMT_VINFO_DR_WRT_VEC_LOOP (old_stmt_info);
606 STMT_VINFO_GATHER_SCATTER_P (new_stmt_info)
607 = STMT_VINFO_GATHER_SCATTER_P (old_stmt_info);
610 /* Permanently remove the statement described by STMT_INFO from the
611 function. */
613 void
614 vec_info::remove_stmt (stmt_vec_info stmt_info)
616 gcc_assert (!stmt_info->pattern_stmt_p);
617 set_vinfo_for_stmt (stmt_info->stmt, NULL);
618 unlink_stmt_vdef (stmt_info->stmt);
619 gimple_stmt_iterator si = gsi_for_stmt (stmt_info->stmt);
620 gsi_remove (&si, true);
621 release_defs (stmt_info->stmt);
622 free_stmt_vec_info (stmt_info);
625 /* Replace the statement at GSI by NEW_STMT, both the vectorization
626 information and the function itself. STMT_INFO describes the statement
627 at GSI. */
629 void
630 vec_info::replace_stmt (gimple_stmt_iterator *gsi, stmt_vec_info stmt_info,
631 gimple *new_stmt)
633 gimple *old_stmt = stmt_info->stmt;
634 gcc_assert (!stmt_info->pattern_stmt_p && old_stmt == gsi_stmt (*gsi));
635 gimple_set_uid (new_stmt, gimple_uid (old_stmt));
636 stmt_info->stmt = new_stmt;
637 gsi_replace (gsi, new_stmt, true);
640 /* Insert stmts in SEQ on the VEC_INFO region entry. If CONTEXT is
641 not NULL it specifies whether to use the sub-region entry
642 determined by it, currently used for loop vectorization to insert
643 on the inner loop entry vs. the outer loop entry. */
645 void
646 vec_info::insert_seq_on_entry (stmt_vec_info context, gimple_seq seq)
648 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (this))
650 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
651 basic_block new_bb;
652 edge pe;
654 if (context && nested_in_vect_loop_p (loop, context))
655 loop = loop->inner;
657 pe = loop_preheader_edge (loop);
658 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
659 gcc_assert (!new_bb);
661 else
663 bb_vec_info bb_vinfo = as_a <bb_vec_info> (this);
664 gimple_stmt_iterator gsi_region_begin
665 = gsi_after_labels (bb_vinfo->bbs[0]);
666 gsi_insert_seq_before (&gsi_region_begin, seq, GSI_SAME_STMT);
670 /* Like insert_seq_on_entry but just inserts the single stmt NEW_STMT. */
672 void
673 vec_info::insert_on_entry (stmt_vec_info context, gimple *new_stmt)
675 gimple_seq seq = NULL;
676 gimple_stmt_iterator gsi = gsi_start (seq);
677 gsi_insert_before_without_update (&gsi, new_stmt, GSI_SAME_STMT);
678 insert_seq_on_entry (context, seq);
681 /* Create and initialize a new stmt_vec_info struct for STMT. */
683 stmt_vec_info
684 vec_info::new_stmt_vec_info (gimple *stmt)
686 stmt_vec_info res = XCNEW (class _stmt_vec_info);
687 res->stmt = stmt;
689 STMT_VINFO_TYPE (res) = undef_vec_info_type;
690 STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
691 STMT_VINFO_VECTORIZABLE (res) = true;
692 STMT_VINFO_REDUC_TYPE (res) = TREE_CODE_REDUCTION;
693 STMT_VINFO_REDUC_CODE (res) = ERROR_MARK;
694 STMT_VINFO_REDUC_FN (res) = IFN_LAST;
695 STMT_VINFO_REDUC_IDX (res) = -1;
696 STMT_VINFO_SLP_VECT_ONLY (res) = false;
697 STMT_VINFO_SLP_VECT_ONLY_PATTERN (res) = false;
698 STMT_VINFO_VEC_STMTS (res) = vNULL;
699 res->reduc_initial_values = vNULL;
700 res->reduc_scalar_results = vNULL;
702 if (is_a <loop_vec_info> (this)
703 && gimple_code (stmt) == GIMPLE_PHI
704 && is_loop_header_bb_p (gimple_bb (stmt)))
705 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
706 else
707 STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
709 STMT_SLP_TYPE (res) = loop_vect;
711 /* This is really "uninitialized" until vect_compute_data_ref_alignment. */
712 res->dr_aux.misalignment = DR_MISALIGNMENT_UNINITIALIZED;
714 return res;
717 /* Associate STMT with INFO. */
719 void
720 vec_info::set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info, bool check_ro)
722 unsigned int uid = gimple_uid (stmt);
723 if (uid == 0)
725 gcc_assert (!check_ro || !stmt_vec_info_ro);
726 gcc_checking_assert (info);
727 uid = stmt_vec_infos.length () + 1;
728 gimple_set_uid (stmt, uid);
729 stmt_vec_infos.safe_push (info);
731 else
733 gcc_checking_assert (info == NULL);
734 stmt_vec_infos[uid - 1] = info;
738 /* Free the contents of stmt_vec_infos. */
740 void
741 vec_info::free_stmt_vec_infos (void)
743 for (stmt_vec_info &info : stmt_vec_infos)
744 if (info != NULL)
745 free_stmt_vec_info (info);
746 stmt_vec_infos.release ();
749 /* Free STMT_INFO. */
751 void
752 vec_info::free_stmt_vec_info (stmt_vec_info stmt_info)
754 if (stmt_info->pattern_stmt_p)
756 gimple_set_bb (stmt_info->stmt, NULL);
757 tree lhs = gimple_get_lhs (stmt_info->stmt);
758 if (lhs && TREE_CODE (lhs) == SSA_NAME)
759 release_ssa_name (lhs);
762 stmt_info->reduc_initial_values.release ();
763 stmt_info->reduc_scalar_results.release ();
764 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).release ();
765 STMT_VINFO_VEC_STMTS (stmt_info).release ();
766 free (stmt_info);
769 /* Returns true if S1 dominates S2. */
771 bool
772 vect_stmt_dominates_stmt_p (gimple *s1, gimple *s2)
774 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
776 /* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D)
777 SSA_NAME. Assume it lives at the beginning of function and
778 thus dominates everything. */
779 if (!bb1 || s1 == s2)
780 return true;
782 /* If bb2 is NULL, it doesn't dominate any stmt with a bb. */
783 if (!bb2)
784 return false;
786 if (bb1 != bb2)
787 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
789 /* PHIs in the same basic block are assumed to be
790 executed all in parallel, if only one stmt is a PHI,
791 it dominates the other stmt in the same basic block. */
792 if (gimple_code (s1) == GIMPLE_PHI)
793 return true;
795 if (gimple_code (s2) == GIMPLE_PHI)
796 return false;
798 /* Inserted vectorized stmts all have UID 0 while the original stmts
799 in the IL have UID increasing within a BB. Walk from both sides
800 until we find the other stmt or a stmt with UID != 0. */
801 gimple_stmt_iterator gsi1 = gsi_for_stmt (s1);
802 while (gimple_uid (gsi_stmt (gsi1)) == 0)
804 gsi_next (&gsi1);
805 if (gsi_end_p (gsi1))
806 return false;
807 if (gsi_stmt (gsi1) == s2)
808 return true;
810 if (gimple_uid (gsi_stmt (gsi1)) == -1u)
811 return false;
813 gimple_stmt_iterator gsi2 = gsi_for_stmt (s2);
