Add assember CFI directives to millicode division and remainder routines.
[official-gcc.git] / gcc / stor-layout.cc
blob023de8c37db8593b7f694294f9d0b71415420857
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
45 #include "calls.h"
47 /* Data type for the expressions representing sizes of data types.
48 It is the first integer type laid out. */
49 tree sizetype_tab[(int) stk_type_kind_last];
51 /* If nonzero, this is an upper limit on alignment of structure fields.
52 The value is measured in bits. */
53 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
55 static tree self_referential_size (tree);
56 static void finalize_record_size (record_layout_info);
57 static void finalize_type_size (tree);
58 static void place_union_field (record_layout_info, tree);
59 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
60 HOST_WIDE_INT, tree);
61 extern void debug_rli (record_layout_info);
63 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
64 to serve as the actual size-expression for a type or decl. */
66 tree
67 variable_size (tree size)
69 /* Obviously. */
70 if (TREE_CONSTANT (size))
71 return size;
73 /* If the size is self-referential, we can't make a SAVE_EXPR (see
74 save_expr for the rationale). But we can do something else. */
75 if (CONTAINS_PLACEHOLDER_P (size))
76 return self_referential_size (size);
78 /* If we are in the global binding level, we can't make a SAVE_EXPR
79 since it may end up being shared across functions, so it is up
80 to the front-end to deal with this case. */
81 if (lang_hooks.decls.global_bindings_p ())
82 return size;
84 return save_expr (size);
87 /* An array of functions used for self-referential size computation. */
88 static GTY(()) vec<tree, va_gc> *size_functions;
90 /* Return true if T is a self-referential component reference. */
92 static bool
93 self_referential_component_ref_p (tree t)
95 if (TREE_CODE (t) != COMPONENT_REF)
96 return false;
98 while (REFERENCE_CLASS_P (t))
99 t = TREE_OPERAND (t, 0);
101 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
108 static tree
109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
111 enum tree_code code = TREE_CODE (*tp);
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
118 *walk_subtrees = 0;
119 return NULL_TREE;
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
126 *walk_subtrees = 0;
127 return NULL_TREE;
130 /* Default case: the component reference. */
131 else if (self_referential_component_ref_p (*tp))
133 *walk_subtrees = 0;
134 return NULL_TREE;
137 /* We're not supposed to have them in self-referential size trees
138 because we wouldn't properly control when they are evaluated.
139 However, not creating superfluous SAVE_EXPRs requires accurate
140 tracking of readonly-ness all the way down to here, which we
141 cannot always guarantee in practice. So punt in this case. */
142 else if (code == SAVE_EXPR)
143 return error_mark_node;
145 else if (code == STATEMENT_LIST)
146 gcc_unreachable ();
148 return copy_tree_r (tp, walk_subtrees, data);
151 /* Given a SIZE expression that is self-referential, return an equivalent
152 expression to serve as the actual size expression for a type. */
154 static tree
155 self_referential_size (tree size)
157 static unsigned HOST_WIDE_INT fnno = 0;
158 vec<tree> self_refs = vNULL;
159 tree param_type_list = NULL, param_decl_list = NULL;
160 tree t, ref, return_type, fntype, fnname, fndecl;
161 unsigned int i;
162 char buf[128];
163 vec<tree, va_gc> *args = NULL;
165 /* Do not factor out simple operations. */
166 t = skip_simple_constant_arithmetic (size);
167 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
168 return size;
170 /* Collect the list of self-references in the expression. */
171 find_placeholder_in_expr (size, &self_refs);
172 gcc_assert (self_refs.length () > 0);
174 /* Obtain a private copy of the expression. */
175 t = size;
176 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
177 return size;
178 size = t;
180 /* Build the parameter and argument lists in parallel; also
181 substitute the former for the latter in the expression. */
182 vec_alloc (args, self_refs.length ());
183 FOR_EACH_VEC_ELT (self_refs, i, ref)
185 tree subst, param_name, param_type, param_decl;
187 if (DECL_P (ref))
189 /* We shouldn't have true variables here. */
190 gcc_assert (TREE_READONLY (ref));
191 subst = ref;
193 /* This is the pattern built in ada/make_aligning_type. */
194 else if (TREE_CODE (ref) == ADDR_EXPR)
195 subst = ref;
196 /* Default case: the component reference. */
197 else
198 subst = TREE_OPERAND (ref, 1);
200 sprintf (buf, "p%d", i);
201 param_name = get_identifier (buf);
202 param_type = TREE_TYPE (ref);
203 param_decl
204 = build_decl (input_location, PARM_DECL, param_name, param_type);
205 DECL_ARG_TYPE (param_decl) = param_type;
206 DECL_ARTIFICIAL (param_decl) = 1;
207 TREE_READONLY (param_decl) = 1;
209 size = substitute_in_expr (size, subst, param_decl);
211 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
212 param_decl_list = chainon (param_decl, param_decl_list);
213 args->quick_push (ref);
216 self_refs.release ();
218 /* Append 'void' to indicate that the number of parameters is fixed. */
219 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
221 /* The 3 lists have been created in reverse order. */
222 param_type_list = nreverse (param_type_list);
223 param_decl_list = nreverse (param_decl_list);
225 /* Build the function type. */
226 return_type = TREE_TYPE (size);
227 fntype = build_function_type (return_type, param_type_list);
229 /* Build the function declaration. */
230 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
231 fnname = get_file_function_name (buf);
232 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
233 for (t = param_decl_list; t; t = DECL_CHAIN (t))
234 DECL_CONTEXT (t) = fndecl;
235 DECL_ARGUMENTS (fndecl) = param_decl_list;
236 DECL_RESULT (fndecl)
237 = build_decl (input_location, RESULT_DECL, 0, return_type);
238 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
240 /* The function has been created by the compiler and we don't
241 want to emit debug info for it. */
242 DECL_ARTIFICIAL (fndecl) = 1;
243 DECL_IGNORED_P (fndecl) = 1;
245 /* It is supposed to be "const" and never throw. */
246 TREE_READONLY (fndecl) = 1;
247 TREE_NOTHROW (fndecl) = 1;
249 /* We want it to be inlined when this is deemed profitable, as
250 well as discarded if every call has been integrated. */
251 DECL_DECLARED_INLINE_P (fndecl) = 1;
253 /* It is made up of a unique return statement. */
254 DECL_INITIAL (fndecl) = make_node (BLOCK);
255 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
256 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
257 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
258 TREE_STATIC (fndecl) = 1;
260 /* Put it onto the list of size functions. */
261 vec_safe_push (size_functions, fndecl);
263 /* Replace the original expression with a call to the size function. */
264 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
267 /* Take, queue and compile all the size functions. It is essential that
268 the size functions be gimplified at the very end of the compilation
269 in order to guarantee transparent handling of self-referential sizes.
270 Otherwise the GENERIC inliner would not be able to inline them back
271 at each of their call sites, thus creating artificial non-constant
272 size expressions which would trigger nasty problems later on. */
274 void
275 finalize_size_functions (void)
277 unsigned int i;
278 tree fndecl;
280 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
282 allocate_struct_function (fndecl, false);
283 set_cfun (NULL);
284 dump_function (TDI_original, fndecl);
286 /* As these functions are used to describe the layout of variable-length
287 structures, debug info generation needs their implementation. */
288 debug_hooks->size_function (fndecl);
289 gimplify_function_tree (fndecl);
290 cgraph_node::finalize_function (fndecl, false);
293 vec_free (size_functions);
296 /* Return a machine mode of class MCLASS with SIZE bits of precision,
297 if one exists. The mode may have padding bits as well the SIZE
298 value bits. If LIMIT is nonzero, disregard modes wider than
299 MAX_FIXED_MODE_SIZE. */
301 opt_machine_mode
302 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
304 machine_mode mode;
305 int i;
307 if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
308 return opt_machine_mode ();
310 /* Get the first mode which has this size, in the specified class. */
311 FOR_EACH_MODE_IN_CLASS (mode, mclass)
312 if (known_eq (GET_MODE_PRECISION (mode), size))
313 return mode;
315 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
316 for (i = 0; i < NUM_INT_N_ENTS; i ++)
317 if (known_eq (int_n_data[i].bitsize, size)
318 && int_n_enabled_p[i])
319 return int_n_data[i].m;
321 return opt_machine_mode ();
324 /* Similar, except passed a tree node. */
326 opt_machine_mode
327 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
329 unsigned HOST_WIDE_INT uhwi;
330 unsigned int ui;
332 if (!tree_fits_uhwi_p (size))
333 return opt_machine_mode ();
334 uhwi = tree_to_uhwi (size);
335 ui = uhwi;
336 if (uhwi != ui)
337 return opt_machine_mode ();
338 return mode_for_size (ui, mclass, limit);
341 /* Return the narrowest mode of class MCLASS that contains at least
342 SIZE bits. Abort if no such mode exists. */
344 machine_mode
345 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
347 machine_mode mode = VOIDmode;
348 int i;
350 /* Get the first mode which has at least this size, in the
351 specified class. */
352 FOR_EACH_MODE_IN_CLASS (mode, mclass)
353 if (known_ge (GET_MODE_PRECISION (mode), size))
354 break;
356 gcc_assert (mode != VOIDmode);
358 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
359 for (i = 0; i < NUM_INT_N_ENTS; i ++)
360 if (known_ge (int_n_data[i].bitsize, size)
361 && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
362 && int_n_enabled_p[i])
363 mode = int_n_data[i].m;
365 return mode;
368 /* Return an integer mode of exactly the same size as MODE, if one exists. */
370 opt_scalar_int_mode
371 int_mode_for_mode (machine_mode mode)
373 switch (GET_MODE_CLASS (mode))
375 case MODE_INT:
376 case MODE_PARTIAL_INT:
377 return as_a <scalar_int_mode> (mode);
379 case MODE_COMPLEX_INT:
380 case MODE_COMPLEX_FLOAT:
381 case MODE_FLOAT:
382 case MODE_DECIMAL_FLOAT:
383 case MODE_FRACT:
384 case MODE_ACCUM:
385 case MODE_UFRACT:
386 case MODE_UACCUM:
387 case MODE_VECTOR_BOOL:
388 case MODE_VECTOR_INT:
389 case MODE_VECTOR_FLOAT:
390 case MODE_VECTOR_FRACT:
391 case MODE_VECTOR_ACCUM:
392 case MODE_VECTOR_UFRACT:
393 case MODE_VECTOR_UACCUM:
394 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
396 case MODE_OPAQUE:
397 return opt_scalar_int_mode ();
399 case MODE_RANDOM:
400 if (mode == BLKmode)
401 return opt_scalar_int_mode ();
403 /* fall through */
405 case MODE_CC:
406 default:
407 gcc_unreachable ();
411 /* Find a mode that can be used for efficient bitwise operations on MODE,
412 if one exists. */
414 opt_machine_mode
415 bitwise_mode_for_mode (machine_mode mode)
417 /* Quick exit if we already have a suitable mode. */
418 scalar_int_mode int_mode;
419 if (is_a <scalar_int_mode> (mode, &int_mode)
420 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
421 return int_mode;
423 /* Reuse the sanity checks from int_mode_for_mode. */
424 gcc_checking_assert ((int_mode_for_mode (mode), true));
426 poly_int64 bitsize = GET_MODE_BITSIZE (mode);
428 /* Try to replace complex modes with complex modes. In general we
429 expect both components to be processed independently, so we only
430 care whether there is a register for the inner mode. */
431 if (COMPLEX_MODE_P (mode))
433 machine_mode trial = mode;
434 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
435 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
436 && have_regs_of_mode[GET_MODE_INNER (trial)])
437 return trial;
440 /* Try to replace vector modes with vector modes. Also try using vector
441 modes if an integer mode would be too big. */
442 if (VECTOR_MODE_P (mode)
443 || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
445 machine_mode trial = mode;
446 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
447 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
448 && have_regs_of_mode[trial]
449 && targetm.vector_mode_supported_p (trial))
450 return trial;
453 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
454 return mode_for_size (bitsize, MODE_INT, true);
457 /* Find a type that can be used for efficient bitwise operations on MODE.
