* cfgcleanup.c, config/dfp-bit.c, expr.c, fold-const.c,
[official-gcc.git] / gcc / jump.c
blobb087394162026273300796f00e669697e2a5ae12
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This is the pathetic reminder of old fame of the jump-optimization pass
24 of the compiler. Now it contains basically a set of utility functions to
25 operate with jumps.
27 Each CODE_LABEL has a count of the times it is used
28 stored in the LABEL_NUSES internal field, and each JUMP_INSN
29 has one label that it refers to stored in the
30 JUMP_LABEL internal field. With this we can detect labels that
31 become unused because of the deletion of all the jumps that
32 formerly used them. The JUMP_LABEL info is sometimes looked
33 at by later passes.
35 The subroutines redirect_jump and invert_jump are used
36 from other passes as well. */
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "rtl.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "insn-attr.h"
49 #include "recog.h"
50 #include "function.h"
51 #include "expr.h"
52 #include "real.h"
53 #include "except.h"
54 #include "diagnostic.h"
55 #include "toplev.h"
56 #include "reload.h"
57 #include "predict.h"
58 #include "timevar.h"
59 #include "tree-pass.h"
60 #include "target.h"
62 /* Optimize jump y; x: ... y: jumpif... x?
63 Don't know if it is worth bothering with. */
64 /* Optimize two cases of conditional jump to conditional jump?
65 This can never delete any instruction or make anything dead,
66 or even change what is live at any point.
67 So perhaps let combiner do it. */
69 static void init_label_info (rtx);
70 static void mark_all_labels (rtx);
71 static void delete_computation (rtx);
72 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
73 static int invert_exp_1 (rtx, rtx);
74 static int returnjump_p_1 (rtx *, void *);
75 static void delete_prior_computation (rtx, rtx);
77 /* Alternate entry into the jump optimizer. This entry point only rebuilds
78 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
79 instructions. */
80 void
81 rebuild_jump_labels (rtx f)
83 rtx insn;
85 timevar_push (TV_REBUILD_JUMP);
86 init_label_info (f);
87 mark_all_labels (f);
89 /* Keep track of labels used from static data; we don't track them
90 closely enough to delete them here, so make sure their reference
91 count doesn't drop to zero. */
93 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
94 if (LABEL_P (XEXP (insn, 0)))
95 LABEL_NUSES (XEXP (insn, 0))++;
96 timevar_pop (TV_REBUILD_JUMP);
99 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
100 non-fallthru insn. This is not generally true, as multiple barriers
101 may have crept in, or the BARRIER may be separated from the last
102 real insn by one or more NOTEs.
104 This simple pass moves barriers and removes duplicates so that the
105 old code is happy.
107 unsigned int
108 cleanup_barriers (void)
110 rtx insn, next, prev;
111 for (insn = get_insns (); insn; insn = next)
113 next = NEXT_INSN (insn);
114 if (BARRIER_P (insn))
116 prev = prev_nonnote_insn (insn);
117 if (BARRIER_P (prev))
118 delete_insn (insn);
119 else if (prev != PREV_INSN (insn))
120 reorder_insns (insn, insn, prev);
123 return 0;
126 struct tree_opt_pass pass_cleanup_barriers =
128 "barriers", /* name */
129 NULL, /* gate */
130 cleanup_barriers, /* execute */
131 NULL, /* sub */
132 NULL, /* next */
133 0, /* static_pass_number */
134 0, /* tv_id */
135 0, /* properties_required */
136 0, /* properties_provided */
137 0, /* properties_destroyed */
138 0, /* todo_flags_start */
139 TODO_dump_func, /* todo_flags_finish */
140 0 /* letter */
143 unsigned int
144 purge_line_number_notes (void)
146 rtx last_note = 0;
147 rtx insn;
148 /* Delete extraneous line number notes.
149 Note that two consecutive notes for different lines are not really
150 extraneous. There should be some indication where that line belonged,
151 even if it became empty. */
153 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
154 if (NOTE_P (insn))
156 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
157 /* Any previous line note was for the prologue; gdb wants a new
158 note after the prologue even if it is for the same line. */
159 last_note = NULL_RTX;
160 else if (NOTE_LINE_NUMBER (insn) >= 0)
162 /* Delete this note if it is identical to previous note. */
163 if (last_note
164 #ifdef USE_MAPPED_LOCATION
165 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last_note)
166 #else
167 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
168 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note)
169 #endif
172 delete_related_insns (insn);
173 continue;
176 last_note = insn;
179 return 0;
182 struct tree_opt_pass pass_purge_lineno_notes =
184 "elnotes", /* name */
185 NULL, /* gate */
186 purge_line_number_notes, /* execute */
187 NULL, /* sub */
188 NULL, /* next */
189 0, /* static_pass_number */
190 0, /* tv_id */
191 0, /* properties_required */
192 0, /* properties_provided */
193 0, /* properties_destroyed */
194 0, /* todo_flags_start */
195 TODO_dump_func, /* todo_flags_finish */
196 0 /* letter */
200 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
201 notes whose labels don't occur in the insn any more. Returns the
202 largest INSN_UID found. */
203 static void
204 init_label_info (rtx f)
206 rtx insn;
208 for (insn = f; insn; insn = NEXT_INSN (insn))
209 if (LABEL_P (insn))
210 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
211 else if (JUMP_P (insn))
212 JUMP_LABEL (insn) = 0;
213 else if (NONJUMP_INSN_P (insn) || CALL_P (insn))
215 rtx note, next;
217 for (note = REG_NOTES (insn); note; note = next)
219 next = XEXP (note, 1);
220 if (REG_NOTE_KIND (note) == REG_LABEL
221 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
222 remove_note (insn, note);
227 /* Mark the label each jump jumps to.
