Support TI mode and soft float on PA64
[official-gcc.git] / gcc / gimple-range-fold.cc
blob608d98b43d53bdea737d4eda14f393387870ac2a
1 /* Code for GIMPLE range related routines.
2 Copyright (C) 2019-2021 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "optabs-tree.h"
32 #include "gimple-fold.h"
33 #include "wide-int.h"
34 #include "fold-const.h"
35 #include "case-cfn-macros.h"
36 #include "omp-general.h"
37 #include "cfgloop.h"
38 #include "tree-ssa-loop.h"
39 #include "tree-scalar-evolution.h"
40 #include "langhooks.h"
41 #include "vr-values.h"
42 #include "range.h"
43 #include "value-query.h"
44 #include "range-op.h"
45 #include "gimple-range.h"
46 // Construct a fur_source, and set the m_query field.
48 fur_source::fur_source (range_query *q)
50 if (q)
51 m_query = q;
52 else if (cfun)
53 m_query = get_range_query (cfun);
54 else
55 m_query = get_global_range_query ();
56 m_gori = NULL;
59 // Invoke range_of_expr on EXPR.
61 bool
62 fur_source::get_operand (irange &r, tree expr)
64 return m_query->range_of_expr (r, expr);
67 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
68 // range_query to get the range on the edge.
70 bool
71 fur_source::get_phi_operand (irange &r, tree expr, edge e)
73 return m_query->range_on_edge (r, e, expr);
76 // Default is no relation.
78 relation_kind
79 fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED,
80 tree op2 ATTRIBUTE_UNUSED)
82 return VREL_NONE;
85 // Default registers nothing.
87 void
88 fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED,
89 relation_kind k ATTRIBUTE_UNUSED,
90 tree op1 ATTRIBUTE_UNUSED,
91 tree op2 ATTRIBUTE_UNUSED)
95 // Default registers nothing.
97 void
98 fur_source::register_relation (edge e ATTRIBUTE_UNUSED,
99 relation_kind k ATTRIBUTE_UNUSED,
100 tree op1 ATTRIBUTE_UNUSED,
101 tree op2 ATTRIBUTE_UNUSED)
105 // This version of fur_source will pick a range up off an edge.
107 class fur_edge : public fur_source
109 public:
110 fur_edge (edge e, range_query *q = NULL);
111 virtual bool get_operand (irange &r, tree expr) OVERRIDE;
112 virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
113 private:
114 edge m_edge;
117 // Instantiate an edge based fur_source.
119 inline
120 fur_edge::fur_edge (edge e, range_query *q) : fur_source (q)
122 m_edge = e;
125 // Get the value of EXPR on edge m_edge.
127 bool
128 fur_edge::get_operand (irange &r, tree expr)
130 return m_query->range_on_edge (r, m_edge, expr);
133 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
134 // range_query to get the range on the edge.
136 bool
137 fur_edge::get_phi_operand (irange &r, tree expr, edge e)
139 // Edge to edge recalculations not supoprted yet, until we sort it out.
140 gcc_checking_assert (e == m_edge);
141 return m_query->range_on_edge (r, e, expr);
144 // Instantiate a stmt based fur_source.
146 fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q)
148 m_stmt = s;
151 // Retreive range of EXPR as it occurs as a use on stmt M_STMT.
153 bool
154 fur_stmt::get_operand (irange &r, tree expr)
156 return m_query->range_of_expr (r, expr, m_stmt);
159 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
160 // range_query to get the range on the edge.
162 bool
163 fur_stmt::get_phi_operand (irange &r, tree expr, edge e)
165 // Pick up the range of expr from edge E.
166 fur_edge e_src (e, m_query);
167 return e_src.get_operand (r, expr);
170 // Return relation based from m_stmt.
172 relation_kind
173 fur_stmt::query_relation (tree op1, tree op2)
175 return m_query->query_relation (m_stmt, op1, op2);
178 // Instantiate a stmt based fur_source with a GORI object.
181 fur_depend::fur_depend (gimple *s, gori_compute *gori, range_query *q)
182 : fur_stmt (s, q)
184 gcc_checking_assert (gori);
185 m_gori = gori;
186 // Set relations if there is an oracle in the range_query.
187 // This will enable registering of relationships as they are discovered.
188 m_oracle = q->oracle ();
192 // Register a relation on a stmt if there is an oracle.
194 void
195 fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2)
197 if (m_oracle)
198 m_oracle->register_stmt (s, k, op1, op2);
201 // Register a relation on an edge if there is an oracle.
203 void
204 fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2)
206 if (m_oracle)
207 m_oracle->register_edge (e, k, op1, op2);
210 // This version of fur_source will pick a range up from a list of ranges
211 // supplied by the caller.
213 class fur_list : public fur_source
215 public:
216 fur_list (irange &r1);
217 fur_list (irange &r1, irange &r2);
218 fur_list (unsigned num, irange *list);
219 virtual bool get_operand (irange &r, tree expr) OVERRIDE;
220 virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
221 private:
222 int_range_max m_local[2];
223 irange *m_list;
224 unsigned m_index;
225 unsigned m_limit;
228 // One range supplied for unary operations.
230 fur_list::fur_list (irange &r1) : fur_source (NULL)
232 m_list = m_local;
233 m_index = 0;
234 m_limit = 1;
235 m_local[0] = r1;
238 // Two ranges supplied for binary operations.