458 Return null if no such mode exists. */
460 tree
461 bitwise_type_for_mode (machine_mode mode)
463 if (!bitwise_mode_for_mode (mode).exists (&mode))
464 return NULL_TREE;
466 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
467 tree inner_type = build_nonstandard_integer_type (inner_size, true);
469 if (VECTOR_MODE_P (mode))
470 return build_vector_type_for_mode (inner_type, mode);
472 if (COMPLEX_MODE_P (mode))
473 return build_complex_type (inner_type);
475 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
476 return inner_type;
479 /* Find a mode that is suitable for representing a vector with NUNITS
480 elements of mode INNERMODE, if one exists. The returned mode can be
481 either an integer mode or a vector mode. */
483 opt_machine_mode
484 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
486 machine_mode mode;
488 /* First, look for a supported vector type. */
489 if (SCALAR_FLOAT_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_FLOAT;
491 else if (SCALAR_FRACT_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_FRACT;
493 else if (SCALAR_UFRACT_MODE_P (innermode))
494 mode = MIN_MODE_VECTOR_UFRACT;
495 else if (SCALAR_ACCUM_MODE_P (innermode))
496 mode = MIN_MODE_VECTOR_ACCUM;
497 else if (SCALAR_UACCUM_MODE_P (innermode))
498 mode = MIN_MODE_VECTOR_UACCUM;
499 else
500 mode = MIN_MODE_VECTOR_INT;
502 /* Do not check vector_mode_supported_p here. We'll do that
503 later in vector_type_mode. */
504 FOR_EACH_MODE_FROM (mode, mode)
505 if (known_eq (GET_MODE_NUNITS (mode), nunits)
506 && GET_MODE_INNER (mode) == innermode)
507 return mode;
509 /* For integers, try mapping it to a same-sized scalar mode. */
510 if (GET_MODE_CLASS (innermode) == MODE_INT)
512 poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
513 if (int_mode_for_size (nbits, 0).exists (&mode)
514 && have_regs_of_mode[mode])
515 return mode;
518 return opt_machine_mode ();
521 /* If a piece of code is using vector mode VECTOR_MODE and also wants
522 to operate on elements of mode ELEMENT_MODE, return the vector mode
523 it should use for those elements. If NUNITS is nonzero, ensure that
524 the mode has exactly NUNITS elements, otherwise pick whichever vector
525 size pairs the most naturally with VECTOR_MODE; this may mean choosing
526 a mode with a different size and/or number of elements, depending on
527 what the target prefers. Return an empty opt_machine_mode if there
528 is no supported vector mode with the required properties.
530 Unlike mode_for_vector. any returned mode is guaranteed to satisfy
531 both VECTOR_MODE_P and targetm.vector_mode_supported_p. */
533 opt_machine_mode
534 related_vector_mode (machine_mode vector_mode, scalar_mode element_mode,
535 poly_uint64 nunits)
537 gcc_assert (VECTOR_MODE_P (vector_mode));
538 return targetm.vectorize.related_mode (vector_mode, element_mode, nunits);
541 /* If a piece of code is using vector mode VECTOR_MODE and also wants
542 to operate on integer vectors with the same element size and number
543 of elements, return the vector mode it should use. Return an empty
544 opt_machine_mode if there is no supported vector mode with the
545 required properties.
547 Unlike mode_for_vector. any returned mode is guaranteed to satisfy
548 both VECTOR_MODE_P and targetm.vector_mode_supported_p. */
550 opt_machine_mode
551 related_int_vector_mode (machine_mode vector_mode)
553 gcc_assert (VECTOR_MODE_P (vector_mode));
554 scalar_int_mode int_mode;
555 if (int_mode_for_mode (GET_MODE_INNER (vector_mode)).exists (&int_mode))
556 return related_vector_mode (vector_mode, int_mode,
557 GET_MODE_NUNITS (vector_mode));
558 return opt_machine_mode ();
561 /* Return the alignment of MODE. This will be bounded by 1 and
562 BIGGEST_ALIGNMENT. */
564 unsigned int
565 get_mode_alignment (machine_mode mode)
567 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
570 /* Return the natural mode of an array, given that it is SIZE bytes in
571 total and has elements of type ELEM_TYPE. */
573 static machine_mode
574 mode_for_array (tree elem_type, tree size)
576 tree elem_size;
577 poly_uint64 int_size, int_elem_size;
578 unsigned HOST_WIDE_INT num_elems;
579 bool limit_p;
581 /* One-element arrays get the component type's mode. */
582 elem_size = TYPE_SIZE (elem_type);
583 if (simple_cst_equal (size, elem_size))
584 return TYPE_MODE (elem_type);
586 limit_p = true;
587 if (poly_int_tree_p (size, &int_size)
588 && poly_int_tree_p (elem_size, &int_elem_size)
589 && maybe_ne (int_elem_size, 0U)
590 && constant_multiple_p (int_size, int_elem_size, &num_elems))
592 machine_mode elem_mode = TYPE_MODE (elem_type);
593 machine_mode mode;
594 if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
595 return mode;
596 if (targetm.array_mode_supported_p (elem_mode, num_elems))
597 limit_p = false;
599 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
602 /* Subroutine of layout_decl: Force alignment required for the data type.
603 But if the decl itself wants greater alignment, don't override that. */
605 static inline void
606 do_type_align (tree type, tree decl)
608 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
610 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
611 if (TREE_CODE (decl) == FIELD_DECL)
612 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
614 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
615 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
618 /* Set the size, mode and alignment of a ..._DECL node.
619 TYPE_DECL does need this for C++.
620 Note that LABEL_DECL and CONST_DECL nodes do not need this,
621 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
622 Don't call layout_decl for them.
624 KNOWN_ALIGN is the amount of alignment we can assume this
625 decl has with no special effort. It is relevant only for FIELD_DECLs
626 and depends on the previous fields.
627 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
628 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
629 the record will be aligned to suit. */
631 void
632 layout_decl (tree decl, unsigned int known_align)
634 tree type = TREE_TYPE (decl);
635 enum tree_code code = TREE_CODE (decl);
636 rtx rtl = NULL_RTX;
637 location_t loc = DECL_SOURCE_LOCATION (decl);
639 if (code == CONST_DECL)
640 return;
642 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
643 || code == TYPE_DECL || code == FIELD_DECL);
645 rtl = DECL_RTL_IF_SET (decl);
647 if (type == error_mark_node)
648 type = void_type_node;
650 /* Usually the size and mode come from the data type without change,
651 however, the front-end may set the explicit width of the field, so its
652 size may not be the same as the size of its type. This happens with
653 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
654 also happens with other fields. For example, the C++ front-end creates
655 zero-sized fields corresponding to empty base classes, and depends on
656 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
657 size in bytes from the size in bits. If we have already set the mode,
658 don't set it again since we can be called twice for FIELD_DECLs. */
660 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
661 if (DECL_MODE (decl) == VOIDmode)
662 SET_DECL_MODE (decl, TYPE_MODE (type));
664 if (DECL_SIZE (decl) == 0)
666 DECL_SIZE (decl) = TYPE_SIZE (type);
667 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
669 else if (DECL_SIZE_UNIT (decl) == 0)
670 DECL_SIZE_UNIT (decl)
671 = fold_convert_loc (loc, sizetype,
672 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
673 bitsize_unit_node));
675 if (code != FIELD_DECL)
676 /* For non-fields, update the alignment from the type. */
677 do_type_align (type, decl);
678 else
679 /* For fields, it's a bit more complicated... */
681 bool old_user_align = DECL_USER_ALIGN (decl);
682 bool zero_bitfield = false;
683 bool packed_p = DECL_PACKED (decl);
684 unsigned int mfa;
686 if (DECL_BIT_FIELD (decl))
688 DECL_BIT_FIELD_TYPE (decl) = type;
690 /* A zero-length bit-field affects the alignment of the next
691 field. In essence such bit-fields are not influenced by
692 any packing due to #pragma pack or attribute packed. */
693 if (integer_zerop (DECL_SIZE (decl))
694 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
696 zero_bitfield = true;
697 packed_p = false;
698 if (PCC_BITFIELD_TYPE_MATTERS)
699 do_type_align (type, decl);
700 else
702 #ifdef EMPTY_FIELD_BOUNDARY
703 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
705 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
706 DECL_USER_ALIGN (decl) = 0;
708 #endif
712 /* See if we can use an ordinary integer mode for a bit-field.
713 Conditions are: a fixed size that is correct for another mode,
714 occupying a complete byte or bytes on proper boundary. */
715 if (TYPE_SIZE (type) != 0
716 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
717 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
719 machine_mode xmode;
720 if (mode_for_size_tree (DECL_SIZE (decl),
721 MODE_INT, 1).exists (&xmode))
723 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
724 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
725 && (known_align == 0 || known_align >= xalign))
727 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
728 SET_DECL_MODE (decl, xmode);
729 DECL_BIT_FIELD (decl) = 0;
734 /* Turn off DECL_BIT_FIELD if we won't need it set. */
735 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
736 && known_align >= TYPE_ALIGN (type)
737 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
738 DECL_BIT_FIELD (decl) = 0;
740 else if (packed_p && DECL_USER_ALIGN (decl))
741 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
742 round up; we'll reduce it again below. We want packing to
743 supersede USER_ALIGN inherited from the type, but defer to
744 alignment explicitly specified on the field decl. */;
745 else
746 do_type_align (type, decl);
748 /* If the field is packed and not explicitly aligned, give it the
749 minimum alignment. Note that do_type_align may set
750 DECL_USER_ALIGN, so we need to check old_user_align instead. */
751 if (packed_p
752 && !old_user_align)
753 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
755 if (! packed_p && ! DECL_USER_ALIGN (decl))
757 /* Some targets (i.e. i386, VMS) limit struct field alignment
758 to a lower boundary than alignment of variables unless
759 it was overridden by attribute aligned. */
760 #ifdef BIGGEST_FIELD_ALIGNMENT
761 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
762 (unsigned) BIGGEST_FIELD_ALIGNMENT));
763 #endif
764 #ifdef ADJUST_FIELD_ALIGN
765 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
766 DECL_ALIGN (decl)));
767 #endif
770 if (zero_bitfield)
771 mfa = initial_max_fld_align * BITS_PER_UNIT;
772 else
773 mfa = maximum_field_alignment;
774 /* Should this be controlled by DECL_USER_ALIGN, too? */
775 if (mfa != 0)
776 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
779 /* Evaluate nonconstant size only once, either now or as soon as safe. */
780 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
781 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
782 if (DECL_SIZE_UNIT (decl) != 0
783 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
784 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
786 /* If requested, warn about definitions of large data objects. */
787 if ((code == PARM_DECL || (code == VAR_DECL && !DECL_NONLOCAL_FRAME (decl)))
788 && !DECL_EXTERNAL (decl))
790 tree size = DECL_SIZE_UNIT (decl);
792 if (size != 0 && TREE_CODE (size) == INTEGER_CST)
794 /* -Wlarger-than= argument of HOST_WIDE_INT_MAX is treated
795 as if PTRDIFF_MAX had been specified, with the value
796 being that on the target rather than the host. */
797 unsigned HOST_WIDE_INT max_size = warn_larger_than_size;
798 if (max_size == HOST_WIDE_INT_MAX)
799 max_size = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
801 if (compare_tree_int (size, max_size) > 0)
802 warning (OPT_Wlarger_than_, "size of %q+D %E bytes exceeds "
803 "maximum object size %wu",
804 decl, size, max_size);
808 /* If the RTL was already set, update its mode and mem attributes. */
809 if (rtl)
811 PUT_MODE (rtl, DECL_MODE (decl));
812 SET_DECL_RTL (decl, 0);
813 if (MEM_P (rtl))
814 set_mem_attributes (rtl, decl, 1);
815 SET_DECL_RTL (decl, rtl);
819 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
820 results of a previous call to layout_decl and calls it again. */
822 void
823 relayout_decl (tree decl)
825 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
826 SET_DECL_MODE (decl, VOIDmode);
827 if (!DECL_USER_ALIGN (decl))
828 SET_DECL_ALIGN (decl, 0);
829 if (DECL_RTL_SET_P (decl))
830 SET_DECL_RTL (decl, 0);
832 layout_decl (decl, 0);
835 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
836 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
837 is to be passed to all other layout functions for this record. It is the
838 responsibility of the caller to call `free' for the storage returned.
