Support TI mode and soft float on PA64
[official-gcc.git] / gcc / reload.c
blob4c55ca58a5f720d01e8c970caedb78afeb8bc2ff
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains subroutines used only from the file reload1.c.
21 It knows how to scan one insn for operands and values
22 that need to be copied into registers to make valid code.
23 It also finds other operands and values which are valid
24 but for which equivalent values in registers exist and
25 ought to be used instead.
27 Before processing the first insn of the function, call `init_reload'.
28 init_reload actually has to be called earlier anyway.
30 To scan an insn, call `find_reloads'. This does two things:
31 1. sets up tables describing which values must be reloaded
32 for this insn, and what kind of hard regs they must be reloaded into;
33 2. optionally record the locations where those values appear in
34 the data, so they can be replaced properly later.
35 This is done only if the second arg to `find_reloads' is nonzero.
37 The third arg to `find_reloads' specifies the number of levels
38 of indirect addressing supported by the machine. If it is zero,
39 indirect addressing is not valid. If it is one, (MEM (REG n))
40 is valid even if (REG n) did not get a hard register; if it is two,
41 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42 hard register, and similarly for higher values.
44 Then you must choose the hard regs to reload those pseudo regs into,
45 and generate appropriate load insns before this insn and perhaps
46 also store insns after this insn. Set up the array `reload_reg_rtx'
47 to contain the REG rtx's for the registers you used. In some
48 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49 for certain reloads. Then that tells you which register to use,
50 so you do not need to allocate one. But you still do need to add extra
51 instructions to copy the value into and out of that register.
53 Finally you must call `subst_reloads' to substitute the reload reg rtx's
54 into the locations already recorded.
56 NOTE SIDE EFFECTS:
58 find_reloads can alter the operands of the instruction it is called on.
60 1. Two operands of any sort may be interchanged, if they are in a
61 commutative instruction.
62 This happens only if find_reloads thinks the instruction will compile
63 better that way.
65 2. Pseudo-registers that are equivalent to constants are replaced
66 with those constants if they are not in hard registers.
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
72 Using a reload register for several reloads in one insn:
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
80 register.
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload. */
86 #define REG_OK_STRICT
88 /* We do not enable this with CHECKING_P, since it is awfully slow. */
89 #undef DEBUG_RELOAD
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "backend.h"
95 #include "target.h"
96 #include "rtl.h"
97 #include "tree.h"
98 #include "df.h"
99 #include "memmodel.h"
100 #include "tm_p.h"
101 #include "optabs.h"
102 #include "regs.h"
103 #include "ira.h"
104 #include "recog.h"
105 #include "rtl-error.h"
106 #include "reload.h"
107 #include "addresses.h"
108 #include "function-abi.h"
110 /* True if X is a constant that can be forced into the constant pool.
111 MODE is the mode of the operand, or VOIDmode if not known. */
112 #define CONST_POOL_OK_P(MODE, X) \
113 ((MODE) != VOIDmode \
114 && CONSTANT_P (X) \
115 && GET_CODE (X) != HIGH \
116 && !targetm.cannot_force_const_mem (MODE, X))
118 /* True if C is a non-empty register class that has too few registers
119 to be safely used as a reload target class. */
121 static inline bool
122 small_register_class_p (reg_class_t rclass)
124 return (reg_class_size [(int) rclass] == 1
125 || (reg_class_size [(int) rclass] >= 1
126 && targetm.class_likely_spilled_p (rclass)));
130 /* All reloads of the current insn are recorded here. See reload.h for
131 comments. */
132 int n_reloads;
133 struct reload rld[MAX_RELOADS];
135 /* All the "earlyclobber" operands of the current insn
136 are recorded here. */
137 int n_earlyclobbers;
138 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
140 int reload_n_operands;
142 /* Replacing reloads.
144 If `replace_reloads' is nonzero, then as each reload is recorded
145 an entry is made for it in the table `replacements'.
146 Then later `subst_reloads' can look through that table and
147 perform all the replacements needed. */
149 /* Nonzero means record the places to replace. */
150 static int replace_reloads;
152 /* Each replacement is recorded with a structure like this. */
153 struct replacement
155 rtx *where; /* Location to store in */
156 int what; /* which reload this is for */
157 machine_mode mode; /* mode it must have */
160 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
162 /* Number of replacements currently recorded. */
163 static int n_replacements;
165 /* Used to track what is modified by an operand. */
166 struct decomposition
168 int reg_flag; /* Nonzero if referencing a register. */
169 int safe; /* Nonzero if this can't conflict with anything. */
170 rtx base; /* Base address for MEM. */
171 poly_int64_pod start; /* Starting offset or register number. */
172 poly_int64_pod end; /* Ending offset or register number. */
175 /* Save MEMs needed to copy from one class of registers to another. One MEM
176 is used per mode, but normally only one or two modes are ever used.
178 We keep two versions, before and after register elimination. The one
179 after register elimination is record separately for each operand. This
180 is done in case the address is not valid to be sure that we separately
181 reload each. */
183 static rtx secondary_memlocs[NUM_MACHINE_MODES];
184 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
185 static int secondary_memlocs_elim_used = 0;
187 /* The instruction we are doing reloads for;
188 so we can test whether a register dies in it. */
189 static rtx_insn *this_insn;
191 /* Nonzero if this instruction is a user-specified asm with operands. */
192 static int this_insn_is_asm;
194 /* If hard_regs_live_known is nonzero,
195 we can tell which hard regs are currently live,
196 at least enough to succeed in choosing dummy reloads. */
197 static int hard_regs_live_known;
199 /* Indexed by hard reg number,
200 element is nonnegative if hard reg has been spilled.
201 This vector is passed to `find_reloads' as an argument
202 and is not changed here. */
203 static short *static_reload_reg_p;
205 /* Set to 1 in subst_reg_equivs if it changes anything. */
206 static int subst_reg_equivs_changed;
208 /* On return from push_reload, holds the reload-number for the OUT
209 operand, which can be different for that from the input operand. */
210 static int output_reloadnum;
212 /* Compare two RTX's. */
213 #define MATCHES(x, y) \
214 (x == y || (x != 0 && (REG_P (x) \
215 ? REG_P (y) && REGNO (x) == REGNO (y) \
216 : rtx_equal_p (x, y) && ! side_effects_p (x))))
218 /* Indicates if two reloads purposes are for similar enough things that we
219 can merge their reloads. */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
222 || ((when1) == (when2) && (op1) == (op2)) \
223 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
226 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
227 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
229 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231 ((when1) != (when2) \
232 || ! ((op1) == (op2) \
233 || (when1) == RELOAD_FOR_INPUT \
234 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
237 /* If we are going to reload an address, compute the reload type to
238 use. */
239 #define ADDR_TYPE(type) \
240 ((type) == RELOAD_FOR_INPUT_ADDRESS \
241 ? RELOAD_FOR_INPADDR_ADDRESS \
242 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
243 ? RELOAD_FOR_OUTADDR_ADDRESS \
244 : (type)))
246 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
247 machine_mode, enum reload_type,
248 enum insn_code *, secondary_reload_info *);
249 static enum reg_class find_valid_class (machine_mode, machine_mode,
250 int, unsigned int);
251 static void push_replacement (rtx *, int, machine_mode);
252 static void dup_replacements (rtx *, rtx *);
253 static void combine_reloads (void);
254 static int find_reusable_reload (rtx *, rtx, enum reg_class,
255 enum reload_type, int, int);
256 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, machine_mode,
257 machine_mode, reg_class_t, int, int);
258 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
259 static struct decomposition decompose (rtx);
260 static int immune_p (rtx, rtx, struct decomposition);
261 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
262 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int,
263 rtx_insn *, int *);
264 static rtx make_memloc (rtx, int);
265 static bool maybe_memory_address_addr_space_p (machine_mode, rtx,
266 addr_space_t, rtx *);
267 static int find_reloads_address (machine_mode, rtx *, rtx, rtx *,
268 int, enum reload_type, int, rtx_insn *);
269 static rtx subst_reg_equivs (rtx, rtx_insn *);
270 static rtx subst_indexed_address (rtx);
271 static void update_auto_inc_notes (rtx_insn *, int, int);
272 static int find_reloads_address_1 (machine_mode, addr_space_t, rtx, int,
273 enum rtx_code, enum rtx_code, rtx *,
274 int, enum reload_type,int, rtx_insn *);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
279 int, rtx_insn *, int *);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static poly_int64 find_inc_amount (rtx, rtx);
282 static int refers_to_mem_for_reload_p (rtx);
283 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
284 rtx, rtx *);
286 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
287 list yet. */
289 static void
290 push_reg_equiv_alt_mem (int regno, rtx mem)
292 rtx it;
294 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
295 if (rtx_equal_p (XEXP (it, 0), mem))
296 return;
298 reg_equiv_alt_mem_list (regno)
299 = alloc_EXPR_LIST (REG_EQUIV, mem,
300 reg_equiv_alt_mem_list (regno));
303 /* Determine if any secondary reloads are needed for loading (if IN_P is
304 nonzero) or storing (if IN_P is zero) X to or from a reload register of
305 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
306 are needed, push them.
308 Return the reload number of the secondary reload we made, or -1 if
309 we didn't need one. *PICODE is set to the insn_code to use if we do
310 need a secondary reload. */
312 static int
313 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
314 enum reg_class reload_class,
315 machine_mode reload_mode, enum reload_type type,
316 enum insn_code *picode, secondary_reload_info *prev_sri)
318 enum reg_class rclass = NO_REGS;
319 enum reg_class scratch_class;
320 machine_mode mode = reload_mode;
321 enum insn_code icode = CODE_FOR_nothing;
322 enum insn_code t_icode = CODE_FOR_nothing;
323 enum reload_type secondary_type;
324 int s_reload, t_reload = -1;
325 const char *scratch_constraint;
326 secondary_reload_info sri;
328 if (type == RELOAD_FOR_INPUT_ADDRESS
329 || type == RELOAD_FOR_OUTPUT_ADDRESS
330 || type == RELOAD_FOR_INPADDR_ADDRESS
331 || type == RELOAD_FOR_OUTADDR_ADDRESS)
332 secondary_type = type;
333 else
334 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
336 *picode = CODE_FOR_nothing;
338 /* If X is a paradoxical SUBREG, use the inner value to determine both the
339 mode and object being reloaded. */
340 if (paradoxical_subreg_p (x))
342 x = SUBREG_REG (x);
343 reload_mode = GET_MODE (x);
346 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
347 is still a pseudo-register by now, it *must* have an equivalent MEM
348 but we don't want to assume that), use that equivalent when seeing if
349 a secondary reload is needed since whether or not a reload is needed
350 might be sensitive to the form of the MEM. */
352 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
353 && reg_equiv_mem (REGNO (x)))
354 x = reg_equiv_mem (REGNO (x));
356 sri.icode = CODE_FOR_nothing;
357 sri.prev_sri = prev_sri;
358 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
359 reload_mode, &sri);
360 icode = (enum insn_code) sri.icode;
362 /* If we don't need any secondary registers, done. */
363 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
364 return -1;
366 if (rclass != NO_REGS)
367 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
368 reload_mode, type, &t_icode, &sri);
370 /* If we will be using an insn, the secondary reload is for a
371 scratch register. */
373 if (icode != CODE_FOR_nothing)
375 /* If IN_P is nonzero, the reload register will be the output in
376 operand 0. If IN_P is zero, the reload register will be the input
377 in operand 1. Outputs should have an initial "=", which we must
378 skip. */
380 /* ??? It would be useful to be able to handle only two, or more than
381 three, operands, but for now we can only handle the case of having
382 exactly three: output, input and one temp/scratch. */
383 gcc_assert (insn_data[(int) icode].n_operands == 3);
385 /* ??? We currently have no way to represent a reload that needs
386 an icode to reload from an intermediate tertiary reload register.
387 We should probably have a new field in struct reload to tag a
388 chain of scratch operand reloads onto. */
389 gcc_assert (rclass == NO_REGS);
391 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
392 gcc_assert (*scratch_constraint == '=');
393 scratch_constraint++;
394 if (*scratch_constraint == '&')
395 scratch_constraint++;
396 scratch_class = (reg_class_for_constraint
397 (lookup_constraint (scratch_constraint)));
399 rclass = scratch_class;
400 mode = insn_data[(int) icode].operand[2].mode;
403 /* This case isn't valid, so fail. Reload is allowed to use the same
404 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
405 in the case of a secondary register, we actually need two different
406 registers for correct code. We fail here to prevent the possibility of
407 silently generating incorrect code later.
409 The convention is that secondary input reloads are valid only if the
410 secondary_class is different from class. If you have such a case, you
411 cannot use secondary reloads, you must work around the problem some
412 other way.
414 Allow this when a reload_in/out pattern is being used. I.e. assume
415 that the generated code handles this case. */
417 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
418 || t_icode != CODE_FOR_nothing);
420 /* See if we can reuse an existing secondary reload. */
421 for (s_reload = 0; s_reload < n_reloads; s_reload++)
422 if (rld[s_reload].secondary_p
423 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
424 || reg_class_subset_p (rld[s_reload].rclass, rclass))
425 && ((in_p && rld[s_reload].inmode == mode)
426 || (! in_p && rld[s_reload].outmode == mode))
427 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
428 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
429 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
430 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
431 && (small_register_class_p (rclass)
432 || targetm.small_register_classes_for_mode_p (VOIDmode))
433 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
434 opnum, rld[s_reload].opnum))
436 if (in_p)
437 rld[s_reload].inmode = mode;
438 if (! in_p)
439 rld[s_reload].outmode = mode;
441 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
442 rld[s_reload].rclass = rclass;
444 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
445 rld[s_reload].optional &= optional;
446 rld[s_reload].secondary_p = 1;
447 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
448 opnum, rld[s_reload].opnum))
449 rld[s_reload].when_needed = RELOAD_OTHER;
451 break;
454 if (s_reload == n_reloads)
456 /* If we need a memory location to copy between the two reload regs,
457 set it up now. Note that we do the input case before making
458 the reload and the output case after. This is due to the
459 way reloads are output. */
461 if (in_p && icode == CODE_FOR_nothing
462 && targetm.secondary_memory_needed (mode, rclass, reload_class))
464 get_secondary_mem (x, reload_mode, opnum, type);
466 /* We may have just added new reloads. Make sure we add
467 the new reload at the end. */
468 s_reload = n_reloads;
471 /* We need to make a new secondary reload for this register class. */
472 rld[s_reload].in = rld[s_reload].out = 0;
473 rld[s_reload].rclass = rclass;
475 rld[s_reload].inmode = in_p ? mode : VOIDmode;
476 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
477 rld[s_reload].reg_rtx = 0;
478 rld[s_reload].optional = optional;
479 rld[s_reload].inc = 0;
480 /* Maybe we could combine these, but it seems too tricky. */
481 rld[s_reload].nocombine = 1;
482 rld[s_reload].in_reg = 0;
483 rld[s_reload].out_reg = 0;
484 rld[s_reload].opnum = opnum;
485 rld[s_reload].when_needed = secondary_type;
486 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
487 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
488 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
489 rld[s_reload].secondary_out_icode
490 = ! in_p ? t_icode : CODE_FOR_nothing;
491 rld[s_reload].secondary_p = 1;
493 n_reloads++;
495 if (! in_p && icode == CODE_FOR_nothing
496 && targetm.secondary_memory_needed (mode, reload_class, rclass))
497 get_secondary_mem (x, mode, opnum, type);
500 *picode = icode;
501 return s_reload;
504 /* If a secondary reload is needed, return its class. If both an intermediate
505 register and a scratch register is needed, we return the class of the
506 intermediate register. */
507 reg_class_t
508 secondary_reload_class (bool in_p, reg_class_t rclass, machine_mode mode,
509 rtx x)
511 enum insn_code icode;
512 secondary_reload_info sri;
514 sri.icode = CODE_FOR_nothing;
515 sri.prev_sri = NULL;
516 rclass
517 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
518 icode = (enum insn_code) sri.icode;
520 /* If there are no secondary reloads at all, we return NO_REGS.
521 If an intermediate register is needed, we return its class. */
522 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
523 return rclass;
525 /* No intermediate register is needed, but we have a special reload
526 pattern, which we assume for now needs a scratch register. */
527 return scratch_reload_class (icode);
530 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
531 three operands, verify that operand 2 is an output operand, and return
532 its register class.
533 ??? We'd like to be able to handle any pattern with at least 2 operands,
534 for zero or more scratch registers, but that needs more infrastructure. */
535 enum reg_class
536 scratch_reload_class (enum insn_code icode)
538 const char *scratch_constraint;
539 enum reg_class rclass;
541 gcc_assert (insn_data[(int) icode].n_operands == 3);
542 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
543 gcc_assert (*scratch_constraint == '=');
544 scratch_constraint++;
545 if (*scratch_constraint == '&')
546 scratch_constraint++;
547 rclass = reg_class_for_constraint (lookup_constraint (scratch_constraint));
548 gcc_assert (rclass != NO_REGS);
549 return rclass;
552 /* Return a memory location that will be used to copy X in mode MODE.
553 If we haven't already made a location for this mode in this insn,
554 call find_reloads_address on the location being returned. */
557 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, machine_mode mode,
558 int opnum, enum reload_type type)
560 rtx loc;
561 int mem_valid;
563 /* By default, if MODE is narrower than a word, widen it to a word.
564 This is required because most machines that require these memory
565 locations do not support short load and stores from all registers
566 (e.g., FP registers). */
568 mode = targetm.secondary_memory_needed_mode (mode);
570 /* If we already have made a MEM for this operand in MODE, return it. */
571 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
572 return secondary_memlocs_elim[(int) mode][opnum];
574 /* If this is the first time we've tried to get a MEM for this mode,
575 allocate a new one. `something_changed' in reload will get set
576 by noticing that the frame size has changed. */
578 if (secondary_memlocs[(int) mode] == 0)
580 #ifdef SECONDARY_MEMORY_NEEDED_RTX
581 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
582 #else
583 secondary_memlocs[(int) mode]
584 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
585 #endif
588 /* Get a version of the address doing any eliminations needed. If that
589 didn't give us a new MEM, make a new one if it isn't valid. */
591 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
592 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
593 MEM_ADDR_SPACE (loc));
595 if (! mem_valid && loc == secondary_memlocs[(int) mode])
596 loc = copy_rtx (loc);
598 /* The only time the call below will do anything is if the stack
599 offset is too large. In that case IND_LEVELS doesn't matter, so we
600 can just pass a zero. Adjust the type to be the address of the
601 corresponding object. If the address was valid, save the eliminated
602 address. If it wasn't valid, we need to make a reload each time, so
603 don't save it. */
605 if (! mem_valid)
607 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
608 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
609 : RELOAD_OTHER);
611 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
612 opnum, type, 0, 0);
615 secondary_memlocs_elim[(int) mode][opnum] = loc;
616 if (secondary_memlocs_elim_used <= (int)mode)
617 secondary_memlocs_elim_used = (int)mode + 1;
618 return loc;
621 /* Clear any secondary memory locations we've made. */
623 void
624 clear_secondary_mem (void)
626 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
630 /* Find the largest class which has at least one register valid in
631 mode INNER, and which for every such register, that register number
632 plus N is also valid in OUTER (if in range) and is cheap to move
633 into REGNO. Such a class must exist. */
635 static enum reg_class
636 find_valid_class (machine_mode outer ATTRIBUTE_UNUSED,
637 machine_mode inner ATTRIBUTE_UNUSED, int n,
638 unsigned int dest_regno ATTRIBUTE_UNUSED)
640 int best_cost = -1;
641 int rclass;
642 int regno;
643 enum reg_class best_class = NO_REGS;
644 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
645 unsigned int best_size = 0;
646 int cost;
648 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
650 int bad = 0;
651 int good = 0;
652 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
653 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
655 if (targetm.hard_regno_mode_ok (regno, inner))
657 good = 1;
658 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
659 && !targetm.hard_regno_mode_ok (regno + n, outer))
660 bad = 1;
664 if (bad || !good)
665 continue;
666 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
668 if ((reg_class_size[rclass] > best_size
669 && (best_cost < 0 || best_cost >= cost))
670 || best_cost > cost)
672 best_class = (enum reg_class) rclass;
673 best_size = reg_class_size[rclass];
674 best_cost = register_move_cost (outer, (enum reg_class) rclass,
675 dest_class);
679 gcc_assert (best_size != 0);
681 return best_class;
684 /* We are trying to reload a subreg of something that is not a register.
685 Find the largest class which contains only registers valid in
686 mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
687 which we would eventually like to obtain the object. */
689 static enum reg_class
690 find_valid_class_1 (machine_mode outer ATTRIBUTE_UNUSED,
691 machine_mode mode ATTRIBUTE_UNUSED,
692 enum reg_class dest_class ATTRIBUTE_UNUSED)
694 int best_cost = -1;
695 int rclass;
696 int regno;
697 enum reg_class best_class = NO_REGS;
698 unsigned int best_size = 0;
699 int cost;
701 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
703 unsigned int computed_rclass_size = 0;
705 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
707 if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
708 && targetm.hard_regno_mode_ok (regno, mode))
709 computed_rclass_size++;
712 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
714 if ((computed_rclass_size > best_size
715 && (best_cost < 0 || best_cost >= cost))
716 || best_cost > cost)
718 best_class = (enum reg_class) rclass;
719 best_size = computed_rclass_size;
720 best_cost = register_move_cost (outer, (enum reg_class) rclass,
721 dest_class);
725 gcc_assert (best_size != 0);
727 #ifdef LIMIT_RELOAD_CLASS
728 best_class = LIMIT_RELOAD_CLASS (mode, best_class);
729 #endif
730 return best_class;
733 /* Return the number of a previously made reload that can be combined with
734 a new one, or n_reloads if none of the existing reloads can be used.
735 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
736 push_reload, they determine the kind of the new reload that we try to
737 combine. P_IN points to the corresponding value of IN, which can be
738 modified by this function.
739 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
741 static int
742 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
743 enum reload_type type, int opnum, int dont_share)
745 rtx in = *p_in;
746 int i;
747 /* We can't merge two reloads if the output of either one is
748 earlyclobbered. */
750 if (earlyclobber_operand_p (out))
751 return n_reloads;
753 /* We can use an existing reload if the class is right
754 and at least one of IN and OUT is a match
755 and the other is at worst neutral.
756 (A zero compared against anything is neutral.)
758 For targets with small register classes, don't use existing reloads
759 unless they are for the same thing since that can cause us to need
760 more reload registers than we otherwise would. */
762 for (i = 0; i < n_reloads; i++)
763 if ((reg_class_subset_p (rclass, rld[i].rclass)
764 || reg_class_subset_p (rld[i].rclass, rclass))
765 /* If the existing reload has a register, it must fit our class. */
766 && (rld[i].reg_rtx == 0
767 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
768 true_regnum (rld[i].reg_rtx)))
769 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
770 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
771 || (out != 0 && MATCHES (rld[i].out, out)
772 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
773 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
774 && (small_register_class_p (rclass)
775 || targetm.small_register_classes_for_mode_p (VOIDmode))
776 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
777 return i;
779 /* Reloading a plain reg for input can match a reload to postincrement
780 that reg, since the postincrement's value is the right value.
781 Likewise, it can match a preincrement reload, since we regard
782 the preincrementation as happening before any ref in this insn
783 to that register. */
784 for (i = 0; i < n_reloads; i++)
785 if ((reg_class_subset_p (rclass, rld[i].rclass)
786 || reg_class_subset_p (rld[i].rclass, rclass))
787 /* If the existing reload has a register, it must fit our
788 class. */
789 && (rld[i].reg_rtx == 0
790 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
791 true_regnum (rld[i].reg_rtx)))
792 && out == 0 && rld[i].out == 0 && rld[i].in != 0
793 && ((REG_P (in)
794 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
795 && MATCHES (XEXP (rld[i].in, 0), in))
796 || (REG_P (rld[i].in)
797 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
798 && MATCHES (XEXP (in, 0), rld[i].in)))
799 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
800 && (small_register_class_p (rclass)
801 || targetm.small_register_classes_for_mode_p (VOIDmode))
802 && MERGABLE_RELOADS (type, rld[i].when_needed,
803 opnum, rld[i].opnum))
805 /* Make sure reload_in ultimately has the increment,
806 not the plain register. */
807 if (REG_P (in))
808 *p_in = rld[i].in;
809 return i;
811 return n_reloads;
814 /* Return true if:
816 (a) (subreg:OUTER_MODE REG ...) represents a word or subword subreg
817 of a multiword value; and
819 (b) the number of *words* in REG does not match the number of *registers*
820 in REG. */
822 static bool
823 complex_word_subreg_p (machine_mode outer_mode, rtx reg)
825 machine_mode inner_mode = GET_MODE (reg);
826 poly_uint64 reg_words = REG_NREGS (reg) * UNITS_PER_WORD;
827 return (known_le (GET_MODE_SIZE (outer_mode), UNITS_PER_WORD)
828 && maybe_gt (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
829 && !known_equal_after_align_up (GET_MODE_SIZE (inner_mode),
830 reg_words, UNITS_PER_WORD));
833 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
834 expression. MODE is the mode that X will be used in. OUTPUT is true if
835 the function is invoked for the output part of an enclosing reload. */
837 static bool
838 reload_inner_reg_of_subreg (rtx x, machine_mode mode, bool output)
840 rtx inner;
842 /* Only SUBREGs are problematical. */
843 if (GET_CODE (x) != SUBREG)
844 return false;
846 inner = SUBREG_REG (x);
848 /* If INNER is a constant or PLUS, then INNER will need reloading. */
849 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
850 return true;
852 /* If INNER is not a hard register, then INNER will not need reloading. */
853 if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
854 return false;
856 /* If INNER is not ok for MODE, then INNER will need reloading. */
857 if (!targetm.hard_regno_mode_ok (subreg_regno (x), mode))
858 return true;
860 /* If this is for an output, and the outer part is a word or smaller,
861 INNER is larger than a word and the number of registers in INNER is
862 not the same as the number of words in INNER, then INNER will need
863 reloading (with an in-out reload). */
864 return output && complex_word_subreg_p (mode, inner);
867 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
868 requiring an extra reload register. The caller has already found that
869 IN contains some reference to REGNO, so check that we can produce the
870 new value in a single step. E.g. if we have
871 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
872 instruction that adds one to a register, this should succeed.
873 However, if we have something like
874 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
875 needs to be loaded into a register first, we need a separate reload
876 register.
877 Such PLUS reloads are generated by find_reload_address_part.
878 The out-of-range PLUS expressions are usually introduced in the instruction
879 patterns by register elimination and substituting pseudos without a home
880 by their function-invariant equivalences. */
881 static int
882 can_reload_into (rtx in, int regno, machine_mode mode)
884 rtx dst;
885 rtx_insn *test_insn;
886 int r = 0;
887 struct recog_data_d save_recog_data;
889 /* For matching constraints, we often get notional input reloads where
890 we want to use the original register as the reload register. I.e.
891 technically this is a non-optional input-output reload, but IN is
892 already a valid register, and has been chosen as the reload register.
893 Speed this up, since it trivially works. */
894 if (REG_P (in))
895 return 1;
897 /* To test MEMs properly, we'd have to take into account all the reloads
898 that are already scheduled, which can become quite complicated.
899 And since we've already handled address reloads for this MEM, it
900 should always succeed anyway. */
901 if (MEM_P (in))
902 return 1;
904 /* If we can make a simple SET insn that does the job, everything should
905 be fine. */
906 dst = gen_rtx_REG (mode, regno);
907 test_insn = make_insn_raw (gen_rtx_SET (dst, in));
908 save_recog_data = recog_data;
909 if (recog_memoized (test_insn) >= 0)
911 extract_insn (test_insn);
912 r = constrain_operands (1, get_enabled_alternatives (test_insn));
914 recog_data = save_recog_data;
915 return r;
918 /* Record one reload that needs to be performed.
919 IN is an rtx saying where the data are to be found before this instruction.
920 OUT says where they must be stored after the instruction.
921 (IN is zero for data not read, and OUT is zero for data not written.)
922 INLOC and OUTLOC point to the places in the instructions where
923 IN and OUT were found.
924 If IN and OUT are both nonzero, it means the same register must be used
925 to reload both IN and OUT.
927 RCLASS is a register class required for the reloaded data.
928 INMODE is the machine mode that the instruction requires
929 for the reg that replaces IN and OUTMODE is likewise for OUT.