240 fur_list::fur_list (irange &r1, irange &r2) : fur_source (NULL)
242 m_list = m_local;
243 m_index = 0;
244 m_limit = 2;
245 m_local[0] = r1;
246 m_local[0] = r2;
249 // Arbitrary number of ranges in a vector.
251 fur_list::fur_list (unsigned num, irange *list) : fur_source (NULL)
253 m_list = list;
254 m_index = 0;
255 m_limit = num;
258 // Get the next operand from the vector, ensure types are compatible.
260 bool
261 fur_list::get_operand (irange &r, tree expr)
263 if (m_index >= m_limit)
264 return m_query->range_of_expr (r, expr);
265 r = m_list[m_index++];
266 gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ()));
267 return true;
270 // This will simply pick the next operand from the vector.
271 bool
272 fur_list::get_phi_operand (irange &r, tree expr, edge e ATTRIBUTE_UNUSED)
274 return get_operand (r, expr);
277 // Fold stmt S into range R using R1 as the first operand.
279 bool
280 fold_range (irange &r, gimple *s, irange &r1)
282 fold_using_range f;
283 fur_list src (r1);
284 return f.fold_stmt (r, s, src);
287 // Fold stmt S into range R using R1 and R2 as the first two operands.
289 bool
290 fold_range (irange &r, gimple *s, irange &r1, irange &r2)
292 fold_using_range f;
293 fur_list src (r1, r2);
294 return f.fold_stmt (r, s, src);
297 // Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial
298 // operands encountered.
300 bool
301 fold_range (irange &r, gimple *s, unsigned num_elements, irange *vector)
303 fold_using_range f;
304 fur_list src (num_elements, vector);
305 return f.fold_stmt (r, s, src);
308 // Fold stmt S into range R using range query Q.
310 bool
311 fold_range (irange &r, gimple *s, range_query *q)
313 fold_using_range f;
314 fur_stmt src (s, q);
315 return f.fold_stmt (r, s, src);
318 // Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
320 bool
321 fold_range (irange &r, gimple *s, edge on_edge, range_query *q)
323 fold_using_range f;
324 fur_edge src (on_edge, q);
325 return f.fold_stmt (r, s, src);
328 // -------------------------------------------------------------------------
330 // Adjust the range for a pointer difference where the operands came
331 // from a memchr.
333 // This notices the following sequence:
335 // def = __builtin_memchr (arg, 0, sz)
336 // n = def - arg
338 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
340 static void
341 adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
343 tree op0 = gimple_assign_rhs1 (diff_stmt);
344 tree op1 = gimple_assign_rhs2 (diff_stmt);
345 tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
346 tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
347 gimple *call;
349 if (TREE_CODE (op0) == SSA_NAME
350 && TREE_CODE (op1) == SSA_NAME
351 && (call = SSA_NAME_DEF_STMT (op0))
352 && is_gimple_call (call)
353 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
354 && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
355 && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
356 && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
357 && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
358 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
359 && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
360 && integer_zerop (gimple_call_arg (call, 1)))
362 tree max = vrp_val_max (ptrdiff_type_node);
363 unsigned prec = TYPE_PRECISION (TREE_TYPE (max));
364 wide_int wmaxm1 = wi::to_wide (max, prec) - 1;
365 res.intersect (wi::zero (prec), wmaxm1);
369 // Adjust the range for an IMAGPART_EXPR.
371 static void
372 adjust_imagpart_expr (irange &res, const gimple *stmt)
374 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
376 if (TREE_CODE (name) != SSA_NAME || !SSA_NAME_DEF_STMT (name))
377 return;
379 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
380 if (is_gimple_call (def_stmt) && gimple_call_internal_p (def_stmt))
382 switch (gimple_call_internal_fn (def_stmt))
384 case IFN_ADD_OVERFLOW:
385 case IFN_SUB_OVERFLOW:
386 case IFN_MUL_OVERFLOW:
387 case IFN_ATOMIC_COMPARE_EXCHANGE:
389 int_range<2> r;
390 r.set_varying (boolean_type_node);
391 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
392 range_cast (r, type);
393 res.intersect (r);
395 default:
396 break;
398 return;
400 if (is_gimple_assign (def_stmt))
402 tree cst = gimple_assign_rhs1 (def_stmt);
403 if (TREE_CODE (cst) == COMPLEX_CST)
405 wide_int imag = wi::to_wide (TREE_IMAGPART (cst));
406 res.intersect (imag, imag);
411 // Adjust the range for a REALPART_EXPR.
413 static void
414 adjust_realpart_expr (irange &res, const gimple *stmt)
416 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
418 if (TREE_CODE (name) != SSA_NAME)
419 return;
421 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
422 if (!SSA_NAME_DEF_STMT (name))
423 return;
425 if (is_gimple_assign (def_stmt))
427 tree cst = gimple_assign_rhs1 (def_stmt);
428 if (TREE_CODE (cst) == COMPLEX_CST)
430 tree imag = TREE_REALPART (cst);
431 int_range<2> tmp (imag, imag);
432 res.intersect (tmp);
437 // This function looks for situations when walking the use/def chains
438 // may provide additonal contextual range information not exposed on
439 // this statement.
441 static void
442 gimple_range_adjustment (irange &res, const gimple *stmt)
444 switch (gimple_expr_code (stmt))
446 case POINTER_DIFF_EXPR:
447 adjust_pointer_diff_expr (res, stmt);
448 return;
450 case IMAGPART_EXPR:
451 adjust_imagpart_expr (res, stmt);
452 return;
454 case REALPART_EXPR:
455 adjust_realpart_expr (res, stmt);
456 return;
458 default:
459 break;
463 // Return the base of the RHS of an assignment.