839 Note that garbage collection is not permitted until we finish laying
840 out the record. */
842 record_layout_info
843 start_record_layout (tree t)
845 record_layout_info rli = XNEW (struct record_layout_info_s);
847 rli->t = t;
849 /* If the type has a minimum specified alignment (via an attribute
850 declaration, for example) use it -- otherwise, start with a
851 one-byte alignment. */
852 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
853 rli->unpacked_align = rli->record_align;
854 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
856 #ifdef STRUCTURE_SIZE_BOUNDARY
857 /* Packed structures don't need to have minimum size. */
858 if (! TYPE_PACKED (t))
860 unsigned tmp;
862 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
863 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
864 if (maximum_field_alignment != 0)
865 tmp = MIN (tmp, maximum_field_alignment);
866 rli->record_align = MAX (rli->record_align, tmp);
868 #endif
870 rli->offset = size_zero_node;
871 rli->bitpos = bitsize_zero_node;
872 rli->prev_field = 0;
873 rli->pending_statics = 0;
874 rli->packed_maybe_necessary = 0;
875 rli->remaining_in_alignment = 0;
877 return rli;
880 /* Fold sizetype value X to bitsizetype, given that X represents a type
881 size or offset. */
883 static tree
884 bits_from_bytes (tree x)
886 if (POLY_INT_CST_P (x))
887 /* The runtime calculation isn't allowed to overflow sizetype;
888 increasing the runtime values must always increase the size
889 or offset of the object. This means that the object imposes
890 a maximum value on the runtime parameters, but we don't record
891 what that is. */
892 return build_poly_int_cst
893 (bitsizetype,
894 poly_wide_int::from (poly_int_cst_value (x),
895 TYPE_PRECISION (bitsizetype),
896 TYPE_SIGN (TREE_TYPE (x))));
897 x = fold_convert (bitsizetype, x);
898 gcc_checking_assert (x);
899 return x;
902 /* Return the combined bit position for the byte offset OFFSET and the
903 bit position BITPOS.
905 These functions operate on byte and bit positions present in FIELD_DECLs
906 and assume that these expressions result in no (intermediate) overflow.
907 This assumption is necessary to fold the expressions as much as possible,
908 so as to avoid creating artificially variable-sized types in languages
909 supporting variable-sized types like Ada. */
911 tree
912 bit_from_pos (tree offset, tree bitpos)
914 return size_binop (PLUS_EXPR, bitpos,
915 size_binop (MULT_EXPR, bits_from_bytes (offset),
916 bitsize_unit_node));
919 /* Return the combined truncated byte position for the byte offset OFFSET and
920 the bit position BITPOS. */
922 tree
923 byte_from_pos (tree offset, tree bitpos)
925 tree bytepos;
926 if (TREE_CODE (bitpos) == MULT_EXPR
927 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
928 bytepos = TREE_OPERAND (bitpos, 0);
929 else
930 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
931 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
934 /* Split the bit position POS into a byte offset *POFFSET and a bit
935 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
937 void
938 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
939 tree pos)
941 tree toff_align = bitsize_int (off_align);
942 if (TREE_CODE (pos) == MULT_EXPR
943 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
945 *poffset = size_binop (MULT_EXPR,
946 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
947 size_int (off_align / BITS_PER_UNIT));
948 *pbitpos = bitsize_zero_node;
950 else
952 *poffset = size_binop (MULT_EXPR,
953 fold_convert (sizetype,
954 size_binop (FLOOR_DIV_EXPR, pos,
955 toff_align)),
956 size_int (off_align / BITS_PER_UNIT));
957 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
961 /* Given a pointer to bit and byte offsets and an offset alignment,
962 normalize the offsets so they are within the alignment. */
964 void
965 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
967 /* If the bit position is now larger than it should be, adjust it
968 downwards. */
969 if (compare_tree_int (*pbitpos, off_align) >= 0)
971 tree offset, bitpos;
972 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
973 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
974 *pbitpos = bitpos;
978 /* Print debugging information about the information in RLI. */
980 DEBUG_FUNCTION void
981 debug_rli (record_layout_info rli)
983 print_node_brief (stderr, "type", rli->t, 0);
984 print_node_brief (stderr, "\noffset", rli->offset, 0);
985 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
987 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
988 rli->record_align, rli->unpacked_align,
989 rli->offset_align);
991 /* The ms_struct code is the only that uses this. */
992 if (targetm.ms_bitfield_layout_p (rli->t))
993 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
995 if (rli->packed_maybe_necessary)
996 fprintf (stderr, "packed may be necessary\n");
998 if (!vec_safe_is_empty (rli->pending_statics))
1000 fprintf (stderr, "pending statics:\n");
1001 debug (rli->pending_statics);
1005 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
1006 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
1008 void
1009 normalize_rli (record_layout_info rli)
1011 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
1014 /* Returns the size in bytes allocated so far. */
1016 tree
1017 rli_size_unit_so_far (record_layout_info rli)
1019 return byte_from_pos (rli->offset, rli->bitpos);
1022 /* Returns the size in bits allocated so far. */
1024 tree
1025 rli_size_so_far (record_layout_info rli)
1027 return bit_from_pos (rli->offset, rli->bitpos);
1030 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1031 the next available location within the record is given by KNOWN_ALIGN.
1032 Update the variable alignment fields in RLI, and return the alignment
1033 to give the FIELD. */
1035 unsigned int
1036 update_alignment_for_field (record_layout_info rli, tree field,
1037 unsigned int known_align)
1039 /* The alignment required for FIELD. */
1040 unsigned int desired_align;
1041 /* The type of this field. */
1042 tree type = TREE_TYPE (field);
1043 /* True if the field was explicitly aligned by the user. */
1044 bool user_align;
1045 bool is_bitfield;
1047 /* Do not attempt to align an ERROR_MARK node */
1048 if (TREE_CODE (type) == ERROR_MARK)
1049 return 0;
1051 /* Lay out the field so we know what alignment it needs. */
1052 layout_decl (field, known_align);
1053 desired_align = DECL_ALIGN (field);
1054 user_align = DECL_USER_ALIGN (field);
1056 is_bitfield = (type != error_mark_node
1057 && DECL_BIT_FIELD_TYPE (field)
1058 && ! integer_zerop (TYPE_SIZE (type)));
1060 /* Record must have at least as much alignment as any field.
1061 Otherwise, the alignment of the field within the record is
1062 meaningless. */
1063 if (targetm.ms_bitfield_layout_p (rli->t))
1065 /* Here, the alignment of the underlying type of a bitfield can
1066 affect the alignment of a record; even a zero-sized field
1067 can do this. The alignment should be to the alignment of
1068 the type, except that for zero-size bitfields this only
1069 applies if there was an immediately prior, nonzero-size
1070 bitfield. (That's the way it is, experimentally.) */
1071 if (!is_bitfield
1072 || ((DECL_SIZE (field) == NULL_TREE
1073 || !integer_zerop (DECL_SIZE (field)))
1074 ? !DECL_PACKED (field)
1075 : (rli->prev_field
1076 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1077 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1079 unsigned int type_align = TYPE_ALIGN (type);
1080 if (!is_bitfield && DECL_PACKED (field))
1081 type_align = desired_align;
1082 else
1083 type_align = MAX (type_align, desired_align);
1084 if (maximum_field_alignment != 0)
1085 type_align = MIN (type_align, maximum_field_alignment);
1086 rli->record_align = MAX (rli->record_align, type_align);
1087 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1090 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1092 /* Named bit-fields cause the entire structure to have the
1093 alignment implied by their type. Some targets also apply the same
1094 rules to unnamed bitfields. */
1095 if (DECL_NAME (field) != 0
1096 || targetm.align_anon_bitfield ())
1098 unsigned int type_align = TYPE_ALIGN (type);
1100 #ifdef ADJUST_FIELD_ALIGN
1101 if (! TYPE_USER_ALIGN (type))
1102 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1103 #endif
1105 /* Targets might chose to handle unnamed and hence possibly
1106 zero-width bitfield. Those are not influenced by #pragmas
1107 or packed attributes. */
1108 if (integer_zerop (DECL_SIZE (field)))
1110 if (initial_max_fld_align)
1111 type_align = MIN (type_align,
1112 initial_max_fld_align * BITS_PER_UNIT);
1114 else if (maximum_field_alignment != 0)
1115 type_align = MIN (type_align, maximum_field_alignment);
1116 else if (DECL_PACKED (field))
1117 type_align = MIN (type_align, BITS_PER_UNIT);
1119 /* The alignment of the record is increased to the maximum
1120 of the current alignment, the alignment indicated on the
1121 field (i.e., the alignment specified by an __aligned__
1122 attribute), and the alignment indicated by the type of
1123 the field. */
1124 rli->record_align = MAX (rli->record_align, desired_align);
1125 rli->record_align = MAX (rli->record_align, type_align);
1127 if (warn_packed)
1128 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1129 user_align |= TYPE_USER_ALIGN (type);
1132 else
1134 rli->record_align = MAX (rli->record_align, desired_align);
1135 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1138 TYPE_USER_ALIGN (rli->t) |= user_align;
1140 return desired_align;
1143 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1144 the field alignment of FIELD or FIELD isn't aligned. */
1146 static void
1147 handle_warn_if_not_align (tree field, unsigned int record_align)
1149 tree type = TREE_TYPE (field);
1151 if (type == error_mark_node)
1152 return;
1154 unsigned int warn_if_not_align = 0;
1156 int opt_w = 0;
1158 if (warn_if_not_aligned)
1160 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1161 if (!warn_if_not_align)
1162 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1163 if (warn_if_not_align)
1164 opt_w = OPT_Wif_not_aligned;
1167 if (!warn_if_not_align
1168 && warn_packed_not_aligned
1169 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1171 warn_if_not_align = TYPE_ALIGN (type);
1172 opt_w = OPT_Wpacked_not_aligned;
1175 if (!warn_if_not_align)
1176 return;
1178 tree context = DECL_CONTEXT (field);
1180 warn_if_not_align /= BITS_PER_UNIT;
1181 record_align /= BITS_PER_UNIT;
1182 if ((record_align % warn_if_not_align) != 0)
1183 warning (opt_w, "alignment %u of %qT is less than %u",
1184 record_align, context, warn_if_not_align);
1186 tree off = byte_position (field);
1187 if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1189 if (TREE_CODE (off) == INTEGER_CST)
1190 warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1191 field, off, context, warn_if_not_align);
1192 else
1193 warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1194 field, off, context, warn_if_not_align);
1198 /* Called from place_field to handle unions. */
1200 static void
1201 place_union_field (record_layout_info rli, tree field)
1203 update_alignment_for_field (rli, field, /*known_align=*/0);
1205 DECL_FIELD_OFFSET (field) = size_zero_node;
1206 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1207 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1208 handle_warn_if_not_align (field, rli->record_align);
1210 /* If this is an ERROR_MARK return *after* having set the
1211 field at the start of the union. This helps when parsing
1212 invalid fields. */
1213 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1214 return;
1216 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1217 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1218 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1220 /* We assume the union's size will be a multiple of a byte so we don't
1221 bother with BITPOS. */
1222 if (TREE_CODE (rli->t) == UNION_TYPE)
1223 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1224 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1225 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1226 DECL_SIZE_UNIT (field), rli->offset);
1229 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1230 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1231 units of alignment than the underlying TYPE. */
