* tree-vect-loop-manip.c (vect_do_peeling): Do not use
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob764a6f66c88905f21c9132b4cc8a5d0d9a21fdba
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Inline; use Inline;
45 with Itypes; use Itypes;
46 with Lib.Xref; use Lib.Xref;
47 with Layout; use Layout;
48 with Namet; use Namet;
49 with Lib; use Lib;
50 with Nlists; use Nlists;
51 with Nmake; use Nmake;
52 with Opt; use Opt;
53 with Output; use Output;
54 with Restrict; use Restrict;
55 with Rident; use Rident;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Cat; use Sem_Cat;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch4; use Sem_Ch4;
62 with Sem_Ch5; use Sem_Ch5;
63 with Sem_Ch8; use Sem_Ch8;
64 with Sem_Ch9; use Sem_Ch9;
65 with Sem_Ch10; use Sem_Ch10;
66 with Sem_Ch12; use Sem_Ch12;
67 with Sem_Ch13; use Sem_Ch13;
68 with Sem_Dim; use Sem_Dim;
69 with Sem_Disp; use Sem_Disp;
70 with Sem_Dist; use Sem_Dist;
71 with Sem_Elim; use Sem_Elim;
72 with Sem_Eval; use Sem_Eval;
73 with Sem_Mech; use Sem_Mech;
74 with Sem_Prag; use Sem_Prag;
75 with Sem_Res; use Sem_Res;
76 with Sem_Util; use Sem_Util;
77 with Sem_Type; use Sem_Type;
78 with Sem_Warn; use Sem_Warn;
79 with Sinput; use Sinput;
80 with Stand; use Stand;
81 with Sinfo; use Sinfo;
82 with Sinfo.CN; use Sinfo.CN;
83 with Snames; use Snames;
84 with Stringt; use Stringt;
85 with Style;
86 with Stylesw; use Stylesw;
87 with Tbuild; use Tbuild;
88 with Uintp; use Uintp;
89 with Urealp; use Urealp;
90 with Validsw; use Validsw;
92 package body Sem_Ch6 is
94 May_Hide_Profile : Boolean := False;
95 -- This flag is used to indicate that two formals in two subprograms being
96 -- checked for conformance differ only in that one is an access parameter
97 -- while the other is of a general access type with the same designated
98 -- type. In this case, if the rest of the signatures match, a call to
99 -- either subprogram may be ambiguous, which is worth a warning. The flag
100 -- is set in Compatible_Types, and the warning emitted in
101 -- New_Overloaded_Entity.
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 procedure Analyze_Function_Return (N : Node_Id);
108 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
109 -- applies to a [generic] function.
111 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
112 -- Analyze a generic subprogram body. N is the body to be analyzed, and
113 -- Gen_Id is the defining entity Id for the corresponding spec.
115 procedure Analyze_Null_Procedure
116 (N : Node_Id;
117 Is_Completion : out Boolean);
118 -- A null procedure can be a declaration or (Ada 2012) a completion
120 procedure Analyze_Return_Statement (N : Node_Id);
121 -- Common processing for simple and extended return statements
123 procedure Analyze_Return_Type (N : Node_Id);
124 -- Subsidiary to Process_Formals: analyze subtype mark in function
125 -- specification in a context where the formals are visible and hide
126 -- outer homographs.
128 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
129 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
130 -- that we can use RETURN but not skip the debug output at the end.
132 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
133 -- Returns true if Subp can override a predefined operator.
135 procedure Check_Conformance
136 (New_Id : Entity_Id;
137 Old_Id : Entity_Id;
138 Ctype : Conformance_Type;
139 Errmsg : Boolean;
140 Conforms : out Boolean;
141 Err_Loc : Node_Id := Empty;
142 Get_Inst : Boolean := False;
143 Skip_Controlling_Formals : Boolean := False);
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
154 -- be called.
156 procedure Check_Limited_Return
157 (N : Node_Id;
158 Expr : Node_Id;
159 R_Type : Entity_Id);
160 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
161 -- types. Used only for simple return statements. Expr is the expression
162 -- returned.
164 procedure Check_Subprogram_Order (N : Node_Id);
165 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
166 -- the alpha ordering rule for N if this ordering requirement applicable.
168 procedure Check_Returns
169 (HSS : Node_Id;
170 Mode : Character;
171 Err : out Boolean;
172 Proc : Entity_Id := Empty);
173 -- Called to check for missing return statements in a function body, or for
174 -- returns present in a procedure body which has No_Return set. HSS is the
175 -- handled statement sequence for the subprogram body. This procedure
176 -- checks all flow paths to make sure they either have return (Mode = 'F',
177 -- used for functions) or do not have a return (Mode = 'P', used for
178 -- No_Return procedures). The flag Err is set if there are any control
179 -- paths not explicitly terminated by a return in the function case, and is
180 -- True otherwise. Proc is the entity for the procedure case and is used
181 -- in posting the warning message.
183 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
184 -- In Ada 2012, a primitive equality operator on an untagged record type
185 -- must appear before the type is frozen, and have the same visibility as
186 -- that of the type. This procedure checks that this rule is met, and
187 -- otherwise emits an error on the subprogram declaration and a warning
188 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
189 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
190 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
191 -- is set, otherwise the call has no effect.
193 procedure Enter_Overloaded_Entity (S : Entity_Id);
194 -- This procedure makes S, a new overloaded entity, into the first visible
195 -- entity with that name.
197 function Is_Non_Overriding_Operation
198 (Prev_E : Entity_Id;
199 New_E : Entity_Id) return Boolean;
200 -- Enforce the rule given in 12.3(18): a private operation in an instance
201 -- overrides an inherited operation only if the corresponding operation
202 -- was overriding in the generic. This needs to be checked for primitive
203 -- operations of types derived (in the generic unit) from formal private
204 -- or formal derived types.
206 procedure Make_Inequality_Operator (S : Entity_Id);
207 -- Create the declaration for an inequality operator that is implicitly
208 -- created by a user-defined equality operator that yields a boolean.
210 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
211 -- Formal_Id is an formal parameter entity. This procedure deals with
212 -- setting the proper validity status for this entity, which depends on
213 -- the kind of parameter and the validity checking mode.
215 ---------------------------------------------
216 -- Analyze_Abstract_Subprogram_Declaration --
217 ---------------------------------------------
219 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
220 Scop : constant Entity_Id := Current_Scope;
221 Subp_Id : constant Entity_Id :=
222 Analyze_Subprogram_Specification (Specification (N));
224 begin
225 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
227 Generate_Definition (Subp_Id);
229 -- Set the SPARK mode from the current context (may be overwritten later
230 -- with explicit pragma).
232 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
233 Set_SPARK_Pragma_Inherited (Subp_Id);
235 -- Preserve relevant elaboration-related attributes of the context which
236 -- are no longer available or very expensive to recompute once analysis,
237 -- resolution, and expansion are over.
239 Mark_Elaboration_Attributes
240 (N_Id => Subp_Id,
241 Checks => True);
243 Set_Is_Abstract_Subprogram (Subp_Id);
244 New_Overloaded_Entity (Subp_Id);
245 Check_Delayed_Subprogram (Subp_Id);
247 Set_Categorization_From_Scope (Subp_Id, Scop);
249 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
250 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
252 -- Issue a warning if the abstract subprogram is neither a dispatching
253 -- operation nor an operation that overrides an inherited subprogram or
254 -- predefined operator, since this most likely indicates a mistake.
256 elsif Warn_On_Redundant_Constructs
257 and then not Is_Dispatching_Operation (Subp_Id)
258 and then not Present (Overridden_Operation (Subp_Id))
259 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
260 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
261 then
262 Error_Msg_N
263 ("abstract subprogram is not dispatching or overriding?r?", N);
264 end if;
266 Generate_Reference_To_Formals (Subp_Id);
267 Check_Eliminated (Subp_Id);
269 if Has_Aspects (N) then
270 Analyze_Aspect_Specifications (N, Subp_Id);
271 end if;
272 end Analyze_Abstract_Subprogram_Declaration;
274 ---------------------------------
275 -- Analyze_Expression_Function --
276 ---------------------------------
278 procedure Analyze_Expression_Function (N : Node_Id) is
279 Expr : constant Node_Id := Expression (N);
280 Loc : constant Source_Ptr := Sloc (N);
281 LocX : constant Source_Ptr := Sloc (Expr);
282 Spec : constant Node_Id := Specification (N);
284 procedure Freeze_Expr_Types (Def_Id : Entity_Id);
285 -- N is an expression function that is a completion and Def_Id its
286 -- defining entity. Freeze before N all the types referenced by the
287 -- expression of the function.
289 -----------------------
290 -- Freeze_Expr_Types --
291 -----------------------
293 procedure Freeze_Expr_Types (Def_Id : Entity_Id) is
294 function Cloned_Expression return Node_Id;
295 -- Build a duplicate of the expression of the return statement that
296 -- has no defining entities shared with the original expression.
298 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
299 -- Freeze all types referenced in the subtree rooted at Node
301 -----------------------
302 -- Cloned_Expression --
303 -----------------------
305 function Cloned_Expression return Node_Id is
306 function Clone_Id (Node : Node_Id) return Traverse_Result;
307 -- Tree traversal routine that clones the defining identifier of
308 -- iterator and loop parameter specification nodes.
310 ----------------
311 -- Check_Node --
312 ----------------
314 function Clone_Id (Node : Node_Id) return Traverse_Result is
315 begin
316 if Nkind_In (Node, N_Iterator_Specification,
317 N_Loop_Parameter_Specification)
318 then
319 Set_Defining_Identifier (Node,
320 New_Copy (Defining_Identifier (Node)));
321 end if;
323 return OK;
324 end Clone_Id;
326 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
328 -- Local variable
330 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
332 -- Start of processing for Cloned_Expression
334 begin
335 -- We must duplicate the expression with semantic information to
336 -- inherit the decoration of global entities in generic instances.
337 -- Set the parent of the new node to be the parent of the original
338 -- to get the proper context, which is needed for complete error
339 -- reporting and for semantic analysis.
341 Set_Parent (Dup_Expr, Parent (Expr));
343 -- Replace the defining identifier of iterators and loop param
344 -- specifications by a clone to ensure that the cloned expression
345 -- and the original expression don't have shared identifiers;
346 -- otherwise, as part of the preanalysis of the expression, these
347 -- shared identifiers may be left decorated with itypes which
348 -- will not be available in the tree passed to the backend.
350 Clone_Def_Ids (Dup_Expr);
352 return Dup_Expr;
353 end Cloned_Expression;
355 ----------------------
356 -- Freeze_Type_Refs --
357 ----------------------
359 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
360 procedure Check_And_Freeze_Type (Typ : Entity_Id);
361 -- Check that Typ is fully declared and freeze it if so
363 ---------------------------
364 -- Check_And_Freeze_Type --
365 ---------------------------
367 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
368 begin
369 -- Skip Itypes created by the preanalysis
371 if Is_Itype (Typ)
372 and then Scope_Within_Or_Same (Scope (Typ), Def_Id)
373 then
374 return;
375 end if;
377 -- This provides a better error message than generating
378 -- primitives whose compilation fails much later. Refine
379 -- the error message if possible.
381 Check_Fully_Declared (Typ, Node);
383 if Error_Posted (Node) then
384 if Has_Private_Component (Typ)
385 and then not Is_Private_Type (Typ)
386 then
387 Error_Msg_NE ("\type& has private component", Node, Typ);
388 end if;
390 else
391 Freeze_Before (N, Typ);
392 end if;
393 end Check_And_Freeze_Type;
395 -- Start of processing for Freeze_Type_Refs
397 begin
398 -- Check that a type referenced by an entity can be frozen
400 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
401 Check_And_Freeze_Type (Etype (Entity (Node)));
403 -- Check that the enclosing record type can be frozen
405 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
406 Check_And_Freeze_Type (Scope (Entity (Node)));
407 end if;
409 -- Freezing an access type does not freeze the designated type,
410 -- but freezing conversions between access to interfaces requires
411 -- that the interface types themselves be frozen, so that dispatch
412 -- table entities are properly created.
414 -- Unclear whether a more general rule is needed ???
416 elsif Nkind (Node) = N_Type_Conversion
417 and then Is_Access_Type (Etype (Node))
418 and then Is_Interface (Designated_Type (Etype (Node)))
419 then
420 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
421 end if;
423 -- No point in posting several errors on the same expression
425 if Serious_Errors_Detected > 0 then
426 return Abandon;
427 else
428 return OK;
429 end if;
430 end Freeze_Type_Refs;
432 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
434 -- Local variables
436 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
437 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
438 Dup_Expr : constant Node_Id := Cloned_Expression;
440 -- Start of processing for Freeze_Expr_Types
442 begin
443 -- Preanalyze a duplicate of the expression to have available the
444 -- minimum decoration needed to locate referenced unfrozen types
445 -- without adding any decoration to the function expression.
447 Push_Scope (Def_Id);
448 Install_Formals (Def_Id);
450 Preanalyze_Spec_Expression (Dup_Expr, Etype (Def_Id));
451 End_Scope;
453 -- Restore certain attributes of Def_Id since the preanalysis may
454 -- have introduced itypes to this scope, thus modifying attributes
455 -- First_Entity and Last_Entity.
457 Set_First_Entity (Def_Id, Saved_First_Entity);
458 Set_Last_Entity (Def_Id, Saved_Last_Entity);
460 if Present (Last_Entity (Def_Id)) then
461 Set_Next_Entity (Last_Entity (Def_Id), Empty);
462 end if;
464 -- Freeze all types referenced in the expression
466 Freeze_References (Dup_Expr);
467 end Freeze_Expr_Types;
469 -- Local variables
471 Asp : Node_Id;
472 New_Body : Node_Id;
473 New_Spec : Node_Id;
474 Orig_N : Node_Id;
475 Ret : Node_Id;
477 Def_Id : Entity_Id := Empty;
478 Prev : Entity_Id;
479 -- If the expression is a completion, Prev is the entity whose
480 -- declaration is completed. Def_Id is needed to analyze the spec.
482 -- Start of processing for Analyze_Expression_Function
484 begin
485 -- This is one of the occasions on which we transform the tree during
486 -- semantic analysis. If this is a completion, transform the expression
487 -- function into an equivalent subprogram body, and analyze it.
489 -- Expression functions are inlined unconditionally. The back-end will
490 -- determine whether this is possible.
492 Inline_Processing_Required := True;
494 -- Create a specification for the generated body. This must be done
495 -- prior to the analysis of the initial declaration.
497 New_Spec := Copy_Subprogram_Spec (Spec);
498 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
500 -- If there are previous overloadable entities with the same name,
501 -- check whether any of them is completed by the expression function.
502 -- In a generic context a formal subprogram has no completion.
504 if Present (Prev)
505 and then Is_Overloadable (Prev)
506 and then not Is_Formal_Subprogram (Prev)
507 then
508 Def_Id := Analyze_Subprogram_Specification (Spec);
509 Prev := Find_Corresponding_Spec (N);
511 -- The previous entity may be an expression function as well, in
512 -- which case the redeclaration is illegal.
514 if Present (Prev)
515 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
516 N_Expression_Function
517 then
518 Error_Msg_Sloc := Sloc (Prev);
519 Error_Msg_N ("& conflicts with declaration#", Def_Id);
520 return;
521 end if;
522 end if;
524 Ret := Make_Simple_Return_Statement (LocX, Expr);
526 New_Body :=
527 Make_Subprogram_Body (Loc,
528 Specification => New_Spec,
529 Declarations => Empty_List,
530 Handled_Statement_Sequence =>
531 Make_Handled_Sequence_Of_Statements (LocX,
532 Statements => New_List (Ret)));
533 Set_Was_Expression_Function (New_Body);
535 -- If the expression completes a generic subprogram, we must create a
536 -- separate node for the body, because at instantiation the original
537 -- node of the generic copy must be a generic subprogram body, and
538 -- cannot be a expression function. Otherwise we just rewrite the
539 -- expression with the non-generic body.
541 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
542 Insert_After (N, New_Body);
544 -- Propagate any aspects or pragmas that apply to the expression
545 -- function to the proper body when the expression function acts
546 -- as a completion.
548 if Has_Aspects (N) then
549 Move_Aspects (N, To => New_Body);
550 end if;
552 Relocate_Pragmas_To_Body (New_Body);
554 Rewrite (N, Make_Null_Statement (Loc));
555 Set_Has_Completion (Prev, False);
556 Analyze (N);
557 Analyze (New_Body);
558 Set_Is_Inlined (Prev);
560 -- If the expression function is a completion, the previous declaration
561 -- must come from source. We know already that it appears in the current
562 -- scope. The entity itself may be internally created if within a body
563 -- to be inlined.
565 elsif Present (Prev)
566 and then Is_Overloadable (Prev)
567 and then not Is_Formal_Subprogram (Prev)
568 and then Comes_From_Source (Parent (Prev))
569 then
570 Set_Has_Completion (Prev, False);
571 Set_Is_Inlined (Prev);
573 -- AI12-0103: Expression functions that are a completion freeze their
574 -- expression but don't freeze anything else (unlike regular bodies).
576 -- Note that we cannot defer this freezing to the analysis of the
577 -- expression itself, because a freeze node might appear in a nested
578 -- scope, leading to an elaboration order issue in gigi.
579 -- As elsewhere, we do not emit freeze nodes within a generic unit.
581 if not Inside_A_Generic then
582 Freeze_Expr_Types (Def_Id);
583 end if;
585 -- For navigation purposes, indicate that the function is a body
587 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
588 Rewrite (N, New_Body);
590 -- Remove any existing aspects from the original node because the act
591 -- of rewriting causes the list to be shared between the two nodes.
593 Orig_N := Original_Node (N);
594 Remove_Aspects (Orig_N);
596 -- Propagate any pragmas that apply to expression function to the
597 -- proper body when the expression function acts as a completion.
598 -- Aspects are automatically transfered because of node rewriting.
600 Relocate_Pragmas_To_Body (N);
601 Analyze (N);
603 -- Once the aspects of the generated body have been analyzed, create
604 -- a copy for ASIS purposes and associate it with the original node.
606 if Has_Aspects (N) then
607 Set_Aspect_Specifications (Orig_N,
608 New_Copy_List_Tree (Aspect_Specifications (N)));
609 end if;
611 -- Prev is the previous entity with the same name, but it is can
612 -- be an unrelated spec that is not completed by the expression
613 -- function. In that case the relevant entity is the one in the body.
614 -- Not clear that the backend can inline it in this case ???
616 if Has_Completion (Prev) then
618 -- The formals of the expression function are body formals,
619 -- and do not appear in the ali file, which will only contain
620 -- references to the formals of the original subprogram spec.
622 declare
623 F1 : Entity_Id;
624 F2 : Entity_Id;
626 begin
627 F1 := First_Formal (Def_Id);
628 F2 := First_Formal (Prev);
630 while Present (F1) loop
631 Set_Spec_Entity (F1, F2);
632 Next_Formal (F1);
633 Next_Formal (F2);
634 end loop;
635 end;
637 else
638 Set_Is_Inlined (Defining_Entity (New_Body));
639 end if;
641 -- If this is not a completion, create both a declaration and a body, so
642 -- that the expression can be inlined whenever possible.
644 else
645 -- An expression function that is not a completion is not a
646 -- subprogram declaration, and thus cannot appear in a protected
647 -- definition.
649 if Nkind (Parent (N)) = N_Protected_Definition then
650 Error_Msg_N
651 ("an expression function is not a legal protected operation", N);
652 end if;
654 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
656 -- Remove any existing aspects from the original node because the act
657 -- of rewriting causes the list to be shared between the two nodes.
659 Orig_N := Original_Node (N);
660 Remove_Aspects (Orig_N);
662 Analyze (N);
664 -- Once the aspects of the generated spec have been analyzed, create
665 -- a copy for ASIS purposes and associate it with the original node.
667 if Has_Aspects (N) then
668 Set_Aspect_Specifications (Orig_N,
669 New_Copy_List_Tree (Aspect_Specifications (N)));
670 end if;
672 -- If aspect SPARK_Mode was specified on the body, it needs to be
673 -- repeated both on the generated spec and the body.
675 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
677 if Present (Asp) then
678 Asp := New_Copy_Tree (Asp);
679 Set_Analyzed (Asp, False);
680 Set_Aspect_Specifications (New_Body, New_List (Asp));
681 end if;
683 Def_Id := Defining_Entity (N);
684 Set_Is_Inlined (Def_Id);
686 -- Establish the linkages between the spec and the body. These are
687 -- used when the expression function acts as the prefix of attribute
688 -- 'Access in order to freeze the original expression which has been
689 -- moved to the generated body.
691 Set_Corresponding_Body (N, Defining_Entity (New_Body));
692 Set_Corresponding_Spec (New_Body, Def_Id);
694 -- Within a generic pre-analyze the original expression for name
695 -- capture. The body is also generated but plays no role in
696 -- this because it is not part of the original source.
698 if Inside_A_Generic then
699 Set_Has_Completion (Def_Id);
700 Push_Scope (Def_Id);
701 Install_Formals (Def_Id);
702 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
703 End_Scope;
704 end if;
706 -- To prevent premature freeze action, insert the new body at the end
707 -- of the current declarations, or at the end of the package spec.
708 -- However, resolve usage names now, to prevent spurious visibility
709 -- on later entities. Note that the function can now be called in
710 -- the current declarative part, which will appear to be prior to
711 -- the presence of the body in the code. There are nevertheless no
712 -- order of elaboration issues because all name resolution has taken
713 -- place at the point of declaration.
715 declare
716 Decls : List_Id := List_Containing (N);
717 Expr : constant Node_Id := Expression (Ret);
718 Par : constant Node_Id := Parent (Decls);
719 Typ : constant Entity_Id := Etype (Def_Id);
721 begin
722 -- If this is a wrapper created for in an instance for a formal
723 -- subprogram, insert body after declaration, to be analyzed when
724 -- the enclosing instance is analyzed.
726 if GNATprove_Mode
727 and then Is_Generic_Actual_Subprogram (Def_Id)
728 then
729 Insert_After (N, New_Body);
731 else
732 if Nkind (Par) = N_Package_Specification
733 and then Decls = Visible_Declarations (Par)
734 and then Present (Private_Declarations (Par))
735 and then not Is_Empty_List (Private_Declarations (Par))
736 then
737 Decls := Private_Declarations (Par);
738 end if;
740 Insert_After (Last (Decls), New_Body);
742 -- Preanalyze the expression if not already done above
744 if not Inside_A_Generic then
745 Push_Scope (Def_Id);
746 Install_Formals (Def_Id);
747 Preanalyze_Spec_Expression (Expr, Typ);
748 Check_Limited_Return (Original_Node (N), Expr, Typ);
749 End_Scope;
750 end if;
751 end if;
752 end;
753 end if;
755 -- Check incorrect use of dynamically tagged expression. This doesn't
756 -- fall out automatically when analyzing the generated function body,
757 -- because Check_Dynamically_Tagged_Expression deliberately ignores
758 -- nodes that don't come from source.
760 if Present (Def_Id)
761 and then Nkind (Def_Id) in N_Has_Etype
762 and then Is_Tagged_Type (Etype (Def_Id))
763 then
764 Check_Dynamically_Tagged_Expression
765 (Expr => Expr,
766 Typ => Etype (Def_Id),
767 Related_Nod => Original_Node (N));
768 end if;
770 -- If the return expression is a static constant, we suppress warning
771 -- messages on unused formals, which in most cases will be noise.
773 Set_Is_Trivial_Subprogram
774 (Defining_Entity (New_Body), Is_OK_Static_Expression (Expr));
775 end Analyze_Expression_Function;
777 ----------------------------------------
778 -- Analyze_Extended_Return_Statement --
779 ----------------------------------------
781 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
782 begin
783 Check_Compiler_Unit ("extended return statement", N);
784 Analyze_Return_Statement (N);
785 end Analyze_Extended_Return_Statement;
787 ----------------------------
788 -- Analyze_Function_Call --
789 ----------------------------
791 procedure Analyze_Function_Call (N : Node_Id) is
792 Actuals : constant List_Id := Parameter_Associations (N);
793 Func_Nam : constant Node_Id := Name (N);
794 Actual : Node_Id;
796 begin
797 Analyze (Func_Nam);
799 -- A call of the form A.B (X) may be an Ada 2005 call, which is
800 -- rewritten as B (A, X). If the rewriting is successful, the call
801 -- has been analyzed and we just return.
803 if Nkind (Func_Nam) = N_Selected_Component
804 and then Name (N) /= Func_Nam
805 and then Is_Rewrite_Substitution (N)
806 and then Present (Etype (N))
807 then
808 return;
809 end if;
811 -- If error analyzing name, then set Any_Type as result type and return
813 if Etype (Func_Nam) = Any_Type then
814 Set_Etype (N, Any_Type);
815 return;
816 end if;
818 -- Otherwise analyze the parameters
820 if Present (Actuals) then
821 Actual := First (Actuals);
822 while Present (Actual) loop
823 Analyze (Actual);
824 Check_Parameterless_Call (Actual);
825 Next (Actual);
826 end loop;
827 end if;
829 Analyze_Call (N);
830 end Analyze_Function_Call;
832 -----------------------------
833 -- Analyze_Function_Return --
834 -----------------------------
836 procedure Analyze_Function_Return (N : Node_Id) is
837 Loc : constant Source_Ptr := Sloc (N);
838 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
839 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
841 R_Type : constant Entity_Id := Etype (Scope_Id);
842 -- Function result subtype
844 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
845 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
846 -- aggregate in a return statement.
848 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
849 -- Check that the return_subtype_indication properly matches the result
850 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
852 -----------------------------------
853 -- Check_Aggregate_Accessibility --
854 -----------------------------------
856 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
857 Typ : constant Entity_Id := Etype (Aggr);
858 Assoc : Node_Id;
859 Discr : Entity_Id;
860 Expr : Node_Id;
861 Obj : Node_Id;
863 begin
864 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
865 Discr := First_Discriminant (Typ);
866 Assoc := First (Component_Associations (Aggr));
867 while Present (Discr) loop
868 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
869 Expr := Expression (Assoc);
871 if Nkind (Expr) = N_Attribute_Reference
872 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
873 then
874 Obj := Prefix (Expr);
875 while Nkind_In (Obj, N_Indexed_Component,
876 N_Selected_Component)
877 loop
878 Obj := Prefix (Obj);
879 end loop;
881 -- Do not check aliased formals or function calls. A
882 -- run-time check may still be needed ???
884 if Is_Entity_Name (Obj)
885 and then Comes_From_Source (Obj)
886 then
887 if Is_Formal (Entity (Obj))
888 and then Is_Aliased (Entity (Obj))
889 then
890 null;
892 elsif Object_Access_Level (Obj) >
893 Scope_Depth (Scope (Scope_Id))
894 then
895 Error_Msg_N
896 ("access discriminant in return aggregate would "
897 & "be a dangling reference", Obj);
898 end if;
899 end if;
900 end if;
901 end if;
903 Next_Discriminant (Discr);
904 end loop;
905 end if;
906 end Check_Aggregate_Accessibility;
908 -------------------------------------
909 -- Check_Return_Subtype_Indication --
910 -------------------------------------
912 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
913 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
915 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
916 -- Subtype given in the extended return statement (must match R_Type)
918 Subtype_Ind : constant Node_Id :=
919 Object_Definition (Original_Node (Obj_Decl));
921 procedure Error_No_Match (N : Node_Id);
922 -- Output error messages for case where types do not statically
923 -- match. N is the location for the messages.
925 --------------------
926 -- Error_No_Match --
927 --------------------
929 procedure Error_No_Match (N : Node_Id) is
930 begin
931 Error_Msg_N
932 ("subtype must statically match function result subtype", N);
934 if not Predicates_Match (R_Stm_Type, R_Type) then
935 Error_Msg_Node_2 := R_Type;
936 Error_Msg_NE
937 ("\predicate of& does not match predicate of&",
938 N, R_Stm_Type);
939 end if;
940 end Error_No_Match;
942 -- Start of processing for Check_Return_Subtype_Indication
944 begin
945 -- First, avoid cascaded errors
947 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
948 return;
949 end if;
951 -- "return access T" case; check that the return statement also has
952 -- "access T", and that the subtypes statically match:
953 -- if this is an access to subprogram the signatures must match.
955 if Is_Anonymous_Access_Type (R_Type) then
956 if Is_Anonymous_Access_Type (R_Stm_Type) then
957 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
958 then
959 if Base_Type (Designated_Type (R_Stm_Type)) /=
960 Base_Type (Designated_Type (R_Type))
961 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
962 then
963 Error_No_Match (Subtype_Mark (Subtype_Ind));
964 end if;
966 else
967 -- For two anonymous access to subprogram types, the types
968 -- themselves must be type conformant.
970 if not Conforming_Types
971 (R_Stm_Type, R_Type, Fully_Conformant)
972 then
973 Error_No_Match (Subtype_Ind);
974 end if;
975 end if;
977 else
978 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
979 end if;
981 -- If the return object is of an anonymous access type, then report
982 -- an error if the function's result type is not also anonymous.
984 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
985 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
986 Error_Msg_N
987 ("anonymous access not allowed for function with named access "
988 & "result", Subtype_Ind);
990 -- Subtype indication case: check that the return object's type is
991 -- covered by the result type, and that the subtypes statically match
992 -- when the result subtype is constrained. Also handle record types
993 -- with unknown discriminants for which we have built the underlying
994 -- record view. Coverage is needed to allow specific-type return
995 -- objects when the result type is class-wide (see AI05-32).
997 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
998 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
999 and then
1000 Covers
1001 (Base_Type (R_Type),
1002 Underlying_Record_View (Base_Type (R_Stm_Type))))
1003 then
1004 -- A null exclusion may be present on the return type, on the
1005 -- function specification, on the object declaration or on the
1006 -- subtype itself.
1008 if Is_Access_Type (R_Type)
1009 and then
1010 (Can_Never_Be_Null (R_Type)
1011 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
1012 Can_Never_Be_Null (R_Stm_Type)
1013 then
1014 Error_No_Match (Subtype_Ind);
1015 end if;
1017 -- AI05-103: for elementary types, subtypes must statically match
1019 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1020 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1021 Error_No_Match (Subtype_Ind);
1022 end if;
1023 end if;
1025 -- All remaining cases are illegal
1027 -- Note: previous versions of this subprogram allowed the return
1028 -- value to be the ancestor of the return type if the return type
1029 -- was a null extension. This was plainly incorrect.
1031 else
1032 Error_Msg_N
1033 ("wrong type for return_subtype_indication", Subtype_Ind);
1034 end if;
1035 end Check_Return_Subtype_Indication;
1037 ---------------------
1038 -- Local Variables --
1039 ---------------------
1041 Expr : Node_Id;
1042 Obj_Decl : Node_Id := Empty;
1044 -- Start of processing for Analyze_Function_Return
1046 begin
1047 Set_Return_Present (Scope_Id);
1049 if Nkind (N) = N_Simple_Return_Statement then
1050 Expr := Expression (N);
1052 -- Guard against a malformed expression. The parser may have tried to
1053 -- recover but the node is not analyzable.
1055 if Nkind (Expr) = N_Error then
1056 Set_Etype (Expr, Any_Type);
1057 Expander_Mode_Save_And_Set (False);
1058 return;
1060 else
1061 -- The resolution of a controlled [extension] aggregate associated
1062 -- with a return statement creates a temporary which needs to be
1063 -- finalized on function exit. Wrap the return statement inside a
1064 -- block so that the finalization machinery can detect this case.
1065 -- This early expansion is done only when the return statement is
1066 -- not part of a handled sequence of statements.
1068 if Nkind_In (Expr, N_Aggregate,
1069 N_Extension_Aggregate)
1070 and then Needs_Finalization (R_Type)
1071 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1072 then
1073 Rewrite (N,
1074 Make_Block_Statement (Loc,
1075 Handled_Statement_Sequence =>
1076 Make_Handled_Sequence_Of_Statements (Loc,
1077 Statements => New_List (Relocate_Node (N)))));
1079 Analyze (N);
1080 return;
1081 end if;
1083 Analyze (Expr);
1085 -- Ada 2005 (AI-251): If the type of the returned object is
1086 -- an access to an interface type then we add an implicit type
1087 -- conversion to force the displacement of the "this" pointer to
1088 -- reference the secondary dispatch table. We cannot delay the
1089 -- generation of this implicit conversion until the expansion
1090 -- because in this case the type resolution changes the decoration
1091 -- of the expression node to match R_Type; by contrast, if the
1092 -- returned object is a class-wide interface type then it is too
1093 -- early to generate here the implicit conversion since the return
1094 -- statement may be rewritten by the expander into an extended
1095 -- return statement whose expansion takes care of adding the
1096 -- implicit type conversion to displace the pointer to the object.
1098 if Expander_Active
1099 and then Serious_Errors_Detected = 0
1100 and then Is_Access_Type (R_Type)
1101 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
1102 and then Is_Interface (Designated_Type (R_Type))
1103 and then Is_Progenitor (Designated_Type (R_Type),
1104 Designated_Type (Etype (Expr)))
1105 then
1106 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1107 Analyze (Expr);
1108 end if;
1110 Resolve (Expr, R_Type);
1111 Check_Limited_Return (N, Expr, R_Type);
1113 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
1114 Check_Aggregate_Accessibility (Expr);
1115 end if;
1116 end if;
1118 -- RETURN only allowed in SPARK as the last statement in function
1120 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1121 and then
1122 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
1123 or else Present (Next (N)))
1124 then
1125 Check_SPARK_05_Restriction
1126 ("RETURN should be the last statement in function", N);
1127 end if;
1129 else
1130 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
1131 Obj_Decl := Last (Return_Object_Declarations (N));
1133 -- Analyze parts specific to extended_return_statement:
1135 declare
1136 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1137 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1139 begin
1140 Expr := Expression (Obj_Decl);
1142 -- Note: The check for OK_For_Limited_Init will happen in
1143 -- Analyze_Object_Declaration; we treat it as a normal
1144 -- object declaration.
1146 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1147 Analyze (Obj_Decl);
1149 Check_Return_Subtype_Indication (Obj_Decl);
1151 if Present (HSS) then
1152 Analyze (HSS);
1154 if Present (Exception_Handlers (HSS)) then
1156 -- ???Has_Nested_Block_With_Handler needs to be set.
1157 -- Probably by creating an actual N_Block_Statement.
1158 -- Probably in Expand.
1160 null;
1161 end if;
1162 end if;
1164 -- Mark the return object as referenced, since the return is an
1165 -- implicit reference of the object.
1167 Set_Referenced (Defining_Identifier (Obj_Decl));
1169 Check_References (Stm_Entity);
1171 -- Check RM 6.5 (5.9/3)
1173 if Has_Aliased then
1174 if Ada_Version < Ada_2012 then
1176 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1177 -- Can it really happen (extended return???)
1179 Error_Msg_N
1180 ("aliased only allowed for limited return objects "
1181 & "in Ada 2012??", N);
1183 elsif not Is_Limited_View (R_Type) then
1184 Error_Msg_N
1185 ("aliased only allowed for limited return objects", N);
1186 end if;
1187 end if;
1188 end;
1189 end if;
1191 -- Case of Expr present
1193 if Present (Expr) then
1195 -- Defend against previous errors
1197 if Nkind (Expr) = N_Empty
1198 or else No (Etype (Expr))
1199 then
1200 return;
1201 end if;
1203 -- Apply constraint check. Note that this is done before the implicit
1204 -- conversion of the expression done for anonymous access types to
1205 -- ensure correct generation of the null-excluding check associated
1206 -- with null-excluding expressions found in return statements.
1208 Apply_Constraint_Check (Expr, R_Type);
1210 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1211 -- type, apply an implicit conversion of the expression to that type
1212 -- to force appropriate static and run-time accessibility checks.
1214 if Ada_Version >= Ada_2005
1215 and then Ekind (R_Type) = E_Anonymous_Access_Type
1216 then
1217 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1218 Analyze_And_Resolve (Expr, R_Type);
1220 -- If this is a local anonymous access to subprogram, the
1221 -- accessibility check can be applied statically. The return is
1222 -- illegal if the access type of the return expression is declared
1223 -- inside of the subprogram (except if it is the subtype indication
1224 -- of an extended return statement).
1226 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1227 if not Comes_From_Source (Current_Scope)
1228 or else Ekind (Current_Scope) = E_Return_Statement
1229 then
1230 null;
1232 elsif
1233 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1234 then
1235 Error_Msg_N ("cannot return local access to subprogram", N);
1236 end if;
1238 -- The expression cannot be of a formal incomplete type
1240 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1241 and then Is_Generic_Type (Etype (Expr))
1242 then
1243 Error_Msg_N
1244 ("cannot return expression of a formal incomplete type", N);
1245 end if;
1247 -- If the result type is class-wide, then check that the return
1248 -- expression's type is not declared at a deeper level than the
1249 -- function (RM05-6.5(5.6/2)).
1251 if Ada_Version >= Ada_2005
1252 and then Is_Class_Wide_Type (R_Type)
1253 then
1254 if Type_Access_Level (Etype (Expr)) >
1255 Subprogram_Access_Level (Scope_Id)
1256 then
1257 Error_Msg_N
1258 ("level of return expression type is deeper than "
1259 & "class-wide function!", Expr);
1260 end if;
1261 end if;
1263 -- Check incorrect use of dynamically tagged expression
1265 if Is_Tagged_Type (R_Type) then
1266 Check_Dynamically_Tagged_Expression
1267 (Expr => Expr,
1268 Typ => R_Type,
1269 Related_Nod => N);
1270 end if;
1272 -- ??? A real run-time accessibility check is needed in cases
1273 -- involving dereferences of access parameters. For now we just
1274 -- check the static cases.
1276 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1277 and then Is_Limited_View (Etype (Scope_Id))
1278 and then Object_Access_Level (Expr) >
1279 Subprogram_Access_Level (Scope_Id)
1280 then
1281 -- Suppress the message in a generic, where the rewriting
1282 -- is irrelevant.
1284 if Inside_A_Generic then
1285 null;
1287 else
1288 Rewrite (N,
1289 Make_Raise_Program_Error (Loc,
1290 Reason => PE_Accessibility_Check_Failed));
1291 Analyze (N);
1293 Error_Msg_Warn := SPARK_Mode /= On;
1294 Error_Msg_N ("cannot return a local value by reference<<", N);
1295 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1296 end if;
1297 end if;
1299 if Known_Null (Expr)
1300 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1301 and then Null_Exclusion_Present (Parent (Scope_Id))
1302 then
1303 Apply_Compile_Time_Constraint_Error
1304 (N => Expr,
1305 Msg => "(Ada 2005) null not allowed for "
1306 & "null-excluding return??",
1307 Reason => CE_Null_Not_Allowed);
1308 end if;
1310 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1311 -- has no initializing expression.
1313 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1314 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1315 Subprogram_Access_Level (Scope_Id)
1316 then
1317 Error_Msg_N
1318 ("level of return expression type is deeper than "
1319 & "class-wide function!", Obj_Decl);
1320 end if;
1321 end if;
1322 end Analyze_Function_Return;
1324 -------------------------------------
1325 -- Analyze_Generic_Subprogram_Body --
1326 -------------------------------------
1328 procedure Analyze_Generic_Subprogram_Body
1329 (N : Node_Id;
1330 Gen_Id : Entity_Id)
1332 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1333 Kind : constant Entity_Kind := Ekind (Gen_Id);
1334 Body_Id : Entity_Id;
1335 New_N : Node_Id;
1336 Spec : Node_Id;
1338 begin
1339 -- Copy body and disable expansion while analyzing the generic For a
1340 -- stub, do not copy the stub (which would load the proper body), this
1341 -- will be done when the proper body is analyzed.
1343 if Nkind (N) /= N_Subprogram_Body_Stub then
1344 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1345 Rewrite (N, New_N);
1347 -- Once the contents of the generic copy and the template are
1348 -- swapped, do the same for their respective aspect specifications.
1350 Exchange_Aspects (N, New_N);
1352 -- Collect all contract-related source pragmas found within the
1353 -- template and attach them to the contract of the subprogram body.
1354 -- This contract is used in the capture of global references within
1355 -- annotations.
1357 Create_Generic_Contract (N);
1359 Start_Generic;
1360 end if;
1362 Spec := Specification (N);
1364 -- Within the body of the generic, the subprogram is callable, and
1365 -- behaves like the corresponding non-generic unit.
1367 Body_Id := Defining_Entity (Spec);
1369 if Kind = E_Generic_Procedure
1370 and then Nkind (Spec) /= N_Procedure_Specification
1371 then
1372 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1373 return;
1375 elsif Kind = E_Generic_Function
1376 and then Nkind (Spec) /= N_Function_Specification
1377 then
1378 Error_Msg_N ("invalid body for generic function ", Body_Id);
1379 return;
1380 end if;
1382 Set_Corresponding_Body (Gen_Decl, Body_Id);
1384 if Has_Completion (Gen_Id)
1385 and then Nkind (Parent (N)) /= N_Subunit
1386 then
1387 Error_Msg_N ("duplicate generic body", N);
1388 return;
1389 else
1390 Set_Has_Completion (Gen_Id);
1391 end if;
1393 if Nkind (N) = N_Subprogram_Body_Stub then
1394 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1395 else
1396 Set_Corresponding_Spec (N, Gen_Id);
1397 end if;
1399 if Nkind (Parent (N)) = N_Compilation_Unit then
1400 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1401 end if;
1403 -- Make generic parameters immediately visible in the body. They are
1404 -- needed to process the formals declarations. Then make the formals
1405 -- visible in a separate step.
1407 Push_Scope (Gen_Id);
1409 declare
1410 E : Entity_Id;
1411 First_Ent : Entity_Id;
1413 begin
1414 First_Ent := First_Entity (Gen_Id);
1416 E := First_Ent;
1417 while Present (E) and then not Is_Formal (E) loop
1418 Install_Entity (E);
1419 Next_Entity (E);
1420 end loop;
1422 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1424 -- Now generic formals are visible, and the specification can be
1425 -- analyzed, for subsequent conformance check.
1427 Body_Id := Analyze_Subprogram_Specification (Spec);
1429 -- Make formal parameters visible
1431 if Present (E) then
1433 -- E is the first formal parameter, we loop through the formals
1434 -- installing them so that they will be visible.
1436 Set_First_Entity (Gen_Id, E);
1437 while Present (E) loop
1438 Install_Entity (E);
1439 Next_Formal (E);
1440 end loop;
1441 end if;
1443 -- Visible generic entity is callable within its own body
1445 Set_Ekind (Gen_Id, Ekind (Body_Id));
1446 Set_Ekind (Body_Id, E_Subprogram_Body);
1447 Set_Convention (Body_Id, Convention (Gen_Id));
1448 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1449 Set_Scope (Body_Id, Scope (Gen_Id));
1451 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1453 if Nkind (N) = N_Subprogram_Body_Stub then
1455 -- No body to analyze, so restore state of generic unit
1457 Set_Ekind (Gen_Id, Kind);
1458 Set_Ekind (Body_Id, Kind);
1460 if Present (First_Ent) then
1461 Set_First_Entity (Gen_Id, First_Ent);
1462 end if;
1464 End_Scope;
1465 return;
1466 end if;
1468 -- If this is a compilation unit, it must be made visible explicitly,
1469 -- because the compilation of the declaration, unlike other library
1470 -- unit declarations, does not. If it is not a unit, the following
1471 -- is redundant but harmless.
1473 Set_Is_Immediately_Visible (Gen_Id);
1474 Reference_Body_Formals (Gen_Id, Body_Id);
1476 if Is_Child_Unit (Gen_Id) then
1477 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1478 end if;
1480 Set_Actual_Subtypes (N, Current_Scope);
1482 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1483 Set_SPARK_Pragma_Inherited (Body_Id);
1485 -- Analyze any aspect specifications that appear on the generic
1486 -- subprogram body.
1488 if Has_Aspects (N) then
1489 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1490 end if;
1492 Analyze_Declarations (Declarations (N));
1493 Check_Completion;
1495 -- Process the contract of the subprogram body after all declarations
1496 -- have been analyzed. This ensures that any contract-related pragmas
1497 -- are available through the N_Contract node of the body.
1499 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1501 Analyze (Handled_Statement_Sequence (N));
1502 Save_Global_References (Original_Node (N));
1504 -- Prior to exiting the scope, include generic formals again (if any
1505 -- are present) in the set of local entities.
1507 if Present (First_Ent) then
1508 Set_First_Entity (Gen_Id, First_Ent);
1509 end if;
1511 Check_References (Gen_Id);
1512 end;
1514 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1515 Update_Use_Clause_Chain;
1516 Validate_Categorization_Dependency (N, Gen_Id);
1517 End_Scope;
1518 Check_Subprogram_Order (N);
1520 -- Outside of its body, unit is generic again
1522 Set_Ekind (Gen_Id, Kind);
1523 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1525 if Style_Check then
1526 Style.Check_Identifier (Body_Id, Gen_Id);
1527 end if;
1529 End_Generic;
1530 end Analyze_Generic_Subprogram_Body;
1532 ----------------------------
1533 -- Analyze_Null_Procedure --
1534 ----------------------------
1536 procedure Analyze_Null_Procedure
1537 (N : Node_Id;
1538 Is_Completion : out Boolean)
1540 Loc : constant Source_Ptr := Sloc (N);
1541 Spec : constant Node_Id := Specification (N);
1542 Designator : Entity_Id;
1543 Form : Node_Id;
1544 Null_Body : Node_Id := Empty;
1545 Null_Stmt : Node_Id := Null_Statement (Spec);
1546 Prev : Entity_Id;
1548 begin
1549 -- Capture the profile of the null procedure before analysis, for
1550 -- expansion at the freeze point and at each point of call. The body is
1551 -- used if the procedure has preconditions, or if it is a completion. In
1552 -- the first case the body is analyzed at the freeze point, in the other
1553 -- it replaces the null procedure declaration.
