Add assember CFI directives to millicode division and remainder routines.
[official-gcc.git] / gcc / lra-eliminations.cc
blob4220636666906257a7ae638a762a1edf04532b06
1 /* Code for RTL register eliminations.
2 Copyright (C) 2010-2023 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Eliminable registers (like a soft argument or frame pointer) are
22 widely used in RTL. These eliminable registers should be replaced
23 by real hard registers (like the stack pointer or hard frame
24 pointer) plus some offset. The offsets usually change whenever the
25 stack is expanded. We know the final offsets only at the very end
26 of LRA.
28 Within LRA, we usually keep the RTL in such a state that the
29 eliminable registers can be replaced by just the corresponding hard
30 register (without any offset). To achieve this we should add the
31 initial elimination offset at the beginning of LRA and update the
32 offsets whenever the stack is expanded. We need to do this before
33 every constraint pass because the choice of offset often affects
34 whether a particular address or memory constraint is satisfied.
36 We keep RTL code at most time in such state that the virtual
37 registers can be changed by just the corresponding hard registers
38 (with zero offsets) and we have the right RTL code. To achieve this
39 we should add initial offset at the beginning of LRA work and update
40 offsets after each stack expanding. But actually we update virtual
41 registers to the same virtual registers + corresponding offsets
42 before every constraint pass because it affects constraint
43 satisfaction (e.g. an address displacement became too big for some
44 target).
46 The final change of eliminable registers to the corresponding hard
47 registers are done at the very end of LRA when there were no change
48 in offsets anymore:
50 fp + 42 => sp + 42
54 #include "config.h"
55 #include "system.h"
56 #include "coretypes.h"
57 #include "backend.h"
58 #include "target.h"
59 #include "rtl.h"
60 #include "tree.h"
61 #include "df.h"
62 #include "memmodel.h"
63 #include "tm_p.h"
64 #include "optabs.h"
65 #include "regs.h"
66 #include "ira.h"
67 #include "recog.h"
68 #include "output.h"
69 #include "rtl-error.h"
70 #include "lra-int.h"
72 /* This structure is used to record information about hard register
73 eliminations. */
74 class lra_elim_table
76 public:
77 /* Hard register number to be eliminated. */
78 int from;
79 /* Hard register number used as replacement. */
80 int to;
81 /* Difference between values of the two hard registers above on
82 previous iteration. */
83 poly_int64 previous_offset;
84 /* Difference between the values on the current iteration. */
85 poly_int64 offset;
86 /* Nonzero if this elimination can be done. */
87 bool can_eliminate;
88 /* CAN_ELIMINATE since the last check. */
89 bool prev_can_eliminate;
90 /* REG rtx for the register to be eliminated. We cannot simply
91 compare the number since we might then spuriously replace a hard
92 register corresponding to a pseudo assigned to the reg to be
93 eliminated. */
94 rtx from_rtx;
95 /* REG rtx for the replacement. */
96 rtx to_rtx;
99 /* The elimination table. Each array entry describes one possible way
100 of eliminating a register in favor of another. If there is more
101 than one way of eliminating a particular register, the most
102 preferred should be specified first. */
103 static class lra_elim_table *reg_eliminate = 0;
105 /* This is an intermediate structure to initialize the table. It has
106 exactly the members provided by ELIMINABLE_REGS. */
107 static const struct elim_table_1
109 const int from;
110 const int to;
111 } reg_eliminate_1[] =
113 ELIMINABLE_REGS;
115 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
117 /* Print info about elimination table to file F. */
118 static void
119 print_elim_table (FILE *f)
121 class lra_elim_table *ep;
123 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
125 fprintf (f, "%s eliminate %d to %d (offset=",
126 ep->can_eliminate ? "Can" : "Can't", ep->from, ep->to);
127 print_dec (ep->offset, f);
128 fprintf (f, ", prev_offset=");
129 print_dec (ep->previous_offset, f);
130 fprintf (f, ")\n");
134 /* Print info about elimination table to stderr. */
135 void
136 lra_debug_elim_table (void)
138 print_elim_table (stderr);
141 /* Setup possibility of elimination in elimination table element EP to
142 VALUE. Setup FRAME_POINTER_NEEDED if elimination from frame
143 pointer to stack pointer is not possible anymore. */
144 static void
145 setup_can_eliminate (class lra_elim_table *ep, bool value)
147 ep->can_eliminate = ep->prev_can_eliminate = value;
148 if (! value
149 && ep->from == FRAME_POINTER_REGNUM && ep->to == STACK_POINTER_REGNUM)
150 frame_pointer_needed = 1;
151 if (!frame_pointer_needed)
152 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = 0;
155 /* Map: eliminable "from" register -> its current elimination,
156 or NULL if none. The elimination table may contain more than
157 one elimination for the same hard register, but this map specifies
158 the one that we are currently using. */
159 static class lra_elim_table *elimination_map[FIRST_PSEUDO_REGISTER];
161 /* When an eliminable hard register becomes not eliminable, we use the
162 following special structure to restore original offsets for the
163 register. */
164 static class lra_elim_table self_elim_table;
166 /* Offsets should be used to restore original offsets for eliminable
167 hard register which just became not eliminable. Zero,
168 otherwise. */
169 static poly_int64_pod self_elim_offsets[FIRST_PSEUDO_REGISTER];
171 /* Map: hard regno -> RTL presentation. RTL presentations of all
172 potentially eliminable hard registers are stored in the map. */
173 static rtx eliminable_reg_rtx[FIRST_PSEUDO_REGISTER];
175 /* Set up ELIMINATION_MAP of the currently used eliminations. */
176 static void
177 setup_elimination_map (void)
179 int i;
180 class lra_elim_table *ep;
182 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
183 elimination_map[i] = NULL;
184 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
185 if (ep->can_eliminate && elimination_map[ep->from] == NULL)
186 elimination_map[ep->from] = ep;
191 /* Compute the sum of X and Y, making canonicalizations assumed in an
192 address, namely: sum constant integers, surround the sum of two
193 constants with a CONST, put the constant as the second operand, and
194 group the constant on the outermost sum.