228 Combine consecutive labels, and count uses of labels. */
230 static void
231 mark_all_labels (rtx f)
233 rtx insn;
235 for (insn = f; insn; insn = NEXT_INSN (insn))
236 if (INSN_P (insn))
238 mark_jump_label (PATTERN (insn), insn, 0);
239 if (! INSN_DELETED_P (insn) && JUMP_P (insn))
241 /* When we know the LABEL_REF contained in a REG used in
242 an indirect jump, we'll have a REG_LABEL note so that
243 flow can tell where it's going. */
244 if (JUMP_LABEL (insn) == 0)
246 rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
247 if (label_note)
249 /* But a LABEL_REF around the REG_LABEL note, so
250 that we can canonicalize it. */
251 rtx label_ref = gen_rtx_LABEL_REF (Pmode,
252 XEXP (label_note, 0));
254 mark_jump_label (label_ref, insn, 0);
255 XEXP (label_note, 0) = XEXP (label_ref, 0);
256 JUMP_LABEL (insn) = XEXP (label_note, 0);
263 /* Move all block-beg, block-end and loop-beg notes between START and END out
264 before START. START and END may be such notes. Returns the values of the
265 new starting and ending insns, which may be different if the original ones
266 were such notes. Return true if there were only such notes and no real
267 instructions. */
269 bool
270 squeeze_notes (rtx* startp, rtx* endp)
272 rtx start = *startp;
273 rtx end = *endp;
275 rtx insn;
276 rtx next;
277 rtx last = NULL;
278 rtx past_end = NEXT_INSN (end);
280 for (insn = start; insn != past_end; insn = next)
282 next = NEXT_INSN (insn);
283 if (NOTE_P (insn)
284 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
285 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG))
287 /* BLOCK_BEG or BLOCK_END notes only exist in the `final' pass. */
288 gcc_assert (NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_BEG
289 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_END);
291 if (insn == start)
292 start = next;
293 else
295 rtx prev = PREV_INSN (insn);
296 PREV_INSN (insn) = PREV_INSN (start);
297 NEXT_INSN (insn) = start;
298 NEXT_INSN (PREV_INSN (insn)) = insn;
299 PREV_INSN (NEXT_INSN (insn)) = insn;
300 NEXT_INSN (prev) = next;
301 PREV_INSN (next) = prev;
304 else
305 last = insn;
308 /* There were no real instructions. */
309 if (start == past_end)
310 return true;
312 end = last;
314 *startp = start;
315 *endp = end;
316 return false;
319 /* Return the label before INSN, or put a new label there. */
322 get_label_before (rtx insn)
324 rtx label;
326 /* Find an existing label at this point
327 or make a new one if there is none. */
328 label = prev_nonnote_insn (insn);
330 if (label == 0 || !LABEL_P (label))
332 rtx prev = PREV_INSN (insn);
334 label = gen_label_rtx ();
335 emit_label_after (label, prev);
336 LABEL_NUSES (label) = 0;
338 return label;
341 /* Return the label after INSN, or put a new label there. */
344 get_label_after (rtx insn)
346 rtx label;
348 /* Find an existing label at this point
349 or make a new one if there is none. */
350 label = next_nonnote_insn (insn);
352 if (label == 0 || !LABEL_P (label))
354 label = gen_label_rtx ();
355 emit_label_after (label, insn);
356 LABEL_NUSES (label) = 0;
358 return label;
361 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
362 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
363 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
364 know whether it's source is floating point or integer comparison. Machine
365 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
366 to help this function avoid overhead in these cases. */
367 enum rtx_code
368 reversed_comparison_code_parts (enum rtx_code code, rtx arg0, rtx arg1, rtx insn)
370 enum machine_mode mode;
372 /* If this is not actually a comparison, we can't reverse it. */
373 if (GET_RTX_CLASS (code) != RTX_COMPARE
374 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
375 return UNKNOWN;
377 mode = GET_MODE (arg0);
378 if (mode == VOIDmode)
379 mode = GET_MODE (arg1);
381 /* First see if machine description supplies us way to reverse the
382 comparison. Give it priority over everything else to allow
383 machine description to do tricks. */
384 if (GET_MODE_CLASS (mode) == MODE_CC
385 && REVERSIBLE_CC_MODE (mode))
387 #ifdef REVERSE_CONDITION
388 return REVERSE_CONDITION (code, mode);
389 #endif
390 return reverse_condition (code);
393 /* Try a few special cases based on the comparison code. */
394 switch (code)
396 case GEU:
397 case GTU:
398 case LEU:
399 case LTU:
400 case NE:
401 case EQ:
402 /* It is always safe to reverse EQ and NE, even for the floating
403 point. Similarly the unsigned comparisons are never used for
404 floating point so we can reverse them in the default way. */
405 return reverse_condition (code);
406 case ORDERED:
407 case UNORDERED:
408 case LTGT:
409 case UNEQ:
410 /* In case we already see unordered comparison, we can be sure to
411 be dealing with floating point so we don't need any more tests. */
412 return reverse_condition_maybe_unordered (code);
413 case UNLT:
414 case UNLE:
415 case UNGT:
416 case UNGE:
417 /* We don't have safe way to reverse these yet. */
418 return UNKNOWN;
419 default:
420 break;
423 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
425 rtx prev;
426 /* Try to search for the comparison to determine the real mode.