814 while (gimple_uid (gsi_stmt (gsi2)) == 0)
816 gsi_prev (&gsi2);
817 if (gsi_end_p (gsi2))
818 return false;
819 if (gsi_stmt (gsi2) == s1)
820 return true;
822 if (gimple_uid (gsi_stmt (gsi2)) == -1u)
823 return false;
825 if (gimple_uid (gsi_stmt (gsi1)) <= gimple_uid (gsi_stmt (gsi2)))
826 return true;
827 return false;
830 /* A helper function to free scev and LOOP niter information, as well as
831 clear loop constraint LOOP_C_FINITE. */
833 void
834 vect_free_loop_info_assumptions (class loop *loop)
836 scev_reset_htab ();
837 /* We need to explicitly reset upper bound information since they are
838 used even after free_numbers_of_iterations_estimates. */
839 loop->any_upper_bound = false;
840 loop->any_likely_upper_bound = false;
841 free_numbers_of_iterations_estimates (loop);
842 loop_constraint_clear (loop, LOOP_C_FINITE);
845 /* If LOOP has been versioned during ifcvt, return the internal call
846 guarding it. */
848 gimple *
849 vect_loop_vectorized_call (class loop *loop, gcond **cond)
851 basic_block bb = loop_preheader_edge (loop)->src;
852 gimple *g;
855 g = last_stmt (bb);
856 if ((g && gimple_code (g) == GIMPLE_COND)
857 || !single_succ_p (bb))
858 break;
859 if (!single_pred_p (bb))
860 break;
861 bb = single_pred (bb);
863 while (1);
864 if (g && gimple_code (g) == GIMPLE_COND)
866 if (cond)
867 *cond = as_a <gcond *> (g);
868 gimple_stmt_iterator gsi = gsi_for_stmt (g);
869 gsi_prev (&gsi);
870 if (!gsi_end_p (gsi))
872 g = gsi_stmt (gsi);
873 if (gimple_call_internal_p (g, IFN_LOOP_VECTORIZED)
874 && (tree_to_shwi (gimple_call_arg (g, 0)) == loop->num
875 || tree_to_shwi (gimple_call_arg (g, 1)) == loop->num))
876 return g;
879 return NULL;
882 /* If LOOP has been versioned during loop distribution, return the gurading
883 internal call. */
885 static gimple *
886 vect_loop_dist_alias_call (class loop *loop, function *fun)
888 basic_block bb;
889 basic_block entry;
890 class loop *outer, *orig;
891 gimple_stmt_iterator gsi;
892 gimple *g;
894 if (loop->orig_loop_num == 0)
895 return NULL;
897 orig = get_loop (fun, loop->orig_loop_num);
898 if (orig == NULL)
900 /* The original loop is somehow destroyed. Clear the information. */
901 loop->orig_loop_num = 0;
902 return NULL;
905 if (loop != orig)
906 bb = nearest_common_dominator (CDI_DOMINATORS, loop->header, orig->header);
907 else
908 bb = loop_preheader_edge (loop)->src;
910 outer = bb->loop_father;
911 entry = ENTRY_BLOCK_PTR_FOR_FN (fun);
913 /* Look upward in dominance tree. */
914 for (; bb != entry && flow_bb_inside_loop_p (outer, bb);
915 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
917 g = last_stmt (bb);
918 if (g == NULL || gimple_code (g) != GIMPLE_COND)
919 continue;
921 gsi = gsi_for_stmt (g);
922 gsi_prev (&gsi);
923 if (gsi_end_p (gsi))
924 continue;
926 g = gsi_stmt (gsi);
927 /* The guarding internal function call must have the same distribution
928 alias id. */
929 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS)
930 && (tree_to_shwi (gimple_call_arg (g, 0)) == loop->orig_loop_num))
931 return g;
933 return NULL;
936 /* Set the uids of all the statements in basic blocks inside loop
937 represented by LOOP_VINFO. LOOP_VECTORIZED_CALL is the internal
938 call guarding the loop which has been if converted. */
939 static void
940 set_uid_loop_bbs (loop_vec_info loop_vinfo, gimple *loop_vectorized_call,
941 function *fun)
943 tree arg = gimple_call_arg (loop_vectorized_call, 1);
944 basic_block *bbs;
945 unsigned int i;
946 class loop *scalar_loop = get_loop (fun, tree_to_shwi (arg));
948 LOOP_VINFO_SCALAR_LOOP (loop_vinfo) = scalar_loop;
949 gcc_checking_assert (vect_loop_vectorized_call (scalar_loop)
950 == loop_vectorized_call);
951 /* If we are going to vectorize outer loop, prevent vectorization
952 of the inner loop in the scalar loop - either the scalar loop is
953 thrown away, so it is a wasted work, or is used only for
954 a few iterations. */
955 if (scalar_loop->inner)
957 gimple *g = vect_loop_vectorized_call (scalar_loop->inner);
958 if (g)
960 arg = gimple_call_arg (g, 0);
961 get_loop (fun, tree_to_shwi (arg))->dont_vectorize = true;
962 fold_loop_internal_call (g, boolean_false_node);
965 bbs = get_loop_body (scalar_loop);
966 for (i = 0; i < scalar_loop->num_nodes; i++)
968 basic_block bb = bbs[i];
969 gimple_stmt_iterator gsi;
970 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
972 gimple *phi = gsi_stmt (gsi);
973 gimple_set_uid (phi, 0);
975 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
977 gimple *stmt = gsi_stmt (gsi);
978 gimple_set_uid (stmt, 0);
981 free (bbs);
984 /* Generate vectorized code for LOOP and its epilogues. */
986 static unsigned
987 vect_transform_loops (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
988 loop_p loop, gimple *loop_vectorized_call,
989 function *fun)
991 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
993 if (loop_vectorized_call)
994 set_uid_loop_bbs (loop_vinfo, loop_vectorized_call, fun);
996 unsigned HOST_WIDE_INT bytes;
997 if (dump_enabled_p ())
999 if (GET_MODE_SIZE (loop_vinfo->vector_mode).is_constant (&bytes))
1000 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
1001 "loop vectorized using %wu byte vectors\n", bytes);
1002 else
1003 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
1004 "loop vectorized using variable length vectors\n");
1007 loop_p new_loop = vect_transform_loop (loop_vinfo,
1008 loop_vectorized_call);
1009 /* Now that the loop has been vectorized, allow it to be unrolled
1010 etc. */
1011 loop->force_vectorize = false;
1013 if (loop->simduid)
1015 simduid_to_vf *simduid_to_vf_data = XNEW (simduid_to_vf);
1016 if (!simduid_to_vf_htab)
1017 simduid_to_vf_htab = new hash_table<simduid_to_vf> (15);
1018 simduid_to_vf_data->simduid = DECL_UID (loop->simduid);
1019 simduid_to_vf_data->vf = loop_vinfo->vectorization_factor;
1020 *simduid_to_vf_htab->find_slot (simduid_to_vf_data, INSERT)
1021 = simduid_to_vf_data;
1024 /* We should not have to update virtual SSA form here but some
1025 transforms involve creating new virtual definitions which makes
1026 updating difficult.