196 This routine assumes both inputs are already in canonical form. */
197 static rtx
198 form_sum (rtx x, rtx y)
200 machine_mode mode = GET_MODE (x);
201 poly_int64 offset;
203 if (mode == VOIDmode)
204 mode = GET_MODE (y);
206 if (mode == VOIDmode)
207 mode = Pmode;
209 if (poly_int_rtx_p (x, &offset))
210 return plus_constant (mode, y, offset);
211 else if (poly_int_rtx_p (y, &offset))
212 return plus_constant (mode, x, offset);
213 else if (CONSTANT_P (x))
214 std::swap (x, y);
216 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
217 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
219 /* Note that if the operands of Y are specified in the opposite
220 order in the recursive calls below, infinite recursion will
221 occur. */
222 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
223 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
225 /* If both constant, encapsulate sum. Otherwise, just form sum. A
226 constant will have been placed second. */
227 if (CONSTANT_P (x) && CONSTANT_P (y))
229 if (GET_CODE (x) == CONST)
230 x = XEXP (x, 0);
231 if (GET_CODE (y) == CONST)
232 y = XEXP (y, 0);
234 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
237 return gen_rtx_PLUS (mode, x, y);
240 /* Return the current substitution hard register of the elimination of
241 HARD_REGNO. If HARD_REGNO is not eliminable, return itself. */
243 lra_get_elimination_hard_regno (int hard_regno)
245 class lra_elim_table *ep;
247 if (hard_regno < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
248 return hard_regno;
249 if ((ep = elimination_map[hard_regno]) == NULL)
250 return hard_regno;
251 return ep->to;
254 /* Return elimination which will be used for hard reg REG, NULL
255 otherwise. */
256 static class lra_elim_table *
257 get_elimination (rtx reg)
259 int hard_regno;
260 class lra_elim_table *ep;
262 lra_assert (REG_P (reg));
263 if ((hard_regno = REGNO (reg)) < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
264 return NULL;
265 if ((ep = elimination_map[hard_regno]) != NULL)
266 return ep->from_rtx != reg ? NULL : ep;
267 poly_int64 offset = self_elim_offsets[hard_regno];
268 if (known_eq (offset, 0))
269 return NULL;
270 /* This is an iteration to restore offsets just after HARD_REGNO
271 stopped to be eliminable. */
272 self_elim_table.from = self_elim_table.to = hard_regno;
273 self_elim_table.from_rtx
274 = self_elim_table.to_rtx
275 = eliminable_reg_rtx[hard_regno];
276 lra_assert (self_elim_table.from_rtx != NULL);
277 self_elim_table.offset = offset;
278 return &self_elim_table;
281 /* Transform (subreg (plus reg const)) to (plus (subreg reg) const)
282 when it is possible. Return X or the transformation result if the
283 transformation is done. */
284 static rtx
285 move_plus_up (rtx x)
287 rtx subreg_reg;
288 machine_mode x_mode, subreg_reg_mode;
290 if (GET_CODE (x) != SUBREG || !subreg_lowpart_p (x))
291 return x;
292 subreg_reg = SUBREG_REG (x);
293 x_mode = GET_MODE (x);
294 subreg_reg_mode = GET_MODE (subreg_reg);
295 if (!paradoxical_subreg_p (x)
296 && GET_CODE (subreg_reg) == PLUS
297 && CONSTANT_P (XEXP (subreg_reg, 1))
298 && GET_MODE_CLASS (x_mode) == MODE_INT
299 && GET_MODE_CLASS (subreg_reg_mode) == MODE_INT)
301 rtx cst = simplify_subreg (x_mode, XEXP (subreg_reg, 1), subreg_reg_mode,
302 subreg_lowpart_offset (x_mode,
303 subreg_reg_mode));
304 if (cst && CONSTANT_P (cst))
305 return gen_rtx_PLUS (x_mode, lowpart_subreg (x_mode,
306 XEXP (subreg_reg, 0),
307 subreg_reg_mode), cst);
309 return x;
312 /* Scan X and replace any eliminable registers (such as fp) with a
313 replacement (such as sp) if SUBST_P, plus an offset. The offset is
314 a change in the offset between the eliminable register and its
315 substitution if UPDATE_P, or the full offset if FULL_P, or
316 otherwise zero. If FULL_P, we also use the SP offsets for
317 elimination to SP. If UPDATE_P, use UPDATE_SP_OFFSET for updating
318 offsets of register elimnable to SP. If UPDATE_SP_OFFSET is
319 non-zero, don't use difference of the offset and the previous
320 offset.
322 MEM_MODE is the mode of an enclosing MEM. We need this to know how
323 much to adjust a register for, e.g., PRE_DEC. Also, if we are
324 inside a MEM, we are allowed to replace a sum of a hard register
325 and the constant zero with the hard register, which we cannot do
326 outside a MEM. In addition, we need to record the fact that a
327 hard register is referenced outside a MEM.