427 This code is expensive, but with sane machine description it
428 will be never used, since REVERSIBLE_CC_MODE will return true
429 in all cases. */
430 if (! insn)
431 return UNKNOWN;
433 for (prev = prev_nonnote_insn (insn);
434 prev != 0 && !LABEL_P (prev);
435 prev = prev_nonnote_insn (prev))
437 rtx set = set_of (arg0, prev);
438 if (set && GET_CODE (set) == SET
439 && rtx_equal_p (SET_DEST (set), arg0))
441 rtx src = SET_SRC (set);
443 if (GET_CODE (src) == COMPARE)
445 rtx comparison = src;
446 arg0 = XEXP (src, 0);
447 mode = GET_MODE (arg0);
448 if (mode == VOIDmode)
449 mode = GET_MODE (XEXP (comparison, 1));
450 break;
452 /* We can get past reg-reg moves. This may be useful for model
453 of i387 comparisons that first move flag registers around. */
454 if (REG_P (src))
456 arg0 = src;
457 continue;
460 /* If register is clobbered in some ununderstandable way,
461 give up. */
462 if (set)
463 return UNKNOWN;
467 /* Test for an integer condition, or a floating-point comparison
468 in which NaNs can be ignored. */
469 if (GET_CODE (arg0) == CONST_INT
470 || (GET_MODE (arg0) != VOIDmode
471 && GET_MODE_CLASS (mode) != MODE_CC
472 && !HONOR_NANS (mode)))
473 return reverse_condition (code);
475 return UNKNOWN;
478 /* A wrapper around the previous function to take COMPARISON as rtx
479 expression. This simplifies many callers. */
480 enum rtx_code
481 reversed_comparison_code (rtx comparison, rtx insn)
483 if (!COMPARISON_P (comparison))
484 return UNKNOWN;
485 return reversed_comparison_code_parts (GET_CODE (comparison),
486 XEXP (comparison, 0),
487 XEXP (comparison, 1), insn);
490 /* Return comparison with reversed code of EXP.
491 Return NULL_RTX in case we fail to do the reversal. */
493 reversed_comparison (rtx exp, enum machine_mode mode)
495 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
496 if (reversed_code == UNKNOWN)
497 return NULL_RTX;
498 else
499 return simplify_gen_relational (reversed_code, mode, VOIDmode,
500 XEXP (exp, 0), XEXP (exp, 1));
504 /* Given an rtx-code for a comparison, return the code for the negated
505 comparison. If no such code exists, return UNKNOWN.
507 WATCH OUT! reverse_condition is not safe to use on a jump that might
508 be acting on the results of an IEEE floating point comparison, because
509 of the special treatment of non-signaling nans in comparisons.
510 Use reversed_comparison_code instead. */
512 enum rtx_code
513 reverse_condition (enum rtx_code code)
515 switch (code)
517 case EQ:
518 return NE;
519 case NE:
520 return EQ;
521 case GT:
522 return LE;
523 case GE:
524 return LT;
525 case LT:
526 return GE;
527 case LE:
528 return GT;
529 case GTU:
530 return LEU;
531 case GEU:
532 return LTU;
533 case LTU:
534 return GEU;
535 case LEU:
536 return GTU;
537 case UNORDERED:
538 return ORDERED;
539 case ORDERED:
540 return UNORDERED;
542 case UNLT:
543 case UNLE:
544 case UNGT:
545 case UNGE:
546 case UNEQ:
547 case LTGT:
548 return UNKNOWN;
550 default:
551 gcc_unreachable ();
555 /* Similar, but we're allowed to generate unordered comparisons, which
556 makes it safe for IEEE floating-point. Of course, we have to recognize
557 that the target will support them too... */
559 enum rtx_code
560 reverse_condition_maybe_unordered (enum rtx_code code)
562 switch (code)
564 case EQ:
565 return NE;
566 case NE:
567 return EQ;
568 case GT:
569 return UNLE;
570 case GE:
571 return UNLT;
572 case LT:
573 return UNGE;
574 case LE:
575 return UNGT;
576 case LTGT:
577 return UNEQ;
578 case UNORDERED:
579 return ORDERED;
580 case ORDERED:
581 return UNORDERED;
582 case UNLT:
583 return GE;
584 case UNLE:
585 return GT;
586 case UNGT:
587 return LE;
588 case UNGE:
589 return LT;
590 case UNEQ:
591 return LTGT;
593 default:
594 gcc_unreachable ();
598 /* Similar, but return the code when two operands of a comparison are swapped.
599 This IS safe for IEEE floating-point. */
601 enum rtx_code
602 swap_condition (enum rtx_code code)
604 switch (code)
606 case EQ:
607 case NE:
608 case UNORDERED:
609 case ORDERED:
610 case UNEQ:
611 case LTGT:
612 return code;
614 case GT:
615 return LT;
616 case GE:
617 return LE;
618 case LT:
619 return GT;
620 case LE:
621 return GE;
622 case GTU:
623 return LTU;
624 case GEU:
625 return LEU;
626 case LTU:
627 return GTU;
628 case LEU:
629 return GEU;
630 case UNLT:
631 return UNGT;
632 case UNLE:
633 return UNGE;
634 case UNGT:
635 return UNLT;
636 case UNGE:
637 return UNLE;
639 default:
640 gcc_unreachable ();
644 /* Given a comparison CODE, return the corresponding unsigned comparison.