1555 -- For a null procedure that comes from source, a NULL statement is
1556 -- provided by the parser, which carries the source location of the
1557 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1558 -- from expansion, create one now.
1560 if No (Null_Stmt) then
1561 Null_Stmt := Make_Null_Statement (Loc);
1562 end if;
1564 Null_Body :=
1565 Make_Subprogram_Body (Loc,
1566 Specification => New_Copy_Tree (Spec),
1567 Declarations => New_List,
1568 Handled_Statement_Sequence =>
1569 Make_Handled_Sequence_Of_Statements (Loc,
1570 Statements => New_List (Null_Stmt)));
1572 -- Create new entities for body and formals
1574 Set_Defining_Unit_Name (Specification (Null_Body),
1575 Make_Defining_Identifier
1576 (Sloc (Defining_Entity (N)),
1577 Chars (Defining_Entity (N))));
1579 Form := First (Parameter_Specifications (Specification (Null_Body)));
1580 while Present (Form) loop
1581 Set_Defining_Identifier (Form,
1582 Make_Defining_Identifier
1583 (Sloc (Defining_Identifier (Form)),
1584 Chars (Defining_Identifier (Form))));
1585 Next (Form);
1586 end loop;
1588 -- Determine whether the null procedure may be a completion of a generic
1589 -- suprogram, in which case we use the new null body as the completion
1590 -- and set minimal semantic information on the original declaration,
1591 -- which is rewritten as a null statement.
1593 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1595 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1596 Insert_Before (N, Null_Body);
1597 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1599 Rewrite (N, Make_Null_Statement (Loc));
1600 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1601 Is_Completion := True;
1602 return;
1604 else
1605 -- Resolve the types of the formals now, because the freeze point may
1606 -- appear in a different context, e.g. an instantiation.
1608 Form := First (Parameter_Specifications (Specification (Null_Body)));
1609 while Present (Form) loop
1610 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1611 Find_Type (Parameter_Type (Form));
1613 elsif No (Access_To_Subprogram_Definition
1614 (Parameter_Type (Form)))
1615 then
1616 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1618 -- The case of a null procedure with a formal that is an
1619 -- access-to-subprogram type, and that is used as an actual
1620 -- in an instantiation is left to the enthusiastic reader.
1622 else
1623 null;
1624 end if;
1626 Next (Form);
1627 end loop;
1628 end if;
1630 -- If there are previous overloadable entities with the same name, check
1631 -- whether any of them is completed by the null procedure.
1633 if Present (Prev) and then Is_Overloadable (Prev) then
1634 Designator := Analyze_Subprogram_Specification (Spec);
1635 Prev := Find_Corresponding_Spec (N);
1636 end if;
1638 if No (Prev) or else not Comes_From_Source (Prev) then
1639 Designator := Analyze_Subprogram_Specification (Spec);
1640 Set_Has_Completion (Designator);
1642 -- Signal to caller that this is a procedure declaration
1644 Is_Completion := False;
1646 -- Null procedures are always inlined, but generic formal subprograms
1647 -- which appear as such in the internal instance of formal packages,
1648 -- need no completion and are not marked Inline.
1650 if Expander_Active
1651 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1652 then
1653 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1654 Set_Body_To_Inline (N, Null_Body);
1655 Set_Is_Inlined (Designator);
1656 end if;
1658 else
1659 -- The null procedure is a completion. We unconditionally rewrite
1660 -- this as a null body (even if expansion is not active), because
1661 -- there are various error checks that are applied on this body
1662 -- when it is analyzed (e.g. correct aspect placement).
1664 if Has_Completion (Prev) then
1665 Error_Msg_Sloc := Sloc (Prev);
1666 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1667 end if;
1669 Check_Previous_Null_Procedure (N, Prev);
1671 Is_Completion := True;
1672 Rewrite (N, Null_Body);
1673 Analyze (N);
1674 end if;
1675 end Analyze_Null_Procedure;
1677 -----------------------------
1678 -- Analyze_Operator_Symbol --
1679 -----------------------------
1681 -- An operator symbol such as "+" or "and" may appear in context where the
1682 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1683 -- is just a string, as in (conjunction = "or"). In these cases the parser
1684 -- generates this node, and the semantics does the disambiguation. Other
1685 -- such case are actuals in an instantiation, the generic unit in an
1686 -- instantiation, and pragma arguments.
1688 procedure Analyze_Operator_Symbol (N : Node_Id) is
1689 Par : constant Node_Id := Parent (N);
1691 begin
1692 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1693 or else Nkind (Par) = N_Function_Instantiation
1694 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1695 or else (Nkind (Par) = N_Pragma_Argument_Association
1696 and then not Is_Pragma_String_Literal (Par))
1697 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1698 or else (Nkind (Par) = N_Attribute_Reference
1699 and then Attribute_Name (Par) /= Name_Value)
1700 then
1701 Find_Direct_Name (N);
1703 else
1704 Change_Operator_Symbol_To_String_Literal (N);
1705 Analyze (N);
1706 end if;
1707 end Analyze_Operator_Symbol;
1709 -----------------------------------
1710 -- Analyze_Parameter_Association --
1711 -----------------------------------
1713 procedure Analyze_Parameter_Association (N : Node_Id) is
1714 begin
1715 Analyze (Explicit_Actual_Parameter (N));
1716 end Analyze_Parameter_Association;
1718 ----------------------------
1719 -- Analyze_Procedure_Call --
1720 ----------------------------
1722 -- WARNING: This routine manages Ghost regions. Return statements must be
1723 -- replaced by gotos which jump to the end of the routine and restore the
1724 -- Ghost mode.
1726 procedure Analyze_Procedure_Call (N : Node_Id) is
1727 procedure Analyze_Call_And_Resolve;
1728 -- Do Analyze and Resolve calls for procedure call. At the end, check
1729 -- for illegal order dependence.
1730 -- ??? where is the check for illegal order dependencies?
1732 ------------------------------
1733 -- Analyze_Call_And_Resolve --
1734 ------------------------------
1736 procedure Analyze_Call_And_Resolve is
1737 begin
1738 if Nkind (N) = N_Procedure_Call_Statement then
1739 Analyze_Call (N);
1740 Resolve (N, Standard_Void_Type);
1741 else
1742 Analyze (N);
1743 end if;
1744 end Analyze_Call_And_Resolve;
1746 -- Local variables
1748 Actuals : constant List_Id := Parameter_Associations (N);
1749 Loc : constant Source_Ptr := Sloc (N);
1750 P : constant Node_Id := Name (N);
1752 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1753 -- Save the Ghost mode to restore on exit
1755 Actual : Node_Id;
1756 New_N : Node_Id;
1758 -- Start of processing for Analyze_Procedure_Call
1760 begin
1761 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1762 -- a procedure call or an entry call. The prefix may denote an access
1763 -- to subprogram type, in which case an implicit dereference applies.
1764 -- If the prefix is an indexed component (without implicit dereference)
1765 -- then the construct denotes a call to a member of an entire family.
1766 -- If the prefix is a simple name, it may still denote a call to a
1767 -- parameterless member of an entry family. Resolution of these various
1768 -- interpretations is delicate.
1770 -- Do not analyze machine code statements to avoid rejecting them in
1771 -- CodePeer mode.
1773 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1774 Set_Etype (P, Standard_Void_Type);
1775 else
1776 Analyze (P);
1777 end if;
1779 -- If this is a call of the form Obj.Op, the call may have been analyzed
1780 -- and possibly rewritten into a block, in which case we are done.
1782 if Analyzed (N) then
1783 return;
1785 -- If there is an error analyzing the name (which may have been
1786 -- rewritten if the original call was in prefix notation) then error
1787 -- has been emitted already, mark node and return.
1789 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1790 Set_Etype (N, Any_Type);
1791 return;
1792 end if;
1794 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1795 -- Set the mode now to ensure that any nodes generated during analysis
1796 -- and expansion are properly marked as Ghost.
1798 Mark_And_Set_Ghost_Procedure_Call (N);
1800 -- Otherwise analyze the parameters
1802 if Present (Actuals) then
1803 Actual := First (Actuals);
1805 while Present (Actual) loop
1806 Analyze (Actual);
1807 Check_Parameterless_Call (Actual);
1808 Next (Actual);
1809 end loop;
1810 end if;
1812 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1814 if Nkind (P) = N_Attribute_Reference
1815 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1816 Name_Elab_Body,
1817 Name_Elab_Subp_Body)
1818 then
1819 if Present (Actuals) then
1820 Error_Msg_N
1821 ("no parameters allowed for this call", First (Actuals));
1822 goto Leave;
1823 end if;
1825 Set_Etype (N, Standard_Void_Type);
1826 Set_Analyzed (N);
1828 elsif Is_Entity_Name (P)
1829 and then Is_Record_Type (Etype (Entity (P)))
1830 and then Remote_AST_I_Dereference (P)
1831 then
1832 goto Leave;
1834 elsif Is_Entity_Name (P)
1835 and then Ekind (Entity (P)) /= E_Entry_Family
1836 then
1837 if Is_Access_Type (Etype (P))
1838 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1839 and then No (Actuals)
1840 and then Comes_From_Source (N)
1841 then
1842 Error_Msg_N ("missing explicit dereference in call", N);
1843 end if;
1845 Analyze_Call_And_Resolve;
1847 -- If the prefix is the simple name of an entry family, this is a
1848 -- parameterless call from within the task body itself.
1850 elsif Is_Entity_Name (P)
1851 and then Nkind (P) = N_Identifier
1852 and then Ekind (Entity (P)) = E_Entry_Family
1853 and then Present (Actuals)
1854 and then No (Next (First (Actuals)))
1855 then
1856 -- Can be call to parameterless entry family. What appears to be the
1857 -- sole argument is in fact the entry index. Rewrite prefix of node
1858 -- accordingly. Source representation is unchanged by this
1859 -- transformation.
1861 New_N :=
1862 Make_Indexed_Component (Loc,
1863 Prefix =>
1864 Make_Selected_Component (Loc,
1865 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1866 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1867 Expressions => Actuals);
1868 Set_Name (N, New_N);
1869 Set_Etype (New_N, Standard_Void_Type);
1870 Set_Parameter_Associations (N, No_List);
1871 Analyze_Call_And_Resolve;
1873 elsif Nkind (P) = N_Explicit_Dereference then
1874 if Ekind (Etype (P)) = E_Subprogram_Type then
1875 Analyze_Call_And_Resolve;
1876 else
1877 Error_Msg_N ("expect access to procedure in call", P);
1878 end if;
1880 -- The name can be a selected component or an indexed component that
1881 -- yields an access to subprogram. Such a prefix is legal if the call
1882 -- has parameter associations.
1884 elsif Is_Access_Type (Etype (P))
1885 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1886 then
1887 if Present (Actuals) then
1888 Analyze_Call_And_Resolve;
1889 else
1890 Error_Msg_N ("missing explicit dereference in call ", N);
1891 end if;
1893 -- If not an access to subprogram, then the prefix must resolve to the
1894 -- name of an entry, entry family, or protected operation.
1896 -- For the case of a simple entry call, P is a selected component where
1897 -- the prefix is the task and the selector name is the entry. A call to
1898 -- a protected procedure will have the same syntax. If the protected
1899 -- object contains overloaded operations, the entity may appear as a
1900 -- function, the context will select the operation whose type is Void.
1902 elsif Nkind (P) = N_Selected_Component
1903 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1904 E_Function,
1905 E_Procedure)
1906 then
1907 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1908 -- in prefix notation may still be missing its controlling argument,
1909 -- so perform the transformation now.
1911 if SPARK_Mode = On and then In_Inlined_Body then
1912 declare
1913 Subp : constant Entity_Id := Entity (Selector_Name (P));
1914 Typ : constant Entity_Id := Etype (Prefix (P));
1916 begin
1917 if Is_Tagged_Type (Typ)
1918 and then Present (First_Formal (Subp))
1919 and then Etype (First_Formal (Subp)) = Typ
1920 and then Try_Object_Operation (P)
1921 then
1922 return;
1924 else
1925 Analyze_Call_And_Resolve;
1926 end if;
1927 end;
1929 else
1930 Analyze_Call_And_Resolve;
1931 end if;
1933 elsif Nkind (P) = N_Selected_Component
1934 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1935 and then Present (Actuals)
1936 and then No (Next (First (Actuals)))
1937 then
1938 -- Can be call to parameterless entry family. What appears to be the
1939 -- sole argument is in fact the entry index. Rewrite prefix of node
1940 -- accordingly. Source representation is unchanged by this
1941 -- transformation.
1943 New_N :=
1944 Make_Indexed_Component (Loc,
1945 Prefix => New_Copy (P),
1946 Expressions => Actuals);
1947 Set_Name (N, New_N);
1948 Set_Etype (New_N, Standard_Void_Type);
1949 Set_Parameter_Associations (N, No_List);
1950 Analyze_Call_And_Resolve;
1952 -- For the case of a reference to an element of an entry family, P is
1953 -- an indexed component whose prefix is a selected component (task and
1954 -- entry family), and whose index is the entry family index.
1956 elsif Nkind (P) = N_Indexed_Component
1957 and then Nkind (Prefix (P)) = N_Selected_Component
1958 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1959 then
1960 Analyze_Call_And_Resolve;
1962 -- If the prefix is the name of an entry family, it is a call from
1963 -- within the task body itself.
1965 elsif Nkind (P) = N_Indexed_Component
1966 and then Nkind (Prefix (P)) = N_Identifier
1967 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1968 then
1969 New_N :=
1970 Make_Selected_Component (Loc,
1971 Prefix =>
1972 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1973 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1974 Rewrite (Prefix (P), New_N);
1975 Analyze (P);
1976 Analyze_Call_And_Resolve;
1978 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1979 -- procedure name, so the construct can only be a qualified expression.
1981 elsif Nkind (P) = N_Qualified_Expression
1982 and then Ada_Version >= Ada_2012
1983 then
1984 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1985 Analyze (N);
1987 -- Anything else is an error
1989 else
1990 Error_Msg_N ("invalid procedure or entry call", N);
1991 end if;
1993 <<Leave>>
1994 Restore_Ghost_Mode (Saved_GM);
1995 end Analyze_Procedure_Call;
1997 ------------------------------
1998 -- Analyze_Return_Statement --
1999 ------------------------------
2001 procedure Analyze_Return_Statement (N : Node_Id) is
2002 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
2003 N_Simple_Return_Statement));
2005 Returns_Object : constant Boolean :=
2006 Nkind (N) = N_Extended_Return_Statement
2007 or else
2008 (Nkind (N) = N_Simple_Return_Statement
2009 and then Present (Expression (N)));
2010 -- True if we're returning something; that is, "return <expression>;"
2011 -- or "return Result : T [:= ...]". False for "return;". Used for error
2012 -- checking: If Returns_Object is True, N should apply to a function
2013 -- body; otherwise N should apply to a procedure body, entry body,
2014 -- accept statement, or extended return statement.
2016 function Find_What_It_Applies_To return Entity_Id;
2017 -- Find the entity representing the innermost enclosing body, accept
2018 -- statement, or extended return statement. If the result is a callable
2019 -- construct or extended return statement, then this will be the value
2020 -- of the Return_Applies_To attribute. Otherwise, the program is
2021 -- illegal. See RM-6.5(4/2).
2023 -----------------------------
2024 -- Find_What_It_Applies_To --
2025 -----------------------------
2027 function Find_What_It_Applies_To return Entity_Id is
2028 Result : Entity_Id := Empty;
2030 begin
2031 -- Loop outward through the Scope_Stack, skipping blocks, loops,
2032 -- and postconditions.
2034 for J in reverse 0 .. Scope_Stack.Last loop
2035 Result := Scope_Stack.Table (J).Entity;
2036 exit when not Ekind_In (Result, E_Block, E_Loop)
2037 and then Chars (Result) /= Name_uPostconditions;
2038 end loop;
2040 pragma Assert (Present (Result));
2041 return Result;
2042 end Find_What_It_Applies_To;
2044 -- Local declarations
2046 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
2047 Kind : constant Entity_Kind := Ekind (Scope_Id);
2048 Loc : constant Source_Ptr := Sloc (N);
2049 Stm_Entity : constant Entity_Id :=
2050 New_Internal_Entity
2051 (E_Return_Statement, Current_Scope, Loc, 'R');
2053 -- Start of processing for Analyze_Return_Statement
2055 begin
2056 Set_Return_Statement_Entity (N, Stm_Entity);
2058 Set_Etype (Stm_Entity, Standard_Void_Type);
2059 Set_Return_Applies_To (Stm_Entity, Scope_Id);
2061 -- Place Return entity on scope stack, to simplify enforcement of 6.5
2062 -- (4/2): an inner return statement will apply to this extended return.
2064 if Nkind (N) = N_Extended_Return_Statement then
2065 Push_Scope (Stm_Entity);
2066 end if;
2068 -- Check that pragma No_Return is obeyed. Don't complain about the
2069 -- implicitly-generated return that is placed at the end.
2071 if No_Return (Scope_Id) and then Comes_From_Source (N) then
2072 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
2073 end if;
2075 -- Warn on any unassigned OUT parameters if in procedure
2077 if Ekind (Scope_Id) = E_Procedure then
2078 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2079 end if;
2081 -- Check that functions return objects, and other things do not
2083 if Kind = E_Function or else Kind = E_Generic_Function then
2084 if not Returns_Object then
2085 Error_Msg_N ("missing expression in return from function", N);
2086 end if;
2088 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
2089 if Returns_Object then
2090 Error_Msg_N ("procedure cannot return value (use function)", N);
2091 end if;
2093 elsif Kind = E_Entry or else Kind = E_Entry_Family then
2094 if Returns_Object then
2095 if Is_Protected_Type (Scope (Scope_Id)) then
2096 Error_Msg_N ("entry body cannot return value", N);
2097 else
2098 Error_Msg_N ("accept statement cannot return value", N);
2099 end if;
2100 end if;
2102 elsif Kind = E_Return_Statement then
2104 -- We are nested within another return statement, which must be an
2105 -- extended_return_statement.
2107 if Returns_Object then
2108 if Nkind (N) = N_Extended_Return_Statement then
2109 Error_Msg_N
2110 ("extended return statement cannot be nested (use `RETURN;`)",
2113 -- Case of a simple return statement with a value inside extended
2114 -- return statement.
2116 else
2117 Error_Msg_N
2118 ("return nested in extended return statement cannot return "
2119 & "value (use `RETURN;`)", N);
2120 end if;
2121 end if;
2123 else
2124 Error_Msg_N ("illegal context for return statement", N);
2125 end if;
2127 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2128 Analyze_Function_Return (N);
2130 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2131 Set_Return_Present (Scope_Id);
2132 end if;
2134 if Nkind (N) = N_Extended_Return_Statement then
2135 End_Scope;
2136 end if;
2138 Kill_Current_Values (Last_Assignment_Only => True);
2139 Check_Unreachable_Code (N);
2141 Analyze_Dimension (N);
2142 end Analyze_Return_Statement;
2144 -------------------------------------
2145 -- Analyze_Simple_Return_Statement --
2146 -------------------------------------
2148 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2149 begin
2150 if Present (Expression (N)) then
2151 Mark_Coextensions (N, Expression (N));
2152 end if;
2154 Analyze_Return_Statement (N);
2155 end Analyze_Simple_Return_Statement;
2157 -------------------------
2158 -- Analyze_Return_Type --
2159 -------------------------
2161 procedure Analyze_Return_Type (N : Node_Id) is
2162 Designator : constant Entity_Id := Defining_Entity (N);
2163 Typ : Entity_Id := Empty;
2165 begin
2166 -- Normal case where result definition does not indicate an error
2168 if Result_Definition (N) /= Error then
2169 if Nkind (Result_Definition (N)) = N_Access_Definition then
2170 Check_SPARK_05_Restriction
2171 ("access result is not allowed", Result_Definition (N));
2173 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2175 declare
2176 AD : constant Node_Id :=
2177 Access_To_Subprogram_Definition (Result_Definition (N));
2178 begin
2179 if Present (AD) and then Protected_Present (AD) then
2180 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2181 else
2182 Typ := Access_Definition (N, Result_Definition (N));
2183 end if;
2184 end;
2186 Set_Parent (Typ, Result_Definition (N));
2187 Set_Is_Local_Anonymous_Access (Typ);
2188 Set_Etype (Designator, Typ);
2190 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2192 Null_Exclusion_Static_Checks (N);
2194 -- Subtype_Mark case
2196 else
2197 Find_Type (Result_Definition (N));
2198 Typ := Entity (Result_Definition (N));
2199 Set_Etype (Designator, Typ);
2201 -- Unconstrained array as result is not allowed in SPARK
2203 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2204 Check_SPARK_05_Restriction
2205 ("returning an unconstrained array is not allowed",
2206 Result_Definition (N));
2207 end if;
2209 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2211 Null_Exclusion_Static_Checks (N);
2213 -- If a null exclusion is imposed on the result type, then create
2214 -- a null-excluding itype (an access subtype) and use it as the
2215 -- function's Etype. Note that the null exclusion checks are done
2216 -- right before this, because they don't get applied to types that
2217 -- do not come from source.
2219 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2220 Set_Etype (Designator,
2221 Create_Null_Excluding_Itype
2222 (T => Typ,
2223 Related_Nod => N,
2224 Scope_Id => Scope (Current_Scope)));
2226 -- The new subtype must be elaborated before use because
2227 -- it is visible outside of the function. However its base
2228 -- type may not be frozen yet, so the reference that will
2229 -- force elaboration must be attached to the freezing of
2230 -- the base type.
2232 -- If the return specification appears on a proper body,
2233 -- the subtype will have been created already on the spec.
2235 if Is_Frozen (Typ) then
2236 if Nkind (Parent (N)) = N_Subprogram_Body
2237 and then Nkind (Parent (Parent (N))) = N_Subunit
2238 then
2239 null;
2240 else
2241 Build_Itype_Reference (Etype (Designator), Parent (N));
2242 end if;
2244 else
2245 Ensure_Freeze_Node (Typ);
2247 declare
2248 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2249 begin
2250 Set_Itype (IR, Etype (Designator));
2251 Append_Freeze_Actions (Typ, New_List (IR));
2252 end;
2253 end if;
2255 else
2256 Set_Etype (Designator, Typ);
2257 end if;
2259 if Ekind (Typ) = E_Incomplete_Type
2260 or else (Is_Class_Wide_Type (Typ)
2261 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2262 then
2263 -- AI05-0151: Tagged incomplete types are allowed in all formal
2264 -- parts. Untagged incomplete types are not allowed in bodies.
2265 -- As a consequence, limited views cannot appear in a basic
2266 -- declaration that is itself within a body, because there is
2267 -- no point at which the non-limited view will become visible.
2269 if Ada_Version >= Ada_2012 then
2270 if From_Limited_With (Typ) and then In_Package_Body then
2271 Error_Msg_NE
2272 ("invalid use of incomplete type&",
2273 Result_Definition (N), Typ);
2275 -- The return type of a subprogram body cannot be of a
2276 -- formal incomplete type.
2278 elsif Is_Generic_Type (Typ)
2279 and then Nkind (Parent (N)) = N_Subprogram_Body
2280 then
2281 Error_Msg_N
2282 ("return type cannot be a formal incomplete type",
2283 Result_Definition (N));
2285 elsif Is_Class_Wide_Type (Typ)
2286 and then Is_Generic_Type (Root_Type (Typ))
2287 and then Nkind (Parent (N)) = N_Subprogram_Body
2288 then
2289 Error_Msg_N
2290 ("return type cannot be a formal incomplete type",
2291 Result_Definition (N));
2293 elsif Is_Tagged_Type (Typ) then
2294 null;
2296 -- Use is legal in a thunk generated for an operation
2297 -- inherited from a progenitor.
2299 elsif Is_Thunk (Designator)
2300 and then Present (Non_Limited_View (Typ))
2301 then
2302 null;
2304 elsif Nkind (Parent (N)) = N_Subprogram_Body
2305 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2306 N_Entry_Body)
2307 then
2308 Error_Msg_NE
2309 ("invalid use of untagged incomplete type&",
2310 Designator, Typ);
2311 end if;
2313 -- The type must be completed in the current package. This
2314 -- is checked at the end of the package declaration when
2315 -- Taft-amendment types are identified. If the return type
2316 -- is class-wide, there is no required check, the type can
2317 -- be a bona fide TAT.
2319 if Ekind (Scope (Current_Scope)) = E_Package
2320 and then In_Private_Part (Scope (Current_Scope))
2321 and then not Is_Class_Wide_Type (Typ)
2322 then
2323 Append_Elmt (Designator, Private_Dependents (Typ));
2324 end if;
2326 else
2327 Error_Msg_NE
2328 ("invalid use of incomplete type&", Designator, Typ);
2329 end if;
2330 end if;
2331 end if;
2333 -- Case where result definition does indicate an error
2335 else
2336 Set_Etype (Designator, Any_Type);
2337 end if;
2338 end Analyze_Return_Type;
2340 -----------------------------
2341 -- Analyze_Subprogram_Body --
2342 -----------------------------
2344 procedure Analyze_Subprogram_Body (N : Node_Id) is
2345 Loc : constant Source_Ptr := Sloc (N);
2346 Body_Spec : constant Node_Id := Specification (N);
2347 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2349 begin
2350 if Debug_Flag_C then
2351 Write_Str ("==> subprogram body ");
2352 Write_Name (Chars (Body_Id));
2353 Write_Str (" from ");
2354 Write_Location (Loc);
2355 Write_Eol;
2356 Indent;
2357 end if;
2359 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2361 -- The real work is split out into the helper, so it can do "return;"
2362 -- without skipping the debug output:
2364 Analyze_Subprogram_Body_Helper (N);
2366 if Debug_Flag_C then
2367 Outdent;
2368 Write_Str ("<== subprogram body ");
2369 Write_Name (Chars (Body_Id));
2370 Write_Str (" from ");
2371 Write_Location (Loc);
2372 Write_Eol;
2373 end if;
2374 end Analyze_Subprogram_Body;
2376 ------------------------------------
2377 -- Analyze_Subprogram_Body_Helper --
2378 ------------------------------------
2380 -- This procedure is called for regular subprogram bodies, generic bodies,
2381 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2382 -- specification matters, and is used to create a proper declaration for
2383 -- the subprogram, or to perform conformance checks.
2385 -- WARNING: This routine manages Ghost regions. Return statements must be
2386 -- replaced by gotos which jump to the end of the routine and restore the
2387 -- Ghost mode.
2389 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2390 Body_Spec : Node_Id := Specification (N);
2391 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2392 Loc : constant Source_Ptr := Sloc (N);
2393 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2395 Conformant : Boolean;
2396 Desig_View : Entity_Id := Empty;
2397 Exch_Views : Elist_Id := No_Elist;
2398 HSS : Node_Id;
2399 Mask_Types : Elist_Id := No_Elist;
2400 Prot_Typ : Entity_Id := Empty;
2401 Spec_Decl : Node_Id := Empty;
2402 Spec_Id : Entity_Id;
2404 Last_Real_Spec_Entity : Entity_Id := Empty;
2405 -- When we analyze a separate spec, the entity chain ends up containing
2406 -- the formals, as well as any itypes generated during analysis of the
2407 -- default expressions for parameters, or the arguments of associated
2408 -- precondition/postcondition pragmas (which are analyzed in the context
2409 -- of the spec since they have visibility on formals).
2411 -- These entities belong with the spec and not the body. However we do
2412 -- the analysis of the body in the context of the spec (again to obtain
2413 -- visibility to the formals), and all the entities generated during
2414 -- this analysis end up also chained to the entity chain of the spec.
2415 -- But they really belong to the body, and there is circuitry to move
2416 -- them from the spec to the body.
2418 -- However, when we do this move, we don't want to move the real spec
2419 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2420 -- variable points to the last real spec entity, so we only move those
2421 -- chained beyond that point. It is initialized to Empty to deal with
2422 -- the case where there is no separate spec.
2424 function Body_Has_Contract return Boolean;
2425 -- Check whether unanalyzed body has an aspect or pragma that may
2426 -- generate a SPARK contract.
2428 function Body_Has_SPARK_Mode_On return Boolean;
2429 -- Check whether SPARK_Mode On applies to the subprogram body, either
2430 -- because it is specified directly on the body, or because it is
2431 -- inherited from the enclosing subprogram or package.
2433 procedure Build_Subprogram_Declaration;
2434 -- Create a matching subprogram declaration for subprogram body N
2436 procedure Check_Anonymous_Return;
2437 -- Ada 2005: if a function returns an access type that denotes a task,
2438 -- or a type that contains tasks, we must create a master entity for
2439 -- the anonymous type, which typically will be used in an allocator
2440 -- in the body of the function.
2442 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2443 -- Look ahead to recognize a pragma that may appear after the body.
2444 -- If there is a previous spec, check that it appears in the same
2445 -- declarative part. If the pragma is Inline_Always, perform inlining
2446 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2447 -- If the body acts as a spec, and inlining is required, we create a
2448 -- subprogram declaration for it, in order to attach the body to inline.
2449 -- If pragma does not appear after the body, check whether there is
2450 -- an inline pragma before any local declarations.
2452 procedure Check_Missing_Return;
2453 -- Checks for a function with a no return statements, and also performs
2454 -- the warning checks implemented by Check_Returns. In formal mode, also
2455 -- verify that a function ends with a RETURN and that a procedure does
2456 -- not contain any RETURN.
2458 function Disambiguate_Spec return Entity_Id;
2459 -- When a primitive is declared between the private view and the full
2460 -- view of a concurrent type which implements an interface, a special
2461 -- mechanism is used to find the corresponding spec of the primitive
2462 -- body.
2464 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2465 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2466 -- incomplete types coming from a limited context and replace their
2467 -- limited views with the non-limited ones. Return the list of changes
2468 -- to be used to undo the transformation.
2470 function Is_Private_Concurrent_Primitive
2471 (Subp_Id : Entity_Id) return Boolean;
2472 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2473 -- type that implements an interface and has a private view.
2475 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2476 -- N is the body generated for an expression function that is not a
2477 -- completion and Spec_Id the defining entity of its spec. Mark all
2478 -- the not-yet-frozen types referenced by the simple return statement
2479 -- of the function as formally frozen.
2481 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2482 -- Undo the transformation done by Exchange_Limited_Views.
2484 procedure Set_Trivial_Subprogram (N : Node_Id);
2485 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2486 -- subprogram whose body is being analyzed. N is the statement node
2487 -- causing the flag to be set, if the following statement is a return
2488 -- of an entity, we mark the entity as set in source to suppress any
2489 -- warning on the stylized use of function stubs with a dummy return.
2491 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2492 -- Undo the transformation done by Mask_Unfrozen_Types
2494 procedure Verify_Overriding_Indicator;
2495 -- If there was a previous spec, the entity has been entered in the
2496 -- current scope previously. If the body itself carries an overriding
2497 -- indicator, check that it is consistent with the known status of the
2498 -- entity.
2500 -----------------------
2501 -- Body_Has_Contract --
2502 -----------------------
2504 function Body_Has_Contract return Boolean is
2505 Decls : constant List_Id := Declarations (N);
2506 Item : Node_Id;
2508 begin
2509 -- Check for aspects that may generate a contract
2511 if Present (Aspect_Specifications (N)) then
2512 Item := First (Aspect_Specifications (N));
2513 while Present (Item) loop
2514 if Is_Subprogram_Contract_Annotation (Item) then
2515 return True;
2516 end if;
2518 Next (Item);
2519 end loop;
2520 end if;
2522 -- Check for pragmas that may generate a contract
2524 if Present (Decls) then
2525 Item := First (Decls);
2526 while Present (Item) loop
2527 if Nkind (Item) = N_Pragma
2528 and then Is_Subprogram_Contract_Annotation (Item)
2529 then
2530 return True;
2531 end if;
2533 Next (Item);
2534 end loop;
2535 end if;
2537 return False;
2538 end Body_Has_Contract;
2540 ----------------------------
2541 -- Body_Has_SPARK_Mode_On --
2542 ----------------------------
2544 function Body_Has_SPARK_Mode_On return Boolean is
2545 Decls : constant List_Id := Declarations (N);
2546 Item : Node_Id;
2548 begin
2549 -- Check for SPARK_Mode aspect
2551 if Present (Aspect_Specifications (N)) then
2552 Item := First (Aspect_Specifications (N));
2553 while Present (Item) loop
2554 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2555 return Get_SPARK_Mode_From_Annotation (Item) = On;
2556 end if;
2558 Next (Item);
2559 end loop;
2560 end if;
2562 -- Check for SPARK_Mode pragma
2564 if Present (Decls) then
2565 Item := First (Decls);
2566 while Present (Item) loop
2568 -- Pragmas that apply to a subprogram body are usually grouped
2569 -- together. Look for a potential pragma SPARK_Mode among them.
2571 if Nkind (Item) = N_Pragma then
2572 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2573 return Get_SPARK_Mode_From_Annotation (Item) = On;
2574 end if;
2576 -- Otherwise the first non-pragma declarative item terminates
2577 -- the region where pragma SPARK_Mode may appear.
2579 else
2580 exit;
2581 end if;
2583 Next (Item);
2584 end loop;
2585 end if;
2587 -- Otherwise, the applicable SPARK_Mode is inherited from the
2588 -- enclosing subprogram or package.
2590 return SPARK_Mode = On;
2591 end Body_Has_SPARK_Mode_On;
2593 ----------------------------------
2594 -- Build_Subprogram_Declaration --
2595 ----------------------------------
2597 procedure Build_Subprogram_Declaration is
2598 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2599 -- Relocate certain categorization pragmas from the declarative list
2600 -- of subprogram body From and insert them after node To. The pragmas
2601 -- in question are:
2602 -- Ghost
2603 -- Volatile_Function
2604 -- Also copy pragma SPARK_Mode if present in the declarative list
2605 -- of subprogram body From and insert it after node To. This pragma
2606 -- should not be moved, as it applies to the body too.
2608 ------------------
2609 -- Move_Pragmas --
2610 ------------------
2612 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2613 Decl : Node_Id;
2614 Next_Decl : Node_Id;
2616 begin
2617 pragma Assert (Nkind (From) = N_Subprogram_Body);
2619 -- The destination node must be part of a list, as the pragmas are
2620 -- inserted after it.
2622 pragma Assert (Is_List_Member (To));
2624 -- Inspect the declarations of the subprogram body looking for
2625 -- specific pragmas.
2627 Decl := First (Declarations (N));
2628 while Present (Decl) loop
2629 Next_Decl := Next (Decl);
2631 if Nkind (Decl) = N_Pragma then
2632 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2633 Insert_After (To, New_Copy_Tree (Decl));
2635 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2636 Name_Ghost,
2637 Name_Volatile_Function)
2638 then
2639 Remove (Decl);
2640 Insert_After (To, Decl);
2641 end if;
2642 end if;
2644 Decl := Next_Decl;
2645 end loop;
2646 end Move_Pragmas;
2648 -- Local variables
2650 Decl : Node_Id;
2651 Subp_Decl : Node_Id;
2653 -- Start of processing for Build_Subprogram_Declaration
2655 begin
2656 -- Create a matching subprogram spec using the profile of the body.
2657 -- The structure of the tree is identical, but has new entities for
2658 -- the defining unit name and formal parameters.
2660 Subp_Decl :=
2661 Make_Subprogram_Declaration (Loc,
2662 Specification => Copy_Subprogram_Spec (Body_Spec));
2663 Set_Comes_From_Source (Subp_Decl, True);
2665 -- Relocate the aspects and relevant pragmas from the subprogram body
2666 -- to the generated spec because it acts as the initial declaration.
2668 Insert_Before (N, Subp_Decl);
2669 Move_Aspects (N, To => Subp_Decl);
2670 Move_Pragmas (N, To => Subp_Decl);
2672 -- Ensure that the generated corresponding spec and original body
2673 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2674 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2675 -- correctly set for local subprograms.
2677 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2679 Analyze (Subp_Decl);
2681 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2682 -- the body since the expander may generate calls using that entity.
2683 -- Required to ensure that Expand_Call rewrites calls to this
2684 -- function by calls to the built procedure.
2686 if Modify_Tree_For_C
2687 and then Nkind (Body_Spec) = N_Function_Specification
2688 and then
2689 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2690 then
2691 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2692 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2693 Corresponding_Procedure
2694 (Defining_Entity (Specification (Subp_Decl))));
2695 end if;
2697 -- Analyze any relocated source pragmas or pragmas created for aspect
2698 -- specifications.
2700 Decl := Next (Subp_Decl);
2701 while Present (Decl) loop
2703 -- Stop the search for pragmas once the body has been reached as
2704 -- this terminates the region where pragmas may appear.
2706 if Decl = N then
2707 exit;
2709 elsif Nkind (Decl) = N_Pragma then
2710 Analyze (Decl);
2711 end if;
2713 Next (Decl);
2714 end loop;
2716 Spec_Id := Defining_Entity (Subp_Decl);
2717 Set_Corresponding_Spec (N, Spec_Id);
2719 -- Mark the generated spec as a source construct to ensure that all
2720 -- calls to it are properly registered in ALI files for GNATprove.
2722 Set_Comes_From_Source (Spec_Id, True);
2724 -- Ensure that the specs of the subprogram declaration and its body
2725 -- are identical, otherwise they will appear non-conformant due to
2726 -- rewritings in the default values of formal parameters.
2728 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2729 Set_Specification (N, Body_Spec);
2730 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2731 end Build_Subprogram_Declaration;
2733 ----------------------------
2734 -- Check_Anonymous_Return --
2735 ----------------------------
2737 procedure Check_Anonymous_Return is
2738 Decl : Node_Id;
2739 Par : Node_Id;
2740 Scop : Entity_Id;
2742 begin
2743 if Present (Spec_Id) then
2744 Scop := Spec_Id;
2745 else
2746 Scop := Body_Id;
2747 end if;
2749 if Ekind (Scop) = E_Function
2750 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2751 and then not Is_Thunk (Scop)
2753 -- Skip internally built functions which handle the case of
2754 -- a null access (see Expand_Interface_Conversion)
2756 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2757 and then not Comes_From_Source (Parent (Scop)))
2759 and then (Has_Task (Designated_Type (Etype (Scop)))
2760 or else
2761 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2762 and then
2763 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2764 and then Expander_Active
2766 -- Avoid cases with no tasking support
2768 and then RTE_Available (RE_Current_Master)
2769 and then not Restriction_Active (No_Task_Hierarchy)
2770 then
2771 Decl :=
2772 Make_Object_Declaration (Loc,
2773 Defining_Identifier =>
2774 Make_Defining_Identifier (Loc, Name_uMaster),
2775 Constant_Present => True,
2776 Object_Definition =>
2777 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2778 Expression =>
2779 Make_Explicit_Dereference (Loc,
2780 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2782 if Present (Declarations (N)) then
2783 Prepend (Decl, Declarations (N));
2784 else
2785 Set_Declarations (N, New_List (Decl));
2786 end if;
2788 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2789 Set_Has_Master_Entity (Scop);
2791 -- Now mark the containing scope as a task master
2793 Par := N;
2794 while Nkind (Par) /= N_Compilation_Unit loop
2795 Par := Parent (Par);
2796 pragma Assert (Present (Par));
2798 -- If we fall off the top, we are at the outer level, and
2799 -- the environment task is our effective master, so nothing
2800 -- to mark.
2802 if Nkind_In
2803 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2804 then
2805 Set_Is_Task_Master (Par, True);
2806 exit;
2807 end if;
2808 end loop;
2809 end if;
2810 end Check_Anonymous_Return;
2812 -------------------------
2813 -- Check_Inline_Pragma --
2814 -------------------------
2816 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2817 Prag : Node_Id;
2818 Plist : List_Id;
2820 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2821 -- True when N is a pragma Inline or Inline_Always that applies
2822 -- to this subprogram.
2824 -----------------------
2825 -- Is_Inline_Pragma --
2826 -----------------------
2828 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2829 begin
2830 if Nkind (N) = N_Pragma
2831 and then
2832 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2833 or else (Pragma_Name_Unmapped (N) = Name_Inline
2834 and then
2835 (Front_End_Inlining or else Optimization_Level > 0)))
2836 and then Present (Pragma_Argument_Associations (N))
2837 then
2838 declare
2839 Pragma_Arg : Node_Id :=
2840 Expression (First (Pragma_Argument_Associations (N)));
2841 begin
2842 if Nkind (Pragma_Arg) = N_Selected_Component then
2843 Pragma_Arg := Selector_Name (Pragma_Arg);
2844 end if;
2846 return Chars (Pragma_Arg) = Chars (Body_Id);
2847 end;
2849 else
2850 return False;
2851 end if;
2852 end Is_Inline_Pragma;
2854 -- Start of processing for Check_Inline_Pragma
2856 begin
2857 if not Expander_Active then
2858 return;
2859 end if;
2861 if Is_List_Member (N)
2862 and then Present (Next (N))
2863 and then Is_Inline_Pragma (Next (N))
2864 then
2865 Prag := Next (N);
2867 elsif Nkind (N) /= N_Subprogram_Body_Stub
2868 and then Present (Declarations (N))
2869 and then Is_Inline_Pragma (First (Declarations (N)))
2870 then
2871 Prag := First (Declarations (N));
2873 else
2874 Prag := Empty;
2875 end if;
2877 if Present (Prag) then
2878 if Present (Spec_Id) then
2879 if Is_List_Member (N)
2880 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2881 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2882 then
2883 Analyze (Prag);
2884 end if;
2886 else
2887 -- Create a subprogram declaration, to make treatment uniform.
2888 -- Make the sloc of the subprogram name that of the entity in
2889 -- the body, so that style checks find identical strings.
2891 declare
2892 Subp : constant Entity_Id :=
2893 Make_Defining_Identifier
2894 (Sloc (Body_Id), Chars (Body_Id));
2895 Decl : constant Node_Id :=
2896 Make_Subprogram_Declaration (Loc,
2897 Specification =>
2898 New_Copy_Tree (Specification (N)));
2900 begin
2901 -- Link the body and the generated spec
2903 Set_Corresponding_Body (Decl, Body_Id);
2904 Set_Corresponding_Spec (N, Subp);
2906 Set_Defining_Unit_Name (Specification (Decl), Subp);
2908 -- To ensure proper coverage when body is inlined, indicate
2909 -- whether the subprogram comes from source.
2911 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2913 if Present (First_Formal (Body_Id)) then
2914 Plist := Copy_Parameter_List (Body_Id);
2915 Set_Parameter_Specifications
2916 (Specification (Decl), Plist);
2917 end if;
2919 -- Move aspects to the new spec
2921 if Has_Aspects (N) then
2922 Move_Aspects (N, To => Decl);
2923 end if;
2925 Insert_Before (N, Decl);
2926 Analyze (Decl);
2927 Analyze (Prag);
2928 Set_Has_Pragma_Inline (Subp);
2930 if Pragma_Name (Prag) = Name_Inline_Always then
2931 Set_Is_Inlined (Subp);
2932 Set_Has_Pragma_Inline_Always (Subp);
2933 end if;
2935 -- Prior to copying the subprogram body to create a template
2936 -- for it for subsequent inlining, remove the pragma from
2937 -- the current body so that the copy that will produce the
2938 -- new body will start from a completely unanalyzed tree.
2940 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2941 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2942 end if;
2944 Spec := Subp;
2945 end;
2946 end if;
2947 end if;
2948 end Check_Inline_Pragma;
2950 --------------------------
2951 -- Check_Missing_Return --
2952 --------------------------
2954 procedure Check_Missing_Return is
2955 Id : Entity_Id;
2956 Missing_Ret : Boolean;
2958 begin
2959 if Nkind (Body_Spec) = N_Function_Specification then
2960 if Present (Spec_Id) then
2961 Id := Spec_Id;
2962 else
2963 Id := Body_Id;
2964 end if;
2966 if Return_Present (Id) then
2967 Check_Returns (HSS, 'F', Missing_Ret);
2969 if Missing_Ret then
2970 Set_Has_Missing_Return (Id);
2971 end if;
2973 -- Within a premature instantiation of a package with no body, we
2974 -- build completions of the functions therein, with a Raise
2975 -- statement. No point in complaining about a missing return in
2976 -- this case.
2978 elsif Ekind (Id) = E_Function
2979 and then In_Instance
2980 and then Present (Statements (HSS))
2981 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2982 then
2983 null;
2985 elsif Is_Generic_Subprogram (Id)
2986 or else not Is_Machine_Code_Subprogram (Id)
2987 then
2988 Error_Msg_N ("missing RETURN statement in function body", N);
2989 end if;
2991 -- If procedure with No_Return, check returns
2993 elsif Nkind (Body_Spec) = N_Procedure_Specification
2994 and then Present (Spec_Id)
2995 and then No_Return (Spec_Id)
2996 then
2997 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2998 end if;
3000 -- Special checks in SPARK mode
3002 if Nkind (Body_Spec) = N_Function_Specification then
3004 -- In SPARK mode, last statement of a function should be a return
3006 declare
3007 Stat : constant Node_Id := Last_Source_Statement (HSS);
3008 begin
3009 if Present (Stat)
3010 and then not Nkind_In (Stat, N_Simple_Return_Statement,
3011 N_Extended_Return_Statement)
3012 then
3013 Check_SPARK_05_Restriction
3014 ("last statement in function should be RETURN", Stat);
3015 end if;
3016 end;
3018 -- In SPARK mode, verify that a procedure has no return
3020 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3021 if Present (Spec_Id) then
3022 Id := Spec_Id;
3023 else
3024 Id := Body_Id;
3025 end if;
3027 -- Would be nice to point to return statement here, can we
3028 -- borrow the Check_Returns procedure here ???