329 If we make full substitution to SP for non-null INSN, add the insn
330 sp offset. */
332 lra_eliminate_regs_1 (rtx_insn *insn, rtx x, machine_mode mem_mode,
333 bool subst_p, bool update_p,
334 poly_int64 update_sp_offset, bool full_p)
336 enum rtx_code code = GET_CODE (x);
337 class lra_elim_table *ep;
338 rtx new_rtx;
339 int i, j;
340 const char *fmt;
341 int copied = 0;
343 lra_assert (!update_p || !full_p);
344 lra_assert (known_eq (update_sp_offset, 0)
345 || (!subst_p && update_p && !full_p));
346 if (! current_function_decl)
347 return x;
349 switch (code)
351 CASE_CONST_ANY:
352 case CONST:
353 case SYMBOL_REF:
354 case CODE_LABEL:
355 case PC:
356 case ASM_INPUT:
357 case ADDR_VEC:
358 case ADDR_DIFF_VEC:
359 case RETURN:
360 return x;
362 case REG:
363 /* First handle the case where we encounter a bare hard register
364 that is eliminable. Replace it with a PLUS. */
365 if ((ep = get_elimination (x)) != NULL)
367 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
369 if (maybe_ne (update_sp_offset, 0))
371 if (ep->to_rtx == stack_pointer_rtx)
372 return plus_constant (Pmode, to, update_sp_offset);
373 return to;
375 else if (update_p)
376 return plus_constant (Pmode, to, ep->offset - ep->previous_offset);
377 else if (full_p)
378 return plus_constant (Pmode, to,
379 ep->offset
380 - (insn != NULL_RTX
381 && ep->to_rtx == stack_pointer_rtx
382 ? lra_get_insn_recog_data (insn)->sp_offset
383 : 0));
384 else
385 return to;
387 return x;
389 case PLUS:
390 /* If this is the sum of an eliminable register and a constant, rework
391 the sum. */
392 if (REG_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
394 if ((ep = get_elimination (XEXP (x, 0))) != NULL)
396 poly_int64 offset, curr_offset;
397 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
399 if (! update_p && ! full_p)
400 return gen_rtx_PLUS (Pmode, to, XEXP (x, 1));
402 if (maybe_ne (update_sp_offset, 0))
403 offset = ep->to_rtx == stack_pointer_rtx ? update_sp_offset : 0;
404 else
405 offset = (update_p
406 ? ep->offset - ep->previous_offset : ep->offset);
407 if (full_p && insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
408 offset -= lra_get_insn_recog_data (insn)->sp_offset;
409 if (poly_int_rtx_p (XEXP (x, 1), &curr_offset)
410 && known_eq (curr_offset, -offset))
411 return to;
412 else
413 return gen_rtx_PLUS (Pmode, to,
414 plus_constant (Pmode,
415 XEXP (x, 1), offset));
418 /* If the hard register is not eliminable, we are done since
419 the other operand is a constant. */
420 return x;
423 /* If this is part of an address, we want to bring any constant
424 to the outermost PLUS. We will do this by doing hard
425 register replacement in our operands and seeing if a constant
426 shows up in one of them.
428 Note that there is no risk of modifying the structure of the
429 insn, since we only get called for its operands, thus we are
430 either modifying the address inside a MEM, or something like
431 an address operand of a load-address insn. */
434 rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
435 subst_p, update_p,
436 update_sp_offset, full_p);
437 rtx new1 = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
438 subst_p, update_p,
439 update_sp_offset, full_p);
441 new0 = move_plus_up (new0);
442 new1 = move_plus_up (new1);
443 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
444 return form_sum (new0, new1);
446 return x;
448 case MULT:
449 /* If this is the product of an eliminable hard register and a
450 constant, apply the distribute law and move the constant out
451 so that we have (plus (mult ..) ..). This is needed in order
452 to keep load-address insns valid. This case is pathological.
453 We ignore the possibility of overflow here. */
454 if (REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1))
455 && (ep = get_elimination (XEXP (x, 0))) != NULL)
457 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
459 if (maybe_ne (update_sp_offset, 0))
461 if (ep->to_rtx == stack_pointer_rtx)
462 return plus_constant (Pmode,
463 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
464 update_sp_offset * INTVAL (XEXP (x, 1)));
465 return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
467 else if (update_p)
468 return plus_constant (Pmode,
469 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
470 (ep->offset - ep->previous_offset)
471 * INTVAL (XEXP (x, 1)));
472 else if (full_p)
474 poly_int64 offset = ep->offset;
476 if (insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
477 offset -= lra_get_insn_recog_data (insn)->sp_offset;
478 return
479 plus_constant (Pmode,
480 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
481 offset * INTVAL (XEXP (x, 1)));
483 else
484 return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
487 /* fall through */
489 case CALL:
490 case COMPARE:
491 /* See comments before PLUS about handling MINUS. */
492 case MINUS:
493 case DIV: case UDIV:
494 case MOD: case UMOD:
495 case AND: case IOR: case XOR:
496 case ROTATERT: case ROTATE:
497 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
498 case NE: case EQ:
499 case GE: case GT: case GEU: case GTU:
500 case LE: case LT: case LEU: case LTU:
502 rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
503 subst_p, update_p,
504 update_sp_offset, full_p);
505 rtx new1 = XEXP (x, 1)
506 ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
507 subst_p, update_p,
508 update_sp_offset, full_p) : 0;
510 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
511 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
513 return x;
515 case EXPR_LIST:
516 /* If we have something in XEXP (x, 0), the usual case,
517 eliminate it. */
518 if (XEXP (x, 0))
520 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
521 subst_p, update_p,
522 update_sp_offset, full_p);
523 if (new_rtx != XEXP (x, 0))
525 /* If this is a REG_DEAD note, it is not valid anymore.
526 Using the eliminated version could result in creating a
527 REG_DEAD note for the stack or frame pointer. */
528 if (REG_NOTE_KIND (x) == REG_DEAD)
529 return (XEXP (x, 1)
530 ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
531 subst_p, update_p,
532 update_sp_offset, full_p)
533 : NULL_RTX);
535 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
539 /* fall through */
541 case INSN_LIST:
542 case INT_LIST:
543 /* Now do eliminations in the rest of the chain. If this was
544 an EXPR_LIST, this might result in allocating more memory than is
545 strictly needed, but it simplifies the code. */
546 if (XEXP (x, 1))
548 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
549 subst_p, update_p,
550 update_sp_offset, full_p);
551 if (new_rtx != XEXP (x, 1))
552 return
553 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x),
554 XEXP (x, 0), new_rtx);
556 return x;
558 case PRE_INC:
559 case POST_INC:
560 case PRE_DEC:
561 case POST_DEC:
562 /* We do not support elimination of a register that is modified.