1232 static int
1233 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1234 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1236 /* Note that the calculation of OFFSET might overflow; we calculate it so
1237 that we still get the right result as long as ALIGN is a power of two. */
1238 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1240 offset = offset % align;
1241 return ((offset + size + align - 1) / align
1242 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1245 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1246 is a FIELD_DECL to be added after those fields already present in
1247 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1248 callers that desire that behavior must manually perform that step.) */
1250 void
1251 place_field (record_layout_info rli, tree field)
1253 /* The alignment required for FIELD. */
1254 unsigned int desired_align;
1255 /* The alignment FIELD would have if we just dropped it into the
1256 record as it presently stands. */
1257 unsigned int known_align;
1258 unsigned int actual_align;
1259 /* The type of this field. */
1260 tree type = TREE_TYPE (field);
1262 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1264 /* If FIELD is static, then treat it like a separate variable, not
1265 really like a structure field. If it is a FUNCTION_DECL, it's a
1266 method. In both cases, all we do is lay out the decl, and we do
1267 it *after* the record is laid out. */
1268 if (VAR_P (field))
1270 vec_safe_push (rli->pending_statics, field);
1271 return;
1274 /* Enumerators and enum types which are local to this class need not
1275 be laid out. Likewise for initialized constant fields. */
1276 else if (TREE_CODE (field) != FIELD_DECL)
1277 return;
1279 /* Unions are laid out very differently than records, so split
1280 that code off to another function. */
1281 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1283 place_union_field (rli, field);
1284 return;
1287 else if (TREE_CODE (type) == ERROR_MARK)
1289 /* Place this field at the current allocation position, so we
1290 maintain monotonicity. */
1291 DECL_FIELD_OFFSET (field) = rli->offset;
1292 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1293 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1294 handle_warn_if_not_align (field, rli->record_align);
1295 return;
1298 if (AGGREGATE_TYPE_P (type)
1299 && TYPE_TYPELESS_STORAGE (type))
1300 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1302 /* Work out the known alignment so far. Note that A & (-A) is the
1303 value of the least-significant bit in A that is one. */
1304 if (! integer_zerop (rli->bitpos))
1305 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1306 else if (integer_zerop (rli->offset))
1307 known_align = 0;
1308 else if (tree_fits_uhwi_p (rli->offset))
1309 known_align = (BITS_PER_UNIT
1310 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1311 else
1312 known_align = rli->offset_align;
1314 desired_align = update_alignment_for_field (rli, field, known_align);
1315 if (known_align == 0)
1316 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1318 if (warn_packed && DECL_PACKED (field))
1320 if (known_align >= TYPE_ALIGN (type))
1322 if (TYPE_ALIGN (type) > desired_align)
1324 if (STRICT_ALIGNMENT)
1325 warning (OPT_Wattributes, "packed attribute causes "
1326 "inefficient alignment for %q+D", field);
1327 /* Don't warn if DECL_PACKED was set by the type. */
1328 else if (!TYPE_PACKED (rli->t))
1329 warning (OPT_Wattributes, "packed attribute is "
1330 "unnecessary for %q+D", field);
1333 else
1334 rli->packed_maybe_necessary = 1;
1337 /* Does this field automatically have alignment it needs by virtue
1338 of the fields that precede it and the record's own alignment? */
1339 if (known_align < desired_align
1340 && (! targetm.ms_bitfield_layout_p (rli->t)
1341 || rli->prev_field == NULL))
1343 /* No, we need to skip space before this field.
1344 Bump the cumulative size to multiple of field alignment. */
1346 if (!targetm.ms_bitfield_layout_p (rli->t)
1347 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION
1348 && !TYPE_ARTIFICIAL (rli->t))
1349 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1351 /* If the alignment is still within offset_align, just align
1352 the bit position. */
1353 if (desired_align < rli->offset_align)
1354 rli->bitpos = round_up (rli->bitpos, desired_align);
1355 else
1357 /* First adjust OFFSET by the partial bits, then align. */
1358 rli->offset
1359 = size_binop (PLUS_EXPR, rli->offset,
1360 fold_convert (sizetype,
1361 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1362 bitsize_unit_node)));
1363 rli->bitpos = bitsize_zero_node;
1365 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1368 if (! TREE_CONSTANT (rli->offset))
1369 rli->offset_align = desired_align;
1372 /* Handle compatibility with PCC. Note that if the record has any
1373 variable-sized fields, we need not worry about compatibility. */
1374 if (PCC_BITFIELD_TYPE_MATTERS
1375 && ! targetm.ms_bitfield_layout_p (rli->t)
1376 && TREE_CODE (field) == FIELD_DECL
1377 && type != error_mark_node
1378 && DECL_BIT_FIELD (field)
1379 && (! DECL_PACKED (field)
1380 /* Enter for these packed fields only to issue a warning. */
1381 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1382 && maximum_field_alignment == 0
1383 && ! integer_zerop (DECL_SIZE (field))
1384 && tree_fits_uhwi_p (DECL_SIZE (field))
1385 && tree_fits_uhwi_p (rli->offset)
1386 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1388 unsigned int type_align = TYPE_ALIGN (type);
1389 tree dsize = DECL_SIZE (field);
1390 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1391 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1392 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1394 #ifdef ADJUST_FIELD_ALIGN
1395 if (! TYPE_USER_ALIGN (type))
1396 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1397 #endif
1399 /* A bit field may not span more units of alignment of its type
1400 than its type itself. Advance to next boundary if necessary. */
1401 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1403 if (DECL_PACKED (field))
1405 if (warn_packed_bitfield_compat == 1)
1406 inform
1407 (input_location,
1408 "offset of packed bit-field %qD has changed in GCC 4.4",
1409 field);
1411 else
1412 rli->bitpos = round_up (rli->bitpos, type_align);
1415 if (! DECL_PACKED (field))
1416 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1418 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1419 TYPE_WARN_IF_NOT_ALIGN (type));
1422 #ifdef BITFIELD_NBYTES_LIMITED
1423 if (BITFIELD_NBYTES_LIMITED
1424 && ! targetm.ms_bitfield_layout_p (rli->t)
1425 && TREE_CODE (field) == FIELD_DECL
1426 && type != error_mark_node
1427 && DECL_BIT_FIELD_TYPE (field)
1428 && ! DECL_PACKED (field)
1429 && ! integer_zerop (DECL_SIZE (field))
1430 && tree_fits_uhwi_p (DECL_SIZE (field))
1431 && tree_fits_uhwi_p (rli->offset)
1432 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1434 unsigned int type_align = TYPE_ALIGN (type);
1435 tree dsize = DECL_SIZE (field);
1436 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1437 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1438 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1440 #ifdef ADJUST_FIELD_ALIGN
1441 if (! TYPE_USER_ALIGN (type))
1442 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1443 #endif
1445 if (maximum_field_alignment != 0)
1446 type_align = MIN (type_align, maximum_field_alignment);
1447 /* ??? This test is opposite the test in the containing if
1448 statement, so this code is unreachable currently. */
1449 else if (DECL_PACKED (field))
1450 type_align = MIN (type_align, BITS_PER_UNIT);
1452 /* A bit field may not span the unit of alignment of its type.
1453 Advance to next boundary if necessary. */
1454 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1455 rli->bitpos = round_up (rli->bitpos, type_align);
1457 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1458 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1459 TYPE_WARN_IF_NOT_ALIGN (type));
1461 #endif
1463 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1464 A subtlety:
1465 When a bit field is inserted into a packed record, the whole
1466 size of the underlying type is used by one or more same-size
1467 adjacent bitfields. (That is, if its long:3, 32 bits is
1468 used in the record, and any additional adjacent long bitfields are
1469 packed into the same chunk of 32 bits. However, if the size
1470 changes, a new field of that size is allocated.) In an unpacked
1471 record, this is the same as using alignment, but not equivalent
1472 when packing.
1474 Note: for compatibility, we use the type size, not the type alignment
1475 to determine alignment, since that matches the documentation */
1477 if (targetm.ms_bitfield_layout_p (rli->t))
1479 tree prev_saved = rli->prev_field;
1480 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1482 /* This is a bitfield if it exists. */
1483 if (rli->prev_field)
1485 bool realign_p = known_align < desired_align;
1487 /* If both are bitfields, nonzero, and the same size, this is
1488 the middle of a run. Zero declared size fields are special
1489 and handled as "end of run". (Note: it's nonzero declared
1490 size, but equal type sizes!) (Since we know that both
1491 the current and previous fields are bitfields by the
1492 time we check it, DECL_SIZE must be present for both.) */
1493 if (DECL_BIT_FIELD_TYPE (field)
1494 && !integer_zerop (DECL_SIZE (field))
1495 && !integer_zerop (DECL_SIZE (rli->prev_field))
1496 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1497 && tree_fits_uhwi_p (TYPE_SIZE (type))
1498 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1500 /* We're in the middle of a run of equal type size fields; make
1501 sure we realign if we run out of bits. (Not decl size,
1502 type size!) */
1503 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1505 if (rli->remaining_in_alignment < bitsize)
1507 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1509 /* out of bits; bump up to next 'word'. */
1510 rli->bitpos
1511 = size_binop (PLUS_EXPR, rli->bitpos,
1512 bitsize_int (rli->remaining_in_alignment));
1513 rli->prev_field = field;
1514 if (typesize < bitsize)
1515 rli->remaining_in_alignment = 0;
1516 else
1517 rli->remaining_in_alignment = typesize - bitsize;
1519 else
1521 rli->remaining_in_alignment -= bitsize;
1522 realign_p = false;
1525 else
1527 /* End of a run: if leaving a run of bitfields of the same type
1528 size, we have to "use up" the rest of the bits of the type
1529 size.
1531 Compute the new position as the sum of the size for the prior
1532 type and where we first started working on that type.
1533 Note: since the beginning of the field was aligned then
1534 of course the end will be too. No round needed. */
1536 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1538 rli->bitpos
1539 = size_binop (PLUS_EXPR, rli->bitpos,
1540 bitsize_int (rli->remaining_in_alignment));
1542 else
1543 /* We "use up" size zero fields; the code below should behave
1544 as if the prior field was not a bitfield. */
1545 prev_saved = NULL;
1547 /* Cause a new bitfield to be captured, either this time (if
1548 currently a bitfield) or next time we see one. */
1549 if (!DECL_BIT_FIELD_TYPE (field)
1550 || integer_zerop (DECL_SIZE (field)))
1551 rli->prev_field = NULL;
1554 /* Does this field automatically have alignment it needs by virtue
1555 of the fields that precede it and the record's own alignment? */
1556 if (realign_p)
1558 /* If the alignment is still within offset_align, just align
1559 the bit position. */
1560 if (desired_align < rli->offset_align)
1561 rli->bitpos = round_up (rli->bitpos, desired_align);
1562 else
1564 /* First adjust OFFSET by the partial bits, then align. */
1565 tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1566 bitsize_unit_node);
1567 rli->offset = size_binop (PLUS_EXPR, rli->offset,
1568 fold_convert (sizetype, d));
1569 rli->bitpos = bitsize_zero_node;
1571 rli->offset = round_up (rli->offset,
1572 desired_align / BITS_PER_UNIT);
1575 if (! TREE_CONSTANT (rli->offset))
1576 rli->offset_align = desired_align;
1579 normalize_rli (rli);
1582 /* If we're starting a new run of same type size bitfields
1583 (or a run of non-bitfields), set up the "first of the run"
1584 fields.