3030 if Return_Present (Id) then
3031 Check_SPARK_05_Restriction
3032 ("procedure should not have RETURN", N);
3033 end if;
3034 end if;
3035 end Check_Missing_Return;
3037 -----------------------
3038 -- Disambiguate_Spec --
3039 -----------------------
3041 function Disambiguate_Spec return Entity_Id is
3042 Priv_Spec : Entity_Id;
3043 Spec_N : Entity_Id;
3045 procedure Replace_Types (To_Corresponding : Boolean);
3046 -- Depending on the flag, replace the type of formal parameters of
3047 -- Body_Id if it is a concurrent type implementing interfaces with
3048 -- the corresponding record type or the other way around.
3050 procedure Replace_Types (To_Corresponding : Boolean) is
3051 Formal : Entity_Id;
3052 Formal_Typ : Entity_Id;
3054 begin
3055 Formal := First_Formal (Body_Id);
3056 while Present (Formal) loop
3057 Formal_Typ := Etype (Formal);
3059 if Is_Class_Wide_Type (Formal_Typ) then
3060 Formal_Typ := Root_Type (Formal_Typ);
3061 end if;
3063 -- From concurrent type to corresponding record
3065 if To_Corresponding then
3066 if Is_Concurrent_Type (Formal_Typ)
3067 and then Present (Corresponding_Record_Type (Formal_Typ))
3068 and then
3069 Present (Interfaces
3070 (Corresponding_Record_Type (Formal_Typ)))
3071 then
3072 Set_Etype (Formal,
3073 Corresponding_Record_Type (Formal_Typ));
3074 end if;
3076 -- From corresponding record to concurrent type
3078 else
3079 if Is_Concurrent_Record_Type (Formal_Typ)
3080 and then Present (Interfaces (Formal_Typ))
3081 then
3082 Set_Etype (Formal,
3083 Corresponding_Concurrent_Type (Formal_Typ));
3084 end if;
3085 end if;
3087 Next_Formal (Formal);
3088 end loop;
3089 end Replace_Types;
3091 -- Start of processing for Disambiguate_Spec
3093 begin
3094 -- Try to retrieve the specification of the body as is. All error
3095 -- messages are suppressed because the body may not have a spec in
3096 -- its current state.
3098 Spec_N := Find_Corresponding_Spec (N, False);
3100 -- It is possible that this is the body of a primitive declared
3101 -- between a private and a full view of a concurrent type. The
3102 -- controlling parameter of the spec carries the concurrent type,
3103 -- not the corresponding record type as transformed by Analyze_
3104 -- Subprogram_Specification. In such cases, we undo the change
3105 -- made by the analysis of the specification and try to find the
3106 -- spec again.
3108 -- Note that wrappers already have their corresponding specs and
3109 -- bodies set during their creation, so if the candidate spec is
3110 -- a wrapper, then we definitely need to swap all types to their
3111 -- original concurrent status.
3113 if No (Spec_N)
3114 or else Is_Primitive_Wrapper (Spec_N)
3115 then
3116 -- Restore all references of corresponding record types to the
3117 -- original concurrent types.
3119 Replace_Types (To_Corresponding => False);
3120 Priv_Spec := Find_Corresponding_Spec (N, False);
3122 -- The current body truly belongs to a primitive declared between
3123 -- a private and a full view. We leave the modified body as is,
3124 -- and return the true spec.
3126 if Present (Priv_Spec)
3127 and then Is_Private_Primitive (Priv_Spec)
3128 then
3129 return Priv_Spec;
3130 end if;
3132 -- In case that this is some sort of error, restore the original
3133 -- state of the body.
3135 Replace_Types (To_Corresponding => True);
3136 end if;
3138 return Spec_N;
3139 end Disambiguate_Spec;
3141 ----------------------------
3142 -- Exchange_Limited_Views --
3143 ----------------------------
3145 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3146 Result : Elist_Id := No_Elist;
3148 procedure Detect_And_Exchange (Id : Entity_Id);
3149 -- Determine whether Id's type denotes an incomplete type associated
3150 -- with a limited with clause and exchange the limited view with the
3151 -- non-limited one when available. Note that the non-limited view
3152 -- may exist because of a with_clause in another unit in the context,
3153 -- but cannot be used because the current view of the enclosing unit
3154 -- is still a limited view.
3156 -------------------------
3157 -- Detect_And_Exchange --
3158 -------------------------
3160 procedure Detect_And_Exchange (Id : Entity_Id) is
3161 Typ : constant Entity_Id := Etype (Id);
3162 begin
3163 if From_Limited_With (Typ)
3164 and then Has_Non_Limited_View (Typ)
3165 and then not From_Limited_With (Scope (Typ))
3166 then
3167 if No (Result) then
3168 Result := New_Elmt_List;
3169 end if;
3171 Prepend_Elmt (Typ, Result);
3172 Prepend_Elmt (Id, Result);
3173 Set_Etype (Id, Non_Limited_View (Typ));
3174 end if;
3175 end Detect_And_Exchange;
3177 -- Local variables
3179 Formal : Entity_Id;
3181 -- Start of processing for Exchange_Limited_Views
3183 begin
3184 -- Do not process subprogram bodies as they already use the non-
3185 -- limited view of types.
3187 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3188 return No_Elist;
3189 end if;
3191 -- Examine all formals and swap views when applicable
3193 Formal := First_Formal (Subp_Id);
3194 while Present (Formal) loop
3195 Detect_And_Exchange (Formal);
3197 Next_Formal (Formal);
3198 end loop;
3200 -- Process the return type of a function
3202 if Ekind (Subp_Id) = E_Function then
3203 Detect_And_Exchange (Subp_Id);
3204 end if;
3206 return Result;
3207 end Exchange_Limited_Views;
3209 -------------------------------------
3210 -- Is_Private_Concurrent_Primitive --
3211 -------------------------------------
3213 function Is_Private_Concurrent_Primitive
3214 (Subp_Id : Entity_Id) return Boolean
3216 Formal_Typ : Entity_Id;
3218 begin
3219 if Present (First_Formal (Subp_Id)) then
3220 Formal_Typ := Etype (First_Formal (Subp_Id));
3222 if Is_Concurrent_Record_Type (Formal_Typ) then
3223 if Is_Class_Wide_Type (Formal_Typ) then
3224 Formal_Typ := Root_Type (Formal_Typ);
3225 end if;
3227 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3228 end if;
3230 -- The type of the first formal is a concurrent tagged type with
3231 -- a private view.
3233 return
3234 Is_Concurrent_Type (Formal_Typ)
3235 and then Is_Tagged_Type (Formal_Typ)
3236 and then Has_Private_Declaration (Formal_Typ);
3237 end if;
3239 return False;
3240 end Is_Private_Concurrent_Primitive;
3242 -------------------------
3243 -- Mask_Unfrozen_Types --
3244 -------------------------
3246 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3247 Result : Elist_Id := No_Elist;
3249 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3250 -- Mask all types referenced in the subtree rooted at Node
3252 --------------------
3253 -- Mask_Type_Refs --
3254 --------------------
3256 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3257 procedure Mask_Type (Typ : Entity_Id);
3258 -- ??? what does this do?
3260 ---------------
3261 -- Mask_Type --
3262 ---------------
3264 procedure Mask_Type (Typ : Entity_Id) is
3265 begin
3266 -- Skip Itypes created by the preanalysis
3268 if Is_Itype (Typ)
3269 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3270 then
3271 return;
3272 end if;
3274 if not Is_Frozen (Typ) then
3275 Set_Is_Frozen (Typ);
3276 Append_New_Elmt (Typ, Result);
3277 end if;
3278 end Mask_Type;
3280 -- Start of processing for Mask_Type_Refs
3282 begin
3283 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3284 Mask_Type (Etype (Entity (Node)));
3286 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3287 Mask_Type (Scope (Entity (Node)));
3288 end if;
3290 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3291 and then Present (Etype (Node))
3292 then
3293 Mask_Type (Etype (Node));
3294 end if;
3296 return OK;
3297 end Mask_Type_Refs;
3299 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3301 -- Local variables
3303 Return_Stmt : constant Node_Id :=
3304 First (Statements (Handled_Statement_Sequence (N)));
3306 -- Start of processing for Mask_Unfrozen_Types
3308 begin
3309 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3311 Mask_References (Expression (Return_Stmt));
3313 return Result;
3314 end Mask_Unfrozen_Types;
3316 ---------------------------
3317 -- Restore_Limited_Views --
3318 ---------------------------
3320 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3321 Elmt : Elmt_Id := First_Elmt (Restore_List);
3322 Id : Entity_Id;
3324 begin
3325 while Present (Elmt) loop
3326 Id := Node (Elmt);
3327 Next_Elmt (Elmt);
3328 Set_Etype (Id, Node (Elmt));
3329 Next_Elmt (Elmt);
3330 end loop;
3331 end Restore_Limited_Views;
3333 ----------------------------
3334 -- Set_Trivial_Subprogram --
3335 ----------------------------
3337 procedure Set_Trivial_Subprogram (N : Node_Id) is
3338 Nxt : constant Node_Id := Next (N);
3340 begin
3341 Set_Is_Trivial_Subprogram (Body_Id);
3343 if Present (Spec_Id) then
3344 Set_Is_Trivial_Subprogram (Spec_Id);
3345 end if;
3347 if Present (Nxt)
3348 and then Nkind (Nxt) = N_Simple_Return_Statement
3349 and then No (Next (Nxt))
3350 and then Present (Expression (Nxt))
3351 and then Is_Entity_Name (Expression (Nxt))
3352 then
3353 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3354 end if;
3355 end Set_Trivial_Subprogram;
3357 ---------------------------
3358 -- Unmask_Unfrozen_Types --
3359 ---------------------------
3361 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3362 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3364 begin
3365 while Present (Elmt) loop
3366 Set_Is_Frozen (Node (Elmt), False);
3367 Next_Elmt (Elmt);
3368 end loop;
3369 end Unmask_Unfrozen_Types;
3371 ---------------------------------
3372 -- Verify_Overriding_Indicator --
3373 ---------------------------------
3375 procedure Verify_Overriding_Indicator is
3376 begin
3377 if Must_Override (Body_Spec) then
3378 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3379 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3380 then
3381 null;
3383 elsif not Present (Overridden_Operation (Spec_Id)) then
3384 Error_Msg_NE
3385 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3387 -- Overriding indicators aren't allowed for protected subprogram
3388 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3389 -- this to a warning if -gnatd.E is enabled.
3391 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3392 Error_Msg_Warn := Error_To_Warning;
3393 Error_Msg_N
3394 ("<<overriding indicator not allowed for protected "
3395 & "subprogram body", Body_Spec);
3396 end if;
3398 elsif Must_Not_Override (Body_Spec) then
3399 if Present (Overridden_Operation (Spec_Id)) then
3400 Error_Msg_NE
3401 ("subprogram& overrides inherited operation",
3402 Body_Spec, Spec_Id);
3404 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3405 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3406 then
3407 Error_Msg_NE
3408 ("subprogram& overrides predefined operator ",
3409 Body_Spec, Spec_Id);
3411 -- Overriding indicators aren't allowed for protected subprogram
3412 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3413 -- this to a warning if -gnatd.E is enabled.
3415 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3416 Error_Msg_Warn := Error_To_Warning;
3418 Error_Msg_N
3419 ("<<overriding indicator not allowed "
3420 & "for protected subprogram body", Body_Spec);
3422 -- If this is not a primitive operation, then the overriding
3423 -- indicator is altogether illegal.
3425 elsif not Is_Primitive (Spec_Id) then
3426 Error_Msg_N
3427 ("overriding indicator only allowed "
3428 & "if subprogram is primitive", Body_Spec);
3429 end if;
3431 -- If checking the style rule and the operation overrides, then
3432 -- issue a warning about a missing overriding_indicator. Protected
3433 -- subprogram bodies are excluded from this style checking, since
3434 -- they aren't primitives (even though their declarations can
3435 -- override) and aren't allowed to have an overriding_indicator.
3437 elsif Style_Check
3438 and then Present (Overridden_Operation (Spec_Id))
3439 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3440 then
3441 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3442 Style.Missing_Overriding (N, Body_Id);
3444 elsif Style_Check
3445 and then Can_Override_Operator (Spec_Id)
3446 and then not In_Predefined_Unit (Spec_Id)
3447 then
3448 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3449 Style.Missing_Overriding (N, Body_Id);
3450 end if;
3451 end Verify_Overriding_Indicator;
3453 -- Local variables
3455 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3456 Saved_ISMP : constant Boolean :=
3457 Ignore_SPARK_Mode_Pragmas_In_Instance;
3458 -- Save the Ghost and SPARK mode-related data to restore on exit
3460 -- Start of processing for Analyze_Subprogram_Body_Helper
3462 begin
3463 -- A [generic] subprogram body freezes the contract of the nearest
3464 -- enclosing package body and all other contracts encountered in the
3465 -- same declarative part up to and excluding the subprogram body:
3467 -- package body Nearest_Enclosing_Package
3468 -- with Refined_State => (State => Constit)
3469 -- is
3470 -- Constit : ...;
3472 -- procedure Freezes_Enclosing_Package_Body
3473 -- with Refined_Depends => (Input => Constit) ...
3475 -- This ensures that any annotations referenced by the contract of the
3476 -- [generic] subprogram body are available. This form of freezing is
3477 -- decoupled from the usual Freeze_xxx mechanism because it must also
3478 -- work in the context of generics where normal freezing is disabled.
3480 -- Only bodies coming from source should cause this type of freezing.
3481 -- Expression functions that act as bodies and complete an initial
3482 -- declaration must be included in this category, hence the use of
3483 -- Original_Node.
3485 if Comes_From_Source (Original_Node (N)) then
3486 Freeze_Previous_Contracts (N);
3487 end if;
3489 -- Generic subprograms are handled separately. They always have a
3490 -- generic specification. Determine whether current scope has a
3491 -- previous declaration.
3493 -- If the subprogram body is defined within an instance of the same
3494 -- name, the instance appears as a package renaming, and will be hidden
3495 -- within the subprogram.
3497 if Present (Prev_Id)
3498 and then not Is_Overloadable (Prev_Id)
3499 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3500 or else Comes_From_Source (Prev_Id))
3501 then
3502 if Is_Generic_Subprogram (Prev_Id) then
3503 Spec_Id := Prev_Id;
3505 -- A subprogram body is Ghost when it is stand alone and subject
3506 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3507 -- the mode now to ensure that any nodes generated during analysis
3508 -- and expansion are properly marked as Ghost.
3510 Mark_And_Set_Ghost_Body (N, Spec_Id);
3512 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3513 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3515 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3517 if Nkind (N) = N_Subprogram_Body then
3518 HSS := Handled_Statement_Sequence (N);
3519 Check_Missing_Return;
3520 end if;
3522 goto Leave;
3524 -- Otherwise a previous entity conflicts with the subprogram name.
3525 -- Attempting to enter name will post error.
3527 else
3528 Enter_Name (Body_Id);
3529 goto Leave;
3530 end if;
3532 -- Non-generic case, find the subprogram declaration, if one was seen,
3533 -- or enter new overloaded entity in the current scope. If the
3534 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3535 -- part of the context of one of its subunits. No need to redo the
3536 -- analysis.
3538 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3539 goto Leave;
3541 else
3542 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3544 if Nkind (N) = N_Subprogram_Body_Stub
3545 or else No (Corresponding_Spec (N))
3546 then
3547 if Is_Private_Concurrent_Primitive (Body_Id) then
3548 Spec_Id := Disambiguate_Spec;
3550 -- A subprogram body is Ghost when it is stand alone and
3551 -- subject to pragma Ghost or when the corresponding spec is
3552 -- Ghost. Set the mode now to ensure that any nodes generated
3553 -- during analysis and expansion are properly marked as Ghost.
3555 Mark_And_Set_Ghost_Body (N, Spec_Id);
3557 else
3558 Spec_Id := Find_Corresponding_Spec (N);
3560 -- A subprogram body is Ghost when it is stand alone and
3561 -- subject to pragma Ghost or when the corresponding spec is
3562 -- Ghost. Set the mode now to ensure that any nodes generated
3563 -- during analysis and expansion are properly marked as Ghost.
3565 Mark_And_Set_Ghost_Body (N, Spec_Id);
3567 -- In GNATprove mode, if the body has no previous spec, create
3568 -- one so that the inlining machinery can operate properly.
3569 -- Transfer aspects, if any, to the new spec, so that they
3570 -- are legal and can be processed ahead of the body.
3571 -- We make two copies of the given spec, one for the new
3572 -- declaration, and one for the body.
3574 if No (Spec_Id) and then GNATprove_Mode
3576 -- Inlining does not apply during pre-analysis of code
3578 and then Full_Analysis
3580 -- Inlining only applies to full bodies, not stubs
3582 and then Nkind (N) /= N_Subprogram_Body_Stub
3584 -- Inlining only applies to bodies in the source code, not to
3585 -- those generated by the compiler. In particular, expression
3586 -- functions, whose body is generated by the compiler, are
3587 -- treated specially by GNATprove.
3589 and then Comes_From_Source (Body_Id)
3591 -- This cannot be done for a compilation unit, which is not
3592 -- in a context where we can insert a new spec.
3594 and then Is_List_Member (N)
3596 -- Inlining only applies to subprograms without contracts,
3597 -- as a contract is a sign that GNATprove should perform a
3598 -- modular analysis of the subprogram instead of a contextual
3599 -- analysis at each call site. The same test is performed in
3600 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3601 -- here in another form (because the contract has not been
3602 -- attached to the body) to avoid front-end errors in case
3603 -- pragmas are used instead of aspects, because the
3604 -- corresponding pragmas in the body would not be transferred
3605 -- to the spec, leading to legality errors.
3607 and then not Body_Has_Contract
3608 and then not Inside_A_Generic
3609 then
3610 Build_Subprogram_Declaration;
3612 -- If this is a function that returns a constrained array, and
3613 -- we are generating SPARK_For_C, create subprogram declaration
3614 -- to simplify subsequent C generation.
3616 elsif No (Spec_Id)
3617 and then Modify_Tree_For_C
3618 and then Nkind (Body_Spec) = N_Function_Specification
3619 and then Is_Array_Type (Etype (Body_Id))
3620 and then Is_Constrained (Etype (Body_Id))
3621 then
3622 Build_Subprogram_Declaration;
3623 end if;
3624 end if;
3626 -- If this is a duplicate body, no point in analyzing it
3628 if Error_Posted (N) then
3629 goto Leave;
3630 end if;
3632 -- A subprogram body should cause freezing of its own declaration,
3633 -- but if there was no previous explicit declaration, then the
3634 -- subprogram will get frozen too late (there may be code within
3635 -- the body that depends on the subprogram having been frozen,
3636 -- such as uses of extra formals), so we force it to be frozen
3637 -- here. Same holds if the body and spec are compilation units.
3638 -- Finally, if the return type is an anonymous access to protected
3639 -- subprogram, it must be frozen before the body because its
3640 -- expansion has generated an equivalent type that is used when
3641 -- elaborating the body.
3643 -- An exception in the case of Ada 2012, AI05-177: The bodies
3644 -- created for expression functions do not freeze.
3646 if No (Spec_Id)
3647 and then Nkind (Original_Node (N)) /= N_Expression_Function
3648 then
3649 Freeze_Before (N, Body_Id);
3651 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3652 Freeze_Before (N, Spec_Id);
3654 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3655 Freeze_Before (N, Etype (Body_Id));
3656 end if;
3658 else
3659 Spec_Id := Corresponding_Spec (N);
3661 -- A subprogram body is Ghost when it is stand alone and subject
3662 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3663 -- the mode now to ensure that any nodes generated during analysis
3664 -- and expansion are properly marked as Ghost.
3666 Mark_And_Set_Ghost_Body (N, Spec_Id);
3667 end if;
3668 end if;
3670 -- Previously we scanned the body to look for nested subprograms, and
3671 -- rejected an inline directive if nested subprograms were present,
3672 -- because the back-end would generate conflicting symbols for the
3673 -- nested bodies. This is now unnecessary.
3675 -- Look ahead to recognize a pragma Inline that appears after the body
3677 Check_Inline_Pragma (Spec_Id);
3679 -- Deal with special case of a fully private operation in the body of
3680 -- the protected type. We must create a declaration for the subprogram,
3681 -- in order to attach the protected subprogram that will be used in
3682 -- internal calls. We exclude compiler generated bodies from the
3683 -- expander since the issue does not arise for those cases.
3685 if No (Spec_Id)
3686 and then Comes_From_Source (N)
3687 and then Is_Protected_Type (Current_Scope)
3688 then
3689 Spec_Id := Build_Private_Protected_Declaration (N);
3690 end if;
3692 -- If we are generating C and this is a function returning a constrained
3693 -- array type for which we must create a procedure with an extra out
3694 -- parameter, build and analyze the body now. The procedure declaration
3695 -- has already been created. We reuse the source body of the function,
3696 -- because in an instance it may contain global references that cannot
3697 -- be reanalyzed. The source function itself is not used any further,
3698 -- so we mark it as having a completion. If the subprogram is a stub the
3699 -- transformation is done later, when the proper body is analyzed.
3701 if Expander_Active
3702 and then Modify_Tree_For_C
3703 and then Present (Spec_Id)
3704 and then Ekind (Spec_Id) = E_Function
3705 and then Nkind (N) /= N_Subprogram_Body_Stub
3706 and then Rewritten_For_C (Spec_Id)
3707 then
3708 Set_Has_Completion (Spec_Id);
3710 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3711 Analyze (N);
3713 -- The entity for the created procedure must remain invisible, so it
3714 -- does not participate in resolution of subsequent references to the
3715 -- function.
3717 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3718 goto Leave;
3719 end if;
3721 -- If a separate spec is present, then deal with freezing issues
3723 if Present (Spec_Id) then
3724 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3725 Verify_Overriding_Indicator;
3727 -- In general, the spec will be frozen when we start analyzing the
3728 -- body. However, for internally generated operations, such as
3729 -- wrapper functions for inherited operations with controlling
3730 -- results, the spec may not have been frozen by the time we expand
3731 -- the freeze actions that include the bodies. In particular, extra
3732 -- formals for accessibility or for return-in-place may need to be
3733 -- generated. Freeze nodes, if any, are inserted before the current
3734 -- body. These freeze actions are also needed in ASIS mode and in
3735 -- Compile_Only mode to enable the proper back-end type annotations.
3736 -- They are necessary in any case to insure order of elaboration
3737 -- in gigi.
3739 if not Is_Frozen (Spec_Id)
3740 and then (Expander_Active
3741 or else ASIS_Mode
3742 or else (Operating_Mode = Check_Semantics
3743 and then Serious_Errors_Detected = 0))
3744 then
3745 -- The body generated for an expression function that is not a
3746 -- completion is a freeze point neither for the profile nor for
3747 -- anything else. That's why, in order to prevent any freezing
3748 -- during analysis, we need to mask types declared outside the
3749 -- expression that are not yet frozen.
3751 if Nkind (N) = N_Subprogram_Body
3752 and then Was_Expression_Function (N)
3753 and then not Has_Completion (Spec_Id)
3754 then
3755 Set_Is_Frozen (Spec_Id);
3756 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3757 else
3758 Set_Has_Delayed_Freeze (Spec_Id);
3759 Freeze_Before (N, Spec_Id);
3760 end if;
3761 end if;
3762 end if;
3764 -- If the subprogram has a class-wide clone, build its body as a copy
3765 -- of the original body, and rewrite body of original subprogram as a
3766 -- wrapper that calls the clone.
3768 if Present (Spec_Id)
3769 and then Present (Class_Wide_Clone (Spec_Id))
3770 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3771 then
3772 Build_Class_Wide_Clone_Body (Spec_Id, N);
3774 -- This is the new body for the existing primitive operation
3776 Rewrite (N, Build_Class_Wide_Clone_Call
3777 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3778 Set_Has_Completion (Spec_Id, False);
3779 Analyze (N);
3780 return;
3781 end if;
3783 -- Place subprogram on scope stack, and make formals visible. If there
3784 -- is a spec, the visible entity remains that of the spec.
3786 if Present (Spec_Id) then
3787 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3789 if Is_Child_Unit (Spec_Id) then
3790 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3791 end if;
3793 if Style_Check then
3794 Style.Check_Identifier (Body_Id, Spec_Id);
3795 end if;
3797 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3798 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3800 if Is_Abstract_Subprogram (Spec_Id) then
3801 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3802 goto Leave;
3804 else
3805 Set_Convention (Body_Id, Convention (Spec_Id));
3806 Set_Has_Completion (Spec_Id);
3808 if Is_Protected_Type (Scope (Spec_Id)) then
3809 Prot_Typ := Scope (Spec_Id);
3810 end if;
3812 -- If this is a body generated for a renaming, do not check for
3813 -- full conformance. The check is redundant, because the spec of
3814 -- the body is a copy of the spec in the renaming declaration,
3815 -- and the test can lead to spurious errors on nested defaults.
3817 if Present (Spec_Decl)
3818 and then not Comes_From_Source (N)
3819 and then
3820 (Nkind (Original_Node (Spec_Decl)) =
3821 N_Subprogram_Renaming_Declaration
3822 or else (Present (Corresponding_Body (Spec_Decl))
3823 and then
3824 Nkind (Unit_Declaration_Node
3825 (Corresponding_Body (Spec_Decl))) =
3826 N_Subprogram_Renaming_Declaration))
3827 then
3828 Conformant := True;
3830 -- Conversely, the spec may have been generated for specless body
3831 -- with an inline pragma. The entity comes from source, which is
3832 -- both semantically correct and necessary for proper inlining.
3833 -- The subprogram declaration itself is not in the source.
3835 elsif Comes_From_Source (N)
3836 and then Present (Spec_Decl)
3837 and then not Comes_From_Source (Spec_Decl)
3838 and then Has_Pragma_Inline (Spec_Id)
3839 then
3840 Conformant := True;
3842 else
3843 Check_Conformance
3844 (Body_Id, Spec_Id,
3845 Fully_Conformant, True, Conformant, Body_Id);
3846 end if;
3848 -- If the body is not fully conformant, we have to decide if we
3849 -- should analyze it or not. If it has a really messed up profile
3850 -- then we probably should not analyze it, since we will get too
3851 -- many bogus messages.
3853 -- Our decision is to go ahead in the non-fully conformant case
3854 -- only if it is at least mode conformant with the spec. Note
3855 -- that the call to Check_Fully_Conformant has issued the proper
3856 -- error messages to complain about the lack of conformance.
3858 if not Conformant
3859 and then not Mode_Conformant (Body_Id, Spec_Id)
3860 then
3861 goto Leave;
3862 end if;
3863 end if;
3865 if Spec_Id /= Body_Id then
3866 Reference_Body_Formals (Spec_Id, Body_Id);
3867 end if;
3869 Set_Ekind (Body_Id, E_Subprogram_Body);
3871 if Nkind (N) = N_Subprogram_Body_Stub then
3872 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3874 -- Regular body
3876 else
3877 Set_Corresponding_Spec (N, Spec_Id);
3879 -- Ada 2005 (AI-345): If the operation is a primitive operation
3880 -- of a concurrent type, the type of the first parameter has been
3881 -- replaced with the corresponding record, which is the proper
3882 -- run-time structure to use. However, within the body there may
3883 -- be uses of the formals that depend on primitive operations
3884 -- of the type (in particular calls in prefixed form) for which
3885 -- we need the original concurrent type. The operation may have
3886 -- several controlling formals, so the replacement must be done
3887 -- for all of them.
3889 if Comes_From_Source (Spec_Id)
3890 and then Present (First_Entity (Spec_Id))
3891 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3892 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3893 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3894 and then Present (Corresponding_Concurrent_Type
3895 (Etype (First_Entity (Spec_Id))))
3896 then
3897 declare
3898 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3899 Form : Entity_Id;
3901 begin
3902 Form := First_Formal (Spec_Id);
3903 while Present (Form) loop
3904 if Etype (Form) = Typ then
3905 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3906 end if;
3908 Next_Formal (Form);
3909 end loop;
3910 end;
3911 end if;
3913 -- Make the formals visible, and place subprogram on scope stack.
3914 -- This is also the point at which we set Last_Real_Spec_Entity
3915 -- to mark the entities which will not be moved to the body.
3917 Install_Formals (Spec_Id);
3918 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3920 -- Within an instance, add local renaming declarations so that
3921 -- gdb can retrieve the values of actuals more easily. This is
3922 -- only relevant if generating code (and indeed we definitely
3923 -- do not want these definitions -gnatc mode, because that would
3924 -- confuse ASIS).
3926 if Is_Generic_Instance (Spec_Id)
3927 and then Is_Wrapper_Package (Current_Scope)
3928 and then Expander_Active
3929 then
3930 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3931 end if;
3933 Push_Scope (Spec_Id);
3935 -- Make sure that the subprogram is immediately visible. For
3936 -- child units that have no separate spec this is indispensable.
3937 -- Otherwise it is safe albeit redundant.
3939 Set_Is_Immediately_Visible (Spec_Id);
3940 end if;
3942 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3943 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3944 Set_Scope (Body_Id, Scope (Spec_Id));
3946 -- Case of subprogram body with no previous spec
3948 else
3949 -- Check for style warning required
3951 if Style_Check
3953 -- Only apply check for source level subprograms for which checks
3954 -- have not been suppressed.
3956 and then Comes_From_Source (Body_Id)
3957 and then not Suppress_Style_Checks (Body_Id)
3959 -- No warnings within an instance
3961 and then not In_Instance
3963 -- No warnings for expression functions
3965 and then Nkind (Original_Node (N)) /= N_Expression_Function
3966 then
3967 Style.Body_With_No_Spec (N);
3968 end if;
3970 New_Overloaded_Entity (Body_Id);
3972 if Nkind (N) /= N_Subprogram_Body_Stub then
3973 Set_Acts_As_Spec (N);
3974 Generate_Definition (Body_Id);
3975 Generate_Reference
3976 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3978 -- If the body is an entry wrapper created for an entry with
3979 -- preconditions, it must be compiled in the context of the
3980 -- enclosing synchronized object, because it may mention other
3981 -- operations of the type.
3983 if Is_Entry_Wrapper (Body_Id) then
3984 declare
3985 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3986 begin
3987 Push_Scope (Prot);
3988 Install_Declarations (Prot);
3989 end;
3990 end if;
3992 Install_Formals (Body_Id);
3994 Push_Scope (Body_Id);
3995 end if;
3997 -- For stubs and bodies with no previous spec, generate references to
3998 -- formals.
4000 Generate_Reference_To_Formals (Body_Id);
4001 end if;
4003 -- Entry barrier functions are generated outside the protected type and
4004 -- should not carry the SPARK_Mode of the enclosing context.
4006 if Nkind (N) = N_Subprogram_Body
4007 and then Is_Entry_Barrier_Function (N)
4008 then
4009 null;
4011 -- The body is generated as part of expression function expansion. When
4012 -- the expression function appears in the visible declarations of a
4013 -- package, the body is added to the private declarations. Since both
4014 -- declarative lists may be subject to a different SPARK_Mode, inherit
4015 -- the mode of the spec.
4017 -- package P with SPARK_Mode is
4018 -- function Expr_Func ... is (...); -- original
4019 -- [function Expr_Func ...;] -- generated spec
4020 -- -- mode is ON
4021 -- private
4022 -- pragma SPARK_Mode (Off);
4023 -- [function Expr_Func ... is return ...;] -- generated body
4024 -- end P; -- mode is ON
4026 elsif not Comes_From_Source (N)
4027 and then Present (Spec_Id)
4028 and then Is_Expression_Function (Spec_Id)
4029 then
4030 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4031 Set_SPARK_Pragma_Inherited
4032 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4034 -- Set the SPARK_Mode from the current context (may be overwritten later
4035 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4036 -- initially on a stand-alone subprogram body, but is then relocated to
4037 -- a generated corresponding spec. In this scenario the mode is shared
4038 -- between the spec and body.
4040 elsif No (SPARK_Pragma (Body_Id)) then
4041 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4042 Set_SPARK_Pragma_Inherited (Body_Id);
4043 end if;
4045 -- A subprogram body may be instantiated or inlined at a later pass.
4046 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4047 -- applied to the initial declaration of the body.
4049 if Present (Spec_Id) then
4050 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4051 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4052 end if;
4054 else
4055 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4056 -- case the body is instantiated or inlined later and out of context.
4057 -- The body uses this attribute to restore the value of the global
4058 -- flag.
4060 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4061 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4063 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4064 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4065 end if;
4066 end if;
4068 -- If this is the proper body of a stub, we must verify that the stub
4069 -- conforms to the body, and to the previous spec if one was present.
4070 -- We know already that the body conforms to that spec. This test is
4071 -- only required for subprograms that come from source.
4073 if Nkind (Parent (N)) = N_Subunit
4074 and then Comes_From_Source (N)
4075 and then not Error_Posted (Body_Id)
4076 and then Nkind (Corresponding_Stub (Parent (N))) =
4077 N_Subprogram_Body_Stub
4078 then
4079 declare
4080 Old_Id : constant Entity_Id :=
4081 Defining_Entity
4082 (Specification (Corresponding_Stub (Parent (N))));
4084 Conformant : Boolean := False;
4086 begin
4087 if No (Spec_Id) then
4088 Check_Fully_Conformant (Body_Id, Old_Id);
4090 else
4091 Check_Conformance
4092 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4094 if not Conformant then
4096 -- The stub was taken to be a new declaration. Indicate that
4097 -- it lacks a body.
4099 Set_Has_Completion (Old_Id, False);
4100 end if;
4101 end if;
4102 end;
4103 end if;
4105 Set_Has_Completion (Body_Id);
4106 Check_Eliminated (Body_Id);
4108 -- Analyze any aspect specifications that appear on the subprogram body
4109 -- stub. Stop the analysis now as the stub does not have a declarative
4110 -- or a statement part, and it cannot be inlined.
4112 if Nkind (N) = N_Subprogram_Body_Stub then
4113 if Has_Aspects (N) then
4114 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4115 end if;
4117 goto Leave;
4118 end if;
4120 -- Handle inlining
4122 -- Note: Normally we don't do any inlining if expansion is off, since
4123 -- we won't generate code in any case. An exception arises in GNATprove
4124 -- mode where we want to expand some calls in place, even with expansion
4125 -- disabled, since the inlining eases formal verification.
4127 if not GNATprove_Mode
4128 and then Expander_Active
4129 and then Serious_Errors_Detected = 0
4130 and then Present (Spec_Id)
4131 and then Has_Pragma_Inline (Spec_Id)
4132 then
4133 -- Legacy implementation (relying on front-end inlining)
4135 if not Back_End_Inlining then
4136 if (Has_Pragma_Inline_Always (Spec_Id)
4137 and then not Opt.Disable_FE_Inline_Always)
4138 or else (Front_End_Inlining
4139 and then not Opt.Disable_FE_Inline)
4140 then
4141 Build_Body_To_Inline (N, Spec_Id);
4142 end if;
4144 -- New implementation (relying on back-end inlining)
4146 else
4147 if Has_Pragma_Inline_Always (Spec_Id)
4148 or else Optimization_Level > 0
4149 then
4150 -- Handle function returning an unconstrained type
4152 if Comes_From_Source (Body_Id)
4153 and then Ekind (Spec_Id) = E_Function
4154 and then Returns_Unconstrained_Type (Spec_Id)
4156 -- If function builds in place, i.e. returns a limited type,
4157 -- inlining cannot be done.
4159 and then not Is_Limited_Type (Etype (Spec_Id))
4160 then
4161 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4163 else
4164 declare
4165 Subp_Body : constant Node_Id :=
4166 Unit_Declaration_Node (Body_Id);
4167 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4169 begin
4170 -- Do not pass inlining to the backend if the subprogram
4171 -- has declarations or statements which cannot be inlined
4172 -- by the backend. This check is done here to emit an
4173 -- error instead of the generic warning message reported
4174 -- by the GCC backend (ie. "function might not be
4175 -- inlinable").
4177 if Present (Subp_Decl)
4178 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4179 then
4180 null;
4182 elsif Has_Excluded_Statement
4183 (Spec_Id,
4184 Statements
4185 (Handled_Statement_Sequence (Subp_Body)))
4186 then
4187 null;
4189 -- If the backend inlining is available then at this
4190 -- stage we only have to mark the subprogram as inlined.
4191 -- The expander will take care of registering it in the
4192 -- table of subprograms inlined by the backend a part of
4193 -- processing calls to it (cf. Expand_Call)
4195 else
4196 Set_Is_Inlined (Spec_Id);
4197 end if;
4198 end;
4199 end if;
4200 end if;
4201 end if;
4203 -- In GNATprove mode, inline only when there is a separate subprogram
4204 -- declaration for now, as inlining of subprogram bodies acting as
4205 -- declarations, or subprogram stubs, are not supported by front-end
4206 -- inlining. This inlining should occur after analysis of the body, so
4207 -- that it is known whether the value of SPARK_Mode, which can be
4208 -- defined by a pragma inside the body, is applicable to the body.
4209 -- Inlining can be disabled with switch -gnatdm
4211 elsif GNATprove_Mode
4212 and then Full_Analysis
4213 and then not Inside_A_Generic
4214 and then Present (Spec_Id)
4215 and then
4216 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4217 and then Body_Has_SPARK_Mode_On
4218 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4219 and then not Body_Has_Contract
4220 and then not Debug_Flag_M
4221 then
4222 Build_Body_To_Inline (N, Spec_Id);
4223 end if;
4225 -- When generating code, inherited pre/postconditions are handled when
4226 -- expanding the corresponding contract.
4228 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4229 -- of the specification we have to install the private withed units.
4230 -- This holds for child units as well.
4232 if Is_Compilation_Unit (Body_Id)
4233 or else Nkind (Parent (N)) = N_Compilation_Unit
4234 then
4235 Install_Private_With_Clauses (Body_Id);
4236 end if;
4238 Check_Anonymous_Return;
4240 -- Set the Protected_Formal field of each extra formal of the protected
4241 -- subprogram to reference the corresponding extra formal of the
4242 -- subprogram that implements it. For regular formals this occurs when
4243 -- the protected subprogram's declaration is expanded, but the extra
4244 -- formals don't get created until the subprogram is frozen. We need to
4245 -- do this before analyzing the protected subprogram's body so that any
4246 -- references to the original subprogram's extra formals will be changed
4247 -- refer to the implementing subprogram's formals (see Expand_Formal).
4249 if Present (Spec_Id)
4250 and then Is_Protected_Type (Scope (Spec_Id))
4251 and then Present (Protected_Body_Subprogram (Spec_Id))
4252 then
4253 declare
4254 Impl_Subp : constant Entity_Id :=
4255 Protected_Body_Subprogram (Spec_Id);
4256 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4257 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4259 begin
4260 while Present (Prot_Ext_Formal) loop
4261 pragma Assert (Present (Impl_Ext_Formal));
4262 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4263 Next_Formal_With_Extras (Prot_Ext_Formal);
4264 Next_Formal_With_Extras (Impl_Ext_Formal);
4265 end loop;
4266 end;
4267 end if;
4269 -- Now we can go on to analyze the body
4271 HSS := Handled_Statement_Sequence (N);
4272 Set_Actual_Subtypes (N, Current_Scope);
4274 -- Add a declaration for the Protection object, renaming declarations
4275 -- for discriminals and privals and finally a declaration for the entry
4276 -- family index (if applicable). This form of early expansion is done
4277 -- when the Expander is active because Install_Private_Data_Declarations
4278 -- references entities which were created during regular expansion. The
4279 -- subprogram entity must come from source, and not be an internally
4280 -- generated subprogram.
4282 if Expander_Active
4283 and then Present (Prot_Typ)
4284 and then Present (Spec_Id)
4285 and then Comes_From_Source (Spec_Id)
4286 and then not Is_Eliminated (Spec_Id)
4287 then
4288 Install_Private_Data_Declarations
4289 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4290 end if;
4292 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4293 -- may now appear in parameter and result profiles. Since the analysis
4294 -- of a subprogram body may use the parameter and result profile of the
4295 -- spec, swap any limited views with their non-limited counterpart.
4297 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4298 Exch_Views := Exchange_Limited_Views (Spec_Id);
4299 end if;
4301 -- If the return type is an anonymous access type whose designated type
4302 -- is the limited view of a class-wide type and the non-limited view is
4303 -- available, update the return type accordingly.
4305 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4306 declare
4307 Etyp : Entity_Id;
4308 Rtyp : Entity_Id;
4310 begin
4311 Rtyp := Etype (Spec_Id);
4313 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4314 Etyp := Directly_Designated_Type (Rtyp);
4316 if Is_Class_Wide_Type (Etyp)
4317 and then From_Limited_With (Etyp)
4318 then
4319 Desig_View := Etyp;
4320 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4321 end if;
4322 end if;
4323 end;
4324 end if;
4326 -- Analyze any aspect specifications that appear on the subprogram body
4328 if Has_Aspects (N) then
4329 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4330 end if;
4332 Analyze_Declarations (Declarations (N));
4334 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4336 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4337 if Present (SPARK_Pragma (Spec_Id)) then
4338 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4339 and then
4340 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4341 then
4342 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4343 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4344 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4345 Error_Msg_NE
4346 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4347 end if;
4349 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4350 null;
4352 else
4353 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4354 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4355 Error_Msg_Sloc := Sloc (Spec_Id);
4356 Error_Msg_NE
4357 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4358 end if;
4359 end if;
4361 -- A subprogram body freezes its own contract. Analyze the contract
4362 -- after the declarations of the body have been processed as pragmas
4363 -- are now chained on the contract of the subprogram body.
4365 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4367 -- Check completion, and analyze the statements
4369 Check_Completion;
4370 Inspect_Deferred_Constant_Completion (Declarations (N));
4371 Analyze (HSS);
4373 -- Deal with end of scope processing for the body
4375 Process_End_Label (HSS, 't', Current_Scope);
4376 Update_Use_Clause_Chain;
4377 End_Scope;
4379 -- If we are compiling an entry wrapper, remove the enclosing
4380 -- synchronized object from the stack.
4382 if Is_Entry_Wrapper (Body_Id) then
4383 End_Scope;
4384 end if;
4386 Check_Subprogram_Order (N);
4387 Set_Analyzed (Body_Id);
4389 -- If we have a separate spec, then the analysis of the declarations
4390 -- caused the entities in the body to be chained to the spec id, but
4391 -- we want them chained to the body id. Only the formal parameters
4392 -- end up chained to the spec id in this case.
4394 if Present (Spec_Id) then
4396 -- We must conform to the categorization of our spec
4398 Validate_Categorization_Dependency (N, Spec_Id);
4400 -- And if this is a child unit, the parent units must conform
4402 if Is_Child_Unit (Spec_Id) then
4403 Validate_Categorization_Dependency
4404 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4405 end if;
4407 -- Here is where we move entities from the spec to the body
4409 -- Case where there are entities that stay with the spec
4411 if Present (Last_Real_Spec_Entity) then
4413 -- No body entities (happens when the only real spec entities come
4414 -- from precondition and postcondition pragmas).
4416 if No (Last_Entity (Body_Id)) then
4417 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4419 -- Body entities present (formals), so chain stuff past them
4421 else
4422 Set_Next_Entity
4423 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4424 end if;
4426 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4427 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4428 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4430 -- Case where there are no spec entities, in this case there can be
4431 -- no body entities either, so just move everything.
4433 -- If the body is generated for an expression function, it may have
4434 -- been preanalyzed already, if 'access was applied to it.
4436 else
4437 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4438 N_Expression_Function
4439 then
4440 pragma Assert (No (Last_Entity (Body_Id)));
4441 null;
4442 end if;
4444 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4445 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4446 Set_First_Entity (Spec_Id, Empty);
4447 Set_Last_Entity (Spec_Id, Empty);
4448 end if;
4449 end if;
4451 Check_Missing_Return;
4453 -- Now we are going to check for variables that are never modified in
4454 -- the body of the procedure. But first we deal with a special case
4455 -- where we want to modify this check. If the body of the subprogram
4456 -- starts with a raise statement or its equivalent, or if the body
4457 -- consists entirely of a null statement, then it is pretty obvious that
4458 -- it is OK to not reference the parameters. For example, this might be
4459 -- the following common idiom for a stubbed function: statement of the
4460 -- procedure raises an exception. In particular this deals with the
4461 -- common idiom of a stubbed function, which appears something like:
4463 -- function F (A : Integer) return Some_Type;
4464 -- X : Some_Type;
4465 -- begin
4466 -- raise Program_Error;
4467 -- return X;
4468 -- end F;
4470 -- Here the purpose of X is simply to satisfy the annoying requirement
4471 -- in Ada that there be at least one return, and we certainly do not
4472 -- want to go posting warnings on X that it is not initialized. On
4473 -- the other hand, if X is entirely unreferenced that should still
4474 -- get a warning.
4476 -- What we do is to detect these cases, and if we find them, flag the
4477 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4478 -- suppress unwanted warnings. For the case of the function stub above
4479 -- we have a special test to set X as apparently assigned to suppress
4480 -- the warning.
4482 declare
4483 Stm : Node_Id;
4485 begin
4486 -- Skip call markers installed by the ABE mechanism, labels, and
4487 -- Push_xxx_Error_Label to find the first real statement.
4489 Stm := First (Statements (HSS));
4490 while Nkind_In (Stm, N_Call_Marker, N_Label)
4491 or else Nkind (Stm) in N_Push_xxx_Label
4492 loop
4493 Next (Stm);
4494 end loop;
4496 -- Do the test on the original statement before expansion
4498 declare
4499 Ostm : constant Node_Id := Original_Node (Stm);
4501 begin
4502 -- If explicit raise statement, turn on flag
4504 if Nkind (Ostm) = N_Raise_Statement then
4505 Set_Trivial_Subprogram (Stm);
4507 -- If null statement, and no following statements, turn on flag
4509 elsif Nkind (Stm) = N_Null_Statement
4510 and then Comes_From_Source (Stm)
4511 and then No (Next (Stm))
4512 then
4513 Set_Trivial_Subprogram (Stm);
4515 -- Check for explicit call cases which likely raise an exception
4517 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4518 if Is_Entity_Name (Name (Ostm)) then
4519 declare
4520 Ent : constant Entity_Id := Entity (Name (Ostm));
4522 begin
4523 -- If the procedure is marked No_Return, then likely it
4524 -- raises an exception, but in any case it is not coming
4525 -- back here, so turn on the flag.