563 elimination_effects has already make sure that this does not
564 happen. */
565 return x;
567 case PRE_MODIFY:
568 case POST_MODIFY:
569 /* We do not support elimination of a hard register that is
570 modified. LRA has already make sure that this does not
571 happen. The only remaining case we need to consider here is
572 that the increment value may be an eliminable register. */
573 if (GET_CODE (XEXP (x, 1)) == PLUS
574 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
576 rtx new_rtx = lra_eliminate_regs_1 (insn, XEXP (XEXP (x, 1), 1),
577 mem_mode, subst_p, update_p,
578 update_sp_offset, full_p);
580 if (new_rtx != XEXP (XEXP (x, 1), 1))
581 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
582 gen_rtx_PLUS (GET_MODE (x),
583 XEXP (x, 0), new_rtx));
585 return x;
587 case STRICT_LOW_PART:
588 case NEG: case NOT:
589 case SIGN_EXTEND: case ZERO_EXTEND:
590 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
591 case FLOAT: case FIX:
592 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
593 case ABS:
594 case SQRT:
595 case FFS:
596 case CLZ:
597 case CTZ:
598 case POPCOUNT:
599 case PARITY:
600 case BSWAP:
601 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
602 subst_p, update_p,
603 update_sp_offset, full_p);
604 if (new_rtx != XEXP (x, 0))
605 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
606 return x;
608 case SUBREG:
609 new_rtx = lra_eliminate_regs_1 (insn, SUBREG_REG (x), mem_mode,
610 subst_p, update_p,
611 update_sp_offset, full_p);
613 if (new_rtx != SUBREG_REG (x))
615 if (MEM_P (new_rtx) && !paradoxical_subreg_p (x))
617 SUBREG_REG (x) = new_rtx;
618 alter_subreg (&x, false);
619 return x;
621 else if (! subst_p)
623 /* LRA can transform subregs itself. So don't call
624 simplify_gen_subreg until LRA transformations are
625 finished. Function simplify_gen_subreg can do
626 non-trivial transformations (like truncation) which
627 might make LRA work to fail. */
628 SUBREG_REG (x) = new_rtx;
629 return x;
631 else
632 return simplify_gen_subreg (GET_MODE (x), new_rtx,
633 GET_MODE (new_rtx), SUBREG_BYTE (x));
636 return x;
638 case MEM:
639 /* Our only special processing is to pass the mode of the MEM to our
640 recursive call and copy the flags. While we are here, handle this
641 case more efficiently. */
642 return
643 replace_equiv_address_nv
645 lra_eliminate_regs_1 (insn, XEXP (x, 0), GET_MODE (x),
646 subst_p, update_p, update_sp_offset, full_p));
648 case USE:
649 /* Handle insn_list USE that a call to a pure function may generate. */
650 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), VOIDmode,
651 subst_p, update_p, update_sp_offset, full_p);
652 if (new_rtx != XEXP (x, 0))
653 return gen_rtx_USE (GET_MODE (x), new_rtx);
654 return x;
656 case CLOBBER:
657 case SET:
658 gcc_unreachable ();
660 default:
661 break;
664 /* Process each of our operands recursively. If any have changed, make a
665 copy of the rtx. */
666 fmt = GET_RTX_FORMAT (code);
667 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
669 if (*fmt == 'e')
671 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, i), mem_mode,
672 subst_p, update_p,
673 update_sp_offset, full_p);
674 if (new_rtx != XEXP (x, i) && ! copied)
676 x = shallow_copy_rtx (x);
677 copied = 1;
679 XEXP (x, i) = new_rtx;
681 else if (*fmt == 'E')
683 int copied_vec = 0;
684 for (j = 0; j < XVECLEN (x, i); j++)
686 new_rtx = lra_eliminate_regs_1 (insn, XVECEXP (x, i, j), mem_mode,
687 subst_p, update_p,
688 update_sp_offset, full_p);
689 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
691 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
692 XVEC (x, i)->elem);
693 if (! copied)
695 x = shallow_copy_rtx (x);
696 copied = 1;
698 XVEC (x, i) = new_v;
699 copied_vec = 1;
701 XVECEXP (x, i, j) = new_rtx;
706 return x;
709 /* This function is used externally in subsequent passes of GCC. It
710 always does a full elimination of X. */
712 lra_eliminate_regs (rtx x, machine_mode mem_mode,
713 rtx insn ATTRIBUTE_UNUSED)
715 return lra_eliminate_regs_1 (NULL, x, mem_mode, true, false, 0, true);
718 /* Stack pointer offset before the current insn relative to one at the
719 func start. RTL insns can change SP explicitly. We keep the
720 changes from one insn to another through this variable. */
721 static poly_int64 curr_sp_change;
723 /* Scan rtx X for references to elimination source or target registers
724 in contexts that would prevent the elimination from happening.