645 If CODE is an equality comparison or already an unsigned comparison,
646 CODE is returned. */
648 enum rtx_code
649 unsigned_condition (enum rtx_code code)
651 switch (code)
653 case EQ:
654 case NE:
655 case GTU:
656 case GEU:
657 case LTU:
658 case LEU:
659 return code;
661 case GT:
662 return GTU;
663 case GE:
664 return GEU;
665 case LT:
666 return LTU;
667 case LE:
668 return LEU;
670 default:
671 gcc_unreachable ();
675 /* Similarly, return the signed version of a comparison. */
677 enum rtx_code
678 signed_condition (enum rtx_code code)
680 switch (code)
682 case EQ:
683 case NE:
684 case GT:
685 case GE:
686 case LT:
687 case LE:
688 return code;
690 case GTU:
691 return GT;
692 case GEU:
693 return GE;
694 case LTU:
695 return LT;
696 case LEU:
697 return LE;
699 default:
700 gcc_unreachable ();
704 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
705 truth of CODE1 implies the truth of CODE2. */
708 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
710 /* UNKNOWN comparison codes can happen as a result of trying to revert
711 comparison codes.
712 They can't match anything, so we have to reject them here. */
713 if (code1 == UNKNOWN || code2 == UNKNOWN)
714 return 0;
716 if (code1 == code2)
717 return 1;
719 switch (code1)
721 case UNEQ:
722 if (code2 == UNLE || code2 == UNGE)
723 return 1;
724 break;
726 case EQ:
727 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
728 || code2 == ORDERED)
729 return 1;
730 break;
732 case UNLT:
733 if (code2 == UNLE || code2 == NE)
734 return 1;
735 break;
737 case LT:
738 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
739 return 1;
740 break;
742 case UNGT:
743 if (code2 == UNGE || code2 == NE)
744 return 1;
745 break;
747 case GT:
748 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
749 return 1;
750 break;
752 case GE:
753 case LE:
754 if (code2 == ORDERED)
755 return 1;
756 break;
758 case LTGT:
759 if (code2 == NE || code2 == ORDERED)
760 return 1;
761 break;
763 case LTU:
764 if (code2 == LEU || code2 == NE)
765 return 1;
766 break;
768 case GTU:
769 if (code2 == GEU || code2 == NE)
770 return 1;
771 break;
773 case UNORDERED:
774 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
775 || code2 == UNGE || code2 == UNGT)
776 return 1;
777 break;
779 default:
780 break;
783 return 0;
786 /* Return 1 if INSN is an unconditional jump and nothing else. */
789 simplejump_p (rtx insn)
791 return (JUMP_P (insn)
792 && GET_CODE (PATTERN (insn)) == SET
793 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
794 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
797 /* Return nonzero if INSN is a (possibly) conditional jump
798 and nothing more.
800 Use of this function is deprecated, since we need to support combined
801 branch and compare insns. Use any_condjump_p instead whenever possible. */
804 condjump_p (rtx insn)
806 rtx x = PATTERN (insn);
808 if (GET_CODE (x) != SET
809 || GET_CODE (SET_DEST (x)) != PC)
810 return 0;
812 x = SET_SRC (x);
813 if (GET_CODE (x) == LABEL_REF)
814 return 1;
815 else
816 return (GET_CODE (x) == IF_THEN_ELSE
817 && ((GET_CODE (XEXP (x, 2)) == PC
818 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
819 || GET_CODE (XEXP (x, 1)) == RETURN))
820 || (GET_CODE (XEXP (x, 1)) == PC
821 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
822 || GET_CODE (XEXP (x, 2)) == RETURN))));
825 /* Return nonzero if INSN is a (possibly) conditional jump inside a
826 PARALLEL.
828 Use this function is deprecated, since we need to support combined
829 branch and compare insns. Use any_condjump_p instead whenever possible. */
832 condjump_in_parallel_p (rtx insn)
834 rtx x = PATTERN (insn);
836 if (GET_CODE (x) != PARALLEL)
837 return 0;
838 else
839 x = XVECEXP (x, 0, 0);
841 if (GET_CODE (x) != SET)
842 return 0;
843 if (GET_CODE (SET_DEST (x)) != PC)
844 return 0;
845 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
846 return 1;
847 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
848 return 0;
849 if (XEXP (SET_SRC (x), 2) == pc_rtx
850 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
851 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
852 return 1;
853 if (XEXP (SET_SRC (x), 1) == pc_rtx
854 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
855 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
856 return 1;
857 return 0;
860 /* Return set of PC, otherwise NULL. */
863 pc_set (rtx insn)
865 rtx pat;
866 if (!JUMP_P (insn))
867 return NULL_RTX;
868 pat = PATTERN (insn);
870 /* The set is allowed to appear either as the insn pattern or
871 the first set in a PARALLEL. */
872 if (GET_CODE (pat) == PARALLEL)
873 pat = XVECEXP (pat, 0, 0);
874 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
875 return pat;
877 return NULL_RTX;
880 /* Return true when insn is an unconditional direct jump,
881 possibly bundled inside a PARALLEL. */
884 any_uncondjump_p (rtx insn)
886 rtx x = pc_set (insn);
887 if (!x)
888 return 0;
889 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
890 return 0;
891 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
892 return 0;
893 return 1;
896 /* Return true when insn is a conditional jump. This function works for
897 instructions containing PC sets in PARALLELs. The instruction may have
898 various other effects so before removing the jump you must verify
899 onlyjump_p.