4527 if Present (Ent)
4528 and then Ekind (Ent) = E_Procedure
4529 and then No_Return (Ent)
4530 then
4531 Set_Trivial_Subprogram (Stm);
4532 end if;
4533 end;
4534 end if;
4535 end if;
4536 end;
4537 end;
4539 -- Check for variables that are never modified
4541 declare
4542 E1 : Entity_Id;
4543 E2 : Entity_Id;
4545 begin
4546 -- If there is a separate spec, then transfer Never_Set_In_Source
4547 -- flags from out parameters to the corresponding entities in the
4548 -- body. The reason we do that is we want to post error flags on
4549 -- the body entities, not the spec entities.
4551 if Present (Spec_Id) then
4552 E1 := First_Entity (Spec_Id);
4553 while Present (E1) loop
4554 if Ekind (E1) = E_Out_Parameter then
4555 E2 := First_Entity (Body_Id);
4556 while Present (E2) loop
4557 exit when Chars (E1) = Chars (E2);
4558 Next_Entity (E2);
4559 end loop;
4561 if Present (E2) then
4562 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4563 end if;
4564 end if;
4566 Next_Entity (E1);
4567 end loop;
4568 end if;
4570 -- Check references in body
4572 Check_References (Body_Id);
4573 end;
4575 -- Check for nested subprogram, and mark outer level subprogram if so
4577 declare
4578 Ent : Entity_Id;
4580 begin
4581 if Present (Spec_Id) then
4582 Ent := Spec_Id;
4583 else
4584 Ent := Body_Id;
4585 end if;
4587 loop
4588 Ent := Enclosing_Subprogram (Ent);
4589 exit when No (Ent) or else Is_Subprogram (Ent);
4590 end loop;
4592 if Present (Ent) then
4593 Set_Has_Nested_Subprogram (Ent);
4594 end if;
4595 end;
4597 -- Restore the limited views in the spec, if any, to let the back end
4598 -- process it without running into circularities.
4600 if Exch_Views /= No_Elist then
4601 Restore_Limited_Views (Exch_Views);
4602 end if;
4604 if Mask_Types /= No_Elist then
4605 Unmask_Unfrozen_Types (Mask_Types);
4606 end if;
4608 if Present (Desig_View) then
4609 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4610 end if;
4612 <<Leave>>
4613 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4614 Restore_Ghost_Mode (Saved_GM);
4615 end Analyze_Subprogram_Body_Helper;
4617 ------------------------------------
4618 -- Analyze_Subprogram_Declaration --
4619 ------------------------------------
4621 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4622 Scop : constant Entity_Id := Current_Scope;
4623 Designator : Entity_Id;
4625 Is_Completion : Boolean;
4626 -- Indicates whether a null procedure declaration is a completion
4628 begin
4629 -- Null procedures are not allowed in SPARK
4631 if Nkind (Specification (N)) = N_Procedure_Specification
4632 and then Null_Present (Specification (N))
4633 then
4634 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4636 -- Null procedures are allowed in protected types, following the
4637 -- recent AI12-0147.
4639 if Is_Protected_Type (Current_Scope)
4640 and then Ada_Version < Ada_2012
4641 then
4642 Error_Msg_N ("protected operation cannot be a null procedure", N);
4643 end if;
4645 Analyze_Null_Procedure (N, Is_Completion);
4647 -- The null procedure acts as a body, nothing further is needed
4649 if Is_Completion then
4650 return;
4651 end if;
4652 end if;
4654 Designator := Analyze_Subprogram_Specification (Specification (N));
4656 -- A reference may already have been generated for the unit name, in
4657 -- which case the following call is redundant. However it is needed for
4658 -- declarations that are the rewriting of an expression function.
4660 Generate_Definition (Designator);
4662 -- Set the SPARK mode from the current context (may be overwritten later
4663 -- with explicit pragma). This is not done for entry barrier functions
4664 -- because they are generated outside the protected type and should not
4665 -- carry the mode of the enclosing context.
4667 if Nkind (N) = N_Subprogram_Declaration
4668 and then Is_Entry_Barrier_Function (N)
4669 then
4670 null;
4672 else
4673 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4674 Set_SPARK_Pragma_Inherited (Designator);
4675 end if;
4677 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4678 -- the body of this subprogram is instantiated or inlined later and out
4679 -- of context. The body uses this attribute to restore the value of the
4680 -- global flag.
4682 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4683 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4684 end if;
4686 -- Preserve relevant elaboration-related attributes of the context which
4687 -- are no longer available or very expensive to recompute once analysis,
4688 -- resolution, and expansion are over.
4690 Mark_Elaboration_Attributes
4691 (N_Id => Designator,
4692 Checks => True);
4694 if Debug_Flag_C then
4695 Write_Str ("==> subprogram spec ");
4696 Write_Name (Chars (Designator));
4697 Write_Str (" from ");
4698 Write_Location (Sloc (N));
4699 Write_Eol;
4700 Indent;
4701 end if;
4703 Validate_RCI_Subprogram_Declaration (N);
4704 New_Overloaded_Entity (Designator);
4705 Check_Delayed_Subprogram (Designator);
4707 -- If the type of the first formal of the current subprogram is a non-
4708 -- generic tagged private type, mark the subprogram as being a private
4709 -- primitive. Ditto if this is a function with controlling result, and
4710 -- the return type is currently private. In both cases, the type of the
4711 -- controlling argument or result must be in the current scope for the
4712 -- operation to be primitive.
4714 if Has_Controlling_Result (Designator)
4715 and then Is_Private_Type (Etype (Designator))
4716 and then Scope (Etype (Designator)) = Current_Scope
4717 and then not Is_Generic_Actual_Type (Etype (Designator))
4718 then
4719 Set_Is_Private_Primitive (Designator);
4721 elsif Present (First_Formal (Designator)) then
4722 declare
4723 Formal_Typ : constant Entity_Id :=
4724 Etype (First_Formal (Designator));
4725 begin
4726 Set_Is_Private_Primitive (Designator,
4727 Is_Tagged_Type (Formal_Typ)
4728 and then Scope (Formal_Typ) = Current_Scope
4729 and then Is_Private_Type (Formal_Typ)
4730 and then not Is_Generic_Actual_Type (Formal_Typ));
4731 end;
4732 end if;
4734 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4735 -- or null.
4737 if Ada_Version >= Ada_2005
4738 and then Comes_From_Source (N)
4739 and then Is_Dispatching_Operation (Designator)
4740 then
4741 declare
4742 E : Entity_Id;
4743 Etyp : Entity_Id;
4745 begin
4746 if Has_Controlling_Result (Designator) then
4747 Etyp := Etype (Designator);
4749 else
4750 E := First_Entity (Designator);
4751 while Present (E)
4752 and then Is_Formal (E)
4753 and then not Is_Controlling_Formal (E)
4754 loop
4755 Next_Entity (E);
4756 end loop;
4758 Etyp := Etype (E);
4759 end if;
4761 if Is_Access_Type (Etyp) then
4762 Etyp := Directly_Designated_Type (Etyp);
4763 end if;
4765 if Is_Interface (Etyp)
4766 and then not Is_Abstract_Subprogram (Designator)
4767 and then not (Ekind (Designator) = E_Procedure
4768 and then Null_Present (Specification (N)))
4769 then
4770 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4772 -- Specialize error message based on procedures vs. functions,
4773 -- since functions can't be null subprograms.
4775 if Ekind (Designator) = E_Procedure then
4776 Error_Msg_N
4777 ("interface procedure % must be abstract or null", N);
4778 else
4779 Error_Msg_N
4780 ("interface function % must be abstract", N);
4781 end if;
4782 end if;
4783 end;
4784 end if;
4786 -- What is the following code for, it used to be
4788 -- ??? Set_Suppress_Elaboration_Checks
4789 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4791 -- The following seems equivalent, but a bit dubious
4793 if Elaboration_Checks_Suppressed (Designator) then
4794 Set_Kill_Elaboration_Checks (Designator);
4795 end if;
4797 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4798 Set_Categorization_From_Scope (Designator, Scop);
4800 else
4801 -- For a compilation unit, check for library-unit pragmas
4803 Push_Scope (Designator);
4804 Set_Categorization_From_Pragmas (N);
4805 Validate_Categorization_Dependency (N, Designator);
4806 Pop_Scope;
4807 end if;
4809 -- For a compilation unit, set body required. This flag will only be
4810 -- reset if a valid Import or Interface pragma is processed later on.
4812 if Nkind (Parent (N)) = N_Compilation_Unit then
4813 Set_Body_Required (Parent (N), True);
4815 if Ada_Version >= Ada_2005
4816 and then Nkind (Specification (N)) = N_Procedure_Specification
4817 and then Null_Present (Specification (N))
4818 then
4819 Error_Msg_N
4820 ("null procedure cannot be declared at library level", N);
4821 end if;
4822 end if;
4824 Generate_Reference_To_Formals (Designator);
4825 Check_Eliminated (Designator);
4827 if Debug_Flag_C then
4828 Outdent;
4829 Write_Str ("<== subprogram spec ");
4830 Write_Name (Chars (Designator));
4831 Write_Str (" from ");
4832 Write_Location (Sloc (N));
4833 Write_Eol;
4834 end if;
4836 if Is_Protected_Type (Current_Scope) then
4838 -- Indicate that this is a protected operation, because it may be
4839 -- used in subsequent declarations within the protected type.
4841 Set_Convention (Designator, Convention_Protected);
4842 end if;
4844 List_Inherited_Pre_Post_Aspects (Designator);
4846 if Has_Aspects (N) then
4847 Analyze_Aspect_Specifications (N, Designator);
4848 end if;
4849 end Analyze_Subprogram_Declaration;
4851 --------------------------------------
4852 -- Analyze_Subprogram_Specification --
4853 --------------------------------------
4855 -- Reminder: N here really is a subprogram specification (not a subprogram
4856 -- declaration). This procedure is called to analyze the specification in
4857 -- both subprogram bodies and subprogram declarations (specs).
4859 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4860 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4861 -- Determine whether entity E denotes the spec or body of an invariant
4862 -- procedure.
4864 ------------------------------------
4865 -- Is_Invariant_Procedure_Or_Body --
4866 ------------------------------------
4868 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4869 Decl : constant Node_Id := Unit_Declaration_Node (E);
4870 Spec : Entity_Id;
4872 begin
4873 if Nkind (Decl) = N_Subprogram_Body then
4874 Spec := Corresponding_Spec (Decl);
4875 else
4876 Spec := E;
4877 end if;
4879 return
4880 Present (Spec)
4881 and then Ekind (Spec) = E_Procedure
4882 and then (Is_Partial_Invariant_Procedure (Spec)
4883 or else Is_Invariant_Procedure (Spec));
4884 end Is_Invariant_Procedure_Or_Body;
4886 -- Local variables
4888 Designator : constant Entity_Id := Defining_Entity (N);
4889 Formals : constant List_Id := Parameter_Specifications (N);
4891 -- Start of processing for Analyze_Subprogram_Specification
4893 begin
4894 -- User-defined operator is not allowed in SPARK, except as a renaming
4896 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4897 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4898 then
4899 Check_SPARK_05_Restriction
4900 ("user-defined operator is not allowed", N);
4901 end if;
4903 -- Proceed with analysis. Do not emit a cross-reference entry if the
4904 -- specification comes from an expression function, because it may be
4905 -- the completion of a previous declaration. It is not, the cross-
4906 -- reference entry will be emitted for the new subprogram declaration.
4908 if Nkind (Parent (N)) /= N_Expression_Function then
4909 Generate_Definition (Designator);
4910 end if;
4912 if Nkind (N) = N_Function_Specification then
4913 Set_Ekind (Designator, E_Function);
4914 Set_Mechanism (Designator, Default_Mechanism);
4915 else
4916 Set_Ekind (Designator, E_Procedure);
4917 Set_Etype (Designator, Standard_Void_Type);
4918 end if;
4920 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4921 -- those subprograms which could be inlined in GNATprove mode (because
4922 -- Body_To_Inline is non-Empty) but should not be inlined.
4924 if GNATprove_Mode then
4925 Set_Is_Inlined_Always (Designator);
4926 end if;
4928 -- Introduce new scope for analysis of the formals and the return type
4930 Set_Scope (Designator, Current_Scope);
4932 if Present (Formals) then
4933 Push_Scope (Designator);
4934 Process_Formals (Formals, N);
4936 -- Check dimensions in N for formals with default expression
4938 Analyze_Dimension_Formals (N, Formals);
4940 -- Ada 2005 (AI-345): If this is an overriding operation of an
4941 -- inherited interface operation, and the controlling type is
4942 -- a synchronized type, replace the type with its corresponding
4943 -- record, to match the proper signature of an overriding operation.
4944 -- Same processing for an access parameter whose designated type is
4945 -- derived from a synchronized interface.
4947 -- This modification is not done for invariant procedures because
4948 -- the corresponding record may not necessarely be visible when the
4949 -- concurrent type acts as the full view of a private type.
4951 -- package Pack is
4952 -- type Prot is private with Type_Invariant => ...;
4953 -- procedure ConcInvariant (Obj : Prot);
4954 -- private
4955 -- protected type Prot is ...;
4956 -- type Concurrent_Record_Prot is record ...;
4957 -- procedure ConcInvariant (Obj : Prot) is
4958 -- ...
4959 -- end ConcInvariant;
4960 -- end Pack;
4962 -- In the example above, both the spec and body of the invariant
4963 -- procedure must utilize the private type as the controlling type.
4965 if Ada_Version >= Ada_2005
4966 and then not Is_Invariant_Procedure_Or_Body (Designator)
4967 then
4968 declare
4969 Formal : Entity_Id;
4970 Formal_Typ : Entity_Id;
4971 Rec_Typ : Entity_Id;
4972 Desig_Typ : Entity_Id;
4974 begin
4975 Formal := First_Formal (Designator);
4976 while Present (Formal) loop
4977 Formal_Typ := Etype (Formal);
4979 if Is_Concurrent_Type (Formal_Typ)
4980 and then Present (Corresponding_Record_Type (Formal_Typ))
4981 then
4982 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4984 if Present (Interfaces (Rec_Typ)) then
4985 Set_Etype (Formal, Rec_Typ);
4986 end if;
4988 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4989 Desig_Typ := Designated_Type (Formal_Typ);
4991 if Is_Concurrent_Type (Desig_Typ)
4992 and then Present (Corresponding_Record_Type (Desig_Typ))
4993 then
4994 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4996 if Present (Interfaces (Rec_Typ)) then
4997 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4998 end if;
4999 end if;
5000 end if;
5002 Next_Formal (Formal);
5003 end loop;
5004 end;
5005 end if;
5007 End_Scope;
5009 -- The subprogram scope is pushed and popped around the processing of
5010 -- the return type for consistency with call above to Process_Formals
5011 -- (which itself can call Analyze_Return_Type), and to ensure that any
5012 -- itype created for the return type will be associated with the proper
5013 -- scope.
5015 elsif Nkind (N) = N_Function_Specification then
5016 Push_Scope (Designator);
5017 Analyze_Return_Type (N);
5018 End_Scope;
5019 end if;
5021 -- Function case
5023 if Nkind (N) = N_Function_Specification then
5025 -- Deal with operator symbol case
5027 if Nkind (Designator) = N_Defining_Operator_Symbol then
5028 Valid_Operator_Definition (Designator);
5029 end if;
5031 May_Need_Actuals (Designator);
5033 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5034 -- the subprogram is abstract also. This does not apply to renaming
5035 -- declarations, where abstractness is inherited, and to subprogram
5036 -- bodies generated for stream operations, which become renamings as
5037 -- bodies.
5039 -- In case of primitives associated with abstract interface types
5040 -- the check is applied later (see Analyze_Subprogram_Declaration).
5042 if not Nkind_In (Original_Node (Parent (N)),
5043 N_Abstract_Subprogram_Declaration,
5044 N_Formal_Abstract_Subprogram_Declaration,
5045 N_Subprogram_Renaming_Declaration)
5046 then
5047 if Is_Abstract_Type (Etype (Designator))
5048 and then not Is_Interface (Etype (Designator))
5049 then
5050 Error_Msg_N
5051 ("function that returns abstract type must be abstract", N);
5053 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5054 -- access result whose designated type is abstract.
5056 elsif Ada_Version >= Ada_2012
5057 and then Nkind (Result_Definition (N)) = N_Access_Definition
5058 and then
5059 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5060 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5061 then
5062 Error_Msg_N
5063 ("function whose access result designates abstract type "
5064 & "must be abstract", N);
5065 end if;
5066 end if;
5067 end if;
5069 return Designator;
5070 end Analyze_Subprogram_Specification;
5072 -----------------------
5073 -- Check_Conformance --
5074 -----------------------
5076 procedure Check_Conformance
5077 (New_Id : Entity_Id;
5078 Old_Id : Entity_Id;
5079 Ctype : Conformance_Type;
5080 Errmsg : Boolean;
5081 Conforms : out Boolean;
5082 Err_Loc : Node_Id := Empty;
5083 Get_Inst : Boolean := False;
5084 Skip_Controlling_Formals : Boolean := False)
5086 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5087 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5088 -- If Errmsg is True, then processing continues to post an error message
5089 -- for conformance error on given node. Two messages are output. The
5090 -- first message points to the previous declaration with a general "no
5091 -- conformance" message. The second is the detailed reason, supplied as
5092 -- Msg. The parameter N provide information for a possible & insertion
5093 -- in the message, and also provides the location for posting the
5094 -- message in the absence of a specified Err_Loc location.
5096 function Conventions_Match
5097 (Id1 : Entity_Id;
5098 Id2 : Entity_Id) return Boolean;
5099 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5100 -- match.
5102 -----------------------
5103 -- Conformance_Error --
5104 -----------------------
5106 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5107 Enode : Node_Id;
5109 begin
5110 Conforms := False;
5112 if Errmsg then
5113 if No (Err_Loc) then
5114 Enode := N;
5115 else
5116 Enode := Err_Loc;
5117 end if;
5119 Error_Msg_Sloc := Sloc (Old_Id);
5121 case Ctype is
5122 when Type_Conformant =>
5123 Error_Msg_N -- CODEFIX
5124 ("not type conformant with declaration#!", Enode);
5126 when Mode_Conformant =>
5127 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5128 Error_Msg_N
5129 ("not mode conformant with operation inherited#!",
5130 Enode);
5131 else
5132 Error_Msg_N
5133 ("not mode conformant with declaration#!", Enode);
5134 end if;
5136 when Subtype_Conformant =>
5137 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5138 Error_Msg_N
5139 ("not subtype conformant with operation inherited#!",
5140 Enode);
5141 else
5142 Error_Msg_N
5143 ("not subtype conformant with declaration#!", Enode);
5144 end if;
5146 when Fully_Conformant =>
5147 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5148 Error_Msg_N -- CODEFIX
5149 ("not fully conformant with operation inherited#!",
5150 Enode);
5151 else
5152 Error_Msg_N -- CODEFIX
5153 ("not fully conformant with declaration#!", Enode);
5154 end if;
5155 end case;
5157 Error_Msg_NE (Msg, Enode, N);
5158 end if;
5159 end Conformance_Error;
5161 -----------------------
5162 -- Conventions_Match --
5163 -----------------------
5165 function Conventions_Match
5166 (Id1 : Entity_Id;
5167 Id2 : Entity_Id) return Boolean
5169 begin
5170 -- Ignore the conventions of anonymous access-to-subprogram types
5171 -- and subprogram types because these are internally generated and
5172 -- the only way these may receive a convention is if they inherit
5173 -- the convention of a related subprogram.
5175 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5176 E_Subprogram_Type)
5177 or else
5178 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5179 E_Subprogram_Type)
5180 then
5181 return True;
5183 -- Otherwise compare the conventions directly
5185 else
5186 return Convention (Id1) = Convention (Id2);
5187 end if;
5188 end Conventions_Match;
5190 -- Local Variables
5192 Old_Type : constant Entity_Id := Etype (Old_Id);
5193 New_Type : constant Entity_Id := Etype (New_Id);
5194 Old_Formal : Entity_Id;
5195 New_Formal : Entity_Id;
5196 Access_Types_Match : Boolean;
5197 Old_Formal_Base : Entity_Id;
5198 New_Formal_Base : Entity_Id;
5200 -- Start of processing for Check_Conformance
5202 begin
5203 Conforms := True;
5205 -- We need a special case for operators, since they don't appear
5206 -- explicitly.
5208 if Ctype = Type_Conformant then
5209 if Ekind (New_Id) = E_Operator
5210 and then Operator_Matches_Spec (New_Id, Old_Id)
5211 then
5212 return;
5213 end if;
5214 end if;
5216 -- If both are functions/operators, check return types conform
5218 if Old_Type /= Standard_Void_Type
5219 and then
5220 New_Type /= Standard_Void_Type
5221 then
5222 -- If we are checking interface conformance we omit controlling
5223 -- arguments and result, because we are only checking the conformance
5224 -- of the remaining parameters.
5226 if Has_Controlling_Result (Old_Id)
5227 and then Has_Controlling_Result (New_Id)
5228 and then Skip_Controlling_Formals
5229 then
5230 null;
5232 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5233 if Ctype >= Subtype_Conformant
5234 and then not Predicates_Match (Old_Type, New_Type)
5235 then
5236 Conformance_Error
5237 ("\predicate of return type does not match!", New_Id);
5238 else
5239 Conformance_Error
5240 ("\return type does not match!", New_Id);
5241 end if;
5243 return;
5244 end if;
5246 -- Ada 2005 (AI-231): In case of anonymous access types check the
5247 -- null-exclusion and access-to-constant attributes match.
5249 if Ada_Version >= Ada_2005
5250 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5251 and then
5252 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5253 or else Is_Access_Constant (Etype (Old_Type)) /=
5254 Is_Access_Constant (Etype (New_Type)))
5255 then
5256 Conformance_Error ("\return type does not match!", New_Id);
5257 return;
5258 end if;
5260 -- If either is a function/operator and the other isn't, error
5262 elsif Old_Type /= Standard_Void_Type
5263 or else New_Type /= Standard_Void_Type
5264 then
5265 Conformance_Error ("\functions can only match functions!", New_Id);
5266 return;
5267 end if;
5269 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5270 -- If this is a renaming as body, refine error message to indicate that
5271 -- the conflict is with the original declaration. If the entity is not
5272 -- frozen, the conventions don't have to match, the one of the renamed
5273 -- entity is inherited.
5275 if Ctype >= Subtype_Conformant then
5276 if not Conventions_Match (Old_Id, New_Id) then
5277 if not Is_Frozen (New_Id) then
5278 null;
5280 elsif Present (Err_Loc)
5281 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5282 and then Present (Corresponding_Spec (Err_Loc))
5283 then
5284 Error_Msg_Name_1 := Chars (New_Id);
5285 Error_Msg_Name_2 :=
5286 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5287 Conformance_Error ("\prior declaration for% has convention %!");
5289 else
5290 Conformance_Error ("\calling conventions do not match!");
5291 end if;
5293 return;
5295 elsif Is_Formal_Subprogram (Old_Id)
5296 or else Is_Formal_Subprogram (New_Id)
5297 then
5298 Conformance_Error ("\formal subprograms not allowed!");
5299 return;
5300 end if;
5301 end if;
5303 -- Deal with parameters
5305 -- Note: we use the entity information, rather than going directly
5306 -- to the specification in the tree. This is not only simpler, but
5307 -- absolutely necessary for some cases of conformance tests between
5308 -- operators, where the declaration tree simply does not exist.
5310 Old_Formal := First_Formal (Old_Id);
5311 New_Formal := First_Formal (New_Id);
5312 while Present (Old_Formal) and then Present (New_Formal) loop
5313 if Is_Controlling_Formal (Old_Formal)
5314 and then Is_Controlling_Formal (New_Formal)
5315 and then Skip_Controlling_Formals
5316 then
5317 -- The controlling formals will have different types when
5318 -- comparing an interface operation with its match, but both
5319 -- or neither must be access parameters.
5321 if Is_Access_Type (Etype (Old_Formal))
5323 Is_Access_Type (Etype (New_Formal))
5324 then
5325 goto Skip_Controlling_Formal;
5326 else
5327 Conformance_Error
5328 ("\access parameter does not match!", New_Formal);
5329 end if;
5330 end if;
5332 -- Ada 2012: Mode conformance also requires that formal parameters
5333 -- be both aliased, or neither.
5335 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5336 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5337 Conformance_Error
5338 ("\aliased parameter mismatch!", New_Formal);
5339 end if;
5340 end if;
5342 if Ctype = Fully_Conformant then
5344 -- Names must match. Error message is more accurate if we do
5345 -- this before checking that the types of the formals match.
5347 if Chars (Old_Formal) /= Chars (New_Formal) then
5348 Conformance_Error ("\name& does not match!", New_Formal);
5350 -- Set error posted flag on new formal as well to stop
5351 -- junk cascaded messages in some cases.
5353 Set_Error_Posted (New_Formal);
5354 return;
5355 end if;
5357 -- Null exclusion must match
5359 if Null_Exclusion_Present (Parent (Old_Formal))
5361 Null_Exclusion_Present (Parent (New_Formal))
5362 then
5363 -- Only give error if both come from source. This should be
5364 -- investigated some time, since it should not be needed ???
5366 if Comes_From_Source (Old_Formal)
5367 and then
5368 Comes_From_Source (New_Formal)
5369 then
5370 Conformance_Error
5371 ("\null exclusion for& does not match", New_Formal);
5373 -- Mark error posted on the new formal to avoid duplicated
5374 -- complaint about types not matching.
5376 Set_Error_Posted (New_Formal);
5377 end if;
5378 end if;
5379 end if;
5381 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5382 -- case occurs whenever a subprogram is being renamed and one of its
5383 -- parameters imposes a null exclusion. For example:
5385 -- type T is null record;
5386 -- type Acc_T is access T;
5387 -- subtype Acc_T_Sub is Acc_T;
5389 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5390 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5391 -- renames P;
5393 Old_Formal_Base := Etype (Old_Formal);
5394 New_Formal_Base := Etype (New_Formal);
5396 if Get_Inst then
5397 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5398 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5399 end if;
5401 Access_Types_Match := Ada_Version >= Ada_2005
5403 -- Ensure that this rule is only applied when New_Id is a
5404 -- renaming of Old_Id.
5406 and then Nkind (Parent (Parent (New_Id))) =
5407 N_Subprogram_Renaming_Declaration
5408 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5409 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5410 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5412 -- Now handle the allowed access-type case
5414 and then Is_Access_Type (Old_Formal_Base)
5415 and then Is_Access_Type (New_Formal_Base)
5417 -- The type kinds must match. The only exception occurs with
5418 -- multiple generics of the form:
5420 -- generic generic
5421 -- type F is private; type A is private;
5422 -- type F_Ptr is access F; type A_Ptr is access A;
5423 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5424 -- package F_Pack is ... package A_Pack is
5425 -- package F_Inst is
5426 -- new F_Pack (A, A_Ptr, A_P);
5428 -- When checking for conformance between the parameters of A_P
5429 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5430 -- because the compiler has transformed A_Ptr into a subtype of
5431 -- F_Ptr. We catch this case in the code below.
5433 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5434 or else
5435 (Is_Generic_Type (Old_Formal_Base)
5436 and then Is_Generic_Type (New_Formal_Base)
5437 and then Is_Internal (New_Formal_Base)
5438 and then Etype (Etype (New_Formal_Base)) =
5439 Old_Formal_Base))
5440 and then Directly_Designated_Type (Old_Formal_Base) =
5441 Directly_Designated_Type (New_Formal_Base)
5442 and then ((Is_Itype (Old_Formal_Base)
5443 and then Can_Never_Be_Null (Old_Formal_Base))
5444 or else
5445 (Is_Itype (New_Formal_Base)
5446 and then Can_Never_Be_Null (New_Formal_Base)));
5448 -- Types must always match. In the visible part of an instance,
5449 -- usual overloading rules for dispatching operations apply, and
5450 -- we check base types (not the actual subtypes).
5452 if In_Instance_Visible_Part
5453 and then Is_Dispatching_Operation (New_Id)
5454 then
5455 if not Conforming_Types
5456 (T1 => Base_Type (Etype (Old_Formal)),
5457 T2 => Base_Type (Etype (New_Formal)),
5458 Ctype => Ctype,
5459 Get_Inst => Get_Inst)
5460 and then not Access_Types_Match
5461 then
5462 Conformance_Error ("\type of & does not match!", New_Formal);
5463 return;
5464 end if;
5466 elsif not Conforming_Types
5467 (T1 => Old_Formal_Base,
5468 T2 => New_Formal_Base,
5469 Ctype => Ctype,
5470 Get_Inst => Get_Inst)
5471 and then not Access_Types_Match
5472 then
5473 -- Don't give error message if old type is Any_Type. This test
5474 -- avoids some cascaded errors, e.g. in case of a bad spec.
5476 if Errmsg and then Old_Formal_Base = Any_Type then
5477 Conforms := False;
5478 else
5479 if Ctype >= Subtype_Conformant
5480 and then
5481 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5482 then
5483 Conformance_Error
5484 ("\predicate of & does not match!", New_Formal);
5485 else
5486 Conformance_Error
5487 ("\type of & does not match!", New_Formal);
5489 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5490 then
5491 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5492 end if;
5493 end if;
5494 end if;
5496 return;
5497 end if;
5499 -- For mode conformance, mode must match
5501 if Ctype >= Mode_Conformant then
5502 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5503 if not Ekind_In (New_Id, E_Function, E_Procedure)
5504 or else not Is_Primitive_Wrapper (New_Id)
5505 then
5506 Conformance_Error ("\mode of & does not match!", New_Formal);
5508 else
5509 declare
5510 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5511 begin
5512 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5513 then
5514 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5515 else
5516 Conformance_Error
5517 ("\mode of & does not match!", New_Formal);
5518 end if;
5519 end;
5520 end if;
5522 return;
5524 -- Part of mode conformance for access types is having the same
5525 -- constant modifier.
5527 elsif Access_Types_Match
5528 and then Is_Access_Constant (Old_Formal_Base) /=
5529 Is_Access_Constant (New_Formal_Base)
5530 then
5531 Conformance_Error
5532 ("\constant modifier does not match!", New_Formal);
5533 return;
5534 end if;
5535 end if;
5537 if Ctype >= Subtype_Conformant then
5539 -- Ada 2005 (AI-231): In case of anonymous access types check
5540 -- the null-exclusion and access-to-constant attributes must
5541 -- match. For null exclusion, we test the types rather than the
5542 -- formals themselves, since the attribute is only set reliably
5543 -- on the formals in the Ada 95 case, and we exclude the case
5544 -- where Old_Formal is marked as controlling, to avoid errors
5545 -- when matching completing bodies with dispatching declarations
5546 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5548 if Ada_Version >= Ada_2005
5549 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5550 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5551 and then
5552 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5553 Can_Never_Be_Null (Etype (New_Formal))
5554 and then
5555 not Is_Controlling_Formal (Old_Formal))
5556 or else
5557 Is_Access_Constant (Etype (Old_Formal)) /=
5558 Is_Access_Constant (Etype (New_Formal)))
5560 -- Do not complain if error already posted on New_Formal. This
5561 -- avoids some redundant error messages.
5563 and then not Error_Posted (New_Formal)
5564 then
5565 -- It is allowed to omit the null-exclusion in case of stream
5566 -- attribute subprograms. We recognize stream subprograms
5567 -- through their TSS-generated suffix.
5569 declare
5570 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5572 begin
5573 if TSS_Name /= TSS_Stream_Read
5574 and then TSS_Name /= TSS_Stream_Write
5575 and then TSS_Name /= TSS_Stream_Input
5576 and then TSS_Name /= TSS_Stream_Output
5577 then
5578 -- Here we have a definite conformance error. It is worth
5579 -- special casing the error message for the case of a
5580 -- controlling formal (which excludes null).
5582 if Is_Controlling_Formal (New_Formal) then
5583 Error_Msg_Node_2 := Scope (New_Formal);
5584 Conformance_Error
5585 ("\controlling formal & of & excludes null, "
5586 & "declaration must exclude null as well",
5587 New_Formal);
5589 -- Normal case (couldn't we give more detail here???)
5591 else
5592 Conformance_Error
5593 ("\type of & does not match!", New_Formal);
5594 end if;
5596 return;
5597 end if;
5598 end;
5599 end if;
5600 end if;
5602 -- Full conformance checks
5604 if Ctype = Fully_Conformant then
5606 -- We have checked already that names match
5608 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5610 -- Check default expressions for in parameters
5612 declare
5613 NewD : constant Boolean :=
5614 Present (Default_Value (New_Formal));
5615 OldD : constant Boolean :=
5616 Present (Default_Value (Old_Formal));
5617 begin
5618 if NewD or OldD then
5620 -- The old default value has been analyzed because the
5621 -- current full declaration will have frozen everything
5622 -- before. The new default value has not been analyzed,
5623 -- so analyze it now before we check for conformance.
5625 if NewD then
5626 Push_Scope (New_Id);
5627 Preanalyze_Spec_Expression
5628 (Default_Value (New_Formal), Etype (New_Formal));
5629 End_Scope;
5630 end if;
5632 if not (NewD and OldD)
5633 or else not Fully_Conformant_Expressions
5634 (Default_Value (Old_Formal),
5635 Default_Value (New_Formal))
5636 then
5637 Conformance_Error
5638 ("\default expression for & does not match!",
5639 New_Formal);
5640 return;
5641 end if;
5642 end if;
5643 end;
5644 end if;
5645 end if;
5647 -- A couple of special checks for Ada 83 mode. These checks are
5648 -- skipped if either entity is an operator in package Standard,
5649 -- or if either old or new instance is not from the source program.
5651 if Ada_Version = Ada_83
5652 and then Sloc (Old_Id) > Standard_Location
5653 and then Sloc (New_Id) > Standard_Location
5654 and then Comes_From_Source (Old_Id)
5655 and then Comes_From_Source (New_Id)
5656 then
5657 declare
5658 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5659 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5661 begin
5662 -- Explicit IN must be present or absent in both cases. This
5663 -- test is required only in the full conformance case.
5665 if In_Present (Old_Param) /= In_Present (New_Param)
5666 and then Ctype = Fully_Conformant
5667 then
5668 Conformance_Error
5669 ("\(Ada 83) IN must appear in both declarations",
5670 New_Formal);
5671 return;
5672 end if;
5674 -- Grouping (use of comma in param lists) must be the same
5675 -- This is where we catch a misconformance like:
5677 -- A, B : Integer
5678 -- A : Integer; B : Integer
5680 -- which are represented identically in the tree except
5681 -- for the setting of the flags More_Ids and Prev_Ids.
5683 if More_Ids (Old_Param) /= More_Ids (New_Param)
5684 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5685 then
5686 Conformance_Error
5687 ("\grouping of & does not match!", New_Formal);
5688 return;
5689 end if;
5690 end;
5691 end if;
5693 -- This label is required when skipping controlling formals
5695 <<Skip_Controlling_Formal>>
5697 Next_Formal (Old_Formal);
5698 Next_Formal (New_Formal);
5699 end loop;
5701 if Present (Old_Formal) then
5702 Conformance_Error ("\too few parameters!");
5703 return;
5705 elsif Present (New_Formal) then
5706 Conformance_Error ("\too many parameters!", New_Formal);
5707 return;
5708 end if;
5709 end Check_Conformance;
5711 -----------------------
5712 -- Check_Conventions --
5713 -----------------------
5715 procedure Check_Conventions (Typ : Entity_Id) is
5716 Ifaces_List : Elist_Id;
5718 procedure Check_Convention (Op : Entity_Id);
5719 -- Verify that the convention of inherited dispatching operation Op is
5720 -- consistent among all subprograms it overrides. In order to minimize
5721 -- the search, Search_From is utilized to designate a specific point in
5722 -- the list rather than iterating over the whole list once more.
5724 ----------------------
5725 -- Check_Convention --
5726 ----------------------
5728 procedure Check_Convention (Op : Entity_Id) is
5729 Op_Conv : constant Convention_Id := Convention (Op);
5730 Iface_Conv : Convention_Id;
5731 Iface_Elmt : Elmt_Id;
5732 Iface_Prim_Elmt : Elmt_Id;
5733 Iface_Prim : Entity_Id;
5735 begin
5736 Iface_Elmt := First_Elmt (Ifaces_List);
5737 while Present (Iface_Elmt) loop
5738 Iface_Prim_Elmt :=
5739 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5740 while Present (Iface_Prim_Elmt) loop
5741 Iface_Prim := Node (Iface_Prim_Elmt);
5742 Iface_Conv := Convention (Iface_Prim);
5744 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5745 and then Iface_Conv /= Op_Conv
5746 then
5747 Error_Msg_N
5748 ("inconsistent conventions in primitive operations", Typ);
5750 Error_Msg_Name_1 := Chars (Op);
5751 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5752 Error_Msg_Sloc := Sloc (Op);
5754 if Comes_From_Source (Op) or else No (Alias (Op)) then
5755 if not Present (Overridden_Operation (Op)) then
5756 Error_Msg_N ("\\primitive % defined #", Typ);
5757 else
5758 Error_Msg_N
5759 ("\\overriding operation % with "
5760 & "convention % defined #", Typ);
5761 end if;
5763 else pragma Assert (Present (Alias (Op)));
5764 Error_Msg_Sloc := Sloc (Alias (Op));
5765 Error_Msg_N ("\\inherited operation % with "
5766 & "convention % defined #", Typ);
5767 end if;
5769 Error_Msg_Name_1 := Chars (Op);
5770 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5771 Error_Msg_Sloc := Sloc (Iface_Prim);
5772 Error_Msg_N ("\\overridden operation % with "
5773 & "convention % defined #", Typ);
5775 -- Avoid cascading errors
5777 return;
5778 end if;
5780 Next_Elmt (Iface_Prim_Elmt);
5781 end loop;
5783 Next_Elmt (Iface_Elmt);
5784 end loop;
5785 end Check_Convention;
5787 -- Local variables
5789 Prim_Op : Entity_Id;
5790 Prim_Op_Elmt : Elmt_Id;
5792 -- Start of processing for Check_Conventions
5794 begin
5795 if not Has_Interfaces (Typ) then
5796 return;
5797 end if;
5799 Collect_Interfaces (Typ, Ifaces_List);
5801 -- The algorithm checks every overriding dispatching operation against
5802 -- all the corresponding overridden dispatching operations, detecting
5803 -- differences in conventions.
5805 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5806 while Present (Prim_Op_Elmt) loop
5807 Prim_Op := Node (Prim_Op_Elmt);
5809 -- A small optimization: skip the predefined dispatching operations
5810 -- since they always have the same convention.
5812 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5813 Check_Convention (Prim_Op);
5814 end if;
5816 Next_Elmt (Prim_Op_Elmt);
5817 end loop;
5818 end Check_Conventions;
5820 ------------------------------
5821 -- Check_Delayed_Subprogram --
5822 ------------------------------
5824 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5825 F : Entity_Id;
5827 procedure Possible_Freeze (T : Entity_Id);
5828 -- T is the type of either a formal parameter or of the return type.
5829 -- If T is not yet frozen and needs a delayed freeze, then the
5830 -- subprogram itself must be delayed.
5832 ---------------------
5833 -- Possible_Freeze --
5834 ---------------------
5836 procedure Possible_Freeze (T : Entity_Id) is
5837 begin
5838 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5839 Set_Has_Delayed_Freeze (Designator);
5841 elsif Is_Access_Type (T)
5842 and then Has_Delayed_Freeze (Designated_Type (T))
5843 and then not Is_Frozen (Designated_Type (T))
5844 then
5845 Set_Has_Delayed_Freeze (Designator);
5846 end if;
5848 end Possible_Freeze;
5850 -- Start of processing for Check_Delayed_Subprogram
5852 begin
5853 -- All subprograms, including abstract subprograms, may need a freeze
5854 -- node if some formal type or the return type needs one.
5856 Possible_Freeze (Etype (Designator));
5857 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5859 -- Need delayed freeze if any of the formal types themselves need
5860 -- a delayed freeze and are not yet frozen.
5862 F := First_Formal (Designator);
5863 while Present (F) loop
5864 Possible_Freeze (Etype (F));
5865 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5866 Next_Formal (F);
5867 end loop;
5869 -- Mark functions that return by reference. Note that it cannot be
5870 -- done for delayed_freeze subprograms because the underlying
5871 -- returned type may not be known yet (for private types)
5873 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5874 declare
5875 Typ : constant Entity_Id := Etype (Designator);
5876 Utyp : constant Entity_Id := Underlying_Type (Typ);
5877 begin
5878 if Is_Limited_View (Typ) then
5879 Set_Returns_By_Ref (Designator);
5880 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5881 Set_Returns_By_Ref (Designator);
5882 end if;
5883 end;
5884 end if;
5885 end Check_Delayed_Subprogram;
5887 ------------------------------------
5888 -- Check_Discriminant_Conformance --
5889 ------------------------------------
5891 procedure Check_Discriminant_Conformance
5892 (N : Node_Id;
5893 Prev : Entity_Id;
5894 Prev_Loc : Node_Id)
5896 Old_Discr : Entity_Id := First_Discriminant (Prev);
5897 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5898 New_Discr_Id : Entity_Id;
5899 New_Discr_Type : Entity_Id;
5901 procedure Conformance_Error (Msg : String; N : Node_Id);
5902 -- Post error message for conformance error on given node. Two messages
5903 -- are output. The first points to the previous declaration with a
5904 -- general "no conformance" message. The second is the detailed reason,
5905 -- supplied as Msg. The parameter N provide information for a possible
5906 -- & insertion in the message.
5908 -----------------------
5909 -- Conformance_Error --
5910 -----------------------
5912 procedure Conformance_Error (Msg : String; N : Node_Id) is
5913 begin
5914 Error_Msg_Sloc := Sloc (Prev_Loc);
5915 Error_Msg_N -- CODEFIX
5916 ("not fully conformant with declaration#!", N);
5917 Error_Msg_NE (Msg, N, N);
5918 end Conformance_Error;
5920 -- Start of processing for Check_Discriminant_Conformance
5922 begin
5923 while Present (Old_Discr) and then Present (New_Discr) loop
5924 New_Discr_Id := Defining_Identifier (New_Discr);
5926 -- The subtype mark of the discriminant on the full type has not
5927 -- been analyzed so we do it here. For an access discriminant a new
5928 -- type is created.
5930 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5931 New_Discr_Type :=
5932 Access_Definition (N, Discriminant_Type (New_Discr));
5934 else
5935 Analyze (Discriminant_Type (New_Discr));
5936 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5938 -- Ada 2005: if the discriminant definition carries a null
5939 -- exclusion, create an itype to check properly for consistency
5940 -- with partial declaration.
5942 if Is_Access_Type (New_Discr_Type)
5943 and then Null_Exclusion_Present (New_Discr)
5944 then
5945 New_Discr_Type :=
5946 Create_Null_Excluding_Itype
5947 (T => New_Discr_Type,
5948 Related_Nod => New_Discr,
5949 Scope_Id => Current_Scope);
5950 end if;
5951 end if;
5953 if not Conforming_Types
5954 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5955 then
5956 Conformance_Error ("type of & does not match!", New_Discr_Id);
5957 return;
5958 else
5959 -- Treat the new discriminant as an occurrence of the old one,
5960 -- for navigation purposes, and fill in some semantic
5961 -- information, for completeness.
5963 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5964 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5965 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5966 end if;
5968 -- Names must match
5970 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5971 Conformance_Error ("name & does not match!", New_Discr_Id);
5972 return;
5973 end if;
5975 -- Default expressions must match
5977 declare
5978 NewD : constant Boolean :=
5979 Present (Expression (New_Discr));
5980 OldD : constant Boolean :=
5981 Present (Expression (Parent (Old_Discr)));
5983 begin
5984 if NewD or OldD then
5986 -- The old default value has been analyzed and expanded,
5987 -- because the current full declaration will have frozen
5988 -- everything before. The new default values have not been
5989 -- expanded, so expand now to check conformance.
5991 if NewD then
5992 Preanalyze_Spec_Expression
5993 (Expression (New_Discr), New_Discr_Type);
5994 end if;
5996 if not (NewD and OldD)
5997 or else not Fully_Conformant_Expressions
5998 (Expression (Parent (Old_Discr)),
5999 Expression (New_Discr))
6001 then
6002 Conformance_Error
6003 ("default expression for & does not match!",
6004 New_Discr_Id);
6005 return;
6006 end if;
6007 end if;
6008 end;
6010 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6012 if Ada_Version = Ada_83 then
6013 declare
6014 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6016 begin
6017 -- Grouping (use of comma in param lists) must be the same
6018 -- This is where we catch a misconformance like:
6020 -- A, B : Integer
6021 -- A : Integer; B : Integer
6023 -- which are represented identically in the tree except
6024 -- for the setting of the flags More_Ids and Prev_Ids.
6026 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6027 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6028 then
6029 Conformance_Error
6030 ("grouping of & does not match!", New_Discr_Id);
6031 return;
6032 end if;
6033 end;
6034 end if;
6036 Next_Discriminant (Old_Discr);
6037 Next (New_Discr);
6038 end loop;
6040 if Present (Old_Discr) then
6041 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6042 return;
6044 elsif Present (New_Discr) then
6045 Conformance_Error
6046 ("too many discriminants!", Defining_Identifier (New_Discr));
6047 return;
6048 end if;
6049 end Check_Discriminant_Conformance;
6051 ----------------------------
6052 -- Check_Fully_Conformant --
6053 ----------------------------
6055 procedure Check_Fully_Conformant
6056 (New_Id : Entity_Id;
6057 Old_Id : Entity_Id;
6058 Err_Loc : Node_Id := Empty)
6060 Result : Boolean;
6061 pragma Warnings (Off, Result);
6062 begin
6063 Check_Conformance
6064 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6065 end Check_Fully_Conformant;
6067 --------------------------
6068 -- Check_Limited_Return --
6069 --------------------------
6071 procedure Check_Limited_Return
6072 (N : Node_Id;
6073 Expr : Node_Id;
6074 R_Type : Entity_Id)
6076 begin
6077 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6078 -- replaced by anonymous access results. This is an incompatibility with
6079 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6080 -- controllable with special switch. ???