1586 That is, if the current field is not a bitfield, or if there
1587 was a prior bitfield the type sizes differ, or if there wasn't
1588 a prior bitfield the size of the current field is nonzero.
1590 Note: we must be sure to test ONLY the type size if there was
1591 a prior bitfield and ONLY for the current field being zero if
1592 there wasn't. */
1594 if (!DECL_BIT_FIELD_TYPE (field)
1595 || (prev_saved != NULL
1596 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1597 : !integer_zerop (DECL_SIZE (field))))
1599 /* Never smaller than a byte for compatibility. */
1600 unsigned int type_align = BITS_PER_UNIT;
1602 /* (When not a bitfield), we could be seeing a flex array (with
1603 no DECL_SIZE). Since we won't be using remaining_in_alignment
1604 until we see a bitfield (and come by here again) we just skip
1605 calculating it. */
1606 if (DECL_SIZE (field) != NULL
1607 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1608 && tree_fits_uhwi_p (DECL_SIZE (field)))
1610 unsigned HOST_WIDE_INT bitsize
1611 = tree_to_uhwi (DECL_SIZE (field));
1612 unsigned HOST_WIDE_INT typesize
1613 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1615 if (typesize < bitsize)
1616 rli->remaining_in_alignment = 0;
1617 else
1618 rli->remaining_in_alignment = typesize - bitsize;
1621 /* Now align (conventionally) for the new type. */
1622 if (! DECL_PACKED (field))
1623 type_align = TYPE_ALIGN (TREE_TYPE (field));
1625 if (maximum_field_alignment != 0)
1626 type_align = MIN (type_align, maximum_field_alignment);
1628 rli->bitpos = round_up (rli->bitpos, type_align);
1630 /* If we really aligned, don't allow subsequent bitfields
1631 to undo that. */
1632 rli->prev_field = NULL;
1636 /* Offset so far becomes the position of this field after normalizing. */
1637 normalize_rli (rli);
1638 DECL_FIELD_OFFSET (field) = rli->offset;
1639 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1640 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1641 handle_warn_if_not_align (field, rli->record_align);
1643 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1644 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1645 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1647 /* If this field ended up more aligned than we thought it would be (we
1648 approximate this by seeing if its position changed), lay out the field
1649 again; perhaps we can use an integral mode for it now. */
1650 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1651 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1652 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1653 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1654 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1655 actual_align = (BITS_PER_UNIT
1656 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1657 else
1658 actual_align = DECL_OFFSET_ALIGN (field);
1659 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1660 store / extract bit field operations will check the alignment of the
1661 record against the mode of bit fields. */
1663 if (known_align != actual_align)
1664 layout_decl (field, actual_align);
1666 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1667 rli->prev_field = field;
1669 /* Now add size of this field to the size of the record. If the size is
1670 not constant, treat the field as being a multiple of bytes and just
1671 adjust the offset, resetting the bit position. Otherwise, apportion the
1672 size amongst the bit position and offset. First handle the case of an
1673 unspecified size, which can happen when we have an invalid nested struct
1674 definition, such as struct j { struct j { int i; } }. The error message
1675 is printed in finish_struct. */
1676 if (DECL_SIZE (field) == 0)
1677 /* Do nothing. */;
1678 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1679 || TREE_OVERFLOW (DECL_SIZE (field)))
1681 rli->offset
1682 = size_binop (PLUS_EXPR, rli->offset,
1683 fold_convert (sizetype,
1684 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1685 bitsize_unit_node)));
1686 rli->offset
1687 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1688 rli->bitpos = bitsize_zero_node;
1689 rli->offset_align = MIN (rli->offset_align, desired_align);
1691 if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1692 bitsize_int (rli->offset_align)))
1694 tree type = strip_array_types (TREE_TYPE (field));
1695 /* The above adjusts offset_align just based on the start of the
1696 field. The field might not have a size that is a multiple of
1697 that offset_align though. If the field is an array of fixed
1698 sized elements, assume there can be any multiple of those
1699 sizes. If it is a variable length aggregate or array of
1700 variable length aggregates, assume worst that the end is
1701 just BITS_PER_UNIT aligned. */
1702 if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1704 if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1706 unsigned HOST_WIDE_INT sz
1707 = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1708 rli->offset_align = MIN (rli->offset_align, sz);
1711 else
1712 rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1715 else if (targetm.ms_bitfield_layout_p (rli->t))
1717 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1719 /* If FIELD is the last field and doesn't end at the full length
1720 of the type then pad the struct out to the full length of the
1721 last type. */
1722 if (DECL_BIT_FIELD_TYPE (field)
1723 && !integer_zerop (DECL_SIZE (field)))
1725 /* We have to scan, because non-field DECLS are also here. */
1726 tree probe = field;
1727 while ((probe = DECL_CHAIN (probe)))
1728 if (TREE_CODE (probe) == FIELD_DECL)
1729 break;
1730 if (!probe)
1731 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1732 bitsize_int (rli->remaining_in_alignment));
1735 normalize_rli (rli);
1737 else
1739 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1740 normalize_rli (rli);
1744 /* Assuming that all the fields have been laid out, this function uses
1745 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1746 indicated by RLI. */
1748 static void
1749 finalize_record_size (record_layout_info rli)
1751 tree unpadded_size, unpadded_size_unit;
1753 /* Now we want just byte and bit offsets, so set the offset alignment
1754 to be a byte and then normalize. */
1755 rli->offset_align = BITS_PER_UNIT;
1756 normalize_rli (rli);
1758 /* Determine the desired alignment. */
1759 #ifdef ROUND_TYPE_ALIGN
1760 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1761 rli->record_align));
1762 #else
1763 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1764 #endif
1766 /* Compute the size so far. Be sure to allow for extra bits in the
1767 size in bytes. We have guaranteed above that it will be no more
1768 than a single byte. */
1769 unpadded_size = rli_size_so_far (rli);
1770 unpadded_size_unit = rli_size_unit_so_far (rli);
1771 if (! integer_zerop (rli->bitpos))
1772 unpadded_size_unit
1773 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1775 /* Round the size up to be a multiple of the required alignment. */
1776 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1777 TYPE_SIZE_UNIT (rli->t)
1778 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1780 if (TREE_CONSTANT (unpadded_size)
1781 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1782 && input_location != BUILTINS_LOCATION
1783 && !TYPE_ARTIFICIAL (rli->t))
1785 tree pad_size
1786 = size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (rli->t), unpadded_size_unit);
1787 warning (OPT_Wpadded,
1788 "padding struct size to alignment boundary with %E bytes", pad_size);
1791 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1792 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1793 && TREE_CONSTANT (unpadded_size))
1795 tree unpacked_size;
1797 #ifdef ROUND_TYPE_ALIGN
1798 rli->unpacked_align
1799 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1800 #else
1801 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1802 #endif
1804 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1805 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1807 if (TYPE_NAME (rli->t))
1809 tree name;
1811 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1812 name = TYPE_NAME (rli->t);
1813 else
1814 name = DECL_NAME (TYPE_NAME (rli->t));
1816 if (STRICT_ALIGNMENT)
1817 warning (OPT_Wpacked, "packed attribute causes inefficient "
1818 "alignment for %qE", name);
1819 else
1820 warning (OPT_Wpacked,
1821 "packed attribute is unnecessary for %qE", name);
1823 else
1825 if (STRICT_ALIGNMENT)
1826 warning (OPT_Wpacked,
1827 "packed attribute causes inefficient alignment");
1828 else
1829 warning (OPT_Wpacked, "packed attribute is unnecessary");
1835 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1837 void
1838 compute_record_mode (tree type)
1840 tree field;
1841 machine_mode mode = VOIDmode;
1843 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1844 However, if possible, we use a mode that fits in a register
1845 instead, in order to allow for better optimization down the
1846 line. */
1847 SET_TYPE_MODE (type, BLKmode);
1849 poly_uint64 type_size;
1850 if (!poly_int_tree_p (TYPE_SIZE (type), &type_size))
1851 return;
1853 /* A record which has any BLKmode members must itself be
1854 BLKmode; it can't go in a register. Unless the member is
1855 BLKmode only because it isn't aligned. */
1856 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1858 if (TREE_CODE (field) != FIELD_DECL)
1859 continue;
1861 poly_uint64 field_size;
1862 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1863 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1864 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1865 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1866 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1867 || !tree_fits_poly_uint64_p (bit_position (field))
1868 || DECL_SIZE (field) == 0
1869 || !poly_int_tree_p (DECL_SIZE (field), &field_size))
1870 return;
1872 /* If this field is the whole struct, remember its mode so
1873 that, say, we can put a double in a class into a DF
1874 register instead of forcing it to live in the stack. */
1875 if (known_eq (field_size, type_size)
1876 /* Partial int types (e.g. __int20) may have TYPE_SIZE equal to
1877 wider types (e.g. int32), despite precision being less. Ensure
1878 that the TYPE_MODE of the struct does not get set to the partial
1879 int mode if there is a wider type also in the struct. */
1880 && known_gt (GET_MODE_PRECISION (DECL_MODE (field)),
1881 GET_MODE_PRECISION (mode)))
1882 mode = DECL_MODE (field);
1884 /* With some targets, it is sub-optimal to access an aligned
1885 BLKmode structure as a scalar. */
1886 if (targetm.member_type_forces_blk (field, mode))
1887 return;
1890 /* If we only have one real field; use its mode if that mode's size
1891 matches the type's size. This generally only applies to RECORD_TYPE.
1892 For UNION_TYPE, if the widest field is MODE_INT then use that mode.
1893 If the widest field is MODE_PARTIAL_INT, and the union will be passed
1894 by reference, then use that mode. */
1895 if ((TREE_CODE (type) == RECORD_TYPE
1896 || (TREE_CODE (type) == UNION_TYPE
1897 && (GET_MODE_CLASS (mode) == MODE_INT
1898 || (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
1899 && (targetm.calls.pass_by_reference
1900 (pack_cumulative_args (0),
1901 function_arg_info (type, mode, /*named=*/false)))))))
1902 && mode != VOIDmode
1903 && known_eq (GET_MODE_BITSIZE (mode), type_size))
1905 else
1906 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1908 /* If structure's known alignment is less than what the scalar
1909 mode would need, and it matters, then stick with BLKmode. */
1910 if (mode != BLKmode
1911 && STRICT_ALIGNMENT
1912 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1913 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1915 /* If this is the only reason this type is BLKmode, then
1916 don't force containing types to be BLKmode. */
1917 TYPE_NO_FORCE_BLK (type) = 1;
1918 mode = BLKmode;
1921 SET_TYPE_MODE (type, mode);
1924 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1925 out. */
1927 static void
1928 finalize_type_size (tree type)
1930 /* Normally, use the alignment corresponding to the mode chosen.