901 Note that unlike condjump_p it returns false for unconditional jumps. */
904 any_condjump_p (rtx insn)
906 rtx x = pc_set (insn);
907 enum rtx_code a, b;
909 if (!x)
910 return 0;
911 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
912 return 0;
914 a = GET_CODE (XEXP (SET_SRC (x), 1));
915 b = GET_CODE (XEXP (SET_SRC (x), 2));
917 return ((b == PC && (a == LABEL_REF || a == RETURN))
918 || (a == PC && (b == LABEL_REF || b == RETURN)));
921 /* Return the label of a conditional jump. */
924 condjump_label (rtx insn)
926 rtx x = pc_set (insn);
928 if (!x)
929 return NULL_RTX;
930 x = SET_SRC (x);
931 if (GET_CODE (x) == LABEL_REF)
932 return x;
933 if (GET_CODE (x) != IF_THEN_ELSE)
934 return NULL_RTX;
935 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
936 return XEXP (x, 1);
937 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
938 return XEXP (x, 2);
939 return NULL_RTX;
942 /* Return true if INSN is a (possibly conditional) return insn. */
944 static int
945 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
947 rtx x = *loc;
949 return x && (GET_CODE (x) == RETURN
950 || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
954 returnjump_p (rtx insn)
956 if (!JUMP_P (insn))
957 return 0;
958 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
961 /* Return true if INSN is a jump that only transfers control and
962 nothing more. */
965 onlyjump_p (rtx insn)
967 rtx set;
969 if (!JUMP_P (insn))
970 return 0;
972 set = single_set (insn);
973 if (set == NULL)
974 return 0;
975 if (GET_CODE (SET_DEST (set)) != PC)
976 return 0;
977 if (side_effects_p (SET_SRC (set)))
978 return 0;
980 return 1;
983 #ifdef HAVE_cc0
985 /* Return nonzero if X is an RTX that only sets the condition codes
986 and has no side effects. */
989 only_sets_cc0_p (rtx x)
991 if (! x)
992 return 0;
994 if (INSN_P (x))
995 x = PATTERN (x);
997 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1000 /* Return 1 if X is an RTX that does nothing but set the condition codes
1001 and CLOBBER or USE registers.
1002 Return -1 if X does explicitly set the condition codes,
1003 but also does other things. */
1006 sets_cc0_p (rtx x)
1008 if (! x)
1009 return 0;
1011 if (INSN_P (x))
1012 x = PATTERN (x);
1014 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1015 return 1;
1016 if (GET_CODE (x) == PARALLEL)
1018 int i;
1019 int sets_cc0 = 0;
1020 int other_things = 0;
1021 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1023 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1024 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1025 sets_cc0 = 1;
1026 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1027 other_things = 1;
1029 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1031 return 0;
1033 #endif
1035 /* Follow any unconditional jump at LABEL;
1036 return the ultimate label reached by any such chain of jumps.
1037 Return null if the chain ultimately leads to a return instruction.
1038 If LABEL is not followed by a jump, return LABEL.
1039 If the chain loops or we can't find end, return LABEL,
1040 since that tells caller to avoid changing the insn.
1042 If RELOAD_COMPLETED is 0, we do not chain across a USE or CLOBBER. */
1045 follow_jumps (rtx label)
1047 rtx insn;
1048 rtx next;
1049 rtx value = label;
1050 int depth;
1052 for (depth = 0;
1053 (depth < 10
1054 && (insn = next_active_insn (value)) != 0
1055 && JUMP_P (insn)
1056 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
1057 && onlyjump_p (insn))
1058 || GET_CODE (PATTERN (insn)) == RETURN)
1059 && (next = NEXT_INSN (insn))
1060 && BARRIER_P (next));
1061 depth++)
1063 rtx tem;
1064 if (!reload_completed && flag_test_coverage)
1066 /* ??? Optional. Disables some optimizations, but makes
1067 gcov output more accurate with -O. */
1068 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
1069 if (NOTE_P (tem) && NOTE_LINE_NUMBER (tem) > 0)
1070 return value;
1073 /* If we have found a cycle, make the insn jump to itself. */
1074 if (JUMP_LABEL (insn) == label)
1075 return label;
1077 tem = next_active_insn (JUMP_LABEL (insn));
1078 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
1079 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
1080 break;
1082 value = JUMP_LABEL (insn);
1084 if (depth == 10)
1085 return label;
1086 return value;
1090 /* Find all CODE_LABELs referred to in X, and increment their use counts.
1091 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
1092 in INSN, then store one of them in JUMP_LABEL (INSN).
1093 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
1094 referenced in INSN, add a REG_LABEL note containing that label to INSN.