725 Update the table of eliminables to reflect the changed state.
726 MEM_MODE is the mode of an enclosing MEM rtx, or VOIDmode if not
727 within a MEM. */
728 static void
729 mark_not_eliminable (rtx x, machine_mode mem_mode)
731 enum rtx_code code = GET_CODE (x);
732 class lra_elim_table *ep;
733 int i, j;
734 const char *fmt;
735 poly_int64 offset = 0;
737 switch (code)
739 case PRE_INC:
740 case POST_INC:
741 case PRE_DEC:
742 case POST_DEC:
743 case POST_MODIFY:
744 case PRE_MODIFY:
745 if (XEXP (x, 0) == stack_pointer_rtx
746 && ((code != PRE_MODIFY && code != POST_MODIFY)
747 || (GET_CODE (XEXP (x, 1)) == PLUS
748 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
749 && poly_int_rtx_p (XEXP (XEXP (x, 1), 1), &offset))))
751 poly_int64 size = GET_MODE_SIZE (mem_mode);
753 #ifdef PUSH_ROUNDING
754 /* If more bytes than MEM_MODE are pushed, account for
755 them. */
756 size = PUSH_ROUNDING (size);
757 #endif
758 if (code == PRE_DEC || code == POST_DEC)
759 curr_sp_change -= size;
760 else if (code == PRE_INC || code == POST_INC)
761 curr_sp_change += size;
762 else if (code == PRE_MODIFY || code == POST_MODIFY)
763 curr_sp_change += offset;
765 else if (REG_P (XEXP (x, 0))
766 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
768 /* If we modify the source of an elimination rule, disable
769 it. Do the same if it is the destination and not the
770 hard frame register. */
771 for (ep = reg_eliminate;
772 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
773 ep++)
774 if (ep->from_rtx == XEXP (x, 0)
775 || (ep->to_rtx == XEXP (x, 0)
776 && ep->to_rtx != hard_frame_pointer_rtx))
777 setup_can_eliminate (ep, false);
779 return;
781 case USE:
782 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
783 /* If using a hard register that is the source of an eliminate
784 we still think can be performed, note it cannot be
785 performed since we don't know how this hard register is
786 used. */
787 for (ep = reg_eliminate;
788 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
789 ep++)
790 if (ep->from_rtx == XEXP (x, 0)
791 && ep->to_rtx != hard_frame_pointer_rtx)
792 setup_can_eliminate (ep, false);
793 return;
795 case CLOBBER:
796 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
797 /* If clobbering a hard register that is the replacement
798 register for an elimination we still think can be
799 performed, note that it cannot be performed. Otherwise, we
800 need not be concerned about it. */
801 for (ep = reg_eliminate;
802 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
803 ep++)
804 if (ep->to_rtx == XEXP (x, 0)
805 && ep->to_rtx != hard_frame_pointer_rtx)
806 setup_can_eliminate (ep, false);
807 return;
809 case SET:
810 if (SET_DEST (x) == stack_pointer_rtx
811 && GET_CODE (SET_SRC (x)) == PLUS
812 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
813 && poly_int_rtx_p (XEXP (SET_SRC (x), 1), &offset))
815 curr_sp_change += offset;
816 return;
818 if (! REG_P (SET_DEST (x))
819 || REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
820 mark_not_eliminable (SET_DEST (x), mem_mode);
821 else
823 /* See if this is setting the replacement hard register for
824 an elimination.
826 If DEST is the hard frame pointer, we do nothing because
827 we assume that all assignments to the frame pointer are
828 for non-local gotos and are being done at a time when
829 they are valid and do not disturb anything else. Some
830 machines want to eliminate a fake argument pointer (or
831 even a fake frame pointer) with either the real frame
832 pointer or the stack pointer. Assignments to the hard
833 frame pointer must not prevent this elimination. */
834 for (ep = reg_eliminate;
835 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
836 ep++)
837 if (ep->to_rtx == SET_DEST (x)
838 && SET_DEST (x) != hard_frame_pointer_rtx)
839 setup_can_eliminate (ep, false);
842 mark_not_eliminable (SET_SRC (x), mem_mode);
843 return;
845 case MEM:
846 /* Our only special processing is to pass the mode of the MEM to
847 our recursive call. */
848 mark_not_eliminable (XEXP (x, 0), GET_MODE (x));
849 return;
851 default:
852 break;
855 fmt = GET_RTX_FORMAT (code);
856 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
858 if (*fmt == 'e')
859 mark_not_eliminable (XEXP (x, i), mem_mode);
860 else if (*fmt == 'E')
861 for (j = 0; j < XVECLEN (x, i); j++)
862 mark_not_eliminable (XVECEXP (x, i, j), mem_mode);
868 /* Scan INSN and eliminate all eliminable hard registers in it.
870 If REPLACE_P is true, do the replacement destructively. Also
871 delete the insn as dead it if it is setting an eliminable register.
873 If REPLACE_P is false, just update the offsets while keeping the
874 base register the same. If FIRST_P, use the sp offset for
875 elimination to sp. Otherwise, use UPDATE_SP_OFFSET for this. If
876 UPDATE_SP_OFFSET is non-zero, don't use difference of the offset
877 and the previous offset. Attach the note about used elimination
878 for insns setting frame pointer to update elimination easy (without
879 parsing already generated elimination insns to find offset
880 previously used) in future. */
882 void
883 eliminate_regs_in_insn (rtx_insn *insn, bool replace_p, bool first_p,
884 poly_int64 update_sp_offset)
886 int icode = recog_memoized (insn);
887 rtx set, old_set = single_set (insn);
888 bool validate_p;
889 int i;
890 rtx substed_operand[MAX_RECOG_OPERANDS];
891 rtx orig_operand[MAX_RECOG_OPERANDS];
892 class lra_elim_table *ep;
893 rtx plus_src, plus_cst_src;
894 lra_insn_recog_data_t id;
895 struct lra_static_insn_data *static_id;
897 if (icode < 0 && asm_noperands (PATTERN (insn)) < 0 && ! DEBUG_INSN_P (insn))
899 lra_assert (GET_CODE (PATTERN (insn)) == USE