931 If IN is zero, then OUT's location and mode should be passed as
932 INLOC and INMODE.
934 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
936 OPTIONAL nonzero means this reload does not need to be performed:
937 it can be discarded if that is more convenient.
939 OPNUM and TYPE say what the purpose of this reload is.
941 The return value is the reload-number for this reload.
943 If both IN and OUT are nonzero, in some rare cases we might
944 want to make two separate reloads. (Actually we never do this now.)
945 Therefore, the reload-number for OUT is stored in
946 output_reloadnum when we return; the return value applies to IN.
947 Usually (presently always), when IN and OUT are nonzero,
948 the two reload-numbers are equal, but the caller should be careful to
949 distinguish them. */
952 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
953 enum reg_class rclass, machine_mode inmode,
954 machine_mode outmode, int strict_low, int optional,
955 int opnum, enum reload_type type)
957 int i;
958 int dont_share = 0;
959 int dont_remove_subreg = 0;
960 #ifdef LIMIT_RELOAD_CLASS
961 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
962 #endif
963 int secondary_in_reload = -1, secondary_out_reload = -1;
964 enum insn_code secondary_in_icode = CODE_FOR_nothing;
965 enum insn_code secondary_out_icode = CODE_FOR_nothing;
966 enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
967 subreg_in_class = NO_REGS;
969 /* INMODE and/or OUTMODE could be VOIDmode if no mode
970 has been specified for the operand. In that case,
971 use the operand's mode as the mode to reload. */
972 if (inmode == VOIDmode && in != 0)
973 inmode = GET_MODE (in);
974 if (outmode == VOIDmode && out != 0)
975 outmode = GET_MODE (out);
977 /* If find_reloads and friends until now missed to replace a pseudo
978 with a constant of reg_equiv_constant something went wrong
979 beforehand.
980 Note that it can't simply be done here if we missed it earlier
981 since the constant might need to be pushed into the literal pool
982 and the resulting memref would probably need further
983 reloading. */
984 if (in != 0 && REG_P (in))
986 int regno = REGNO (in);
988 gcc_assert (regno < FIRST_PSEUDO_REGISTER
989 || reg_renumber[regno] >= 0
990 || reg_equiv_constant (regno) == NULL_RTX);
993 /* reg_equiv_constant only contains constants which are obviously
994 not appropriate as destination. So if we would need to replace
995 the destination pseudo with a constant we are in real
996 trouble. */
997 if (out != 0 && REG_P (out))
999 int regno = REGNO (out);
1001 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1002 || reg_renumber[regno] >= 0
1003 || reg_equiv_constant (regno) == NULL_RTX);
1006 /* If we have a read-write operand with an address side-effect,
1007 change either IN or OUT so the side-effect happens only once. */
1008 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1009 switch (GET_CODE (XEXP (in, 0)))
1011 case POST_INC: case POST_DEC: case POST_MODIFY:
1012 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1013 break;
1015 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1016 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1017 break;
1019 default:
1020 break;
1023 /* If we are reloading a (SUBREG constant ...), really reload just the
1024 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1025 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1026 a pseudo and hence will become a MEM) with M1 wider than M2 and the
1027 register is a pseudo, also reload the inside expression.
1028 For machines that extend byte loads, do this for any SUBREG of a pseudo
1029 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1030 M2 is an integral mode that gets extended when loaded.
1031 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1032 where either M1 is not valid for R or M2 is wider than a word but we
1033 only need one register to store an M2-sized quantity in R.
1034 (However, if OUT is nonzero, we need to reload the reg *and*
1035 the subreg, so do nothing here, and let following statement handle it.)
1037 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1038 we can't handle it here because CONST_INT does not indicate a mode.
1040 Similarly, we must reload the inside expression if we have a
1041 STRICT_LOW_PART (presumably, in == out in this case).
1043 Also reload the inner expression if it does not require a secondary
1044 reload but the SUBREG does.
1046 Also reload the inner expression if it is a register that is in
1047 the class whose registers cannot be referenced in a different size
1048 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1049 cannot reload just the inside since we might end up with the wrong
1050 register class. But if it is inside a STRICT_LOW_PART, we have
1051 no choice, so we hope we do get the right register class there.
1053 Finally, reload the inner expression if it is a pseudo that will
1054 become a MEM and the MEM has a mode-dependent address, as in that
1055 case we obviously cannot change the mode of the MEM to that of the
1056 containing SUBREG as that would change the interpretation of the
1057 address. */
1059 scalar_int_mode inner_mode;
1060 if (in != 0 && GET_CODE (in) == SUBREG
1061 && targetm.can_change_mode_class (GET_MODE (SUBREG_REG (in)),
1062 inmode, rclass)
1063 && contains_allocatable_reg_of_mode[rclass][GET_MODE (SUBREG_REG (in))]
1064 && (strict_low
1065 || (subreg_lowpart_p (in)
1066 && (CONSTANT_P (SUBREG_REG (in))
1067 || GET_CODE (SUBREG_REG (in)) == PLUS
1068 || (((REG_P (SUBREG_REG (in))
1069 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1070 || MEM_P (SUBREG_REG (in)))
1071 && (paradoxical_subreg_p (inmode,
1072 GET_MODE (SUBREG_REG (in)))
1073 || (known_le (GET_MODE_SIZE (inmode), UNITS_PER_WORD)
1074 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG
1075 (in)),
1076 &inner_mode)
1077 && GET_MODE_SIZE (inner_mode) <= UNITS_PER_WORD
1078 && paradoxical_subreg_p (inmode, inner_mode)
1079 && LOAD_EXTEND_OP (inner_mode) != UNKNOWN)
1080 || (WORD_REGISTER_OPERATIONS
1081 && partial_subreg_p (inmode,
1082 GET_MODE (SUBREG_REG (in)))
1083 && (known_equal_after_align_down
1084 (GET_MODE_SIZE (inmode) - 1,
1085 GET_MODE_SIZE (GET_MODE (SUBREG_REG
1086 (in))) - 1,
1087 UNITS_PER_WORD)))))
1088 || (REG_P (SUBREG_REG (in))
1089 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1090 /* The case where out is nonzero
1091 is handled differently in the following statement. */
1092 && (out == 0 || subreg_lowpart_p (in))
1093 && (complex_word_subreg_p (inmode, SUBREG_REG (in))
1094 || !targetm.hard_regno_mode_ok (subreg_regno (in),
1095 inmode)))
1096 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1097 && (secondary_reload_class (1, rclass,
1098 GET_MODE (SUBREG_REG (in)),
1099 SUBREG_REG (in))
1100 == NO_REGS))
1101 || (REG_P (SUBREG_REG (in))
1102 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1103 && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (in)),
1104 GET_MODE (SUBREG_REG (in)),
1105 inmode))))
1106 || (REG_P (SUBREG_REG (in))
1107 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER
1108 && reg_equiv_mem (REGNO (SUBREG_REG (in)))
1109 && (mode_dependent_address_p
1110 (XEXP (reg_equiv_mem (REGNO (SUBREG_REG (in))), 0),
1111 MEM_ADDR_SPACE (reg_equiv_mem (REGNO (SUBREG_REG (in)))))))))
1113 #ifdef LIMIT_RELOAD_CLASS
1114 in_subreg_loc = inloc;
1115 #endif
1116 inloc = &SUBREG_REG (in);
1117 in = *inloc;
1119 if (!WORD_REGISTER_OPERATIONS
1120 && LOAD_EXTEND_OP (GET_MODE (in)) == UNKNOWN
1121 && MEM_P (in))
1122 /* This is supposed to happen only for paradoxical subregs made by
1123 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1124 gcc_assert (known_le (GET_MODE_SIZE (GET_MODE (in)),
1125 GET_MODE_SIZE (inmode)));
1127 inmode = GET_MODE (in);
1130 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1131 where M1 is not valid for R if it was not handled by the code above.
1133 Similar issue for (SUBREG constant ...) if it was not handled by the
1134 code above. This can happen if SUBREG_BYTE != 0.
1136 However, we must reload the inner reg *as well as* the subreg in
1137 that case. */
1139 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1141 if (REG_P (SUBREG_REG (in)))
1142 subreg_in_class
1143 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1144 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1145 GET_MODE (SUBREG_REG (in)),
1146 SUBREG_BYTE (in),
1147 GET_MODE (in)),
1148 REGNO (SUBREG_REG (in)));
1149 else if (CONSTANT_P (SUBREG_REG (in))
1150 || GET_CODE (SUBREG_REG (in)) == PLUS)
1151 subreg_in_class = find_valid_class_1 (inmode,
1152 GET_MODE (SUBREG_REG (in)),
1153 rclass);
1155 /* This relies on the fact that emit_reload_insns outputs the
1156 instructions for input reloads of type RELOAD_OTHER in the same
1157 order as the reloads. Thus if the outer reload is also of type
1158 RELOAD_OTHER, we are guaranteed that this inner reload will be
1159 output before the outer reload. */
1160 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1161 subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1162 dont_remove_subreg = 1;
1165 /* Similarly for paradoxical and problematical SUBREGs on the output.
1166 Note that there is no reason we need worry about the previous value
1167 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1168 entitled to clobber it all (except in the case of a word mode subreg
1169 or of a STRICT_LOW_PART, in that latter case the constraint should
1170 label it input-output.) */
1171 if (out != 0 && GET_CODE (out) == SUBREG
1172 && (subreg_lowpart_p (out) || strict_low)
1173 && targetm.can_change_mode_class (GET_MODE (SUBREG_REG (out)),
1174 outmode, rclass)
1175 && contains_allocatable_reg_of_mode[rclass][GET_MODE (SUBREG_REG (out))]
1176 && (CONSTANT_P (SUBREG_REG (out))
1177 || strict_low
1178 || (((REG_P (SUBREG_REG (out))
1179 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1180 || MEM_P (SUBREG_REG (out)))
1181 && (paradoxical_subreg_p (outmode, GET_MODE (SUBREG_REG (out)))
1182 || (WORD_REGISTER_OPERATIONS
1183 && partial_subreg_p (outmode, GET_MODE (SUBREG_REG (out)))
1184 && (known_equal_after_align_down
1185 (GET_MODE_SIZE (outmode) - 1,
1186 GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1,
1187 UNITS_PER_WORD)))))
1188 || (REG_P (SUBREG_REG (out))
1189 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1190 /* The case of a word mode subreg
1191 is handled differently in the following statement. */
1192 && ! (known_le (GET_MODE_SIZE (outmode), UNITS_PER_WORD)
1193 && maybe_gt (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))),
1194 UNITS_PER_WORD))
1195 && !targetm.hard_regno_mode_ok (subreg_regno (out), outmode))
1196 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1197 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1198 SUBREG_REG (out))
1199 == NO_REGS))
1200 || (REG_P (SUBREG_REG (out))
1201 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1202 && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1203 GET_MODE (SUBREG_REG (out)),
1204 outmode))))
1206 #ifdef LIMIT_RELOAD_CLASS
1207 out_subreg_loc = outloc;
1208 #endif
1209 outloc = &SUBREG_REG (out);
1210 out = *outloc;
1211 gcc_assert (WORD_REGISTER_OPERATIONS || !MEM_P (out)
1212 || known_le (GET_MODE_SIZE (GET_MODE (out)),
1213 GET_MODE_SIZE (outmode)));
1214 outmode = GET_MODE (out);
1217 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1218 where either M1 is not valid for R or M2 is wider than a word but we
1219 only need one register to store an M2-sized quantity in R.
1221 However, we must reload the inner reg *as well as* the subreg in
1222 that case and the inner reg is an in-out reload. */
1224 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1226 enum reg_class in_out_class
1227 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1228 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1229 GET_MODE (SUBREG_REG (out)),
1230 SUBREG_BYTE (out),
1231 GET_MODE (out)),
1232 REGNO (SUBREG_REG (out)));
1234 /* This relies on the fact that emit_reload_insns outputs the
1235 instructions for output reloads of type RELOAD_OTHER in reverse
1236 order of the reloads. Thus if the outer reload is also of type
1237 RELOAD_OTHER, we are guaranteed that this inner reload will be
1238 output after the outer reload. */
1239 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1240 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1241 0, 0, opnum, RELOAD_OTHER);
1242 dont_remove_subreg = 1;
1245 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1246 if (in != 0 && out != 0 && MEM_P (out)
1247 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1248 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1249 dont_share = 1;
1251 /* If IN is a SUBREG of a hard register, make a new REG. This
1252 simplifies some of the cases below. */
1254 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1255 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1256 && ! dont_remove_subreg)
1257 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1259 /* Similarly for OUT. */
1260 if (out != 0 && GET_CODE (out) == SUBREG
1261 && REG_P (SUBREG_REG (out))
1262 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1263 && ! dont_remove_subreg)
1264 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1266 /* Narrow down the class of register wanted if that is
1267 desirable on this machine for efficiency. */
1269 reg_class_t preferred_class = rclass;
1271 if (in != 0)
1272 preferred_class = targetm.preferred_reload_class (in, rclass);
1274 /* Output reloads may need analogous treatment, different in detail. */
1275 if (out != 0)
1276 preferred_class
1277 = targetm.preferred_output_reload_class (out, preferred_class);
1279 /* Discard what the target said if we cannot do it. */
1280 if (preferred_class != NO_REGS
1281 || (optional && type == RELOAD_FOR_OUTPUT))
1282 rclass = (enum reg_class) preferred_class;
1285 /* Make sure we use a class that can handle the actual pseudo
1286 inside any subreg. For example, on the 386, QImode regs
1287 can appear within SImode subregs. Although GENERAL_REGS
1288 can handle SImode, QImode needs a smaller class. */
1289 #ifdef LIMIT_RELOAD_CLASS
1290 if (in_subreg_loc)
1291 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1292 else if (in != 0 && GET_CODE (in) == SUBREG)
1293 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1295 if (out_subreg_loc)
1296 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1297 if (out != 0 && GET_CODE (out) == SUBREG)
1298 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1299 #endif
1301 /* Verify that this class is at least possible for the mode that
1302 is specified. */
1303 if (this_insn_is_asm)
1305 machine_mode mode;
1306 if (paradoxical_subreg_p (inmode, outmode))
1307 mode = inmode;
1308 else
1309 mode = outmode;
1310 if (mode == VOIDmode)
1312 error_for_asm (this_insn, "cannot reload integer constant "
1313 "operand in %<asm%>");
1314 mode = word_mode;
1315 if (in != 0)
1316 inmode = word_mode;
1317 if (out != 0)
1318 outmode = word_mode;
1320 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1321 if (targetm.hard_regno_mode_ok (i, mode)
1322 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1323 break;
1324 if (i == FIRST_PSEUDO_REGISTER)
1326 error_for_asm (this_insn, "impossible register constraint "
1327 "in %<asm%>");
1328 /* Avoid further trouble with this insn. */
1329 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1330 /* We used to continue here setting class to ALL_REGS, but it triggers
1331 sanity check on i386 for:
1332 void foo(long double d)
1334 asm("" :: "a" (d));
1336 Returning zero here ought to be safe as we take care in
1337 find_reloads to not process the reloads when instruction was
1338 replaced by USE. */
1340 return 0;
1344 /* Optional output reloads are always OK even if we have no register class,
1345 since the function of these reloads is only to have spill_reg_store etc.
1346 set, so that the storing insn can be deleted later. */
1347 gcc_assert (rclass != NO_REGS
1348 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1350 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1352 if (i == n_reloads)
1354 /* See if we need a secondary reload register to move between CLASS
1355 and IN or CLASS and OUT. Get the icode and push any required reloads
1356 needed for each of them if so. */
1358 if (in != 0)
1359 secondary_in_reload
1360 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1361 &secondary_in_icode, NULL);
1362 if (out != 0 && GET_CODE (out) != SCRATCH)
1363 secondary_out_reload
1364 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1365 type, &secondary_out_icode, NULL);
1367 /* We found no existing reload suitable for re-use.
1368 So add an additional reload. */
1370 if (subreg_in_class == NO_REGS
1371 && in != 0
1372 && (REG_P (in)
1373 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1374 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1375 subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1376 /* If a memory location is needed for the copy, make one. */
1377 if (subreg_in_class != NO_REGS
1378 && targetm.secondary_memory_needed (inmode, subreg_in_class, rclass))
1379 get_secondary_mem (in, inmode, opnum, type);
1381 i = n_reloads;
1382 rld[i].in = in;
1383 rld[i].out = out;
1384 rld[i].rclass = rclass;
1385 rld[i].inmode = inmode;
1386 rld[i].outmode = outmode;
1387 rld[i].reg_rtx = 0;
1388 rld[i].optional = optional;
1389 rld[i].inc = 0;
1390 rld[i].nocombine = 0;
1391 rld[i].in_reg = inloc ? *inloc : 0;
1392 rld[i].out_reg = outloc ? *outloc : 0;
1393 rld[i].opnum = opnum;
1394 rld[i].when_needed = type;
1395 rld[i].secondary_in_reload = secondary_in_reload;
1396 rld[i].secondary_out_reload = secondary_out_reload;
1397 rld[i].secondary_in_icode = secondary_in_icode;
1398 rld[i].secondary_out_icode = secondary_out_icode;
1399 rld[i].secondary_p = 0;
1401 n_reloads++;
1403 if (out != 0
1404 && (REG_P (out)
1405 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1406 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1407 && (targetm.secondary_memory_needed
1408 (outmode, rclass, REGNO_REG_CLASS (reg_or_subregno (out)))))
1409 get_secondary_mem (out, outmode, opnum, type);
1411 else
1413 /* We are reusing an existing reload,
1414 but we may have additional information for it.
1415 For example, we may now have both IN and OUT
1416 while the old one may have just one of them. */
1418 /* The modes can be different. If they are, we want to reload in
1419 the larger mode, so that the value is valid for both modes. */
1420 if (inmode != VOIDmode
1421 && partial_subreg_p (rld[i].inmode, inmode))
1422 rld[i].inmode = inmode;
1423 if (outmode != VOIDmode
1424 && partial_subreg_p (rld[i].outmode, outmode))
1425 rld[i].outmode = outmode;
1426 if (in != 0)
1428 rtx in_reg = inloc ? *inloc : 0;
1429 /* If we merge reloads for two distinct rtl expressions that
1430 are identical in content, there might be duplicate address
1431 reloads. Remove the extra set now, so that if we later find
1432 that we can inherit this reload, we can get rid of the
1433 address reloads altogether.
1435 Do not do this if both reloads are optional since the result
1436 would be an optional reload which could potentially leave
1437 unresolved address replacements.
1439 It is not sufficient to call transfer_replacements since
1440 choose_reload_regs will remove the replacements for address
1441 reloads of inherited reloads which results in the same
1442 problem. */
1443 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1444 && ! (rld[i].optional && optional))
1446 /* We must keep the address reload with the lower operand
1447 number alive. */
1448 if (opnum > rld[i].opnum)
1450 remove_address_replacements (in);
1451 in = rld[i].in;
1452 in_reg = rld[i].in_reg;
1454 else
1455 remove_address_replacements (rld[i].in);
1457 /* When emitting reloads we don't necessarily look at the in-
1458 and outmode, but also directly at the operands (in and out).
1459 So we can't simply overwrite them with whatever we have found
1460 for this (to-be-merged) reload, we have to "merge" that too.
1461 Reusing another reload already verified that we deal with the
1462 same operands, just possibly in different modes. So we
1463 overwrite the operands only when the new mode is larger.
1464 See also PR33613. */
1465 if (!rld[i].in
1466 || partial_subreg_p (GET_MODE (rld[i].in), GET_MODE (in)))
1467 rld[i].in = in;
1468 if (!rld[i].in_reg
1469 || (in_reg
1470 && partial_subreg_p (GET_MODE (rld[i].in_reg),
1471 GET_MODE (in_reg))))
1472 rld[i].in_reg = in_reg;
1474 if (out != 0)
1476 if (!rld[i].out
1477 || (out
1478 && partial_subreg_p (GET_MODE (rld[i].out),
1479 GET_MODE (out))))
1480 rld[i].out = out;
1481 if (outloc
1482 && (!rld[i].out_reg
1483 || partial_subreg_p (GET_MODE (rld[i].out_reg),
1484 GET_MODE (*outloc))))
1485 rld[i].out_reg = *outloc;
1487 if (reg_class_subset_p (rclass, rld[i].rclass))
1488 rld[i].rclass = rclass;
1489 rld[i].optional &= optional;
1490 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1491 opnum, rld[i].opnum))
1492 rld[i].when_needed = RELOAD_OTHER;
1493 rld[i].opnum = MIN (rld[i].opnum, opnum);
1496 /* If the ostensible rtx being reloaded differs from the rtx found
1497 in the location to substitute, this reload is not safe to combine
1498 because we cannot reliably tell whether it appears in the insn. */
1500 if (in != 0 && in != *inloc)
1501 rld[i].nocombine = 1;
1503 /* If we will replace IN and OUT with the reload-reg,
1504 record where they are located so that substitution need
1505 not do a tree walk. */
1507 if (replace_reloads)
1509 if (inloc != 0)
1511 struct replacement *r = &replacements[n_replacements++];
1512 r->what = i;
1513 r->where = inloc;
1514 r->mode = inmode;
1516 if (outloc != 0 && outloc != inloc)
1518 struct replacement *r = &replacements[n_replacements++];
1519 r->what = i;
1520 r->where = outloc;
1521 r->mode = outmode;
1525 /* If this reload is just being introduced and it has both
1526 an incoming quantity and an outgoing quantity that are
1527 supposed to be made to match, see if either one of the two
1528 can serve as the place to reload into.
1530 If one of them is acceptable, set rld[i].reg_rtx
1531 to that one. */
1533 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1535 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1536 inmode, outmode,
1537 rld[i].rclass, i,
1538 earlyclobber_operand_p (out));
1540 /* If the outgoing register already contains the same value
1541 as the incoming one, we can dispense with loading it.
1542 The easiest way to tell the caller that is to give a phony
1543 value for the incoming operand (same as outgoing one). */
1544 if (rld[i].reg_rtx == out
1545 && (REG_P (in) || CONSTANT_P (in))
1546 && find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1547 static_reload_reg_p, i, inmode) != 0)
1548 rld[i].in = out;
1551 /* If this is an input reload and the operand contains a register that
1552 dies in this insn and is used nowhere else, see if it is the right class
1553 to be used for this reload. Use it if so. (This occurs most commonly
1554 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1555 this if it is also an output reload that mentions the register unless
1556 the output is a SUBREG that clobbers an entire register.
1558 Note that the operand might be one of the spill regs, if it is a
1559 pseudo reg and we are in a block where spilling has not taken place.
1560 But if there is no spilling in this block, that is OK.
1561 An explicitly used hard reg cannot be a spill reg. */
1563 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1565 rtx note;
1566 int regno;
1567 machine_mode rel_mode = inmode;
1569 if (out && partial_subreg_p (rel_mode, outmode))
1570 rel_mode = outmode;
1572 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1573 if (REG_NOTE_KIND (note) == REG_DEAD
1574 && REG_P (XEXP (note, 0))
1575 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1576 && reg_mentioned_p (XEXP (note, 0), in)
1577 /* Check that a former pseudo is valid; see find_dummy_reload. */
1578 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1579 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1580 ORIGINAL_REGNO (XEXP (note, 0)))
1581 && REG_NREGS (XEXP (note, 0)) == 1))
1582 && ! refers_to_regno_for_reload_p (regno,
1583 end_hard_regno (rel_mode,
1584 regno),
1585 PATTERN (this_insn), inloc)
1586 && ! find_reg_fusage (this_insn, USE, XEXP (note, 0))
1587 /* If this is also an output reload, IN cannot be used as
1588 the reload register if it is set in this insn unless IN
1589 is also OUT. */
1590 && (out == 0 || in == out
1591 || ! hard_reg_set_here_p (regno,
1592 end_hard_regno (rel_mode, regno),
1593 PATTERN (this_insn)))
1594 /* ??? Why is this code so different from the previous?
1595 Is there any simple coherent way to describe the two together?
1596 What's going on here. */
1597 && (in != out
1598 || (GET_CODE (in) == SUBREG
1599 && (known_equal_after_align_up
1600 (GET_MODE_SIZE (GET_MODE (in)),
1601 GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))),
1602 UNITS_PER_WORD))))
1603 /* Make sure the operand fits in the reg that dies. */
1604 && known_le (GET_MODE_SIZE (rel_mode),
1605 GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1606 && targetm.hard_regno_mode_ok (regno, inmode)
1607 && targetm.hard_regno_mode_ok (regno, outmode))
1609 unsigned int offs;
1610 unsigned int nregs = MAX (hard_regno_nregs (regno, inmode),
1611 hard_regno_nregs (regno, outmode));
1613 for (offs = 0; offs < nregs; offs++)
1614 if (fixed_regs[regno + offs]
1615 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1616 regno + offs))
1617 break;
1619 if (offs == nregs
1620 && (! (refers_to_regno_for_reload_p
1621 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1622 || can_reload_into (in, regno, inmode)))
1624 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1625 break;
1630 if (out)
1631 output_reloadnum = i;
1633 return i;
1636 /* Record an additional place we must replace a value
1637 for which we have already recorded a reload.
1638 RELOADNUM is the value returned by push_reload
1639 when the reload was recorded.
1640 This is used in insn patterns that use match_dup. */
1642 static void
1643 push_replacement (rtx *loc, int reloadnum, machine_mode mode)
1645 if (replace_reloads)
1647 struct replacement *r = &replacements[n_replacements++];
1648 r->what = reloadnum;
1649 r->where = loc;
1650 r->mode = mode;
1654 /* Duplicate any replacement we have recorded to apply at
1655 location ORIG_LOC to also be performed at DUP_LOC.
1656 This is used in insn patterns that use match_dup. */
1658 static void
1659 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1661 int i, n = n_replacements;
1663 for (i = 0; i < n; i++)
1665 struct replacement *r = &replacements[i];
1666 if (r->where == orig_loc)
1667 push_replacement (dup_loc, r->what, r->mode);
1671 /* Transfer all replacements that used to be in reload FROM to be in
1672 reload TO. */
1674 void
1675 transfer_replacements (int to, int from)
1677 int i;
1679 for (i = 0; i < n_replacements; i++)
1680 if (replacements[i].what == from)
1681 replacements[i].what = to;
1684 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1685 or a subpart of it. If we have any replacements registered for IN_RTX,
1686 cancel the reloads that were supposed to load them.
1687 Return nonzero if we canceled any reloads. */
1689 remove_address_replacements (rtx in_rtx)
1691 int i, j;
1692 char reload_flags[MAX_RELOADS];
1693 int something_changed = 0;
1695 memset (reload_flags, 0, sizeof reload_flags);
1696 for (i = 0, j = 0; i < n_replacements; i++)
1698 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1699 reload_flags[replacements[i].what] |= 1;
1700 else
1702 replacements[j++] = replacements[i];
1703 reload_flags[replacements[i].what] |= 2;
1706 /* Note that the following store must be done before the recursive calls. */
1707 n_replacements = j;
1709 for (i = n_reloads - 1; i >= 0; i--)
1711 if (reload_flags[i] == 1)
1713 deallocate_reload_reg (i);
1714 remove_address_replacements (rld[i].in);
1715 rld[i].in = 0;
1716 something_changed = 1;
1719 return something_changed;
1722 /* If there is only one output reload, and it is not for an earlyclobber
1723 operand, try to combine it with a (logically unrelated) input reload
1724 to reduce the number of reload registers needed.
1726 This is safe if the input reload does not appear in
1727 the value being output-reloaded, because this implies
1728 it is not needed any more once the original insn completes.