465 static tree
466 gimple_range_base_of_assignment (const gimple *stmt)
468 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
469 tree op1 = gimple_assign_rhs1 (stmt);
470 if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
471 return get_base_address (TREE_OPERAND (op1, 0));
472 return op1;
475 // Return the first operand of this statement if it is a valid operand
476 // supported by ranges, otherwise return NULL_TREE. Special case is
477 // &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
479 tree
480 gimple_range_operand1 (const gimple *stmt)
482 gcc_checking_assert (gimple_range_handler (stmt));
484 switch (gimple_code (stmt))
486 case GIMPLE_COND:
487 return gimple_cond_lhs (stmt);
488 case GIMPLE_ASSIGN:
490 tree base = gimple_range_base_of_assignment (stmt);
491 if (base && TREE_CODE (base) == MEM_REF)
493 // If the base address is an SSA_NAME, we return it
494 // here. This allows processing of the range of that
495 // name, while the rest of the expression is simply
496 // ignored. The code in range_ops will see the
497 // ADDR_EXPR and do the right thing.
498 tree ssa = TREE_OPERAND (base, 0);
499 if (TREE_CODE (ssa) == SSA_NAME)
500 return ssa;
502 return base;
504 default:
505 break;
507 return NULL;
510 // Return the second operand of statement STMT, otherwise return NULL_TREE.
512 tree
513 gimple_range_operand2 (const gimple *stmt)
515 gcc_checking_assert (gimple_range_handler (stmt));
517 switch (gimple_code (stmt))
519 case GIMPLE_COND:
520 return gimple_cond_rhs (stmt);
521 case GIMPLE_ASSIGN:
522 if (gimple_num_ops (stmt) >= 3)
523 return gimple_assign_rhs2 (stmt);
524 default:
525 break;
527 return NULL_TREE;
530 // Calculate a range for statement S and return it in R. If NAME is provided it
531 // represents the SSA_NAME on the LHS of the statement. It is only required
532 // if there is more than one lhs/output. If a range cannot
533 // be calculated, return false.
535 bool
536 fold_using_range::fold_stmt (irange &r, gimple *s, fur_source &src, tree name)
538 bool res = false;
539 // If name and S are specified, make sure it is an LHS of S.
540 gcc_checking_assert (!name || !gimple_get_lhs (s) ||
541 name == gimple_get_lhs (s));
543 if (!name)
544 name = gimple_get_lhs (s);
546 // Process addresses.
547 if (gimple_code (s) == GIMPLE_ASSIGN
548 && gimple_assign_rhs_code (s) == ADDR_EXPR)
549 return range_of_address (r, s, src);
551 if (gimple_range_handler (s))
552 res = range_of_range_op (r, s, src);
553 else if (is_a<gphi *>(s))
554 res = range_of_phi (r, as_a<gphi *> (s), src);
555 else if (is_a<gcall *>(s))
556 res = range_of_call (r, as_a<gcall *> (s), src);
557 else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
558 res = range_of_cond_expr (r, as_a<gassign *> (s), src);
560 if (!res)
562 // If no name specified or range is unsupported, bail.
563 if (!name || !gimple_range_ssa_p (name))
564 return false;
565 // We don't understand the stmt, so return the global range.
566 r = gimple_range_global (name);
567 return true;
570 if (r.undefined_p ())
571 return true;
573 // We sometimes get compatible types copied from operands, make sure
574 // the correct type is being returned.
575 if (name && TREE_TYPE (name) != r.type ())
577 gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
578 range_cast (r, TREE_TYPE (name));
580 return true;
583 // Calculate a range for range_op statement S and return it in R. If any
584 // If a range cannot be calculated, return false.
586 bool
587 fold_using_range::range_of_range_op (irange &r, gimple *s, fur_source &src)
589 int_range_max range1, range2;
590 tree type = gimple_range_type (s);
591 if (!type)
592 return false;
593 range_operator *handler = gimple_range_handler (s);
594 gcc_checking_assert (handler);
596 tree lhs = gimple_get_lhs (s);
597 tree op1 = gimple_range_operand1 (s);
598 tree op2 = gimple_range_operand2 (s);
600 if (src.get_operand (range1, op1))
602 if (!op2)
604 // Fold range, and register any dependency if available.
605 int_range<2> r2 (type);
606 handler->fold_range (r, type, range1, r2);
607 if (lhs && gimple_range_ssa_p (op1))
609 if (src.gori ())
610 src.gori ()->register_dependency (lhs, op1);
611 relation_kind rel;
612 rel = handler->lhs_op1_relation (r, range1, range1);
613 if (rel != VREL_NONE)
614 src.register_relation (s, rel, lhs, op1);
617 else if (src.get_operand (range2, op2))
619 relation_kind rel = src.query_relation (op1, op2);
620 if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_NONE)
622 fprintf (dump_file, " folding with relation ");
623 print_generic_expr (dump_file, op1, TDF_SLIM);
624 print_relation (dump_file, rel);
625 print_generic_expr (dump_file, op2, TDF_SLIM);
626 fputc ('\n', dump_file);
628 // Fold range, and register any dependency if available.