900 || GET_CODE (PATTERN (insn)) == CLOBBER
901 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
902 return;
905 /* We allow one special case which happens to work on all machines we
906 currently support: a single set with the source or a REG_EQUAL
907 note being a PLUS of an eliminable register and a constant. */
908 plus_src = plus_cst_src = 0;
909 poly_int64 offset = 0;
910 if (old_set && REG_P (SET_DEST (old_set)))
912 if (GET_CODE (SET_SRC (old_set)) == PLUS)
913 plus_src = SET_SRC (old_set);
914 /* First see if the source is of the form (plus (...) CST). */
915 if (plus_src && poly_int_rtx_p (XEXP (plus_src, 1), &offset))
916 plus_cst_src = plus_src;
917 /* Check that the first operand of the PLUS is a hard reg or
918 the lowpart subreg of one. */
919 if (plus_cst_src)
921 rtx reg = XEXP (plus_cst_src, 0);
923 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
924 reg = SUBREG_REG (reg);
926 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
927 plus_cst_src = 0;
930 if (plus_cst_src)
932 rtx reg = XEXP (plus_cst_src, 0);
934 if (GET_CODE (reg) == SUBREG)
935 reg = SUBREG_REG (reg);
937 if (REG_P (reg) && (ep = get_elimination (reg)) != NULL)
939 rtx to_rtx = replace_p ? ep->to_rtx : ep->from_rtx;
941 if (! replace_p)
943 if (known_eq (update_sp_offset, 0))
944 offset += (ep->offset - ep->previous_offset);
945 if (ep->to_rtx == stack_pointer_rtx)
947 if (first_p)
948 offset -= lra_get_insn_recog_data (insn)->sp_offset;
949 else
950 offset += update_sp_offset;
952 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
955 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
956 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)), to_rtx);
957 /* If we have a nonzero offset, and the source is already a
958 simple REG, the following transformation would increase
959 the cost of the insn by replacing a simple REG with (plus
960 (reg sp) CST). So try only when we already had a PLUS
961 before. */
962 if (known_eq (offset, 0) || plus_src)
964 rtx new_src = plus_constant (GET_MODE (to_rtx), to_rtx, offset);
966 old_set = single_set (insn);
968 /* First see if this insn remains valid when we make the
969 change. If not, try to replace the whole pattern
970 with a simple set (this may help if the original insn
971 was a PARALLEL that was only recognized as single_set
972 due to REG_UNUSED notes). If this isn't valid
973 either, keep the INSN_CODE the same and let the
974 constraint pass fix it up. */
975 if (! validate_change (insn, &SET_SRC (old_set), new_src, 0))
977 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
979 if (! validate_change (insn, &PATTERN (insn), new_pat, 0))
980 SET_SRC (old_set) = new_src;
982 lra_update_insn_recog_data (insn);
983 /* This can't have an effect on elimination offsets, so skip
984 right to the end. */
985 return;
990 /* Eliminate all eliminable registers occurring in operands that
991 can be handled by the constraint pass. */
992 id = lra_get_insn_recog_data (insn);
993 static_id = id->insn_static_data;
994 validate_p = false;
995 for (i = 0; i < static_id->n_operands; i++)
997 orig_operand[i] = *id->operand_loc[i];
998 substed_operand[i] = *id->operand_loc[i];
1000 /* For an asm statement, every operand is eliminable. */
1001 if (icode < 0 || insn_data[icode].operand[i].eliminable)
1003 /* Check for setting a hard register that we know about. */
1004 if (static_id->operand[i].type != OP_IN
1005 && REG_P (orig_operand[i]))
1007 /* If we are assigning to a hard register that can be
1008 eliminated, it must be as part of a PARALLEL, since
1009 the code above handles single SETs. This reg cannot
1010 be longer eliminated -- it is forced by
1011 mark_not_eliminable. */
1012 for (ep = reg_eliminate;
1013 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
1014 ep++)
1015 lra_assert (ep->from_rtx != orig_operand[i]
1016 || ! ep->can_eliminate);
1019 /* Companion to the above plus substitution, we can allow
1020 invariants as the source of a plain move. */
1021 substed_operand[i]
1022 = lra_eliminate_regs_1 (insn, *id->operand_loc[i], VOIDmode,
1023 replace_p, ! replace_p && ! first_p,
1024 update_sp_offset, first_p);
1025 if (substed_operand[i] != orig_operand[i])
1026 validate_p = true;
1030 if (! validate_p)
1031 return;
1033 /* Substitute the operands; the new values are in the substed_operand
1034 array. */
1035 for (i = 0; i < static_id->n_operands; i++)
1036 *id->operand_loc[i] = substed_operand[i];
1037 for (i = 0; i < static_id->n_dups; i++)
1038 *id->dup_loc[i] = substed_operand[(int) static_id->dup_num[i]];
1040 /* Transform plus (plus (hard reg, const), pseudo) to plus (plus (pseudo,
1041 const), hard reg) in order to keep insn containing eliminated register
1042 after all reloads calculating its offset. This permits to keep register
1043 pressure under control and helps to avoid LRA cycling in patalogical
1044 cases. */
1045 if (! replace_p && (set = single_set (insn)) != NULL
1046 && GET_CODE (SET_SRC (set)) == PLUS
1047 && GET_CODE (XEXP (SET_SRC (set), 0)) == PLUS)
1049 rtx reg1, reg2, op1, op2;
1051 reg1 = op1 = XEXP (XEXP (SET_SRC (set), 0), 0);
1052 reg2 = op2 = XEXP (SET_SRC (set), 1);
1053 if (GET_CODE (reg1) == SUBREG)
1054 reg1 = SUBREG_REG (reg1);
1055 if (GET_CODE (reg2) == SUBREG)
1056 reg2 = SUBREG_REG (reg2);
1057 if (REG_P (reg1) && REG_P (reg2)
1058 && REGNO (reg1) < FIRST_PSEUDO_REGISTER
1059 && REGNO (reg2) >= FIRST_PSEUDO_REGISTER
1060 && GET_MODE (reg1) == Pmode
1061 && !have_addptr3_insn (lra_pmode_pseudo, reg1,
1062 XEXP (XEXP (SET_SRC (set), 0), 1)))
1064 XEXP (XEXP (SET_SRC (set), 0), 0) = op2;
1065 XEXP (SET_SRC (set), 1) = op1;
1069 /* If we had a move insn but now we don't, re-recognize it.