1730 If that doesn't work, see we can use any of the registers that
1731 die in this insn as a reload register. We can if it is of the right
1732 class and does not appear in the value being output-reloaded. */
1734 static void
1735 combine_reloads (void)
1737 int i, regno;
1738 int output_reload = -1;
1739 int secondary_out = -1;
1740 rtx note;
1742 /* Find the output reload; return unless there is exactly one
1743 and that one is mandatory. */
1745 for (i = 0; i < n_reloads; i++)
1746 if (rld[i].out != 0)
1748 if (output_reload >= 0)
1749 return;
1750 output_reload = i;
1753 if (output_reload < 0 || rld[output_reload].optional)
1754 return;
1756 /* An input-output reload isn't combinable. */
1758 if (rld[output_reload].in != 0)
1759 return;
1761 /* If this reload is for an earlyclobber operand, we can't do anything. */
1762 if (earlyclobber_operand_p (rld[output_reload].out))
1763 return;
1765 /* If there is a reload for part of the address of this operand, we would
1766 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1767 its life to the point where doing this combine would not lower the
1768 number of spill registers needed. */
1769 for (i = 0; i < n_reloads; i++)
1770 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1771 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1772 && rld[i].opnum == rld[output_reload].opnum)
1773 return;
1775 /* Check each input reload; can we combine it? */
1777 for (i = 0; i < n_reloads; i++)
1778 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1779 /* Life span of this reload must not extend past main insn. */
1780 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1781 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1782 && rld[i].when_needed != RELOAD_OTHER
1783 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1784 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1785 [(int) rld[output_reload].outmode])
1786 && known_eq (rld[i].inc, 0)
1787 && rld[i].reg_rtx == 0
1788 /* Don't combine two reloads with different secondary
1789 memory locations. */
1790 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1791 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1792 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1793 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1794 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1795 ? (rld[i].rclass == rld[output_reload].rclass)
1796 : (reg_class_subset_p (rld[i].rclass,
1797 rld[output_reload].rclass)
1798 || reg_class_subset_p (rld[output_reload].rclass,
1799 rld[i].rclass)))
1800 && (MATCHES (rld[i].in, rld[output_reload].out)
1801 /* Args reversed because the first arg seems to be
1802 the one that we imagine being modified
1803 while the second is the one that might be affected. */
1804 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1805 rld[i].in)
1806 /* However, if the input is a register that appears inside
1807 the output, then we also can't share.
1808 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1809 If the same reload reg is used for both reg 69 and the
1810 result to be stored in memory, then that result
1811 will clobber the address of the memory ref. */
1812 && ! (REG_P (rld[i].in)
1813 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1814 rld[output_reload].out))))
1815 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1816 rld[i].when_needed != RELOAD_FOR_INPUT)
1817 && (reg_class_size[(int) rld[i].rclass]
1818 || targetm.small_register_classes_for_mode_p (VOIDmode))
1819 /* We will allow making things slightly worse by combining an
1820 input and an output, but no worse than that. */
1821 && (rld[i].when_needed == RELOAD_FOR_INPUT
1822 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1824 int j;
1826 /* We have found a reload to combine with! */
1827 rld[i].out = rld[output_reload].out;
1828 rld[i].out_reg = rld[output_reload].out_reg;
1829 rld[i].outmode = rld[output_reload].outmode;
1830 /* Mark the old output reload as inoperative. */
1831 rld[output_reload].out = 0;
1832 /* The combined reload is needed for the entire insn. */
1833 rld[i].when_needed = RELOAD_OTHER;
1834 /* If the output reload had a secondary reload, copy it. */
1835 if (rld[output_reload].secondary_out_reload != -1)
1837 rld[i].secondary_out_reload
1838 = rld[output_reload].secondary_out_reload;
1839 rld[i].secondary_out_icode
1840 = rld[output_reload].secondary_out_icode;
1843 /* Copy any secondary MEM. */
1844 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1845 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1846 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1847 /* If required, minimize the register class. */
1848 if (reg_class_subset_p (rld[output_reload].rclass,
1849 rld[i].rclass))
1850 rld[i].rclass = rld[output_reload].rclass;
1852 /* Transfer all replacements from the old reload to the combined. */
1853 for (j = 0; j < n_replacements; j++)
1854 if (replacements[j].what == output_reload)
1855 replacements[j].what = i;
1857 return;
1860 /* If this insn has only one operand that is modified or written (assumed
1861 to be the first), it must be the one corresponding to this reload. It
1862 is safe to use anything that dies in this insn for that output provided
1863 that it does not occur in the output (we already know it isn't an
1864 earlyclobber. If this is an asm insn, give up. */
1866 if (INSN_CODE (this_insn) == -1)
1867 return;
1869 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1870 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1871 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1872 return;
1874 /* See if some hard register that dies in this insn and is not used in
1875 the output is the right class. Only works if the register we pick
1876 up can fully hold our output reload. */
1877 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1878 if (REG_NOTE_KIND (note) == REG_DEAD
1879 && REG_P (XEXP (note, 0))
1880 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1881 rld[output_reload].out)
1882 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1883 && targetm.hard_regno_mode_ok (regno, rld[output_reload].outmode)
1884 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1885 regno)
1886 && (hard_regno_nregs (regno, rld[output_reload].outmode)
1887 <= REG_NREGS (XEXP (note, 0)))
1888 /* Ensure that a secondary or tertiary reload for this output
1889 won't want this register. */
1890 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1891 || (!(TEST_HARD_REG_BIT
1892 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1893 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1894 || !(TEST_HARD_REG_BIT
1895 (reg_class_contents[(int) rld[secondary_out].rclass],
1896 regno)))))
1897 && !fixed_regs[regno]
1898 /* Check that a former pseudo is valid; see find_dummy_reload. */
1899 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1900 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1901 ORIGINAL_REGNO (XEXP (note, 0)))
1902 && REG_NREGS (XEXP (note, 0)) == 1)))
1904 rld[output_reload].reg_rtx
1905 = gen_rtx_REG (rld[output_reload].outmode, regno);
1906 return;
1910 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1911 See if one of IN and OUT is a register that may be used;
1912 this is desirable since a spill-register won't be needed.
1913 If so, return the register rtx that proves acceptable.
1915 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1916 RCLASS is the register class required for the reload.
1918 If FOR_REAL is >= 0, it is the number of the reload,
1919 and in some cases when it can be discovered that OUT doesn't need
1920 to be computed, clear out rld[FOR_REAL].out.
1922 If FOR_REAL is -1, this should not be done, because this call
1923 is just to see if a register can be found, not to find and install it.
1925 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1926 puts an additional constraint on being able to use IN for OUT since
1927 IN must not appear elsewhere in the insn (it is assumed that IN itself
1928 is safe from the earlyclobber). */
1930 static rtx
1931 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1932 machine_mode inmode, machine_mode outmode,
1933 reg_class_t rclass, int for_real, int earlyclobber)
1935 rtx in = real_in;
1936 rtx out = real_out;
1937 int in_offset = 0;
1938 int out_offset = 0;
1939 rtx value = 0;
1941 /* If operands exceed a word, we can't use either of them
1942 unless they have the same size. */
1943 if (maybe_ne (GET_MODE_SIZE (outmode), GET_MODE_SIZE (inmode))
1944 && (maybe_gt (GET_MODE_SIZE (outmode), UNITS_PER_WORD)
1945 || maybe_gt (GET_MODE_SIZE (inmode), UNITS_PER_WORD)))
1946 return 0;
1948 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1949 respectively refers to a hard register. */
1951 /* Find the inside of any subregs. */
1952 while (GET_CODE (out) == SUBREG)
1954 if (REG_P (SUBREG_REG (out))
1955 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1956 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1957 GET_MODE (SUBREG_REG (out)),
1958 SUBREG_BYTE (out),
1959 GET_MODE (out));
1960 out = SUBREG_REG (out);
1962 while (GET_CODE (in) == SUBREG)
1964 if (REG_P (SUBREG_REG (in))
1965 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1966 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1967 GET_MODE (SUBREG_REG (in)),
1968 SUBREG_BYTE (in),
1969 GET_MODE (in));
1970 in = SUBREG_REG (in);
1973 /* Narrow down the reg class, the same way push_reload will;
1974 otherwise we might find a dummy now, but push_reload won't. */
1976 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
1977 if (preferred_class != NO_REGS)
1978 rclass = (enum reg_class) preferred_class;
1981 /* See if OUT will do. */
1982 if (REG_P (out)
1983 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1985 unsigned int regno = REGNO (out) + out_offset;
1986 unsigned int nwords = hard_regno_nregs (regno, outmode);
1987 rtx saved_rtx;
1989 /* When we consider whether the insn uses OUT,
1990 ignore references within IN. They don't prevent us
1991 from copying IN into OUT, because those refs would
1992 move into the insn that reloads IN.
1994 However, we only ignore IN in its role as this reload.
1995 If the insn uses IN elsewhere and it contains OUT,
1996 that counts. We can't be sure it's the "same" operand
1997 so it might not go through this reload.
1999 We also need to avoid using OUT if it, or part of it, is a
2000 fixed register. Modifying such registers, even transiently,
2001 may have undefined effects on the machine, such as modifying
2002 the stack pointer. */
2003 saved_rtx = *inloc;
2004 *inloc = const0_rtx;
2006 if (regno < FIRST_PSEUDO_REGISTER
2007 && targetm.hard_regno_mode_ok (regno, outmode)
2008 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2009 PATTERN (this_insn), outloc))
2011 unsigned int i;
2013 for (i = 0; i < nwords; i++)
2014 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2015 regno + i)
2016 || fixed_regs[regno + i])
2017 break;
2019 if (i == nwords)
2021 if (REG_P (real_out))
2022 value = real_out;
2023 else
2024 value = gen_rtx_REG (outmode, regno);
2028 *inloc = saved_rtx;
2031 /* Consider using IN if OUT was not acceptable
2032 or if OUT dies in this insn (like the quotient in a divmod insn).
2033 We can't use IN unless it is dies in this insn,
2034 which means we must know accurately which hard regs are live.
2035 Also, the result can't go in IN if IN is used within OUT,
2036 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2037 if (hard_regs_live_known
2038 && REG_P (in)
2039 && REGNO (in) < FIRST_PSEUDO_REGISTER
2040 && (value == 0
2041 || find_reg_note (this_insn, REG_UNUSED, real_out))
2042 && find_reg_note (this_insn, REG_DEAD, real_in)
2043 && !fixed_regs[REGNO (in)]
2044 && targetm.hard_regno_mode_ok (REGNO (in),
2045 /* The only case where out and real_out
2046 might have different modes is where
2047 real_out is a subreg, and in that
2048 case, out has a real mode. */
2049 (GET_MODE (out) != VOIDmode
2050 ? GET_MODE (out) : outmode))
2051 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2052 /* However only do this if we can be sure that this input
2053 operand doesn't correspond with an uninitialized pseudo.
2054 global can assign some hardreg to it that is the same as
2055 the one assigned to a different, also live pseudo (as it
2056 can ignore the conflict). We must never introduce writes
2057 to such hardregs, as they would clobber the other live
2058 pseudo. See PR 20973. */
2059 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2060 ORIGINAL_REGNO (in))
2061 /* Similarly, only do this if we can be sure that the death
2062 note is still valid. global can assign some hardreg to
2063 the pseudo referenced in the note and simultaneously a
2064 subword of this hardreg to a different, also live pseudo,
2065 because only another subword of the hardreg is actually
2066 used in the insn. This cannot happen if the pseudo has
2067 been assigned exactly one hardreg. See PR 33732. */
2068 && REG_NREGS (in) == 1)))
2070 unsigned int regno = REGNO (in) + in_offset;
2071 unsigned int nwords = hard_regno_nregs (regno, inmode);
2073 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2074 && ! hard_reg_set_here_p (regno, regno + nwords,
2075 PATTERN (this_insn))
2076 && (! earlyclobber
2077 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2078 PATTERN (this_insn), inloc)))
2080 unsigned int i;
2082 for (i = 0; i < nwords; i++)
2083 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2084 regno + i))
2085 break;
2087 if (i == nwords)
2089 /* If we were going to use OUT as the reload reg
2090 and changed our mind, it means OUT is a dummy that
2091 dies here. So don't bother copying value to it. */
2092 if (for_real >= 0 && value == real_out)
2093 rld[for_real].out = 0;
2094 if (REG_P (real_in))
2095 value = real_in;
2096 else
2097 value = gen_rtx_REG (inmode, regno);
2102 return value;
2105 /* This page contains subroutines used mainly for determining
2106 whether the IN or an OUT of a reload can serve as the
2107 reload register. */
2109 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2112 earlyclobber_operand_p (rtx x)
2114 int i;
2116 for (i = 0; i < n_earlyclobbers; i++)
2117 if (reload_earlyclobbers[i] == x)
2118 return 1;
2120 return 0;
2123 /* Return 1 if expression X alters a hard reg in the range
2124 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2125 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2126 X should be the body of an instruction. */
2128 static int
2129 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2131 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2133 rtx op0 = SET_DEST (x);
2135 while (GET_CODE (op0) == SUBREG)
2136 op0 = SUBREG_REG (op0);
2137 if (REG_P (op0))
2139 unsigned int r = REGNO (op0);
2141 /* See if this reg overlaps range under consideration. */
2142 if (r < end_regno
2143 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2144 return 1;
2147 else if (GET_CODE (x) == PARALLEL)
2149 int i = XVECLEN (x, 0) - 1;
2151 for (; i >= 0; i--)
2152 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2153 return 1;
2156 return 0;
2159 /* Return true if ADDR is a valid memory address for mode MODE
2160 in address space AS, and check that each pseudo reg has the
2161 proper kind of hard reg. */
2163 bool
2164 strict_memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
2165 rtx addr, addr_space_t as)
2167 #ifdef GO_IF_LEGITIMATE_ADDRESS
2168 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2169 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2170 return false;
2172 win:
2173 return true;
2174 #else
2175 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2176 #endif
2179 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2180 if they are the same hard reg, and has special hacks for
2181 autoincrement and autodecrement.
2182 This is specifically intended for find_reloads to use
2183 in determining whether two operands match.
2184 X is the operand whose number is the lower of the two.
2186 The value is 2 if Y contains a pre-increment that matches
2187 a non-incrementing address in X. */
2189 /* ??? To be completely correct, we should arrange to pass
2190 for X the output operand and for Y the input operand.
2191 For now, we assume that the output operand has the lower number
2192 because that is natural in (SET output (... input ...)). */
2195 operands_match_p (rtx x, rtx y)
2197 int i;
2198 RTX_CODE code = GET_CODE (x);
2199 const char *fmt;
2200 int success_2;
2202 if (x == y)
2203 return 1;
2204 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2205 && (REG_P (y) || (GET_CODE (y) == SUBREG
2206 && REG_P (SUBREG_REG (y)))))
2208 int j;
2210 if (code == SUBREG)
2212 i = REGNO (SUBREG_REG (x));
2213 if (i >= FIRST_PSEUDO_REGISTER)
2214 goto slow;
2215 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2216 GET_MODE (SUBREG_REG (x)),
2217 SUBREG_BYTE (x),
2218 GET_MODE (x));
2220 else
2221 i = REGNO (x);
2223 if (GET_CODE (y) == SUBREG)
2225 j = REGNO (SUBREG_REG (y));
2226 if (j >= FIRST_PSEUDO_REGISTER)
2227 goto slow;
2228 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2229 GET_MODE (SUBREG_REG (y)),
2230 SUBREG_BYTE (y),
2231 GET_MODE (y));
2233 else
2234 j = REGNO (y);
2236 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2237 multiple hard register group of scalar integer registers, so that
2238 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2239 register. */
2240 scalar_int_mode xmode;
2241 if (REG_WORDS_BIG_ENDIAN
2242 && is_a <scalar_int_mode> (GET_MODE (x), &xmode)
2243 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD
2244 && i < FIRST_PSEUDO_REGISTER)
2245 i += hard_regno_nregs (i, xmode) - 1;
2246 scalar_int_mode ymode;
2247 if (REG_WORDS_BIG_ENDIAN
2248 && is_a <scalar_int_mode> (GET_MODE (y), &ymode)
2249 && GET_MODE_SIZE (ymode) > UNITS_PER_WORD
2250 && j < FIRST_PSEUDO_REGISTER)
2251 j += hard_regno_nregs (j, ymode) - 1;
2253 return i == j;
2255 /* If two operands must match, because they are really a single
2256 operand of an assembler insn, then two postincrements are invalid
2257 because the assembler insn would increment only once.
2258 On the other hand, a postincrement matches ordinary indexing
2259 if the postincrement is the output operand. */
2260 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2261 return operands_match_p (XEXP (x, 0), y);
2262 /* Two preincrements are invalid
2263 because the assembler insn would increment only once.
2264 On the other hand, a preincrement matches ordinary indexing
2265 if the preincrement is the input operand.
2266 In this case, return 2, since some callers need to do special
2267 things when this happens. */
2268 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2269 || GET_CODE (y) == PRE_MODIFY)
2270 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2272 slow:
2274 /* Now we have disposed of all the cases in which different rtx codes
2275 can match. */
2276 if (code != GET_CODE (y))
2277 return 0;
2279 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2280 if (GET_MODE (x) != GET_MODE (y))
2281 return 0;
2283 /* MEMs referring to different address space are not equivalent. */
2284 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2285 return 0;
2287 switch (code)
2289 CASE_CONST_UNIQUE:
2290 return 0;
2292 case CONST_VECTOR:
2293 if (!same_vector_encodings_p (x, y))
2294 return false;
2295 break;
2297 case LABEL_REF:
2298 return label_ref_label (x) == label_ref_label (y);
2299 case SYMBOL_REF:
2300 return XSTR (x, 0) == XSTR (y, 0);
2302 default:
2303 break;
2306 /* Compare the elements. If any pair of corresponding elements
2307 fail to match, return 0 for the whole things. */
2309 success_2 = 0;
2310 fmt = GET_RTX_FORMAT (code);
2311 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2313 int val, j;
2314 switch (fmt[i])
2316 case 'w':
2317 if (XWINT (x, i) != XWINT (y, i))
2318 return 0;
2319 break;
2321 case 'i':
2322 if (XINT (x, i) != XINT (y, i))
2323 return 0;
2324 break;
2326 case 'p':
2327 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2328 return 0;
2329 break;
2331 case 'e':
2332 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2333 if (val == 0)
2334 return 0;
2335 /* If any subexpression returns 2,
2336 we should return 2 if we are successful. */
2337 if (val == 2)
2338 success_2 = 1;
2339 break;
2341 case '0':
2342 break;
2344 case 'E':
2345 if (XVECLEN (x, i) != XVECLEN (y, i))
2346 return 0;
2347 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2349 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2350 if (val == 0)
2351 return 0;
2352 if (val == 2)
2353 success_2 = 1;
2355 break;
2357 /* It is believed that rtx's at this level will never
2358 contain anything but integers and other rtx's,
2359 except for within LABEL_REFs and SYMBOL_REFs. */
2360 default:
2361 gcc_unreachable ();
2364 return 1 + success_2;
2367 /* Describe the range of registers or memory referenced by X.
2368 If X is a register, set REG_FLAG and put the first register
2369 number into START and the last plus one into END.
2370 If X is a memory reference, put a base address into BASE
2371 and a range of integer offsets into START and END.
2372 If X is pushing on the stack, we can assume it causes no trouble,
2373 so we set the SAFE field. */
2375 static struct decomposition
2376 decompose (rtx x)
2378 struct decomposition val;
2379 int all_const = 0, regno;
2381 memset (&val, 0, sizeof (val));
2383 switch (GET_CODE (x))
2385 case MEM:
2387 rtx base = NULL_RTX, offset = 0;
2388 rtx addr = XEXP (x, 0);
2390 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2391 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2393 val.base = XEXP (addr, 0);
2394 val.start = -GET_MODE_SIZE (GET_MODE (x));
2395 val.end = GET_MODE_SIZE (GET_MODE (x));
2396 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2397 return val;
2400 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2402 if (GET_CODE (XEXP (addr, 1)) == PLUS
2403 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2404 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2406 val.base = XEXP (addr, 0);
2407 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2408 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2409 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2410 return val;
2414 if (GET_CODE (addr) == CONST)
2416 addr = XEXP (addr, 0);
2417 all_const = 1;
2419 if (GET_CODE (addr) == PLUS)
2421 if (CONSTANT_P (XEXP (addr, 0)))
2423 base = XEXP (addr, 1);
2424 offset = XEXP (addr, 0);
2426 else if (CONSTANT_P (XEXP (addr, 1)))
2428 base = XEXP (addr, 0);
2429 offset = XEXP (addr, 1);
2433 if (offset == 0)
2435 base = addr;
2436 offset = const0_rtx;
2438 if (GET_CODE (offset) == CONST)
2439 offset = XEXP (offset, 0);
2440 if (GET_CODE (offset) == PLUS)
2442 if (CONST_INT_P (XEXP (offset, 0)))
2444 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2445 offset = XEXP (offset, 0);
2447 else if (CONST_INT_P (XEXP (offset, 1)))
2449 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2450 offset = XEXP (offset, 1);
2452 else
2454 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2455 offset = const0_rtx;
2458 else if (!CONST_INT_P (offset))
2460 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2461 offset = const0_rtx;
2464 if (all_const && GET_CODE (base) == PLUS)
2465 base = gen_rtx_CONST (GET_MODE (base), base);
2467 gcc_assert (CONST_INT_P (offset));
2469 val.start = INTVAL (offset);
2470 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2471 val.base = base;
2473 break;
2475 case REG:
2476 val.reg_flag = 1;
2477 regno = true_regnum (x);
2478 if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
2480 /* A pseudo with no hard reg. */
2481 val.start = REGNO (x);
2482 val.end = val.start + 1;
2484 else
2486 /* A hard reg. */
2487 val.start = regno;
2488 val.end = end_hard_regno (GET_MODE (x), regno);
2490 break;
2492 case SUBREG:
2493 if (!REG_P (SUBREG_REG (x)))
2494 /* This could be more precise, but it's good enough. */
2495 return decompose (SUBREG_REG (x));
2496 regno = true_regnum (x);
2497 if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
2498 return decompose (SUBREG_REG (x));
2500 /* A hard reg. */
2501 val.reg_flag = 1;
2502 val.start = regno;
2503 val.end = regno + subreg_nregs (x);
2504 break;
2506 case SCRATCH:
2507 /* This hasn't been assigned yet, so it can't conflict yet. */
2508 val.safe = 1;
2509 break;
2511 default:
2512 gcc_assert (CONSTANT_P (x));
2513 val.safe = 1;
2514 break;
2516 return val;
2519 /* Return 1 if altering Y will not modify the value of X.
2520 Y is also described by YDATA, which should be decompose (Y). */
2522 static int
2523 immune_p (rtx x, rtx y, struct decomposition ydata)
2525 struct decomposition xdata;
2527 if (ydata.reg_flag)
2528 /* In this case the decomposition structure contains register
2529 numbers rather than byte offsets. */
2530 return !refers_to_regno_for_reload_p (ydata.start.to_constant (),
2531 ydata.end.to_constant (),
2532 x, (rtx *) 0);
2533 if (ydata.safe)
2534 return 1;
2536 gcc_assert (MEM_P (y));
2537 /* If Y is memory and X is not, Y can't affect X. */
2538 if (!MEM_P (x))
2539 return 1;
2541 xdata = decompose (x);
2543 if (! rtx_equal_p (xdata.base, ydata.base))
2545 /* If bases are distinct symbolic constants, there is no overlap. */
2546 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2547 return 1;
2548 /* Constants and stack slots never overlap. */
2549 if (CONSTANT_P (xdata.base)
2550 && (ydata.base == frame_pointer_rtx
2551 || ydata.base == hard_frame_pointer_rtx
2552 || ydata.base == stack_pointer_rtx))
2553 return 1;
2554 if (CONSTANT_P (ydata.base)
2555 && (xdata.base == frame_pointer_rtx
2556 || xdata.base == hard_frame_pointer_rtx
2557 || xdata.base == stack_pointer_rtx))
2558 return 1;
2559 /* If either base is variable, we don't know anything. */
2560 return 0;
2563 return known_ge (xdata.start, ydata.end) || known_ge (ydata.start, xdata.end);
2566 /* Similar, but calls decompose. */
2569 safe_from_earlyclobber (rtx op, rtx clobber)
2571 struct decomposition early_data;
2573 early_data = decompose (clobber);
2574 return immune_p (op, clobber, early_data);
2577 /* Main entry point of this file: search the body of INSN
2578 for values that need reloading and record them with push_reload.
2579 REPLACE nonzero means record also where the values occur
2580 so that subst_reloads can be used.
2582 IND_LEVELS says how many levels of indirection are supported by this
2583 machine; a value of zero means that a memory reference is not a valid
2584 memory address.
2586 LIVE_KNOWN says we have valid information about which hard
2587 regs are live at each point in the program; this is true when
2588 we are called from global_alloc but false when stupid register
2589 allocation has been done.
2591 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2592 which is nonnegative if the reg has been commandeered for reloading into.
2593 It is copied into STATIC_RELOAD_REG_P and referenced from there
2594 by various subroutines.
2596 Return TRUE if some operands need to be changed, because of swapping
2597 commutative operands, reg_equiv_address substitution, or whatever. */
2600 find_reloads (rtx_insn *insn, int replace, int ind_levels, int live_known,
2601 short *reload_reg_p)
2603 int insn_code_number;
2604 int i, j;
2605 int noperands;
2606 /* These start out as the constraints for the insn
2607 and they are chewed up as we consider alternatives. */
2608 const char *constraints[MAX_RECOG_OPERANDS];
2609 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2610 a register. */
2611 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2612 char pref_or_nothing[MAX_RECOG_OPERANDS];
2613 /* Nonzero for a MEM operand whose entire address needs a reload.
2614 May be -1 to indicate the entire address may or may not need a reload. */
2615 int address_reloaded[MAX_RECOG_OPERANDS];
2616 /* Nonzero for an address operand that needs to be completely reloaded.
2617 May be -1 to indicate the entire operand may or may not need a reload. */
2618 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2619 /* Value of enum reload_type to use for operand. */
2620 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2621 /* Value of enum reload_type to use within address of operand. */
2622 enum reload_type address_type[MAX_RECOG_OPERANDS];
2623 /* Save the usage of each operand. */
2624 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2625 int no_input_reloads = 0, no_output_reloads = 0;
2626 int n_alternatives;
2627 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2628 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2629 char this_alternative_win[MAX_RECOG_OPERANDS];
2630 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2631 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2632 int this_alternative_matches[MAX_RECOG_OPERANDS];
2633 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2634 int this_alternative_number;
2635 int goal_alternative_number = 0;
2636 int operand_reloadnum[MAX_RECOG_OPERANDS];
2637 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2638 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2639 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2640 char goal_alternative_win[MAX_RECOG_OPERANDS];
2641 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2642 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2643 int goal_alternative_swapped;
2644 int best;
2645 int commutative;
2646 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2647 rtx substed_operand[MAX_RECOG_OPERANDS];
2648 rtx body = PATTERN (insn);
2649 rtx set = single_set (insn);
2650 int goal_earlyclobber = 0, this_earlyclobber;
2651 machine_mode operand_mode[MAX_RECOG_OPERANDS];
2652 int retval = 0;
2654 this_insn = insn;
2655 n_reloads = 0;
2656 n_replacements = 0;
2657 n_earlyclobbers = 0;
2658 replace_reloads = replace;
2659 hard_regs_live_known = live_known;
2660 static_reload_reg_p = reload_reg_p;
2662 if (JUMP_P (insn) && INSN_CODE (insn) < 0)
2664 extract_insn (insn);
2665 for (i = 0; i < recog_data.n_operands; i++)
2666 if (recog_data.operand_type[i] != OP_IN)
2667 break;
2668 if (i < recog_data.n_operands)
2670 error_for_asm (insn,
2671 "the target does not support %<asm goto%> "
2672 "with outputs in %<asm%>");
2673 ira_nullify_asm_goto (insn);
2674 return 0;
2678 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads. */
2679 if (JUMP_P (insn) || CALL_P (insn))
2680 no_output_reloads = 1;
2682 /* The eliminated forms of any secondary memory locations are per-insn, so
2683 clear them out here. */
2685 if (secondary_memlocs_elim_used)
2687 memset (secondary_memlocs_elim, 0,
2688 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2689 secondary_memlocs_elim_used = 0;
2692 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2693 is cheap to move between them. If it is not, there may not be an insn
2694 to do the copy, so we may need a reload. */
2695 if (GET_CODE (body) == SET
2696 && REG_P (SET_DEST (body))
2697 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2698 && REG_P (SET_SRC (body))
2699 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2700 && register_move_cost (GET_MODE (SET_SRC (body)),
2701 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2702 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2703 return 0;
2705 extract_insn (insn);
2707 noperands = reload_n_operands = recog_data.n_operands;
2708 n_alternatives = recog_data.n_alternatives;
2710 /* Just return "no reloads" if insn has no operands with constraints. */
2711 if (noperands == 0 || n_alternatives == 0)
2712 return 0;
2714 insn_code_number = INSN_CODE (insn);
2715 this_insn_is_asm = insn_code_number < 0;
2717 memcpy (operand_mode, recog_data.operand_mode,
2718 noperands * sizeof (machine_mode));
2719 memcpy (constraints, recog_data.constraints,
2720 noperands * sizeof (const char *));
2722 commutative = -1;
2724 /* If we will need to know, later, whether some pair of operands
2725 are the same, we must compare them now and save the result.