1027 We delay the actual update to the end of the pass but avoid
1028 confusing ourselves by forcing need_ssa_update_p () to false. */
1029 unsigned todo = 0;
1030 if (need_ssa_update_p (cfun))
1032 gcc_assert (loop_vinfo->any_known_not_updated_vssa);
1033 fun->gimple_df->ssa_renaming_needed = false;
1034 todo |= TODO_update_ssa_only_virtuals;
1036 gcc_assert (!need_ssa_update_p (cfun));
1038 /* Epilogue of vectorized loop must be vectorized too. */
1039 if (new_loop)
1040 todo |= vect_transform_loops (simduid_to_vf_htab, new_loop, NULL, fun);
1042 return todo;
1045 /* Try to vectorize LOOP. */
1047 static unsigned
1048 try_vectorize_loop_1 (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
1049 unsigned *num_vectorized_loops, loop_p loop,
1050 gimple *loop_vectorized_call,
1051 gimple *loop_dist_alias_call,
1052 function *fun)
1054 unsigned ret = 0;
1055 vec_info_shared shared;
1056 auto_purge_vect_location sentinel;
1057 vect_location = find_loop_location (loop);
1059 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
1060 && dump_enabled_p ())
1061 dump_printf (MSG_NOTE | MSG_PRIORITY_INTERNALS,
1062 "\nAnalyzing loop at %s:%d\n",
1063 LOCATION_FILE (vect_location.get_location_t ()),
1064 LOCATION_LINE (vect_location.get_location_t ()));
1066 /* Try to analyze the loop, retaining an opt_problem if dump_enabled_p. */
1067 opt_loop_vec_info loop_vinfo = vect_analyze_loop (loop, &shared);
1068 loop->aux = loop_vinfo;
1070 if (!loop_vinfo)
1071 if (dump_enabled_p ())
1072 if (opt_problem *problem = loop_vinfo.get_problem ())
1074 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1075 "couldn't vectorize loop\n");
1076 problem->emit_and_clear ();
1079 if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
1081 /* Free existing information if loop is analyzed with some
1082 assumptions. */
1083 if (loop_constraint_set_p (loop, LOOP_C_FINITE))
1084 vect_free_loop_info_assumptions (loop);
1086 /* If we applied if-conversion then try to vectorize the
1087 BB of innermost loops.
1088 ??? Ideally BB vectorization would learn to vectorize
1089 control flow by applying if-conversion on-the-fly, the
1090 following retains the if-converted loop body even when
1091 only non-if-converted parts took part in BB vectorization. */
1092 if (flag_tree_slp_vectorize != 0
1093 && loop_vectorized_call
1094 && ! loop->inner)
1096 basic_block bb = loop->header;
1097 bool require_loop_vectorize = false;
1098 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
1099 !gsi_end_p (gsi); gsi_next (&gsi))
1101 gimple *stmt = gsi_stmt (gsi);
1102 gcall *call = dyn_cast <gcall *> (stmt);
1103 if (call && gimple_call_internal_p (call))
1105 internal_fn ifn = gimple_call_internal_fn (call);
1106 if (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE
1107 /* Don't keep the if-converted parts when the ifn with
1108 specifc type is not supported by the backend. */
1109 || (direct_internal_fn_p (ifn)
1110 && !direct_internal_fn_supported_p
1111 (call, OPTIMIZE_FOR_SPEED)))
1113 require_loop_vectorize = true;
1114 break;
1117 gimple_set_uid (stmt, -1);
1118 gimple_set_visited (stmt, false);
1120 if (!require_loop_vectorize)
1122 tree arg = gimple_call_arg (loop_vectorized_call, 1);
1123 class loop *scalar_loop = get_loop (fun, tree_to_shwi (arg));
1124 if (vect_slp_if_converted_bb (bb, scalar_loop))
1126 fold_loop_internal_call (loop_vectorized_call,
1127 boolean_true_node);
1128 loop_vectorized_call = NULL;
1129 ret |= TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1133 /* If outer loop vectorization fails for LOOP_VECTORIZED guarded
1134 loop, don't vectorize its inner loop; we'll attempt to
1135 vectorize LOOP_VECTORIZED guarded inner loop of the scalar
1136 loop version. */
1137 if (loop_vectorized_call && loop->inner)
1138 loop->inner->dont_vectorize = true;
1139 return ret;
1142 if (!dbg_cnt (vect_loop))
1144 /* Free existing information if loop is analyzed with some
1145 assumptions. */
1146 if (loop_constraint_set_p (loop, LOOP_C_FINITE))
1147 vect_free_loop_info_assumptions (loop);
1148 return ret;
1151 (*num_vectorized_loops)++;
1152 /* Transform LOOP and its epilogues. */
1153 ret |= vect_transform_loops (simduid_to_vf_htab, loop,
1154 loop_vectorized_call, fun);
1156 if (loop_vectorized_call)
1158 fold_loop_internal_call (loop_vectorized_call, boolean_true_node);
1159 ret |= TODO_cleanup_cfg;
1161 if (loop_dist_alias_call)
1163 tree value = gimple_call_arg (loop_dist_alias_call, 1);
1164 fold_loop_internal_call (loop_dist_alias_call, value);
1165 ret |= TODO_cleanup_cfg;
1168 return ret;
1171 /* Try to vectorize LOOP. */
1173 static unsigned
1174 try_vectorize_loop (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
1175 unsigned *num_vectorized_loops, loop_p loop,
1176 function *fun)
1178 if (!((flag_tree_loop_vectorize
1179 && optimize_loop_nest_for_speed_p (loop))
1180 || loop->force_vectorize))
1181 return 0;
1183 return try_vectorize_loop_1 (simduid_to_vf_htab, num_vectorized_loops, loop,