1070 This will cause spurious re-recognition if the old move had a
1071 PARALLEL since the new one still will, but we can't call
1072 single_set without having put new body into the insn and the
1073 re-recognition won't hurt in this rare case. */
1074 lra_update_insn_recog_data (insn);
1077 /* Spill pseudos which are assigned to hard registers in SET. Add
1078 affected insns for processing in the subsequent constraint
1079 pass. */
1080 static void
1081 spill_pseudos (HARD_REG_SET set)
1083 int i;
1084 bitmap_head to_process;
1085 rtx_insn *insn;
1087 if (hard_reg_set_empty_p (set))
1088 return;
1089 if (lra_dump_file != NULL)
1091 fprintf (lra_dump_file, " Spilling non-eliminable hard regs:");
1092 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1093 if (TEST_HARD_REG_BIT (set, i))
1094 fprintf (lra_dump_file, " %d", i);
1095 fprintf (lra_dump_file, "\n");
1097 bitmap_initialize (&to_process, &reg_obstack);
1098 for (i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
1099 if (lra_reg_info[i].nrefs != 0 && reg_renumber[i] >= 0
1100 && overlaps_hard_reg_set_p (set,
1101 PSEUDO_REGNO_MODE (i), reg_renumber[i]))
1103 if (lra_dump_file != NULL)
1104 fprintf (lra_dump_file, " Spilling r%d(%d)\n",
1105 i, reg_renumber[i]);
1106 reg_renumber[i] = -1;
1107 bitmap_ior_into (&to_process, &lra_reg_info[i].insn_bitmap);
1109 lra_no_alloc_regs |= set;
1110 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
1111 if (bitmap_bit_p (&to_process, INSN_UID (insn)))
1113 lra_push_insn (insn);
1114 lra_set_used_insn_alternative (insn, LRA_UNKNOWN_ALT);
1116 bitmap_clear (&to_process);
1119 /* Update all offsets and possibility for elimination on eliminable
1120 registers. Spill pseudos assigned to registers which are
1121 uneliminable, update LRA_NO_ALLOC_REGS and ELIMINABLE_REG_SET. Add
1122 insns to INSNS_WITH_CHANGED_OFFSETS containing eliminable hard
1123 registers whose offsets should be changed. Return true if any
1124 elimination offset changed. */
1125 static bool
1126 update_reg_eliminate (bitmap insns_with_changed_offsets)
1128 bool prev, result;
1129 class lra_elim_table *ep, *ep1;
1130 HARD_REG_SET temp_hard_reg_set;
1132 targetm.compute_frame_layout ();
1134 /* Clear self elimination offsets. */
1135 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1136 self_elim_offsets[ep->from] = 0;
1137 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1139 /* If it is a currently used elimination: update the previous
1140 offset. */
1141 if (elimination_map[ep->from] == ep)
1142 ep->previous_offset = ep->offset;
1144 prev = ep->prev_can_eliminate;
1145 setup_can_eliminate (ep, targetm.can_eliminate (ep->from, ep->to));
1146 if (ep->can_eliminate && ! prev)
1148 /* It is possible that not eliminable register becomes
1149 eliminable because we took other reasons into account to
1150 set up eliminable regs in the initial set up. Just
1151 ignore new eliminable registers. */
1152 setup_can_eliminate (ep, false);
1153 continue;
1155 if (ep->can_eliminate != prev && elimination_map[ep->from] == ep)
1157 /* We cannot use this elimination anymore -- find another
1158 one. */
1159 if (lra_dump_file != NULL)
1160 fprintf (lra_dump_file,
1161 " Elimination %d to %d is not possible anymore\n",
1162 ep->from, ep->to);
1163 /* If after processing RTL we decides that SP can be used as
1164 a result of elimination, it cannot be changed. */
1165 gcc_assert ((ep->to_rtx != stack_pointer_rtx)
1166 || (ep->from < FIRST_PSEUDO_REGISTER
1167 && fixed_regs [ep->from]));
1168 /* Mark that is not eliminable anymore. */
1169 elimination_map[ep->from] = NULL;
1170 for (ep1 = ep + 1; ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep1++)
1171 if (ep1->can_eliminate && ep1->from == ep->from)
1172 break;
1173 if (ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS])
1175 if (lra_dump_file != NULL)
1176 fprintf (lra_dump_file, " Using elimination %d to %d now\n",
1177 ep1->from, ep1->to);
1178 lra_assert (known_eq (ep1->previous_offset, 0));
1179 ep1->previous_offset = ep->offset;
1181 else
1183 /* There is no elimination anymore just use the hard
1184 register `from' itself. Setup self elimination
1185 offset to restore the original offset values. */
1186 if (lra_dump_file != NULL)
1187 fprintf (lra_dump_file, " %d is not eliminable at all\n",
1188 ep->from);
1189 self_elim_offsets[ep->from] = -ep->offset;
1190 if (maybe_ne (ep->offset, 0))
1191 bitmap_ior_into (insns_with_changed_offsets,
1192 &lra_reg_info[ep->from].insn_bitmap);
1196 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->offset);
1198 setup_elimination_map ();
1199 result = false;
1200 CLEAR_HARD_REG_SET (temp_hard_reg_set);
1201 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1202 if (elimination_map[ep->from] == NULL)
1203 add_to_hard_reg_set (&temp_hard_reg_set, Pmode, ep->from);
1204 else if (elimination_map[ep->from] == ep)
1206 /* Prevent the hard register into which we eliminate from
1207 the usage for pseudos. */
1208 if (ep->from != ep->to)
1209 add_to_hard_reg_set (&temp_hard_reg_set, Pmode, ep->to);
1210 if (maybe_ne (ep->previous_offset, ep->offset))
1212 bitmap_ior_into (insns_with_changed_offsets,
1213 &lra_reg_info[ep->from].insn_bitmap);
1215 /* Update offset when the eliminate offset have been
1216 changed. */
1217 lra_update_reg_val_offset (lra_reg_info[ep->from].val,
1218 ep->offset - ep->previous_offset);
1219 result = true;
1222 lra_no_alloc_regs |= temp_hard_reg_set;
1223 eliminable_regset &= ~temp_hard_reg_set;
1224 spill_pseudos (temp_hard_reg_set);
1225 return result;
1228 /* Initialize the table of hard registers to eliminate.