629 handler->fold_range (r, type, range1, range2, rel);
630 relation_fold_and_or (r, s, src);
631 if (lhs)
633 if (src.gori ())
635 src.gori ()->register_dependency (lhs, op1);
636 src.gori ()->register_dependency (lhs, op2);
638 if (gimple_range_ssa_p (op1))
640 rel = handler->lhs_op1_relation (r, range1, range2);
641 if (rel != VREL_NONE)
642 src.register_relation (s, rel, lhs, op1);
644 if (gimple_range_ssa_p (op2))
646 rel= handler->lhs_op2_relation (r, range1, range2);
647 if (rel != VREL_NONE)
648 src.register_relation (s, rel, lhs, op2);
651 // Check for an existing BB, as we maybe asked to fold an
652 // artificial statement not in the CFG.
653 else if (is_a<gcond *> (s) && gimple_bb (s))
655 basic_block bb = gimple_bb (s);
656 edge e0 = EDGE_SUCC (bb, 0);
657 edge e1 = EDGE_SUCC (bb, 1);
659 if (!single_pred_p (e0->dest))
660 e0 = NULL;
661 if (!single_pred_p (e1->dest))
662 e1 = NULL;
663 src.register_outgoing_edges (as_a<gcond *> (s), r, e0, e1);
666 else
667 r.set_varying (type);
669 else
670 r.set_varying (type);
671 // Make certain range-op adjustments that aren't handled any other way.
672 gimple_range_adjustment (r, s);
673 return true;
676 // Calculate the range of an assignment containing an ADDR_EXPR.
677 // Return the range in R.
678 // If a range cannot be calculated, set it to VARYING and return true.
680 bool
681 fold_using_range::range_of_address (irange &r, gimple *stmt, fur_source &src)
683 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
684 gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);
686 bool strict_overflow_p;
687 tree expr = gimple_assign_rhs1 (stmt);
688 poly_int64 bitsize, bitpos;
689 tree offset;
690 machine_mode mode;
691 int unsignedp, reversep, volatilep;
692 tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
693 &bitpos, &offset, &mode, &unsignedp,
694 &reversep, &volatilep);
697 if (base != NULL_TREE
698 && TREE_CODE (base) == MEM_REF
699 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
701 tree ssa = TREE_OPERAND (base, 0);
702 tree lhs = gimple_get_lhs (stmt);
703 if (lhs && gimple_range_ssa_p (ssa) && src.gori ())
704 src.gori ()->register_dependency (lhs, ssa);
705 gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa)));
706 src.get_operand (r, ssa);
707 range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));
709 poly_offset_int off = 0;
710 bool off_cst = false;
711 if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
713 off = mem_ref_offset (base);
714 if (offset)
715 off += poly_offset_int::from (wi::to_poly_wide (offset),
716 SIGNED);
717 off <<= LOG2_BITS_PER_UNIT;
718 off += bitpos;
719 off_cst = true;
721 /* If &X->a is equal to X, the range of X is the result. */
722 if (off_cst && known_eq (off, 0))
723 return true;
724 else if (flag_delete_null_pointer_checks
725 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
727 /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
728 allow going from non-NULL pointer to NULL. */
729 if(!range_includes_zero_p (&r))
730 return true;
732 /* If MEM_REF has a "positive" offset, consider it non-NULL
733 always, for -fdelete-null-pointer-checks also "negative"
734 ones. Punt for unknown offsets (e.g. variable ones). */
735 if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
736 && off_cst
737 && known_ne (off, 0)
738 && (flag_delete_null_pointer_checks || known_gt (off, 0)))
740 r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
741 return true;
743 r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
744 return true;
747 // Handle "= &a".
748 if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
750 r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
751 return true;
754 // Otherwise return varying.
755 r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
756 return true;
759 // Calculate a range for phi statement S and return it in R.
760 // If a range cannot be calculated, return false.
762 bool
763 fold_using_range::range_of_phi (irange &r, gphi *phi, fur_source &src)
765 tree phi_def = gimple_phi_result (phi);
766 tree type = gimple_range_type (phi);
767 int_range_max arg_range;
768 unsigned x;
770 if (!type)
771 return false;
773 // Track if all executable arguments are the same.
774 tree single_arg = NULL_TREE;
775 bool seen_arg = false;
777 // Start with an empty range, unioning in each argument's range.
778 r.set_undefined ();
779 for (x = 0; x < gimple_phi_num_args (phi); x++)
781 tree arg = gimple_phi_arg_def (phi, x);
782 // An argument that is the same as the def provides no new range.
783 if (arg == phi_def)
784 continue;
786 edge e = gimple_phi_arg_edge (phi, x);
788 // Get the range of the argument on its edge.
789 src.get_phi_operand (arg_range, arg, e);
791 if (!arg_range.undefined_p ())
793 // Register potential dependencies for stale value tracking.
794 r.union_ (arg_range);
795 if (gimple_range_ssa_p (arg) && src.gori ())
796 src.gori ()->register_dependency (phi_def, arg);
798 // Track if all arguments are the same.
799 if (!seen_arg)
801 seen_arg = true;
802 single_arg = arg;
804 else if (single_arg != arg)
805 single_arg = NULL_TREE;
808 // Once the value reaches varying, stop looking.
809 if (r.varying_p () && single_arg == NULL_TREE)
810 break;
813 // If the PHI boils down to a single effective argument, look at it.
814 if (single_arg)
816 // Symbolic arguments are equivalences.
817 if (gimple_range_ssa_p (single_arg))
818 src.register_relation (phi, EQ_EXPR, phi_def, single_arg);
819 else if (src.get_operand (arg_range, single_arg)
820 && arg_range.singleton_p ())
822 // Numerical arguments that are a constant can be returned as
823 // the constant. This can help fold later cases where even this
824 // constant might have been UNDEFINED via an unreachable edge.