2726 Reloading the base and index registers will clobber them
2727 and afterward they will fail to match. */
2729 for (i = 0; i < noperands; i++)
2731 const char *p;
2732 int c;
2733 char *end;
2735 substed_operand[i] = recog_data.operand[i];
2736 p = constraints[i];
2738 modified[i] = RELOAD_READ;
2740 /* Scan this operand's constraint to see if it is an output operand,
2741 an in-out operand, is commutative, or should match another. */
2743 while ((c = *p))
2745 p += CONSTRAINT_LEN (c, p);
2746 switch (c)
2748 case '=':
2749 modified[i] = RELOAD_WRITE;
2750 break;
2751 case '+':
2752 modified[i] = RELOAD_READ_WRITE;
2753 break;
2754 case '%':
2756 /* The last operand should not be marked commutative. */
2757 gcc_assert (i != noperands - 1);
2759 /* We currently only support one commutative pair of
2760 operands. Some existing asm code currently uses more
2761 than one pair. Previously, that would usually work,
2762 but sometimes it would crash the compiler. We
2763 continue supporting that case as well as we can by
2764 silently ignoring all but the first pair. In the
2765 future we may handle it correctly. */
2766 if (commutative < 0)
2767 commutative = i;
2768 else
2769 gcc_assert (this_insn_is_asm);
2771 break;
2772 /* Use of ISDIGIT is tempting here, but it may get expensive because
2773 of locale support we don't want. */
2774 case '0': case '1': case '2': case '3': case '4':
2775 case '5': case '6': case '7': case '8': case '9':
2777 c = strtoul (p - 1, &end, 10);
2778 p = end;
2780 operands_match[c][i]
2781 = operands_match_p (recog_data.operand[c],
2782 recog_data.operand[i]);
2784 /* An operand may not match itself. */
2785 gcc_assert (c != i);
2787 /* If C can be commuted with C+1, and C might need to match I,
2788 then C+1 might also need to match I. */
2789 if (commutative >= 0)
2791 if (c == commutative || c == commutative + 1)
2793 int other = c + (c == commutative ? 1 : -1);
2794 operands_match[other][i]
2795 = operands_match_p (recog_data.operand[other],
2796 recog_data.operand[i]);
2798 if (i == commutative || i == commutative + 1)
2800 int other = i + (i == commutative ? 1 : -1);
2801 operands_match[c][other]
2802 = operands_match_p (recog_data.operand[c],
2803 recog_data.operand[other]);
2805 /* Note that C is supposed to be less than I.
2806 No need to consider altering both C and I because in
2807 that case we would alter one into the other. */
2814 /* Examine each operand that is a memory reference or memory address
2815 and reload parts of the addresses into index registers.
2816 Also here any references to pseudo regs that didn't get hard regs
2817 but are equivalent to constants get replaced in the insn itself
2818 with those constants. Nobody will ever see them again.
2820 Finally, set up the preferred classes of each operand. */
2822 for (i = 0; i < noperands; i++)
2824 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2826 address_reloaded[i] = 0;
2827 address_operand_reloaded[i] = 0;
2828 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2829 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2830 : RELOAD_OTHER);
2831 address_type[i]
2832 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2833 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2834 : RELOAD_OTHER);
2836 if (*constraints[i] == 0)
2837 /* Ignore things like match_operator operands. */
2839 else if (insn_extra_address_constraint
2840 (lookup_constraint (constraints[i])))
2842 address_operand_reloaded[i]
2843 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2844 recog_data.operand[i],
2845 recog_data.operand_loc[i],
2846 i, operand_type[i], ind_levels, insn);
2848 /* If we now have a simple operand where we used to have a
2849 PLUS or MULT, re-recognize and try again. */
2850 if ((OBJECT_P (*recog_data.operand_loc[i])
2851 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2852 && (GET_CODE (recog_data.operand[i]) == MULT
2853 || GET_CODE (recog_data.operand[i]) == PLUS))
2855 INSN_CODE (insn) = -1;
2856 retval = find_reloads (insn, replace, ind_levels, live_known,
2857 reload_reg_p);
2858 return retval;
2861 recog_data.operand[i] = *recog_data.operand_loc[i];
2862 substed_operand[i] = recog_data.operand[i];
2864 /* Address operands are reloaded in their existing mode,
2865 no matter what is specified in the machine description. */
2866 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2868 /* If the address is a single CONST_INT pick address mode
2869 instead otherwise we will later not know in which mode
2870 the reload should be performed. */
2871 if (operand_mode[i] == VOIDmode)
2872 operand_mode[i] = Pmode;
2875 else if (code == MEM)
2877 address_reloaded[i]
2878 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2879 recog_data.operand_loc[i],
2880 XEXP (recog_data.operand[i], 0),
2881 &XEXP (recog_data.operand[i], 0),
2882 i, address_type[i], ind_levels, insn);
2883 recog_data.operand[i] = *recog_data.operand_loc[i];
2884 substed_operand[i] = recog_data.operand[i];
2886 else if (code == SUBREG)
2888 rtx reg = SUBREG_REG (recog_data.operand[i]);
2889 rtx op
2890 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2891 ind_levels,
2892 set != 0
2893 && &SET_DEST (set) == recog_data.operand_loc[i],
2894 insn,
2895 &address_reloaded[i]);
2897 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2898 that didn't get a hard register, emit a USE with a REG_EQUAL
2899 note in front so that we might inherit a previous, possibly
2900 wider reload. */
2902 if (replace
2903 && MEM_P (op)
2904 && REG_P (reg)
2905 && known_ge (GET_MODE_SIZE (GET_MODE (reg)),
2906 GET_MODE_SIZE (GET_MODE (op)))
2907 && reg_equiv_constant (REGNO (reg)) == 0)
2908 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2909 insn),
2910 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2912 substed_operand[i] = recog_data.operand[i] = op;
2914 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2915 /* We can get a PLUS as an "operand" as a result of register
2916 elimination. See eliminate_regs and gen_reload. We handle
2917 a unary operator by reloading the operand. */
2918 substed_operand[i] = recog_data.operand[i]
2919 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2920 ind_levels, 0, insn,
2921 &address_reloaded[i]);
2922 else if (code == REG)
2924 /* This is equivalent to calling find_reloads_toplev.
2925 The code is duplicated for speed.
2926 When we find a pseudo always equivalent to a constant,
2927 we replace it by the constant. We must be sure, however,
2928 that we don't try to replace it in the insn in which it
2929 is being set. */
2930 int regno = REGNO (recog_data.operand[i]);
2931 if (reg_equiv_constant (regno) != 0
2932 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2934 /* Record the existing mode so that the check if constants are
2935 allowed will work when operand_mode isn't specified. */
2937 if (operand_mode[i] == VOIDmode)
2938 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2940 substed_operand[i] = recog_data.operand[i]
2941 = reg_equiv_constant (regno);
2943 if (reg_equiv_memory_loc (regno) != 0
2944 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2945 /* We need not give a valid is_set_dest argument since the case
2946 of a constant equivalence was checked above. */
2947 substed_operand[i] = recog_data.operand[i]
2948 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2949 ind_levels, 0, insn,
2950 &address_reloaded[i]);
2952 /* If the operand is still a register (we didn't replace it with an
2953 equivalent), get the preferred class to reload it into. */
2954 code = GET_CODE (recog_data.operand[i]);
2955 preferred_class[i]
2956 = ((code == REG && REGNO (recog_data.operand[i])
2957 >= FIRST_PSEUDO_REGISTER)
2958 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2959 : NO_REGS);
2960 pref_or_nothing[i]
2961 = (code == REG
2962 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2963 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2966 /* If this is simply a copy from operand 1 to operand 0, merge the
2967 preferred classes for the operands. */
2968 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2969 && recog_data.operand[1] == SET_SRC (set))
2971 preferred_class[0] = preferred_class[1]
2972 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2973 pref_or_nothing[0] |= pref_or_nothing[1];
2974 pref_or_nothing[1] |= pref_or_nothing[0];
2977 /* Now see what we need for pseudo-regs that didn't get hard regs
2978 or got the wrong kind of hard reg. For this, we must consider
2979 all the operands together against the register constraints. */
2981 best = MAX_RECOG_OPERANDS * 2 + 600;
2983 goal_alternative_swapped = 0;
2985 /* The constraints are made of several alternatives.
2986 Each operand's constraint looks like foo,bar,... with commas
2987 separating the alternatives. The first alternatives for all
2988 operands go together, the second alternatives go together, etc.
2990 First loop over alternatives. */
2992 alternative_mask enabled = get_enabled_alternatives (insn);
2993 for (this_alternative_number = 0;
2994 this_alternative_number < n_alternatives;
2995 this_alternative_number++)
2997 int swapped;
2999 if (!TEST_BIT (enabled, this_alternative_number))
3001 int i;
3003 for (i = 0; i < recog_data.n_operands; i++)
3004 constraints[i] = skip_alternative (constraints[i]);
3006 continue;
3009 /* If insn is commutative (it's safe to exchange a certain pair
3010 of operands) then we need to try each alternative twice, the
3011 second time matching those two operands as if we had
3012 exchanged them. To do this, really exchange them in
3013 operands. */
3014 for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3016 /* Loop over operands for one constraint alternative. */
3017 /* LOSERS counts those that don't fit this alternative
3018 and would require loading. */
3019 int losers = 0;
3020 /* BAD is set to 1 if it some operand can't fit this alternative
3021 even after reloading. */
3022 int bad = 0;
3023 /* REJECT is a count of how undesirable this alternative says it is
3024 if any reloading is required. If the alternative matches exactly
3025 then REJECT is ignored, but otherwise it gets this much
3026 counted against it in addition to the reloading needed. Each
3027 ? counts three times here since we want the disparaging caused by
3028 a bad register class to only count 1/3 as much. */
3029 int reject = 0;
3031 if (swapped)
3033 recog_data.operand[commutative] = substed_operand[commutative + 1];
3034 recog_data.operand[commutative + 1] = substed_operand[commutative];
3035 /* Swap the duplicates too. */
3036 for (i = 0; i < recog_data.n_dups; i++)
3037 if (recog_data.dup_num[i] == commutative
3038 || recog_data.dup_num[i] == commutative + 1)
3039 *recog_data.dup_loc[i]
3040 = recog_data.operand[(int) recog_data.dup_num[i]];
3042 std::swap (preferred_class[commutative],
3043 preferred_class[commutative + 1]);
3044 std::swap (pref_or_nothing[commutative],
3045 pref_or_nothing[commutative + 1]);
3046 std::swap (address_reloaded[commutative],
3047 address_reloaded[commutative + 1]);
3050 this_earlyclobber = 0;
3052 for (i = 0; i < noperands; i++)
3054 const char *p = constraints[i];
3055 char *end;
3056 int len;
3057 int win = 0;
3058 int did_match = 0;
3059 /* 0 => this operand can be reloaded somehow for this alternative. */
3060 int badop = 1;
3061 /* 0 => this operand can be reloaded if the alternative allows regs. */
3062 int winreg = 0;
3063 int c;
3064 int m;
3065 rtx operand = recog_data.operand[i];
3066 int offset = 0;
3067 /* Nonzero means this is a MEM that must be reloaded into a reg
3068 regardless of what the constraint says. */
3069 int force_reload = 0;
3070 int offmemok = 0;
3071 /* Nonzero if a constant forced into memory would be OK for this
3072 operand. */
3073 int constmemok = 0;
3074 int earlyclobber = 0;
3075 enum constraint_num cn;
3076 enum reg_class cl;
3078 /* If the predicate accepts a unary operator, it means that
3079 we need to reload the operand, but do not do this for
3080 match_operator and friends. */
3081 if (UNARY_P (operand) && *p != 0)
3082 operand = XEXP (operand, 0);
3084 /* If the operand is a SUBREG, extract
3085 the REG or MEM (or maybe even a constant) within.
3086 (Constants can occur as a result of reg_equiv_constant.) */
3088 while (GET_CODE (operand) == SUBREG)
3090 /* Offset only matters when operand is a REG and
3091 it is a hard reg. This is because it is passed
3092 to reg_fits_class_p if it is a REG and all pseudos
3093 return 0 from that function. */
3094 if (REG_P (SUBREG_REG (operand))
3095 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3097 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3098 GET_MODE (SUBREG_REG (operand)),
3099 SUBREG_BYTE (operand),
3100 GET_MODE (operand)) < 0)
3101 force_reload = 1;
3102 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3103 GET_MODE (SUBREG_REG (operand)),
3104 SUBREG_BYTE (operand),
3105 GET_MODE (operand));
3107 operand = SUBREG_REG (operand);
3108 /* Force reload if this is a constant or PLUS or if there may
3109 be a problem accessing OPERAND in the outer mode. */
3110 scalar_int_mode inner_mode;
3111 if (CONSTANT_P (operand)
3112 || GET_CODE (operand) == PLUS
3113 /* We must force a reload of paradoxical SUBREGs
3114 of a MEM because the alignment of the inner value
3115 may not be enough to do the outer reference. On
3116 big-endian machines, it may also reference outside
3117 the object.
3119 On machines that extend byte operations and we have a
3120 SUBREG where both the inner and outer modes are no wider
3121 than a word and the inner mode is narrower, is integral,
3122 and gets extended when loaded from memory, combine.c has
3123 made assumptions about the behavior of the machine in such
3124 register access. If the data is, in fact, in memory we
3125 must always load using the size assumed to be in the
3126 register and let the insn do the different-sized
3127 accesses.
3129 This is doubly true if WORD_REGISTER_OPERATIONS. In
3130 this case eliminate_regs has left non-paradoxical
3131 subregs for push_reload to see. Make sure it does
3132 by forcing the reload.
3134 ??? When is it right at this stage to have a subreg
3135 of a mem that is _not_ to be handled specially? IMO
3136 those should have been reduced to just a mem. */
3137 || ((MEM_P (operand)
3138 || (REG_P (operand)
3139 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3140 && (WORD_REGISTER_OPERATIONS
3141 || (((maybe_lt
3142 (GET_MODE_BITSIZE (GET_MODE (operand)),
3143 BIGGEST_ALIGNMENT))
3144 && (paradoxical_subreg_p
3145 (operand_mode[i], GET_MODE (operand)))))
3146 || BYTES_BIG_ENDIAN
3147 || (known_le (GET_MODE_SIZE (operand_mode[i]),
3148 UNITS_PER_WORD)
3149 && (is_a <scalar_int_mode>
3150 (GET_MODE (operand), &inner_mode))
3151 && (GET_MODE_SIZE (inner_mode)
3152 <= UNITS_PER_WORD)
3153 && paradoxical_subreg_p (operand_mode[i],
3154 inner_mode)
3155 && LOAD_EXTEND_OP (inner_mode) != UNKNOWN)))
3156 /* We must force a reload of a SUBREG's inner expression
3157 if it is a pseudo that will become a MEM and the MEM
3158 has a mode-dependent address, as in that case we
3159 obviously cannot change the mode of the MEM to that
3160 of the containing SUBREG as that would change the
3161 interpretation of the address. */
3162 || (REG_P (operand)
3163 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3164 && reg_equiv_mem (REGNO (operand))
3165 && (mode_dependent_address_p
3166 (XEXP (reg_equiv_mem (REGNO (operand)), 0),
3167 (MEM_ADDR_SPACE
3168 (reg_equiv_mem (REGNO (operand)))))))
3170 force_reload = 1;
3173 this_alternative[i] = NO_REGS;
3174 this_alternative_win[i] = 0;
3175 this_alternative_match_win[i] = 0;
3176 this_alternative_offmemok[i] = 0;
3177 this_alternative_earlyclobber[i] = 0;
3178 this_alternative_matches[i] = -1;
3180 /* An empty constraint or empty alternative
3181 allows anything which matched the pattern. */
3182 if (*p == 0 || *p == ',')
3183 win = 1, badop = 0;
3185 /* Scan this alternative's specs for this operand;
3186 set WIN if the operand fits any letter in this alternative.
3187 Otherwise, clear BADOP if this operand could
3188 fit some letter after reloads,
3189 or set WINREG if this operand could fit after reloads
3190 provided the constraint allows some registers. */
3193 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3195 case '\0':
3196 len = 0;
3197 break;
3198 case ',':
3199 c = '\0';
3200 break;
3202 case '?':
3203 reject += 6;
3204 break;
3206 case '!':
3207 reject = 600;
3208 break;
3210 case '#':
3211 /* Ignore rest of this alternative as far as
3212 reloading is concerned. */
3214 p++;
3215 while (*p && *p != ',');
3216 len = 0;
3217 break;
3219 case '0': case '1': case '2': case '3': case '4':
3220 case '5': case '6': case '7': case '8': case '9':
3221 m = strtoul (p, &end, 10);
3222 p = end;
3223 len = 0;
3225 this_alternative_matches[i] = m;
3226 /* We are supposed to match a previous operand.
3227 If we do, we win if that one did.
3228 If we do not, count both of the operands as losers.
3229 (This is too conservative, since most of the time
3230 only a single reload insn will be needed to make
3231 the two operands win. As a result, this alternative
3232 may be rejected when it is actually desirable.) */
3233 if ((swapped && (m != commutative || i != commutative + 1))
3234 /* If we are matching as if two operands were swapped,
3235 also pretend that operands_match had been computed
3236 with swapped.
3237 But if I is the second of those and C is the first,
3238 don't exchange them, because operands_match is valid
3239 only on one side of its diagonal. */
3240 ? (operands_match
3241 [(m == commutative || m == commutative + 1)
3242 ? 2 * commutative + 1 - m : m]
3243 [(i == commutative || i == commutative + 1)
3244 ? 2 * commutative + 1 - i : i])
3245 : operands_match[m][i])
3247 /* If we are matching a non-offsettable address where an
3248 offsettable address was expected, then we must reject
3249 this combination, because we can't reload it. */
3250 if (this_alternative_offmemok[m]
3251 && MEM_P (recog_data.operand[m])
3252 && this_alternative[m] == NO_REGS
3253 && ! this_alternative_win[m])
3254 bad = 1;
3256 did_match = this_alternative_win[m];
3258 else
3260 /* Operands don't match. */
3261 rtx value;
3262 int loc1, loc2;
3263 /* Retroactively mark the operand we had to match
3264 as a loser, if it wasn't already. */
3265 if (this_alternative_win[m])
3266 losers++;
3267 this_alternative_win[m] = 0;
3268 if (this_alternative[m] == NO_REGS)
3269 bad = 1;
3270 /* But count the pair only once in the total badness of
3271 this alternative, if the pair can be a dummy reload.
3272 The pointers in operand_loc are not swapped; swap
3273 them by hand if necessary. */
3274 if (swapped && i == commutative)
3275 loc1 = commutative + 1;
3276 else if (swapped && i == commutative + 1)
3277 loc1 = commutative;
3278 else
3279 loc1 = i;
3280 if (swapped && m == commutative)
3281 loc2 = commutative + 1;
3282 else if (swapped && m == commutative + 1)
3283 loc2 = commutative;
3284 else
3285 loc2 = m;
3286 value
3287 = find_dummy_reload (recog_data.operand[i],
3288 recog_data.operand[m],
3289 recog_data.operand_loc[loc1],
3290 recog_data.operand_loc[loc2],
3291 operand_mode[i], operand_mode[m],
3292 this_alternative[m], -1,
3293 this_alternative_earlyclobber[m]);
3295 if (value != 0)
3296 losers--;
3298 /* This can be fixed with reloads if the operand
3299 we are supposed to match can be fixed with reloads. */
3300 badop = 0;
3301 this_alternative[i] = this_alternative[m];
3303 /* If we have to reload this operand and some previous
3304 operand also had to match the same thing as this
3305 operand, we don't know how to do that. So reject this
3306 alternative. */
3307 if (! did_match || force_reload)
3308 for (j = 0; j < i; j++)
3309 if (this_alternative_matches[j]
3310 == this_alternative_matches[i])
3312 badop = 1;
3313 break;
3315 break;
3317 case 'p':
3318 /* All necessary reloads for an address_operand
3319 were handled in find_reloads_address. */
3320 this_alternative[i]
3321 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3322 ADDRESS, SCRATCH);
3323 win = 1;
3324 badop = 0;
3325 break;
3327 case TARGET_MEM_CONSTRAINT:
3328 if (force_reload)
3329 break;
3330 if (MEM_P (operand)
3331 || (REG_P (operand)
3332 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3333 && reg_renumber[REGNO (operand)] < 0))
3334 win = 1;
3335 if (CONST_POOL_OK_P (operand_mode[i], operand))
3336 badop = 0;
3337 constmemok = 1;
3338 break;
3340 case '<':
3341 if (MEM_P (operand)
3342 && ! address_reloaded[i]
3343 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3344 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3345 win = 1;
3346 break;
3348 case '>':
3349 if (MEM_P (operand)
3350 && ! address_reloaded[i]
3351 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3352 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3353 win = 1;
3354 break;
3356 /* Memory operand whose address is not offsettable. */
3357 case 'V':
3358 if (force_reload)
3359 break;
3360 if (MEM_P (operand)
3361 && ! (ind_levels ? offsettable_memref_p (operand)
3362 : offsettable_nonstrict_memref_p (operand))
3363 /* Certain mem addresses will become offsettable
3364 after they themselves are reloaded. This is important;
3365 we don't want our own handling of unoffsettables
3366 to override the handling of reg_equiv_address. */
3367 && !(REG_P (XEXP (operand, 0))
3368 && (ind_levels == 0
3369 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3370 win = 1;
3371 break;
3373 /* Memory operand whose address is offsettable. */
3374 case 'o':
3375 if (force_reload)
3376 break;
3377 if ((MEM_P (operand)
3378 /* If IND_LEVELS, find_reloads_address won't reload a
3379 pseudo that didn't get a hard reg, so we have to
3380 reject that case. */
3381 && ((ind_levels ? offsettable_memref_p (operand)
3382 : offsettable_nonstrict_memref_p (operand))
3383 /* A reloaded address is offsettable because it is now
3384 just a simple register indirect. */
3385 || address_reloaded[i] == 1))
3386 || (REG_P (operand)
3387 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3388 && reg_renumber[REGNO (operand)] < 0
3389 /* If reg_equiv_address is nonzero, we will be
3390 loading it into a register; hence it will be
3391 offsettable, but we cannot say that reg_equiv_mem
3392 is offsettable without checking. */
3393 && ((reg_equiv_mem (REGNO (operand)) != 0
3394 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3395 || (reg_equiv_address (REGNO (operand)) != 0))))
3396 win = 1;
3397 if (CONST_POOL_OK_P (operand_mode[i], operand)
3398 || MEM_P (operand))
3399 badop = 0;
3400 constmemok = 1;
3401 offmemok = 1;
3402 break;
3404 case '&':
3405 /* Output operand that is stored before the need for the
3406 input operands (and their index registers) is over. */
3407 earlyclobber = 1, this_earlyclobber = 1;
3408 break;
3410 case 'X':
3411 force_reload = 0;
3412 win = 1;
3413 break;
3415 case 'g':
3416 if (! force_reload
3417 /* A PLUS is never a valid operand, but reload can make
3418 it from a register when eliminating registers. */
3419 && GET_CODE (operand) != PLUS
3420 /* A SCRATCH is not a valid operand. */
3421 && GET_CODE (operand) != SCRATCH
3422 && (! CONSTANT_P (operand)
3423 || ! flag_pic
3424 || LEGITIMATE_PIC_OPERAND_P (operand))
3425 && (GENERAL_REGS == ALL_REGS
3426 || !REG_P (operand)
3427 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3428 && reg_renumber[REGNO (operand)] < 0)))
3429 win = 1;
3430 cl = GENERAL_REGS;
3431 goto reg;
3433 default:
3434 cn = lookup_constraint (p);
3435 switch (get_constraint_type (cn))
3437 case CT_REGISTER:
3438 cl = reg_class_for_constraint (cn);
3439 if (cl != NO_REGS)
3440 goto reg;
3441 break;
3443 case CT_CONST_INT:
3444 if (CONST_INT_P (operand)
3445 && (insn_const_int_ok_for_constraint
3446 (INTVAL (operand), cn)))
3447 win = true;
3448 break;
3450 case CT_MEMORY:
3451 case CT_RELAXED_MEMORY:
3452 if (force_reload)
3453 break;
3454 if (constraint_satisfied_p (operand, cn))
3455 win = 1;
3456 /* If the address was already reloaded,
3457 we win as well. */
3458 else if (MEM_P (operand) && address_reloaded[i] == 1)
3459 win = 1;
3460 /* Likewise if the address will be reloaded because
3461 reg_equiv_address is nonzero. For reg_equiv_mem
3462 we have to check. */
3463 else if (REG_P (operand)
3464 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3465 && reg_renumber[REGNO (operand)] < 0
3466 && ((reg_equiv_mem (REGNO (operand)) != 0
3467 && (constraint_satisfied_p
3468 (reg_equiv_mem (REGNO (operand)),
3469 cn)))
3470 || (reg_equiv_address (REGNO (operand))
3471 != 0)))
3472 win = 1;
3474 /* If we didn't already win, we can reload
3475 constants via force_const_mem, and other
3476 MEMs by reloading the address like for 'o'. */
3477 if (CONST_POOL_OK_P (operand_mode[i], operand)
3478 || MEM_P (operand))
3479 badop = 0;
3480 constmemok = 1;
3481 offmemok = 1;
3482 break;
3484 case CT_SPECIAL_MEMORY:
3485 if (force_reload)
3486 break;
3487 if (constraint_satisfied_p (operand, cn))
3488 win = 1;
3489 /* Likewise if the address will be reloaded because
3490 reg_equiv_address is nonzero. For reg_equiv_mem
3491 we have to check. */
3492 else if (REG_P (operand)
3493 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3494 && reg_renumber[REGNO (operand)] < 0
3495 && reg_equiv_mem (REGNO (operand)) != 0
3496 && (constraint_satisfied_p
3497 (reg_equiv_mem (REGNO (operand)), cn)))
3498 win = 1;
3499 break;
3501 case CT_ADDRESS:
3502 if (constraint_satisfied_p (operand, cn))
3503 win = 1;
3505 /* If we didn't already win, we can reload
3506 the address into a base register. */
3507 this_alternative[i]
3508 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3509 ADDRESS, SCRATCH);
3510 badop = 0;
3511 break;
3513 case CT_FIXED_FORM:
3514 if (constraint_satisfied_p (operand, cn))
3515 win = 1;
3516 break;
3518 break;
3520 reg:
3521 this_alternative[i]
3522 = reg_class_subunion[this_alternative[i]][cl];
3523 if (GET_MODE (operand) == BLKmode)
3524 break;
3525 winreg = 1;
3526 if (REG_P (operand)
3527 && reg_fits_class_p (operand, this_alternative[i],
3528 offset, GET_MODE (recog_data.operand[i])))
3529 win = 1;
3530 break;
3532 while ((p += len), c);
3534 if (swapped == (commutative >= 0 ? 1 : 0))
3535 constraints[i] = p;
3537 /* If this operand could be handled with a reg,
3538 and some reg is allowed, then this operand can be handled. */
3539 if (winreg && this_alternative[i] != NO_REGS
3540 && (win || !class_only_fixed_regs[this_alternative[i]]))
3541 badop = 0;
3543 /* Record which operands fit this alternative. */
3544 this_alternative_earlyclobber[i] = earlyclobber;
3545 if (win && ! force_reload)
3546 this_alternative_win[i] = 1;
3547 else if (did_match && ! force_reload)
3548 this_alternative_match_win[i] = 1;
3549 else
3551 int const_to_mem = 0;
3553 this_alternative_offmemok[i] = offmemok;
3554 losers++;
3555 if (badop)
3556 bad = 1;
3557 /* Alternative loses if it has no regs for a reg operand. */
3558 if (REG_P (operand)
3559 && this_alternative[i] == NO_REGS
3560 && this_alternative_matches[i] < 0)
3561 bad = 1;
3563 /* If this is a constant that is reloaded into the desired
3564 class by copying it to memory first, count that as another
3565 reload. This is consistent with other code and is
3566 required to avoid choosing another alternative when
3567 the constant is moved into memory by this function on
3568 an early reload pass. Note that the test here is
3569 precisely the same as in the code below that calls
3570 force_const_mem. */
3571 if (CONST_POOL_OK_P (operand_mode[i], operand)
3572 && ((targetm.preferred_reload_class (operand,
3573 this_alternative[i])
3574 == NO_REGS)
3575 || no_input_reloads))
3577 const_to_mem = 1;
3578 if (this_alternative[i] != NO_REGS)
3579 losers++;
3582 /* Alternative loses if it requires a type of reload not
3583 permitted for this insn. We can always reload SCRATCH
3584 and objects with a REG_UNUSED note. */
3585 if (GET_CODE (operand) != SCRATCH
3586 && modified[i] != RELOAD_READ && no_output_reloads
3587 && ! find_reg_note (insn, REG_UNUSED, operand))
3588 bad = 1;
3589 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3590 && ! const_to_mem)
3591 bad = 1;
3593 /* If we can't reload this value at all, reject this
3594 alternative. Note that we could also lose due to
3595 LIMIT_RELOAD_CLASS, but we don't check that
3596 here. */
3598 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3600 if (targetm.preferred_reload_class (operand,
3601 this_alternative[i])
3602 == NO_REGS)
3603 reject = 600;
3605 if (operand_type[i] == RELOAD_FOR_OUTPUT
3606 && (targetm.preferred_output_reload_class (operand,
3607 this_alternative[i])
3608 == NO_REGS))
3609 reject = 600;
3612 /* We prefer to reload pseudos over reloading other things,
3613 since such reloads may be able to be eliminated later.