1095 Also, when there are consecutive labels, canonicalize on the last of them.
1097 Note that two labels separated by a loop-beginning note
1098 must be kept distinct if we have not yet done loop-optimization,
1099 because the gap between them is where loop-optimize
1100 will want to move invariant code to. CROSS_JUMP tells us
1101 that loop-optimization is done with. */
1103 void
1104 mark_jump_label (rtx x, rtx insn, int in_mem)
1106 RTX_CODE code = GET_CODE (x);
1107 int i;
1108 const char *fmt;
1110 switch (code)
1112 case PC:
1113 case CC0:
1114 case REG:
1115 case CONST_INT:
1116 case CONST_DOUBLE:
1117 case CLOBBER:
1118 case CALL:
1119 return;
1121 case MEM:
1122 in_mem = 1;
1123 break;
1125 case SYMBOL_REF:
1126 if (!in_mem)
1127 return;
1129 /* If this is a constant-pool reference, see if it is a label. */
1130 if (CONSTANT_POOL_ADDRESS_P (x))
1131 mark_jump_label (get_pool_constant (x), insn, in_mem);
1132 break;
1134 case LABEL_REF:
1136 rtx label = XEXP (x, 0);
1138 /* Ignore remaining references to unreachable labels that
1139 have been deleted. */
1140 if (NOTE_P (label)
1141 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
1142 break;
1144 gcc_assert (LABEL_P (label));
1146 /* Ignore references to labels of containing functions. */
1147 if (LABEL_REF_NONLOCAL_P (x))
1148 break;
1150 XEXP (x, 0) = label;
1151 if (! insn || ! INSN_DELETED_P (insn))
1152 ++LABEL_NUSES (label);
1154 if (insn)
1156 if (JUMP_P (insn))
1157 JUMP_LABEL (insn) = label;
1158 else
1160 /* Add a REG_LABEL note for LABEL unless there already
1161 is one. All uses of a label, except for labels
1162 that are the targets of jumps, must have a
1163 REG_LABEL note. */
1164 if (! find_reg_note (insn, REG_LABEL, label))
1165 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
1166 REG_NOTES (insn));
1169 return;
1172 /* Do walk the labels in a vector, but not the first operand of an
1173 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1174 case ADDR_VEC:
1175 case ADDR_DIFF_VEC:
1176 if (! INSN_DELETED_P (insn))
1178 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1180 for (i = 0; i < XVECLEN (x, eltnum); i++)
1181 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, in_mem);
1183 return;
1185 default:
1186 break;
1189 fmt = GET_RTX_FORMAT (code);
1190 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1192 if (fmt[i] == 'e')
1193 mark_jump_label (XEXP (x, i), insn, in_mem);
1194 else if (fmt[i] == 'E')
1196 int j;
1197 for (j = 0; j < XVECLEN (x, i); j++)
1198 mark_jump_label (XVECEXP (x, i, j), insn, in_mem);
1203 /* If all INSN does is set the pc, delete it,
1204 and delete the insn that set the condition codes for it
1205 if that's what the previous thing was. */
1207 void
1208 delete_jump (rtx insn)
1210 rtx set = single_set (insn);
1212 if (set && GET_CODE (SET_DEST (set)) == PC)
1213 delete_computation (insn);
1216 /* Recursively delete prior insns that compute the value (used only by INSN
1217 which the caller is deleting) stored in the register mentioned by NOTE
1218 which is a REG_DEAD note associated with INSN. */
1220 static void
1221 delete_prior_computation (rtx note, rtx insn)
1223 rtx our_prev;
1224 rtx reg = XEXP (note, 0);
1226 for (our_prev = prev_nonnote_insn (insn);
1227 our_prev && (NONJUMP_INSN_P (our_prev)
1228 || CALL_P (our_prev));
1229 our_prev = prev_nonnote_insn (our_prev))
1231 rtx pat = PATTERN (our_prev);
1233 /* If we reach a CALL which is not calling a const function
1234 or the callee pops the arguments, then give up. */
1235 if (CALL_P (our_prev)
1236 && (! CONST_OR_PURE_CALL_P (our_prev)
1237 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
1238 break;
1240 /* If we reach a SEQUENCE, it is too complex to try to
1241 do anything with it, so give up. We can be run during
1242 and after reorg, so SEQUENCE rtl can legitimately show
1243 up here. */
1244 if (GET_CODE (pat) == SEQUENCE)
1245 break;
1247 if (GET_CODE (pat) == USE
1248 && NONJUMP_INSN_P (XEXP (pat, 0)))
1249 /* reorg creates USEs that look like this. We leave them
1250 alone because reorg needs them for its own purposes. */
1251 break;
1253 if (reg_set_p (reg, pat))
1255 if (side_effects_p (pat) && !CALL_P (our_prev))
1256 break;
1258 if (GET_CODE (pat) == PARALLEL)
1260 /* If we find a SET of something else, we can't
1261 delete the insn. */
1263 int i;
1265 for (i = 0; i < XVECLEN (pat, 0); i++)
1267 rtx part = XVECEXP (pat, 0, i);
1269 if (GET_CODE (part) == SET
1270 && SET_DEST (part) != reg)
1271 break;
1274 if (i == XVECLEN (pat, 0))
1275 delete_computation (our_prev);
1277 else if (GET_CODE (pat) == SET
1278 && REG_P (SET_DEST (pat)))
1280 int dest_regno = REGNO (SET_DEST (pat));
1281 int dest_endregno
1282 = (dest_regno
1283 + (dest_regno < FIRST_PSEUDO_REGISTER
1284 ? hard_regno_nregs[dest_regno]
1285 [GET_MODE (SET_DEST (pat))] : 1));
1286 int regno = REGNO (reg);
1287 int endregno
1288 = (regno
1289 + (regno < FIRST_PSEUDO_REGISTER
1290 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1));
1292 if (dest_regno >= regno
1293 && dest_endregno <= endregno)
1294 delete_computation (our_prev);
1296 /* We may have a multi-word hard register and some, but not
1297 all, of the words of the register are needed in subsequent
1298 insns. Write REG_UNUSED notes for those parts that were not
1299 needed. */
1300 else if (dest_regno <= regno
1301 && dest_endregno >= endregno)
1303 int i;
1305 REG_NOTES (our_prev)
1306 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
1307 REG_NOTES (our_prev));
1309 for (i = dest_regno; i < dest_endregno; i++)
1310 if (! find_regno_note (our_prev, REG_UNUSED, i))
1311 break;
1313 if (i == dest_endregno)
1314 delete_computation (our_prev);
1318 break;
1321 /* If PAT references the register that dies here, it is an
1322 additional use. Hence any prior SET isn't dead. However, this
1323 insn becomes the new place for the REG_DEAD note. */
1324 if (reg_overlap_mentioned_p (reg, pat))
1326 XEXP (note, 1) = REG_NOTES (our_prev);
1327 REG_NOTES (our_prev) = note;
1328 break;
1333 /* Delete INSN and recursively delete insns that compute values used only
1334 by INSN. This uses the REG_DEAD notes computed during flow analysis.