825 r = arg_range;
826 return true;
830 // If SCEV is available, query if this PHI has any knonwn values.
831 if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
833 value_range loop_range;
834 class loop *l = loop_containing_stmt (phi);
835 if (l && loop_outer (l))
837 range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src);
838 if (!loop_range.varying_p ())
840 if (dump_file && (dump_flags & TDF_DETAILS))
842 fprintf (dump_file, " Loops range found for ");
843 print_generic_expr (dump_file, phi_def, TDF_SLIM);
844 fprintf (dump_file, ": ");
845 loop_range.dump (dump_file);
846 fprintf (dump_file, " and calculated range :");
847 r.dump (dump_file);
848 fprintf (dump_file, "\n");
850 r.intersect (loop_range);
855 return true;
858 // Calculate a range for call statement S and return it in R.
859 // If a range cannot be calculated, return false.
861 bool
862 fold_using_range::range_of_call (irange &r, gcall *call, fur_source &src)
864 tree type = gimple_range_type (call);
865 if (!type)
866 return false;
868 tree lhs = gimple_call_lhs (call);
869 bool strict_overflow_p;
871 if (range_of_builtin_call (r, call, src))
873 else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
874 r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
875 else if (gimple_call_nonnull_result_p (call)
876 || gimple_call_nonnull_arg (call))
877 r = range_nonzero (type);
878 else
879 r.set_varying (type);
881 // If there is an LHS, intersect that with what is known.
882 if (lhs)
884 value_range def;
885 def = gimple_range_global (lhs);
886 r.intersect (def);
888 return true;
891 // Return the range of a __builtin_ubsan* in CALL and set it in R.
892 // CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or
893 // MULT_EXPR).
895 void
896 fold_using_range::range_of_builtin_ubsan_call (irange &r, gcall *call,
897 tree_code code, fur_source &src)
899 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
900 || code == MULT_EXPR);
901 tree type = gimple_range_type (call);
902 range_operator *op = range_op_handler (code, type);
903 gcc_checking_assert (op);
904 int_range_max ir0, ir1;
905 tree arg0 = gimple_call_arg (call, 0);
906 tree arg1 = gimple_call_arg (call, 1);
907 src.get_operand (ir0, arg0);
908 src.get_operand (ir1, arg1);
909 // Check for any relation between arg0 and arg1.
910 relation_kind relation = src.query_relation (arg0, arg1);
912 bool saved_flag_wrapv = flag_wrapv;
913 // Pretend the arithmetic is wrapping. If there is any overflow,
914 // we'll complain, but will actually do wrapping operation.
915 flag_wrapv = 1;
916 op->fold_range (r, type, ir0, ir1, relation);
917 flag_wrapv = saved_flag_wrapv;
919 // If for both arguments vrp_valueize returned non-NULL, this should
920 // have been already folded and if not, it wasn't folded because of
921 // overflow. Avoid removing the UBSAN_CHECK_* calls in that case.
922 if (r.singleton_p ())
923 r.set_varying (type);
926 // Return TRUE if we recognize the target character set and return the
927 // range for lower case and upper case letters.
929 static bool
930 get_letter_range (tree type, irange &lowers, irange &uppers)
932 // ASCII
933 int a = lang_hooks.to_target_charset ('a');
934 int z = lang_hooks.to_target_charset ('z');
935 int A = lang_hooks.to_target_charset ('A');
936 int Z = lang_hooks.to_target_charset ('Z');
938 if ((z - a == 25) && (Z - A == 25))
940 lowers = int_range<2> (build_int_cst (type, a), build_int_cst (type, z));
941 uppers = int_range<2> (build_int_cst (type, A), build_int_cst (type, Z));
942 return true;
944 // Unknown character set.
945 return false;
948 // For a builtin in CALL, return a range in R if known and return
949 // TRUE. Otherwise return FALSE.
951 bool
952 fold_using_range::range_of_builtin_call (irange &r, gcall *call,
953 fur_source &src)
955 combined_fn func = gimple_call_combined_fn (call);
956 if (func == CFN_LAST)
957 return false;
959 tree type = gimple_range_type (call);
960 tree arg;
961 int mini, maxi, zerov = 0, prec;
962 scalar_int_mode mode;
964 switch (func)
966 case CFN_BUILT_IN_CONSTANT_P:
967 arg = gimple_call_arg (call, 0);
968 if (src.get_operand (r, arg) && r.singleton_p ())
970 r.set (build_one_cst (type), build_one_cst (type));
971 return true;
973 if (cfun->after_inlining)
975 r.set_zero (type);
976 // r.equiv_clear ();
977 return true;
979 break;
981 case CFN_BUILT_IN_TOUPPER:
983 arg = gimple_call_arg (call, 0);
984 // If the argument isn't compatible with the LHS, do nothing.
985 if (!range_compatible_p (type, TREE_TYPE (arg)))
986 return false;
987 if (!src.get_operand (r, arg))
988 return false;
990 int_range<3> lowers;
991 int_range<3> uppers;
992 if (!get_letter_range (type, lowers, uppers))
993 return false;
995 // Return the range passed in without any lower case characters,
996 // but including all the upper case ones.
997 lowers.invert ();
998 r.intersect (lowers);
999 r.union_ (uppers);
1000 return true;
1003 case CFN_BUILT_IN_TOLOWER:
1005 arg = gimple_call_arg (call, 0);
1006 // If the argument isn't compatible with the LHS, do nothing.