3614 If we are reloading a SCRATCH, we won't be generating any
3615 insns, just using a register, so it is also preferred.
3616 So bump REJECT in other cases. Don't do this in the
3617 case where we are forcing a constant into memory and
3618 it will then win since we don't want to have a different
3619 alternative match then. */
3620 if (! (REG_P (operand)
3621 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3622 && GET_CODE (operand) != SCRATCH
3623 && ! (const_to_mem && constmemok))
3624 reject += 2;
3626 /* Input reloads can be inherited more often than output
3627 reloads can be removed, so penalize output reloads. */
3628 if (operand_type[i] != RELOAD_FOR_INPUT
3629 && GET_CODE (operand) != SCRATCH)
3630 reject++;
3633 /* If this operand is a pseudo register that didn't get
3634 a hard reg and this alternative accepts some
3635 register, see if the class that we want is a subset
3636 of the preferred class for this register. If not,
3637 but it intersects that class, use the preferred class
3638 instead. If it does not intersect the preferred
3639 class, show that usage of this alternative should be
3640 discouraged; it will be discouraged more still if the
3641 register is `preferred or nothing'. We do this
3642 because it increases the chance of reusing our spill
3643 register in a later insn and avoiding a pair of
3644 memory stores and loads.
3646 Don't bother with this if this alternative will
3647 accept this operand.
3649 Don't do this for a multiword operand, since it is
3650 only a small win and has the risk of requiring more
3651 spill registers, which could cause a large loss.
3653 Don't do this if the preferred class has only one
3654 register because we might otherwise exhaust the
3655 class. */
3657 if (! win && ! did_match
3658 && this_alternative[i] != NO_REGS
3659 && known_le (GET_MODE_SIZE (operand_mode[i]), UNITS_PER_WORD)
3660 && reg_class_size [(int) preferred_class[i]] > 0
3661 && ! small_register_class_p (preferred_class[i]))
3663 if (! reg_class_subset_p (this_alternative[i],
3664 preferred_class[i]))
3666 /* Since we don't have a way of forming the intersection,
3667 we just do something special if the preferred class
3668 is a subset of the class we have; that's the most
3669 common case anyway. */
3670 if (reg_class_subset_p (preferred_class[i],
3671 this_alternative[i]))
3672 this_alternative[i] = preferred_class[i];
3673 else
3674 reject += (2 + 2 * pref_or_nothing[i]);
3679 /* Now see if any output operands that are marked "earlyclobber"
3680 in this alternative conflict with any input operands
3681 or any memory addresses. */
3683 for (i = 0; i < noperands; i++)
3684 if (this_alternative_earlyclobber[i]
3685 && (this_alternative_win[i] || this_alternative_match_win[i]))
3687 struct decomposition early_data;
3689 early_data = decompose (recog_data.operand[i]);
3691 gcc_assert (modified[i] != RELOAD_READ);
3693 if (this_alternative[i] == NO_REGS)
3695 this_alternative_earlyclobber[i] = 0;
3696 gcc_assert (this_insn_is_asm);
3697 error_for_asm (this_insn,
3698 "%<&%> constraint used with no register class");
3701 for (j = 0; j < noperands; j++)
3702 /* Is this an input operand or a memory ref? */
3703 if ((MEM_P (recog_data.operand[j])
3704 || modified[j] != RELOAD_WRITE)
3705 && j != i
3706 /* Ignore things like match_operator operands. */
3707 && !recog_data.is_operator[j]
3708 /* Don't count an input operand that is constrained to match
3709 the early clobber operand. */
3710 && ! (this_alternative_matches[j] == i
3711 && rtx_equal_p (recog_data.operand[i],
3712 recog_data.operand[j]))
3713 /* Is it altered by storing the earlyclobber operand? */
3714 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3715 early_data))
3717 /* If the output is in a non-empty few-regs class,
3718 it's costly to reload it, so reload the input instead. */
3719 if (small_register_class_p (this_alternative[i])
3720 && (REG_P (recog_data.operand[j])
3721 || GET_CODE (recog_data.operand[j]) == SUBREG))
3723 losers++;
3724 this_alternative_win[j] = 0;
3725 this_alternative_match_win[j] = 0;
3727 else
3728 break;
3730 /* If an earlyclobber operand conflicts with something,
3731 it must be reloaded, so request this and count the cost. */
3732 if (j != noperands)
3734 losers++;
3735 this_alternative_win[i] = 0;
3736 this_alternative_match_win[j] = 0;
3737 for (j = 0; j < noperands; j++)
3738 if (this_alternative_matches[j] == i
3739 && this_alternative_match_win[j])
3741 this_alternative_win[j] = 0;
3742 this_alternative_match_win[j] = 0;
3743 losers++;
3748 /* If one alternative accepts all the operands, no reload required,
3749 choose that alternative; don't consider the remaining ones. */
3750 if (losers == 0)
3752 /* Unswap these so that they are never swapped at `finish'. */
3753 if (swapped)
3755 recog_data.operand[commutative] = substed_operand[commutative];
3756 recog_data.operand[commutative + 1]
3757 = substed_operand[commutative + 1];
3759 for (i = 0; i < noperands; i++)
3761 goal_alternative_win[i] = this_alternative_win[i];
3762 goal_alternative_match_win[i] = this_alternative_match_win[i];
3763 goal_alternative[i] = this_alternative[i];
3764 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3765 goal_alternative_matches[i] = this_alternative_matches[i];
3766 goal_alternative_earlyclobber[i]
3767 = this_alternative_earlyclobber[i];
3769 goal_alternative_number = this_alternative_number;
3770 goal_alternative_swapped = swapped;
3771 goal_earlyclobber = this_earlyclobber;
3772 goto finish;
3775 /* REJECT, set by the ! and ? constraint characters and when a register
3776 would be reloaded into a non-preferred class, discourages the use of
3777 this alternative for a reload goal. REJECT is incremented by six
3778 for each ? and two for each non-preferred class. */
3779 losers = losers * 6 + reject;
3781 /* If this alternative can be made to work by reloading,
3782 and it needs less reloading than the others checked so far,
3783 record it as the chosen goal for reloading. */
3784 if (! bad)
3786 if (best > losers)
3788 for (i = 0; i < noperands; i++)
3790 goal_alternative[i] = this_alternative[i];
3791 goal_alternative_win[i] = this_alternative_win[i];
3792 goal_alternative_match_win[i]
3793 = this_alternative_match_win[i];
3794 goal_alternative_offmemok[i]
3795 = this_alternative_offmemok[i];
3796 goal_alternative_matches[i] = this_alternative_matches[i];
3797 goal_alternative_earlyclobber[i]
3798 = this_alternative_earlyclobber[i];
3800 goal_alternative_swapped = swapped;
3801 best = losers;
3802 goal_alternative_number = this_alternative_number;
3803 goal_earlyclobber = this_earlyclobber;
3807 if (swapped)
3809 /* If the commutative operands have been swapped, swap
3810 them back in order to check the next alternative. */
3811 recog_data.operand[commutative] = substed_operand[commutative];
3812 recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3813 /* Unswap the duplicates too. */
3814 for (i = 0; i < recog_data.n_dups; i++)
3815 if (recog_data.dup_num[i] == commutative
3816 || recog_data.dup_num[i] == commutative + 1)
3817 *recog_data.dup_loc[i]
3818 = recog_data.operand[(int) recog_data.dup_num[i]];
3820 /* Unswap the operand related information as well. */
3821 std::swap (preferred_class[commutative],
3822 preferred_class[commutative + 1]);
3823 std::swap (pref_or_nothing[commutative],
3824 pref_or_nothing[commutative + 1]);
3825 std::swap (address_reloaded[commutative],
3826 address_reloaded[commutative + 1]);
3831 /* The operands don't meet the constraints.
3832 goal_alternative describes the alternative
3833 that we could reach by reloading the fewest operands.
3834 Reload so as to fit it. */
3836 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3838 /* No alternative works with reloads?? */
3839 if (insn_code_number >= 0)
3840 fatal_insn ("unable to generate reloads for:", insn);
3841 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3842 /* Avoid further trouble with this insn. */
3843 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3844 n_reloads = 0;
3845 return 0;
3848 /* Jump to `finish' from above if all operands are valid already.
3849 In that case, goal_alternative_win is all 1. */
3850 finish:
3852 /* Right now, for any pair of operands I and J that are required to match,
3853 with I < J,
3854 goal_alternative_matches[J] is I.
3855 Set up goal_alternative_matched as the inverse function:
3856 goal_alternative_matched[I] = J. */
3858 for (i = 0; i < noperands; i++)
3859 goal_alternative_matched[i] = -1;
3861 for (i = 0; i < noperands; i++)
3862 if (! goal_alternative_win[i]
3863 && goal_alternative_matches[i] >= 0)
3864 goal_alternative_matched[goal_alternative_matches[i]] = i;
3866 for (i = 0; i < noperands; i++)
3867 goal_alternative_win[i] |= goal_alternative_match_win[i];
3869 /* If the best alternative is with operands 1 and 2 swapped,
3870 consider them swapped before reporting the reloads. Update the
3871 operand numbers of any reloads already pushed. */
3873 if (goal_alternative_swapped)
3875 std::swap (substed_operand[commutative],
3876 substed_operand[commutative + 1]);
3877 std::swap (recog_data.operand[commutative],
3878 recog_data.operand[commutative + 1]);
3879 std::swap (*recog_data.operand_loc[commutative],
3880 *recog_data.operand_loc[commutative + 1]);
3882 for (i = 0; i < recog_data.n_dups; i++)
3883 if (recog_data.dup_num[i] == commutative
3884 || recog_data.dup_num[i] == commutative + 1)
3885 *recog_data.dup_loc[i]
3886 = recog_data.operand[(int) recog_data.dup_num[i]];
3888 for (i = 0; i < n_reloads; i++)
3890 if (rld[i].opnum == commutative)
3891 rld[i].opnum = commutative + 1;
3892 else if (rld[i].opnum == commutative + 1)
3893 rld[i].opnum = commutative;
3897 for (i = 0; i < noperands; i++)
3899 operand_reloadnum[i] = -1;
3901 /* If this is an earlyclobber operand, we need to widen the scope.
3902 The reload must remain valid from the start of the insn being
3903 reloaded until after the operand is stored into its destination.
3904 We approximate this with RELOAD_OTHER even though we know that we
3905 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3907 One special case that is worth checking is when we have an
3908 output that is earlyclobber but isn't used past the insn (typically
3909 a SCRATCH). In this case, we only need have the reload live
3910 through the insn itself, but not for any of our input or output
3911 reloads.
3912 But we must not accidentally narrow the scope of an existing
3913 RELOAD_OTHER reload - leave these alone.
3915 In any case, anything needed to address this operand can remain
3916 however they were previously categorized. */
3918 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3919 operand_type[i]
3920 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3921 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3924 /* Any constants that aren't allowed and can't be reloaded
3925 into registers are here changed into memory references. */
3926 for (i = 0; i < noperands; i++)
3927 if (! goal_alternative_win[i])
3929 rtx op = recog_data.operand[i];
3930 rtx subreg = NULL_RTX;
3931 rtx plus = NULL_RTX;
3932 machine_mode mode = operand_mode[i];
3934 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3935 push_reload so we have to let them pass here. */
3936 if (GET_CODE (op) == SUBREG)
3938 subreg = op;
3939 op = SUBREG_REG (op);
3940 mode = GET_MODE (op);
3943 if (GET_CODE (op) == PLUS)
3945 plus = op;
3946 op = XEXP (op, 1);
3949 if (CONST_POOL_OK_P (mode, op)
3950 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3951 == NO_REGS)
3952 || no_input_reloads))
3954 int this_address_reloaded;
3955 rtx tem = force_const_mem (mode, op);
3957 /* If we stripped a SUBREG or a PLUS above add it back. */
3958 if (plus != NULL_RTX)
3959 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3961 if (subreg != NULL_RTX)
3962 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3964 this_address_reloaded = 0;
3965 substed_operand[i] = recog_data.operand[i]
3966 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3967 0, insn, &this_address_reloaded);
3969 /* If the alternative accepts constant pool refs directly
3970 there will be no reload needed at all. */
3971 if (plus == NULL_RTX
3972 && subreg == NULL_RTX
3973 && alternative_allows_const_pool_ref (this_address_reloaded != 1
3974 ? substed_operand[i]
3975 : NULL,
3976 recog_data.constraints[i],
3977 goal_alternative_number))
3978 goal_alternative_win[i] = 1;
3982 /* Record the values of the earlyclobber operands for the caller. */
3983 if (goal_earlyclobber)
3984 for (i = 0; i < noperands; i++)
3985 if (goal_alternative_earlyclobber[i])
3986 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3988 /* Now record reloads for all the operands that need them. */
3989 for (i = 0; i < noperands; i++)
3990 if (! goal_alternative_win[i])
3992 /* Operands that match previous ones have already been handled. */
3993 if (goal_alternative_matches[i] >= 0)
3995 /* Handle an operand with a nonoffsettable address
3996 appearing where an offsettable address will do
3997 by reloading the address into a base register.
3999 ??? We can also do this when the operand is a register and
4000 reg_equiv_mem is not offsettable, but this is a bit tricky,
4001 so we don't bother with it. It may not be worth doing. */
4002 else if (goal_alternative_matched[i] == -1
4003 && goal_alternative_offmemok[i]
4004 && MEM_P (recog_data.operand[i]))
4006 /* If the address to be reloaded is a VOIDmode constant,
4007 use the default address mode as mode of the reload register,
4008 as would have been done by find_reloads_address. */
4009 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4010 machine_mode address_mode;
4012 address_mode = get_address_mode (recog_data.operand[i]);
4013 operand_reloadnum[i]
4014 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4015 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4016 base_reg_class (VOIDmode, as, MEM, SCRATCH),
4017 address_mode,
4018 VOIDmode, 0, 0, i, RELOAD_OTHER);
4019 rld[operand_reloadnum[i]].inc
4020 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4022 /* If this operand is an output, we will have made any
4023 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4024 now we are treating part of the operand as an input, so
4025 we must change these to RELOAD_FOR_OTHER_ADDRESS. */
4027 if (modified[i] == RELOAD_WRITE)
4029 for (j = 0; j < n_reloads; j++)
4031 if (rld[j].opnum == i)
4033 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4034 rld[j].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4035 else if (rld[j].when_needed
4036 == RELOAD_FOR_OUTADDR_ADDRESS)
4037 rld[j].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4042 else if (goal_alternative_matched[i] == -1)
4044 operand_reloadnum[i]
4045 = push_reload ((modified[i] != RELOAD_WRITE
4046 ? recog_data.operand[i] : 0),
4047 (modified[i] != RELOAD_READ
4048 ? recog_data.operand[i] : 0),
4049 (modified[i] != RELOAD_WRITE
4050 ? recog_data.operand_loc[i] : 0),
4051 (modified[i] != RELOAD_READ
4052 ? recog_data.operand_loc[i] : 0),
4053 (enum reg_class) goal_alternative[i],
4054 (modified[i] == RELOAD_WRITE
4055 ? VOIDmode : operand_mode[i]),
4056 (modified[i] == RELOAD_READ
4057 ? VOIDmode : operand_mode[i]),
4058 (insn_code_number < 0 ? 0
4059 : insn_data[insn_code_number].operand[i].strict_low),
4060 0, i, operand_type[i]);
4062 /* In a matching pair of operands, one must be input only
4063 and the other must be output only.
4064 Pass the input operand as IN and the other as OUT. */
4065 else if (modified[i] == RELOAD_READ
4066 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4068 operand_reloadnum[i]
4069 = push_reload (recog_data.operand[i],
4070 recog_data.operand[goal_alternative_matched[i]],
4071 recog_data.operand_loc[i],
4072 recog_data.operand_loc[goal_alternative_matched[i]],
4073 (enum reg_class) goal_alternative[i],
4074 operand_mode[i],
4075 operand_mode[goal_alternative_matched[i]],
4076 0, 0, i, RELOAD_OTHER);
4077 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4079 else if (modified[i] == RELOAD_WRITE
4080 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4082 operand_reloadnum[goal_alternative_matched[i]]
4083 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4084 recog_data.operand[i],
4085 recog_data.operand_loc[goal_alternative_matched[i]],
4086 recog_data.operand_loc[i],
4087 (enum reg_class) goal_alternative[i],
4088 operand_mode[goal_alternative_matched[i]],
4089 operand_mode[i],
4090 0, 0, i, RELOAD_OTHER);
4091 operand_reloadnum[i] = output_reloadnum;
4093 else
4095 gcc_assert (insn_code_number < 0);
4096 error_for_asm (insn, "inconsistent operand constraints "
4097 "in an %<asm%>");
4098 /* Avoid further trouble with this insn. */
4099 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4100 n_reloads = 0;
4101 return 0;
4104 else if (goal_alternative_matched[i] < 0
4105 && goal_alternative_matches[i] < 0
4106 && address_operand_reloaded[i] != 1
4107 && optimize)
4109 /* For each non-matching operand that's a MEM or a pseudo-register
4110 that didn't get a hard register, make an optional reload.
4111 This may get done even if the insn needs no reloads otherwise. */
4113 rtx operand = recog_data.operand[i];
4115 while (GET_CODE (operand) == SUBREG)
4116 operand = SUBREG_REG (operand);
4117 if ((MEM_P (operand)
4118 || (REG_P (operand)
4119 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4120 /* If this is only for an output, the optional reload would not
4121 actually cause us to use a register now, just note that
4122 something is stored here. */
4123 && (goal_alternative[i] != NO_REGS
4124 || modified[i] == RELOAD_WRITE)
4125 && ! no_input_reloads
4126 /* An optional output reload might allow to delete INSN later.
4127 We mustn't make in-out reloads on insns that are not permitted
4128 output reloads.
4129 If this is an asm, we can't delete it; we must not even call
4130 push_reload for an optional output reload in this case,
4131 because we can't be sure that the constraint allows a register,
4132 and push_reload verifies the constraints for asms. */
4133 && (modified[i] == RELOAD_READ
4134 || (! no_output_reloads && ! this_insn_is_asm)))
4135 operand_reloadnum[i]
4136 = push_reload ((modified[i] != RELOAD_WRITE
4137 ? recog_data.operand[i] : 0),
4138 (modified[i] != RELOAD_READ
4139 ? recog_data.operand[i] : 0),
4140 (modified[i] != RELOAD_WRITE
4141 ? recog_data.operand_loc[i] : 0),
4142 (modified[i] != RELOAD_READ
4143 ? recog_data.operand_loc[i] : 0),
4144 (enum reg_class) goal_alternative[i],
4145 (modified[i] == RELOAD_WRITE
4146 ? VOIDmode : operand_mode[i]),
4147 (modified[i] == RELOAD_READ
4148 ? VOIDmode : operand_mode[i]),
4149 (insn_code_number < 0 ? 0
4150 : insn_data[insn_code_number].operand[i].strict_low),
4151 1, i, operand_type[i]);
4152 /* If a memory reference remains (either as a MEM or a pseudo that
4153 did not get a hard register), yet we can't make an optional
4154 reload, check if this is actually a pseudo register reference;
4155 we then need to emit a USE and/or a CLOBBER so that reload
4156 inheritance will do the right thing. */
4157 else if (replace
4158 && (MEM_P (operand)
4159 || (REG_P (operand)
4160 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4161 && reg_renumber [REGNO (operand)] < 0)))
4163 operand = *recog_data.operand_loc[i];
4165 while (GET_CODE (operand) == SUBREG)
4166 operand = SUBREG_REG (operand);
4167 if (REG_P (operand))
4169 if (modified[i] != RELOAD_WRITE)
4170 /* We mark the USE with QImode so that we recognize
4171 it as one that can be safely deleted at the end
4172 of reload. */
4173 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4174 insn), QImode);
4175 if (modified[i] != RELOAD_READ)
4176 emit_insn_after (gen_clobber (operand), insn);
4180 else if (goal_alternative_matches[i] >= 0
4181 && goal_alternative_win[goal_alternative_matches[i]]
4182 && modified[i] == RELOAD_READ
4183 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4184 && ! no_input_reloads && ! no_output_reloads
4185 && optimize)
4187 /* Similarly, make an optional reload for a pair of matching
4188 objects that are in MEM or a pseudo that didn't get a hard reg. */
4190 rtx operand = recog_data.operand[i];
4192 while (GET_CODE (operand) == SUBREG)
4193 operand = SUBREG_REG (operand);
4194 if ((MEM_P (operand)
4195 || (REG_P (operand)
4196 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4197 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4198 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4199 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4200 recog_data.operand[i],
4201 recog_data.operand_loc[goal_alternative_matches[i]],
4202 recog_data.operand_loc[i],
4203 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4204 operand_mode[goal_alternative_matches[i]],
4205 operand_mode[i],
4206 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4209 /* Perform whatever substitutions on the operands we are supposed
4210 to make due to commutativity or replacement of registers
4211 with equivalent constants or memory slots. */
4213 for (i = 0; i < noperands; i++)
4215 /* We only do this on the last pass through reload, because it is
4216 possible for some data (like reg_equiv_address) to be changed during
4217 later passes. Moreover, we lose the opportunity to get a useful
4218 reload_{in,out}_reg when we do these replacements. */
4220 if (replace)
4222 rtx substitution = substed_operand[i];
4224 *recog_data.operand_loc[i] = substitution;
4226 /* If we're replacing an operand with a LABEL_REF, we need to
4227 make sure that there's a REG_LABEL_OPERAND note attached to
4228 this instruction. */
4229 if (GET_CODE (substitution) == LABEL_REF
4230 && !find_reg_note (insn, REG_LABEL_OPERAND,
4231 label_ref_label (substitution))
4232 /* For a JUMP_P, if it was a branch target it must have
4233 already been recorded as such. */
4234 && (!JUMP_P (insn)
4235 || !label_is_jump_target_p (label_ref_label (substitution),
4236 insn)))
4238 add_reg_note (insn, REG_LABEL_OPERAND,
4239 label_ref_label (substitution));
4240 if (LABEL_P (label_ref_label (substitution)))
4241 ++LABEL_NUSES (label_ref_label (substitution));
4245 else
4246 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4249 /* If this insn pattern contains any MATCH_DUP's, make sure that
4250 they will be substituted if the operands they match are substituted.
4251 Also do now any substitutions we already did on the operands.
4253 Don't do this if we aren't making replacements because we might be
4254 propagating things allocated by frame pointer elimination into places
4255 it doesn't expect. */
4257 if (insn_code_number >= 0 && replace)
4258 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4260 int opno = recog_data.dup_num[i];
4261 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4262 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4265 #if 0
4266 /* This loses because reloading of prior insns can invalidate the equivalence
4267 (or at least find_equiv_reg isn't smart enough to find it any more),
4268 causing this insn to need more reload regs than it needed before.
4269 It may be too late to make the reload regs available.
4270 Now this optimization is done safely in choose_reload_regs. */
4272 /* For each reload of a reg into some other class of reg,
4273 search for an existing equivalent reg (same value now) in the right class.
4274 We can use it as long as we don't need to change its contents. */
4275 for (i = 0; i < n_reloads; i++)
4276 if (rld[i].reg_rtx == 0
4277 && rld[i].in != 0
4278 && REG_P (rld[i].in)
4279 && rld[i].out == 0)
4281 rld[i].reg_rtx
4282 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4283 static_reload_reg_p, 0, rld[i].inmode);
4284 /* Prevent generation of insn to load the value
4285 because the one we found already has the value. */
4286 if (rld[i].reg_rtx)
4287 rld[i].in = rld[i].reg_rtx;
4289 #endif
4291 /* If we detected error and replaced asm instruction by USE, forget about the
4292 reloads. */
4293 if (GET_CODE (PATTERN (insn)) == USE
4294 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4295 n_reloads = 0;
4297 /* Perhaps an output reload can be combined with another
4298 to reduce needs by one. */
4299 if (!goal_earlyclobber)
4300 combine_reloads ();
4302 /* If we have a pair of reloads for parts of an address, they are reloading
4303 the same object, the operands themselves were not reloaded, and they
4304 are for two operands that are supposed to match, merge the reloads and
4305 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4307 for (i = 0; i < n_reloads; i++)
4309 int k;
4311 for (j = i + 1; j < n_reloads; j++)
4312 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4313 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4314 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4315 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4316 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4317 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4318 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4319 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4320 && rtx_equal_p (rld[i].in, rld[j].in)
4321 && (operand_reloadnum[rld[i].opnum] < 0
4322 || rld[operand_reloadnum[rld[i].opnum]].optional)
4323 && (operand_reloadnum[rld[j].opnum] < 0
4324 || rld[operand_reloadnum[rld[j].opnum]].optional)
4325 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4326 || (goal_alternative_matches[rld[j].opnum]
4327 == rld[i].opnum)))
4329 for (k = 0; k < n_replacements; k++)
4330 if (replacements[k].what == j)
4331 replacements[k].what = i;
4333 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4334 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4335 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4336 else
4337 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4338 rld[j].in = 0;
4342 /* Scan all the reloads and update their type.
4343 If a reload is for the address of an operand and we didn't reload
4344 that operand, change the type. Similarly, change the operand number
4345 of a reload when two operands match. If a reload is optional, treat it
4346 as though the operand isn't reloaded.
4348 ??? This latter case is somewhat odd because if we do the optional
4349 reload, it means the object is hanging around. Thus we need only
4350 do the address reload if the optional reload was NOT done.
4352 Change secondary reloads to be the address type of their operand, not
4353 the normal type.
4355 If an operand's reload is now RELOAD_OTHER, change any
4356 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4357 RELOAD_FOR_OTHER_ADDRESS. */
4359 for (i = 0; i < n_reloads; i++)
4361 if (rld[i].secondary_p
4362 && rld[i].when_needed == operand_type[rld[i].opnum])
4363 rld[i].when_needed = address_type[rld[i].opnum];
4365 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4366 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4367 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4368 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4369 && (operand_reloadnum[rld[i].opnum] < 0
4370 || rld[operand_reloadnum[rld[i].opnum]].optional))
4372 /* If we have a secondary reload to go along with this reload,
4373 change its type to RELOAD_FOR_OPADDR_ADDR. */
4375 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4376 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4377 && rld[i].secondary_in_reload != -1)
4379 int secondary_in_reload = rld[i].secondary_in_reload;
4381 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4383 /* If there's a tertiary reload we have to change it also. */
4384 if (secondary_in_reload > 0
4385 && rld[secondary_in_reload].secondary_in_reload != -1)
4386 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4387 = RELOAD_FOR_OPADDR_ADDR;
4390 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4391 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4392 && rld[i].secondary_out_reload != -1)
4394 int secondary_out_reload = rld[i].secondary_out_reload;
4396 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4398 /* If there's a tertiary reload we have to change it also. */
4399 if (secondary_out_reload
4400 && rld[secondary_out_reload].secondary_out_reload != -1)
4401 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4402 = RELOAD_FOR_OPADDR_ADDR;
4405 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4406 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4407 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4408 else
4409 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4412 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4413 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4414 && operand_reloadnum[rld[i].opnum] >= 0
4415 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4416 == RELOAD_OTHER))
4417 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4419 if (goal_alternative_matches[rld[i].opnum] >= 0)
4420 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4423 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4424 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4425 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4427 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4428 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4429 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4430 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4431 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4432 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4433 This is complicated by the fact that a single operand can have more
4434 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4435 choose_reload_regs without affecting code quality, and cases that
4436 actually fail are extremely rare, so it turns out to be better to fix
4437 the problem here by not generating cases that choose_reload_regs will
4438 fail for. */
4439 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4440 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4441 a single operand.