1184 vect_loop_vectorized_call (loop),
1185 vect_loop_dist_alias_call (loop, fun), fun);
1189 /* Loop autovectorization. */
1191 namespace {
1193 const pass_data pass_data_vectorize =
1195 GIMPLE_PASS, /* type */
1196 "vect", /* name */
1197 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1198 TV_TREE_VECTORIZATION, /* tv_id */
1199 ( PROP_cfg | PROP_ssa ), /* properties_required */
1200 0, /* properties_provided */
1201 0, /* properties_destroyed */
1202 0, /* todo_flags_start */
1203 0, /* todo_flags_finish */
1206 class pass_vectorize : public gimple_opt_pass
1208 public:
1209 pass_vectorize (gcc::context *ctxt)
1210 : gimple_opt_pass (pass_data_vectorize, ctxt)
1213 /* opt_pass methods: */
1214 bool gate (function *fun) final override
1216 return flag_tree_loop_vectorize || fun->has_force_vectorize_loops;
1219 unsigned int execute (function *) final override;
1221 }; // class pass_vectorize
1223 /* Function vectorize_loops.
1225 Entry point to loop vectorization phase. */
1227 unsigned
1228 pass_vectorize::execute (function *fun)
1230 unsigned int i;
1231 unsigned int num_vectorized_loops = 0;
1232 unsigned int vect_loops_num;
1233 hash_table<simduid_to_vf> *simduid_to_vf_htab = NULL;
1234 hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab = NULL;
1235 bool any_ifcvt_loops = false;
1236 unsigned ret = 0;
1238 vect_loops_num = number_of_loops (fun);
1240 /* Bail out if there are no loops. */
1241 if (vect_loops_num <= 1)
1242 return 0;
1244 vect_slp_init ();
1246 if (fun->has_simduid_loops)
1247 note_simd_array_uses (&simd_array_to_simduid_htab, fun);
1249 /* ----------- Analyze loops. ----------- */
1251 /* If some loop was duplicated, it gets bigger number
1252 than all previously defined loops. This fact allows us to run
1253 only over initial loops skipping newly generated ones. */
1254 for (auto loop : loops_list (fun, 0))
1255 if (loop->dont_vectorize)
1257 any_ifcvt_loops = true;
1258 /* If-conversion sometimes versions both the outer loop
1259 (for the case when outer loop vectorization might be
1260 desirable) as well as the inner loop in the scalar version
1261 of the loop. So we have:
1262 if (LOOP_VECTORIZED (1, 3))
1264 loop1
1265 loop2
1267 else
1268 loop3 (copy of loop1)
1269 if (LOOP_VECTORIZED (4, 5))
1270 loop4 (copy of loop2)
1271 else
1272 loop5 (copy of loop4)
1273 If loops' iteration gives us loop3 first (which has
1274 dont_vectorize set), make sure to process loop1 before loop4;
1275 so that we can prevent vectorization of loop4 if loop1
1276 is successfully vectorized. */
1277 if (loop->inner)
1279 gimple *loop_vectorized_call
1280 = vect_loop_vectorized_call (loop);
1281 if (loop_vectorized_call
1282 && vect_loop_vectorized_call (loop->inner))
1284 tree arg = gimple_call_arg (loop_vectorized_call, 0);
1285 class loop *vector_loop
1286 = get_loop (fun, tree_to_shwi (arg));
1287 if (vector_loop && vector_loop != loop)
1289 /* Make sure we don't vectorize it twice. */
1290 vector_loop->dont_vectorize = true;
1291 ret |= try_vectorize_loop (simduid_to_vf_htab,
1292 &num_vectorized_loops,
1293 vector_loop, fun);
1298 else
1299 ret |= try_vectorize_loop (simduid_to_vf_htab, &num_vectorized_loops,
1300 loop, fun);
1302 vect_location = dump_user_location_t ();
1304 statistics_counter_event (fun, "Vectorized loops", num_vectorized_loops);
1305 if (dump_enabled_p ()
1306 || (num_vectorized_loops > 0 && dump_enabled_p ()))
1307 dump_printf_loc (MSG_NOTE, vect_location,
1308 "vectorized %u loops in function.\n",
1309 num_vectorized_loops);
1311 /* ----------- Finalize. ----------- */
1313 if (any_ifcvt_loops)
1314 for (i = 1; i < number_of_loops (fun); i++)
1316 class loop *loop = get_loop (fun, i);
1317 if (loop && loop->dont_vectorize)
1319 gimple *g = vect_loop_vectorized_call (loop);
1320 if (g)
1322 fold_loop_internal_call (g, boolean_false_node);
1323 ret |= TODO_cleanup_cfg;
1324 g = NULL;
1326 else
1327 g = vect_loop_dist_alias_call (loop, fun);
1329 if (g)
1331 fold_loop_internal_call (g, boolean_false_node);
1332 ret |= TODO_cleanup_cfg;
1337 /* Fold IFN_GOMP_SIMD_{VF,LANE,LAST_LANE,ORDERED_{START,END}} builtins. */
1338 if (fun->has_simduid_loops)
1340 adjust_simduid_builtins (simduid_to_vf_htab, fun);
1341 /* Avoid stale SCEV cache entries for the SIMD_LANE defs. */
1342 scev_reset ();
1344 /* Shrink any "omp array simd" temporary arrays to the
1345 actual vectorization factors. */
1346 if (simd_array_to_simduid_htab)
1347 shrink_simd_arrays (simd_array_to_simduid_htab, simduid_to_vf_htab);
1348 delete simduid_to_vf_htab;
1349 fun->has_simduid_loops = false;
1351 if (num_vectorized_loops > 0)
1353 /* We are collecting some corner cases where we need to update
1354 virtual SSA form via the TODO but delete the queued update-SSA
1355 state. Force renaming if we think that might be necessary. */
1356 if (ret & TODO_update_ssa_only_virtuals)
1357 mark_virtual_operands_for_renaming (cfun);
1358 /* If we vectorized any loop only virtual SSA form needs to be updated.