1335 If we are running before flow.c, we need do nothing since flow.c will
1336 delete dead code. We also can't know if the registers being used are
1337 dead or not at this point.
1339 Otherwise, look at all our REG_DEAD notes. If a previous insn does
1340 nothing other than set a register that dies in this insn, we can delete
1341 that insn as well.
1343 On machines with CC0, if CC0 is used in this insn, we may be able to
1344 delete the insn that set it. */
1346 static void
1347 delete_computation (rtx insn)
1349 rtx note, next;
1351 #ifdef HAVE_cc0
1352 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
1354 rtx prev = prev_nonnote_insn (insn);
1355 /* We assume that at this stage
1356 CC's are always set explicitly
1357 and always immediately before the jump that
1358 will use them. So if the previous insn
1359 exists to set the CC's, delete it
1360 (unless it performs auto-increments, etc.). */
1361 if (prev && NONJUMP_INSN_P (prev)
1362 && sets_cc0_p (PATTERN (prev)))
1364 if (sets_cc0_p (PATTERN (prev)) > 0
1365 && ! side_effects_p (PATTERN (prev)))
1366 delete_computation (prev);
1367 else
1368 /* Otherwise, show that cc0 won't be used. */
1369 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
1370 cc0_rtx, REG_NOTES (prev));
1373 #endif
1375 for (note = REG_NOTES (insn); note; note = next)
1377 next = XEXP (note, 1);
1379 if (REG_NOTE_KIND (note) != REG_DEAD
1380 /* Verify that the REG_NOTE is legitimate. */
1381 || !REG_P (XEXP (note, 0)))
1382 continue;
1384 delete_prior_computation (note, insn);
1387 delete_related_insns (insn);
1390 /* Delete insn INSN from the chain of insns and update label ref counts
1391 and delete insns now unreachable.
1393 Returns the first insn after INSN that was not deleted.
1395 Usage of this instruction is deprecated. Use delete_insn instead and
1396 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1399 delete_related_insns (rtx insn)
1401 int was_code_label = (LABEL_P (insn));
1402 rtx note;
1403 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1405 while (next && INSN_DELETED_P (next))
1406 next = NEXT_INSN (next);
1408 /* This insn is already deleted => return first following nondeleted. */
1409 if (INSN_DELETED_P (insn))
1410 return next;
1412 delete_insn (insn);
1414 /* If instruction is followed by a barrier,
1415 delete the barrier too. */
1417 if (next != 0 && BARRIER_P (next))
1418 delete_insn (next);
1420 /* If deleting a jump, decrement the count of the label,
1421 and delete the label if it is now unused. */
1423 if (JUMP_P (insn) && JUMP_LABEL (insn))
1425 rtx lab = JUMP_LABEL (insn), lab_next;
1427 if (LABEL_NUSES (lab) == 0)
1429 /* This can delete NEXT or PREV,
1430 either directly if NEXT is JUMP_LABEL (INSN),
1431 or indirectly through more levels of jumps. */
1432 delete_related_insns (lab);
1434 /* I feel a little doubtful about this loop,
1435 but I see no clean and sure alternative way
1436 to find the first insn after INSN that is not now deleted.
1437 I hope this works. */
1438 while (next && INSN_DELETED_P (next))
1439 next = NEXT_INSN (next);
1440 return next;
1442 else if (tablejump_p (insn, NULL, &lab_next))
1444 /* If we're deleting the tablejump, delete the dispatch table.
1445 We may not be able to kill the label immediately preceding
1446 just yet, as it might be referenced in code leading up to
1447 the tablejump. */
1448 delete_related_insns (lab_next);
1452 /* Likewise if we're deleting a dispatch table. */
1454 if (JUMP_P (insn)
1455 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
1456 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
1458 rtx pat = PATTERN (insn);
1459 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1460 int len = XVECLEN (pat, diff_vec_p);
1462 for (i = 0; i < len; i++)
1463 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1464 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1465 while (next && INSN_DELETED_P (next))
1466 next = NEXT_INSN (next);
1467 return next;
1470 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
1471 if (NONJUMP_INSN_P (insn) || CALL_P (insn))
1472 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1473 if (REG_NOTE_KIND (note) == REG_LABEL
1474 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1475 && LABEL_P (XEXP (note, 0)))
1476 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1477 delete_related_insns (XEXP (note, 0));
1479 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1480 prev = PREV_INSN (prev);
1482 /* If INSN was a label and a dispatch table follows it,
1483 delete the dispatch table. The tablejump must have gone already.
1484 It isn't useful to fall through into a table. */
1486 if (was_code_label
1487 && NEXT_INSN (insn) != 0
1488 && JUMP_P (NEXT_INSN (insn))
1489 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
1490 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
1491 next = delete_related_insns (NEXT_INSN (insn));
1493 /* If INSN was a label, delete insns following it if now unreachable. */
1495 if (was_code_label && prev && BARRIER_P (prev))
1497 enum rtx_code code;
1498 while (next)
1500 code = GET_CODE (next);
1501 if (code == NOTE
1502 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
1503 next = NEXT_INSN (next);
1504 /* Keep going past other deleted labels to delete what follows. */
1505 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1506 next = NEXT_INSN (next);
1507 else if (code == BARRIER || INSN_P (next))
1508 /* Note: if this deletes a jump, it can cause more
1509 deletion of unreachable code, after a different label.