4442 We can reduce the register pressure by exploiting that a
4443 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4444 does not conflict with any of them, if it is only used for the first of
4445 the RELOAD_FOR_X_ADDRESS reloads. */
4447 int first_op_addr_num = -2;
4448 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4449 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4450 int need_change = 0;
4451 /* We use last_op_addr_reload and the contents of the above arrays
4452 first as flags - -2 means no instance encountered, -1 means exactly
4453 one instance encountered.
4454 If more than one instance has been encountered, we store the reload
4455 number of the first reload of the kind in question; reload numbers
4456 are known to be non-negative. */
4457 for (i = 0; i < noperands; i++)
4458 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4459 for (i = n_reloads - 1; i >= 0; i--)
4461 switch (rld[i].when_needed)
4463 case RELOAD_FOR_OPERAND_ADDRESS:
4464 if (++first_op_addr_num >= 0)
4466 first_op_addr_num = i;
4467 need_change = 1;
4469 break;
4470 case RELOAD_FOR_INPUT_ADDRESS:
4471 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4473 first_inpaddr_num[rld[i].opnum] = i;
4474 need_change = 1;
4476 break;
4477 case RELOAD_FOR_OUTPUT_ADDRESS:
4478 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4480 first_outpaddr_num[rld[i].opnum] = i;
4481 need_change = 1;
4483 break;
4484 default:
4485 break;
4489 if (need_change)
4491 for (i = 0; i < n_reloads; i++)
4493 int first_num;
4494 enum reload_type type;
4496 switch (rld[i].when_needed)
4498 case RELOAD_FOR_OPADDR_ADDR:
4499 first_num = first_op_addr_num;
4500 type = RELOAD_FOR_OPERAND_ADDRESS;
4501 break;
4502 case RELOAD_FOR_INPADDR_ADDRESS:
4503 first_num = first_inpaddr_num[rld[i].opnum];
4504 type = RELOAD_FOR_INPUT_ADDRESS;
4505 break;
4506 case RELOAD_FOR_OUTADDR_ADDRESS:
4507 first_num = first_outpaddr_num[rld[i].opnum];
4508 type = RELOAD_FOR_OUTPUT_ADDRESS;
4509 break;
4510 default:
4511 continue;
4513 if (first_num < 0)
4514 continue;
4515 else if (i > first_num)
4516 rld[i].when_needed = type;
4517 else
4519 /* Check if the only TYPE reload that uses reload I is
4520 reload FIRST_NUM. */
4521 for (j = n_reloads - 1; j > first_num; j--)
4523 if (rld[j].when_needed == type
4524 && (rld[i].secondary_p
4525 ? rld[j].secondary_in_reload == i
4526 : reg_mentioned_p (rld[i].in, rld[j].in)))
4528 rld[i].when_needed = type;
4529 break;
4537 /* See if we have any reloads that are now allowed to be merged
4538 because we've changed when the reload is needed to
4539 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4540 check for the most common cases. */
4542 for (i = 0; i < n_reloads; i++)
4543 if (rld[i].in != 0 && rld[i].out == 0
4544 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4545 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4546 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4547 for (j = 0; j < n_reloads; j++)
4548 if (i != j && rld[j].in != 0 && rld[j].out == 0
4549 && rld[j].when_needed == rld[i].when_needed
4550 && MATCHES (rld[i].in, rld[j].in)
4551 && rld[i].rclass == rld[j].rclass
4552 && !rld[i].nocombine && !rld[j].nocombine
4553 && rld[i].reg_rtx == rld[j].reg_rtx)
4555 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4556 transfer_replacements (i, j);
4557 rld[j].in = 0;
4560 /* Compute reload_mode and reload_nregs. */
4561 for (i = 0; i < n_reloads; i++)
4563 rld[i].mode = rld[i].inmode;
4564 if (rld[i].mode == VOIDmode
4565 || partial_subreg_p (rld[i].mode, rld[i].outmode))
4566 rld[i].mode = rld[i].outmode;
4568 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4571 /* Special case a simple move with an input reload and a
4572 destination of a hard reg, if the hard reg is ok, use it. */
4573 for (i = 0; i < n_reloads; i++)
4574 if (rld[i].when_needed == RELOAD_FOR_INPUT
4575 && GET_CODE (PATTERN (insn)) == SET
4576 && REG_P (SET_DEST (PATTERN (insn)))
4577 && (SET_SRC (PATTERN (insn)) == rld[i].in
4578 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4579 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4581 rtx dest = SET_DEST (PATTERN (insn));
4582 unsigned int regno = REGNO (dest);
4584 if (regno < FIRST_PSEUDO_REGISTER
4585 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4586 && targetm.hard_regno_mode_ok (regno, rld[i].mode))
4588 int nr = hard_regno_nregs (regno, rld[i].mode);
4589 int ok = 1, nri;
4591 for (nri = 1; nri < nr; nri ++)
4592 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4594 ok = 0;
4595 break;
4598 if (ok)
4599 rld[i].reg_rtx = dest;
4603 return retval;
4606 /* Return true if alternative number ALTNUM in constraint-string
4607 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4608 MEM gives the reference if its address hasn't been fully reloaded,
4609 otherwise it is NULL. */
4611 static bool
4612 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4613 const char *constraint, int altnum)
4615 int c;
4617 /* Skip alternatives before the one requested. */
4618 while (altnum > 0)
4620 while (*constraint++ != ',')
4622 altnum--;
4624 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4625 If one of them is present, this alternative accepts the result of
4626 passing a constant-pool reference through find_reloads_toplev.
4628 The same is true of extra memory constraints if the address
4629 was reloaded into a register. However, the target may elect
4630 to disallow the original constant address, forcing it to be
4631 reloaded into a register instead. */
4632 for (; (c = *constraint) && c != ',' && c != '#';
4633 constraint += CONSTRAINT_LEN (c, constraint))
4635 enum constraint_num cn = lookup_constraint (constraint);
4636 if (insn_extra_memory_constraint (cn)
4637 && (mem == NULL || constraint_satisfied_p (mem, cn)))
4638 return true;
4640 return false;
4643 /* Scan X for memory references and scan the addresses for reloading.
4644 Also checks for references to "constant" regs that we want to eliminate
4645 and replaces them with the values they stand for.
4646 We may alter X destructively if it contains a reference to such.
4647 If X is just a constant reg, we return the equivalent value
4648 instead of X.
4650 IND_LEVELS says how many levels of indirect addressing this machine
4651 supports.
4653 OPNUM and TYPE identify the purpose of the reload.
4655 IS_SET_DEST is true if X is the destination of a SET, which is not
4656 appropriate to be replaced by a constant.
4658 INSN, if nonzero, is the insn in which we do the reload. It is used
4659 to determine if we may generate output reloads, and where to put USEs
4660 for pseudos that we have to replace with stack slots.
4662 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4663 result of find_reloads_address. */
4665 static rtx
4666 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4667 int ind_levels, int is_set_dest, rtx_insn *insn,
4668 int *address_reloaded)
4670 RTX_CODE code = GET_CODE (x);
4672 const char *fmt = GET_RTX_FORMAT (code);
4673 int i;
4674 int copied;
4676 if (code == REG)
4678 /* This code is duplicated for speed in find_reloads. */
4679 int regno = REGNO (x);
4680 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4681 x = reg_equiv_constant (regno);
4682 #if 0
4683 /* This creates (subreg (mem...)) which would cause an unnecessary
4684 reload of the mem. */
4685 else if (reg_equiv_mem (regno) != 0)
4686 x = reg_equiv_mem (regno);
4687 #endif
4688 else if (reg_equiv_memory_loc (regno)
4689 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4691 rtx mem = make_memloc (x, regno);
4692 if (reg_equiv_address (regno)
4693 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4695 /* If this is not a toplevel operand, find_reloads doesn't see
4696 this substitution. We have to emit a USE of the pseudo so
4697 that delete_output_reload can see it. */
4698 if (replace_reloads && recog_data.operand[opnum] != x)
4699 /* We mark the USE with QImode so that we recognize it
4700 as one that can be safely deleted at the end of
4701 reload. */
4702 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4703 QImode);
4704 x = mem;
4705 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4706 opnum, type, ind_levels, insn);
4707 if (!rtx_equal_p (x, mem))
4708 push_reg_equiv_alt_mem (regno, x);
4709 if (address_reloaded)
4710 *address_reloaded = i;
4713 return x;
4715 if (code == MEM)
4717 rtx tem = x;
4719 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4720 opnum, type, ind_levels, insn);
4721 if (address_reloaded)
4722 *address_reloaded = i;
4724 return tem;
4727 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4729 /* Check for SUBREG containing a REG that's equivalent to a
4730 constant. If the constant has a known value, truncate it
4731 right now. Similarly if we are extracting a single-word of a
4732 multi-word constant. If the constant is symbolic, allow it
4733 to be substituted normally. push_reload will strip the
4734 subreg later. The constant must not be VOIDmode, because we
4735 will lose the mode of the register (this should never happen
4736 because one of the cases above should handle it). */
4738 int regno = REGNO (SUBREG_REG (x));
4739 rtx tem;
4741 if (regno >= FIRST_PSEUDO_REGISTER
4742 && reg_renumber[regno] < 0
4743 && reg_equiv_constant (regno) != 0)
4745 tem =
4746 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4747 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4748 gcc_assert (tem);
4749 if (CONSTANT_P (tem)
4750 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4752 tem = force_const_mem (GET_MODE (x), tem);
4753 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4754 &XEXP (tem, 0), opnum, type,
4755 ind_levels, insn);
4756 if (address_reloaded)
4757 *address_reloaded = i;
4759 return tem;
4762 /* If the subreg contains a reg that will be converted to a mem,
4763 attempt to convert the whole subreg to a (narrower or wider)
4764 memory reference instead. If this succeeds, we're done --
4765 otherwise fall through to check whether the inner reg still
4766 needs address reloads anyway. */
4768 if (regno >= FIRST_PSEUDO_REGISTER
4769 && reg_equiv_memory_loc (regno) != 0)
4771 tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4772 insn, address_reloaded);
4773 if (tem)
4774 return tem;
4778 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4780 if (fmt[i] == 'e')
4782 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4783 ind_levels, is_set_dest, insn,
4784 address_reloaded);
4785 /* If we have replaced a reg with it's equivalent memory loc -
4786 that can still be handled here e.g. if it's in a paradoxical
4787 subreg - we must make the change in a copy, rather than using
4788 a destructive change. This way, find_reloads can still elect
4789 not to do the change. */
4790 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4792 x = shallow_copy_rtx (x);
4793 copied = 1;
4795 XEXP (x, i) = new_part;
4798 return x;
4801 /* Return a mem ref for the memory equivalent of reg REGNO.
4802 This mem ref is not shared with anything. */
4804 static rtx
4805 make_memloc (rtx ad, int regno)
4807 /* We must rerun eliminate_regs, in case the elimination
4808 offsets have changed. */
4809 rtx tem
4810 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4813 /* If TEM might contain a pseudo, we must copy it to avoid
4814 modifying it when we do the substitution for the reload. */
4815 if (rtx_varies_p (tem, 0))
4816 tem = copy_rtx (tem);
4818 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4819 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4821 /* Copy the result if it's still the same as the equivalence, to avoid
4822 modifying it when we do the substitution for the reload. */
4823 if (tem == reg_equiv_memory_loc (regno))
4824 tem = copy_rtx (tem);
4825 return tem;
4828 /* Returns true if AD could be turned into a valid memory reference
4829 to mode MODE in address space AS by reloading the part pointed to
4830 by PART into a register. */
4832 static bool
4833 maybe_memory_address_addr_space_p (machine_mode mode, rtx ad,
4834 addr_space_t as, rtx *part)
4836 bool retv;
4837 rtx tem = *part;
4838 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4840 *part = reg;
4841 retv = memory_address_addr_space_p (mode, ad, as);
4842 *part = tem;
4844 return retv;
4847 /* Record all reloads needed for handling memory address AD
4848 which appears in *LOC in a memory reference to mode MODE
4849 which itself is found in location *MEMREFLOC.
4850 Note that we take shortcuts assuming that no multi-reg machine mode
4851 occurs as part of an address.
4853 OPNUM and TYPE specify the purpose of this reload.
4855 IND_LEVELS says how many levels of indirect addressing this machine
4856 supports.
4858 INSN, if nonzero, is the insn in which we do the reload. It is used
4859 to determine if we may generate output reloads, and where to put USEs
4860 for pseudos that we have to replace with stack slots.
4862 Value is one if this address is reloaded or replaced as a whole; it is
4863 zero if the top level of this address was not reloaded or replaced, and
4864 it is -1 if it may or may not have been reloaded or replaced.
4866 Note that there is no verification that the address will be valid after
4867 this routine does its work. Instead, we rely on the fact that the address
4868 was valid when reload started. So we need only undo things that reload
4869 could have broken. These are wrong register types, pseudos not allocated
4870 to a hard register, and frame pointer elimination. */
4872 static int
4873 find_reloads_address (machine_mode mode, rtx *memrefloc, rtx ad,
4874 rtx *loc, int opnum, enum reload_type type,
4875 int ind_levels, rtx_insn *insn)
4877 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4878 : ADDR_SPACE_GENERIC;
4879 int regno;
4880 int removed_and = 0;
4881 int op_index;
4882 rtx tem;
4884 /* If the address is a register, see if it is a legitimate address and
4885 reload if not. We first handle the cases where we need not reload
4886 or where we must reload in a non-standard way. */
4888 if (REG_P (ad))
4890 regno = REGNO (ad);
4892 if (reg_equiv_constant (regno) != 0)
4894 find_reloads_address_part (reg_equiv_constant (regno), loc,
4895 base_reg_class (mode, as, MEM, SCRATCH),
4896 GET_MODE (ad), opnum, type, ind_levels);
4897 return 1;
4900 tem = reg_equiv_memory_loc (regno);
4901 if (tem != 0)
4903 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4905 tem = make_memloc (ad, regno);
4906 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4907 XEXP (tem, 0),
4908 MEM_ADDR_SPACE (tem)))
4910 rtx orig = tem;
4912 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4913 &XEXP (tem, 0), opnum,
4914 ADDR_TYPE (type), ind_levels, insn);
4915 if (!rtx_equal_p (tem, orig))
4916 push_reg_equiv_alt_mem (regno, tem);
4918 /* We can avoid a reload if the register's equivalent memory
4919 expression is valid as an indirect memory address.
4920 But not all addresses are valid in a mem used as an indirect
4921 address: only reg or reg+constant. */
4923 if (ind_levels > 0
4924 && strict_memory_address_addr_space_p (mode, tem, as)
4925 && (REG_P (XEXP (tem, 0))
4926 || (GET_CODE (XEXP (tem, 0)) == PLUS
4927 && REG_P (XEXP (XEXP (tem, 0), 0))
4928 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4930 /* TEM is not the same as what we'll be replacing the
4931 pseudo with after reload, put a USE in front of INSN
4932 in the final reload pass. */
4933 if (replace_reloads
4934 && num_not_at_initial_offset
4935 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4937 *loc = tem;
4938 /* We mark the USE with QImode so that we
4939 recognize it as one that can be safely
4940 deleted at the end of reload. */
4941 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4942 insn), QImode);
4944 /* This doesn't really count as replacing the address
4945 as a whole, since it is still a memory access. */
4947 return 0;
4949 ad = tem;
4953 /* The only remaining case where we can avoid a reload is if this is a
4954 hard register that is valid as a base register and which is not the
4955 subject of a CLOBBER in this insn. */
4957 else if (regno < FIRST_PSEUDO_REGISTER
4958 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
4959 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4960 return 0;
4962 /* If we do not have one of the cases above, we must do the reload. */
4963 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
4964 base_reg_class (mode, as, MEM, SCRATCH),
4965 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4966 return 1;
4969 if (strict_memory_address_addr_space_p (mode, ad, as))
4971 /* The address appears valid, so reloads are not needed.
4972 But the address may contain an eliminable register.
4973 This can happen because a machine with indirect addressing
4974 may consider a pseudo register by itself a valid address even when
4975 it has failed to get a hard reg.
4976 So do a tree-walk to find and eliminate all such regs. */
4978 /* But first quickly dispose of a common case. */
4979 if (GET_CODE (ad) == PLUS
4980 && CONST_INT_P (XEXP (ad, 1))
4981 && REG_P (XEXP (ad, 0))
4982 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
4983 return 0;
4985 subst_reg_equivs_changed = 0;
4986 *loc = subst_reg_equivs (ad, insn);
4988 if (! subst_reg_equivs_changed)
4989 return 0;
4991 /* Check result for validity after substitution. */
4992 if (strict_memory_address_addr_space_p (mode, ad, as))
4993 return 0;
4996 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4999 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5001 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5002 ind_levels, win);
5004 break;
5005 win:
5006 *memrefloc = copy_rtx (*memrefloc);
5007 XEXP (*memrefloc, 0) = ad;
5008 move_replacements (&ad, &XEXP (*memrefloc, 0));
5009 return -1;
5011 while (0);
5012 #endif
5014 /* The address is not valid. We have to figure out why. First see if
5015 we have an outer AND and remove it if so. Then analyze what's inside. */
5017 if (GET_CODE (ad) == AND)
5019 removed_and = 1;
5020 loc = &XEXP (ad, 0);
5021 ad = *loc;
5024 /* One possibility for why the address is invalid is that it is itself
5025 a MEM. This can happen when the frame pointer is being eliminated, a
5026 pseudo is not allocated to a hard register, and the offset between the
5027 frame and stack pointers is not its initial value. In that case the
5028 pseudo will have been replaced by a MEM referring to the
5029 stack pointer. */
5030 if (MEM_P (ad))
5032 /* First ensure that the address in this MEM is valid. Then, unless
5033 indirect addresses are valid, reload the MEM into a register. */
5034 tem = ad;
5035 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5036 opnum, ADDR_TYPE (type),
5037 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5039 /* If tem was changed, then we must create a new memory reference to
5040 hold it and store it back into memrefloc. */
5041 if (tem != ad && memrefloc)
5043 *memrefloc = copy_rtx (*memrefloc);
5044 copy_replacements (tem, XEXP (*memrefloc, 0));
5045 loc = &XEXP (*memrefloc, 0);
5046 if (removed_and)
5047 loc = &XEXP (*loc, 0);
5050 /* Check similar cases as for indirect addresses as above except
5051 that we can allow pseudos and a MEM since they should have been
5052 taken care of above. */
5054 if (ind_levels == 0
5055 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5056 || MEM_P (XEXP (tem, 0))
5057 || ! (REG_P (XEXP (tem, 0))
5058 || (GET_CODE (XEXP (tem, 0)) == PLUS
5059 && REG_P (XEXP (XEXP (tem, 0), 0))
5060 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5062 /* Must use TEM here, not AD, since it is the one that will
5063 have any subexpressions reloaded, if needed. */
5064 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5065 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5066 VOIDmode, 0,
5067 0, opnum, type);
5068 return ! removed_and;
5070 else
5071 return 0;
5074 /* If we have address of a stack slot but it's not valid because the
5075 displacement is too large, compute the sum in a register.
5076 Handle all base registers here, not just fp/ap/sp, because on some
5077 targets (namely SH) we can also get too large displacements from
5078 big-endian corrections. */
5079 else if (GET_CODE (ad) == PLUS
5080 && REG_P (XEXP (ad, 0))
5081 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5082 && CONST_INT_P (XEXP (ad, 1))
5083 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5084 CONST_INT)
5085 /* Similarly, if we were to reload the base register and the
5086 mem+offset address is still invalid, then we want to reload
5087 the whole address, not just the base register. */
5088 || ! maybe_memory_address_addr_space_p
5089 (mode, ad, as, &(XEXP (ad, 0)))))
5092 /* Unshare the MEM rtx so we can safely alter it. */
5093 if (memrefloc)
5095 *memrefloc = copy_rtx (*memrefloc);
5096 loc = &XEXP (*memrefloc, 0);
5097 if (removed_and)
5098 loc = &XEXP (*loc, 0);
5101 if (double_reg_address_ok[mode]
5102 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5103 PLUS, CONST_INT))
5105 /* Unshare the sum as well. */
5106 *loc = ad = copy_rtx (ad);
5108 /* Reload the displacement into an index reg.
5109 We assume the frame pointer or arg pointer is a base reg. */
5110 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5111 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5112 type, ind_levels);
5113 return 0;
5115 else
5117 /* If the sum of two regs is not necessarily valid,
5118 reload the sum into a base reg.
5119 That will at least work. */
5120 find_reloads_address_part (ad, loc,
5121 base_reg_class (mode, as, MEM, SCRATCH),
5122 GET_MODE (ad), opnum, type, ind_levels);
5124 return ! removed_and;
5127 /* If we have an indexed stack slot, there are three possible reasons why
5128 it might be invalid: The index might need to be reloaded, the address
5129 might have been made by frame pointer elimination and hence have a
5130 constant out of range, or both reasons might apply.
5132 We can easily check for an index needing reload, but even if that is the
5133 case, we might also have an invalid constant. To avoid making the
5134 conservative assumption and requiring two reloads, we see if this address
5135 is valid when not interpreted strictly. If it is, the only problem is
5136 that the index needs a reload and find_reloads_address_1 will take care
5137 of it.
5139 Handle all base registers here, not just fp/ap/sp, because on some
5140 targets (namely SPARC) we can also get invalid addresses from preventive
5141 subreg big-endian corrections made by find_reloads_toplev. We
5142 can also get expressions involving LO_SUM (rather than PLUS) from
5143 find_reloads_subreg_address.
5145 If we decide to do something, it must be that `double_reg_address_ok'
5146 is true. We generate a reload of the base register + constant and
5147 rework the sum so that the reload register will be added to the index.
5148 This is safe because we know the address isn't shared.
5150 We check for the base register as both the first and second operand of
5151 the innermost PLUS and/or LO_SUM. */
5153 for (op_index = 0; op_index < 2; ++op_index)
5155 rtx operand, addend;
5156 enum rtx_code inner_code;
5158 if (GET_CODE (ad) != PLUS)
5159 continue;
5161 inner_code = GET_CODE (XEXP (ad, 0));
5162 if (!(GET_CODE (ad) == PLUS
5163 && CONST_INT_P (XEXP (ad, 1))
5164 && (inner_code == PLUS || inner_code == LO_SUM)))
5165 continue;
5167 operand = XEXP (XEXP (ad, 0), op_index);
5168 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5169 continue;
5171 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5173 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5174 GET_CODE (addend))
5175 || operand == frame_pointer_rtx
5176 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
5177 && operand == hard_frame_pointer_rtx)
5178 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5179 && operand == arg_pointer_rtx)
5180 || operand == stack_pointer_rtx)
5181 && ! maybe_memory_address_addr_space_p
5182 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5184 rtx offset_reg;
5185 enum reg_class cls;
5187 offset_reg = plus_constant (GET_MODE (ad), operand,
5188 INTVAL (XEXP (ad, 1)));
5190 /* Form the adjusted address. */
5191 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5192 ad = gen_rtx_PLUS (GET_MODE (ad),
5193 op_index == 0 ? offset_reg : addend,
5194 op_index == 0 ? addend : offset_reg);
5195 else
5196 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5197 op_index == 0 ? offset_reg : addend,
5198 op_index == 0 ? addend : offset_reg);
5199 *loc = ad;
5201 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5202 find_reloads_address_part (XEXP (ad, op_index),
5203 &XEXP (ad, op_index), cls,
5204 GET_MODE (ad), opnum, type, ind_levels);
5205 find_reloads_address_1 (mode, as,
5206 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5207 GET_CODE (XEXP (ad, op_index)),
5208 &XEXP (ad, 1 - op_index), opnum,
5209 type, 0, insn);
5211 return 0;
5215 /* See if address becomes valid when an eliminable register
5216 in a sum is replaced. */
5218 tem = ad;
5219 if (GET_CODE (ad) == PLUS)
5220 tem = subst_indexed_address (ad);
5221 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5223 /* Ok, we win that way. Replace any additional eliminable
5224 registers. */
5226 subst_reg_equivs_changed = 0;
5227 tem = subst_reg_equivs (tem, insn);
5229 /* Make sure that didn't make the address invalid again. */
5231 if (! subst_reg_equivs_changed
5232 || strict_memory_address_addr_space_p (mode, tem, as))
5234 *loc = tem;
5235 return 0;
5239 /* If constants aren't valid addresses, reload the constant address
5240 into a register. */
5241 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5243 machine_mode address_mode = GET_MODE (ad);
5244 if (address_mode == VOIDmode)
5245 address_mode = targetm.addr_space.address_mode (as);
5247 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5248 Unshare it so we can safely alter it. */
5249 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5250 && CONSTANT_POOL_ADDRESS_P (ad))
5252 *memrefloc = copy_rtx (*memrefloc);
5253 loc = &XEXP (*memrefloc, 0);
5254 if (removed_and)
5255 loc = &XEXP (*loc, 0);
5258 find_reloads_address_part (ad, loc,
5259 base_reg_class (mode, as, MEM, SCRATCH),
5260 address_mode, opnum, type, ind_levels);
5261 return ! removed_and;
5264 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5265 opnum, type, ind_levels, insn);
5268 /* Find all pseudo regs appearing in AD
5269 that are eliminable in favor of equivalent values
5270 and do not have hard regs; replace them by their equivalents.
5271 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5272 front of it for pseudos that we have to replace with stack slots. */
5274 static rtx
5275 subst_reg_equivs (rtx ad, rtx_insn *insn)
5277 RTX_CODE code = GET_CODE (ad);
5278 int i;
5279 const char *fmt;
5281 switch (code)
5283 case HIGH:
5284 case CONST:
5285 CASE_CONST_ANY:
5286 case SYMBOL_REF:
5287 case LABEL_REF:
5288 case PC:
5289 return ad;
5291 case REG:
5293 int regno = REGNO (ad);
5295 if (reg_equiv_constant (regno) != 0)
5297 subst_reg_equivs_changed = 1;
5298 return reg_equiv_constant (regno);
5300 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5302 rtx mem = make_memloc (ad, regno);
5303 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5305 subst_reg_equivs_changed = 1;
5306 /* We mark the USE with QImode so that we recognize it
5307 as one that can be safely deleted at the end of
5308 reload. */
5309 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5310 QImode);
5311 return mem;
5315 return ad;
5317 case PLUS:
5318 /* Quickly dispose of a common case. */
5319 if (XEXP (ad, 0) == frame_pointer_rtx
5320 && CONST_INT_P (XEXP (ad, 1)))
5321 return ad;
5322 break;
5324 default:
5325 break;
5328 fmt = GET_RTX_FORMAT (code);
5329 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5330 if (fmt[i] == 'e')
5331 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5332 return ad;
5335 /* Compute the sum of X and Y, making canonicalizations assumed in an
5336 address, namely: sum constant integers, surround the sum of two
5337 constants with a CONST, put the constant as the second operand, and
5338 group the constant on the outermost sum.
5340 This routine assumes both inputs are already in canonical form. */
5343 form_sum (machine_mode mode, rtx x, rtx y)
5345 rtx tem;
5347 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5348 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5350 if (CONST_INT_P (x))
5351 return plus_constant (mode, y, INTVAL (x));
5352 else if (CONST_INT_P (y))
5353 return plus_constant (mode, x, INTVAL (y));
5354 else if (CONSTANT_P (x))
5355 tem = x, x = y, y = tem;
5357 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5358 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5360 /* Note that if the operands of Y are specified in the opposite
5361 order in the recursive calls below, infinite recursion will occur. */
5362 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5363 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5365 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5366 constant will have been placed second. */
5367 if (CONSTANT_P (x) && CONSTANT_P (y))
5369 if (GET_CODE (x) == CONST)
5370 x = XEXP (x, 0);
5371 if (GET_CODE (y) == CONST)
5372 y = XEXP (y, 0);
5374 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5377 return gen_rtx_PLUS (mode, x, y);
5380 /* If ADDR is a sum containing a pseudo register that should be
5381 replaced with a constant (from reg_equiv_constant),
5382 return the result of doing so, and also apply the associative
5383 law so that the result is more likely to be a valid address.
5384 (But it is not guaranteed to be one.)