1931 However, where strict alignment is not required, avoid
1932 over-aligning structures, since most compilers do not do this
1933 alignment. */
1934 bool tua_cleared_p = false;
1935 if (TYPE_MODE (type) != BLKmode
1936 && TYPE_MODE (type) != VOIDmode
1937 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1939 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1941 /* Don't override a larger alignment requirement coming from a user
1942 alignment of one of the fields. */
1943 if (mode_align >= TYPE_ALIGN (type))
1945 SET_TYPE_ALIGN (type, mode_align);
1946 /* Remember that we're about to reset this flag. */
1947 tua_cleared_p = TYPE_USER_ALIGN (type);
1948 TYPE_USER_ALIGN (type) = false;
1952 /* Do machine-dependent extra alignment. */
1953 #ifdef ROUND_TYPE_ALIGN
1954 SET_TYPE_ALIGN (type,
1955 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1956 #endif
1958 /* If we failed to find a simple way to calculate the unit size
1959 of the type, find it by division. */
1960 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1961 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1962 result will fit in sizetype. We will get more efficient code using
1963 sizetype, so we force a conversion. */
1964 TYPE_SIZE_UNIT (type)
1965 = fold_convert (sizetype,
1966 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1967 bitsize_unit_node));
1969 if (TYPE_SIZE (type) != 0)
1971 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1972 TYPE_SIZE_UNIT (type)
1973 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1976 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1977 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1978 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1979 if (TYPE_SIZE_UNIT (type) != 0
1980 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1981 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1983 /* Handle empty records as per the x86-64 psABI. */
1984 TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1986 /* Also layout any other variants of the type. */
1987 if (TYPE_NEXT_VARIANT (type)
1988 || type != TYPE_MAIN_VARIANT (type))
1990 tree variant;
1991 /* Record layout info of this variant. */
1992 tree size = TYPE_SIZE (type);
1993 tree size_unit = TYPE_SIZE_UNIT (type);
1994 unsigned int align = TYPE_ALIGN (type);
1995 unsigned int precision = TYPE_PRECISION (type);
1996 unsigned int user_align = TYPE_USER_ALIGN (type);
1997 machine_mode mode = TYPE_MODE (type);
1998 bool empty_p = TYPE_EMPTY_P (type);
1999 bool typeless = AGGREGATE_TYPE_P (type) && TYPE_TYPELESS_STORAGE (type);
2001 /* Copy it into all variants. */
2002 for (variant = TYPE_MAIN_VARIANT (type);
2003 variant != NULL_TREE;
2004 variant = TYPE_NEXT_VARIANT (variant))
2006 TYPE_SIZE (variant) = size;
2007 TYPE_SIZE_UNIT (variant) = size_unit;
2008 unsigned valign = align;
2009 if (TYPE_USER_ALIGN (variant))
2011 valign = MAX (valign, TYPE_ALIGN (variant));
2012 /* If we reset TYPE_USER_ALIGN on the main variant, we might
2013 need to reset it on the variants too. TYPE_MODE will be set
2014 to MODE in this variant, so we can use that. */
2015 if (tua_cleared_p && GET_MODE_ALIGNMENT (mode) >= valign)
2016 TYPE_USER_ALIGN (variant) = false;
2018 else
2019 TYPE_USER_ALIGN (variant) = user_align;
2020 SET_TYPE_ALIGN (variant, valign);
2021 TYPE_PRECISION (variant) = precision;
2022 SET_TYPE_MODE (variant, mode);
2023 TYPE_EMPTY_P (variant) = empty_p;
2024 if (AGGREGATE_TYPE_P (variant))
2025 TYPE_TYPELESS_STORAGE (variant) = typeless;
2030 /* Return a new underlying object for a bitfield started with FIELD. */
2032 static tree
2033 start_bitfield_representative (tree field)
2035 tree repr = make_node (FIELD_DECL);
2036 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
2037 /* Force the representative to begin at a BITS_PER_UNIT aligned
2038 boundary - C++ may use tail-padding of a base object to
2039 continue packing bits so the bitfield region does not start
2040 at bit zero (see g++.dg/abi/bitfield5.C for example).
2041 Unallocated bits may happen for other reasons as well,
2042 for example Ada which allows explicit bit-granular structure layout. */
2043 DECL_FIELD_BIT_OFFSET (repr)
2044 = size_binop (BIT_AND_EXPR,
2045 DECL_FIELD_BIT_OFFSET (field),
2046 bitsize_int (~(BITS_PER_UNIT - 1)));
2047 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
2048 DECL_SIZE (repr) = DECL_SIZE (field);
2049 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
2050 DECL_PACKED (repr) = DECL_PACKED (field);
2051 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
2052 /* There are no indirect accesses to this field. If we introduce
2053 some then they have to use the record alias set. This makes
2054 sure to properly conflict with [indirect] accesses to addressable
2055 fields of the bitfield group. */
2056 DECL_NONADDRESSABLE_P (repr) = 1;
2057 return repr;
2060 /* Finish up a bitfield group that was started by creating the underlying
2061 object REPR with the last field in the bitfield group FIELD. */
2063 static void
2064 finish_bitfield_representative (tree repr, tree field)
2066 unsigned HOST_WIDE_INT bitsize, maxbitsize;
2067 tree nextf, size;
2069 size = size_diffop (DECL_FIELD_OFFSET (field),
2070 DECL_FIELD_OFFSET (repr));
2071 while (TREE_CODE (size) == COMPOUND_EXPR)
2072 size = TREE_OPERAND (size, 1);
2073 gcc_assert (tree_fits_uhwi_p (size));
2074 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2075 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2076 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2077 + tree_to_uhwi (DECL_SIZE (field)));
2079 /* Round up bitsize to multiples of BITS_PER_UNIT. */
2080 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2082 /* Now nothing tells us how to pad out bitsize ... */
2083 if (TREE_CODE (DECL_CONTEXT (field)) == RECORD_TYPE)
2085 nextf = DECL_CHAIN (field);
2086 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2087 nextf = DECL_CHAIN (nextf);
2089 else
2090 nextf = NULL_TREE;
2091 if (nextf)
2093 tree maxsize;
2094 /* If there was an error, the field may be not laid out
2095 correctly. Don't bother to do anything. */
2096 if (TREE_TYPE (nextf) == error_mark_node)
2098 TREE_TYPE (repr) = error_mark_node;
2099 return;
2101 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2102 DECL_FIELD_OFFSET (repr));
2103 if (tree_fits_uhwi_p (maxsize))
2105 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2106 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2107 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2108 /* If the group ends within a bitfield nextf does not need to be
2109 aligned to BITS_PER_UNIT. Thus round up. */
2110 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2112 else
2113 maxbitsize = bitsize;
2115 else
2117 /* Note that if the C++ FE sets up tail-padding to be re-used it
2118 creates a as-base variant of the type with TYPE_SIZE adjusted
2119 accordingly. So it is safe to include tail-padding here. */
2120 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2121 (DECL_CONTEXT (field));
2122 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2123 /* We cannot generally rely on maxsize to fold to an integer constant,
2124 so use bitsize as fallback for this case. */
2125 if (tree_fits_uhwi_p (maxsize))
2126 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2127 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2128 else
2129 maxbitsize = bitsize;
2132 /* Only if we don't artificially break up the representative in
2133 the middle of a large bitfield with different possibly
2134 overlapping representatives. And all representatives start
2135 at byte offset. */
2136 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2138 /* Find the smallest nice mode to use. */
2139 opt_scalar_int_mode mode_iter;
2140 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2141 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2142 break;
2144 scalar_int_mode mode;
2145 if (!mode_iter.exists (&mode)
2146 || GET_MODE_BITSIZE (mode) > maxbitsize
2147 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2149 /* We really want a BLKmode representative only as a last resort,
2150 considering the member b in
2151 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2152 Otherwise we simply want to split the representative up
2153 allowing for overlaps within the bitfield region as required for
2154 struct { int a : 7; int b : 7;
2155 int c : 10; int d; } __attribute__((packed));
2156 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2157 DECL_SIZE (repr) = bitsize_int (bitsize);
2158 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2159 SET_DECL_MODE (repr, BLKmode);
2160 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2161 bitsize / BITS_PER_UNIT);
2163 else
2165 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2166 DECL_SIZE (repr) = bitsize_int (modesize);
2167 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2168 SET_DECL_MODE (repr, mode);
2169 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2172 /* Remember whether the bitfield group is at the end of the
2173 structure or not. */
2174 DECL_CHAIN (repr) = nextf;
2177 /* Compute and set FIELD_DECLs for the underlying objects we should
2178 use for bitfield access for the structure T. */
2180 void
2181 finish_bitfield_layout (tree t)
2183 tree field, prev;
2184 tree repr = NULL_TREE;
2186 if (TREE_CODE (t) == QUAL_UNION_TYPE)
2187 return;
2189 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2190 field; field = DECL_CHAIN (field))
2192 if (TREE_CODE (field) != FIELD_DECL)
2193 continue;
2195 /* In the C++ memory model, consecutive bit fields in a structure are
2196 considered one memory location and updating a memory location
2197 may not store into adjacent memory locations. */
2198 if (!repr
2199 && DECL_BIT_FIELD_TYPE (field))
2201 /* Start new representative. */
2202 repr = start_bitfield_representative (field);
2204 else if (repr
2205 && ! DECL_BIT_FIELD_TYPE (field))
2207 /* Finish off new representative. */
2208 finish_bitfield_representative (repr, prev);
2209 repr = NULL_TREE;
2211 else if (DECL_BIT_FIELD_TYPE (field))
2213 gcc_assert (repr != NULL_TREE);
2215 /* Zero-size bitfields finish off a representative and
2216 do not have a representative themselves. This is
2217 required by the C++ memory model. */
2218 if (integer_zerop (DECL_SIZE (field)))
2220 finish_bitfield_representative (repr, prev);
2221 repr = NULL_TREE;
2224 /* We assume that either DECL_FIELD_OFFSET of the representative
2225 and each bitfield member is a constant or they are equal.
2226 This is because we need to be able to compute the bit-offset
2227 of each field relative to the representative in get_bit_range
2228 during RTL expansion.
2229 If these constraints are not met, simply force a new
2230 representative to be generated. That will at most
2231 generate worse code but still maintain correctness with
2232 respect to the C++ memory model. */
2233 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2234 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2235 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2236 DECL_FIELD_OFFSET (field), 0)))
2238 finish_bitfield_representative (repr, prev);
2239 repr = start_bitfield_representative (field);
2242 else
2243 continue;
2245 if (repr)
2246 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2248 if (TREE_CODE (t) == RECORD_TYPE)
2249 prev = field;
2250 else if (repr)
2252 finish_bitfield_representative (repr, field);
2253 repr = NULL_TREE;
2257 if (repr)
2258 finish_bitfield_representative (repr, prev);
2261 /* Do all of the work required to layout the type indicated by RLI,
2262 once the fields have been laid out. This function will call `free'
2263 for RLI, unless FREE_P is false. Passing a value other than false
2264 for FREE_P is bad practice; this option only exists to support the
2265 G++ 3.2 ABI. */
2267 void
2268 finish_record_layout (record_layout_info rli, int free_p)
2270 tree variant;
2272 /* Compute the final size. */
2273 finalize_record_size (rli);
2275 /* Compute the TYPE_MODE for the record. */
2276 compute_record_mode (rli->t);
2278 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2279 finalize_type_size (rli->t);
2281 /* Compute bitfield representatives. */
2282 finish_bitfield_layout (rli->t);
2284 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2285 With C++ templates, it is too early to do this when the attribute
2286 is being parsed. */
2287 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2288 variant = TYPE_NEXT_VARIANT (variant))
2290 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2291 TYPE_REVERSE_STORAGE_ORDER (variant)
2292 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2295 /* Lay out any static members. This is done now because their type
2296 may use the record's type. */
2297 while (!vec_safe_is_empty (rli->pending_statics))
2298 layout_decl (rli->pending_statics->pop (), 0);
2300 /* Clean up. */
2301 if (free_p)
2303 vec_free (rli->pending_statics);
2304 free (rli);
2309 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2310 NAME, its fields are chained in reverse on FIELDS.