6082 -- A limited interface that is not immutably limited is OK
6084 if Is_Limited_Interface (R_Type)
6085 and then
6086 not (Is_Task_Interface (R_Type)
6087 or else Is_Protected_Interface (R_Type)
6088 or else Is_Synchronized_Interface (R_Type))
6089 then
6090 null;
6092 elsif Is_Limited_Type (R_Type)
6093 and then not Is_Interface (R_Type)
6094 and then Comes_From_Source (N)
6095 and then not In_Instance_Body
6096 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6097 then
6098 -- Error in Ada 2005
6100 if Ada_Version >= Ada_2005
6101 and then not Debug_Flag_Dot_L
6102 and then not GNAT_Mode
6103 then
6104 Error_Msg_N
6105 ("(Ada 2005) cannot copy object of a limited type "
6106 & "(RM-2005 6.5(5.5/2))", Expr);
6108 if Is_Limited_View (R_Type) then
6109 Error_Msg_N
6110 ("\return by reference not permitted in Ada 2005", Expr);
6111 end if;
6113 -- Warn in Ada 95 mode, to give folks a heads up about this
6114 -- incompatibility.
6116 -- In GNAT mode, this is just a warning, to allow it to be evilly
6117 -- turned off. Otherwise it is a real error.
6119 -- In a generic context, simplify the warning because it makes no
6120 -- sense to discuss pass-by-reference or copy.
6122 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6123 if Inside_A_Generic then
6124 Error_Msg_N
6125 ("return of limited object not permitted in Ada 2005 "
6126 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6128 elsif Is_Limited_View (R_Type) then
6129 Error_Msg_N
6130 ("return by reference not permitted in Ada 2005 "
6131 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6132 else
6133 Error_Msg_N
6134 ("cannot copy object of a limited type in Ada 2005 "
6135 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6136 end if;
6138 -- Ada 95 mode, and compatibility warnings disabled
6140 else
6141 pragma Assert (Ada_Version <= Ada_95);
6142 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6143 return; -- skip continuation messages below
6144 end if;
6146 if not Inside_A_Generic then
6147 Error_Msg_N
6148 ("\consider switching to return of access type", Expr);
6149 Explain_Limited_Type (R_Type, Expr);
6150 end if;
6151 end if;
6152 end Check_Limited_Return;
6154 ---------------------------
6155 -- Check_Mode_Conformant --
6156 ---------------------------
6158 procedure Check_Mode_Conformant
6159 (New_Id : Entity_Id;
6160 Old_Id : Entity_Id;
6161 Err_Loc : Node_Id := Empty;
6162 Get_Inst : Boolean := False)
6164 Result : Boolean;
6165 pragma Warnings (Off, Result);
6166 begin
6167 Check_Conformance
6168 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6169 end Check_Mode_Conformant;
6171 --------------------------------
6172 -- Check_Overriding_Indicator --
6173 --------------------------------
6175 procedure Check_Overriding_Indicator
6176 (Subp : Entity_Id;
6177 Overridden_Subp : Entity_Id;
6178 Is_Primitive : Boolean)
6180 Decl : Node_Id;
6181 Spec : Node_Id;
6183 begin
6184 -- No overriding indicator for literals
6186 if Ekind (Subp) = E_Enumeration_Literal then
6187 return;
6189 elsif Ekind (Subp) = E_Entry then
6190 Decl := Parent (Subp);
6192 -- No point in analyzing a malformed operator
6194 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6195 and then Error_Posted (Subp)
6196 then
6197 return;
6199 else
6200 Decl := Unit_Declaration_Node (Subp);
6201 end if;
6203 if Nkind_In (Decl, N_Subprogram_Body,
6204 N_Subprogram_Body_Stub,
6205 N_Subprogram_Declaration,
6206 N_Abstract_Subprogram_Declaration,
6207 N_Subprogram_Renaming_Declaration)
6208 then
6209 Spec := Specification (Decl);
6211 elsif Nkind (Decl) = N_Entry_Declaration then
6212 Spec := Decl;
6214 else
6215 return;
6216 end if;
6218 -- The overriding operation is type conformant with the overridden one,
6219 -- but the names of the formals are not required to match. If the names
6220 -- appear permuted in the overriding operation, this is a possible
6221 -- source of confusion that is worth diagnosing. Controlling formals
6222 -- often carry names that reflect the type, and it is not worthwhile
6223 -- requiring that their names match.
6225 if Present (Overridden_Subp)
6226 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6227 then
6228 declare
6229 Form1 : Entity_Id;
6230 Form2 : Entity_Id;
6232 begin
6233 Form1 := First_Formal (Subp);
6234 Form2 := First_Formal (Overridden_Subp);
6236 -- If the overriding operation is a synchronized operation, skip
6237 -- the first parameter of the overridden operation, which is
6238 -- implicit in the new one. If the operation is declared in the
6239 -- body it is not primitive and all formals must match.
6241 if Is_Concurrent_Type (Scope (Subp))
6242 and then Is_Tagged_Type (Scope (Subp))
6243 and then not Has_Completion (Scope (Subp))
6244 then
6245 Form2 := Next_Formal (Form2);
6246 end if;
6248 if Present (Form1) then
6249 Form1 := Next_Formal (Form1);
6250 Form2 := Next_Formal (Form2);
6251 end if;
6253 while Present (Form1) loop
6254 if not Is_Controlling_Formal (Form1)
6255 and then Present (Next_Formal (Form2))
6256 and then Chars (Form1) = Chars (Next_Formal (Form2))
6257 then
6258 Error_Msg_Node_2 := Alias (Overridden_Subp);
6259 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6260 Error_Msg_NE
6261 ("& does not match corresponding formal of&#",
6262 Form1, Form1);
6263 exit;
6264 end if;
6266 Next_Formal (Form1);
6267 Next_Formal (Form2);
6268 end loop;
6269 end;
6270 end if;
6272 -- If there is an overridden subprogram, then check that there is no
6273 -- "not overriding" indicator, and mark the subprogram as overriding.
6274 -- This is not done if the overridden subprogram is marked as hidden,
6275 -- which can occur for the case of inherited controlled operations
6276 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6277 -- subprogram is not itself hidden. (Note: This condition could probably
6278 -- be simplified, leaving out the testing for the specific controlled
6279 -- cases, but it seems safer and clearer this way, and echoes similar
6280 -- special-case tests of this kind in other places.)
6282 if Present (Overridden_Subp)
6283 and then (not Is_Hidden (Overridden_Subp)
6284 or else
6285 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6286 Name_Adjust,
6287 Name_Finalize)
6288 and then Present (Alias (Overridden_Subp))
6289 and then not Is_Hidden (Alias (Overridden_Subp))))
6290 then
6291 if Must_Not_Override (Spec) then
6292 Error_Msg_Sloc := Sloc (Overridden_Subp);
6294 if Ekind (Subp) = E_Entry then
6295 Error_Msg_NE
6296 ("entry & overrides inherited operation #", Spec, Subp);
6297 else
6298 Error_Msg_NE
6299 ("subprogram & overrides inherited operation #", Spec, Subp);
6300 end if;
6302 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6303 -- as an extension of Root_Controlled, and thus has a useless Adjust
6304 -- operation. This operation should not be inherited by other limited
6305 -- controlled types. An explicit Adjust for them is not overriding.
6307 elsif Must_Override (Spec)
6308 and then Chars (Overridden_Subp) = Name_Adjust
6309 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6310 and then Present (Alias (Overridden_Subp))
6311 and then In_Predefined_Unit (Alias (Overridden_Subp))
6312 then
6313 Get_Name_String
6314 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6315 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6317 elsif Is_Subprogram (Subp) then
6318 if Is_Init_Proc (Subp) then
6319 null;
6321 elsif No (Overridden_Operation (Subp)) then
6323 -- For entities generated by Derive_Subprograms the overridden
6324 -- operation is the inherited primitive (which is available
6325 -- through the attribute alias)
6327 if (Is_Dispatching_Operation (Subp)
6328 or else Is_Dispatching_Operation (Overridden_Subp))
6329 and then not Comes_From_Source (Overridden_Subp)
6330 and then Find_Dispatching_Type (Overridden_Subp) =
6331 Find_Dispatching_Type (Subp)
6332 and then Present (Alias (Overridden_Subp))
6333 and then Comes_From_Source (Alias (Overridden_Subp))
6334 then
6335 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6336 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6338 else
6339 Set_Overridden_Operation (Subp, Overridden_Subp);
6340 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6341 end if;
6342 end if;
6343 end if;
6345 -- If primitive flag is set or this is a protected operation, then
6346 -- the operation is overriding at the point of its declaration, so
6347 -- warn if necessary. Otherwise it may have been declared before the
6348 -- operation it overrides and no check is required.
6350 if Style_Check
6351 and then not Must_Override (Spec)
6352 and then (Is_Primitive
6353 or else Ekind (Scope (Subp)) = E_Protected_Type)
6354 then
6355 Style.Missing_Overriding (Decl, Subp);
6356 end if;
6358 -- If Subp is an operator, it may override a predefined operation, if
6359 -- it is defined in the same scope as the type to which it applies.
6360 -- In that case Overridden_Subp is empty because of our implicit
6361 -- representation for predefined operators. We have to check whether the
6362 -- signature of Subp matches that of a predefined operator. Note that
6363 -- first argument provides the name of the operator, and the second
6364 -- argument the signature that may match that of a standard operation.
6365 -- If the indicator is overriding, then the operator must match a
6366 -- predefined signature, because we know already that there is no
6367 -- explicit overridden operation.
6369 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6370 if Must_Not_Override (Spec) then
6372 -- If this is not a primitive or a protected subprogram, then
6373 -- "not overriding" is illegal.
6375 if not Is_Primitive
6376 and then Ekind (Scope (Subp)) /= E_Protected_Type
6377 then
6378 Error_Msg_N ("overriding indicator only allowed "
6379 & "if subprogram is primitive", Subp);
6381 elsif Can_Override_Operator (Subp) then
6382 Error_Msg_NE
6383 ("subprogram& overrides predefined operator ", Spec, Subp);
6384 end if;
6386 elsif Must_Override (Spec) then
6387 if No (Overridden_Operation (Subp))
6388 and then not Can_Override_Operator (Subp)
6389 then
6390 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6391 end if;
6393 elsif not Error_Posted (Subp)
6394 and then Style_Check
6395 and then Can_Override_Operator (Subp)
6396 and then not In_Predefined_Unit (Subp)
6397 then
6398 -- If style checks are enabled, indicate that the indicator is
6399 -- missing. However, at the point of declaration, the type of
6400 -- which this is a primitive operation may be private, in which
6401 -- case the indicator would be premature.
6403 if Has_Private_Declaration (Etype (Subp))
6404 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6405 then
6406 null;
6407 else
6408 Style.Missing_Overriding (Decl, Subp);
6409 end if;
6410 end if;
6412 elsif Must_Override (Spec) then
6413 if Ekind (Subp) = E_Entry then
6414 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6415 else
6416 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6417 end if;
6419 -- If the operation is marked "not overriding" and it's not primitive
6420 -- then an error is issued, unless this is an operation of a task or
6421 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6422 -- has been specified have already been checked above.
6424 elsif Must_Not_Override (Spec)
6425 and then not Is_Primitive
6426 and then Ekind (Subp) /= E_Entry
6427 and then Ekind (Scope (Subp)) /= E_Protected_Type
6428 then
6429 Error_Msg_N
6430 ("overriding indicator only allowed if subprogram is primitive",
6431 Subp);
6432 return;
6433 end if;
6434 end Check_Overriding_Indicator;
6436 -------------------
6437 -- Check_Returns --
6438 -------------------
6440 -- Note: this procedure needs to know far too much about how the expander
6441 -- messes with exceptions. The use of the flag Exception_Junk and the
6442 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6443 -- works, but is not very clean. It would be better if the expansion
6444 -- routines would leave Original_Node working nicely, and we could use
6445 -- Original_Node here to ignore all the peculiar expander messing ???
6447 procedure Check_Returns
6448 (HSS : Node_Id;
6449 Mode : Character;
6450 Err : out Boolean;
6451 Proc : Entity_Id := Empty)
6453 Handler : Node_Id;
6455 procedure Check_Statement_Sequence (L : List_Id);
6456 -- Internal recursive procedure to check a list of statements for proper
6457 -- termination by a return statement (or a transfer of control or a
6458 -- compound statement that is itself internally properly terminated).
6460 ------------------------------
6461 -- Check_Statement_Sequence --
6462 ------------------------------
6464 procedure Check_Statement_Sequence (L : List_Id) is
6465 Last_Stm : Node_Id;
6466 Stm : Node_Id;
6467 Kind : Node_Kind;
6469 function Assert_False return Boolean;
6470 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6471 -- rewritten as a null statement when assertions are off. The assert
6472 -- is not active, but it is still enough to kill the warning.
6474 ------------------
6475 -- Assert_False --
6476 ------------------
6478 function Assert_False return Boolean is
6479 Orig : constant Node_Id := Original_Node (Last_Stm);
6481 begin
6482 if Nkind (Orig) = N_Pragma
6483 and then Pragma_Name (Orig) = Name_Assert
6484 and then not Error_Posted (Orig)
6485 then
6486 declare
6487 Arg : constant Node_Id :=
6488 First (Pragma_Argument_Associations (Orig));
6489 Exp : constant Node_Id := Expression (Arg);
6490 begin
6491 return Nkind (Exp) = N_Identifier
6492 and then Chars (Exp) = Name_False;
6493 end;
6495 else
6496 return False;
6497 end if;
6498 end Assert_False;
6500 -- Local variables
6502 Raise_Exception_Call : Boolean;
6503 -- Set True if statement sequence terminated by Raise_Exception call
6504 -- or a Reraise_Occurrence call.
6506 -- Start of processing for Check_Statement_Sequence
6508 begin
6509 Raise_Exception_Call := False;
6511 -- Get last real statement
6513 Last_Stm := Last (L);
6515 -- Deal with digging out exception handler statement sequences that
6516 -- have been transformed by the local raise to goto optimization.
6517 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6518 -- optimization has occurred, we are looking at something like:
6520 -- begin
6521 -- original stmts in block
6523 -- exception \
6524 -- when excep1 => |
6525 -- goto L1; | omitted if No_Exception_Propagation
6526 -- when excep2 => |
6527 -- goto L2; /
6528 -- end;
6530 -- goto L3; -- skip handler when exception not raised
6532 -- <<L1>> -- target label for local exception
6533 -- begin
6534 -- estmts1
6535 -- end;
6537 -- goto L3;
6539 -- <<L2>>
6540 -- begin
6541 -- estmts2
6542 -- end;
6544 -- <<L3>>
6546 -- and what we have to do is to dig out the estmts1 and estmts2
6547 -- sequences (which were the original sequences of statements in
6548 -- the exception handlers) and check them.
6550 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6551 Stm := Last_Stm;
6552 loop
6553 Prev (Stm);
6554 exit when No (Stm);
6555 exit when Nkind (Stm) /= N_Block_Statement;
6556 exit when not Exception_Junk (Stm);
6557 Prev (Stm);
6558 exit when No (Stm);
6559 exit when Nkind (Stm) /= N_Label;
6560 exit when not Exception_Junk (Stm);
6561 Check_Statement_Sequence
6562 (Statements (Handled_Statement_Sequence (Next (Stm))));
6564 Prev (Stm);
6565 Last_Stm := Stm;
6566 exit when No (Stm);
6567 exit when Nkind (Stm) /= N_Goto_Statement;
6568 exit when not Exception_Junk (Stm);
6569 end loop;
6570 end if;
6572 -- Don't count pragmas
6574 while Nkind (Last_Stm) = N_Pragma
6576 -- Don't count call to SS_Release (can happen after Raise_Exception)
6578 or else
6579 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6580 and then
6581 Nkind (Name (Last_Stm)) = N_Identifier
6582 and then
6583 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6585 -- Don't count exception junk
6587 or else
6588 (Nkind_In (Last_Stm, N_Goto_Statement,
6589 N_Label,
6590 N_Object_Declaration)
6591 and then Exception_Junk (Last_Stm))
6592 or else Nkind (Last_Stm) in N_Push_xxx_Label
6593 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6595 -- Inserted code, such as finalization calls, is irrelevant: we only
6596 -- need to check original source.
6598 or else Is_Rewrite_Insertion (Last_Stm)
6599 loop
6600 Prev (Last_Stm);
6601 end loop;
6603 -- Here we have the "real" last statement
6605 Kind := Nkind (Last_Stm);
6607 -- Transfer of control, OK. Note that in the No_Return procedure
6608 -- case, we already diagnosed any explicit return statements, so
6609 -- we can treat them as OK in this context.
6611 if Is_Transfer (Last_Stm) then
6612 return;
6614 -- Check cases of explicit non-indirect procedure calls
6616 elsif Kind = N_Procedure_Call_Statement
6617 and then Is_Entity_Name (Name (Last_Stm))
6618 then
6619 -- Check call to Raise_Exception procedure which is treated
6620 -- specially, as is a call to Reraise_Occurrence.
6622 -- We suppress the warning in these cases since it is likely that
6623 -- the programmer really does not expect to deal with the case
6624 -- of Null_Occurrence, and thus would find a warning about a
6625 -- missing return curious, and raising Program_Error does not
6626 -- seem such a bad behavior if this does occur.
6628 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6629 -- behavior will be to raise Constraint_Error (see AI-329).
6631 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6632 or else
6633 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6634 then
6635 Raise_Exception_Call := True;
6637 -- For Raise_Exception call, test first argument, if it is
6638 -- an attribute reference for a 'Identity call, then we know
6639 -- that the call cannot possibly return.
6641 declare
6642 Arg : constant Node_Id :=
6643 Original_Node (First_Actual (Last_Stm));
6644 begin
6645 if Nkind (Arg) = N_Attribute_Reference
6646 and then Attribute_Name (Arg) = Name_Identity
6647 then
6648 return;
6649 end if;
6650 end;
6651 end if;
6653 -- If statement, need to look inside if there is an else and check
6654 -- each constituent statement sequence for proper termination.
6656 elsif Kind = N_If_Statement
6657 and then Present (Else_Statements (Last_Stm))
6658 then
6659 Check_Statement_Sequence (Then_Statements (Last_Stm));
6660 Check_Statement_Sequence (Else_Statements (Last_Stm));
6662 if Present (Elsif_Parts (Last_Stm)) then
6663 declare
6664 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6666 begin
6667 while Present (Elsif_Part) loop
6668 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6669 Next (Elsif_Part);
6670 end loop;
6671 end;
6672 end if;
6674 return;
6676 -- Case statement, check each case for proper termination
6678 elsif Kind = N_Case_Statement then
6679 declare
6680 Case_Alt : Node_Id;
6681 begin
6682 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6683 while Present (Case_Alt) loop
6684 Check_Statement_Sequence (Statements (Case_Alt));
6685 Next_Non_Pragma (Case_Alt);
6686 end loop;
6687 end;
6689 return;
6691 -- Block statement, check its handled sequence of statements
6693 elsif Kind = N_Block_Statement then
6694 declare
6695 Err1 : Boolean;
6697 begin
6698 Check_Returns
6699 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6701 if Err1 then
6702 Err := True;
6703 end if;
6705 return;
6706 end;
6708 -- Loop statement. If there is an iteration scheme, we can definitely
6709 -- fall out of the loop. Similarly if there is an exit statement, we
6710 -- can fall out. In either case we need a following return.
6712 elsif Kind = N_Loop_Statement then
6713 if Present (Iteration_Scheme (Last_Stm))
6714 or else Has_Exit (Entity (Identifier (Last_Stm)))
6715 then
6716 null;
6718 -- A loop with no exit statement or iteration scheme is either
6719 -- an infinite loop, or it has some other exit (raise/return).
6720 -- In either case, no warning is required.
6722 else
6723 return;
6724 end if;
6726 -- Timed entry call, check entry call and delay alternatives
6728 -- Note: in expanded code, the timed entry call has been converted
6729 -- to a set of expanded statements on which the check will work
6730 -- correctly in any case.
6732 elsif Kind = N_Timed_Entry_Call then
6733 declare
6734 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6735 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6737 begin
6738 -- If statement sequence of entry call alternative is missing,
6739 -- then we can definitely fall through, and we post the error
6740 -- message on the entry call alternative itself.
6742 if No (Statements (ECA)) then
6743 Last_Stm := ECA;
6745 -- If statement sequence of delay alternative is missing, then
6746 -- we can definitely fall through, and we post the error
6747 -- message on the delay alternative itself.
6749 -- Note: if both ECA and DCA are missing the return, then we
6750 -- post only one message, should be enough to fix the bugs.
6751 -- If not we will get a message next time on the DCA when the
6752 -- ECA is fixed.
6754 elsif No (Statements (DCA)) then
6755 Last_Stm := DCA;
6757 -- Else check both statement sequences
6759 else
6760 Check_Statement_Sequence (Statements (ECA));
6761 Check_Statement_Sequence (Statements (DCA));
6762 return;
6763 end if;
6764 end;
6766 -- Conditional entry call, check entry call and else part
6768 -- Note: in expanded code, the conditional entry call has been
6769 -- converted to a set of expanded statements on which the check
6770 -- will work correctly in any case.
6772 elsif Kind = N_Conditional_Entry_Call then
6773 declare
6774 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6776 begin
6777 -- If statement sequence of entry call alternative is missing,
6778 -- then we can definitely fall through, and we post the error
6779 -- message on the entry call alternative itself.
6781 if No (Statements (ECA)) then
6782 Last_Stm := ECA;
6784 -- Else check statement sequence and else part
6786 else
6787 Check_Statement_Sequence (Statements (ECA));
6788 Check_Statement_Sequence (Else_Statements (Last_Stm));
6789 return;
6790 end if;
6791 end;
6792 end if;
6794 -- If we fall through, issue appropriate message
6796 if Mode = 'F' then
6798 -- Kill warning if last statement is a raise exception call,
6799 -- or a pragma Assert (False). Note that with assertions enabled,
6800 -- such a pragma has been converted into a raise exception call
6801 -- already, so the Assert_False is for the assertions off case.
6803 if not Raise_Exception_Call and then not Assert_False then
6805 -- In GNATprove mode, it is an error to have a missing return
6807 Error_Msg_Warn := SPARK_Mode /= On;
6809 -- Issue error message or warning
6811 Error_Msg_N
6812 ("RETURN statement missing following this statement<<!",
6813 Last_Stm);
6814 Error_Msg_N
6815 ("\Program_Error ]<<!", Last_Stm);
6816 end if;
6818 -- Note: we set Err even though we have not issued a warning
6819 -- because we still have a case of a missing return. This is
6820 -- an extremely marginal case, probably will never be noticed
6821 -- but we might as well get it right.
6823 Err := True;
6825 -- Otherwise we have the case of a procedure marked No_Return
6827 else
6828 if not Raise_Exception_Call then
6829 if GNATprove_Mode then
6830 Error_Msg_N
6831 ("implied return after this statement would have raised "
6832 & "Program_Error", Last_Stm);
6834 -- In normal compilation mode, do not warn on a generated call
6835 -- (e.g. in the body of a renaming as completion).
6837 elsif Comes_From_Source (Last_Stm) then
6838 Error_Msg_N
6839 ("implied return after this statement will raise "
6840 & "Program_Error??", Last_Stm);
6841 end if;
6843 Error_Msg_Warn := SPARK_Mode /= On;
6844 Error_Msg_NE
6845 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6846 end if;
6848 declare
6849 RE : constant Node_Id :=
6850 Make_Raise_Program_Error (Sloc (Last_Stm),
6851 Reason => PE_Implicit_Return);
6852 begin
6853 Insert_After (Last_Stm, RE);
6854 Analyze (RE);
6855 end;
6856 end if;
6857 end Check_Statement_Sequence;
6859 -- Start of processing for Check_Returns
6861 begin
6862 Err := False;
6863 Check_Statement_Sequence (Statements (HSS));
6865 if Present (Exception_Handlers (HSS)) then
6866 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6867 while Present (Handler) loop
6868 Check_Statement_Sequence (Statements (Handler));
6869 Next_Non_Pragma (Handler);
6870 end loop;
6871 end if;
6872 end Check_Returns;
6874 ----------------------------
6875 -- Check_Subprogram_Order --
6876 ----------------------------
6878 procedure Check_Subprogram_Order (N : Node_Id) is
6880 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6881 -- This is used to check if S1 > S2 in the sense required by this test,
6882 -- for example nameab < namec, but name2 < name10.
6884 -----------------------------
6885 -- Subprogram_Name_Greater --
6886 -----------------------------
6888 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6889 L1, L2 : Positive;
6890 N1, N2 : Natural;
6892 begin
6893 -- Deal with special case where names are identical except for a
6894 -- numerical suffix. These are handled specially, taking the numeric
6895 -- ordering from the suffix into account.
6897 L1 := S1'Last;
6898 while S1 (L1) in '0' .. '9' loop
6899 L1 := L1 - 1;
6900 end loop;
6902 L2 := S2'Last;
6903 while S2 (L2) in '0' .. '9' loop
6904 L2 := L2 - 1;
6905 end loop;
6907 -- If non-numeric parts non-equal, do straight compare
6909 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6910 return S1 > S2;
6912 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6913 -- that a missing suffix is treated as numeric zero in this test.
6915 else
6916 N1 := 0;
6917 while L1 < S1'Last loop
6918 L1 := L1 + 1;
6919 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6920 end loop;
6922 N2 := 0;
6923 while L2 < S2'Last loop
6924 L2 := L2 + 1;
6925 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6926 end loop;
6928 return N1 > N2;
6929 end if;
6930 end Subprogram_Name_Greater;
6932 -- Start of processing for Check_Subprogram_Order
6934 begin
6935 -- Check body in alpha order if this is option
6937 if Style_Check
6938 and then Style_Check_Order_Subprograms
6939 and then Nkind (N) = N_Subprogram_Body
6940 and then Comes_From_Source (N)
6941 and then In_Extended_Main_Source_Unit (N)
6942 then
6943 declare
6944 LSN : String_Ptr
6945 renames Scope_Stack.Table
6946 (Scope_Stack.Last).Last_Subprogram_Name;
6948 Body_Id : constant Entity_Id :=
6949 Defining_Entity (Specification (N));
6951 begin
6952 Get_Decoded_Name_String (Chars (Body_Id));
6954 if LSN /= null then
6955 if Subprogram_Name_Greater
6956 (LSN.all, Name_Buffer (1 .. Name_Len))
6957 then
6958 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6959 end if;
6961 Free (LSN);
6962 end if;
6964 LSN := new String'(Name_Buffer (1 .. Name_Len));
6965 end;
6966 end if;
6967 end Check_Subprogram_Order;
6969 ------------------------------
6970 -- Check_Subtype_Conformant --
6971 ------------------------------
6973 procedure Check_Subtype_Conformant
6974 (New_Id : Entity_Id;
6975 Old_Id : Entity_Id;
6976 Err_Loc : Node_Id := Empty;
6977 Skip_Controlling_Formals : Boolean := False;
6978 Get_Inst : Boolean := False)
6980 Result : Boolean;
6981 pragma Warnings (Off, Result);
6982 begin
6983 Check_Conformance
6984 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6985 Skip_Controlling_Formals => Skip_Controlling_Formals,
6986 Get_Inst => Get_Inst);
6987 end Check_Subtype_Conformant;
6989 -----------------------------------
6990 -- Check_Synchronized_Overriding --
6991 -----------------------------------
6993 procedure Check_Synchronized_Overriding
6994 (Def_Id : Entity_Id;
6995 Overridden_Subp : out Entity_Id)
6997 Ifaces_List : Elist_Id;
6998 In_Scope : Boolean;
6999 Typ : Entity_Id;
7001 function Matches_Prefixed_View_Profile
7002 (Prim_Params : List_Id;
7003 Iface_Params : List_Id) return Boolean;
7004 -- Determine whether a subprogram's parameter profile Prim_Params
7005 -- matches that of a potentially overridden interface subprogram
7006 -- Iface_Params. Also determine if the type of first parameter of
7007 -- Iface_Params is an implemented interface.
7009 -----------------------------------
7010 -- Matches_Prefixed_View_Profile --
7011 -----------------------------------
7013 function Matches_Prefixed_View_Profile
7014 (Prim_Params : List_Id;
7015 Iface_Params : List_Id) return Boolean
7017 function Is_Implemented
7018 (Ifaces_List : Elist_Id;
7019 Iface : Entity_Id) return Boolean;
7020 -- Determine if Iface is implemented by the current task or
7021 -- protected type.
7023 --------------------
7024 -- Is_Implemented --
7025 --------------------
7027 function Is_Implemented
7028 (Ifaces_List : Elist_Id;
7029 Iface : Entity_Id) return Boolean
7031 Iface_Elmt : Elmt_Id;
7033 begin
7034 Iface_Elmt := First_Elmt (Ifaces_List);
7035 while Present (Iface_Elmt) loop
7036 if Node (Iface_Elmt) = Iface then
7037 return True;
7038 end if;
7040 Next_Elmt (Iface_Elmt);
7041 end loop;
7043 return False;
7044 end Is_Implemented;
7046 -- Local variables
7048 Iface_Id : Entity_Id;
7049 Iface_Param : Node_Id;
7050 Iface_Typ : Entity_Id;
7051 Prim_Id : Entity_Id;
7052 Prim_Param : Node_Id;
7053 Prim_Typ : Entity_Id;
7055 -- Start of processing for Matches_Prefixed_View_Profile
7057 begin
7058 Iface_Param := First (Iface_Params);
7059 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7061 if Is_Access_Type (Iface_Typ) then
7062 Iface_Typ := Designated_Type (Iface_Typ);
7063 end if;
7065 Prim_Param := First (Prim_Params);
7067 -- The first parameter of the potentially overridden subprogram must
7068 -- be an interface implemented by Prim.
7070 if not Is_Interface (Iface_Typ)
7071 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7072 then
7073 return False;
7074 end if;
7076 -- The checks on the object parameters are done, so move on to the
7077 -- rest of the parameters.
7079 if not In_Scope then
7080 Prim_Param := Next (Prim_Param);
7081 end if;
7083 Iface_Param := Next (Iface_Param);
7084 while Present (Iface_Param) and then Present (Prim_Param) loop
7085 Iface_Id := Defining_Identifier (Iface_Param);
7086 Iface_Typ := Find_Parameter_Type (Iface_Param);
7088 Prim_Id := Defining_Identifier (Prim_Param);
7089 Prim_Typ := Find_Parameter_Type (Prim_Param);
7091 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7092 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7093 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7094 then
7095 Iface_Typ := Designated_Type (Iface_Typ);
7096 Prim_Typ := Designated_Type (Prim_Typ);
7097 end if;
7099 -- Case of multiple interface types inside a parameter profile
7101 -- (Obj_Param : in out Iface; ...; Param : Iface)
7103 -- If the interface type is implemented, then the matching type in
7104 -- the primitive should be the implementing record type.
7106 if Ekind (Iface_Typ) = E_Record_Type
7107 and then Is_Interface (Iface_Typ)
7108 and then Is_Implemented (Ifaces_List, Iface_Typ)
7109 then
7110 if Prim_Typ /= Typ then
7111 return False;
7112 end if;
7114 -- The two parameters must be both mode and subtype conformant
7116 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7117 or else not
7118 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7119 then
7120 return False;
7121 end if;
7123 Next (Iface_Param);
7124 Next (Prim_Param);
7125 end loop;
7127 -- One of the two lists contains more parameters than the other
7129 if Present (Iface_Param) or else Present (Prim_Param) then
7130 return False;
7131 end if;
7133 return True;
7134 end Matches_Prefixed_View_Profile;
7136 -- Start of processing for Check_Synchronized_Overriding
7138 begin
7139 Overridden_Subp := Empty;
7141 -- Def_Id must be an entry or a subprogram. We should skip predefined
7142 -- primitives internally generated by the front end; however at this
7143 -- stage predefined primitives are still not fully decorated. As a
7144 -- minor optimization we skip here internally generated subprograms.
7146 if (Ekind (Def_Id) /= E_Entry
7147 and then Ekind (Def_Id) /= E_Function
7148 and then Ekind (Def_Id) /= E_Procedure)
7149 or else not Comes_From_Source (Def_Id)
7150 then
7151 return;
7152 end if;
7154 -- Search for the concurrent declaration since it contains the list of
7155 -- all implemented interfaces. In this case, the subprogram is declared
7156 -- within the scope of a protected or a task type.
7158 if Present (Scope (Def_Id))
7159 and then Is_Concurrent_Type (Scope (Def_Id))
7160 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7161 then
7162 Typ := Scope (Def_Id);
7163 In_Scope := True;
7165 -- The enclosing scope is not a synchronized type and the subprogram
7166 -- has no formals.
7168 elsif No (First_Formal (Def_Id)) then
7169 return;
7171 -- The subprogram has formals and hence it may be a primitive of a
7172 -- concurrent type.
7174 else
7175 Typ := Etype (First_Formal (Def_Id));
7177 if Is_Access_Type (Typ) then
7178 Typ := Directly_Designated_Type (Typ);
7179 end if;
7181 if Is_Concurrent_Type (Typ)
7182 and then not Is_Generic_Actual_Type (Typ)
7183 then
7184 In_Scope := False;
7186 -- This case occurs when the concurrent type is declared within a
7187 -- generic unit. As a result the corresponding record has been built
7188 -- and used as the type of the first formal, we just have to retrieve
7189 -- the corresponding concurrent type.
7191 elsif Is_Concurrent_Record_Type (Typ)
7192 and then not Is_Class_Wide_Type (Typ)
7193 and then Present (Corresponding_Concurrent_Type (Typ))
7194 then
7195 Typ := Corresponding_Concurrent_Type (Typ);
7196 In_Scope := False;
7198 else
7199 return;
7200 end if;
7201 end if;
7203 -- There is no overriding to check if this is an inherited operation in
7204 -- a type derivation for a generic actual.
7206 Collect_Interfaces (Typ, Ifaces_List);
7208 if Is_Empty_Elmt_List (Ifaces_List) then
7209 return;
7210 end if;
7212 -- Determine whether entry or subprogram Def_Id overrides a primitive
7213 -- operation that belongs to one of the interfaces in Ifaces_List.
7215 declare
7216 Candidate : Entity_Id := Empty;
7217 Hom : Entity_Id := Empty;
7218 Subp : Entity_Id := Empty;
7220 begin
7221 -- Traverse the homonym chain, looking for a potentially overridden
7222 -- subprogram that belongs to an implemented interface.
7224 Hom := Current_Entity_In_Scope (Def_Id);
7225 while Present (Hom) loop
7226 Subp := Hom;
7228 if Subp = Def_Id
7229 or else not Is_Overloadable (Subp)
7230 or else not Is_Primitive (Subp)
7231 or else not Is_Dispatching_Operation (Subp)
7232 or else not Present (Find_Dispatching_Type (Subp))
7233 or else not Is_Interface (Find_Dispatching_Type (Subp))
7234 then
7235 null;
7237 -- Entries and procedures can override abstract or null interface
7238 -- procedures.
7240 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7241 and then Ekind (Subp) = E_Procedure
7242 and then Matches_Prefixed_View_Profile
7243 (Parameter_Specifications (Parent (Def_Id)),
7244 Parameter_Specifications (Parent (Subp)))
7245 then
7246 Candidate := Subp;
7248 -- For an overridden subprogram Subp, check whether the mode
7249 -- of its first parameter is correct depending on the kind of
7250 -- synchronized type.
7252 declare
7253 Formal : constant Node_Id := First_Formal (Candidate);
7255 begin
7256 -- In order for an entry or a protected procedure to
7257 -- override, the first parameter of the overridden routine
7258 -- must be of mode "out", "in out", or access-to-variable.
7260 if Ekind_In (Candidate, E_Entry, E_Procedure)
7261 and then Is_Protected_Type (Typ)
7262 and then Ekind (Formal) /= E_In_Out_Parameter
7263 and then Ekind (Formal) /= E_Out_Parameter
7264 and then Nkind (Parameter_Type (Parent (Formal))) /=
7265 N_Access_Definition
7266 then
7267 null;
7269 -- All other cases are OK since a task entry or routine does
7270 -- not have a restriction on the mode of the first parameter
7271 -- of the overridden interface routine.
7273 else
7274 Overridden_Subp := Candidate;
7275 return;
7276 end if;
7277 end;
7279 -- Functions can override abstract interface functions
7281 elsif Ekind (Def_Id) = E_Function
7282 and then Ekind (Subp) = E_Function
7283 and then Matches_Prefixed_View_Profile
7284 (Parameter_Specifications (Parent (Def_Id)),
7285 Parameter_Specifications (Parent (Subp)))
7286 and then Etype (Def_Id) = Etype (Subp)
7287 then
7288 Candidate := Subp;
7290 -- If an inherited subprogram is implemented by a protected
7291 -- function, then the first parameter of the inherited
7292 -- subprogram shall be of mode in, but not an access-to-
7293 -- variable parameter (RM 9.4(11/9)).
7295 if Present (First_Formal (Subp))
7296 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7297 and then
7298 (not Is_Access_Type (Etype (First_Formal (Subp)))
7299 or else
7300 Is_Access_Constant (Etype (First_Formal (Subp))))
7301 then
7302 Overridden_Subp := Subp;
7303 return;
7304 end if;
7305 end if;
7307 Hom := Homonym (Hom);
7308 end loop;
7310 -- After examining all candidates for overriding, we are left with
7311 -- the best match, which is a mode-incompatible interface routine.
7313 if In_Scope and then Present (Candidate) then
7314 Error_Msg_PT (Def_Id, Candidate);
7315 end if;
7317 Overridden_Subp := Candidate;
7318 return;
7319 end;
7320 end Check_Synchronized_Overriding;
7322 ---------------------------
7323 -- Check_Type_Conformant --
7324 ---------------------------
7326 procedure Check_Type_Conformant
7327 (New_Id : Entity_Id;
7328 Old_Id : Entity_Id;
7329 Err_Loc : Node_Id := Empty)
7331 Result : Boolean;
7332 pragma Warnings (Off, Result);
7333 begin
7334 Check_Conformance
7335 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7336 end Check_Type_Conformant;
7338 ---------------------------
7339 -- Can_Override_Operator --
7340 ---------------------------
7342 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7343 Typ : Entity_Id;
7345 begin
7346 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7347 return False;
7349 else
7350 Typ := Base_Type (Etype (First_Formal (Subp)));
7352 -- Check explicitly that the operation is a primitive of the type
7354 return Operator_Matches_Spec (Subp, Subp)
7355 and then not Is_Generic_Type (Typ)
7356 and then Scope (Subp) = Scope (Typ)
7357 and then not Is_Class_Wide_Type (Typ);
7358 end if;
7359 end Can_Override_Operator;
7361 ----------------------
7362 -- Conforming_Types --
7363 ----------------------
7365 function Conforming_Types
7366 (T1 : Entity_Id;
7367 T2 : Entity_Id;
7368 Ctype : Conformance_Type;
7369 Get_Inst : Boolean := False) return Boolean
7371 function Base_Types_Match
7372 (Typ_1 : Entity_Id;
7373 Typ_2 : Entity_Id) return Boolean;
7374 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7375 -- in different scopes (e.g. parent and child instances), then verify
7376 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7377 -- the same subtype chain. The whole purpose of this procedure is to
7378 -- prevent spurious ambiguities in an instantiation that may arise if
7379 -- two distinct generic types are instantiated with the same actual.
7381 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7382 -- An access parameter can designate an incomplete type. If the
7383 -- incomplete type is the limited view of a type from a limited_
7384 -- with_clause, check whether the non-limited view is available.
7385 -- If it is a (non-limited) incomplete type, get the full view.
7387 function Matches_Limited_With_View
7388 (Typ_1 : Entity_Id;
7389 Typ_2 : Entity_Id) return Boolean;
7390 -- Returns True if and only if either Typ_1 denotes a limited view of
7391 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7392 -- the limited with view of a type is used in a subprogram declaration
7393 -- and the subprogram body is in the scope of a regular with clause for
7394 -- the same unit. In such a case, the two type entities are considered
7395 -- identical for purposes of conformance checking.
7397 ----------------------
7398 -- Base_Types_Match --
7399 ----------------------
7401 function Base_Types_Match
7402 (Typ_1 : Entity_Id;
7403 Typ_2 : Entity_Id) return Boolean
7405 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7406 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7408 begin
7409 if Typ_1 = Typ_2 then
7410 return True;
7412 elsif Base_1 = Base_2 then
7414 -- The following is too permissive. A more precise test should
7415 -- check that the generic actual is an ancestor subtype of the
7416 -- other ???.
7418 -- See code in Find_Corresponding_Spec that applies an additional
7419 -- filter to handle accidental amiguities in instances.
7421 return
7422 not Is_Generic_Actual_Type (Typ_1)
7423 or else not Is_Generic_Actual_Type (Typ_2)
7424 or else Scope (Typ_1) /= Scope (Typ_2);
7426 -- If Typ_2 is a generic actual type it is declared as the subtype of
7427 -- the actual. If that actual is itself a subtype we need to use its
7428 -- own base type to check for compatibility.
7430 elsif Ekind (Base_2) = Ekind (Typ_2)
7431 and then Base_1 = Base_Type (Base_2)
7432 then
7433 return True;
7435 elsif Ekind (Base_1) = Ekind (Typ_1)
7436 and then Base_2 = Base_Type (Base_1)
7437 then
7438 return True;
7440 else
7441 return False;
7442 end if;
7443 end Base_Types_Match;
7445 --------------------------
7446 -- Find_Designated_Type --
7447 --------------------------
7449 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7450 Desig : Entity_Id;
7452 begin
7453 Desig := Directly_Designated_Type (Typ);
7455 if Ekind (Desig) = E_Incomplete_Type then
7457 -- If regular incomplete type, get full view if available
7459 if Present (Full_View (Desig)) then
7460 Desig := Full_View (Desig);
7462 -- If limited view of a type, get non-limited view if available,
7463 -- and check again for a regular incomplete type.
7465 elsif Present (Non_Limited_View (Desig)) then
7466 Desig := Get_Full_View (Non_Limited_View (Desig));
7467 end if;
7468 end if;
7470 return Desig;
7471 end Find_Designated_Type;
7473 -------------------------------
7474 -- Matches_Limited_With_View --
7475 -------------------------------
7477 function Matches_Limited_With_View
7478 (Typ_1 : Entity_Id;
7479 Typ_2 : Entity_Id) return Boolean
7481 function Is_Matching_Limited_View
7482 (Typ : Entity_Id;
7483 View : Entity_Id) return Boolean;
7484 -- Determine whether non-limited view View denotes type Typ in some
7485 -- conformant fashion.
7487 ------------------------------
7488 -- Is_Matching_Limited_View --
7489 ------------------------------
7491 function Is_Matching_Limited_View
7492 (Typ : Entity_Id;
7493 View : Entity_Id) return Boolean
7495 Root_Typ : Entity_Id;
7496 Root_View : Entity_Id;
7498 begin
7499 -- The non-limited view directly denotes the type
7501 if Typ = View then
7502 return True;
7504 -- The type is a subtype of the non-limited view
7506 elsif Is_Subtype_Of (Typ, View) then
7507 return True;
7509 -- Both the non-limited view and the type denote class-wide types
7511 elsif Is_Class_Wide_Type (Typ)
7512 and then Is_Class_Wide_Type (View)
7513 then
7514 Root_Typ := Root_Type (Typ);
7515 Root_View := Root_Type (View);
7517 if Root_Typ = Root_View then
7518 return True;
7520 -- An incomplete tagged type and its full view may receive two
7521 -- distinct class-wide types when the related package has not
7522 -- been analyzed yet.
7524 -- package Pack is
7525 -- type T is tagged; -- CW_1
7526 -- type T is tagged null record; -- CW_2
7527 -- end Pack;
7529 -- This is because the package lacks any semantic information
7530 -- that may eventually link both views of T. As a consequence,
7531 -- a client of the limited view of Pack will see CW_2 while a
7532 -- client of the non-limited view of Pack will see CW_1.
7534 elsif Is_Incomplete_Type (Root_Typ)
7535 and then Present (Full_View (Root_Typ))
7536 and then Full_View (Root_Typ) = Root_View
7537 then
7538 return True;
7540 elsif Is_Incomplete_Type (Root_View)
7541 and then Present (Full_View (Root_View))
7542 and then Full_View (Root_View) = Root_Typ
7543 then
7544 return True;
7545 end if;
7546 end if;
7548 return False;
7549 end Is_Matching_Limited_View;
7551 -- Start of processing for Matches_Limited_With_View
7553 begin
7554 -- In some cases a type imported through a limited_with clause, and
7555 -- its non-limited view are both visible, for example in an anonymous
7556 -- access-to-class-wide type in a formal, or when building the body
7557 -- for a subprogram renaming after the subprogram has been frozen.
7558 -- In these cases both entities designate the same type. In addition,
7559 -- if one of them is an actual in an instance, it may be a subtype of
7560 -- the non-limited view of the other.
7562 if From_Limited_With (Typ_1)
7563 and then From_Limited_With (Typ_2)
7564 and then Available_View (Typ_1) = Available_View (Typ_2)
7565 then
7566 return True;
7568 elsif From_Limited_With (Typ_1) then
7569 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7571 elsif From_Limited_With (Typ_2) then
7572 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7574 else
7575 return False;
7576 end if;
7577 end Matches_Limited_With_View;
7579 -- Local variables
7581 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7583 Type_1 : Entity_Id := T1;
7584 Type_2 : Entity_Id := T2;
7586 -- Start of processing for Conforming_Types
7588 begin
7589 -- The context is an instance association for a formal access-to-
7590 -- subprogram type; the formal parameter types require mapping because
7591 -- they may denote other formal parameters of the generic unit.