5386 Note that at most one register is replaced, even if more are
5387 replaceable. Also, we try to put the result into a canonical form
5388 so it is more likely to be a valid address.
5390 In all other cases, return ADDR. */
5392 static rtx
5393 subst_indexed_address (rtx addr)
5395 rtx op0 = 0, op1 = 0, op2 = 0;
5396 rtx tem;
5397 int regno;
5399 if (GET_CODE (addr) == PLUS)
5401 /* Try to find a register to replace. */
5402 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5403 if (REG_P (op0)
5404 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5405 && reg_renumber[regno] < 0
5406 && reg_equiv_constant (regno) != 0)
5407 op0 = reg_equiv_constant (regno);
5408 else if (REG_P (op1)
5409 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5410 && reg_renumber[regno] < 0
5411 && reg_equiv_constant (regno) != 0)
5412 op1 = reg_equiv_constant (regno);
5413 else if (GET_CODE (op0) == PLUS
5414 && (tem = subst_indexed_address (op0)) != op0)
5415 op0 = tem;
5416 else if (GET_CODE (op1) == PLUS
5417 && (tem = subst_indexed_address (op1)) != op1)
5418 op1 = tem;
5419 else
5420 return addr;
5422 /* Pick out up to three things to add. */
5423 if (GET_CODE (op1) == PLUS)
5424 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5425 else if (GET_CODE (op0) == PLUS)
5426 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5428 /* Compute the sum. */
5429 if (op2 != 0)
5430 op1 = form_sum (GET_MODE (addr), op1, op2);
5431 if (op1 != 0)
5432 op0 = form_sum (GET_MODE (addr), op0, op1);
5434 return op0;
5436 return addr;
5439 /* Update the REG_INC notes for an insn. It updates all REG_INC
5440 notes for the instruction which refer to REGNO the to refer
5441 to the reload number.
5443 INSN is the insn for which any REG_INC notes need updating.
5445 REGNO is the register number which has been reloaded.
5447 RELOADNUM is the reload number. */
5449 static void
5450 update_auto_inc_notes (rtx_insn *insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5451 int reloadnum ATTRIBUTE_UNUSED)
5453 if (!AUTO_INC_DEC)
5454 return;
5456 for (rtx link = REG_NOTES (insn); link; link = XEXP (link, 1))
5457 if (REG_NOTE_KIND (link) == REG_INC
5458 && (int) REGNO (XEXP (link, 0)) == regno)
5459 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5462 /* Record the pseudo registers we must reload into hard registers in a
5463 subexpression of a would-be memory address, X referring to a value
5464 in mode MODE. (This function is not called if the address we find
5465 is strictly valid.)
5467 CONTEXT = 1 means we are considering regs as index regs,
5468 = 0 means we are considering them as base regs.
5469 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5470 or an autoinc code.
5471 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5472 is the code of the index part of the address. Otherwise, pass SCRATCH
5473 for this argument.
5474 OPNUM and TYPE specify the purpose of any reloads made.
5476 IND_LEVELS says how many levels of indirect addressing are
5477 supported at this point in the address.
5479 INSN, if nonzero, is the insn in which we do the reload. It is used
5480 to determine if we may generate output reloads.
5482 We return nonzero if X, as a whole, is reloaded or replaced. */
5484 /* Note that we take shortcuts assuming that no multi-reg machine mode
5485 occurs as part of an address.
5486 Also, this is not fully machine-customizable; it works for machines
5487 such as VAXen and 68000's and 32000's, but other possible machines
5488 could have addressing modes that this does not handle right.
5489 If you add push_reload calls here, you need to make sure gen_reload
5490 handles those cases gracefully. */
5492 static int
5493 find_reloads_address_1 (machine_mode mode, addr_space_t as,
5494 rtx x, int context,
5495 enum rtx_code outer_code, enum rtx_code index_code,
5496 rtx *loc, int opnum, enum reload_type type,
5497 int ind_levels, rtx_insn *insn)
5499 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5500 ((CONTEXT) == 0 \
5501 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5502 : REGNO_OK_FOR_INDEX_P (REGNO))
5504 enum reg_class context_reg_class;
5505 RTX_CODE code = GET_CODE (x);
5506 bool reloaded_inner_of_autoinc = false;
5508 if (context == 1)
5509 context_reg_class = INDEX_REG_CLASS;
5510 else
5511 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5513 switch (code)
5515 case PLUS:
5517 rtx orig_op0 = XEXP (x, 0);
5518 rtx orig_op1 = XEXP (x, 1);
5519 RTX_CODE code0 = GET_CODE (orig_op0);
5520 RTX_CODE code1 = GET_CODE (orig_op1);
5521 rtx op0 = orig_op0;
5522 rtx op1 = orig_op1;
5524 if (GET_CODE (op0) == SUBREG)
5526 op0 = SUBREG_REG (op0);
5527 code0 = GET_CODE (op0);
5528 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5529 op0 = gen_rtx_REG (word_mode,
5530 (REGNO (op0) +
5531 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5532 GET_MODE (SUBREG_REG (orig_op0)),
5533 SUBREG_BYTE (orig_op0),
5534 GET_MODE (orig_op0))));
5537 if (GET_CODE (op1) == SUBREG)
5539 op1 = SUBREG_REG (op1);
5540 code1 = GET_CODE (op1);
5541 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5542 /* ??? Why is this given op1's mode and above for
5543 ??? op0 SUBREGs we use word_mode? */
5544 op1 = gen_rtx_REG (GET_MODE (op1),
5545 (REGNO (op1) +
5546 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5547 GET_MODE (SUBREG_REG (orig_op1)),
5548 SUBREG_BYTE (orig_op1),
5549 GET_MODE (orig_op1))));
5551 /* Plus in the index register may be created only as a result of
5552 register rematerialization for expression like &localvar*4. Reload it.
5553 It may be possible to combine the displacement on the outer level,
5554 but it is probably not worthwhile to do so. */
5555 if (context == 1)
5557 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5558 opnum, ADDR_TYPE (type), ind_levels, insn);
5559 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5560 context_reg_class,
5561 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5562 return 1;
5565 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5566 || code0 == ZERO_EXTEND || code1 == MEM)
5568 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5569 &XEXP (x, 0), opnum, type, ind_levels,
5570 insn);
5571 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5572 &XEXP (x, 1), opnum, type, ind_levels,
5573 insn);
5576 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5577 || code1 == ZERO_EXTEND || code0 == MEM)
5579 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5580 &XEXP (x, 0), opnum, type, ind_levels,
5581 insn);
5582 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5583 &XEXP (x, 1), opnum, type, ind_levels,
5584 insn);
5587 else if (code0 == CONST_INT || code0 == CONST
5588 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5589 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5590 &XEXP (x, 1), opnum, type, ind_levels,
5591 insn);
5593 else if (code1 == CONST_INT || code1 == CONST
5594 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5595 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5596 &XEXP (x, 0), opnum, type, ind_levels,
5597 insn);
5599 else if (code0 == REG && code1 == REG)
5601 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5602 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5603 return 0;
5604 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5605 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5606 return 0;
5607 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5608 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5609 &XEXP (x, 1), opnum, type, ind_levels,
5610 insn);
5611 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5612 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5613 &XEXP (x, 0), opnum, type, ind_levels,
5614 insn);
5615 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5616 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5617 &XEXP (x, 0), opnum, type, ind_levels,
5618 insn);
5619 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5620 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5621 &XEXP (x, 1), opnum, type, ind_levels,
5622 insn);
5623 else
5625 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5626 &XEXP (x, 0), opnum, type, ind_levels,
5627 insn);
5628 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5629 &XEXP (x, 1), opnum, type, ind_levels,
5630 insn);
5634 else if (code0 == REG)
5636 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5637 &XEXP (x, 0), opnum, type, ind_levels,
5638 insn);
5639 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5640 &XEXP (x, 1), opnum, type, ind_levels,
5641 insn);
5644 else if (code1 == REG)
5646 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5647 &XEXP (x, 1), opnum, type, ind_levels,
5648 insn);
5649 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5650 &XEXP (x, 0), opnum, type, ind_levels,
5651 insn);
5655 return 0;
5657 case POST_MODIFY:
5658 case PRE_MODIFY:
5660 rtx op0 = XEXP (x, 0);
5661 rtx op1 = XEXP (x, 1);
5662 enum rtx_code index_code;
5663 int regno;
5664 int reloadnum;
5666 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5667 return 0;
5669 /* Currently, we only support {PRE,POST}_MODIFY constructs
5670 where a base register is {inc,dec}remented by the contents
5671 of another register or by a constant value. Thus, these
5672 operands must match. */
5673 gcc_assert (op0 == XEXP (op1, 0));
5675 /* Require index register (or constant). Let's just handle the
5676 register case in the meantime... If the target allows
5677 auto-modify by a constant then we could try replacing a pseudo
5678 register with its equivalent constant where applicable.
5680 We also handle the case where the register was eliminated
5681 resulting in a PLUS subexpression.
5683 If we later decide to reload the whole PRE_MODIFY or
5684 POST_MODIFY, inc_for_reload might clobber the reload register
5685 before reading the index. The index register might therefore
5686 need to live longer than a TYPE reload normally would, so be
5687 conservative and class it as RELOAD_OTHER. */
5688 if ((REG_P (XEXP (op1, 1))
5689 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5690 || GET_CODE (XEXP (op1, 1)) == PLUS)
5691 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5692 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5693 ind_levels, insn);
5695 gcc_assert (REG_P (XEXP (op1, 0)));
5697 regno = REGNO (XEXP (op1, 0));
5698 index_code = GET_CODE (XEXP (op1, 1));
5700 /* A register that is incremented cannot be constant! */
5701 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5702 || reg_equiv_constant (regno) == 0);
5704 /* Handle a register that is equivalent to a memory location
5705 which cannot be addressed directly. */
5706 if (reg_equiv_memory_loc (regno) != 0
5707 && (reg_equiv_address (regno) != 0
5708 || num_not_at_initial_offset))
5710 rtx tem = make_memloc (XEXP (x, 0), regno);
5712 if (reg_equiv_address (regno)
5713 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5715 rtx orig = tem;
5717 /* First reload the memory location's address.
5718 We can't use ADDR_TYPE (type) here, because we need to
5719 write back the value after reading it, hence we actually
5720 need two registers. */
5721 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5722 &XEXP (tem, 0), opnum,
5723 RELOAD_OTHER,
5724 ind_levels, insn);
5726 if (!rtx_equal_p (tem, orig))
5727 push_reg_equiv_alt_mem (regno, tem);
5729 /* Then reload the memory location into a base
5730 register. */
5731 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5732 &XEXP (op1, 0),
5733 base_reg_class (mode, as,
5734 code, index_code),
5735 GET_MODE (x), GET_MODE (x), 0,
5736 0, opnum, RELOAD_OTHER);
5738 update_auto_inc_notes (this_insn, regno, reloadnum);
5739 return 0;
5743 if (reg_renumber[regno] >= 0)
5744 regno = reg_renumber[regno];
5746 /* We require a base register here... */
5747 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5749 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5750 &XEXP (op1, 0), &XEXP (x, 0),
5751 base_reg_class (mode, as,
5752 code, index_code),
5753 GET_MODE (x), GET_MODE (x), 0, 0,
5754 opnum, RELOAD_OTHER);
5756 update_auto_inc_notes (this_insn, regno, reloadnum);
5757 return 0;
5760 return 0;
5762 case POST_INC:
5763 case POST_DEC:
5764 case PRE_INC:
5765 case PRE_DEC:
5766 if (REG_P (XEXP (x, 0)))
5768 int regno = REGNO (XEXP (x, 0));
5769 int value = 0;
5770 rtx x_orig = x;
5772 /* A register that is incremented cannot be constant! */
5773 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5774 || reg_equiv_constant (regno) == 0);
5776 /* Handle a register that is equivalent to a memory location
5777 which cannot be addressed directly. */
5778 if (reg_equiv_memory_loc (regno) != 0
5779 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5781 rtx tem = make_memloc (XEXP (x, 0), regno);
5782 if (reg_equiv_address (regno)
5783 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5785 rtx orig = tem;
5787 /* First reload the memory location's address.
5788 We can't use ADDR_TYPE (type) here, because we need to
5789 write back the value after reading it, hence we actually
5790 need two registers. */
5791 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5792 &XEXP (tem, 0), opnum, type,
5793 ind_levels, insn);
5794 reloaded_inner_of_autoinc = true;
5795 if (!rtx_equal_p (tem, orig))
5796 push_reg_equiv_alt_mem (regno, tem);
5797 /* Put this inside a new increment-expression. */
5798 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5799 /* Proceed to reload that, as if it contained a register. */
5803 /* If we have a hard register that is ok in this incdec context,
5804 don't make a reload. If the register isn't nice enough for
5805 autoincdec, we can reload it. But, if an autoincrement of a
5806 register that we here verified as playing nice, still outside
5807 isn't "valid", it must be that no autoincrement is "valid".
5808 If that is true and something made an autoincrement anyway,
5809 this must be a special context where one is allowed.
5810 (For example, a "push" instruction.)
5811 We can't improve this address, so leave it alone. */
5813 /* Otherwise, reload the autoincrement into a suitable hard reg
5814 and record how much to increment by. */
5816 if (reg_renumber[regno] >= 0)
5817 regno = reg_renumber[regno];
5818 if (regno >= FIRST_PSEUDO_REGISTER
5819 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5820 index_code))
5822 int reloadnum;
5824 /* If we can output the register afterwards, do so, this
5825 saves the extra update.
5826 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5827 CALL_INSN.
5828 But don't do this if we cannot directly address the
5829 memory location, since this will make it harder to
5830 reuse address reloads, and increases register pressure.
5831 Also don't do this if we can probably update x directly. */
5832 rtx equiv = (MEM_P (XEXP (x, 0))
5833 ? XEXP (x, 0)
5834 : reg_equiv_mem (regno));
5835 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5836 if (insn && NONJUMP_INSN_P (insn)
5837 && (regno < FIRST_PSEUDO_REGISTER
5838 || (equiv
5839 && memory_operand (equiv, GET_MODE (equiv))
5840 && ! (icode != CODE_FOR_nothing
5841 && insn_operand_matches (icode, 0, equiv)
5842 && insn_operand_matches (icode, 1, equiv))))
5843 /* Using RELOAD_OTHER means we emit this and the reload we
5844 made earlier in the wrong order. */
5845 && !reloaded_inner_of_autoinc)
5847 /* We use the original pseudo for loc, so that
5848 emit_reload_insns() knows which pseudo this
5849 reload refers to and updates the pseudo rtx, not
5850 its equivalent memory location, as well as the
5851 corresponding entry in reg_last_reload_reg. */
5852 loc = &XEXP (x_orig, 0);
5853 x = XEXP (x, 0);
5854 reloadnum
5855 = push_reload (x, x, loc, loc,
5856 context_reg_class,
5857 GET_MODE (x), GET_MODE (x), 0, 0,
5858 opnum, RELOAD_OTHER);
5860 else
5862 reloadnum
5863 = push_reload (x, x, loc, (rtx*) 0,
5864 context_reg_class,
5865 GET_MODE (x), GET_MODE (x), 0, 0,
5866 opnum, type);
5867 rld[reloadnum].inc
5868 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5870 value = 1;
5873 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5874 reloadnum);
5876 return value;
5878 return 0;
5880 case TRUNCATE:
5881 case SIGN_EXTEND:
5882 case ZERO_EXTEND:
5883 /* Look for parts to reload in the inner expression and reload them
5884 too, in addition to this operation. Reloading all inner parts in
5885 addition to this one shouldn't be necessary, but at this point,
5886 we don't know if we can possibly omit any part that *can* be
5887 reloaded. Targets that are better off reloading just either part
5888 (or perhaps even a different part of an outer expression), should
5889 define LEGITIMIZE_RELOAD_ADDRESS. */
5890 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5891 context, code, SCRATCH, &XEXP (x, 0), opnum,
5892 type, ind_levels, insn);
5893 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5894 context_reg_class,
5895 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5896 return 1;
5898 case MEM:
5899 /* This is probably the result of a substitution, by eliminate_regs, of
5900 an equivalent address for a pseudo that was not allocated to a hard
5901 register. Verify that the specified address is valid and reload it
5902 into a register.
5904 Since we know we are going to reload this item, don't decrement for
5905 the indirection level.
5907 Note that this is actually conservative: it would be slightly more
5908 efficient to use the value of SPILL_INDIRECT_LEVELS from
5909 reload1.c here. */
5911 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5912 opnum, ADDR_TYPE (type), ind_levels, insn);
5913 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5914 context_reg_class,
5915 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5916 return 1;
5918 case REG:
5920 int regno = REGNO (x);
5922 if (reg_equiv_constant (regno) != 0)
5924 find_reloads_address_part (reg_equiv_constant (regno), loc,
5925 context_reg_class,
5926 GET_MODE (x), opnum, type, ind_levels);
5927 return 1;
5930 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5931 that feeds this insn. */
5932 if (reg_equiv_mem (regno) != 0)
5934 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5935 context_reg_class,
5936 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5937 return 1;
5939 #endif
5941 if (reg_equiv_memory_loc (regno)
5942 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5944 rtx tem = make_memloc (x, regno);
5945 if (reg_equiv_address (regno) != 0
5946 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5948 x = tem;
5949 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5950 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5951 ind_levels, insn);
5952 if (!rtx_equal_p (x, tem))
5953 push_reg_equiv_alt_mem (regno, x);
5957 if (reg_renumber[regno] >= 0)
5958 regno = reg_renumber[regno];
5960 if (regno >= FIRST_PSEUDO_REGISTER
5961 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5962 index_code))
5964 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5965 context_reg_class,
5966 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5967 return 1;
5970 /* If a register appearing in an address is the subject of a CLOBBER
5971 in this insn, reload it into some other register to be safe.
5972 The CLOBBER is supposed to make the register unavailable
5973 from before this insn to after it. */
5974 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5976 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5977 context_reg_class,
5978 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5979 return 1;
5982 return 0;
5984 case SUBREG:
5985 if (REG_P (SUBREG_REG (x)))
5987 /* If this is a SUBREG of a hard register and the resulting register
5988 is of the wrong class, reload the whole SUBREG. This avoids
5989 needless copies if SUBREG_REG is multi-word. */
5990 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5992 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5994 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5995 index_code))
5997 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5998 context_reg_class,
5999 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6000 return 1;
6003 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6004 is larger than the class size, then reload the whole SUBREG. */
6005 else
6007 enum reg_class rclass = context_reg_class;
6008 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6009 > reg_class_size[(int) rclass])
6011 /* If the inner register will be replaced by a memory
6012 reference, we can do this only if we can replace the
6013 whole subreg by a (narrower) memory reference. If
6014 this is not possible, fall through and reload just
6015 the inner register (including address reloads). */
6016 if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6018 rtx tem = find_reloads_subreg_address (x, opnum,
6019 ADDR_TYPE (type),
6020 ind_levels, insn,
6021 NULL);
6022 if (tem)
6024 push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6025 GET_MODE (tem), VOIDmode, 0, 0,
6026 opnum, type);
6027 return 1;
6030 else
6032 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6033 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6034 return 1;
6039 break;
6041 default:
6042 break;
6046 const char *fmt = GET_RTX_FORMAT (code);
6047 int i;
6049 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6051 if (fmt[i] == 'e')
6052 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6053 we get here. */
6054 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6055 code, SCRATCH, &XEXP (x, i),
6056 opnum, type, ind_levels, insn);
6060 #undef REG_OK_FOR_CONTEXT
6061 return 0;
6064 /* X, which is found at *LOC, is a part of an address that needs to be
6065 reloaded into a register of class RCLASS. If X is a constant, or if
6066 X is a PLUS that contains a constant, check that the constant is a
6067 legitimate operand and that we are supposed to be able to load
6068 it into the register.
6070 If not, force the constant into memory and reload the MEM instead.
6072 MODE is the mode to use, in case X is an integer constant.
6074 OPNUM and TYPE describe the purpose of any reloads made.
6076 IND_LEVELS says how many levels of indirect addressing this machine
6077 supports. */
6079 static void
6080 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6081 machine_mode mode, int opnum,
6082 enum reload_type type, int ind_levels)
6084 if (CONSTANT_P (x)
6085 && (!targetm.legitimate_constant_p (mode, x)
6086 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6088 x = force_const_mem (mode, x);
6089 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6090 opnum, type, ind_levels, 0);
6093 else if (GET_CODE (x) == PLUS
6094 && CONSTANT_P (XEXP (x, 1))
6095 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6096 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6097 == NO_REGS))
6099 rtx tem;
6101 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6102 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6103 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6104 opnum, type, ind_levels, 0);
6107 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6108 mode, VOIDmode, 0, 0, opnum, type);
6111 /* X, a subreg of a pseudo, is a part of an address that needs to be
6112 reloaded, and the pseusdo is equivalent to a memory location.
6114 Attempt to replace the whole subreg by a (possibly narrower or wider)
6115 memory reference. If this is possible, return this new memory
6116 reference, and push all required address reloads. Otherwise,
6117 return NULL.
6119 OPNUM and TYPE identify the purpose of the reload.
6121 IND_LEVELS says how many levels of indirect addressing are
6122 supported at this point in the address.
6124 INSN, if nonzero, is the insn in which we do the reload. It is used
6125 to determine where to put USEs for pseudos that we have to replace with
6126 stack slots. */
6128 static rtx
6129 find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6130 int ind_levels, rtx_insn *insn,
6131 int *address_reloaded)
6133 machine_mode outer_mode = GET_MODE (x);
6134 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6135 int regno = REGNO (SUBREG_REG (x));
6136 int reloaded = 0;
6137 rtx tem, orig;
6138 poly_int64 offset;
6140 gcc_assert (reg_equiv_memory_loc (regno) != 0);
6142 /* We cannot replace the subreg with a modified memory reference if:
6144 - we have a paradoxical subreg that implicitly acts as a zero or
6145 sign extension operation due to LOAD_EXTEND_OP;
6147 - we have a subreg that is implicitly supposed to act on the full
6148 register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6150 - the address of the equivalent memory location is mode-dependent; or
6152 - we have a paradoxical subreg and the resulting memory is not
6153 sufficiently aligned to allow access in the wider mode.
6155 In addition, we choose not to perform the replacement for *any*
6156 paradoxical subreg, even if it were possible in principle. This
6157 is to avoid generating wider memory references than necessary.
6159 This corresponds to how previous versions of reload used to handle
6160 paradoxical subregs where no address reload was required. */
6162 if (paradoxical_subreg_p (x))
6163 return NULL;
6165 if (WORD_REGISTER_OPERATIONS
6166 && partial_subreg_p (outer_mode, inner_mode)
6167 && known_equal_after_align_down (GET_MODE_SIZE (outer_mode) - 1,
6168 GET_MODE_SIZE (inner_mode) - 1,
6169 UNITS_PER_WORD))
6170 return NULL;
6172 /* Since we don't attempt to handle paradoxical subregs, we can just
6173 call into simplify_subreg, which will handle all remaining checks
6174 for us. */
6175 orig = make_memloc (SUBREG_REG (x), regno);
6176 offset = SUBREG_BYTE (x);
6177 tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6178 if (!tem || !MEM_P (tem))
6179 return NULL;
6181 /* Now push all required address reloads, if any. */
6182 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6183 XEXP (tem, 0), &XEXP (tem, 0),
6184 opnum, type, ind_levels, insn);
6185 /* ??? Do we need to handle nonzero offsets somehow? */
6186 if (known_eq (offset, 0) && !rtx_equal_p (tem, orig))
6187 push_reg_equiv_alt_mem (regno, tem);
6189 /* For some processors an address may be valid in the original mode but
6190 not in a smaller mode. For example, ARM accepts a scaled index register
6191 in SImode but not in HImode. Note that this is only a problem if the
6192 address in reg_equiv_mem is already invalid in the new mode; other
6193 cases would be fixed by find_reloads_address as usual.
6195 ??? We attempt to handle such cases here by doing an additional reload
6196 of the full address after the usual processing by find_reloads_address.
6197 Note that this may not work in the general case, but it seems to cover
6198 the cases where this situation currently occurs. A more general fix
6199 might be to reload the *value* instead of the address, but this would
6200 not be expected by the callers of this routine as-is.
6202 If find_reloads_address already completed replaced the address, there
6203 is nothing further to do. */
6204 if (reloaded == 0
6205 && reg_equiv_mem (regno) != 0
6206 && !strict_memory_address_addr_space_p
6207 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6208 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6210 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6211 base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6212 MEM, SCRATCH),
6213 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6214 reloaded = 1;
6217 /* If this is not a toplevel operand, find_reloads doesn't see this
6218 substitution. We have to emit a USE of the pseudo so that
6219 delete_output_reload can see it. */
6220 if (replace_reloads && recog_data.operand[opnum] != x)
6221 /* We mark the USE with QImode so that we recognize it as one that
6222 can be safely deleted at the end of reload. */
6223 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6224 QImode);
6226 if (address_reloaded)
6227 *address_reloaded = reloaded;
6229 return tem;
6232 /* Substitute into the current INSN the registers into which we have reloaded
6233 the things that need reloading. The array `replacements'
6234 contains the locations of all pointers that must be changed
6235 and says what to replace them with.
6237 Return the rtx that X translates into; usually X, but modified. */
6239 void
6240 subst_reloads (rtx_insn *insn)
6242 int i;
6244 for (i = 0; i < n_replacements; i++)
6246 struct replacement *r = &replacements[i];
6247 rtx reloadreg = rld[r->what].reg_rtx;
6248 if (reloadreg)
6250 #ifdef DEBUG_RELOAD
6251 /* This checking takes a very long time on some platforms
6252 causing the gcc.c-torture/compile/limits-fnargs.c test
6253 to time out during testing. See PR 31850.
6255 Internal consistency test. Check that we don't modify
6256 anything in the equivalence arrays. Whenever something from
6257 those arrays needs to be reloaded, it must be unshared before
6258 being substituted into; the equivalence must not be modified.
6259 Otherwise, if the equivalence is used after that, it will
6260 have been modified, and the thing substituted (probably a
6261 register) is likely overwritten and not a usable equivalence. */
6262 int check_regno;
6264 for (check_regno = 0; check_regno < max_regno; check_regno++)
6266 #define CHECK_MODF(ARRAY) \
6267 gcc_assert (!(*reg_equivs)[check_regno].ARRAY \
6268 || !loc_mentioned_in_p (r->where, \
6269 (*reg_equivs)[check_regno].ARRAY))
6271 CHECK_MODF (constant);
6272 CHECK_MODF (memory_loc);
6273 CHECK_MODF (address);
6274 CHECK_MODF (mem);
6275 #undef CHECK_MODF
6277 #endif /* DEBUG_RELOAD */
6279 /* If we're replacing a LABEL_REF with a register, there must
6280 already be an indication (to e.g. flow) which label this
6281 register refers to. */
6282 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6283 || !JUMP_P (insn)
6284 || find_reg_note (insn,
6285 REG_LABEL_OPERAND,
6286 XEXP (*r->where, 0))
6287 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6289 /* Encapsulate RELOADREG so its machine mode matches what
6290 used to be there. Note that gen_lowpart_common will
6291 do the wrong thing if RELOADREG is multi-word. RELOADREG
6292 will always be a REG here. */
6293 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6294 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6296 *r->where = reloadreg;
6298 /* If reload got no reg and isn't optional, something's wrong. */
6299 else
6300 gcc_assert (rld[r->what].optional);
6304 /* Make a copy of any replacements being done into X and move those
6305 copies to locations in Y, a copy of X. */
6307 void
6308 copy_replacements (rtx x, rtx y)
6310 copy_replacements_1 (&x, &y, n_replacements);
6313 static void
6314 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6316 int i, j;
6317 rtx x, y;
6318 struct replacement *r;
6319 enum rtx_code code;
6320 const char *fmt;
6322 for (j = 0; j < orig_replacements; j++)
6323 if (replacements[j].where == px)
6325 r = &replacements[n_replacements++];
6326 r->where = py;
6327 r->what = replacements[j].what;
6328 r->mode = replacements[j].mode;
6331 x = *px;
6332 y = *py;
6333 code = GET_CODE (x);
6334 fmt = GET_RTX_FORMAT (code);
6336 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6338 if (fmt[i] == 'e')
6339 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6340 else if (fmt[i] == 'E')
6341 for (j = XVECLEN (x, i); --j >= 0; )
6342 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6343 orig_replacements);
6347 /* Change any replacements being done to *X to be done to *Y. */
6349 void
6350 move_replacements (rtx *x, rtx *y)
6352 int i;
6354 for (i = 0; i < n_replacements; i++)
6355 if (replacements[i].where == x)
6356 replacements[i].where = y;
6359 /* If LOC was scheduled to be replaced by something, return the replacement.