2312 If ALIGN_TYPE is non-null, it is given the same alignment as
2313 ALIGN_TYPE. */
2315 void
2316 finish_builtin_struct (tree type, const char *name, tree fields,
2317 tree align_type)
2319 tree tail, next;
2321 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2323 DECL_FIELD_CONTEXT (fields) = type;
2324 next = DECL_CHAIN (fields);
2325 DECL_CHAIN (fields) = tail;
2327 TYPE_FIELDS (type) = tail;
2329 if (align_type)
2331 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2332 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2333 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2334 TYPE_WARN_IF_NOT_ALIGN (align_type));
2337 layout_type (type);
2338 #if 0 /* not yet, should get fixed properly later */
2339 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2340 #else
2341 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2342 TYPE_DECL, get_identifier (name), type);
2343 #endif
2344 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2345 layout_decl (TYPE_NAME (type), 0);
2348 /* Calculate the mode, size, and alignment for TYPE.
2349 For an array type, calculate the element separation as well.
2350 Record TYPE on the chain of permanent or temporary types
2351 so that dbxout will find out about it.
2353 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2354 layout_type does nothing on such a type.
2356 If the type is incomplete, its TYPE_SIZE remains zero. */
2358 void
2359 layout_type (tree type)
2361 gcc_assert (type);
2363 if (type == error_mark_node)
2364 return;
2366 /* We don't want finalize_type_size to copy an alignment attribute to
2367 variants that don't have it. */
2368 type = TYPE_MAIN_VARIANT (type);
2370 /* Do nothing if type has been laid out before. */
2371 if (TYPE_SIZE (type))
2372 return;
2374 switch (TREE_CODE (type))
2376 case LANG_TYPE:
2377 /* This kind of type is the responsibility
2378 of the language-specific code. */
2379 gcc_unreachable ();
2381 case BOOLEAN_TYPE:
2382 case INTEGER_TYPE:
2383 case ENUMERAL_TYPE:
2385 scalar_int_mode mode
2386 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2387 SET_TYPE_MODE (type, mode);
2388 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2389 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2390 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2391 break;
2394 case REAL_TYPE:
2396 /* Allow the caller to choose the type mode, which is how decimal
2397 floats are distinguished from binary ones. */
2398 if (TYPE_MODE (type) == VOIDmode)
2399 SET_TYPE_MODE
2400 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2401 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2402 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2403 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2404 break;
2407 case FIXED_POINT_TYPE:
2409 /* TYPE_MODE (type) has been set already. */
2410 scalar_mode mode = SCALAR_TYPE_MODE (type);
2411 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2412 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2413 break;
2416 case COMPLEX_TYPE:
2417 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2418 SET_TYPE_MODE (type,
2419 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2421 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2422 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2423 break;
2425 case VECTOR_TYPE:
2427 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2428 tree innertype = TREE_TYPE (type);
2430 /* Find an appropriate mode for the vector type. */
2431 if (TYPE_MODE (type) == VOIDmode)
2432 SET_TYPE_MODE (type,
2433 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2434 nunits).else_blk ());
2436 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2437 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2438 /* Several boolean vector elements may fit in a single unit. */
2439 if (VECTOR_BOOLEAN_TYPE_P (type)
2440 && type->type_common.mode != BLKmode)
2441 TYPE_SIZE_UNIT (type)
2442 = size_int (GET_MODE_SIZE (type->type_common.mode));
2443 else
2444 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2445 TYPE_SIZE_UNIT (innertype),
2446 size_int (nunits));
2447 TYPE_SIZE (type) = int_const_binop
2448 (MULT_EXPR,
2449 bits_from_bytes (TYPE_SIZE_UNIT (type)),
2450 bitsize_int (BITS_PER_UNIT));
2452 /* For vector types, we do not default to the mode's alignment.
2453 Instead, query a target hook, defaulting to natural alignment.
2454 This prevents ABI changes depending on whether or not native
2455 vector modes are supported. */
2456 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2458 /* However, if the underlying mode requires a bigger alignment than
2459 what the target hook provides, we cannot use the mode. For now,
2460 simply reject that case. */
2461 gcc_assert (TYPE_ALIGN (type)
2462 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2463 break;
2466 case VOID_TYPE:
2467 /* This is an incomplete type and so doesn't have a size. */
2468 SET_TYPE_ALIGN (type, 1);
2469 TYPE_USER_ALIGN (type) = 0;
2470 SET_TYPE_MODE (type, VOIDmode);
2471 break;
2473 case OFFSET_TYPE:
2474 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2475 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2476 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2477 integral, which may be an __intN. */
2478 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2479 TYPE_PRECISION (type) = POINTER_SIZE;
2480 break;
2482 case FUNCTION_TYPE:
2483 case METHOD_TYPE:
2484 /* It's hard to see what the mode and size of a function ought to
2485 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2486 make it consistent with that. */
2487 SET_TYPE_MODE (type,
2488 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2489 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2490 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2491 break;
2493 case POINTER_TYPE:
2494 case REFERENCE_TYPE:
2496 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2497 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2498 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2499 TYPE_UNSIGNED (type) = 1;
2500 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2502 break;
2504 case ARRAY_TYPE:
2506 tree index = TYPE_DOMAIN (type);
2507 tree element = TREE_TYPE (type);
2509 /* We need to know both bounds in order to compute the size. */
2510 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2511 && TYPE_SIZE (element))
2513 tree ub = TYPE_MAX_VALUE (index);
2514 tree lb = TYPE_MIN_VALUE (index);
2515 tree element_size = TYPE_SIZE (element);
2516 tree length;
2518 /* Make sure that an array of zero-sized element is zero-sized
2519 regardless of its extent. */
2520 if (integer_zerop (element_size))
2521 length = size_zero_node;
2523 /* The computation should happen in the original signedness so
2524 that (possible) negative values are handled appropriately
2525 when determining overflow. */
2526 else
2528 /* ??? When it is obvious that the range is signed
2529 represent it using ssizetype. */
2530 if (TREE_CODE (lb) == INTEGER_CST
2531 && TREE_CODE (ub) == INTEGER_CST
2532 && TYPE_UNSIGNED (TREE_TYPE (lb))
2533 && tree_int_cst_lt (ub, lb))
2535 lb = wide_int_to_tree (ssizetype,
2536 offset_int::from (wi::to_wide (lb),
2537 SIGNED));
2538 ub = wide_int_to_tree (ssizetype,
2539 offset_int::from (wi::to_wide (ub),
2540 SIGNED));
2542 length
2543 = fold_convert (sizetype,
2544 size_binop (PLUS_EXPR,
2545 build_int_cst (TREE_TYPE (lb), 1),
2546 size_binop (MINUS_EXPR, ub, lb)));
2549 /* ??? We have no way to distinguish a null-sized array from an
2550 array spanning the whole sizetype range, so we arbitrarily
2551 decide that [0, -1] is the only valid representation. */
2552 if (integer_zerop (length)
2553 && TREE_OVERFLOW (length)
2554 && integer_zerop (lb))
2555 length = size_zero_node;
2557 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2558 bits_from_bytes (length));
2560 /* If we know the size of the element, calculate the total size
2561 directly, rather than do some division thing below. This
2562 optimization helps Fortran assumed-size arrays (where the
2563 size of the array is determined at runtime) substantially. */
2564 if (TYPE_SIZE_UNIT (element))
2565 TYPE_SIZE_UNIT (type)
2566 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2569 /* Now round the alignment and size,
2570 using machine-dependent criteria if any. */
2572 unsigned align = TYPE_ALIGN (element);
2573 if (TYPE_USER_ALIGN (type))
2574 align = MAX (align, TYPE_ALIGN (type));
2575 else
2576 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2577 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2578 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2579 TYPE_WARN_IF_NOT_ALIGN (element));
2580 #ifdef ROUND_TYPE_ALIGN
2581 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2582 #else
2583 align = MAX (align, BITS_PER_UNIT);
2584 #endif
2585 SET_TYPE_ALIGN (type, align);
2586 SET_TYPE_MODE (type, BLKmode);
2587 if (TYPE_SIZE (type) != 0
2588 && ! targetm.member_type_forces_blk (type, VOIDmode)
2589 /* BLKmode elements force BLKmode aggregate;
2590 else extract/store fields may lose. */
2591 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2592 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2594 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2595 TYPE_SIZE (type)));
2596 if (TYPE_MODE (type) != BLKmode
2597 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2598 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2600 TYPE_NO_FORCE_BLK (type) = 1;
2601 SET_TYPE_MODE (type, BLKmode);
2604 if (AGGREGATE_TYPE_P (element))
2605 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2606 /* When the element size is constant, check that it is at least as
2607 large as the element alignment. */
2608 if (TYPE_SIZE_UNIT (element)
2609 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2610 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2611 TYPE_ALIGN_UNIT. */
2612 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2613 && !integer_zerop (TYPE_SIZE_UNIT (element)))
2615 if (compare_tree_int (TYPE_SIZE_UNIT (element),
2616 TYPE_ALIGN_UNIT (element)) < 0)
2617 error ("alignment of array elements is greater than "
2618 "element size");
2619 else if (TYPE_ALIGN_UNIT (element) > 1
2620 && (wi::zext (wi::to_wide (TYPE_SIZE_UNIT (element)),
2621 ffs_hwi (TYPE_ALIGN_UNIT (element)) - 1)
2622 != 0))
2623 error ("size of array element is not a multiple of its "
2624 "alignment");
2626 break;
2629 case RECORD_TYPE:
2630 case UNION_TYPE:
2631 case QUAL_UNION_TYPE:
2633 tree field;
2634 record_layout_info rli;
2636 /* Initialize the layout information. */
2637 rli = start_record_layout (type);
2639 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2640 in the reverse order in building the COND_EXPR that denotes
2641 its size. We reverse them again later. */
2642 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2643 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2645 /* Place all the fields. */
2646 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2647 place_field (rli, field);
2649 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2650 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2652 /* Finish laying out the record. */
2653 finish_record_layout (rli, /*free_p=*/true);
2655 break;
2657 default:
2658 gcc_unreachable ();
2661 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2662 records and unions, finish_record_layout already called this
2663 function. */
2664 if (!RECORD_OR_UNION_TYPE_P (type))
2665 finalize_type_size (type);
2667 /* We should never see alias sets on incomplete aggregates. And we
2668 should not call layout_type on not incomplete aggregates. */
2669 if (AGGREGATE_TYPE_P (type))
2670 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2673 /* Return the least alignment required for type TYPE. */
2675 unsigned int
2676 min_align_of_type (tree type)
2678 unsigned int align = TYPE_ALIGN (type);
2679 if (!TYPE_USER_ALIGN (type))
2681 align = MIN (align, BIGGEST_ALIGNMENT);
2682 #ifdef BIGGEST_FIELD_ALIGNMENT
2683 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2684 #endif
2685 unsigned int field_align = align;
2686 #ifdef ADJUST_FIELD_ALIGN
2687 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2688 #endif
2689 align = MIN (align, field_align);
2691 return align / BITS_PER_UNIT;
2694 /* Create and return a type for signed integers of PRECISION bits. */
2696 tree
2697 make_signed_type (int precision)
2699 tree type = make_node (INTEGER_TYPE);
2701 TYPE_PRECISION (type) = precision;
2703 fixup_signed_type (type);
2704 return type;
2707 /* Create and return a type for unsigned integers of PRECISION bits. */
2709 tree
2710 make_unsigned_type (int precision)
2712 tree type = make_node (INTEGER_TYPE);
2714 TYPE_PRECISION (type) = precision;
2716 fixup_unsigned_type (type);
2717 return type;
2720 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2721 and SATP. */
2723 tree
2724 make_fract_type (int precision, int unsignedp, int satp)
2726 tree type = make_node (FIXED_POINT_TYPE);
2728 TYPE_PRECISION (type) = precision;
2730 if (satp)
2731 TYPE_SATURATING (type) = 1;
2733 /* Lay out the type: set its alignment, size, etc. */
2734 TYPE_UNSIGNED (type) = unsignedp;