7593 if Get_Inst then
7594 Type_1 := Get_Instance_Of (T1);
7595 Type_2 := Get_Instance_Of (T2);
7596 end if;
7598 -- If one of the types is a view of the other introduced by a limited
7599 -- with clause, treat these as conforming for all purposes.
7601 if Matches_Limited_With_View (T1, T2) then
7602 return True;
7604 elsif Base_Types_Match (Type_1, Type_2) then
7605 if Ctype <= Mode_Conformant then
7606 return True;
7608 else
7609 return
7610 Subtypes_Statically_Match (Type_1, Type_2)
7611 and then Dimensions_Match (Type_1, Type_2);
7612 end if;
7614 elsif Is_Incomplete_Or_Private_Type (Type_1)
7615 and then Present (Full_View (Type_1))
7616 and then Base_Types_Match (Full_View (Type_1), Type_2)
7617 then
7618 return
7619 Ctype <= Mode_Conformant
7620 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7622 elsif Ekind (Type_2) = E_Incomplete_Type
7623 and then Present (Full_View (Type_2))
7624 and then Base_Types_Match (Type_1, Full_View (Type_2))
7625 then
7626 return
7627 Ctype <= Mode_Conformant
7628 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7630 elsif Is_Private_Type (Type_2)
7631 and then In_Instance
7632 and then Present (Full_View (Type_2))
7633 and then Base_Types_Match (Type_1, Full_View (Type_2))
7634 then
7635 return
7636 Ctype <= Mode_Conformant
7637 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7639 -- Another confusion between views in a nested instance with an
7640 -- actual private type whose full view is not in scope.
7642 elsif Ekind (Type_2) = E_Private_Subtype
7643 and then In_Instance
7644 and then Etype (Type_2) = Type_1
7645 then
7646 return True;
7648 -- In Ada 2012, incomplete types (including limited views) can appear
7649 -- as actuals in instantiations.
7651 elsif Is_Incomplete_Type (Type_1)
7652 and then Is_Incomplete_Type (Type_2)
7653 and then (Used_As_Generic_Actual (Type_1)
7654 or else Used_As_Generic_Actual (Type_2))
7655 then
7656 return True;
7657 end if;
7659 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7660 -- treated recursively because they carry a signature. As far as
7661 -- conformance is concerned, convention plays no role, and either
7662 -- or both could be access to protected subprograms.
7664 Are_Anonymous_Access_To_Subprogram_Types :=
7665 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7666 E_Anonymous_Access_Protected_Subprogram_Type)
7667 and then
7668 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7669 E_Anonymous_Access_Protected_Subprogram_Type);
7671 -- Test anonymous access type case. For this case, static subtype
7672 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7673 -- the base types because we may have built internal subtype entities
7674 -- to handle null-excluding types (see Process_Formals).
7676 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7677 and then
7678 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7680 -- Ada 2005 (AI-254)
7682 or else Are_Anonymous_Access_To_Subprogram_Types
7683 then
7684 declare
7685 Desig_1 : Entity_Id;
7686 Desig_2 : Entity_Id;
7688 begin
7689 -- In Ada 2005, access constant indicators must match for
7690 -- subtype conformance.
7692 if Ada_Version >= Ada_2005
7693 and then Ctype >= Subtype_Conformant
7694 and then
7695 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7696 then
7697 return False;
7698 end if;
7700 Desig_1 := Find_Designated_Type (Type_1);
7701 Desig_2 := Find_Designated_Type (Type_2);
7703 -- If the context is an instance association for a formal
7704 -- access-to-subprogram type; formal access parameter designated
7705 -- types require mapping because they may denote other formal
7706 -- parameters of the generic unit.
7708 if Get_Inst then
7709 Desig_1 := Get_Instance_Of (Desig_1);
7710 Desig_2 := Get_Instance_Of (Desig_2);
7711 end if;
7713 -- It is possible for a Class_Wide_Type to be introduced for an
7714 -- incomplete type, in which case there is a separate class_ wide
7715 -- type for the full view. The types conform if their Etypes
7716 -- conform, i.e. one may be the full view of the other. This can
7717 -- only happen in the context of an access parameter, other uses
7718 -- of an incomplete Class_Wide_Type are illegal.
7720 if Is_Class_Wide_Type (Desig_1)
7721 and then
7722 Is_Class_Wide_Type (Desig_2)
7723 then
7724 return
7725 Conforming_Types
7726 (Etype (Base_Type (Desig_1)),
7727 Etype (Base_Type (Desig_2)), Ctype);
7729 elsif Are_Anonymous_Access_To_Subprogram_Types then
7730 if Ada_Version < Ada_2005 then
7731 return
7732 Ctype = Type_Conformant
7733 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7735 -- We must check the conformance of the signatures themselves
7737 else
7738 declare
7739 Conformant : Boolean;
7740 begin
7741 Check_Conformance
7742 (Desig_1, Desig_2, Ctype, False, Conformant);
7743 return Conformant;
7744 end;
7745 end if;
7747 -- A limited view of an actual matches the corresponding
7748 -- incomplete formal.
7750 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7751 and then From_Limited_With (Desig_2)
7752 and then Used_As_Generic_Actual (Etype (Desig_2))
7753 then
7754 return True;
7756 else
7757 return Base_Type (Desig_1) = Base_Type (Desig_2)
7758 and then (Ctype = Type_Conformant
7759 or else
7760 Subtypes_Statically_Match (Desig_1, Desig_2));
7761 end if;
7762 end;
7764 -- Otherwise definitely no match
7766 else
7767 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7768 and then Is_Access_Type (Type_2))
7769 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7770 and then Is_Access_Type (Type_1)))
7771 and then
7772 Conforming_Types
7773 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7774 then
7775 May_Hide_Profile := True;
7776 end if;
7778 return False;
7779 end if;
7780 end Conforming_Types;
7782 --------------------------
7783 -- Create_Extra_Formals --
7784 --------------------------
7786 procedure Create_Extra_Formals (E : Entity_Id) is
7787 First_Extra : Entity_Id := Empty;
7788 Formal : Entity_Id;
7789 Last_Extra : Entity_Id := Empty;
7791 function Add_Extra_Formal
7792 (Assoc_Entity : Entity_Id;
7793 Typ : Entity_Id;
7794 Scope : Entity_Id;
7795 Suffix : String) return Entity_Id;
7796 -- Add an extra formal to the current list of formals and extra formals.
7797 -- The extra formal is added to the end of the list of extra formals,
7798 -- and also returned as the result. These formals are always of mode IN.
7799 -- The new formal has the type Typ, is declared in Scope, and its name
7800 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7801 -- The following suffixes are currently used. They should not be changed
7802 -- without coordinating with CodePeer, which makes use of these to
7803 -- provide better messages.
7805 -- O denotes the Constrained bit.
7806 -- L denotes the accessibility level.
7807 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7808 -- the full list in exp_ch6.BIP_Formal_Kind.
7810 ----------------------
7811 -- Add_Extra_Formal --
7812 ----------------------
7814 function Add_Extra_Formal
7815 (Assoc_Entity : Entity_Id;
7816 Typ : Entity_Id;
7817 Scope : Entity_Id;
7818 Suffix : String) return Entity_Id
7820 EF : constant Entity_Id :=
7821 Make_Defining_Identifier (Sloc (Assoc_Entity),
7822 Chars => New_External_Name (Chars (Assoc_Entity),
7823 Suffix => Suffix));
7825 begin
7826 -- A little optimization. Never generate an extra formal for the
7827 -- _init operand of an initialization procedure, since it could
7828 -- never be used.
7830 if Chars (Formal) = Name_uInit then
7831 return Empty;
7832 end if;
7834 Set_Ekind (EF, E_In_Parameter);
7835 Set_Actual_Subtype (EF, Typ);
7836 Set_Etype (EF, Typ);
7837 Set_Scope (EF, Scope);
7838 Set_Mechanism (EF, Default_Mechanism);
7839 Set_Formal_Validity (EF);
7841 if No (First_Extra) then
7842 First_Extra := EF;
7843 Set_Extra_Formals (Scope, EF);
7844 end if;
7846 if Present (Last_Extra) then
7847 Set_Extra_Formal (Last_Extra, EF);
7848 end if;
7850 Last_Extra := EF;
7852 return EF;
7853 end Add_Extra_Formal;
7855 -- Local variables
7857 Formal_Type : Entity_Id;
7858 P_Formal : Entity_Id := Empty;
7860 -- Start of processing for Create_Extra_Formals
7862 begin
7863 -- We never generate extra formals if expansion is not active because we
7864 -- don't need them unless we are generating code.
7866 if not Expander_Active then
7867 return;
7868 end if;
7870 -- No need to generate extra formals in interface thunks whose target
7871 -- primitive has no extra formals.
7873 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7874 return;
7875 end if;
7877 -- If this is a derived subprogram then the subtypes of the parent
7878 -- subprogram's formal parameters will be used to determine the need
7879 -- for extra formals.
7881 if Is_Overloadable (E) and then Present (Alias (E)) then
7882 P_Formal := First_Formal (Alias (E));
7883 end if;
7885 Formal := First_Formal (E);
7886 while Present (Formal) loop
7887 Last_Extra := Formal;
7888 Next_Formal (Formal);
7889 end loop;
7891 -- If Extra_Formals were already created, don't do it again. This
7892 -- situation may arise for subprogram types created as part of
7893 -- dispatching calls (see Expand_Dispatching_Call).
7895 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
7896 return;
7897 end if;
7899 -- If the subprogram is a predefined dispatching subprogram then don't
7900 -- generate any extra constrained or accessibility level formals. In
7901 -- general we suppress these for internal subprograms (by not calling
7902 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
7903 -- generated stream attributes do get passed through because extra
7904 -- build-in-place formals are needed in some cases (limited 'Input).
7906 if Is_Predefined_Internal_Operation (E) then
7907 goto Test_For_Func_Result_Extras;
7908 end if;
7910 Formal := First_Formal (E);
7911 while Present (Formal) loop
7913 -- Create extra formal for supporting the attribute 'Constrained.
7914 -- The case of a private type view without discriminants also
7915 -- requires the extra formal if the underlying type has defaulted
7916 -- discriminants.
7918 if Ekind (Formal) /= E_In_Parameter then
7919 if Present (P_Formal) then
7920 Formal_Type := Etype (P_Formal);
7921 else
7922 Formal_Type := Etype (Formal);
7923 end if;
7925 -- Do not produce extra formals for Unchecked_Union parameters.
7926 -- Jump directly to the end of the loop.
7928 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7929 goto Skip_Extra_Formal_Generation;
7930 end if;
7932 if not Has_Discriminants (Formal_Type)
7933 and then Ekind (Formal_Type) in Private_Kind
7934 and then Present (Underlying_Type (Formal_Type))
7935 then
7936 Formal_Type := Underlying_Type (Formal_Type);
7937 end if;
7939 -- Suppress the extra formal if formal's subtype is constrained or
7940 -- indefinite, or we're compiling for Ada 2012 and the underlying
7941 -- type is tagged and limited. In Ada 2012, a limited tagged type
7942 -- can have defaulted discriminants, but 'Constrained is required
7943 -- to return True, so the formal is never needed (see AI05-0214).
7944 -- Note that this ensures consistency of calling sequences for
7945 -- dispatching operations when some types in a class have defaults
7946 -- on discriminants and others do not (and requiring the extra
7947 -- formal would introduce distributed overhead).
7949 -- If the type does not have a completion yet, treat as prior to
7950 -- Ada 2012 for consistency.
7952 if Has_Discriminants (Formal_Type)
7953 and then not Is_Constrained (Formal_Type)
7954 and then Is_Definite_Subtype (Formal_Type)
7955 and then (Ada_Version < Ada_2012
7956 or else No (Underlying_Type (Formal_Type))
7957 or else not
7958 (Is_Limited_Type (Formal_Type)
7959 and then
7960 (Is_Tagged_Type
7961 (Underlying_Type (Formal_Type)))))
7962 then
7963 Set_Extra_Constrained
7964 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
7965 end if;
7966 end if;
7968 -- Create extra formal for supporting accessibility checking. This
7969 -- is done for both anonymous access formals and formals of named
7970 -- access types that are marked as controlling formals. The latter
7971 -- case can occur when Expand_Dispatching_Call creates a subprogram
7972 -- type and substitutes the types of access-to-class-wide actuals
7973 -- for the anonymous access-to-specific-type of controlling formals.
7974 -- Base_Type is applied because in cases where there is a null
7975 -- exclusion the formal may have an access subtype.
7977 -- This is suppressed if we specifically suppress accessibility
7978 -- checks at the package level for either the subprogram, or the
7979 -- package in which it resides. However, we do not suppress it
7980 -- simply if the scope has accessibility checks suppressed, since
7981 -- this could cause trouble when clients are compiled with a
7982 -- different suppression setting. The explicit checks at the
7983 -- package level are safe from this point of view.
7985 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
7986 or else (Is_Controlling_Formal (Formal)
7987 and then Is_Access_Type (Base_Type (Etype (Formal)))))
7988 and then not
7989 (Explicit_Suppress (E, Accessibility_Check)
7990 or else
7991 Explicit_Suppress (Scope (E), Accessibility_Check))
7992 and then
7993 (No (P_Formal)
7994 or else Present (Extra_Accessibility (P_Formal)))
7995 then
7996 Set_Extra_Accessibility
7997 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
7998 end if;
8000 -- This label is required when skipping extra formal generation for
8001 -- Unchecked_Union parameters.
8003 <<Skip_Extra_Formal_Generation>>
8005 if Present (P_Formal) then
8006 Next_Formal (P_Formal);
8007 end if;
8009 Next_Formal (Formal);
8010 end loop;
8012 <<Test_For_Func_Result_Extras>>
8014 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8015 -- function call is ... determined by the point of call ...".
8017 if Needs_Result_Accessibility_Level (E) then
8018 Set_Extra_Accessibility_Of_Result
8019 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8020 end if;
8022 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8023 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8025 if Is_Build_In_Place_Function (E) then
8026 declare
8027 Result_Subt : constant Entity_Id := Etype (E);
8028 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8029 Formal_Typ : Entity_Id;
8030 Subp_Decl : Node_Id;
8031 Discard : Entity_Id;
8033 begin
8034 -- In the case of functions with unconstrained result subtypes,
8035 -- add a 4-state formal indicating whether the return object is
8036 -- allocated by the caller (1), or should be allocated by the
8037 -- callee on the secondary stack (2), in the global heap (3), or
8038 -- in a user-defined storage pool (4). For the moment we just use
8039 -- Natural for the type of this formal. Note that this formal
8040 -- isn't usually needed in the case where the result subtype is
8041 -- constrained, but it is needed when the function has a tagged
8042 -- result, because generally such functions can be called in a
8043 -- dispatching context and such calls must be handled like calls
8044 -- to a class-wide function.
8046 if Needs_BIP_Alloc_Form (E) then
8047 Discard :=
8048 Add_Extra_Formal
8049 (E, Standard_Natural,
8050 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8052 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8053 -- use a user-defined pool. This formal is not added on
8054 -- ZFP as those targets do not support pools.
8056 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8057 Discard :=
8058 Add_Extra_Formal
8059 (E, RTE (RE_Root_Storage_Pool_Ptr),
8060 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8061 end if;
8062 end if;
8064 -- In the case of functions whose result type needs finalization,
8065 -- add an extra formal which represents the finalization master.
8067 if Needs_BIP_Finalization_Master (E) then
8068 Discard :=
8069 Add_Extra_Formal
8070 (E, RTE (RE_Finalization_Master_Ptr),
8071 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8072 end if;
8074 -- When the result type contains tasks, add two extra formals: the
8075 -- master of the tasks to be created, and the caller's activation
8076 -- chain.
8078 if Has_Task (Full_Subt) then
8079 Discard :=
8080 Add_Extra_Formal
8081 (E, RTE (RE_Master_Id),
8082 E, BIP_Formal_Suffix (BIP_Task_Master));
8083 Discard :=
8084 Add_Extra_Formal
8085 (E, RTE (RE_Activation_Chain_Access),
8086 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8087 end if;
8089 -- All build-in-place functions get an extra formal that will be
8090 -- passed the address of the return object within the caller.
8092 Formal_Typ :=
8093 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8095 -- Incomplete_View_From_Limited_With is needed here because
8096 -- gigi gets confused if the designated type is the full view
8097 -- coming from a limited-with'ed package. In the normal case,
8098 -- (no limited with) Incomplete_View_From_Limited_With
8099 -- returns Result_Subt.
8101 Set_Directly_Designated_Type
8102 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8103 Set_Etype (Formal_Typ, Formal_Typ);
8104 Set_Depends_On_Private
8105 (Formal_Typ, Has_Private_Component (Formal_Typ));
8106 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8107 Set_Is_Access_Constant (Formal_Typ, False);
8109 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8110 -- the designated type comes from the limited view (for back-end
8111 -- purposes).
8113 Set_From_Limited_With
8114 (Formal_Typ, From_Limited_With (Result_Subt));
8116 Layout_Type (Formal_Typ);
8118 -- Force the definition of the Itype in case of internal function
8119 -- calls within the same or nested scope.
8121 if Is_Subprogram_Or_Generic_Subprogram (E) then
8122 Subp_Decl := Parent (E);
8124 -- The insertion point for an Itype reference should be after
8125 -- the unit declaration node of the subprogram. An exception
8126 -- to this are inherited operations from a parent type in which
8127 -- case the derived type acts as their parent.
8129 if Nkind_In (Subp_Decl, N_Function_Specification,
8130 N_Procedure_Specification)
8131 then
8132 Subp_Decl := Parent (Subp_Decl);
8133 end if;
8135 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8136 end if;
8138 Discard :=
8139 Add_Extra_Formal
8140 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8141 end;
8142 end if;
8143 end Create_Extra_Formals;
8145 -----------------------------
8146 -- Enter_Overloaded_Entity --
8147 -----------------------------
8149 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8150 function Matches_Predefined_Op return Boolean;
8151 -- This returns an approximation of whether S matches a predefined
8152 -- operator, based on the operator symbol, and the parameter and result
8153 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8155 ---------------------------
8156 -- Matches_Predefined_Op --
8157 ---------------------------
8159 function Matches_Predefined_Op return Boolean is
8160 Formal_1 : constant Entity_Id := First_Formal (S);
8161 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8162 Op : constant Name_Id := Chars (S);
8163 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8164 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8166 begin
8167 -- Binary operator
8169 if Present (Formal_2) then
8170 declare
8171 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8173 begin
8174 -- All but "&" and "**" have same-types parameters
8176 case Op is
8177 when Name_Op_Concat
8178 | Name_Op_Expon
8180 null;
8182 when others =>
8183 if Type_1 /= Type_2 then
8184 return False;
8185 end if;
8186 end case;
8188 -- Check parameter and result types
8190 case Op is
8191 when Name_Op_And
8192 | Name_Op_Or
8193 | Name_Op_Xor
8195 return
8196 Is_Boolean_Type (Result_Type)
8197 and then Result_Type = Type_1;
8199 when Name_Op_Mod
8200 | Name_Op_Rem
8202 return
8203 Is_Integer_Type (Result_Type)
8204 and then Result_Type = Type_1;
8206 when Name_Op_Add
8207 | Name_Op_Divide
8208 | Name_Op_Multiply
8209 | Name_Op_Subtract
8211 return
8212 Is_Numeric_Type (Result_Type)
8213 and then Result_Type = Type_1;
8215 when Name_Op_Eq
8216 | Name_Op_Ne
8218 return
8219 Is_Boolean_Type (Result_Type)
8220 and then not Is_Limited_Type (Type_1);
8222 when Name_Op_Ge
8223 | Name_Op_Gt
8224 | Name_Op_Le
8225 | Name_Op_Lt
8227 return
8228 Is_Boolean_Type (Result_Type)
8229 and then (Is_Array_Type (Type_1)
8230 or else Is_Scalar_Type (Type_1));
8232 when Name_Op_Concat =>
8233 return Is_Array_Type (Result_Type);
8235 when Name_Op_Expon =>
8236 return
8237 (Is_Integer_Type (Result_Type)
8238 or else Is_Floating_Point_Type (Result_Type))
8239 and then Result_Type = Type_1
8240 and then Type_2 = Standard_Integer;
8242 when others =>
8243 raise Program_Error;
8244 end case;
8245 end;
8247 -- Unary operator
8249 else
8250 case Op is
8251 when Name_Op_Abs
8252 | Name_Op_Add
8253 | Name_Op_Subtract
8255 return
8256 Is_Numeric_Type (Result_Type)
8257 and then Result_Type = Type_1;
8259 when Name_Op_Not =>
8260 return
8261 Is_Boolean_Type (Result_Type)
8262 and then Result_Type = Type_1;
8264 when others =>
8265 raise Program_Error;
8266 end case;
8267 end if;
8268 end Matches_Predefined_Op;
8270 -- Local variables
8272 E : Entity_Id := Current_Entity_In_Scope (S);
8273 C_E : Entity_Id := Current_Entity (S);
8275 -- Start of processing for Enter_Overloaded_Entity
8277 begin
8278 if Present (E) then
8279 Set_Has_Homonym (E);
8280 Set_Has_Homonym (S);
8281 end if;
8283 Set_Is_Immediately_Visible (S);
8284 Set_Scope (S, Current_Scope);
8286 -- Chain new entity if front of homonym in current scope, so that
8287 -- homonyms are contiguous.
8289 if Present (E) and then E /= C_E then
8290 while Homonym (C_E) /= E loop
8291 C_E := Homonym (C_E);
8292 end loop;
8294 Set_Homonym (C_E, S);
8296 else
8297 E := C_E;
8298 Set_Current_Entity (S);
8299 end if;
8301 Set_Homonym (S, E);
8303 if Is_Inherited_Operation (S) then
8304 Append_Inherited_Subprogram (S);
8305 else
8306 Append_Entity (S, Current_Scope);
8307 end if;
8309 Set_Public_Status (S);
8311 if Debug_Flag_E then
8312 Write_Str ("New overloaded entity chain: ");
8313 Write_Name (Chars (S));
8315 E := S;
8316 while Present (E) loop
8317 Write_Str (" "); Write_Int (Int (E));
8318 E := Homonym (E);
8319 end loop;
8321 Write_Eol;
8322 end if;
8324 -- Generate warning for hiding
8326 if Warn_On_Hiding
8327 and then Comes_From_Source (S)
8328 and then In_Extended_Main_Source_Unit (S)
8329 then
8330 E := S;
8331 loop
8332 E := Homonym (E);
8333 exit when No (E);
8335 -- Warn unless genuine overloading. Do not emit warning on
8336 -- hiding predefined operators in Standard (these are either an
8337 -- (artifact of our implicit declarations, or simple noise) but
8338 -- keep warning on a operator defined on a local subtype, because
8339 -- of the real danger that different operators may be applied in
8340 -- various parts of the program.
8342 -- Note that if E and S have the same scope, there is never any
8343 -- hiding. Either the two conflict, and the program is illegal,
8344 -- or S is overriding an implicit inherited subprogram.
8346 if Scope (E) /= Scope (S)
8347 and then (not Is_Overloadable (E)
8348 or else Subtype_Conformant (E, S))
8349 and then (Is_Immediately_Visible (E)
8350 or else Is_Potentially_Use_Visible (S))
8351 then
8352 if Scope (E) = Standard_Standard then
8353 if Nkind (S) = N_Defining_Operator_Symbol
8354 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8355 Scope (S)
8356 and then Matches_Predefined_Op
8357 then
8358 Error_Msg_N
8359 ("declaration of & hides predefined operator?h?", S);
8360 end if;
8362 -- E not immediately within Standard
8364 else
8365 Error_Msg_Sloc := Sloc (E);
8366 Error_Msg_N ("declaration of & hides one #?h?", S);
8367 end if;
8368 end if;
8369 end loop;
8370 end if;
8371 end Enter_Overloaded_Entity;
8373 -----------------------------
8374 -- Check_Untagged_Equality --
8375 -----------------------------
8377 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8378 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8379 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8380 Obj_Decl : Node_Id;
8382 begin
8383 -- This check applies only if we have a subprogram declaration with an
8384 -- untagged record type.
8386 if Nkind (Decl) /= N_Subprogram_Declaration
8387 or else not Is_Record_Type (Typ)
8388 or else Is_Tagged_Type (Typ)
8389 then
8390 return;
8391 end if;
8393 -- In Ada 2012 case, we will output errors or warnings depending on
8394 -- the setting of debug flag -gnatd.E.
8396 if Ada_Version >= Ada_2012 then
8397 Error_Msg_Warn := Debug_Flag_Dot_EE;
8399 -- In earlier versions of Ada, nothing to do unless we are warning on
8400 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8402 else
8403 if not Warn_On_Ada_2012_Compatibility then
8404 return;
8405 end if;
8406 end if;
8408 -- Cases where the type has already been frozen
8410 if Is_Frozen (Typ) then
8412 -- If the type is not declared in a package, or if we are in the body
8413 -- of the package or in some other scope, the new operation is not
8414 -- primitive, and therefore legal, though suspicious. Should we
8415 -- generate a warning in this case ???
8417 if Ekind (Scope (Typ)) /= E_Package
8418 or else Scope (Typ) /= Current_Scope
8419 then
8420 return;
8422 -- If the type is a generic actual (sub)type, the operation is not
8423 -- primitive either because the base type is declared elsewhere.
8425 elsif Is_Generic_Actual_Type (Typ) then
8426 return;
8428 -- Here we have a definite error of declaration after freezing
8430 else
8431 if Ada_Version >= Ada_2012 then
8432 Error_Msg_NE
8433 ("equality operator must be declared before type & is "
8434 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8436 -- In Ada 2012 mode with error turned to warning, output one
8437 -- more warning to warn that the equality operation may not
8438 -- compose. This is the consequence of ignoring the error.
8440 if Error_Msg_Warn then
8441 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8442 end if;
8444 else
8445 Error_Msg_NE
8446 ("equality operator must be declared before type& is "
8447 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8448 end if;
8450 -- If we are in the package body, we could just move the
8451 -- declaration to the package spec, so add a message saying that.
8453 if In_Package_Body (Scope (Typ)) then
8454 if Ada_Version >= Ada_2012 then
8455 Error_Msg_N
8456 ("\move declaration to package spec<<", Eq_Op);
8457 else
8458 Error_Msg_N
8459 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8460 end if;
8462 -- Otherwise try to find the freezing point
8464 else
8465 Obj_Decl := Next (Parent (Typ));
8466 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8467 if Nkind (Obj_Decl) = N_Object_Declaration
8468 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8469 then
8470 -- Freezing point, output warnings
8472 if Ada_Version >= Ada_2012 then
8473 Error_Msg_NE
8474 ("type& is frozen by declaration??", Obj_Decl, Typ);
8475 Error_Msg_N
8476 ("\an equality operator cannot be declared after "
8477 & "this point??",
8478 Obj_Decl);
8479 else
8480 Error_Msg_NE
8481 ("type& is frozen by declaration (Ada 2012)?y?",
8482 Obj_Decl, Typ);
8483 Error_Msg_N
8484 ("\an equality operator cannot be declared after "
8485 & "this point (Ada 2012)?y?",
8486 Obj_Decl);
8487 end if;
8489 exit;
8490 end if;
8492 Next (Obj_Decl);
8493 end loop;
8494 end if;
8495 end if;
8497 -- Here if type is not frozen yet. It is illegal to have a primitive
8498 -- equality declared in the private part if the type is visible.
8500 elsif not In_Same_List (Parent (Typ), Decl)
8501 and then not Is_Limited_Type (Typ)
8502 then
8503 -- Shouldn't we give an RM reference here???
8505 if Ada_Version >= Ada_2012 then
8506 Error_Msg_N
8507 ("equality operator appears too late<<", Eq_Op);
8508 else
8509 Error_Msg_N
8510 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8511 end if;
8513 -- No error detected
8515 else
8516 return;
8517 end if;
8518 end Check_Untagged_Equality;
8520 -----------------------------
8521 -- Find_Corresponding_Spec --
8522 -----------------------------
8524 function Find_Corresponding_Spec
8525 (N : Node_Id;
8526 Post_Error : Boolean := True) return Entity_Id
8528 Spec : constant Node_Id := Specification (N);
8529 Designator : constant Entity_Id := Defining_Entity (Spec);
8531 E : Entity_Id;
8533 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8534 -- Even if fully conformant, a body may depend on a generic actual when
8535 -- the spec does not, or vice versa, in which case they were distinct
8536 -- entities in the generic.
8538 -------------------------------
8539 -- Different_Generic_Profile --
8540 -------------------------------
8542 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8543 F1, F2 : Entity_Id;
8545 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8546 -- Check that the types of corresponding formals have the same
8547 -- generic actual if any. We have to account for subtypes of a
8548 -- generic formal, declared between a spec and a body, which may
8549 -- appear distinct in an instance but matched in the generic, and
8550 -- the subtype may be used either in the spec or the body of the
8551 -- subprogram being checked.
8553 -------------------------
8554 -- Same_Generic_Actual --
8555 -------------------------
8557 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8559 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8560 -- Predicate to check whether S1 is a subtype of S2 in the source
8561 -- of the instance.
8563 -------------------------
8564 -- Is_Declared_Subtype --
8565 -------------------------
8567 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8568 begin
8569 return Comes_From_Source (Parent (S1))
8570 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8571 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8572 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8573 end Is_Declared_Subtype;
8575 -- Start of processing for Same_Generic_Actual
8577 begin
8578 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8579 or else Is_Declared_Subtype (T1, T2)
8580 or else Is_Declared_Subtype (T2, T1);
8581 end Same_Generic_Actual;
8583 -- Start of processing for Different_Generic_Profile
8585 begin
8586 if not In_Instance then
8587 return False;
8589 elsif Ekind (E) = E_Function
8590 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8591 then
8592 return True;
8593 end if;
8595 F1 := First_Formal (Designator);
8596 F2 := First_Formal (E);
8597 while Present (F1) loop
8598 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8599 return True;
8600 end if;
8602 Next_Formal (F1);
8603 Next_Formal (F2);
8604 end loop;
8606 return False;
8607 end Different_Generic_Profile;
8609 -- Start of processing for Find_Corresponding_Spec
8611 begin
8612 E := Current_Entity (Designator);
8613 while Present (E) loop
8615 -- We are looking for a matching spec. It must have the same scope,
8616 -- and the same name, and either be type conformant, or be the case
8617 -- of a library procedure spec and its body (which belong to one
8618 -- another regardless of whether they are type conformant or not).
8620 if Scope (E) = Current_Scope then
8621 if Current_Scope = Standard_Standard
8622 or else (Ekind (E) = Ekind (Designator)
8623 and then Type_Conformant (E, Designator))
8624 then
8625 -- Within an instantiation, we know that spec and body are
8626 -- subtype conformant, because they were subtype conformant in
8627 -- the generic. We choose the subtype-conformant entity here as
8628 -- well, to resolve spurious ambiguities in the instance that
8629 -- were not present in the generic (i.e. when two different
8630 -- types are given the same actual). If we are looking for a
8631 -- spec to match a body, full conformance is expected.
8633 if In_Instance then
8635 -- Inherit the convention and "ghostness" of the matching
8636 -- spec to ensure proper full and subtype conformance.
8638 Set_Convention (Designator, Convention (E));
8640 -- Skip past subprogram bodies and subprogram renamings that
8641 -- may appear to have a matching spec, but that aren't fully
8642 -- conformant with it. That can occur in cases where an
8643 -- actual type causes unrelated homographs in the instance.
8645 if Nkind_In (N, N_Subprogram_Body,
8646 N_Subprogram_Renaming_Declaration)
8647 and then Present (Homonym (E))
8648 and then not Fully_Conformant (Designator, E)
8649 then
8650 goto Next_Entity;
8652 elsif not Subtype_Conformant (Designator, E) then
8653 goto Next_Entity;
8655 elsif Different_Generic_Profile (E) then
8656 goto Next_Entity;
8657 end if;
8658 end if;
8660 -- Ada 2012 (AI05-0165): For internally generated bodies of
8661 -- null procedures locate the internally generated spec. We
8662 -- enforce mode conformance since a tagged type may inherit
8663 -- from interfaces several null primitives which differ only
8664 -- in the mode of the formals.
8666 if not (Comes_From_Source (E))
8667 and then Is_Null_Procedure (E)
8668 and then not Mode_Conformant (Designator, E)
8669 then
8670 null;
8672 -- For null procedures coming from source that are completions,
8673 -- analysis of the generated body will establish the link.
8675 elsif Comes_From_Source (E)
8676 and then Nkind (Spec) = N_Procedure_Specification
8677 and then Null_Present (Spec)
8678 then
8679 return E;
8681 -- Expression functions can be completions, but cannot be
8682 -- completed by an explicit body.
8684 elsif Comes_From_Source (E)
8685 and then Comes_From_Source (N)
8686 and then Nkind (N) = N_Subprogram_Body
8687 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8688 N_Expression_Function
8689 then
8690 Error_Msg_Sloc := Sloc (E);
8691 Error_Msg_N ("body conflicts with expression function#", N);
8692 return Empty;
8694 elsif not Has_Completion (E) then
8695 if Nkind (N) /= N_Subprogram_Body_Stub then
8696 Set_Corresponding_Spec (N, E);
8697 end if;
8699 Set_Has_Completion (E);
8700 return E;
8702 elsif Nkind (Parent (N)) = N_Subunit then
8704 -- If this is the proper body of a subunit, the completion
8705 -- flag is set when analyzing the stub.
8707 return E;
8709 -- If E is an internal function with a controlling result that
8710 -- was created for an operation inherited by a null extension,
8711 -- it may be overridden by a body without a previous spec (one
8712 -- more reason why these should be shunned). In that case we
8713 -- remove the generated body if present, because the current
8714 -- one is the explicit overriding.
8716 elsif Ekind (E) = E_Function
8717 and then Ada_Version >= Ada_2005
8718 and then not Comes_From_Source (E)
8719 and then Has_Controlling_Result (E)
8720 and then Is_Null_Extension (Etype (E))
8721 and then Comes_From_Source (Spec)
8722 then
8723 Set_Has_Completion (E, False);
8725 if Expander_Active
8726 and then Nkind (Parent (E)) = N_Function_Specification
8727 then
8728 Remove
8729 (Unit_Declaration_Node
8730 (Corresponding_Body (Unit_Declaration_Node (E))));
8732 return E;
8734 -- If expansion is disabled, or if the wrapper function has
8735 -- not been generated yet, this a late body overriding an
8736 -- inherited operation, or it is an overriding by some other
8737 -- declaration before the controlling result is frozen. In
8738 -- either case this is a declaration of a new entity.
8740 else
8741 return Empty;
8742 end if;
8744 -- If the body already exists, then this is an error unless
8745 -- the previous declaration is the implicit declaration of a
8746 -- derived subprogram. It is also legal for an instance to
8747 -- contain type conformant overloadable declarations (but the
8748 -- generic declaration may not), per 8.3(26/2).
8750 elsif No (Alias (E))
8751 and then not Is_Intrinsic_Subprogram (E)
8752 and then not In_Instance
8753 and then Post_Error
8754 then
8755 Error_Msg_Sloc := Sloc (E);
8757 if Is_Imported (E) then
8758 Error_Msg_NE
8759 ("body not allowed for imported subprogram & declared#",
8760 N, E);
8761 else
8762 Error_Msg_NE ("duplicate body for & declared#", N, E);
8763 end if;
8764 end if;
8766 -- Child units cannot be overloaded, so a conformance mismatch
8767 -- between body and a previous spec is an error.
8769 elsif Is_Child_Unit (E)
8770 and then
8771 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8772 and then
8773 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8774 N_Compilation_Unit
8775 and then Post_Error
8776 then
8777 Error_Msg_N
8778 ("body of child unit does not match previous declaration", N);
8779 end if;
8780 end if;
8782 <<Next_Entity>>
8783 E := Homonym (E);
8784 end loop;
8786 -- On exit, we know that no previous declaration of subprogram exists
8788 return Empty;
8789 end Find_Corresponding_Spec;
8791 ----------------------
8792 -- Fully_Conformant --
8793 ----------------------
8795 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8796 Result : Boolean;
8797 begin
8798 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8799 return Result;
8800 end Fully_Conformant;
8802 ----------------------------------
8803 -- Fully_Conformant_Expressions --
8804 ----------------------------------
8806 function Fully_Conformant_Expressions
8807 (Given_E1 : Node_Id;
8808 Given_E2 : Node_Id) return Boolean
8810 E1 : constant Node_Id := Original_Node (Given_E1);
8811 E2 : constant Node_Id := Original_Node (Given_E2);
8812 -- We always test conformance on original nodes, since it is possible
8813 -- for analysis and/or expansion to make things look as though they
8814 -- conform when they do not, e.g. by converting 1+2 into 3.
8816 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8817 renames Fully_Conformant_Expressions;
8819 function FCL (L1, L2 : List_Id) return Boolean;
8820 -- Compare elements of two lists for conformance. Elements have to be
8821 -- conformant, and actuals inserted as default parameters do not match
8822 -- explicit actuals with the same value.
8824 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8825 -- Compare an operator node with a function call
8827 ---------
8828 -- FCL --
8829 ---------
8831 function FCL (L1, L2 : List_Id) return Boolean is
8832 N1, N2 : Node_Id;
8834 begin
8835 if L1 = No_List then
8836 N1 := Empty;
8837 else
8838 N1 := First (L1);
8839 end if;
8841 if L2 = No_List then
8842 N2 := Empty;
8843 else
8844 N2 := First (L2);
8845 end if;
8847 -- Compare two lists, skipping rewrite insertions (we want to compare
8848 -- the original trees, not the expanded versions).
8850 loop
8851 if Is_Rewrite_Insertion (N1) then
8852 Next (N1);
8853 elsif Is_Rewrite_Insertion (N2) then
8854 Next (N2);
8855 elsif No (N1) then
8856 return No (N2);
8857 elsif No (N2) then
8858 return False;
8859 elsif not FCE (N1, N2) then
8860 return False;
8861 else
8862 Next (N1);
8863 Next (N2);
8864 end if;
8865 end loop;
8866 end FCL;
8868 ---------
8869 -- FCO --
8870 ---------
8872 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
8873 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8874 Act : Node_Id;
8876 begin
8877 if No (Actuals)
8878 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8879 then
8880 return False;
8882 else
8883 Act := First (Actuals);
8885 if Nkind (Op_Node) in N_Binary_Op then
8886 if not FCE (Left_Opnd (Op_Node), Act) then
8887 return False;
8888 end if;
8890 Next (Act);
8891 end if;
8893 return Present (Act)
8894 and then FCE (Right_Opnd (Op_Node), Act)
8895 and then No (Next (Act));
8896 end if;
8897 end FCO;
8899 -- Start of processing for Fully_Conformant_Expressions
8901 begin
8902 -- Nonconformant if paren count does not match. Note: if some idiot
8903 -- complains that we don't do this right for more than 3 levels of
8904 -- parentheses, they will be treated with the respect they deserve.
8906 if Paren_Count (E1) /= Paren_Count (E2) then
8907 return False;
8909 -- If same entities are referenced, then they are conformant even if
8910 -- they have different forms (RM 8.3.1(19-20)).
8912 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8913 if Present (Entity (E1)) then
8914 return Entity (E1) = Entity (E2)
8916 -- One may be a discriminant that has been replaced by the
8917 -- corresponding discriminal.
8919 or else
8920 (Chars (Entity (E1)) = Chars (Entity (E2))
8921 and then Ekind (Entity (E1)) = E_Discriminant
8922 and then Ekind (Entity (E2)) = E_In_Parameter)
8924 -- The discriminant of a protected type is transformed into
8925 -- a local constant and then into a parameter of a protected
8926 -- operation.
8928 or else
8929 (Ekind (Entity (E1)) = E_Constant
8930 and then Ekind (Entity (E2)) = E_In_Parameter
8931 and then Present (Discriminal_Link (Entity (E1)))
8932 and then Discriminal_Link (Entity (E1)) =
8933 Discriminal_Link (Entity (E2)))
8935 -- AI12-050: The loop variables of quantified expressions
8936 -- match if they have the same identifier, even though they
8937 -- are different entities.
8939 or else
8940 (Chars (Entity (E1)) = Chars (Entity (E2))
8941 and then Ekind (Entity (E1)) = E_Loop_Parameter
8942 and then Ekind (Entity (E2)) = E_Loop_Parameter);
8944 elsif Nkind (E1) = N_Expanded_Name
8945 and then Nkind (E2) = N_Expanded_Name
8946 and then Nkind (Selector_Name (E1)) = N_Character_Literal
8947 and then Nkind (Selector_Name (E2)) = N_Character_Literal
8948 then
8949 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
8951 else
8952 -- Identifiers in component associations don't always have
8953 -- entities, but their names must conform.
8955 return Nkind (E1) = N_Identifier
8956 and then Nkind (E2) = N_Identifier
8957 and then Chars (E1) = Chars (E2);
8958 end if;
8960 elsif Nkind (E1) = N_Character_Literal
8961 and then Nkind (E2) = N_Expanded_Name
8962 then
8963 return Nkind (Selector_Name (E2)) = N_Character_Literal
8964 and then Chars (E1) = Chars (Selector_Name (E2));
8966 elsif Nkind (E2) = N_Character_Literal
8967 and then Nkind (E1) = N_Expanded_Name
8968 then
8969 return Nkind (Selector_Name (E1)) = N_Character_Literal
8970 and then Chars (E2) = Chars (Selector_Name (E1));
8972 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
8973 return FCO (E1, E2);
8975 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
8976 return FCO (E2, E1);
8978 -- Otherwise we must have the same syntactic entity
8980 elsif Nkind (E1) /= Nkind (E2) then
8981 return False;
8983 -- At this point, we specialize by node type
8985 else
8986 case Nkind (E1) is
8987 when N_Aggregate =>
8988 return
8989 FCL (Expressions (E1), Expressions (E2))
8990 and then
8991 FCL (Component_Associations (E1),
8992 Component_Associations (E2));
8994 when N_Allocator =>
8995 if Nkind (Expression (E1)) = N_Qualified_Expression
8996 or else
8997 Nkind (Expression (E2)) = N_Qualified_Expression
8998 then
8999 return FCE (Expression (E1), Expression (E2));
9001 -- Check that the subtype marks and any constraints
9002 -- are conformant
9004 else
9005 declare
9006 Indic1 : constant Node_Id := Expression (E1);
9007 Indic2 : constant Node_Id := Expression (E2);
9008 Elt1 : Node_Id;
9009 Elt2 : Node_Id;
9011 begin
9012 if Nkind (Indic1) /= N_Subtype_Indication then
9013 return
9014 Nkind (Indic2) /= N_Subtype_Indication
9015 and then Entity (Indic1) = Entity (Indic2);
9017 elsif Nkind (Indic2) /= N_Subtype_Indication then
9018 return
9019 Nkind (Indic1) /= N_Subtype_Indication
9020 and then Entity (Indic1) = Entity (Indic2);
9022 else
9023 if Entity (Subtype_Mark (Indic1)) /=
9024 Entity (Subtype_Mark (Indic2))
9025 then
9026 return False;
9027 end if;
9029 Elt1 := First (Constraints (Constraint (Indic1)));
9030 Elt2 := First (Constraints (Constraint (Indic2)));
9031 while Present (Elt1) and then Present (Elt2) loop
9032 if not FCE (Elt1, Elt2) then
9033 return False;
9034 end if;
9036 Next (Elt1);
9037 Next (Elt2);
9038 end loop;
9040 return True;
9041 end if;
9042 end;
9043 end if;
9045 when N_Attribute_Reference =>
9046 return
9047 Attribute_Name (E1) = Attribute_Name (E2)
9048 and then FCL (Expressions (E1), Expressions (E2));
9050 when N_Binary_Op =>
9051 return
9052 Entity (E1) = Entity (E2)
9053 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9054 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9056 when N_Membership_Test
9057 | N_Short_Circuit
9059 return
9060 FCE (Left_Opnd (E1), Left_Opnd (E2))
9061 and then
9062 FCE (Right_Opnd (E1), Right_Opnd (E2));
9064 when N_Case_Expression =>
9065 declare
9066 Alt1 : Node_Id;
9067 Alt2 : Node_Id;
9069 begin
9070 if not FCE (Expression (E1), Expression (E2)) then
9071 return False;
9073 else
9074 Alt1 := First (Alternatives (E1));
9075 Alt2 := First (Alternatives (E2));
9076 loop
9077 if Present (Alt1) /= Present (Alt2) then
9078 return False;
9079 elsif No (Alt1) then
9080 return True;
9081 end if;
9083 if not FCE (Expression (Alt1), Expression (Alt2))
9084 or else not FCL (Discrete_Choices (Alt1),
9085 Discrete_Choices (Alt2))
9086 then
9087 return False;
9088 end if;
9090 Next (Alt1);
9091 Next (Alt2);
9092 end loop;
9093 end if;
9094 end;
9096 when N_Character_Literal =>
9097 return
9098 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9100 when N_Component_Association =>
9101 return
9102 FCL (Choices (E1), Choices (E2))
9103 and then
9104 FCE (Expression (E1), Expression (E2));
9106 when N_Explicit_Dereference =>
9107 return
9108 FCE (Prefix (E1), Prefix (E2));
9110 when N_Extension_Aggregate =>
9111 return
9112 FCL (Expressions (E1), Expressions (E2))
9113 and then Null_Record_Present (E1) =
9114 Null_Record_Present (E2)
9115 and then FCL (Component_Associations (E1),
9116 Component_Associations (E2));
9118 when N_Function_Call =>
9119 return
9120 FCE (Name (E1), Name (E2))
9121 and then
9122 FCL (Parameter_Associations (E1),
9123 Parameter_Associations (E2));
9125 when N_If_Expression =>
9126 return
9127 FCL (Expressions (E1), Expressions (E2));
9129 when N_Indexed_Component =>
9130 return
9131 FCE (Prefix (E1), Prefix (E2))
9132 and then
9133 FCL (Expressions (E1), Expressions (E2));
9135 when N_Integer_Literal =>
9136 return (Intval (E1) = Intval (E2));
9138 when N_Null =>
9139 return True;
9141 when N_Operator_Symbol =>
9142 return
9143 Chars (E1) = Chars (E2);
9145 when N_Others_Choice =>
9146 return True;
9148 when N_Parameter_Association =>
9149 return
9150 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9151 and then FCE (Explicit_Actual_Parameter (E1),
9152 Explicit_Actual_Parameter (E2));
9154 when N_Qualified_Expression
9155 | N_Type_Conversion
9156 | N_Unchecked_Type_Conversion
9158 return
9159 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9160 and then
9161 FCE (Expression (E1), Expression (E2));
9163 when N_Quantified_Expression =>
9164 if not FCE (Condition (E1), Condition (E2)) then
9165 return False;
9166 end if;
9168 if Present (Loop_Parameter_Specification (E1))
9169 and then Present (Loop_Parameter_Specification (E2))
9170 then
9171 declare
9172 L1 : constant Node_Id :=
9173 Loop_Parameter_Specification (E1);
9174 L2 : constant Node_Id :=
9175 Loop_Parameter_Specification (E2);
9177 begin
9178 return
9179 Reverse_Present (L1) = Reverse_Present (L2)
9180 and then
9181 FCE (Defining_Identifier (L1),
9182 Defining_Identifier (L2))
9183 and then
9184 FCE (Discrete_Subtype_Definition (L1),
9185 Discrete_Subtype_Definition (L2));
9186 end;
9188 elsif Present (Iterator_Specification (E1))
9189 and then Present (Iterator_Specification (E2))
9190 then
9191 declare
9192 I1 : constant Node_Id := Iterator_Specification (E1);
9193 I2 : constant Node_Id := Iterator_Specification (E2);
9195 begin
9196 return
9197 FCE (Defining_Identifier (I1),
9198 Defining_Identifier (I2))
9199 and then
9200 Of_Present (I1) = Of_Present (I2)
9201 and then
9202 Reverse_Present (I1) = Reverse_Present (I2)
9203 and then FCE (Name (I1), Name (I2))
9204 and then FCE (Subtype_Indication (I1),
9205 Subtype_Indication (I2));
9206 end;
9208 -- The quantified expressions used different specifications to
9209 -- walk their respective ranges.