6360 Otherwise, return *LOC. */
6363 find_replacement (rtx *loc)
6365 struct replacement *r;
6367 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6369 rtx reloadreg = rld[r->what].reg_rtx;
6371 if (reloadreg && r->where == loc)
6373 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6374 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6376 return reloadreg;
6378 else if (reloadreg && GET_CODE (*loc) == SUBREG
6379 && r->where == &SUBREG_REG (*loc))
6381 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6382 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6384 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6385 GET_MODE (SUBREG_REG (*loc)),
6386 SUBREG_BYTE (*loc));
6390 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6391 what's inside and make a new rtl if so. */
6392 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6393 || GET_CODE (*loc) == MULT)
6395 rtx x = find_replacement (&XEXP (*loc, 0));
6396 rtx y = find_replacement (&XEXP (*loc, 1));
6398 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6399 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6402 return *loc;
6405 /* Return nonzero if register in range [REGNO, ENDREGNO)
6406 appears either explicitly or implicitly in X
6407 other than being stored into (except for earlyclobber operands).
6409 References contained within the substructure at LOC do not count.
6410 LOC may be zero, meaning don't ignore anything.
6412 This is similar to refers_to_regno_p in rtlanal.c except that we
6413 look at equivalences for pseudos that didn't get hard registers. */
6415 static int
6416 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6417 rtx x, rtx *loc)
6419 int i;
6420 unsigned int r;
6421 RTX_CODE code;
6422 const char *fmt;
6424 if (x == 0)
6425 return 0;
6427 repeat:
6428 code = GET_CODE (x);
6430 switch (code)
6432 case REG:
6433 r = REGNO (x);
6435 /* If this is a pseudo, a hard register must not have been allocated.
6436 X must therefore either be a constant or be in memory. */
6437 if (r >= FIRST_PSEUDO_REGISTER)
6439 if (reg_equiv_memory_loc (r))
6440 return refers_to_regno_for_reload_p (regno, endregno,
6441 reg_equiv_memory_loc (r),
6442 (rtx*) 0);
6444 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6445 return 0;
6448 return endregno > r && regno < END_REGNO (x);
6450 case SUBREG:
6451 /* If this is a SUBREG of a hard reg, we can see exactly which
6452 registers are being modified. Otherwise, handle normally. */
6453 if (REG_P (SUBREG_REG (x))
6454 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6456 unsigned int inner_regno = subreg_regno (x);
6457 unsigned int inner_endregno
6458 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6459 ? subreg_nregs (x) : 1);
6461 return endregno > inner_regno && regno < inner_endregno;
6463 break;
6465 case CLOBBER:
6466 case SET:
6467 if (&SET_DEST (x) != loc
6468 /* Note setting a SUBREG counts as referring to the REG it is in for
6469 a pseudo but not for hard registers since we can
6470 treat each word individually. */
6471 && ((GET_CODE (SET_DEST (x)) == SUBREG
6472 && loc != &SUBREG_REG (SET_DEST (x))
6473 && REG_P (SUBREG_REG (SET_DEST (x)))
6474 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6475 && refers_to_regno_for_reload_p (regno, endregno,
6476 SUBREG_REG (SET_DEST (x)),
6477 loc))
6478 /* If the output is an earlyclobber operand, this is
6479 a conflict. */
6480 || ((!REG_P (SET_DEST (x))
6481 || earlyclobber_operand_p (SET_DEST (x)))
6482 && refers_to_regno_for_reload_p (regno, endregno,
6483 SET_DEST (x), loc))))
6484 return 1;
6486 if (code == CLOBBER || loc == &SET_SRC (x))
6487 return 0;
6488 x = SET_SRC (x);
6489 goto repeat;
6491 default:
6492 break;
6495 /* X does not match, so try its subexpressions. */
6497 fmt = GET_RTX_FORMAT (code);
6498 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6500 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6502 if (i == 0)
6504 x = XEXP (x, 0);
6505 goto repeat;
6507 else
6508 if (refers_to_regno_for_reload_p (regno, endregno,
6509 XEXP (x, i), loc))
6510 return 1;
6512 else if (fmt[i] == 'E')
6514 int j;
6515 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6516 if (loc != &XVECEXP (x, i, j)
6517 && refers_to_regno_for_reload_p (regno, endregno,
6518 XVECEXP (x, i, j), loc))
6519 return 1;
6522 return 0;
6525 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6526 we check if any register number in X conflicts with the relevant register
6527 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6528 contains a MEM (we don't bother checking for memory addresses that can't
6529 conflict because we expect this to be a rare case.
6531 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6532 that we look at equivalences for pseudos that didn't get hard registers. */
6535 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6537 int regno, endregno;
6539 /* Overly conservative. */
6540 if (GET_CODE (x) == STRICT_LOW_PART
6541 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6542 x = XEXP (x, 0);
6544 /* If either argument is a constant, then modifying X cannot affect IN. */
6545 if (CONSTANT_P (x) || CONSTANT_P (in))
6546 return 0;
6547 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6548 return refers_to_mem_for_reload_p (in);
6549 else if (GET_CODE (x) == SUBREG)
6551 regno = REGNO (SUBREG_REG (x));
6552 if (regno < FIRST_PSEUDO_REGISTER)
6553 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6554 GET_MODE (SUBREG_REG (x)),
6555 SUBREG_BYTE (x),
6556 GET_MODE (x));
6557 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6558 ? subreg_nregs (x) : 1);
6560 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6562 else if (REG_P (x))
6564 regno = REGNO (x);
6566 /* If this is a pseudo, it must not have been assigned a hard register.
6567 Therefore, it must either be in memory or be a constant. */
6569 if (regno >= FIRST_PSEUDO_REGISTER)
6571 if (reg_equiv_memory_loc (regno))
6572 return refers_to_mem_for_reload_p (in);
6573 gcc_assert (reg_equiv_constant (regno));
6574 return 0;
6577 endregno = END_REGNO (x);
6579 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6581 else if (MEM_P (x))
6582 return refers_to_mem_for_reload_p (in);
6583 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC)
6584 return reg_mentioned_p (x, in);
6585 else
6587 gcc_assert (GET_CODE (x) == PLUS);
6589 /* We actually want to know if X is mentioned somewhere inside IN.
6590 We must not say that (plus (sp) (const_int 124)) is in
6591 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6592 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6593 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6594 while (MEM_P (in))
6595 in = XEXP (in, 0);
6596 if (REG_P (in))
6597 return 0;
6598 else if (GET_CODE (in) == PLUS)
6599 return (rtx_equal_p (x, in)
6600 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6601 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6602 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6603 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6606 gcc_unreachable ();
6609 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6610 registers. */
6612 static int
6613 refers_to_mem_for_reload_p (rtx x)
6615 const char *fmt;
6616 int i;
6618 if (MEM_P (x))
6619 return 1;
6621 if (REG_P (x))
6622 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6623 && reg_equiv_memory_loc (REGNO (x)));
6625 fmt = GET_RTX_FORMAT (GET_CODE (x));
6626 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6627 if (fmt[i] == 'e'
6628 && (MEM_P (XEXP (x, i))
6629 || refers_to_mem_for_reload_p (XEXP (x, i))))
6630 return 1;
6632 return 0;
6635 /* Check the insns before INSN to see if there is a suitable register
6636 containing the same value as GOAL.
6637 If OTHER is -1, look for a register in class RCLASS.
6638 Otherwise, just see if register number OTHER shares GOAL's value.
6640 Return an rtx for the register found, or zero if none is found.
6642 If RELOAD_REG_P is (short *)1,
6643 we reject any hard reg that appears in reload_reg_rtx
6644 because such a hard reg is also needed coming into this insn.
6646 If RELOAD_REG_P is any other nonzero value,
6647 it is a vector indexed by hard reg number
6648 and we reject any hard reg whose element in the vector is nonnegative
6649 as well as any that appears in reload_reg_rtx.
6651 If GOAL is zero, then GOALREG is a register number; we look
6652 for an equivalent for that register.
6654 MODE is the machine mode of the value we want an equivalence for.
6655 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6657 This function is used by jump.c as well as in the reload pass.
6659 If GOAL is the sum of the stack pointer and a constant, we treat it
6660 as if it were a constant except that sp is required to be unchanging. */
6663 find_equiv_reg (rtx goal, rtx_insn *insn, enum reg_class rclass, int other,
6664 short *reload_reg_p, int goalreg, machine_mode mode)
6666 rtx_insn *p = insn;
6667 rtx goaltry, valtry, value;
6668 rtx_insn *where;
6669 rtx pat;
6670 int regno = -1;
6671 int valueno;
6672 int goal_mem = 0;
6673 int goal_const = 0;
6674 int goal_mem_addr_varies = 0;
6675 int need_stable_sp = 0;
6676 int nregs;
6677 int valuenregs;
6678 int num = 0;
6680 if (goal == 0)
6681 regno = goalreg;
6682 else if (REG_P (goal))
6683 regno = REGNO (goal);
6684 else if (MEM_P (goal))
6686 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6687 if (MEM_VOLATILE_P (goal))
6688 return 0;
6689 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6690 return 0;
6691 /* An address with side effects must be reexecuted. */
6692 switch (code)
6694 case POST_INC:
6695 case PRE_INC:
6696 case POST_DEC:
6697 case PRE_DEC:
6698 case POST_MODIFY:
6699 case PRE_MODIFY:
6700 return 0;
6701 default:
6702 break;
6704 goal_mem = 1;
6706 else if (CONSTANT_P (goal))
6707 goal_const = 1;
6708 else if (GET_CODE (goal) == PLUS
6709 && XEXP (goal, 0) == stack_pointer_rtx
6710 && CONSTANT_P (XEXP (goal, 1)))
6711 goal_const = need_stable_sp = 1;
6712 else if (GET_CODE (goal) == PLUS
6713 && XEXP (goal, 0) == frame_pointer_rtx
6714 && CONSTANT_P (XEXP (goal, 1)))
6715 goal_const = 1;
6716 else
6717 return 0;
6719 num = 0;
6720 /* Scan insns back from INSN, looking for one that copies
6721 a value into or out of GOAL.
6722 Stop and give up if we reach a label. */
6724 while (1)
6726 p = PREV_INSN (p);
6727 if (p && DEBUG_INSN_P (p))
6728 continue;
6729 num++;
6730 if (p == 0 || LABEL_P (p)
6731 || num > param_max_reload_search_insns)
6732 return 0;
6734 /* Don't reuse register contents from before a setjmp-type
6735 function call; on the second return (from the longjmp) it
6736 might have been clobbered by a later reuse. It doesn't
6737 seem worthwhile to actually go and see if it is actually
6738 reused even if that information would be readily available;
6739 just don't reuse it across the setjmp call. */
6740 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6741 return 0;
6743 if (NONJUMP_INSN_P (p)
6744 /* If we don't want spill regs ... */
6745 && (! (reload_reg_p != 0
6746 && reload_reg_p != (short *) HOST_WIDE_INT_1)
6747 /* ... then ignore insns introduced by reload; they aren't
6748 useful and can cause results in reload_as_needed to be
6749 different from what they were when calculating the need for
6750 spills. If we notice an input-reload insn here, we will
6751 reject it below, but it might hide a usable equivalent.
6752 That makes bad code. It may even fail: perhaps no reg was
6753 spilled for this insn because it was assumed we would find
6754 that equivalent. */
6755 || INSN_UID (p) < reload_first_uid))
6757 rtx tem;
6758 pat = single_set (p);
6760 /* First check for something that sets some reg equal to GOAL. */
6761 if (pat != 0
6762 && ((regno >= 0
6763 && true_regnum (SET_SRC (pat)) == regno
6764 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6766 (regno >= 0
6767 && true_regnum (SET_DEST (pat)) == regno
6768 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6770 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6771 /* When looking for stack pointer + const,
6772 make sure we don't use a stack adjust. */
6773 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6774 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6775 || (goal_mem
6776 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6777 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6778 || (goal_mem
6779 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6780 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6781 /* If we are looking for a constant,
6782 and something equivalent to that constant was copied
6783 into a reg, we can use that reg. */
6784 || (goal_const && REG_NOTES (p) != 0
6785 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6786 && ((rtx_equal_p (XEXP (tem, 0), goal)
6787 && (valueno
6788 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6789 || (REG_P (SET_DEST (pat))
6790 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6791 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6792 && CONST_INT_P (goal)
6793 && (goaltry = operand_subword (XEXP (tem, 0), 0,
6794 0, VOIDmode)) != 0
6795 && rtx_equal_p (goal, goaltry)
6796 && (valtry
6797 = operand_subword (SET_DEST (pat), 0, 0,
6798 VOIDmode))
6799 && (valueno = true_regnum (valtry)) >= 0)))
6800 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6801 NULL_RTX))
6802 && REG_P (SET_DEST (pat))
6803 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6804 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6805 && CONST_INT_P (goal)
6806 && (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6807 VOIDmode)) != 0
6808 && rtx_equal_p (goal, goaltry)
6809 && (valtry
6810 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6811 && (valueno = true_regnum (valtry)) >= 0)))
6813 if (other >= 0)
6815 if (valueno != other)
6816 continue;
6818 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6819 continue;
6820 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6821 mode, valueno))
6822 continue;
6823 value = valtry;
6824 where = p;
6825 break;
6830 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6831 (or copying VALUE into GOAL, if GOAL is also a register).
6832 Now verify that VALUE is really valid. */
6834 /* VALUENO is the register number of VALUE; a hard register. */
6836 /* Don't try to re-use something that is killed in this insn. We want
6837 to be able to trust REG_UNUSED notes. */
6838 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6839 return 0;
6841 /* If we propose to get the value from the stack pointer or if GOAL is
6842 a MEM based on the stack pointer, we need a stable SP. */
6843 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6844 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6845 goal)))
6846 need_stable_sp = 1;
6848 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6849 if (GET_MODE (value) != mode)
6850 return 0;
6852 /* Reject VALUE if it was loaded from GOAL
6853 and is also a register that appears in the address of GOAL. */
6855 if (goal_mem && value == SET_DEST (single_set (where))
6856 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6857 goal, (rtx*) 0))
6858 return 0;
6860 /* Reject registers that overlap GOAL. */
6862 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6863 nregs = hard_regno_nregs (regno, mode);
6864 else
6865 nregs = 1;
6866 valuenregs = hard_regno_nregs (valueno, mode);
6868 if (!goal_mem && !goal_const
6869 && regno + nregs > valueno && regno < valueno + valuenregs)
6870 return 0;
6872 /* Reject VALUE if it is one of the regs reserved for reloads.
6873 Reload1 knows how to reuse them anyway, and it would get
6874 confused if we allocated one without its knowledge.
6875 (Now that insns introduced by reload are ignored above,
6876 this case shouldn't happen, but I'm not positive.) */
6878 if (reload_reg_p != 0 && reload_reg_p != (short *) HOST_WIDE_INT_1)
6880 int i;
6881 for (i = 0; i < valuenregs; ++i)
6882 if (reload_reg_p[valueno + i] >= 0)
6883 return 0;
6886 /* Reject VALUE if it is a register being used for an input reload
6887 even if it is not one of those reserved. */
6889 if (reload_reg_p != 0)
6891 int i;
6892 for (i = 0; i < n_reloads; i++)
6893 if (rld[i].reg_rtx != 0
6894 && rld[i].in
6895 && (int) REGNO (rld[i].reg_rtx) < valueno + valuenregs
6896 && (int) END_REGNO (rld[i].reg_rtx) > valueno)
6897 return 0;
6900 if (goal_mem)
6901 /* We must treat frame pointer as varying here,
6902 since it can vary--in a nonlocal goto as generated by expand_goto. */
6903 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6905 /* Now verify that the values of GOAL and VALUE remain unaltered
6906 until INSN is reached. */
6908 p = insn;
6909 while (1)
6911 p = PREV_INSN (p);
6912 if (p == where)
6913 return value;
6915 /* Don't trust the conversion past a function call
6916 if either of the two is in a call-clobbered register, or memory. */
6917 if (CALL_P (p))
6919 if (goal_mem || need_stable_sp)
6920 return 0;
6922 function_abi callee_abi = insn_callee_abi (p);
6923 if (regno >= 0
6924 && regno < FIRST_PSEUDO_REGISTER
6925 && callee_abi.clobbers_reg_p (mode, regno))
6926 return 0;
6928 if (valueno >= 0
6929 && valueno < FIRST_PSEUDO_REGISTER
6930 && callee_abi.clobbers_reg_p (mode, valueno))
6931 return 0;
6934 if (INSN_P (p))
6936 pat = PATTERN (p);
6938 /* Watch out for unspec_volatile, and volatile asms. */
6939 if (volatile_insn_p (pat))
6940 return 0;
6942 /* If this insn P stores in either GOAL or VALUE, return 0.
6943 If GOAL is a memory ref and this insn writes memory, return 0.
6944 If GOAL is a memory ref and its address is not constant,
6945 and this insn P changes a register used in GOAL, return 0. */
6947 if (GET_CODE (pat) == COND_EXEC)
6948 pat = COND_EXEC_CODE (pat);
6949 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6951 rtx dest = SET_DEST (pat);
6952 while (GET_CODE (dest) == SUBREG
6953 || GET_CODE (dest) == ZERO_EXTRACT
6954 || GET_CODE (dest) == STRICT_LOW_PART)
6955 dest = XEXP (dest, 0);
6956 if (REG_P (dest))
6958 int xregno = REGNO (dest);
6959 int end_xregno = END_REGNO (dest);
6960 if (xregno < regno + nregs && end_xregno > regno)
6961 return 0;
6962 if (xregno < valueno + valuenregs
6963 && end_xregno > valueno)
6964 return 0;
6965 if (goal_mem_addr_varies
6966 && reg_overlap_mentioned_for_reload_p (dest, goal))
6967 return 0;
6968 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6969 return 0;
6971 else if (goal_mem && MEM_P (dest)
6972 && ! push_operand (dest, GET_MODE (dest)))
6973 return 0;
6974 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6975 && reg_equiv_memory_loc (regno) != 0)
6976 return 0;
6977 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6978 return 0;
6980 else if (GET_CODE (pat) == PARALLEL)
6982 int i;
6983 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6985 rtx v1 = XVECEXP (pat, 0, i);
6986 if (GET_CODE (v1) == COND_EXEC)
6987 v1 = COND_EXEC_CODE (v1);
6988 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6990 rtx dest = SET_DEST (v1);
6991 while (GET_CODE (dest) == SUBREG
6992 || GET_CODE (dest) == ZERO_EXTRACT
6993 || GET_CODE (dest) == STRICT_LOW_PART)
6994 dest = XEXP (dest, 0);
6995 if (REG_P (dest))
6997 int xregno = REGNO (dest);
6998 int end_xregno = END_REGNO (dest);
6999 if (xregno < regno + nregs
7000 && end_xregno > regno)
7001 return 0;
7002 if (xregno < valueno + valuenregs
7003 && end_xregno > valueno)
7004 return 0;
7005 if (goal_mem_addr_varies
7006 && reg_overlap_mentioned_for_reload_p (dest,
7007 goal))
7008 return 0;
7009 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7010 return 0;
7012 else if (goal_mem && MEM_P (dest)
7013 && ! push_operand (dest, GET_MODE (dest)))
7014 return 0;
7015 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7016 && reg_equiv_memory_loc (regno) != 0)
7017 return 0;
7018 else if (need_stable_sp
7019 && push_operand (dest, GET_MODE (dest)))
7020 return 0;
7025 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7027 rtx link;
7029 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7030 link = XEXP (link, 1))
7032 pat = XEXP (link, 0);
7033 if (GET_CODE (pat) == CLOBBER)
7035 rtx dest = SET_DEST (pat);
7037 if (REG_P (dest))
7039 int xregno = REGNO (dest);
7040 int end_xregno = END_REGNO (dest);
7042 if (xregno < regno + nregs
7043 && end_xregno > regno)
7044 return 0;
7045 else if (xregno < valueno + valuenregs
7046 && end_xregno > valueno)
7047 return 0;
7048 else if (goal_mem_addr_varies
7049 && reg_overlap_mentioned_for_reload_p (dest,
7050 goal))
7051 return 0;
7054 else if (goal_mem && MEM_P (dest)
7055 && ! push_operand (dest, GET_MODE (dest)))
7056 return 0;
7057 else if (need_stable_sp
7058 && push_operand (dest, GET_MODE (dest)))
7059 return 0;
7064 #if AUTO_INC_DEC
7065 /* If this insn auto-increments or auto-decrements
7066 either regno or valueno, return 0 now.
7067 If GOAL is a memory ref and its address is not constant,
7068 and this insn P increments a register used in GOAL, return 0. */
7070 rtx link;
7072 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7073 if (REG_NOTE_KIND (link) == REG_INC
7074 && REG_P (XEXP (link, 0)))
7076 int incno = REGNO (XEXP (link, 0));
7077 if (incno < regno + nregs && incno >= regno)
7078 return 0;
7079 if (incno < valueno + valuenregs && incno >= valueno)
7080 return 0;
7081 if (goal_mem_addr_varies
7082 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7083 goal))
7084 return 0;
7087 #endif
7092 /* Find a place where INCED appears in an increment or decrement operator
7093 within X, and return the amount INCED is incremented or decremented by.
7094 The value is always positive. */
7096 static poly_int64
7097 find_inc_amount (rtx x, rtx inced)
7099 enum rtx_code code = GET_CODE (x);
7100 const char *fmt;
7101 int i;
7103 if (code == MEM)
7105 rtx addr = XEXP (x, 0);
7106 if ((GET_CODE (addr) == PRE_DEC
7107 || GET_CODE (addr) == POST_DEC
7108 || GET_CODE (addr) == PRE_INC
7109 || GET_CODE (addr) == POST_INC)
7110 && XEXP (addr, 0) == inced)
7111 return GET_MODE_SIZE (GET_MODE (x));
7112 else if ((GET_CODE (addr) == PRE_MODIFY
7113 || GET_CODE (addr) == POST_MODIFY)
7114 && GET_CODE (XEXP (addr, 1)) == PLUS
7115 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7116 && XEXP (addr, 0) == inced
7117 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7119 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7120 return i < 0 ? -i : i;
7124 fmt = GET_RTX_FORMAT (code);
7125 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7127 if (fmt[i] == 'e')
7129 poly_int64 tem = find_inc_amount (XEXP (x, i), inced);
7130 if (maybe_ne (tem, 0))
7131 return tem;
7133 if (fmt[i] == 'E')
7135 int j;
7136 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7138 poly_int64 tem = find_inc_amount (XVECEXP (x, i, j), inced);
7139 if (maybe_ne (tem, 0))
7140 return tem;
7145 return 0;
7148 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7149 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7151 static int
7152 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7153 rtx insn)
7155 rtx link;
7157 if (!AUTO_INC_DEC)
7158 return 0;
7160 gcc_assert (insn);
7162 if (! INSN_P (insn))
7163 return 0;
7165 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7166 if (REG_NOTE_KIND (link) == REG_INC)
7168 unsigned int test = (int) REGNO (XEXP (link, 0));
7169 if (test >= regno && test < endregno)
7170 return 1;
7172 return 0;
7175 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7176 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7177 REG_INC. REGNO must refer to a hard register. */
7180 regno_clobbered_p (unsigned int regno, rtx_insn *insn, machine_mode mode,
7181 int sets)
7183 /* regno must be a hard register. */
7184 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7186 unsigned int endregno = end_hard_regno (mode, regno);
7188 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7189 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7190 && REG_P (XEXP (PATTERN (insn), 0)))
7192 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7194 return test >= regno && test < endregno;
7197 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7198 return 1;
7200 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7202 int i = XVECLEN (PATTERN (insn), 0) - 1;
7204 for (; i >= 0; i--)
7206 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7207 if ((GET_CODE (elt) == CLOBBER
7208 || (sets == 1 && GET_CODE (elt) == SET))
7209 && REG_P (XEXP (elt, 0)))
7211 unsigned int test = REGNO (XEXP (elt, 0));
7213 if (test >= regno && test < endregno)
7214 return 1;
7216 if (sets == 2
7217 && reg_inc_found_and_valid_p (regno, endregno, elt))
7218 return 1;
7222 return 0;
7225 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7227 reload_adjust_reg_for_mode (rtx reloadreg, machine_mode mode)
7229 int regno;
7231 if (GET_MODE (reloadreg) == mode)
7232 return reloadreg;
7234 regno = REGNO (reloadreg);
7236 if (REG_WORDS_BIG_ENDIAN)
7237 regno += ((int) REG_NREGS (reloadreg)
7238 - (int) hard_regno_nregs (regno, mode));
7240 return gen_rtx_REG (mode, regno);
7243 static const char *const reload_when_needed_name[] =
7245 "RELOAD_FOR_INPUT",
7246 "RELOAD_FOR_OUTPUT",
7247 "RELOAD_FOR_INSN",
7248 "RELOAD_FOR_INPUT_ADDRESS",
7249 "RELOAD_FOR_INPADDR_ADDRESS",
7250 "RELOAD_FOR_OUTPUT_ADDRESS",
7251 "RELOAD_FOR_OUTADDR_ADDRESS",
7252 "RELOAD_FOR_OPERAND_ADDRESS",
7253 "RELOAD_FOR_OPADDR_ADDR",
7254 "RELOAD_OTHER",
7255 "RELOAD_FOR_OTHER_ADDRESS"
7258 /* These functions are used to print the variables set by 'find_reloads' */
7260 DEBUG_FUNCTION void
7261 debug_reload_to_stream (FILE *f)
7263 int r;
7264 const char *prefix;
7266 if (! f)
7267 f = stderr;
7268 for (r = 0; r < n_reloads; r++)
7270 fprintf (f, "Reload %d: ", r);
7272 if (rld[r].in != 0)
7274 fprintf (f, "reload_in (%s) = ",
7275 GET_MODE_NAME (rld[r].inmode));
7276 print_inline_rtx (f, rld[r].in, 24);
7277 fprintf (f, "\n\t");
7280 if (rld[r].out != 0)
7282 fprintf (f, "reload_out (%s) = ",
7283 GET_MODE_NAME (rld[r].outmode));
7284 print_inline_rtx (f, rld[r].out, 24);
7285 fprintf (f, "\n\t");
7288 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7290 fprintf (f, "%s (opnum = %d)",
7291 reload_when_needed_name[(int) rld[r].when_needed],
7292 rld[r].opnum);
7294 if (rld[r].optional)
7295 fprintf (f, ", optional");
7297 if (rld[r].nongroup)
7298 fprintf (f, ", nongroup");
7300 if (maybe_ne (rld[r].inc, 0))
7302 fprintf (f, ", inc by ");
7303 print_dec (rld[r].inc, f, SIGNED);
7306 if (rld[r].nocombine)
7307 fprintf (f, ", can't combine");
7309 if (rld[r].secondary_p)
7310 fprintf (f, ", secondary_reload_p");
7312 if (rld[r].in_reg != 0)
7314 fprintf (f, "\n\treload_in_reg: ");
7315 print_inline_rtx (f, rld[r].in_reg, 24);
7318 if (rld[r].out_reg != 0)
7320 fprintf (f, "\n\treload_out_reg: ");
7321 print_inline_rtx (f, rld[r].out_reg, 24);
7324 if (rld[r].reg_rtx != 0)
7326 fprintf (f, "\n\treload_reg_rtx: ");
7327 print_inline_rtx (f, rld[r].reg_rtx, 24);
7330 prefix = "\n\t";
7331 if (rld[r].secondary_in_reload != -1)
7333 fprintf (f, "%ssecondary_in_reload = %d",
7334 prefix, rld[r].secondary_in_reload);
7335 prefix = ", ";
7338 if (rld[r].secondary_out_reload != -1)
7339 fprintf (f, "%ssecondary_out_reload = %d\n",
7340 prefix, rld[r].secondary_out_reload);
7342 prefix = "\n\t";
7343 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7345 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7346 insn_data[rld[r].secondary_in_icode].name);
7347 prefix = ", ";
7350 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7351 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7352 insn_data[rld[r].secondary_out_icode].name);
7354 fprintf (f, "\n");
7358 DEBUG_FUNCTION void
7359 debug_reload (void)
7361 debug_reload_to_stream (stderr);