1359 ??? Also while we try hard to update loop-closed SSA form we fail
1360 to properly do this in some corner-cases (see PR56286). */
1361 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa_only_virtuals);
1362 ret |= TODO_cleanup_cfg;
1365 for (i = 1; i < number_of_loops (fun); i++)
1367 loop_vec_info loop_vinfo;
1368 bool has_mask_store;
1370 class loop *loop = get_loop (fun, i);
1371 if (!loop || !loop->aux)
1372 continue;
1373 loop_vinfo = (loop_vec_info) loop->aux;
1374 has_mask_store = LOOP_VINFO_HAS_MASK_STORE (loop_vinfo);
1375 delete loop_vinfo;
1376 if (has_mask_store
1377 && targetm.vectorize.empty_mask_is_expensive (IFN_MASK_STORE))
1378 optimize_mask_stores (loop);
1380 auto_bitmap exit_bbs;
1381 /* Perform local CSE, this esp. helps because we emit code for
1382 predicates that need to be shared for optimal predicate usage.
1383 However reassoc will re-order them and prevent CSE from working
1384 as it should. CSE only the loop body, not the entry. */
1385 bitmap_set_bit (exit_bbs, single_exit (loop)->dest->index);
1387 edge entry = EDGE_PRED (loop_preheader_edge (loop)->src, 0);
1388 do_rpo_vn (fun, entry, exit_bbs);
1390 loop->aux = NULL;
1393 vect_slp_fini ();
1395 return ret;
1398 } // anon namespace
1400 gimple_opt_pass *
1401 make_pass_vectorize (gcc::context *ctxt)
1403 return new pass_vectorize (ctxt);
1406 /* Entry point to the simduid cleanup pass. */
1408 namespace {
1410 const pass_data pass_data_simduid_cleanup =
1412 GIMPLE_PASS, /* type */
1413 "simduid", /* name */
1414 OPTGROUP_NONE, /* optinfo_flags */
1415 TV_NONE, /* tv_id */
1416 ( PROP_ssa | PROP_cfg ), /* properties_required */
1417 0, /* properties_provided */
1418 0, /* properties_destroyed */
1419 0, /* todo_flags_start */
1420 0, /* todo_flags_finish */
1423 class pass_simduid_cleanup : public gimple_opt_pass
1425 public:
1426 pass_simduid_cleanup (gcc::context *ctxt)
1427 : gimple_opt_pass (pass_data_simduid_cleanup, ctxt)
1430 /* opt_pass methods: */
1431 opt_pass * clone () final override
1433 return new pass_simduid_cleanup (m_ctxt);
1435 bool gate (function *fun) final override { return fun->has_simduid_loops; }
1436 unsigned int execute (function *) final override;
1438 }; // class pass_simduid_cleanup
1440 unsigned int
1441 pass_simduid_cleanup::execute (function *fun)
1443 hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab = NULL;
1445 note_simd_array_uses (&simd_array_to_simduid_htab, fun);
1447 /* Fold IFN_GOMP_SIMD_{VF,LANE,LAST_LANE,ORDERED_{START,END}} builtins. */
1448 adjust_simduid_builtins (NULL, fun);
1450 /* Shrink any "omp array simd" temporary arrays to the
1451 actual vectorization factors. */
1452 if (simd_array_to_simduid_htab)
1453 shrink_simd_arrays (simd_array_to_simduid_htab, NULL);
1454 fun->has_simduid_loops = false;
1455 return 0;
1458 } // anon namespace
1460 gimple_opt_pass *
1461 make_pass_simduid_cleanup (gcc::context *ctxt)
1463 return new pass_simduid_cleanup (ctxt);
1467 /* Entry point to basic block SLP phase. */
1469 namespace {
1471 const pass_data pass_data_slp_vectorize =
1473 GIMPLE_PASS, /* type */
1474 "slp", /* name */
1475 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1476 TV_TREE_SLP_VECTORIZATION, /* tv_id */
1477 ( PROP_ssa | PROP_cfg ), /* properties_required */
1478 0, /* properties_provided */
1479 0, /* properties_destroyed */
1480 0, /* todo_flags_start */
1481 TODO_update_ssa, /* todo_flags_finish */
1484 class pass_slp_vectorize : public gimple_opt_pass
1486 public:
1487 pass_slp_vectorize (gcc::context *ctxt)
1488 : gimple_opt_pass (pass_data_slp_vectorize, ctxt)
1491 /* opt_pass methods: */
1492 opt_pass * clone () final override { return new pass_slp_vectorize (m_ctxt); }
1493 bool gate (function *) final override { return flag_tree_slp_vectorize != 0; }
1494 unsigned int execute (function *) final override;
1496 }; // class pass_slp_vectorize
1498 unsigned int
1499 pass_slp_vectorize::execute (function *fun)
1501 auto_purge_vect_location sentinel;
1502 basic_block bb;
1504 bool in_loop_pipeline = scev_initialized_p ();
1505 if (!in_loop_pipeline)
1507 loop_optimizer_init (LOOPS_NORMAL);
1508 scev_initialize ();
1511 /* Mark all stmts as not belonging to the current region and unvisited. */
1512 FOR_EACH_BB_FN (bb, fun)
1514 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1515 gsi_next (&gsi))
1517 gphi *stmt = gsi.phi ();
1518 gimple_set_uid (stmt, -1);
1519 gimple_set_visited (stmt, false);
1521 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1522 gsi_next (&gsi))
1524 gimple *stmt = gsi_stmt (gsi);
1525 gimple_set_uid (stmt, -1);
1526 gimple_set_visited (stmt, false);
1530 vect_slp_init ();
1532 vect_slp_function (fun);
1534 vect_slp_fini ();
1536 if (!in_loop_pipeline)
1538 scev_finalize ();
1539 loop_optimizer_finalize ();
1542 return 0;
1545 } // anon namespace
1547 gimple_opt_pass *
1548 make_pass_slp_vectorize (gcc::context *ctxt)
1550 return new pass_slp_vectorize (ctxt);
1554 /* Increase alignment of global arrays to improve vectorization potential.