9211 else
9212 return False;
9213 end if;
9215 when N_Range =>
9216 return
9217 FCE (Low_Bound (E1), Low_Bound (E2))
9218 and then
9219 FCE (High_Bound (E1), High_Bound (E2));
9221 when N_Real_Literal =>
9222 return (Realval (E1) = Realval (E2));
9224 when N_Selected_Component =>
9225 return
9226 FCE (Prefix (E1), Prefix (E2))
9227 and then
9228 FCE (Selector_Name (E1), Selector_Name (E2));
9230 when N_Slice =>
9231 return
9232 FCE (Prefix (E1), Prefix (E2))
9233 and then
9234 FCE (Discrete_Range (E1), Discrete_Range (E2));
9236 when N_String_Literal =>
9237 declare
9238 S1 : constant String_Id := Strval (E1);
9239 S2 : constant String_Id := Strval (E2);
9240 L1 : constant Nat := String_Length (S1);
9241 L2 : constant Nat := String_Length (S2);
9243 begin
9244 if L1 /= L2 then
9245 return False;
9247 else
9248 for J in 1 .. L1 loop
9249 if Get_String_Char (S1, J) /=
9250 Get_String_Char (S2, J)
9251 then
9252 return False;
9253 end if;
9254 end loop;
9256 return True;
9257 end if;
9258 end;
9260 when N_Unary_Op =>
9261 return
9262 Entity (E1) = Entity (E2)
9263 and then
9264 FCE (Right_Opnd (E1), Right_Opnd (E2));
9266 -- All other node types cannot appear in this context. Strictly
9267 -- we should raise a fatal internal error. Instead we just ignore
9268 -- the nodes. This means that if anyone makes a mistake in the
9269 -- expander and mucks an expression tree irretrievably, the result
9270 -- will be a failure to detect a (probably very obscure) case
9271 -- of non-conformance, which is better than bombing on some
9272 -- case where two expressions do in fact conform.
9274 when others =>
9275 return True;
9276 end case;
9277 end if;
9278 end Fully_Conformant_Expressions;
9280 ----------------------------------------
9281 -- Fully_Conformant_Discrete_Subtypes --
9282 ----------------------------------------
9284 function Fully_Conformant_Discrete_Subtypes
9285 (Given_S1 : Node_Id;
9286 Given_S2 : Node_Id) return Boolean
9288 S1 : constant Node_Id := Original_Node (Given_S1);
9289 S2 : constant Node_Id := Original_Node (Given_S2);
9291 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9292 -- Special-case for a bound given by a discriminant, which in the body
9293 -- is replaced with the discriminal of the enclosing type.
9295 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9296 -- Check both bounds
9298 -----------------------
9299 -- Conforming_Bounds --
9300 -----------------------
9302 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9303 begin
9304 if Is_Entity_Name (B1)
9305 and then Is_Entity_Name (B2)
9306 and then Ekind (Entity (B1)) = E_Discriminant
9307 then
9308 return Chars (B1) = Chars (B2);
9310 else
9311 return Fully_Conformant_Expressions (B1, B2);
9312 end if;
9313 end Conforming_Bounds;
9315 -----------------------
9316 -- Conforming_Ranges --
9317 -----------------------
9319 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9320 begin
9321 return
9322 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9323 and then
9324 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9325 end Conforming_Ranges;
9327 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9329 begin
9330 if Nkind (S1) /= Nkind (S2) then
9331 return False;
9333 elsif Is_Entity_Name (S1) then
9334 return Entity (S1) = Entity (S2);
9336 elsif Nkind (S1) = N_Range then
9337 return Conforming_Ranges (S1, S2);
9339 elsif Nkind (S1) = N_Subtype_Indication then
9340 return
9341 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9342 and then
9343 Conforming_Ranges
9344 (Range_Expression (Constraint (S1)),
9345 Range_Expression (Constraint (S2)));
9346 else
9347 return True;
9348 end if;
9349 end Fully_Conformant_Discrete_Subtypes;
9351 --------------------
9352 -- Install_Entity --
9353 --------------------
9355 procedure Install_Entity (E : Entity_Id) is
9356 Prev : constant Entity_Id := Current_Entity (E);
9357 begin
9358 Set_Is_Immediately_Visible (E);
9359 Set_Current_Entity (E);
9360 Set_Homonym (E, Prev);
9361 end Install_Entity;
9363 ---------------------
9364 -- Install_Formals --
9365 ---------------------
9367 procedure Install_Formals (Id : Entity_Id) is
9368 F : Entity_Id;
9369 begin
9370 F := First_Formal (Id);
9371 while Present (F) loop
9372 Install_Entity (F);
9373 Next_Formal (F);
9374 end loop;
9375 end Install_Formals;
9377 -----------------------------
9378 -- Is_Interface_Conformant --
9379 -----------------------------
9381 function Is_Interface_Conformant
9382 (Tagged_Type : Entity_Id;
9383 Iface_Prim : Entity_Id;
9384 Prim : Entity_Id) return Boolean
9386 -- The operation may in fact be an inherited (implicit) operation
9387 -- rather than the original interface primitive, so retrieve the
9388 -- ultimate ancestor.
9390 Iface : constant Entity_Id :=
9391 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9392 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9394 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9395 -- Return the controlling formal of Prim
9397 ------------------------
9398 -- Controlling_Formal --
9399 ------------------------
9401 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9402 E : Entity_Id;
9404 begin
9405 E := First_Entity (Prim);
9406 while Present (E) loop
9407 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9408 return E;
9409 end if;
9411 Next_Entity (E);
9412 end loop;
9414 return Empty;
9415 end Controlling_Formal;
9417 -- Local variables
9419 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9420 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9422 -- Start of processing for Is_Interface_Conformant
9424 begin
9425 pragma Assert (Is_Subprogram (Iface_Prim)
9426 and then Is_Subprogram (Prim)
9427 and then Is_Dispatching_Operation (Iface_Prim)
9428 and then Is_Dispatching_Operation (Prim));
9430 pragma Assert (Is_Interface (Iface)
9431 or else (Present (Alias (Iface_Prim))
9432 and then
9433 Is_Interface
9434 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9436 if Prim = Iface_Prim
9437 or else not Is_Subprogram (Prim)
9438 or else Ekind (Prim) /= Ekind (Iface_Prim)
9439 or else not Is_Dispatching_Operation (Prim)
9440 or else Scope (Prim) /= Scope (Tagged_Type)
9441 or else No (Typ)
9442 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9443 or else not Primitive_Names_Match (Iface_Prim, Prim)
9444 then
9445 return False;
9447 -- The mode of the controlling formals must match
9449 elsif Present (Iface_Ctrl_F)
9450 and then Present (Prim_Ctrl_F)
9451 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9452 then
9453 return False;
9455 -- Case of a procedure, or a function whose result type matches the
9456 -- result type of the interface primitive, or a function that has no
9457 -- controlling result (I or access I).
9459 elsif Ekind (Iface_Prim) = E_Procedure
9460 or else Etype (Prim) = Etype (Iface_Prim)
9461 or else not Has_Controlling_Result (Prim)
9462 then
9463 return Type_Conformant
9464 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9466 -- Case of a function returning an interface, or an access to one. Check
9467 -- that the return types correspond.
9469 elsif Implements_Interface (Typ, Iface) then
9470 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9472 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9473 then
9474 return False;
9475 else
9476 return
9477 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9478 Skip_Controlling_Formals => True);
9479 end if;
9481 else
9482 return False;
9483 end if;
9484 end Is_Interface_Conformant;
9486 ---------------------------------
9487 -- Is_Non_Overriding_Operation --
9488 ---------------------------------
9490 function Is_Non_Overriding_Operation
9491 (Prev_E : Entity_Id;
9492 New_E : Entity_Id) return Boolean
9494 Formal : Entity_Id;
9495 F_Typ : Entity_Id;
9496 G_Typ : Entity_Id := Empty;
9498 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9499 -- If F_Type is a derived type associated with a generic actual subtype,
9500 -- then return its Generic_Parent_Type attribute, else return Empty.
9502 function Types_Correspond
9503 (P_Type : Entity_Id;
9504 N_Type : Entity_Id) return Boolean;
9505 -- Returns true if and only if the types (or designated types in the
9506 -- case of anonymous access types) are the same or N_Type is derived
9507 -- directly or indirectly from P_Type.
9509 -----------------------------
9510 -- Get_Generic_Parent_Type --
9511 -----------------------------
9513 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9514 G_Typ : Entity_Id;
9515 Defn : Node_Id;
9516 Indic : Node_Id;
9518 begin
9519 if Is_Derived_Type (F_Typ)
9520 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9521 then
9522 -- The tree must be traversed to determine the parent subtype in
9523 -- the generic unit, which unfortunately isn't always available
9524 -- via semantic attributes. ??? (Note: The use of Original_Node
9525 -- is needed for cases where a full derived type has been
9526 -- rewritten.)
9528 -- If the parent type is a scalar type, the derivation creates
9529 -- an anonymous base type for it, and the source type is its
9530 -- first subtype.
9532 if Is_Scalar_Type (F_Typ)
9533 and then not Comes_From_Source (F_Typ)
9534 then
9535 Defn :=
9536 Type_Definition
9537 (Original_Node (Parent (First_Subtype (F_Typ))));
9538 else
9539 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9540 end if;
9541 if Nkind (Defn) = N_Derived_Type_Definition then
9542 Indic := Subtype_Indication (Defn);
9544 if Nkind (Indic) = N_Subtype_Indication then
9545 G_Typ := Entity (Subtype_Mark (Indic));
9546 else
9547 G_Typ := Entity (Indic);
9548 end if;
9550 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9551 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9552 then
9553 return Generic_Parent_Type (Parent (G_Typ));
9554 end if;
9555 end if;
9556 end if;
9558 return Empty;
9559 end Get_Generic_Parent_Type;
9561 ----------------------
9562 -- Types_Correspond --
9563 ----------------------
9565 function Types_Correspond
9566 (P_Type : Entity_Id;
9567 N_Type : Entity_Id) return Boolean
9569 Prev_Type : Entity_Id := Base_Type (P_Type);
9570 New_Type : Entity_Id := Base_Type (N_Type);
9572 begin
9573 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9574 Prev_Type := Designated_Type (Prev_Type);
9575 end if;
9577 if Ekind (New_Type) = E_Anonymous_Access_Type then
9578 New_Type := Designated_Type (New_Type);
9579 end if;
9581 if Prev_Type = New_Type then
9582 return True;
9584 elsif not Is_Class_Wide_Type (New_Type) then
9585 while Etype (New_Type) /= New_Type loop
9586 New_Type := Etype (New_Type);
9588 if New_Type = Prev_Type then
9589 return True;
9590 end if;
9591 end loop;
9592 end if;
9593 return False;
9594 end Types_Correspond;
9596 -- Start of processing for Is_Non_Overriding_Operation
9598 begin
9599 -- In the case where both operations are implicit derived subprograms
9600 -- then neither overrides the other. This can only occur in certain
9601 -- obscure cases (e.g., derivation from homographs created in a generic
9602 -- instantiation).
9604 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9605 return True;
9607 elsif Ekind (Current_Scope) = E_Package
9608 and then Is_Generic_Instance (Current_Scope)
9609 and then In_Private_Part (Current_Scope)
9610 and then Comes_From_Source (New_E)
9611 then
9612 -- We examine the formals and result type of the inherited operation,
9613 -- to determine whether their type is derived from (the instance of)
9614 -- a generic type. The first such formal or result type is the one
9615 -- tested.
9617 Formal := First_Formal (Prev_E);
9618 F_Typ := Empty;
9619 while Present (Formal) loop
9620 F_Typ := Base_Type (Etype (Formal));
9622 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9623 F_Typ := Designated_Type (F_Typ);
9624 end if;
9626 G_Typ := Get_Generic_Parent_Type (F_Typ);
9627 exit when Present (G_Typ);
9629 Next_Formal (Formal);
9630 end loop;
9632 -- If the function dispatches on result check the result type
9634 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9635 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9636 end if;
9638 if No (G_Typ) then
9639 return False;
9640 end if;
9642 -- If the generic type is a private type, then the original operation
9643 -- was not overriding in the generic, because there was no primitive
9644 -- operation to override.
9646 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9647 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9648 N_Formal_Private_Type_Definition
9649 then
9650 return True;
9652 -- The generic parent type is the ancestor of a formal derived
9653 -- type declaration. We need to check whether it has a primitive
9654 -- operation that should be overridden by New_E in the generic.
9656 else
9657 declare
9658 P_Formal : Entity_Id;
9659 N_Formal : Entity_Id;
9660 P_Typ : Entity_Id;
9661 N_Typ : Entity_Id;
9662 P_Prim : Entity_Id;
9663 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9665 begin
9666 while Present (Prim_Elt) loop
9667 P_Prim := Node (Prim_Elt);
9669 if Chars (P_Prim) = Chars (New_E)
9670 and then Ekind (P_Prim) = Ekind (New_E)
9671 then
9672 P_Formal := First_Formal (P_Prim);
9673 N_Formal := First_Formal (New_E);
9674 while Present (P_Formal) and then Present (N_Formal) loop
9675 P_Typ := Etype (P_Formal);
9676 N_Typ := Etype (N_Formal);
9678 if not Types_Correspond (P_Typ, N_Typ) then
9679 exit;
9680 end if;
9682 Next_Entity (P_Formal);
9683 Next_Entity (N_Formal);
9684 end loop;
9686 -- Found a matching primitive operation belonging to the
9687 -- formal ancestor type, so the new subprogram is
9688 -- overriding.
9690 if No (P_Formal)
9691 and then No (N_Formal)
9692 and then (Ekind (New_E) /= E_Function
9693 or else
9694 Types_Correspond
9695 (Etype (P_Prim), Etype (New_E)))
9696 then
9697 return False;
9698 end if;
9699 end if;
9701 Next_Elmt (Prim_Elt);
9702 end loop;
9704 -- If no match found, then the new subprogram does not override
9705 -- in the generic (nor in the instance).
9707 -- If the type in question is not abstract, and the subprogram
9708 -- is, this will be an error if the new operation is in the
9709 -- private part of the instance. Emit a warning now, which will
9710 -- make the subsequent error message easier to understand.
9712 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9713 and then Is_Abstract_Subprogram (Prev_E)
9714 and then In_Private_Part (Current_Scope)
9715 then
9716 Error_Msg_Node_2 := F_Typ;
9717 Error_Msg_NE
9718 ("private operation& in generic unit does not override "
9719 & "any primitive operation of& (RM 12.3 (18))??",
9720 New_E, New_E);
9721 end if;
9723 return True;
9724 end;
9725 end if;
9726 else
9727 return False;
9728 end if;
9729 end Is_Non_Overriding_Operation;
9731 -------------------------------------
9732 -- List_Inherited_Pre_Post_Aspects --
9733 -------------------------------------
9735 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9736 begin
9737 if Opt.List_Inherited_Aspects
9738 and then Is_Subprogram_Or_Generic_Subprogram (E)
9739 then
9740 declare
9741 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9742 Items : Node_Id;
9743 Prag : Node_Id;
9745 begin
9746 for Index in Subps'Range loop
9747 Items := Contract (Subps (Index));
9749 if Present (Items) then
9750 Prag := Pre_Post_Conditions (Items);
9751 while Present (Prag) loop
9752 Error_Msg_Sloc := Sloc (Prag);
9754 if Class_Present (Prag)
9755 and then not Split_PPC (Prag)
9756 then
9757 if Pragma_Name (Prag) = Name_Precondition then
9758 Error_Msg_N
9759 ("info: & inherits `Pre''Class` aspect from "
9760 & "#?L?", E);
9761 else
9762 Error_Msg_N
9763 ("info: & inherits `Post''Class` aspect from "
9764 & "#?L?", E);
9765 end if;
9766 end if;
9768 Prag := Next_Pragma (Prag);
9769 end loop;
9770 end if;
9771 end loop;
9772 end;
9773 end if;
9774 end List_Inherited_Pre_Post_Aspects;
9776 ------------------------------
9777 -- Make_Inequality_Operator --
9778 ------------------------------
9780 -- S is the defining identifier of an equality operator. We build a
9781 -- subprogram declaration with the right signature. This operation is
9782 -- intrinsic, because it is always expanded as the negation of the
9783 -- call to the equality function.
9785 procedure Make_Inequality_Operator (S : Entity_Id) is
9786 Loc : constant Source_Ptr := Sloc (S);
9787 Decl : Node_Id;
9788 Formals : List_Id;
9789 Op_Name : Entity_Id;
9791 FF : constant Entity_Id := First_Formal (S);
9792 NF : constant Entity_Id := Next_Formal (FF);
9794 begin
9795 -- Check that equality was properly defined, ignore call if not
9797 if No (NF) then
9798 return;
9799 end if;
9801 declare
9802 A : constant Entity_Id :=
9803 Make_Defining_Identifier (Sloc (FF),
9804 Chars => Chars (FF));
9806 B : constant Entity_Id :=
9807 Make_Defining_Identifier (Sloc (NF),
9808 Chars => Chars (NF));
9810 begin
9811 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9813 Formals := New_List (
9814 Make_Parameter_Specification (Loc,
9815 Defining_Identifier => A,
9816 Parameter_Type =>
9817 New_Occurrence_Of (Etype (First_Formal (S)),
9818 Sloc (Etype (First_Formal (S))))),
9820 Make_Parameter_Specification (Loc,
9821 Defining_Identifier => B,
9822 Parameter_Type =>
9823 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9824 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9826 Decl :=
9827 Make_Subprogram_Declaration (Loc,
9828 Specification =>
9829 Make_Function_Specification (Loc,
9830 Defining_Unit_Name => Op_Name,
9831 Parameter_Specifications => Formals,
9832 Result_Definition =>
9833 New_Occurrence_Of (Standard_Boolean, Loc)));
9835 -- Insert inequality right after equality if it is explicit or after
9836 -- the derived type when implicit. These entities are created only
9837 -- for visibility purposes, and eventually replaced in the course
9838 -- of expansion, so they do not need to be attached to the tree and
9839 -- seen by the back-end. Keeping them internal also avoids spurious
9840 -- freezing problems. The declaration is inserted in the tree for
9841 -- analysis, and removed afterwards. If the equality operator comes
9842 -- from an explicit declaration, attach the inequality immediately
9843 -- after. Else the equality is inherited from a derived type
9844 -- declaration, so insert inequality after that declaration.
9846 if No (Alias (S)) then
9847 Insert_After (Unit_Declaration_Node (S), Decl);
9848 elsif Is_List_Member (Parent (S)) then
9849 Insert_After (Parent (S), Decl);
9850 else
9851 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9852 end if;
9854 Mark_Rewrite_Insertion (Decl);
9855 Set_Is_Intrinsic_Subprogram (Op_Name);
9856 Analyze (Decl);
9857 Remove (Decl);
9858 Set_Has_Completion (Op_Name);
9859 Set_Corresponding_Equality (Op_Name, S);
9860 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9861 end;
9862 end Make_Inequality_Operator;
9864 ----------------------
9865 -- May_Need_Actuals --
9866 ----------------------
9868 procedure May_Need_Actuals (Fun : Entity_Id) is
9869 F : Entity_Id;
9870 B : Boolean;
9872 begin
9873 F := First_Formal (Fun);
9874 B := True;
9875 while Present (F) loop
9876 if No (Default_Value (F)) then
9877 B := False;
9878 exit;
9879 end if;
9881 Next_Formal (F);
9882 end loop;
9884 Set_Needs_No_Actuals (Fun, B);
9885 end May_Need_Actuals;
9887 ---------------------
9888 -- Mode_Conformant --
9889 ---------------------
9891 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9892 Result : Boolean;
9893 begin
9894 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9895 return Result;
9896 end Mode_Conformant;
9898 ---------------------------
9899 -- New_Overloaded_Entity --
9900 ---------------------------
9902 procedure New_Overloaded_Entity
9903 (S : Entity_Id;
9904 Derived_Type : Entity_Id := Empty)
9906 Overridden_Subp : Entity_Id := Empty;
9907 -- Set if the current scope has an operation that is type-conformant
9908 -- with S, and becomes hidden by S.
9910 Is_Primitive_Subp : Boolean;
9911 -- Set to True if the new subprogram is primitive
9913 E : Entity_Id;
9914 -- Entity that S overrides
9916 Prev_Vis : Entity_Id := Empty;
9917 -- Predecessor of E in Homonym chain
9919 procedure Check_For_Primitive_Subprogram
9920 (Is_Primitive : out Boolean;
9921 Is_Overriding : Boolean := False);
9922 -- If the subprogram being analyzed is a primitive operation of the type
9923 -- of a formal or result, set the Has_Primitive_Operations flag on the
9924 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9925 -- corresponding flag on the entity itself for later use.
9927 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
9928 -- True if a) E is a subprogram whose first formal is a concurrent type
9929 -- defined in the scope of E that has some entry or subprogram whose
9930 -- profile matches E, or b) E is an internally built dispatching
9931 -- subprogram of a protected type and there is a matching subprogram
9932 -- defined in the enclosing scope of the protected type, or c) E is
9933 -- an entry of a synchronized type and a matching procedure has been
9934 -- previously defined in the enclosing scope of the synchronized type.
9936 function Is_Private_Declaration (E : Entity_Id) return Boolean;
9937 -- Check that E is declared in the private part of the current package,
9938 -- or in the package body, where it may hide a previous declaration.
9939 -- We can't use In_Private_Part by itself because this flag is also
9940 -- set when freezing entities, so we must examine the place of the
9941 -- declaration in the tree, and recognize wrapper packages as well.
9943 function Is_Overriding_Alias
9944 (Old_E : Entity_Id;
9945 New_E : Entity_Id) return Boolean;
9946 -- Check whether new subprogram and old subprogram are both inherited
9947 -- from subprograms that have distinct dispatch table entries. This can
9948 -- occur with derivations from instances with accidental homonyms. The
9949 -- function is conservative given that the converse is only true within
9950 -- instances that contain accidental overloadings.
9952 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
9953 -- Report conflict between entities S and E
9955 ------------------------------------
9956 -- Check_For_Primitive_Subprogram --
9957 ------------------------------------
9959 procedure Check_For_Primitive_Subprogram
9960 (Is_Primitive : out Boolean;
9961 Is_Overriding : Boolean := False)
9963 Formal : Entity_Id;
9964 F_Typ : Entity_Id;
9965 B_Typ : Entity_Id;
9967 function Visible_Part_Type (T : Entity_Id) return Boolean;
9968 -- Returns true if T is declared in the visible part of the current
9969 -- package scope; otherwise returns false. Assumes that T is declared
9970 -- in a package.
9972 procedure Check_Private_Overriding (T : Entity_Id);
9973 -- Checks that if a primitive abstract subprogram of a visible
9974 -- abstract type is declared in a private part, then it must override
9975 -- an abstract subprogram declared in the visible part. Also checks
9976 -- that if a primitive function with a controlling result is declared
9977 -- in a private part, then it must override a function declared in
9978 -- the visible part.
9980 ------------------------------
9981 -- Check_Private_Overriding --
9982 ------------------------------
9984 procedure Check_Private_Overriding (T : Entity_Id) is
9985 function Overrides_Private_Part_Op return Boolean;
9986 -- This detects the special case where the overriding subprogram
9987 -- is overriding a subprogram that was declared in the same
9988 -- private part. That case is illegal by 3.9.3(10).
9990 function Overrides_Visible_Function
9991 (Partial_View : Entity_Id) return Boolean;
9992 -- True if S overrides a function in the visible part. The
9993 -- overridden function could be explicitly or implicitly declared.
9995 -------------------------------
9996 -- Overrides_Private_Part_Op --
9997 -------------------------------
9999 function Overrides_Private_Part_Op return Boolean is
10000 Over_Decl : constant Node_Id :=
10001 Unit_Declaration_Node (Overridden_Operation (S));
10002 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10004 begin
10005 pragma Assert (Is_Overriding);
10006 pragma Assert
10007 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10008 pragma Assert
10009 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10011 return In_Same_List (Over_Decl, Subp_Decl);
10012 end Overrides_Private_Part_Op;
10014 --------------------------------
10015 -- Overrides_Visible_Function --
10016 --------------------------------
10018 function Overrides_Visible_Function
10019 (Partial_View : Entity_Id) return Boolean
10021 begin
10022 if not Is_Overriding or else not Has_Homonym (S) then
10023 return False;
10024 end if;
10026 if not Present (Partial_View) then
10027 return True;
10028 end if;
10030 -- Search through all the homonyms H of S in the current
10031 -- package spec, and return True if we find one that matches.
10032 -- Note that Parent (H) will be the declaration of the
10033 -- partial view of T for a match.
10035 declare
10036 H : Entity_Id := S;
10037 begin
10038 loop
10039 H := Homonym (H);
10040 exit when not Present (H) or else Scope (H) /= Scope (S);
10042 if Nkind_In
10043 (Parent (H),
10044 N_Private_Extension_Declaration,
10045 N_Private_Type_Declaration)
10046 and then Defining_Identifier (Parent (H)) = Partial_View
10047 then
10048 return True;
10049 end if;
10050 end loop;
10051 end;
10053 return False;
10054 end Overrides_Visible_Function;
10056 -- Start of processing for Check_Private_Overriding
10058 begin
10059 if Is_Package_Or_Generic_Package (Current_Scope)
10060 and then In_Private_Part (Current_Scope)
10061 and then Visible_Part_Type (T)
10062 and then not In_Instance
10063 then
10064 if Is_Abstract_Type (T)
10065 and then Is_Abstract_Subprogram (S)
10066 and then (not Is_Overriding
10067 or else not Is_Abstract_Subprogram (E)
10068 or else Overrides_Private_Part_Op)
10069 then
10070 Error_Msg_N
10071 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10074 elsif Ekind (S) = E_Function then
10075 declare
10076 Partial_View : constant Entity_Id :=
10077 Incomplete_Or_Partial_View (T);
10079 begin
10080 if not Overrides_Visible_Function (Partial_View) then
10082 -- Here, S is "function ... return T;" declared in
10083 -- the private part, not overriding some visible
10084 -- operation. That's illegal in the tagged case
10085 -- (but not if the private type is untagged).
10087 if ((Present (Partial_View)
10088 and then Is_Tagged_Type (Partial_View))
10089 or else (not Present (Partial_View)
10090 and then Is_Tagged_Type (T)))
10091 and then T = Base_Type (Etype (S))
10092 then
10093 Error_Msg_N
10094 ("private function with tagged result must"
10095 & " override visible-part function", S);
10096 Error_Msg_N
10097 ("\move subprogram to the visible part"
10098 & " (RM 3.9.3(10))", S);
10100 -- AI05-0073: extend this test to the case of a
10101 -- function with a controlling access result.
10103 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10104 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10105 and then
10106 not Is_Class_Wide_Type
10107 (Designated_Type (Etype (S)))
10108 and then Ada_Version >= Ada_2012
10109 then
10110 Error_Msg_N
10111 ("private function with controlling access "
10112 & "result must override visible-part function",
10114 Error_Msg_N
10115 ("\move subprogram to the visible part"
10116 & " (RM 3.9.3(10))", S);
10117 end if;
10118 end if;
10119 end;
10120 end if;
10121 end if;
10122 end Check_Private_Overriding;
10124 -----------------------
10125 -- Visible_Part_Type --
10126 -----------------------
10128 function Visible_Part_Type (T : Entity_Id) return Boolean is
10129 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10131 begin
10132 -- If the entity is a private type, then it must be declared in a
10133 -- visible part.
10135 if Ekind (T) in Private_Kind then
10136 return True;
10138 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10139 return True;
10141 elsif Is_List_Member (Declaration_Node (T))
10142 and then List_Containing (Declaration_Node (T)) =
10143 Visible_Declarations (Specification (P))
10144 then
10145 return True;
10147 else
10148 return False;
10149 end if;
10150 end Visible_Part_Type;
10152 -- Start of processing for Check_For_Primitive_Subprogram
10154 begin
10155 Is_Primitive := False;
10157 if not Comes_From_Source (S) then
10158 null;
10160 -- If subprogram is at library level, it is not primitive operation
10162 elsif Current_Scope = Standard_Standard then
10163 null;
10165 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10166 and then not In_Package_Body (Current_Scope))
10167 or else Is_Overriding
10168 then
10169 -- For function, check return type
10171 if Ekind (S) = E_Function then
10172 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10173 F_Typ := Designated_Type (Etype (S));
10174 else
10175 F_Typ := Etype (S);
10176 end if;
10178 B_Typ := Base_Type (F_Typ);
10180 if Scope (B_Typ) = Current_Scope
10181 and then not Is_Class_Wide_Type (B_Typ)
10182 and then not Is_Generic_Type (B_Typ)
10183 then
10184 Is_Primitive := True;
10185 Set_Has_Primitive_Operations (B_Typ);
10186 Set_Is_Primitive (S);
10187 Check_Private_Overriding (B_Typ);
10189 -- The Ghost policy in effect at the point of declaration
10190 -- or a tagged type and a primitive operation must match
10191 -- (SPARK RM 6.9(16)).
10193 Check_Ghost_Primitive (S, B_Typ);
10194 end if;
10195 end if;
10197 -- For all subprograms, check formals
10199 Formal := First_Formal (S);
10200 while Present (Formal) loop
10201 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10202 F_Typ := Designated_Type (Etype (Formal));
10203 else
10204 F_Typ := Etype (Formal);
10205 end if;
10207 B_Typ := Base_Type (F_Typ);
10209 if Ekind (B_Typ) = E_Access_Subtype then
10210 B_Typ := Base_Type (B_Typ);
10211 end if;
10213 if Scope (B_Typ) = Current_Scope
10214 and then not Is_Class_Wide_Type (B_Typ)
10215 and then not Is_Generic_Type (B_Typ)
10216 then
10217 Is_Primitive := True;
10218 Set_Is_Primitive (S);
10219 Set_Has_Primitive_Operations (B_Typ);
10220 Check_Private_Overriding (B_Typ);
10222 -- The Ghost policy in effect at the point of declaration
10223 -- of a tagged type and a primitive operation must match
10224 -- (SPARK RM 6.9(16)).
10226 Check_Ghost_Primitive (S, B_Typ);
10227 end if;
10229 Next_Formal (Formal);
10230 end loop;
10232 -- Special case: An equality function can be redefined for a type
10233 -- occurring in a declarative part, and won't otherwise be treated as
10234 -- a primitive because it doesn't occur in a package spec and doesn't
10235 -- override an inherited subprogram. It's important that we mark it
10236 -- primitive so it can be returned by Collect_Primitive_Operations
10237 -- and be used in composing the equality operation of later types
10238 -- that have a component of the type.
10240 elsif Chars (S) = Name_Op_Eq
10241 and then Etype (S) = Standard_Boolean
10242 then
10243 B_Typ := Base_Type (Etype (First_Formal (S)));
10245 if Scope (B_Typ) = Current_Scope
10246 and then
10247 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10248 and then not Is_Limited_Type (B_Typ)
10249 then
10250 Is_Primitive := True;
10251 Set_Is_Primitive (S);
10252 Set_Has_Primitive_Operations (B_Typ);
10253 Check_Private_Overriding (B_Typ);
10255 -- The Ghost policy in effect at the point of declaration of a
10256 -- tagged type and a primitive operation must match
10257 -- (SPARK RM 6.9(16)).
10259 Check_Ghost_Primitive (S, B_Typ);
10260 end if;
10261 end if;
10262 end Check_For_Primitive_Subprogram;
10264 --------------------------------------
10265 -- Has_Matching_Entry_Or_Subprogram --
10266 --------------------------------------
10268 function Has_Matching_Entry_Or_Subprogram
10269 (E : Entity_Id) return Boolean
10271 function Check_Conforming_Parameters
10272 (E1_Param : Node_Id;
10273 E2_Param : Node_Id) return Boolean;
10274 -- Starting from the given parameters, check that all the parameters
10275 -- of two entries or subprograms are subtype conformant. Used to skip
10276 -- the check on the controlling argument.
10278 function Matching_Entry_Or_Subprogram
10279 (Conc_Typ : Entity_Id;
10280 Subp : Entity_Id) return Entity_Id;
10281 -- Return the first entry or subprogram of the given concurrent type
10282 -- whose name matches the name of Subp and has a profile conformant
10283 -- with Subp; return Empty if not found.
10285 function Matching_Dispatching_Subprogram
10286 (Conc_Typ : Entity_Id;
10287 Ent : Entity_Id) return Entity_Id;
10288 -- Return the first dispatching primitive of Conc_Type defined in the
10289 -- enclosing scope of Conc_Type (i.e. before the full definition of
10290 -- this concurrent type) whose name matches the entry Ent and has a
10291 -- profile conformant with the profile of the corresponding (not yet
10292 -- built) dispatching primitive of Ent; return Empty if not found.
10294 function Matching_Original_Protected_Subprogram
10295 (Prot_Typ : Entity_Id;
10296 Subp : Entity_Id) return Entity_Id;
10297 -- Return the first subprogram defined in the enclosing scope of
10298 -- Prot_Typ (before the full definition of this protected type)
10299 -- whose name matches the original name of Subp and has a profile
10300 -- conformant with the profile of Subp; return Empty if not found.
10302 ---------------------------------
10303 -- Check_Confirming_Parameters --
10304 ---------------------------------
10306 function Check_Conforming_Parameters
10307 (E1_Param : Node_Id;
10308 E2_Param : Node_Id) return Boolean
10310 Param_E1 : Node_Id := E1_Param;
10311 Param_E2 : Node_Id := E2_Param;
10313 begin
10314 while Present (Param_E1) and then Present (Param_E2) loop
10315 if Ekind (Defining_Identifier (Param_E1)) /=
10316 Ekind (Defining_Identifier (Param_E2))
10317 or else not
10318 Conforming_Types
10319 (Find_Parameter_Type (Param_E1),
10320 Find_Parameter_Type (Param_E2),
10321 Subtype_Conformant)
10322 then
10323 return False;
10324 end if;
10326 Next (Param_E1);
10327 Next (Param_E2);
10328 end loop;
10330 -- The candidate is not valid if one of the two lists contains
10331 -- more parameters than the other
10333 return No (Param_E1) and then No (Param_E2);
10334 end Check_Conforming_Parameters;
10336 ----------------------------------
10337 -- Matching_Entry_Or_Subprogram --
10338 ----------------------------------
10340 function Matching_Entry_Or_Subprogram
10341 (Conc_Typ : Entity_Id;
10342 Subp : Entity_Id) return Entity_Id
10344 E : Entity_Id;
10346 begin
10347 E := First_Entity (Conc_Typ);
10348 while Present (E) loop
10349 if Chars (Subp) = Chars (E)
10350 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10351 and then
10352 Check_Conforming_Parameters
10353 (First (Parameter_Specifications (Parent (E))),
10354 Next (First (Parameter_Specifications (Parent (Subp)))))
10355 then
10356 return E;
10357 end if;
10359 Next_Entity (E);
10360 end loop;
10362 return Empty;
10363 end Matching_Entry_Or_Subprogram;
10365 -------------------------------------
10366 -- Matching_Dispatching_Subprogram --
10367 -------------------------------------
10369 function Matching_Dispatching_Subprogram
10370 (Conc_Typ : Entity_Id;
10371 Ent : Entity_Id) return Entity_Id
10373 E : Entity_Id;
10375 begin
10376 -- Search for entities in the enclosing scope of this synchonized
10377 -- type.
10379 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10380 Push_Scope (Scope (Conc_Typ));
10381 E := Current_Entity_In_Scope (Ent);
10382 Pop_Scope;
10384 while Present (E) loop
10385 if Scope (E) = Scope (Conc_Typ)
10386 and then Comes_From_Source (E)
10387 and then Ekind (E) = E_Procedure
10388 and then Present (First_Entity (E))
10389 and then Is_Controlling_Formal (First_Entity (E))
10390 and then Etype (First_Entity (E)) = Conc_Typ
10391 and then
10392 Check_Conforming_Parameters
10393 (First (Parameter_Specifications (Parent (Ent))),
10394 Next (First (Parameter_Specifications (Parent (E)))))
10395 then
10396 return E;
10397 end if;
10399 E := Homonym (E);
10400 end loop;
10402 return Empty;
10403 end Matching_Dispatching_Subprogram;
10405 --------------------------------------------
10406 -- Matching_Original_Protected_Subprogram --
10407 --------------------------------------------
10409 function Matching_Original_Protected_Subprogram
10410 (Prot_Typ : Entity_Id;
10411 Subp : Entity_Id) return Entity_Id
10413 ICF : constant Boolean :=
10414 Is_Controlling_Formal (First_Entity (Subp));
10415 E : Entity_Id;
10417 begin
10418 -- Temporarily decorate the first parameter of Subp as controlling
10419 -- formal, required to invoke Subtype_Conformant.
10421 Set_Is_Controlling_Formal (First_Entity (Subp));
10423 E :=
10424 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10426 while Present (E) loop
10427 if Scope (E) = Scope (Prot_Typ)
10428 and then Comes_From_Source (E)
10429 and then Ekind (Subp) = Ekind (E)
10430 and then Present (First_Entity (E))
10431 and then Is_Controlling_Formal (First_Entity (E))
10432 and then Etype (First_Entity (E)) = Prot_Typ
10433 and then Subtype_Conformant (Subp, E,
10434 Skip_Controlling_Formals => True)
10435 then
10436 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10437 return E;
10438 end if;
10440 E := Homonym (E);
10441 end loop;
10443 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10445 return Empty;
10446 end Matching_Original_Protected_Subprogram;
10448 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10450 begin
10451 -- Case 1: E is a subprogram whose first formal is a concurrent type
10452 -- defined in the scope of E that has an entry or subprogram whose
10453 -- profile matches E.
10455 if Comes_From_Source (E)
10456 and then Is_Subprogram (E)
10457 and then Present (First_Entity (E))
10458 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10459 then
10460 if Scope (E) =
10461 Scope (Corresponding_Concurrent_Type
10462 (Etype (First_Entity (E))))
10463 and then
10464 Present
10465 (Matching_Entry_Or_Subprogram
10466 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10467 Subp => E))
10468 then
10469 Report_Conflict (E,
10470 Matching_Entry_Or_Subprogram
10471 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10472 Subp => E));
10473 return True;
10474 end if;
10476 -- Case 2: E is an internally built dispatching subprogram of a
10477 -- protected type and there is a subprogram defined in the enclosing
10478 -- scope of the protected type that has the original name of E and
10479 -- its profile is conformant with the profile of E. We check the
10480 -- name of the original protected subprogram associated with E since
10481 -- the expander builds dispatching primitives of protected functions
10482 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10484 elsif not Comes_From_Source (E)
10485 and then Is_Subprogram (E)
10486 and then Present (First_Entity (E))
10487 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10488 and then Present (Original_Protected_Subprogram (E))
10489 and then
10490 Present
10491 (Matching_Original_Protected_Subprogram
10492 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10493 Subp => E))
10494 then
10495 Report_Conflict (E,
10496 Matching_Original_Protected_Subprogram
10497 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10498 Subp => E));
10499 return True;
10501 -- Case 3: E is an entry of a synchronized type and a matching
10502 -- procedure has been previously defined in the enclosing scope
10503 -- of the synchronized type.
10505 elsif Comes_From_Source (E)
10506 and then Ekind (E) = E_Entry
10507 and then
10508 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10509 then
10510 Report_Conflict (E,
10511 Matching_Dispatching_Subprogram (Current_Scope, E));
10512 return True;
10513 end if;
10515 return False;
10516 end Has_Matching_Entry_Or_Subprogram;
10518 ----------------------------
10519 -- Is_Private_Declaration --
10520 ----------------------------
10522 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10523 Decl : constant Node_Id := Unit_Declaration_Node (E);
10524 Priv_Decls : List_Id;
10526 begin
10527 if Is_Package_Or_Generic_Package (Current_Scope)
10528 and then In_Private_Part (Current_Scope)
10529 then
10530 Priv_Decls :=
10531 Private_Declarations (Package_Specification (Current_Scope));
10533 return In_Package_Body (Current_Scope)
10534 or else
10535 (Is_List_Member (Decl)
10536 and then List_Containing (Decl) = Priv_Decls)
10537 or else (Nkind (Parent (Decl)) = N_Package_Specification
10538 and then not
10539 Is_Compilation_Unit
10540 (Defining_Entity (Parent (Decl)))
10541 and then List_Containing (Parent (Parent (Decl))) =
10542 Priv_Decls);
10543 else
10544 return False;
10545 end if;
10546 end Is_Private_Declaration;
10548 --------------------------
10549 -- Is_Overriding_Alias --
10550 --------------------------
10552 function Is_Overriding_Alias
10553 (Old_E : Entity_Id;
10554 New_E : Entity_Id) return Boolean
10556 AO : constant Entity_Id := Alias (Old_E);
10557 AN : constant Entity_Id := Alias (New_E);
10559 begin
10560 return Scope (AO) /= Scope (AN)
10561 or else No (DTC_Entity (AO))
10562 or else No (DTC_Entity (AN))
10563 or else DT_Position (AO) = DT_Position (AN);
10564 end Is_Overriding_Alias;
10566 ---------------------
10567 -- Report_Conflict --
10568 ---------------------
10570 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10571 begin
10572 Error_Msg_Sloc := Sloc (E);
10574 -- Generate message, with useful additional warning if in generic
10576 if Is_Generic_Unit (E) then
10577 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10578 Error_Msg_N ("\& conflicts with declaration#", S);
10579 else
10580 Error_Msg_N ("& conflicts with declaration#", S);
10581 end if;
10582 end Report_Conflict;
10584 -- Start of processing for New_Overloaded_Entity
10586 begin
10587 -- We need to look for an entity that S may override. This must be a
10588 -- homonym in the current scope, so we look for the first homonym of
10589 -- S in the current scope as the starting point for the search.
10591 E := Current_Entity_In_Scope (S);
10593 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10594 -- They are directly added to the list of primitive operations of
10595 -- Derived_Type, unless this is a rederivation in the private part
10596 -- of an operation that was already derived in the visible part of
10597 -- the current package.
10599 if Ada_Version >= Ada_2005
10600 and then Present (Derived_Type)
10601 and then Present (Alias (S))
10602 and then Is_Dispatching_Operation (Alias (S))
10603 and then Present (Find_Dispatching_Type (Alias (S)))
10604 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10605 then
10606 -- For private types, when the full-view is processed we propagate to
10607 -- the full view the non-overridden entities whose attribute "alias"
10608 -- references an interface primitive. These entities were added by
10609 -- Derive_Subprograms to ensure that interface primitives are
10610 -- covered.
10612 -- Inside_Freeze_Actions is non zero when S corresponds with an
10613 -- internal entity that links an interface primitive with its
10614 -- covering primitive through attribute Interface_Alias (see
10615 -- Add_Internal_Interface_Entities).
10617 if Inside_Freezing_Actions = 0
10618 and then Is_Package_Or_Generic_Package (Current_Scope)
10619 and then In_Private_Part (Current_Scope)
10620 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10621 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10622 and then Full_View (Defining_Identifier (Parent (E)))
10623 = Defining_Identifier (Parent (S))
10624 and then Alias (E) = Alias (S)
10625 then
10626 Check_Operation_From_Private_View (S, E);
10627 Set_Is_Dispatching_Operation (S);
10629 -- Common case
10631 else
10632 Enter_Overloaded_Entity (S);
10633 Check_Dispatching_Operation (S, Empty);
10634 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10635 end if;
10637 return;
10638 end if;
10640 -- For synchronized types check conflicts of this entity with previously
10641 -- defined entities.