2735 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2736 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2737 layout_type (type);
2739 return type;
2742 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2743 and SATP. */
2745 tree
2746 make_accum_type (int precision, int unsignedp, int satp)
2748 tree type = make_node (FIXED_POINT_TYPE);
2750 TYPE_PRECISION (type) = precision;
2752 if (satp)
2753 TYPE_SATURATING (type) = 1;
2755 /* Lay out the type: set its alignment, size, etc. */
2756 TYPE_UNSIGNED (type) = unsignedp;
2757 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2758 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2759 layout_type (type);
2761 return type;
2764 /* Initialize sizetypes so layout_type can use them. */
2766 void
2767 initialize_sizetypes (void)
2769 int precision, bprecision;
2771 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2772 if (strcmp (SIZETYPE, "unsigned int") == 0)
2773 precision = INT_TYPE_SIZE;
2774 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2775 precision = LONG_TYPE_SIZE;
2776 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2777 precision = LONG_LONG_TYPE_SIZE;
2778 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2779 precision = SHORT_TYPE_SIZE;
2780 else
2782 int i;
2784 precision = -1;
2785 for (i = 0; i < NUM_INT_N_ENTS; i++)
2786 if (int_n_enabled_p[i])
2788 char name[50], altname[50];
2789 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2790 sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
2792 if (strcmp (name, SIZETYPE) == 0
2793 || strcmp (altname, SIZETYPE) == 0)
2795 precision = int_n_data[i].bitsize;
2798 if (precision == -1)
2799 gcc_unreachable ();
2802 bprecision
2803 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2804 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2805 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2806 bprecision = HOST_BITS_PER_DOUBLE_INT;
2808 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2809 sizetype = make_node (INTEGER_TYPE);
2810 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2811 TYPE_PRECISION (sizetype) = precision;
2812 TYPE_UNSIGNED (sizetype) = 1;
2813 bitsizetype = make_node (INTEGER_TYPE);
2814 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2815 TYPE_PRECISION (bitsizetype) = bprecision;
2816 TYPE_UNSIGNED (bitsizetype) = 1;
2818 /* Now layout both types manually. */
2819 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2820 SET_TYPE_MODE (sizetype, mode);
2821 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2822 TYPE_SIZE (sizetype) = bitsize_int (precision);
2823 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2824 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2826 mode = smallest_int_mode_for_size (bprecision);
2827 SET_TYPE_MODE (bitsizetype, mode);
2828 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2829 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2830 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2831 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2833 /* Create the signed variants of *sizetype. */
2834 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2835 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2836 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2837 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2840 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2841 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2842 for TYPE, based on the PRECISION and whether or not the TYPE
2843 IS_UNSIGNED. PRECISION need not correspond to a width supported
2844 natively by the hardware; for example, on a machine with 8-bit,
2845 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2846 61. */
2848 void
2849 set_min_and_max_values_for_integral_type (tree type,
2850 int precision,
2851 signop sgn)
2853 /* For bitfields with zero width we end up creating integer types
2854 with zero precision. Don't assign any minimum/maximum values
2855 to those types, they don't have any valid value. */
2856 if (precision < 1)
2857 return;
2859 gcc_assert (precision <= WIDE_INT_MAX_PRECISION);
2861 TYPE_MIN_VALUE (type)
2862 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2863 TYPE_MAX_VALUE (type)
2864 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2867 /* Set the extreme values of TYPE based on its precision in bits,
2868 then lay it out. Used when make_signed_type won't do
2869 because the tree code is not INTEGER_TYPE. */
2871 void
2872 fixup_signed_type (tree type)
2874 int precision = TYPE_PRECISION (type);
2876 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2878 /* Lay out the type: set its alignment, size, etc. */
2879 layout_type (type);
2882 /* Set the extreme values of TYPE based on its precision in bits,
2883 then lay it out. This is used both in `make_unsigned_type'
2884 and for enumeral types. */
2886 void
2887 fixup_unsigned_type (tree type)
2889 int precision = TYPE_PRECISION (type);
2891 TYPE_UNSIGNED (type) = 1;
2893 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2895 /* Lay out the type: set its alignment, size, etc. */
2896 layout_type (type);
2899 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2900 starting at BITPOS.
2902 BITREGION_START is the bit position of the first bit in this
2903 sequence of bit fields. BITREGION_END is the last bit in this
2904 sequence. If these two fields are non-zero, we should restrict the
2905 memory access to that range. Otherwise, we are allowed to touch
2906 any adjacent non bit-fields.
2908 ALIGN is the alignment of the underlying object in bits.
2909 VOLATILEP says whether the bitfield is volatile. */
2911 bit_field_mode_iterator
2912 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2913 poly_int64 bitregion_start,
2914 poly_int64 bitregion_end,
2915 unsigned int align, bool volatilep)
2916 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2917 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2918 m_bitregion_end (bitregion_end), m_align (align),
2919 m_volatilep (volatilep), m_count (0)
2921 if (known_eq (m_bitregion_end, 0))
2923 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2924 the bitfield is mapped and won't trap, provided that ALIGN isn't
2925 too large. The cap is the biggest required alignment for data,
2926 or at least the word size. And force one such chunk at least. */
2927 unsigned HOST_WIDE_INT units
2928 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2929 if (bitsize <= 0)
2930 bitsize = 1;
2931 HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2932 m_bitregion_end = end - end % units - 1;
2936 /* Calls to this function return successively larger modes that can be used
2937 to represent the bitfield. Return true if another bitfield mode is
2938 available, storing it in *OUT_MODE if so. */
2940 bool
2941 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2943 scalar_int_mode mode;
2944 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2946 unsigned int unit = GET_MODE_BITSIZE (mode);
2948 /* Skip modes that don't have full precision. */
2949 if (unit != GET_MODE_PRECISION (mode))
2950 continue;
2952 /* Stop if the mode is too wide to handle efficiently. */
2953 if (unit > MAX_FIXED_MODE_SIZE)
2954 break;
2956 /* Don't deliver more than one multiword mode; the smallest one
2957 should be used. */
2958 if (m_count > 0 && unit > BITS_PER_WORD)
2959 break;
2961 /* Skip modes that are too small. */
2962 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2963 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2964 if (subend > unit)
2965 continue;
2967 /* Stop if the mode goes outside the bitregion. */
2968 HOST_WIDE_INT start = m_bitpos - substart;
2969 if (maybe_ne (m_bitregion_start, 0)
2970 && maybe_lt (start, m_bitregion_start))
2971 break;
2972 HOST_WIDE_INT end = start + unit;
2973 if (maybe_gt (end, m_bitregion_end + 1))
2974 break;
2976 /* Stop if the mode requires too much alignment. */
2977 if (GET_MODE_ALIGNMENT (mode) > m_align
2978 && targetm.slow_unaligned_access (mode, m_align))
2979 break;
2981 *out_mode = mode;
2982 m_mode = GET_MODE_WIDER_MODE (mode);
2983 m_count++;
2984 return true;
2986 return false;
2989 /* Return true if smaller modes are generally preferred for this kind
2990 of bitfield. */
2992 bool
2993 bit_field_mode_iterator::prefer_smaller_modes ()
2995 return (m_volatilep
2996 ? targetm.narrow_volatile_bitfield ()
2997 : !SLOW_BYTE_ACCESS);
3000 /* Find the best machine mode to use when referencing a bit field of length
3001 BITSIZE bits starting at BITPOS.
3003 BITREGION_START is the bit position of the first bit in this
3004 sequence of bit fields. BITREGION_END is the last bit in this
3005 sequence. If these two fields are non-zero, we should restrict the
3006 memory access to that range. Otherwise, we are allowed to touch
3007 any adjacent non bit-fields.
3009 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
3010 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
3011 doesn't want to apply a specific limit.
3013 If no mode meets all these conditions, we return VOIDmode.
3015 The underlying object is known to be aligned to a boundary of ALIGN bits.
3017 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
3018 smallest mode meeting these conditions.
3020 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
3021 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
3022 all the conditions.
3024 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
3025 decide which of the above modes should be used. */
3027 bool
3028 get_best_mode (int bitsize, int bitpos,
3029 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
3030 unsigned int align,
3031 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
3032 scalar_int_mode *best_mode)
3034 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
3035 bitregion_end, align, volatilep);
3036 scalar_int_mode mode;
3037 bool found = false;
3038 while (iter.next_mode (&mode)
3039 /* ??? For historical reasons, reject modes that would normally
3040 receive greater alignment, even if unaligned accesses are
3041 acceptable. This has both advantages and disadvantages.
3042 Removing this check means that something like:
3044 struct s { unsigned int x; unsigned int y; };
3045 int f (struct s *s) { return s->x == 0 && s->y == 0; }
3047 can be implemented using a single load and compare on
3048 64-bit machines that have no alignment restrictions.
3049 For example, on powerpc64-linux-gnu, we would generate:
3051 ld 3,0(3)
3052 cntlzd 3,3
3053 srdi 3,3,6
3056 rather than:
3058 lwz 9,0(3)
3059 cmpwi 7,9,0
3060 bne 7,.L3
3061 lwz 3,4(3)
3062 cntlzw 3,3
3063 srwi 3,3,5
3064 extsw 3,3
3066 .p2align 4,,15
3067 .L3:
3068 li 3,0
3071 However, accessing more than one field can make life harder
3072 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
3073 has a series of unsigned short copies followed by a series of
3074 unsigned short comparisons. With this check, both the copies
3075 and comparisons remain 16-bit accesses and FRE is able
3076 to eliminate the latter. Without the check, the comparisons
3077 can be done using 2 64-bit operations, which FRE isn't able
3078 to handle in the same way.
3080 Either way, it would probably be worth disabling this check
3081 during expand. One particular example where removing the
3082 check would help is the get_best_mode call in store_bit_field.
3083 If we are given a memory bitregion of 128 bits that is aligned
3084 to a 64-bit boundary, and the bitfield we want to modify is
3085 in the second half of the bitregion, this check causes
3086 store_bitfield to turn the memory into a 64-bit reference
3087 to the _first_ half of the region. We later use
3088 adjust_bitfield_address to get a reference to the correct half,
3089 but doing so looks to adjust_bitfield_address as though we are
3090 moving past the end of the original object, so it drops the
3091 associated MEM_EXPR and MEM_OFFSET. Removing the check
3092 causes store_bit_field to keep a 128-bit memory reference,
3093 so that the final bitfield reference still has a MEM_EXPR
3094 and MEM_OFFSET. */
3095 && GET_MODE_ALIGNMENT (mode) <= align
3096 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3098 *best_mode = mode;
3099 found = true;
3100 if (iter.prefer_smaller_modes ())
3101 break;
3104 return found;
3107 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3108 SIGN). The returned constants are made to be usable in TARGET_MODE. */
3110 void
3111 get_mode_bounds (scalar_int_mode mode, int sign,
3112 scalar_int_mode target_mode,
3113 rtx *mmin, rtx *mmax)
3115 unsigned size = GET_MODE_PRECISION (mode);
3116 unsigned HOST_WIDE_INT min_val, max_val;
3118 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3120 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
3121 if (mode == BImode)
3123 if (STORE_FLAG_VALUE < 0)
3125 min_val = STORE_FLAG_VALUE;
3126 max_val = 0;
3128 else
3130 min_val = 0;
3131 max_val = STORE_FLAG_VALUE;
3134 else if (sign)
3136 min_val = -(HOST_WIDE_INT_1U << (size - 1));
3137 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3139 else
3141 min_val = 0;
3142 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3145 *mmin = gen_int_mode (min_val, target_mode);
3146 *mmax = gen_int_mode (max_val, target_mode);
3149 #include "gt-stor-layout.h"