1229 Pre-condition: global flag frame_pointer_needed has been set before
1230 calling this function. */
1231 static void
1232 init_elim_table (void)
1234 class lra_elim_table *ep;
1235 bool value_p;
1236 const struct elim_table_1 *ep1;
1238 if (!reg_eliminate)
1239 reg_eliminate = XCNEWVEC (class lra_elim_table, NUM_ELIMINABLE_REGS);
1241 memset (self_elim_offsets, 0, sizeof (self_elim_offsets));
1242 /* Initiate member values which will be never changed. */
1243 self_elim_table.can_eliminate = self_elim_table.prev_can_eliminate = true;
1244 self_elim_table.previous_offset = 0;
1246 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
1247 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
1249 ep->offset = ep->previous_offset = 0;
1250 ep->from = ep1->from;
1251 ep->to = ep1->to;
1252 value_p = (targetm.can_eliminate (ep->from, ep->to)
1253 && ! (ep->to == STACK_POINTER_REGNUM
1254 && frame_pointer_needed
1255 && (! SUPPORTS_STACK_ALIGNMENT
1256 || ! stack_realign_fp)));
1257 setup_can_eliminate (ep, value_p);
1260 /* Build the FROM and TO REG rtx's. Note that code in gen_rtx_REG
1261 will cause, e.g., gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to
1262 equal stack_pointer_rtx. We depend on this. Threfore we switch
1263 off that we are in LRA temporarily. */
1264 lra_in_progress = 0;
1265 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1267 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
1268 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
1269 eliminable_reg_rtx[ep->from] = ep->from_rtx;
1271 lra_in_progress = 1;
1274 /* Function for initialization of elimination once per function. It
1275 sets up sp offset for each insn. */
1276 static void
1277 init_elimination (void)
1279 bool stop_to_sp_elimination_p;
1280 basic_block bb;
1281 rtx_insn *insn;
1282 class lra_elim_table *ep;
1284 init_elim_table ();
1285 FOR_EACH_BB_FN (bb, cfun)
1287 curr_sp_change = 0;
1288 stop_to_sp_elimination_p = false;
1289 FOR_BB_INSNS (bb, insn)
1290 if (INSN_P (insn))
1292 lra_get_insn_recog_data (insn)->sp_offset = curr_sp_change;
1293 if (NONDEBUG_INSN_P (insn))
1295 mark_not_eliminable (PATTERN (insn), VOIDmode);
1296 if (maybe_ne (curr_sp_change, 0)
1297 && find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX))
1298 stop_to_sp_elimination_p = true;
1301 if (! frame_pointer_needed
1302 && (maybe_ne (curr_sp_change, 0) || stop_to_sp_elimination_p)
1303 && bb->succs && bb->succs->length () != 0)
1304 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1305 if (ep->to == STACK_POINTER_REGNUM)
1306 setup_can_eliminate (ep, false);
1308 setup_elimination_map ();
1311 /* Eliminate hard reg given by its location LOC. */
1312 void
1313 lra_eliminate_reg_if_possible (rtx *loc)
1315 int regno;
1316 class lra_elim_table *ep;
1318 lra_assert (REG_P (*loc));
1319 if ((regno = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
1320 || ! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno))
1321 return;
1322 if ((ep = get_elimination (*loc)) != NULL)
1323 *loc = ep->to_rtx;
1326 /* Do (final if FINAL_P or first if FIRST_P) elimination in INSN. Add
1327 the insn for subsequent processing in the constraint pass, update
1328 the insn info. */
1329 static void
1330 process_insn_for_elimination (rtx_insn *insn, bool final_p, bool first_p)
1332 eliminate_regs_in_insn (insn, final_p, first_p, 0);
1333 if (! final_p)
1335 /* Check that insn changed its code. This is a case when a move
1336 insn becomes an add insn and we do not want to process the
1337 insn as a move anymore. */
1338 int icode = recog (PATTERN (insn), insn, 0);
1340 if (icode >= 0 && icode != INSN_CODE (insn))
1342 if (INSN_CODE (insn) >= 0)
1343 /* Insn code is changed. It may change its operand type
1344 from IN to INOUT. Inform the subsequent assignment
1345 subpass about this situation. */
1346 check_and_force_assignment_correctness_p = true;
1347 INSN_CODE (insn) = icode;
1348 lra_update_insn_recog_data (insn);
1350 lra_update_insn_regno_info (insn);
1351 lra_push_insn (insn);
1352 lra_set_used_insn_alternative (insn, LRA_UNKNOWN_ALT);
1356 /* Entry function to do final elimination if FINAL_P or to update
1357 elimination register offsets (FIRST_P if we are doing it the first
1358 time). */
1359 void
1360 lra_eliminate (bool final_p, bool first_p)
1362 unsigned int uid;
1363 bitmap_head insns_with_changed_offsets;
1364 bitmap_iterator bi;
1365 class lra_elim_table *ep;
1367 gcc_assert (! final_p || ! first_p);
1369 timevar_push (TV_LRA_ELIMINATE);
1371 if (first_p)
1372 init_elimination ();
1374 bitmap_initialize (&insns_with_changed_offsets, &reg_obstack);
1375 if (final_p)
1377 if (flag_checking)
1379 update_reg_eliminate (&insns_with_changed_offsets);
1380 gcc_assert (bitmap_empty_p (&insns_with_changed_offsets));
1382 /* We change eliminable hard registers in insns so we should do
1383 this for all insns containing any eliminable hard
1384 register. */
1385 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1386 if (elimination_map[ep->from] != NULL)
1387 bitmap_ior_into (&insns_with_changed_offsets,
1388 &lra_reg_info[ep->from].insn_bitmap);
1390 else if (! update_reg_eliminate (&insns_with_changed_offsets))
1391 goto lra_eliminate_done;
1392 if (lra_dump_file != NULL)
1394 fprintf (lra_dump_file, "New elimination table:\n");
1395 print_elim_table (lra_dump_file);
1397 EXECUTE_IF_SET_IN_BITMAP (&insns_with_changed_offsets, 0, uid, bi)
1398 /* A dead insn can be deleted in process_insn_for_elimination. */
1399 if (lra_insn_recog_data[uid] != NULL)
1400 process_insn_for_elimination (lra_insn_recog_data[uid]->insn,
1401 final_p, first_p);
1402 bitmap_clear (&insns_with_changed_offsets);
1404 lra_eliminate_done:
1405 timevar_pop (TV_LRA_ELIMINATE);