1007 if (!range_compatible_p (type, TREE_TYPE (arg)))
1008 return false;
1009 if (!src.get_operand (r, arg))
1010 return false;
1012 int_range<3> lowers;
1013 int_range<3> uppers;
1014 if (!get_letter_range (type, lowers, uppers))
1015 return false;
1017 // Return the range passed in without any upper case characters,
1018 // but including all the lower case ones.
1019 uppers.invert ();
1020 r.intersect (uppers);
1021 r.union_ (lowers);
1022 return true;
1025 CASE_CFN_FFS:
1026 CASE_CFN_POPCOUNT:
1027 // __builtin_ffs* and __builtin_popcount* return [0, prec].
1028 arg = gimple_call_arg (call, 0);
1029 prec = TYPE_PRECISION (TREE_TYPE (arg));
1030 mini = 0;
1031 maxi = prec;
1032 src.get_operand (r, arg);
1033 // If arg is non-zero, then ffs or popcount are non-zero.
1034 if (!range_includes_zero_p (&r))
1035 mini = 1;
1036 // If some high bits are known to be zero, decrease the maximum.
1037 if (!r.undefined_p ())
1039 if (TYPE_SIGN (r.type ()) == SIGNED)
1040 range_cast (r, unsigned_type_for (r.type ()));
1041 wide_int max = r.upper_bound ();
1042 maxi = wi::floor_log2 (max) + 1;
1044 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1045 return true;
1047 CASE_CFN_PARITY:
1048 r.set (build_zero_cst (type), build_one_cst (type));
1049 return true;
1051 CASE_CFN_CLZ:
1052 // __builtin_c[lt]z* return [0, prec-1], except when the
1053 // argument is 0, but that is undefined behavior.
1055 // For __builtin_c[lt]z* consider argument of 0 always undefined
1056 // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO.
1057 arg = gimple_call_arg (call, 0);
1058 prec = TYPE_PRECISION (TREE_TYPE (arg));
1059 mini = 0;
1060 maxi = prec - 1;
1061 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
1062 if (gimple_call_internal_p (call))
1064 if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
1065 && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
1067 // Only handle the single common value.
1068 if (zerov == prec)
1069 maxi = prec;
1070 else
1071 // Magic value to give up, unless we can prove arg is non-zero.
1072 mini = -2;
1076 src.get_operand (r, arg);
1077 // From clz of minimum we can compute result maximum.
1078 if (!r.undefined_p ())
1080 // From clz of minimum we can compute result maximum.
1081 if (wi::gt_p (r.lower_bound (), 0, TYPE_SIGN (r.type ())))
1083 maxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
1084 if (mini == -2)
1085 mini = 0;
1087 else if (!range_includes_zero_p (&r))
1089 mini = 0;
1090 maxi = prec - 1;
1092 if (mini == -2)
1093 break;
1094 // From clz of maximum we can compute result minimum.
1095 wide_int max = r.upper_bound ();
1096 int newmini = prec - 1 - wi::floor_log2 (max);
1097 if (max == 0)
1099 // If CLZ_DEFINED_VALUE_AT_ZERO is 2 with VALUE of prec,
1100 // return [prec, prec], otherwise ignore the range.
1101 if (maxi == prec)
1102 mini = prec;
1104 else
1105 mini = newmini;
1107 if (mini == -2)
1108 break;
1109 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1110 return true;
1112 CASE_CFN_CTZ:
1113 // __builtin_ctz* return [0, prec-1], except for when the
1114 // argument is 0, but that is undefined behavior.
1116 // For __builtin_ctz* consider argument of 0 always undefined
1117 // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO.
1118 arg = gimple_call_arg (call, 0);
1119 prec = TYPE_PRECISION (TREE_TYPE (arg));
1120 mini = 0;
1121 maxi = prec - 1;
1122 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
1123 if (gimple_call_internal_p (call))
1125 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
1126 && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
1128 // Handle only the two common values.
1129 if (zerov == -1)
1130 mini = -1;
1131 else if (zerov == prec)
1132 maxi = prec;
1133 else
1134 // Magic value to give up, unless we can prove arg is non-zero.
1135 mini = -2;
1138 src.get_operand (r, arg);
1139 if (!r.undefined_p ())
1141 // If arg is non-zero, then use [0, prec - 1].
1142 if (!range_includes_zero_p (&r))
1144 mini = 0;
1145 maxi = prec - 1;
1147 // If some high bits are known to be zero, we can decrease
1148 // the maximum.
1149 wide_int max = r.upper_bound ();
1150 if (max == 0)
1152 // Argument is [0, 0]. If CTZ_DEFINED_VALUE_AT_ZERO
1153 // is 2 with value -1 or prec, return [-1, -1] or [prec, prec].
1154 // Otherwise ignore the range.
1155 if (mini == -1)
1156 maxi = -1;
1157 else if (maxi == prec)
1158 mini = prec;
1160 // If value at zero is prec and 0 is in the range, we can't lower
1161 // the upper bound. We could create two separate ranges though,
1162 // [0,floor_log2(max)][prec,prec] though.