1555 TODO:
1556 - Consider also structs that have an array field.
1557 - Use ipa analysis to prune arrays that can't be vectorized?
1558 This should involve global alignment analysis and in the future also
1559 array padding. */
1561 static unsigned get_vec_alignment_for_type (tree);
1562 static hash_map<tree, unsigned> *type_align_map;
1564 /* Return alignment of array's vector type corresponding to scalar type.
1565 0 if no vector type exists. */
1566 static unsigned
1567 get_vec_alignment_for_array_type (tree type)
1569 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1570 poly_uint64 array_size, vector_size;
1572 tree scalar_type = strip_array_types (type);
1573 tree vectype = get_related_vectype_for_scalar_type (VOIDmode, scalar_type);
1574 if (!vectype
1575 || !poly_int_tree_p (TYPE_SIZE (type), &array_size)
1576 || !poly_int_tree_p (TYPE_SIZE (vectype), &vector_size)
1577 || maybe_lt (array_size, vector_size))
1578 return 0;
1580 return TYPE_ALIGN (vectype);
1583 /* Return alignment of field having maximum alignment of vector type
1584 corresponding to it's scalar type. For now, we only consider fields whose
1585 offset is a multiple of it's vector alignment.
1586 0 if no suitable field is found. */
1587 static unsigned
1588 get_vec_alignment_for_record_type (tree type)
1590 gcc_assert (TREE_CODE (type) == RECORD_TYPE);
1592 unsigned max_align = 0, alignment;
1593 HOST_WIDE_INT offset;
1594 tree offset_tree;
1596 if (TYPE_PACKED (type))
1597 return 0;
1599 unsigned *slot = type_align_map->get (type);
1600 if (slot)
1601 return *slot;
1603 for (tree field = first_field (type);
1604 field != NULL_TREE;
1605 field = DECL_CHAIN (field))
1607 /* Skip if not FIELD_DECL or if alignment is set by user. */
1608 if (TREE_CODE (field) != FIELD_DECL
1609 || DECL_USER_ALIGN (field)
1610 || DECL_ARTIFICIAL (field))
1611 continue;
1613 /* We don't need to process the type further if offset is variable,
1614 since the offsets of remaining members will also be variable. */
1615 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST
1616 || TREE_CODE (DECL_FIELD_BIT_OFFSET (field)) != INTEGER_CST)
1617 break;
1619 /* Similarly stop processing the type if offset_tree
1620 does not fit in unsigned HOST_WIDE_INT. */
1621 offset_tree = bit_position (field);
1622 if (!tree_fits_uhwi_p (offset_tree))
1623 break;
1625 offset = tree_to_uhwi (offset_tree);
1626 alignment = get_vec_alignment_for_type (TREE_TYPE (field));
1628 /* Get maximum alignment of vectorized field/array among those members
1629 whose offset is multiple of the vector alignment. */
1630 if (alignment
1631 && (offset % alignment == 0)
1632 && (alignment > max_align))
1633 max_align = alignment;
1636 type_align_map->put (type, max_align);
1637 return max_align;
1640 /* Return alignment of vector type corresponding to decl's scalar type
1641 or 0 if it doesn't exist or the vector alignment is lesser than
1642 decl's alignment. */
1643 static unsigned
1644 get_vec_alignment_for_type (tree type)
1646 if (type == NULL_TREE)
1647 return 0;
1649 gcc_assert (TYPE_P (type));
1651 static unsigned alignment = 0;
1652 switch (TREE_CODE (type))
1654 case ARRAY_TYPE:
1655 alignment = get_vec_alignment_for_array_type (type);
1656 break;
1657 case RECORD_TYPE:
1658 alignment = get_vec_alignment_for_record_type (type);
1659 break;
1660 default:
1661 alignment = 0;
1662 break;
1665 return (alignment > TYPE_ALIGN (type)) ? alignment : 0;
1668 /* Entry point to increase_alignment pass. */
1669 static unsigned int
1670 increase_alignment (void)
1672 varpool_node *vnode;
1674 vect_location = dump_user_location_t ();
1675 type_align_map = new hash_map<tree, unsigned>;
1677 /* Increase the alignment of all global arrays for vectorization. */
1678 FOR_EACH_DEFINED_VARIABLE (vnode)
1680 tree decl = vnode->decl;
1681 unsigned int alignment;
1683 if ((decl_in_symtab_p (decl)
1684 && !symtab_node::get (decl)->can_increase_alignment_p ())
1685 || DECL_USER_ALIGN (decl) || DECL_ARTIFICIAL (decl))
1686 continue;
1688 alignment = get_vec_alignment_for_type (TREE_TYPE (decl));
1689 if (alignment && vect_can_force_dr_alignment_p (decl, alignment))
1691 vnode->increase_alignment (alignment);
1692 if (dump_enabled_p ())
1693 dump_printf (MSG_NOTE, "Increasing alignment of decl: %T\n", decl);
1697 delete type_align_map;
1698 return 0;
1702 namespace {
1704 const pass_data pass_data_ipa_increase_alignment =
1706 SIMPLE_IPA_PASS, /* type */
1707 "increase_alignment", /* name */
1708 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1709 TV_IPA_OPT, /* tv_id */
1710 0, /* properties_required */
1711 0, /* properties_provided */
1712 0, /* properties_destroyed */
1713 0, /* todo_flags_start */
1714 0, /* todo_flags_finish */
1717 class pass_ipa_increase_alignment : public simple_ipa_opt_pass
1719 public:
1720 pass_ipa_increase_alignment (gcc::context *ctxt)
1721 : simple_ipa_opt_pass (pass_data_ipa_increase_alignment, ctxt)
1724 /* opt_pass methods: */
1725 bool gate (function *) final override
1727 return flag_section_anchors && flag_tree_loop_vectorize;
1730 unsigned int execute (function *) final override
1732 return increase_alignment ();
1735 }; // class pass_ipa_increase_alignment
1737 } // anon namespace
1739 simple_ipa_opt_pass *
1740 make_pass_ipa_increase_alignment (gcc::context *ctxt)
1742 return new pass_ipa_increase_alignment (ctxt);
1745 /* If the condition represented by T is a comparison or the SSA name
1746 result of a comparison, extract the comparison's operands. Represent
1747 T as NE_EXPR <T, 0> otherwise. */
1749 void
1750 scalar_cond_masked_key::get_cond_ops_from_tree (tree t)
1752 if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_comparison)
1754 this->code = TREE_CODE (t);
1755 this->op0 = TREE_OPERAND (t, 0);
1756 this->op1 = TREE_OPERAND (t, 1);
1757 this->inverted_p = false;
1758 return;
1761 if (TREE_CODE (t) == SSA_NAME)
1762 if (gassign *stmt = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (t)))
1764 tree_code code = gimple_assign_rhs_code (stmt);
1765 if (TREE_CODE_CLASS (code) == tcc_comparison)
1767 this->code = code;
1768 this->op0 = gimple_assign_rhs1 (stmt);
1769 this->op1 = gimple_assign_rhs2 (stmt);
1770 this->inverted_p = false;
1771 return;
1773 else if (code == BIT_NOT_EXPR)
1775 tree n_op = gimple_assign_rhs1 (stmt);