10643 if Ada_Version >= Ada_2005
10644 and then Has_Matching_Entry_Or_Subprogram (S)
10645 then
10646 return;
10647 end if;
10649 -- If there is no homonym then this is definitely not overriding
10651 if No (E) then
10652 Enter_Overloaded_Entity (S);
10653 Check_Dispatching_Operation (S, Empty);
10654 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10656 -- If subprogram has an explicit declaration, check whether it has an
10657 -- overriding indicator.
10659 if Comes_From_Source (S) then
10660 Check_Synchronized_Overriding (S, Overridden_Subp);
10662 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10663 -- it may have overridden some hidden inherited primitive. Update
10664 -- Overridden_Subp to avoid spurious errors when checking the
10665 -- overriding indicator.
10667 if Ada_Version >= Ada_2012
10668 and then No (Overridden_Subp)
10669 and then Is_Dispatching_Operation (S)
10670 and then Present (Overridden_Operation (S))
10671 then
10672 Overridden_Subp := Overridden_Operation (S);
10673 end if;
10675 Check_Overriding_Indicator
10676 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10678 -- The Ghost policy in effect at the point of declaration of a
10679 -- parent subprogram and an overriding subprogram must match
10680 -- (SPARK RM 6.9(17)).
10682 Check_Ghost_Overriding (S, Overridden_Subp);
10683 end if;
10685 -- If there is a homonym that is not overloadable, then we have an
10686 -- error, except for the special cases checked explicitly below.
10688 elsif not Is_Overloadable (E) then
10690 -- Check for spurious conflict produced by a subprogram that has the
10691 -- same name as that of the enclosing generic package. The conflict
10692 -- occurs within an instance, between the subprogram and the renaming
10693 -- declaration for the package. After the subprogram, the package
10694 -- renaming declaration becomes hidden.
10696 if Ekind (E) = E_Package
10697 and then Present (Renamed_Object (E))
10698 and then Renamed_Object (E) = Current_Scope
10699 and then Nkind (Parent (Renamed_Object (E))) =
10700 N_Package_Specification
10701 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10702 then
10703 Set_Is_Hidden (E);
10704 Set_Is_Immediately_Visible (E, False);
10705 Enter_Overloaded_Entity (S);
10706 Set_Homonym (S, Homonym (E));
10707 Check_Dispatching_Operation (S, Empty);
10708 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10710 -- If the subprogram is implicit it is hidden by the previous
10711 -- declaration. However if it is dispatching, it must appear in the
10712 -- dispatch table anyway, because it can be dispatched to even if it
10713 -- cannot be called directly.
10715 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10716 Set_Scope (S, Current_Scope);
10718 if Is_Dispatching_Operation (Alias (S)) then
10719 Check_Dispatching_Operation (S, Empty);
10720 end if;
10722 return;
10724 else
10725 Report_Conflict (S, E);
10726 return;
10727 end if;
10729 -- E exists and is overloadable
10731 else
10732 Check_Synchronized_Overriding (S, Overridden_Subp);
10734 -- Loop through E and its homonyms to determine if any of them is
10735 -- the candidate for overriding by S.
10737 while Present (E) loop
10739 -- Definitely not interesting if not in the current scope
10741 if Scope (E) /= Current_Scope then
10742 null;
10744 -- A function can overload the name of an abstract state. The
10745 -- state can be viewed as a function with a profile that cannot
10746 -- be matched by anything.
10748 elsif Ekind (S) = E_Function
10749 and then Ekind (E) = E_Abstract_State
10750 then
10751 Enter_Overloaded_Entity (S);
10752 return;
10754 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10755 -- procedures locate the internally generated spec. We enforce
10756 -- mode conformance since a tagged type may inherit from
10757 -- interfaces several null primitives which differ only in
10758 -- the mode of the formals.
10760 elsif not Comes_From_Source (S)
10761 and then Is_Null_Procedure (S)
10762 and then not Mode_Conformant (E, S)
10763 then
10764 null;
10766 -- Check if we have type conformance
10768 elsif Type_Conformant (E, S) then
10770 -- If the old and new entities have the same profile and one
10771 -- is not the body of the other, then this is an error, unless
10772 -- one of them is implicitly declared.
10774 -- There are some cases when both can be implicit, for example
10775 -- when both a literal and a function that overrides it are
10776 -- inherited in a derivation, or when an inherited operation
10777 -- of a tagged full type overrides the inherited operation of
10778 -- a private extension. Ada 83 had a special rule for the
10779 -- literal case. In Ada 95, the later implicit operation hides
10780 -- the former, and the literal is always the former. In the
10781 -- odd case where both are derived operations declared at the
10782 -- same point, both operations should be declared, and in that
10783 -- case we bypass the following test and proceed to the next
10784 -- part. This can only occur for certain obscure cases in
10785 -- instances, when an operation on a type derived from a formal
10786 -- private type does not override a homograph inherited from
10787 -- the actual. In subsequent derivations of such a type, the
10788 -- DT positions of these operations remain distinct, if they
10789 -- have been set.
10791 if Present (Alias (S))
10792 and then (No (Alias (E))
10793 or else Comes_From_Source (E)
10794 or else Is_Abstract_Subprogram (S)
10795 or else
10796 (Is_Dispatching_Operation (E)
10797 and then Is_Overriding_Alias (E, S)))
10798 and then Ekind (E) /= E_Enumeration_Literal
10799 then
10800 -- When an derived operation is overloaded it may be due to
10801 -- the fact that the full view of a private extension
10802 -- re-inherits. It has to be dealt with.
10804 if Is_Package_Or_Generic_Package (Current_Scope)
10805 and then In_Private_Part (Current_Scope)
10806 then
10807 Check_Operation_From_Private_View (S, E);
10808 end if;
10810 -- In any case the implicit operation remains hidden by the
10811 -- existing declaration, which is overriding. Indicate that
10812 -- E overrides the operation from which S is inherited.
10814 if Present (Alias (S)) then
10815 Set_Overridden_Operation (E, Alias (S));
10816 Inherit_Subprogram_Contract (E, Alias (S));
10818 else
10819 Set_Overridden_Operation (E, S);
10820 Inherit_Subprogram_Contract (E, S);
10821 end if;
10823 if Comes_From_Source (E) then
10824 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10826 -- The Ghost policy in effect at the point of declaration
10827 -- of a parent subprogram and an overriding subprogram
10828 -- must match (SPARK RM 6.9(17)).
10830 Check_Ghost_Overriding (E, S);
10831 end if;
10833 return;
10835 -- Within an instance, the renaming declarations for actual
10836 -- subprograms may become ambiguous, but they do not hide each
10837 -- other.
10839 elsif Ekind (E) /= E_Entry
10840 and then not Comes_From_Source (E)
10841 and then not Is_Generic_Instance (E)
10842 and then (Present (Alias (E))
10843 or else Is_Intrinsic_Subprogram (E))
10844 and then (not In_Instance
10845 or else No (Parent (E))
10846 or else Nkind (Unit_Declaration_Node (E)) /=
10847 N_Subprogram_Renaming_Declaration)
10848 then
10849 -- A subprogram child unit is not allowed to override an
10850 -- inherited subprogram (10.1.1(20)).
10852 if Is_Child_Unit (S) then
10853 Error_Msg_N
10854 ("child unit overrides inherited subprogram in parent",
10856 return;
10857 end if;
10859 if Is_Non_Overriding_Operation (E, S) then
10860 Enter_Overloaded_Entity (S);
10862 if No (Derived_Type)
10863 or else Is_Tagged_Type (Derived_Type)
10864 then
10865 Check_Dispatching_Operation (S, Empty);
10866 end if;
10868 return;
10869 end if;
10871 -- E is a derived operation or an internal operator which
10872 -- is being overridden. Remove E from further visibility.
10873 -- Furthermore, if E is a dispatching operation, it must be
10874 -- replaced in the list of primitive operations of its type
10875 -- (see Override_Dispatching_Operation).
10877 Overridden_Subp := E;
10879 declare
10880 Prev : Entity_Id;
10882 begin
10883 Prev := First_Entity (Current_Scope);
10884 while Present (Prev) and then Next_Entity (Prev) /= E loop
10885 Next_Entity (Prev);
10886 end loop;
10888 -- It is possible for E to be in the current scope and
10889 -- yet not in the entity chain. This can only occur in a
10890 -- generic context where E is an implicit concatenation
10891 -- in the formal part, because in a generic body the
10892 -- entity chain starts with the formals.
10894 -- In GNATprove mode, a wrapper for an operation with
10895 -- axiomatization may be a homonym of another declaration
10896 -- for an actual subprogram (needs refinement ???).
10898 if No (Prev) then
10899 if In_Instance
10900 and then GNATprove_Mode
10901 and then
10902 Nkind (Original_Node (Unit_Declaration_Node (S))) =
10903 N_Subprogram_Renaming_Declaration
10904 then
10905 return;
10906 else
10907 pragma Assert (Chars (E) = Name_Op_Concat);
10908 null;
10909 end if;
10910 end if;
10912 -- E must be removed both from the entity_list of the
10913 -- current scope, and from the visibility chain.
10915 if Debug_Flag_E then
10916 Write_Str ("Override implicit operation ");
10917 Write_Int (Int (E));
10918 Write_Eol;
10919 end if;
10921 -- If E is a predefined concatenation, it stands for four
10922 -- different operations. As a result, a single explicit
10923 -- declaration does not hide it. In a possible ambiguous
10924 -- situation, Disambiguate chooses the user-defined op,
10925 -- so it is correct to retain the previous internal one.
10927 if Chars (E) /= Name_Op_Concat
10928 or else Ekind (E) /= E_Operator
10929 then
10930 -- For nondispatching derived operations that are
10931 -- overridden by a subprogram declared in the private
10932 -- part of a package, we retain the derived subprogram
10933 -- but mark it as not immediately visible. If the
10934 -- derived operation was declared in the visible part
10935 -- then this ensures that it will still be visible
10936 -- outside the package with the proper signature
10937 -- (calls from outside must also be directed to this
10938 -- version rather than the overriding one, unlike the
10939 -- dispatching case). Calls from inside the package
10940 -- will still resolve to the overriding subprogram
10941 -- since the derived one is marked as not visible
10942 -- within the package.
10944 -- If the private operation is dispatching, we achieve
10945 -- the overriding by keeping the implicit operation
10946 -- but setting its alias to be the overriding one. In
10947 -- this fashion the proper body is executed in all
10948 -- cases, but the original signature is used outside
10949 -- of the package.
10951 -- If the overriding is not in the private part, we
10952 -- remove the implicit operation altogether.
10954 if Is_Private_Declaration (S) then
10955 if not Is_Dispatching_Operation (E) then
10956 Set_Is_Immediately_Visible (E, False);
10957 else
10958 -- Work done in Override_Dispatching_Operation,
10959 -- so nothing else needs to be done here.
10961 null;
10962 end if;
10964 else
10965 -- Find predecessor of E in Homonym chain
10967 if E = Current_Entity (E) then
10968 Prev_Vis := Empty;
10969 else
10970 Prev_Vis := Current_Entity (E);
10971 while Homonym (Prev_Vis) /= E loop
10972 Prev_Vis := Homonym (Prev_Vis);
10973 end loop;
10974 end if;
10976 if Prev_Vis /= Empty then
10978 -- Skip E in the visibility chain
10980 Set_Homonym (Prev_Vis, Homonym (E));
10982 else
10983 Set_Name_Entity_Id (Chars (E), Homonym (E));
10984 end if;
10986 Set_Next_Entity (Prev, Next_Entity (E));
10988 if No (Next_Entity (Prev)) then
10989 Set_Last_Entity (Current_Scope, Prev);
10990 end if;
10991 end if;
10992 end if;
10994 Enter_Overloaded_Entity (S);
10996 -- For entities generated by Derive_Subprograms the
10997 -- overridden operation is the inherited primitive
10998 -- (which is available through the attribute alias).
11000 if not (Comes_From_Source (E))
11001 and then Is_Dispatching_Operation (E)
11002 and then Find_Dispatching_Type (E) =
11003 Find_Dispatching_Type (S)
11004 and then Present (Alias (E))
11005 and then Comes_From_Source (Alias (E))
11006 then
11007 Set_Overridden_Operation (S, Alias (E));
11008 Inherit_Subprogram_Contract (S, Alias (E));
11010 -- Normal case of setting entity as overridden
11012 -- Note: Static_Initialization and Overridden_Operation
11013 -- attributes use the same field in subprogram entities.
11014 -- Static_Initialization is only defined for internal
11015 -- initialization procedures, where Overridden_Operation
11016 -- is irrelevant. Therefore the setting of this attribute
11017 -- must check whether the target is an init_proc.
11019 elsif not Is_Init_Proc (S) then
11020 Set_Overridden_Operation (S, E);
11021 Inherit_Subprogram_Contract (S, E);
11022 end if;
11024 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11026 -- The Ghost policy in effect at the point of declaration
11027 -- of a parent subprogram and an overriding subprogram
11028 -- must match (SPARK RM 6.9(17)).
11030 Check_Ghost_Overriding (S, E);
11032 -- If S is a user-defined subprogram or a null procedure
11033 -- expanded to override an inherited null procedure, or a
11034 -- predefined dispatching primitive then indicate that E
11035 -- overrides the operation from which S is inherited.
11037 if Comes_From_Source (S)
11038 or else
11039 (Present (Parent (S))
11040 and then
11041 Nkind (Parent (S)) = N_Procedure_Specification
11042 and then
11043 Null_Present (Parent (S)))
11044 or else
11045 (Present (Alias (E))
11046 and then
11047 Is_Predefined_Dispatching_Operation (Alias (E)))
11048 then
11049 if Present (Alias (E)) then
11050 Set_Overridden_Operation (S, Alias (E));
11051 Inherit_Subprogram_Contract (S, Alias (E));
11052 end if;
11053 end if;
11055 if Is_Dispatching_Operation (E) then
11057 -- An overriding dispatching subprogram inherits the
11058 -- convention of the overridden subprogram (AI-117).
11060 Set_Convention (S, Convention (E));
11061 Check_Dispatching_Operation (S, E);
11063 else
11064 Check_Dispatching_Operation (S, Empty);
11065 end if;
11067 Check_For_Primitive_Subprogram
11068 (Is_Primitive_Subp, Is_Overriding => True);
11069 goto Check_Inequality;
11070 end;
11072 -- Apparent redeclarations in instances can occur when two
11073 -- formal types get the same actual type. The subprograms in
11074 -- in the instance are legal, even if not callable from the
11075 -- outside. Calls from within are disambiguated elsewhere.
11076 -- For dispatching operations in the visible part, the usual
11077 -- rules apply, and operations with the same profile are not
11078 -- legal (B830001).
11080 elsif (In_Instance_Visible_Part
11081 and then not Is_Dispatching_Operation (E))
11082 or else In_Instance_Not_Visible
11083 then
11084 null;
11086 -- Here we have a real error (identical profile)
11088 else
11089 Error_Msg_Sloc := Sloc (E);
11091 -- Avoid cascaded errors if the entity appears in
11092 -- subsequent calls.
11094 Set_Scope (S, Current_Scope);
11096 -- Generate error, with extra useful warning for the case
11097 -- of a generic instance with no completion.
11099 if Is_Generic_Instance (S)
11100 and then not Has_Completion (E)
11101 then
11102 Error_Msg_N
11103 ("instantiation cannot provide body for&", S);
11104 Error_Msg_N ("\& conflicts with declaration#", S);
11105 else
11106 Error_Msg_N ("& conflicts with declaration#", S);
11107 end if;
11109 return;
11110 end if;
11112 else
11113 -- If one subprogram has an access parameter and the other
11114 -- a parameter of an access type, calls to either might be
11115 -- ambiguous. Verify that parameters match except for the
11116 -- access parameter.
11118 if May_Hide_Profile then
11119 declare
11120 F1 : Entity_Id;
11121 F2 : Entity_Id;
11123 begin
11124 F1 := First_Formal (S);
11125 F2 := First_Formal (E);
11126 while Present (F1) and then Present (F2) loop
11127 if Is_Access_Type (Etype (F1)) then
11128 if not Is_Access_Type (Etype (F2))
11129 or else not Conforming_Types
11130 (Designated_Type (Etype (F1)),
11131 Designated_Type (Etype (F2)),
11132 Type_Conformant)
11133 then
11134 May_Hide_Profile := False;
11135 end if;
11137 elsif
11138 not Conforming_Types
11139 (Etype (F1), Etype (F2), Type_Conformant)
11140 then
11141 May_Hide_Profile := False;
11142 end if;
11144 Next_Formal (F1);
11145 Next_Formal (F2);
11146 end loop;
11148 if May_Hide_Profile
11149 and then No (F1)
11150 and then No (F2)
11151 then
11152 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11153 end if;
11154 end;
11155 end if;
11156 end if;
11158 E := Homonym (E);
11159 end loop;
11161 -- On exit, we know that S is a new entity
11163 Enter_Overloaded_Entity (S);
11164 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11165 Check_Overriding_Indicator
11166 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11168 -- The Ghost policy in effect at the point of declaration of a parent
11169 -- subprogram and an overriding subprogram must match
11170 -- (SPARK RM 6.9(17)).
11172 Check_Ghost_Overriding (S, Overridden_Subp);
11174 -- Overloading is not allowed in SPARK, except for operators
11176 if Nkind (S) /= N_Defining_Operator_Symbol then
11177 Error_Msg_Sloc := Sloc (Homonym (S));
11178 Check_SPARK_05_Restriction
11179 ("overloading not allowed with entity#", S);
11180 end if;
11182 -- If S is a derived operation for an untagged type then by
11183 -- definition it's not a dispatching operation (even if the parent
11184 -- operation was dispatching), so Check_Dispatching_Operation is not
11185 -- called in that case.
11187 if No (Derived_Type)
11188 or else Is_Tagged_Type (Derived_Type)
11189 then
11190 Check_Dispatching_Operation (S, Empty);
11191 end if;
11192 end if;
11194 -- If this is a user-defined equality operator that is not a derived
11195 -- subprogram, create the corresponding inequality. If the operation is
11196 -- dispatching, the expansion is done elsewhere, and we do not create
11197 -- an explicit inequality operation.
11199 <<Check_Inequality>>
11200 if Chars (S) = Name_Op_Eq
11201 and then Etype (S) = Standard_Boolean
11202 and then Present (Parent (S))
11203 and then not Is_Dispatching_Operation (S)
11204 then
11205 Make_Inequality_Operator (S);
11206 Check_Untagged_Equality (S);
11207 end if;
11208 end New_Overloaded_Entity;
11210 ---------------------
11211 -- Process_Formals --
11212 ---------------------
11214 procedure Process_Formals
11215 (T : List_Id;
11216 Related_Nod : Node_Id)
11218 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11219 -- Determine whether an access type designates a type coming from a
11220 -- limited view.
11222 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11223 -- Check whether the default has a class-wide type. After analysis the
11224 -- default has the type of the formal, so we must also check explicitly
11225 -- for an access attribute.
11227 ----------------------------------
11228 -- Designates_From_Limited_With --
11229 ----------------------------------
11231 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11232 Desig : Entity_Id := Typ;
11234 begin
11235 if Is_Access_Type (Desig) then
11236 Desig := Directly_Designated_Type (Desig);
11237 end if;
11239 if Is_Class_Wide_Type (Desig) then
11240 Desig := Root_Type (Desig);
11241 end if;
11243 return
11244 Ekind (Desig) = E_Incomplete_Type
11245 and then From_Limited_With (Desig);
11246 end Designates_From_Limited_With;
11248 ---------------------------
11249 -- Is_Class_Wide_Default --
11250 ---------------------------
11252 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11253 begin
11254 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11255 or else (Nkind (D) = N_Attribute_Reference
11256 and then Attribute_Name (D) = Name_Access
11257 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11258 end Is_Class_Wide_Default;
11260 -- Local variables
11262 Context : constant Node_Id := Parent (Parent (T));
11263 Default : Node_Id;
11264 Formal : Entity_Id;
11265 Formal_Type : Entity_Id;
11266 Param_Spec : Node_Id;
11267 Ptype : Entity_Id;
11269 Num_Out_Params : Nat := 0;
11270 First_Out_Param : Entity_Id := Empty;
11271 -- Used for setting Is_Only_Out_Parameter
11273 -- Start of processing for Process_Formals
11275 begin
11276 -- In order to prevent premature use of the formals in the same formal
11277 -- part, the Ekind is left undefined until all default expressions are
11278 -- analyzed. The Ekind is established in a separate loop at the end.
11280 Param_Spec := First (T);
11281 while Present (Param_Spec) loop
11282 Formal := Defining_Identifier (Param_Spec);
11283 Set_Never_Set_In_Source (Formal, True);
11284 Enter_Name (Formal);
11286 -- Case of ordinary parameters
11288 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11289 Find_Type (Parameter_Type (Param_Spec));
11290 Ptype := Parameter_Type (Param_Spec);
11292 if Ptype = Error then
11293 goto Continue;
11294 end if;
11296 Formal_Type := Entity (Ptype);
11298 if Is_Incomplete_Type (Formal_Type)
11299 or else
11300 (Is_Class_Wide_Type (Formal_Type)
11301 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11302 then
11303 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11304 -- primitive operations, as long as their completion is
11305 -- in the same declarative part. If in the private part
11306 -- this means that the type cannot be a Taft-amendment type.
11307 -- Check is done on package exit. For access to subprograms,
11308 -- the use is legal for Taft-amendment types.
11310 -- Ada 2012: tagged incomplete types are allowed as generic
11311 -- formal types. They do not introduce dependencies and the
11312 -- corresponding generic subprogram does not have a delayed
11313 -- freeze, because it does not need a freeze node. However,
11314 -- it is still the case that untagged incomplete types cannot
11315 -- be Taft-amendment types and must be completed in private
11316 -- part, so the subprogram must appear in the list of private
11317 -- dependents of the type.
11319 if Is_Tagged_Type (Formal_Type)
11320 or else (Ada_Version >= Ada_2012
11321 and then not From_Limited_With (Formal_Type)
11322 and then not Is_Generic_Type (Formal_Type))
11323 then
11324 if Ekind (Scope (Current_Scope)) = E_Package
11325 and then not Is_Generic_Type (Formal_Type)
11326 and then not Is_Class_Wide_Type (Formal_Type)
11327 then
11328 if not Nkind_In
11329 (Parent (T), N_Access_Function_Definition,
11330 N_Access_Procedure_Definition)
11331 then
11332 Append_Elmt (Current_Scope,
11333 Private_Dependents (Base_Type (Formal_Type)));
11335 -- Freezing is delayed to ensure that Register_Prim
11336 -- will get called for this operation, which is needed
11337 -- in cases where static dispatch tables aren't built.
11338 -- (Note that the same is done for controlling access
11339 -- parameter cases in function Access_Definition.)
11341 if not Is_Thunk (Current_Scope) then
11342 Set_Has_Delayed_Freeze (Current_Scope);
11343 end if;
11344 end if;
11345 end if;
11347 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11348 N_Access_Procedure_Definition)
11349 then
11350 -- AI05-0151: Tagged incomplete types are allowed in all
11351 -- formal parts. Untagged incomplete types are not allowed
11352 -- in bodies. Limited views of either kind are not allowed
11353 -- if there is no place at which the non-limited view can
11354 -- become available.
11356 -- Incomplete formal untagged types are not allowed in
11357 -- subprogram bodies (but are legal in their declarations).
11358 -- This excludes bodies created for null procedures, which
11359 -- are basic declarations.
11361 if Is_Generic_Type (Formal_Type)
11362 and then not Is_Tagged_Type (Formal_Type)
11363 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11364 then
11365 Error_Msg_N
11366 ("invalid use of formal incomplete type", Param_Spec);
11368 elsif Ada_Version >= Ada_2012 then
11369 if Is_Tagged_Type (Formal_Type)
11370 and then (not From_Limited_With (Formal_Type)
11371 or else not In_Package_Body)
11372 then
11373 null;
11375 elsif Nkind_In (Context, N_Accept_Statement,
11376 N_Accept_Alternative,
11377 N_Entry_Body)
11378 or else (Nkind (Context) = N_Subprogram_Body
11379 and then Comes_From_Source (Context))
11380 then
11381 Error_Msg_NE
11382 ("invalid use of untagged incomplete type &",
11383 Ptype, Formal_Type);
11384 end if;
11386 else
11387 Error_Msg_NE
11388 ("invalid use of incomplete type&",
11389 Param_Spec, Formal_Type);
11391 -- Further checks on the legality of incomplete types
11392 -- in formal parts are delayed until the freeze point
11393 -- of the enclosing subprogram or access to subprogram.
11394 end if;
11395 end if;
11397 elsif Ekind (Formal_Type) = E_Void then
11398 Error_Msg_NE
11399 ("premature use of&",
11400 Parameter_Type (Param_Spec), Formal_Type);
11401 end if;
11403 -- Ada 2012 (AI-142): Handle aliased parameters
11405 if Ada_Version >= Ada_2012
11406 and then Aliased_Present (Param_Spec)
11407 then
11408 Set_Is_Aliased (Formal);
11409 end if;
11411 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11412 -- declaration corresponding to the null-excluding type of the
11413 -- formal in the enclosing scope. Finally, replace the parameter
11414 -- type of the formal with the internal subtype.
11416 if Ada_Version >= Ada_2005
11417 and then Null_Exclusion_Present (Param_Spec)
11418 then
11419 if not Is_Access_Type (Formal_Type) then
11420 Error_Msg_N
11421 ("`NOT NULL` allowed only for an access type", Param_Spec);
11423 else
11424 if Can_Never_Be_Null (Formal_Type)
11425 and then Comes_From_Source (Related_Nod)
11426 then
11427 Error_Msg_NE
11428 ("`NOT NULL` not allowed (& already excludes null)",
11429 Param_Spec, Formal_Type);
11430 end if;
11432 Formal_Type :=
11433 Create_Null_Excluding_Itype
11434 (T => Formal_Type,
11435 Related_Nod => Related_Nod,
11436 Scope_Id => Scope (Current_Scope));
11438 -- If the designated type of the itype is an itype that is
11439 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11440 -- on the access subtype, to prevent order-of-elaboration
11441 -- issues in the backend.
11443 -- Example:
11444 -- type T is access procedure;
11445 -- procedure Op (O : not null T);
11447 if Is_Itype (Directly_Designated_Type (Formal_Type))
11448 and then
11449 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11450 then
11451 Set_Has_Delayed_Freeze (Formal_Type);
11452 end if;
11453 end if;
11454 end if;
11456 -- An access formal type
11458 else
11459 Formal_Type :=
11460 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11462 -- No need to continue if we already notified errors
11464 if not Present (Formal_Type) then
11465 return;
11466 end if;
11468 -- Ada 2005 (AI-254)
11470 declare
11471 AD : constant Node_Id :=
11472 Access_To_Subprogram_Definition
11473 (Parameter_Type (Param_Spec));
11474 begin
11475 if Present (AD) and then Protected_Present (AD) then
11476 Formal_Type :=
11477 Replace_Anonymous_Access_To_Protected_Subprogram
11478 (Param_Spec);
11479 end if;
11480 end;
11481 end if;
11483 Set_Etype (Formal, Formal_Type);
11485 -- Deal with default expression if present
11487 Default := Expression (Param_Spec);
11489 if Present (Default) then
11490 Check_SPARK_05_Restriction
11491 ("default expression is not allowed", Default);
11493 if Out_Present (Param_Spec) then
11494 Error_Msg_N
11495 ("default initialization only allowed for IN parameters",
11496 Param_Spec);
11497 end if;
11499 -- Do the special preanalysis of the expression (see section on
11500 -- "Handling of Default Expressions" in the spec of package Sem).
11502 Preanalyze_Spec_Expression (Default, Formal_Type);
11504 -- An access to constant cannot be the default for
11505 -- an access parameter that is an access to variable.
11507 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11508 and then not Is_Access_Constant (Formal_Type)
11509 and then Is_Access_Type (Etype (Default))
11510 and then Is_Access_Constant (Etype (Default))
11511 then
11512 Error_Msg_N
11513 ("formal that is access to variable cannot be initialized "
11514 & "with an access-to-constant expression", Default);
11515 end if;
11517 -- Check that the designated type of an access parameter's default
11518 -- is not a class-wide type unless the parameter's designated type
11519 -- is also class-wide.
11521 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11522 and then not Designates_From_Limited_With (Formal_Type)
11523 and then Is_Class_Wide_Default (Default)
11524 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11525 then
11526 Error_Msg_N
11527 ("access to class-wide expression not allowed here", Default);
11528 end if;
11530 -- Check incorrect use of dynamically tagged expressions
11532 if Is_Tagged_Type (Formal_Type) then
11533 Check_Dynamically_Tagged_Expression
11534 (Expr => Default,
11535 Typ => Formal_Type,
11536 Related_Nod => Default);
11537 end if;
11538 end if;
11540 -- Ada 2005 (AI-231): Static checks
11542 if Ada_Version >= Ada_2005
11543 and then Is_Access_Type (Etype (Formal))
11544 and then Can_Never_Be_Null (Etype (Formal))
11545 then
11546 Null_Exclusion_Static_Checks (Param_Spec);
11547 end if;
11549 -- The following checks are relevant only when SPARK_Mode is on as
11550 -- these are not standard Ada legality rules.
11552 if SPARK_Mode = On then
11553 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11555 -- A function cannot have a parameter of mode IN OUT or OUT
11556 -- (SPARK RM 6.1).
11558 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11559 Error_Msg_N
11560 ("function cannot have parameter of mode `OUT` or "
11561 & "`IN OUT`", Formal);
11562 end if;
11564 -- A procedure cannot have an effectively volatile formal
11565 -- parameter of mode IN because it behaves as a constant
11566 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11568 elsif Ekind (Scope (Formal)) = E_Procedure
11569 and then Ekind (Formal) = E_In_Parameter
11570 and then Is_Effectively_Volatile (Formal)
11571 then
11572 Error_Msg_N
11573 ("formal parameter of mode `IN` cannot be volatile", Formal);
11574 end if;
11575 end if;
11577 <<Continue>>
11578 Next (Param_Spec);
11579 end loop;
11581 -- If this is the formal part of a function specification, analyze the
11582 -- subtype mark in the context where the formals are visible but not
11583 -- yet usable, and may hide outer homographs.
11585 if Nkind (Related_Nod) = N_Function_Specification then
11586 Analyze_Return_Type (Related_Nod);
11587 end if;
11589 -- Now set the kind (mode) of each formal
11591 Param_Spec := First (T);
11592 while Present (Param_Spec) loop
11593 Formal := Defining_Identifier (Param_Spec);
11594 Set_Formal_Mode (Formal);
11596 if Ekind (Formal) = E_In_Parameter then
11597 Set_Default_Value (Formal, Expression (Param_Spec));
11599 if Present (Expression (Param_Spec)) then
11600 Default := Expression (Param_Spec);
11602 if Is_Scalar_Type (Etype (Default)) then
11603 if Nkind (Parameter_Type (Param_Spec)) /=
11604 N_Access_Definition
11605 then
11606 Formal_Type := Entity (Parameter_Type (Param_Spec));
11607 else
11608 Formal_Type :=
11609 Access_Definition
11610 (Related_Nod, Parameter_Type (Param_Spec));
11611 end if;
11613 Apply_Scalar_Range_Check (Default, Formal_Type);
11614 end if;
11615 end if;
11617 elsif Ekind (Formal) = E_Out_Parameter then
11618 Num_Out_Params := Num_Out_Params + 1;
11620 if Num_Out_Params = 1 then
11621 First_Out_Param := Formal;
11622 end if;
11624 elsif Ekind (Formal) = E_In_Out_Parameter then
11625 Num_Out_Params := Num_Out_Params + 1;
11626 end if;
11628 -- Skip remaining processing if formal type was in error
11630 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11631 goto Next_Parameter;
11632 end if;
11634 -- Force call by reference if aliased
11636 declare
11637 Conv : constant Convention_Id := Convention (Etype (Formal));
11638 begin
11639 if Is_Aliased (Formal) then
11640 Set_Mechanism (Formal, By_Reference);
11642 -- Warn if user asked this to be passed by copy
11644 if Conv = Convention_Ada_Pass_By_Copy then
11645 Error_Msg_N
11646 ("cannot pass aliased parameter & by copy??", Formal);
11647 end if;
11649 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11651 elsif Conv = Convention_Ada_Pass_By_Copy then
11652 Set_Mechanism (Formal, By_Copy);
11654 elsif Conv = Convention_Ada_Pass_By_Reference then
11655 Set_Mechanism (Formal, By_Reference);
11656 end if;
11657 end;
11659 <<Next_Parameter>>
11660 Next (Param_Spec);
11661 end loop;
11663 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11664 Set_Is_Only_Out_Parameter (First_Out_Param);
11665 end if;
11666 end Process_Formals;
11668 ----------------------------
11669 -- Reference_Body_Formals --
11670 ----------------------------
11672 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11673 Fs : Entity_Id;
11674 Fb : Entity_Id;
11676 begin
11677 if Error_Posted (Spec) then
11678 return;
11679 end if;
11681 -- Iterate over both lists. They may be of different lengths if the two
11682 -- specs are not conformant.
11684 Fs := First_Formal (Spec);
11685 Fb := First_Formal (Bod);
11686 while Present (Fs) and then Present (Fb) loop
11687 Generate_Reference (Fs, Fb, 'b');
11689 if Style_Check then
11690 Style.Check_Identifier (Fb, Fs);
11691 end if;
11693 Set_Spec_Entity (Fb, Fs);
11694 Set_Referenced (Fs, False);
11695 Next_Formal (Fs);
11696 Next_Formal (Fb);
11697 end loop;
11698 end Reference_Body_Formals;
11700 -------------------------
11701 -- Set_Actual_Subtypes --
11702 -------------------------
11704 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11705 Decl : Node_Id;
11706 Formal : Entity_Id;
11707 T : Entity_Id;
11708 First_Stmt : Node_Id := Empty;
11709 AS_Needed : Boolean;
11711 begin
11712 -- If this is an empty initialization procedure, no need to create
11713 -- actual subtypes (small optimization).
11715 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11716 return;
11718 -- Within a predicate function we do not want to generate local
11719 -- subtypes that may generate nested predicate functions.
11721 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11722 return;
11723 end if;
11725 -- The subtype declarations may freeze the formals. The body generated
11726 -- for an expression function is not a freeze point, so do not emit
11727 -- these declarations (small loss of efficiency in rare cases).
11729 if Nkind (N) = N_Subprogram_Body
11730 and then Was_Expression_Function (N)
11731 then
11732 return;
11733 end if;
11735 Formal := First_Formal (Subp);
11736 while Present (Formal) loop
11737 T := Etype (Formal);
11739 -- We never need an actual subtype for a constrained formal
11741 if Is_Constrained (T) then
11742 AS_Needed := False;
11744 -- If we have unknown discriminants, then we do not need an actual
11745 -- subtype, or more accurately we cannot figure it out. Note that
11746 -- all class-wide types have unknown discriminants.
11748 elsif Has_Unknown_Discriminants (T) then
11749 AS_Needed := False;
11751 -- At this stage we have an unconstrained type that may need an
11752 -- actual subtype. For sure the actual subtype is needed if we have
11753 -- an unconstrained array type. However, in an instance, the type
11754 -- may appear as a subtype of the full view, while the actual is
11755 -- in fact private (in which case no actual subtype is needed) so
11756 -- check the kind of the base type.
11758 elsif Is_Array_Type (Base_Type (T)) then
11759 AS_Needed := True;
11761 -- The only other case needing an actual subtype is an unconstrained
11762 -- record type which is an IN parameter (we cannot generate actual
11763 -- subtypes for the OUT or IN OUT case, since an assignment can
11764 -- change the discriminant values. However we exclude the case of
11765 -- initialization procedures, since discriminants are handled very
11766 -- specially in this context, see the section entitled "Handling of
11767 -- Discriminants" in Einfo.
11769 -- We also exclude the case of Discrim_SO_Functions (functions used
11770 -- in front-end layout mode for size/offset values), since in such
11771 -- functions only discriminants are referenced, and not only are such
11772 -- subtypes not needed, but they cannot always be generated, because
11773 -- of order of elaboration issues.
11775 elsif Is_Record_Type (T)
11776 and then Ekind (Formal) = E_In_Parameter
11777 and then Chars (Formal) /= Name_uInit
11778 and then not Is_Unchecked_Union (T)
11779 and then not Is_Discrim_SO_Function (Subp)
11780 then
11781 AS_Needed := True;
11783 -- All other cases do not need an actual subtype
11785 else
11786 AS_Needed := False;
11787 end if;
11789 -- Generate actual subtypes for unconstrained arrays and
11790 -- unconstrained discriminated records.
11792 if AS_Needed then
11793 if Nkind (N) = N_Accept_Statement then
11795 -- If expansion is active, the formal is replaced by a local
11796 -- variable that renames the corresponding entry of the
11797 -- parameter block, and it is this local variable that may
11798 -- require an actual subtype.
11800 if Expander_Active then
11801 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11802 else
11803 Decl := Build_Actual_Subtype (T, Formal);
11804 end if;
11806 if Present (Handled_Statement_Sequence (N)) then
11807 First_Stmt :=
11808 First (Statements (Handled_Statement_Sequence (N)));
11809 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11810 Mark_Rewrite_Insertion (Decl);
11811 else
11812 -- If the accept statement has no body, there will be no
11813 -- reference to the actuals, so no need to compute actual
11814 -- subtypes.
11816 return;
11817 end if;
11819 else
11820 Decl := Build_Actual_Subtype (T, Formal);
11821 Prepend (Decl, Declarations (N));
11822 Mark_Rewrite_Insertion (Decl);
11823 end if;
11825 -- The declaration uses the bounds of an existing object, and
11826 -- therefore needs no constraint checks.
11828 Analyze (Decl, Suppress => All_Checks);
11829 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11831 -- We need to freeze manually the generated type when it is
11832 -- inserted anywhere else than in a declarative part.
11834 if Present (First_Stmt) then
11835 Insert_List_Before_And_Analyze (First_Stmt,
11836 Freeze_Entity (Defining_Identifier (Decl), N));
11838 -- Ditto if the type has a dynamic predicate, because the
11839 -- generated function will mention the actual subtype. The
11840 -- predicate may come from an explicit aspect of be inherited.
11842 elsif Has_Predicates (T) then
11843 Insert_List_Before_And_Analyze (Decl,
11844 Freeze_Entity (Defining_Identifier (Decl), N));
11845 end if;
11847 if Nkind (N) = N_Accept_Statement
11848 and then Expander_Active
11849 then
11850 Set_Actual_Subtype (Renamed_Object (Formal),
11851 Defining_Identifier (Decl));
11852 else
11853 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11854 end if;
11855 end if;
11857 Next_Formal (Formal);
11858 end loop;
11859 end Set_Actual_Subtypes;
11861 ---------------------
11862 -- Set_Formal_Mode --
11863 ---------------------
11865 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11866 Spec : constant Node_Id := Parent (Formal_Id);
11867 Id : constant Entity_Id := Scope (Formal_Id);
11869 begin
11870 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11871 -- since we ensure that corresponding actuals are always valid at the
11872 -- point of the call.
11874 if Out_Present (Spec) then
11875 if Ekind_In (Id, E_Entry, E_Entry_Family)
11876 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11877 then
11878 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11879 end if;
11881 if Ekind_In (Id, E_Function, E_Generic_Function) then
11883 -- [IN] OUT parameters allowed for functions in Ada 2012
11885 if Ada_Version >= Ada_2012 then
11887 -- Even in Ada 2012 operators can only have IN parameters
11889 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11890 Error_Msg_N ("operators can only have IN parameters", Spec);
11891 end if;
11893 if In_Present (Spec) then
11894 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11895 else
11896 Set_Ekind (Formal_Id, E_Out_Parameter);
11897 end if;
11899 -- But not in earlier versions of Ada
11901 else
11902 Error_Msg_N ("functions can only have IN parameters", Spec);
11903 Set_Ekind (Formal_Id, E_In_Parameter);
11904 end if;
11906 elsif In_Present (Spec) then
11907 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11909 else
11910 Set_Ekind (Formal_Id, E_Out_Parameter);
11911 Set_Never_Set_In_Source (Formal_Id, True);
11912 Set_Is_True_Constant (Formal_Id, False);
11913 Set_Current_Value (Formal_Id, Empty);
11914 end if;
11916 else
11917 Set_Ekind (Formal_Id, E_In_Parameter);
11918 end if;
11920 -- Set Is_Known_Non_Null for access parameters since the language
11921 -- guarantees that access parameters are always non-null. We also set
11922 -- Can_Never_Be_Null, since there is no way to change the value.
11924 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11926 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11927 -- null; In Ada 2005, only if then null_exclusion is explicit.
11929 if Ada_Version < Ada_2005
11930 or else Can_Never_Be_Null (Etype (Formal_Id))
11931 then
11932 Set_Is_Known_Non_Null (Formal_Id);
11933 Set_Can_Never_Be_Null (Formal_Id);
11934 end if;
11936 -- Ada 2005 (AI-231): Null-exclusion access subtype
11938 elsif Is_Access_Type (Etype (Formal_Id))
11939 and then Can_Never_Be_Null (Etype (Formal_Id))
11940 then
11941 Set_Is_Known_Non_Null (Formal_Id);
11943 -- We can also set Can_Never_Be_Null (thus preventing some junk
11944 -- access checks) for the case of an IN parameter, which cannot
11945 -- be changed, or for an IN OUT parameter, which can be changed but
11946 -- not to a null value. But for an OUT parameter, the initial value
11947 -- passed in can be null, so we can't set this flag in that case.
11949 if Ekind (Formal_Id) /= E_Out_Parameter then
11950 Set_Can_Never_Be_Null (Formal_Id);
11951 end if;
11952 end if;
11954 Set_Mechanism (Formal_Id, Default_Mechanism);
11955 Set_Formal_Validity (Formal_Id);
11956 end Set_Formal_Mode;
11958 -------------------------
11959 -- Set_Formal_Validity --
11960 -------------------------
11962 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
11963 begin
11964 -- If no validity checking, then we cannot assume anything about the
11965 -- validity of parameters, since we do not know there is any checking
11966 -- of the validity on the call side.
11968 if not Validity_Checks_On then
11969 return;
11971 -- If validity checking for parameters is enabled, this means we are
11972 -- not supposed to make any assumptions about argument values.
11974 elsif Validity_Check_Parameters then
11975 return;
11977 -- If we are checking in parameters, we will assume that the caller is
11978 -- also checking parameters, so we can assume the parameter is valid.
11980 elsif Ekind (Formal_Id) = E_In_Parameter
11981 and then Validity_Check_In_Params
11982 then
11983 Set_Is_Known_Valid (Formal_Id, True);
11985 -- Similar treatment for IN OUT parameters
11987 elsif Ekind (Formal_Id) = E_In_Out_Parameter
11988 and then Validity_Check_In_Out_Params
11989 then
11990 Set_Is_Known_Valid (Formal_Id, True);
11991 end if;
11992 end Set_Formal_Validity;
11994 ------------------------
11995 -- Subtype_Conformant --
11996 ------------------------
11998 function Subtype_Conformant
11999 (New_Id : Entity_Id;
12000 Old_Id : Entity_Id;
12001 Skip_Controlling_Formals : Boolean := False) return Boolean
12003 Result : Boolean;
12004 begin
12005 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12006 Skip_Controlling_Formals => Skip_Controlling_Formals);
12007 return Result;
12008 end Subtype_Conformant;
12010 ---------------------
12011 -- Type_Conformant --
12012 ---------------------
12014 function Type_Conformant
12015 (New_Id : Entity_Id;
12016 Old_Id : Entity_Id;
12017 Skip_Controlling_Formals : Boolean := False) return Boolean
12019 Result : Boolean;
12020 begin
12021 May_Hide_Profile := False;
12022 Check_Conformance
12023 (New_Id, Old_Id, Type_Conformant, False, Result,
12024 Skip_Controlling_Formals => Skip_Controlling_Formals);
12025 return Result;
12026 end Type_Conformant;
12028 -------------------------------
12029 -- Valid_Operator_Definition --
12030 -------------------------------
12032 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12033 N : Integer := 0;
12034 F : Entity_Id;
12035 Id : constant Name_Id := Chars (Designator);
12036 N_OK : Boolean;
12038 begin
12039 F := First_Formal (Designator);
12040 while Present (F) loop
12041 N := N + 1;
12043 if Present (Default_Value (F)) then
12044 Error_Msg_N
12045 ("default values not allowed for operator parameters",
12046 Parent (F));
12048 -- For function instantiations that are operators, we must check
12049 -- separately that the corresponding generic only has in-parameters.
12050 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12051 -- an error could not arise in earlier versions of the language.
12053 elsif Ekind (F) /= E_In_Parameter then
12054 Error_Msg_N ("operators can only have IN parameters", F);
12055 end if;
12057 Next_Formal (F);
12058 end loop;
12060 -- Verify that user-defined operators have proper number of arguments
12061 -- First case of operators which can only be unary
12063 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12064 N_OK := (N = 1);
12066 -- Case of operators which can be unary or binary
12068 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12069 N_OK := (N in 1 .. 2);
12071 -- All other operators can only be binary
12073 else
12074 N_OK := (N = 2);
12075 end if;
12077 if not N_OK then
12078 Error_Msg_N
12079 ("incorrect number of arguments for operator", Designator);
12080 end if;
12082 if Id = Name_Op_Ne
12083 and then Base_Type (Etype (Designator)) = Standard_Boolean
12084 and then not Is_Intrinsic_Subprogram (Designator)
12085 then
12086 Error_Msg_N
12087 ("explicit definition of inequality not allowed", Designator);
12088 end if;
12089 end Valid_Operator_Definition;
12091 end Sem_Ch6;