1163 else if (maxi != prec)
1164 maxi = wi::floor_log2 (max);
1166 if (mini == -2)
1167 break;
1168 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1169 return true;
1171 CASE_CFN_CLRSB:
1172 arg = gimple_call_arg (call, 0);
1173 prec = TYPE_PRECISION (TREE_TYPE (arg));
1174 r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
1175 return true;
1176 case CFN_UBSAN_CHECK_ADD:
1177 range_of_builtin_ubsan_call (r, call, PLUS_EXPR, src);
1178 return true;
1179 case CFN_UBSAN_CHECK_SUB:
1180 range_of_builtin_ubsan_call (r, call, MINUS_EXPR, src);
1181 return true;
1182 case CFN_UBSAN_CHECK_MUL:
1183 range_of_builtin_ubsan_call (r, call, MULT_EXPR, src);
1184 return true;
1186 case CFN_GOACC_DIM_SIZE:
1187 case CFN_GOACC_DIM_POS:
1188 // Optimizing these two internal functions helps the loop
1189 // optimizer eliminate outer comparisons. Size is [1,N]
1190 // and pos is [0,N-1].
1192 bool is_pos = func == CFN_GOACC_DIM_POS;
1193 int axis = oacc_get_ifn_dim_arg (call);
1194 int size = oacc_get_fn_dim_size (current_function_decl, axis);
1195 if (!size)
1196 // If it's dynamic, the backend might know a hardware limitation.
1197 size = targetm.goacc.dim_limit (axis);
1199 r.set (build_int_cst (type, is_pos ? 0 : 1),
1200 size
1201 ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
1202 return true;
1205 case CFN_BUILT_IN_STRLEN:
1206 if (tree lhs = gimple_call_lhs (call))
1207 if (ptrdiff_type_node
1208 && (TYPE_PRECISION (ptrdiff_type_node)
1209 == TYPE_PRECISION (TREE_TYPE (lhs))))
1211 tree type = TREE_TYPE (lhs);
1212 tree max = vrp_val_max (ptrdiff_type_node);
1213 wide_int wmax
1214 = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
1215 tree range_min = build_zero_cst (type);
1216 // To account for the terminating NULL, the maximum length
1217 // is one less than the maximum array size, which in turn
1218 // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
1219 // smaller than the former type).
1220 // FIXME: Use max_object_size() - 1 here.
1221 tree range_max = wide_int_to_tree (type, wmax - 2);
1222 r.set (range_min, range_max);
1223 return true;
1225 break;
1226 default:
1227 break;
1229 return false;
1233 // Calculate a range for COND_EXPR statement S and return it in R.
1234 // If a range cannot be calculated, return false.
1236 bool
1237 fold_using_range::range_of_cond_expr (irange &r, gassign *s, fur_source &src)
1239 int_range_max cond_range, range1, range2;
1240 tree cond = gimple_assign_rhs1 (s);
1241 tree op1 = gimple_assign_rhs2 (s);
1242 tree op2 = gimple_assign_rhs3 (s);
1244 tree type = gimple_range_type (s);
1245 if (!type)
1246 return false;
1248 gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
1249 gcc_checking_assert (range_compatible_p (TREE_TYPE (op1), TREE_TYPE (op2)));
1250 src.get_operand (cond_range, cond);
1251 src.get_operand (range1, op1);
1252 src.get_operand (range2, op2);
1254 // If the condition is known, choose the appropriate expression.
1255 if (cond_range.singleton_p ())
1257 // False, pick second operand.
1258 if (cond_range.zero_p ())
1259 r = range2;
1260 else
1261 r = range1;
1263 else
1265 r = range1;
1266 r.union_ (range2);
1268 gcc_checking_assert (r.undefined_p ()
1269 || range_compatible_p (r.type (), type));
1270 return true;
1273 // If SCEV has any information about phi node NAME, return it as a range in R.
1275 void
1276 fold_using_range::range_of_ssa_name_with_loop_info (irange &r, tree name,
1277 class loop *l, gphi *phi,
1278 fur_source &src)
1280 gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
1281 tree min, max, type = TREE_TYPE (name);
1282 if (bounds_of_var_in_loop (&min, &max, src.query (), l, phi, name))
1284 if (TREE_CODE (min) != INTEGER_CST)
1286 if (src.query ()->range_of_expr (r, min, phi) && !r.undefined_p ())
1287 min = wide_int_to_tree (type, r.lower_bound ());
1288 else
1289 min = vrp_val_min (type);
1291 if (TREE_CODE (max) != INTEGER_CST)
1293 if (src.query ()->range_of_expr (r, max, phi) && !r.undefined_p ())
1294 max = wide_int_to_tree (type, r.upper_bound ());
1295 else
1296 max = vrp_val_max (type);
1298 r.set (min, max);
1300 else
1301 r.set_varying (type);
1304 // -----------------------------------------------------------------------
1306 // Check if an && or || expression can be folded based on relations. ie
1307 // c_2 = a_6 > b_7
1308 // c_3 = a_6 < b_7
1309 // c_4 = c_2 && c_3
1310 // c_2 and c_3 can never be true at the same time,
1311 // Therefore c_4 can always resolve to false based purely on the relations.
1313 void
1314 fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s,
1315 fur_source &src)
1317 // No queries or already folded.
1318 if (!src.gori () || !src.query ()->oracle () || lhs_range.singleton_p ())
1319 return;
1321 // Only care about AND and OR expressions.
1322 enum tree_code code = gimple_expr_code (s);
1323 bool is_and = false;
1324 if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR)
1325 is_and = true;
1326 else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR)
1327 return;
1329 tree lhs = gimple_get_lhs (s);
1330 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
1331 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
1333 // Deal with || and && only when there is a full set of symbolics.