1776 if ((stmt = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (n_op))))
1778 code = gimple_assign_rhs_code (stmt);
1779 if (TREE_CODE_CLASS (code) == tcc_comparison)
1781 this->code = code;
1782 this->op0 = gimple_assign_rhs1 (stmt);
1783 this->op1 = gimple_assign_rhs2 (stmt);
1784 this->inverted_p = true;
1785 return;
1791 this->code = NE_EXPR;
1792 this->op0 = t;
1793 this->op1 = build_zero_cst (TREE_TYPE (t));
1794 this->inverted_p = false;
1797 /* See the comment above the declaration for details. */
1799 unsigned int
1800 vector_costs::add_stmt_cost (int count, vect_cost_for_stmt kind,
1801 stmt_vec_info stmt_info, slp_tree,
1802 tree vectype, int misalign,
1803 vect_cost_model_location where)
1805 unsigned int cost
1806 = builtin_vectorization_cost (kind, vectype, misalign) * count;
1807 return record_stmt_cost (stmt_info, where, cost);
1810 /* See the comment above the declaration for details. */
1812 void
1813 vector_costs::finish_cost (const vector_costs *)
1815 gcc_assert (!m_finished);
1816 m_finished = true;
1819 /* Record a base cost of COST units against WHERE. If STMT_INFO is
1820 nonnull, use it to adjust the cost based on execution frequency
1821 (where appropriate). */
1823 unsigned int
1824 vector_costs::record_stmt_cost (stmt_vec_info stmt_info,
1825 vect_cost_model_location where,
1826 unsigned int cost)
1828 cost = adjust_cost_for_freq (stmt_info, where, cost);
1829 m_costs[where] += cost;
1830 return cost;
1833 /* COST is the base cost we have calculated for an operation in location WHERE.
1834 If STMT_INFO is nonnull, use it to adjust the cost based on execution
1835 frequency (where appropriate). Return the adjusted cost. */
1837 unsigned int
1838 vector_costs::adjust_cost_for_freq (stmt_vec_info stmt_info,
1839 vect_cost_model_location where,
1840 unsigned int cost)
1842 /* Statements in an inner loop relative to the loop being
1843 vectorized are weighted more heavily. The value here is
1844 arbitrary and could potentially be improved with analysis. */
1845 if (where == vect_body
1846 && stmt_info
1847 && stmt_in_inner_loop_p (m_vinfo, stmt_info))
1849 loop_vec_info loop_vinfo = as_a<loop_vec_info> (m_vinfo);
1850 cost *= LOOP_VINFO_INNER_LOOP_COST_FACTOR (loop_vinfo);
1852 return cost;
1855 /* See the comment above the declaration for details. */
1857 bool
1858 vector_costs::better_main_loop_than_p (const vector_costs *other) const
1860 int diff = compare_inside_loop_cost (other);
1861 if (diff != 0)
1862 return diff < 0;
1864 /* If there's nothing to choose between the loop bodies, see whether
1865 there's a difference in the prologue and epilogue costs. */
1866 diff = compare_outside_loop_cost (other);
1867 if (diff != 0)
1868 return diff < 0;
1870 return false;
1874 /* See the comment above the declaration for details. */
1876 bool
1877 vector_costs::better_epilogue_loop_than_p (const vector_costs *other,
1878 loop_vec_info main_loop) const
1880 loop_vec_info this_loop_vinfo = as_a<loop_vec_info> (this->m_vinfo);
1881 loop_vec_info other_loop_vinfo = as_a<loop_vec_info> (other->m_vinfo);
1883 poly_int64 this_vf = LOOP_VINFO_VECT_FACTOR (this_loop_vinfo);
1884 poly_int64 other_vf = LOOP_VINFO_VECT_FACTOR (other_loop_vinfo);
1886 poly_uint64 main_poly_vf = LOOP_VINFO_VECT_FACTOR (main_loop);
1887 unsigned HOST_WIDE_INT main_vf;
1888 unsigned HOST_WIDE_INT other_factor, this_factor, other_cost, this_cost;
1889 /* If we can determine how many iterations are left for the epilogue
1890 loop, that is if both the main loop's vectorization factor and number
1891 of iterations are constant, then we use them to calculate the cost of
1892 the epilogue loop together with a 'likely value' for the epilogues
1893 vectorization factor. Otherwise we use the main loop's vectorization
1894 factor and the maximum poly value for the epilogue's. If the target
1895 has not provided with a sensible upper bound poly vectorization
1896 factors are likely to be favored over constant ones. */
1897 if (main_poly_vf.is_constant (&main_vf)
1898 && LOOP_VINFO_NITERS_KNOWN_P (main_loop))
1900 unsigned HOST_WIDE_INT niters
1901 = LOOP_VINFO_INT_NITERS (main_loop) % main_vf;
1902 HOST_WIDE_INT other_likely_vf
1903 = estimated_poly_value (other_vf, POLY_VALUE_LIKELY);
1904 HOST_WIDE_INT this_likely_vf
1905 = estimated_poly_value (this_vf, POLY_VALUE_LIKELY);
1907 /* If the epilogue is using partial vectors we account for the
1908 partial iteration here too. */
1909 other_factor = niters / other_likely_vf;
1910 if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (other_loop_vinfo)
1911 && niters % other_likely_vf != 0)
1912 other_factor++;
1914 this_factor = niters / this_likely_vf;
1915 if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (this_loop_vinfo)
1916 && niters % this_likely_vf != 0)
1917 this_factor++;
1919 else
1921 unsigned HOST_WIDE_INT main_vf_max
1922 = estimated_poly_value (main_poly_vf, POLY_VALUE_MAX);
1923 unsigned HOST_WIDE_INT other_vf_max
1924 = estimated_poly_value (other_vf, POLY_VALUE_MAX);
1925 unsigned HOST_WIDE_INT this_vf_max
1926 = estimated_poly_value (this_vf, POLY_VALUE_MAX);
1928 other_factor = CEIL (main_vf_max, other_vf_max);
1929 this_factor = CEIL (main_vf_max, this_vf_max);
1931 /* If the loop is not using partial vectors then it will iterate one
1932 time less than one that does. It is safe to subtract one here,
1933 because the main loop's vf is always at least 2x bigger than that
1934 of an epilogue. */
1935 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (other_loop_vinfo))
1936 other_factor -= 1;
1937 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (this_loop_vinfo))
1938 this_factor -= 1;
1941 /* Compute the costs by multiplying the inside costs with the factor and
1942 add the outside costs for a more complete picture. The factor is the
1943 amount of times we are expecting to iterate this epilogue. */
1944 other_cost = other->body_cost () * other_factor;
1945 this_cost = this->body_cost () * this_factor;
1946 other_cost += other->outside_cost ();
1947 this_cost += this->outside_cost ();
1948 return this_cost < other_cost;
1951 /* A <=>-style subroutine of better_main_loop_than_p. Check whether we can
1952 determine the return value of better_main_loop_than_p by comparing the
1953 inside (loop body) costs of THIS and OTHER. Return:
1955 * -1 if better_main_loop_than_p should return true.