1334 if (!lhs || !ssa1 || !ssa2
1335 || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
1336 || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE)
1337 || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE))
1338 return;
1340 // Now we know its a boolean AND or OR expression with boolean operands.
1341 // Ideally we search dependencies for common names, and see what pops out.
1342 // until then, simply try to resolve direct dependencies.
1344 // Both names will need to have 2 direct dependencies.
1345 tree ssa1_dep2 = src.gori ()->depend2 (ssa1);
1346 tree ssa2_dep2 = src.gori ()->depend2 (ssa2);
1347 if (!ssa1_dep2 || !ssa2_dep2)
1348 return;
1350 tree ssa1_dep1 = src.gori ()->depend1 (ssa1);
1351 tree ssa2_dep1 = src.gori ()->depend1 (ssa2);
1352 // Make sure they are the same dependencies, and detect the order of the
1353 // relationship.
1354 bool reverse_op2 = true;
1355 if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2)
1356 reverse_op2 = false;
1357 else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1)
1358 return;
1360 range_operator *handler1 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa1));
1361 range_operator *handler2 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa2));
1363 // If either handler is not present, no relation is found.
1364 if (!handler1 || !handler2)
1365 return;
1367 int_range<2> bool_one (boolean_true_node, boolean_true_node);
1369 relation_kind relation1 = handler1->op1_op2_relation (bool_one);
1370 relation_kind relation2 = handler2->op1_op2_relation (bool_one);
1371 if (relation1 == VREL_NONE || relation2 == VREL_NONE)
1372 return;
1374 if (reverse_op2)
1375 relation2 = relation_negate (relation2);
1377 // x && y is false if the relation intersection of the true cases is NULL.
1378 if (is_and && relation_intersect (relation1, relation2) == VREL_EMPTY)
1379 lhs_range = int_range<2> (boolean_false_node, boolean_false_node);
1380 // x || y is true if the union of the true cases is NO-RELATION..
1381 // ie, one or the other being true covers the full range of possibilties.
1382 else if (!is_and && relation_union (relation1, relation2) == VREL_NONE)
1383 lhs_range = bool_one;
1384 else
1385 return;
1387 range_cast (lhs_range, TREE_TYPE (lhs));
1388 if (dump_file && (dump_flags & TDF_DETAILS))
1390 fprintf (dump_file, " Relation adjustment: ");
1391 print_generic_expr (dump_file, ssa1, TDF_SLIM);
1392 fprintf (dump_file, " and ");
1393 print_generic_expr (dump_file, ssa2, TDF_SLIM);
1394 fprintf (dump_file, " combine to produce ");
1395 lhs_range.dump (dump_file);
1396 fputc ('\n', dump_file);
1399 return;
1402 // Register any outgoing edge relations from a conditional branch.
1404 void
1405 fur_source::register_outgoing_edges (gcond *s, irange &lhs_range, edge e0, edge e1)
1407 int_range_max r;
1408 int_range<2> e0_range, e1_range;
1409 tree name;
1410 range_operator *handler;
1411 basic_block bb = gimple_bb (s);
1413 if (e0)
1415 // If this edge is never taken, ignore it.
1416 gcond_edge_range (e0_range, e0);
1417 e0_range.intersect (lhs_range);
1418 if (e0_range.undefined_p ())
1419 e0 = NULL;
1423 if (e1)
1425 // If this edge is never taken, ignore it.
1426 gcond_edge_range (e1_range, e1);
1427 e1_range.intersect (lhs_range);
1428 if (e1_range.undefined_p ())
1429 e1 = NULL;
1432 if (!e0 && !e1)
1433 return;
1435 // First, register the gcond itself. This will catch statements like
1436 // if (a_2 < b_5)
1437 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
1438 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
1439 if (ssa1 && ssa2)
1441 handler = gimple_range_handler (s);
1442 gcc_checking_assert (handler);
1443 if (e0)
1445 relation_kind relation = handler->op1_op2_relation (e0_range);
1446 if (relation != VREL_NONE)
1447 register_relation (e0, relation, ssa1, ssa2);
1449 if (e1)
1451 relation_kind relation = handler->op1_op2_relation (e1_range);
1452 if (relation != VREL_NONE)
1453 register_relation (e1, relation, ssa1, ssa2);
1457 // Outgoing relations of GORI exports require a gori engine.
1458 if (!gori ())
1459 return;
1461 // Now look for other relations in the exports. This will find stmts
1462 // leading to the condition such as:
1463 // c_2 = a_4 < b_7
1464 // if (c_2)
1465 FOR_EACH_GORI_EXPORT_NAME (*(gori ()), bb, name)
1467 if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE)
1468 continue;
1469 gimple *stmt = SSA_NAME_DEF_STMT (name);
1470 handler = gimple_range_handler (stmt);
1471 if (!handler)
1472 continue;
1473 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
1474 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
1475 if (ssa1 && ssa2)
1477 if (e0 && gori ()->outgoing_edge_range_p (r, e0, name, *m_query)
1478 && r.singleton_p ())
1480 relation_kind relation = handler->op1_op2_relation (r);
1481 if (relation != VREL_NONE)
1482 register_relation (e0, relation, ssa1, ssa2);
1484 if (e1 && gori ()->outgoing_edge_range_p (r, e1, name, *m_query)
1485 && r.singleton_p ())
1487 relation_kind relation = handler->op1_op2_relation (r);
1488 if (relation != VREL_NONE)
1489 register_relation (e1, relation, ssa1, ssa2);