1956 * 1 if better_main_loop_than_p should return false.
1957 * 0 if we can't decide. */
1960 vector_costs::compare_inside_loop_cost (const vector_costs *other) const
1962 loop_vec_info this_loop_vinfo = as_a<loop_vec_info> (this->m_vinfo);
1963 loop_vec_info other_loop_vinfo = as_a<loop_vec_info> (other->m_vinfo);
1965 struct loop *loop = LOOP_VINFO_LOOP (this_loop_vinfo);
1966 gcc_assert (LOOP_VINFO_LOOP (other_loop_vinfo) == loop);
1968 poly_int64 this_vf = LOOP_VINFO_VECT_FACTOR (this_loop_vinfo);
1969 poly_int64 other_vf = LOOP_VINFO_VECT_FACTOR (other_loop_vinfo);
1971 /* Limit the VFs to what is likely to be the maximum number of iterations,
1972 to handle cases in which at least one loop_vinfo is fully-masked. */
1973 HOST_WIDE_INT estimated_max_niter = likely_max_stmt_executions_int (loop);
1974 if (estimated_max_niter != -1)
1976 if (estimated_poly_value (this_vf, POLY_VALUE_MIN)
1977 >= estimated_max_niter)
1978 this_vf = estimated_max_niter;
1979 if (estimated_poly_value (other_vf, POLY_VALUE_MIN)
1980 >= estimated_max_niter)
1981 other_vf = estimated_max_niter;
1984 /* Check whether the (fractional) cost per scalar iteration is lower or
1985 higher: this_inside_cost / this_vf vs. other_inside_cost / other_vf. */
1986 poly_int64 rel_this = this_loop_vinfo->vector_costs->body_cost () * other_vf;
1987 poly_int64 rel_other
1988 = other_loop_vinfo->vector_costs->body_cost () * this_vf;
1990 HOST_WIDE_INT est_rel_this_min
1991 = estimated_poly_value (rel_this, POLY_VALUE_MIN);
1992 HOST_WIDE_INT est_rel_this_max
1993 = estimated_poly_value (rel_this, POLY_VALUE_MAX);
1995 HOST_WIDE_INT est_rel_other_min
1996 = estimated_poly_value (rel_other, POLY_VALUE_MIN);
1997 HOST_WIDE_INT est_rel_other_max
1998 = estimated_poly_value (rel_other, POLY_VALUE_MAX);
2000 /* Check first if we can make out an unambigous total order from the minimum
2001 and maximum estimates. */
2002 if (est_rel_this_min < est_rel_other_min
2003 && est_rel_this_max < est_rel_other_max)
2004 return -1;
2006 if (est_rel_other_min < est_rel_this_min
2007 && est_rel_other_max < est_rel_this_max)
2008 return 1;
2010 /* When other_loop_vinfo uses a variable vectorization factor,
2011 we know that it has a lower cost for at least one runtime VF.
2012 However, we don't know how likely that VF is.
2014 One option would be to compare the costs for the estimated VFs.
2015 The problem is that that can put too much pressure on the cost
2016 model. E.g. if the estimated VF is also the lowest possible VF,
2017 and if other_loop_vinfo is 1 unit worse than this_loop_vinfo
2018 for the estimated VF, we'd then choose this_loop_vinfo even
2019 though (a) this_loop_vinfo might not actually be better than
2020 other_loop_vinfo for that VF and (b) it would be significantly
2021 worse at larger VFs.
2023 Here we go for a hacky compromise: pick this_loop_vinfo if it is
2024 no more expensive than other_loop_vinfo even after doubling the
2025 estimated other_loop_vinfo VF. For all but trivial loops, this
2026 ensures that we only pick this_loop_vinfo if it is significantly
2027 better than other_loop_vinfo at the estimated VF. */
2028 if (est_rel_other_min != est_rel_this_min
2029 || est_rel_other_max != est_rel_this_max)
2031 HOST_WIDE_INT est_rel_this_likely
2032 = estimated_poly_value (rel_this, POLY_VALUE_LIKELY);
2033 HOST_WIDE_INT est_rel_other_likely
2034 = estimated_poly_value (rel_other, POLY_VALUE_LIKELY);
2036 return est_rel_this_likely * 2 <= est_rel_other_likely ? -1 : 1;
2039 return 0;
2042 /* A <=>-style subroutine of better_main_loop_than_p, used when there is
2043 nothing to choose between the inside (loop body) costs of THIS and OTHER.
2044 Check whether we can determine the return value of better_main_loop_than_p
2045 by comparing the outside (prologue and epilogue) costs of THIS and OTHER.
2046 Return:
2048 * -1 if better_main_loop_than_p should return true.
2049 * 1 if better_main_loop_than_p should return false.
2050 * 0 if we can't decide. */
2053 vector_costs::compare_outside_loop_cost (const vector_costs *other) const
2055 auto this_outside_cost = this->outside_cost ();
2056 auto other_outside_cost = other->outside_cost ();
2057 if (this_outside_cost != other_outside_cost)
2058 return this_outside_cost < other_outside_cost ? -1 : 1;
2060 return 0;