1510 As long as the value from this recursive call is correct,
1511 this invocation functions correctly. */
1512 next = delete_related_insns (next);
1513 else
1514 break;
1518 return next;
1521 /* Delete a range of insns from FROM to TO, inclusive.
1522 This is for the sake of peephole optimization, so assume
1523 that whatever these insns do will still be done by a new
1524 peephole insn that will replace them. */
1526 void
1527 delete_for_peephole (rtx from, rtx to)
1529 rtx insn = from;
1531 while (1)
1533 rtx next = NEXT_INSN (insn);
1534 rtx prev = PREV_INSN (insn);
1536 if (!NOTE_P (insn))
1538 INSN_DELETED_P (insn) = 1;
1540 /* Patch this insn out of the chain. */
1541 /* We don't do this all at once, because we
1542 must preserve all NOTEs. */
1543 if (prev)
1544 NEXT_INSN (prev) = next;
1546 if (next)
1547 PREV_INSN (next) = prev;
1550 if (insn == to)
1551 break;
1552 insn = next;
1555 /* Note that if TO is an unconditional jump
1556 we *do not* delete the BARRIER that follows,
1557 since the peephole that replaces this sequence
1558 is also an unconditional jump in that case. */
1561 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1562 NLABEL as a return. Accrue modifications into the change group. */
1564 static void
1565 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1567 rtx x = *loc;
1568 RTX_CODE code = GET_CODE (x);
1569 int i;
1570 const char *fmt;
1572 if (code == LABEL_REF)
1574 if (XEXP (x, 0) == olabel)
1576 rtx n;
1577 if (nlabel)
1578 n = gen_rtx_LABEL_REF (Pmode, nlabel);
1579 else
1580 n = gen_rtx_RETURN (VOIDmode);
1582 validate_change (insn, loc, n, 1);
1583 return;
1586 else if (code == RETURN && olabel == 0)
1588 if (nlabel)
1589 x = gen_rtx_LABEL_REF (Pmode, nlabel);
1590 else
1591 x = gen_rtx_RETURN (VOIDmode);
1592 if (loc == &PATTERN (insn))
1593 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1594 validate_change (insn, loc, x, 1);
1595 return;
1598 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1599 && GET_CODE (SET_SRC (x)) == LABEL_REF
1600 && XEXP (SET_SRC (x), 0) == olabel)
1602 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1603 return;
1606 fmt = GET_RTX_FORMAT (code);
1607 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1609 if (fmt[i] == 'e')
1610 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1611 else if (fmt[i] == 'E')
1613 int j;
1614 for (j = 0; j < XVECLEN (x, i); j++)
1615 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1620 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1621 the modifications into the change group. Return false if we did
1622 not see how to do that. */
1625 redirect_jump_1 (rtx jump, rtx nlabel)
1627 int ochanges = num_validated_changes ();
1628 rtx *loc;
1630 if (GET_CODE (PATTERN (jump)) == PARALLEL)
1631 loc = &XVECEXP (PATTERN (jump), 0, 0);
1632 else
1633 loc = &PATTERN (jump);
1635 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1636 return num_validated_changes () > ochanges;
1639 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1640 jump target label is unused as a result, it and the code following
1641 it may be deleted.
1643 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1644 RETURN insn.
1646 The return value will be 1 if the change was made, 0 if it wasn't
1647 (this can only occur for NLABEL == 0). */
1650 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1652 rtx olabel = JUMP_LABEL (jump);
1654 if (nlabel == olabel)
1655 return 1;
1657 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1658 return 0;
1660 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1661 return 1;
1664 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1665 NLABEL in JUMP. If DELETE_UNUSED is non-negative, copy a
1666 NOTE_INSN_FUNCTION_END found after OLABEL to the place after NLABEL.
1667 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1668 count has dropped to zero. */
1669 void
1670 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1671 int invert)
1673 rtx note;
1675 JUMP_LABEL (jump) = nlabel;
1676 if (nlabel)
1677 ++LABEL_NUSES (nlabel);
1679 /* Update labels in any REG_EQUAL note. */
1680 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1682 if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1683 remove_note (jump, note);
1684 else
1686 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1687 confirm_change_group ();
1691 /* If we're eliding the jump over exception cleanups at the end of a
1692 function, move the function end note so that -Wreturn-type works. */
1693 if (olabel && nlabel
1694 && NEXT_INSN (olabel)
1695 && NOTE_P (NEXT_INSN (olabel))
1696 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END
1697 && delete_unused >= 0)
1698 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
1700 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1701 /* Undefined labels will remain outside the insn stream. */
1702 && INSN_UID (olabel))
1703 delete_related_insns (olabel);
1704 if (invert)
1705 invert_br_probabilities (jump);
1708 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1709 modifications into the change group. Return nonzero for success. */
1710 static int
1711 invert_exp_1 (rtx x, rtx insn)
1713 RTX_CODE code = GET_CODE (x);
1715 if (code == IF_THEN_ELSE)
1717 rtx comp = XEXP (x, 0);
1718 rtx tem;
1719 enum rtx_code reversed_code;
1721 /* We can do this in two ways: The preferable way, which can only
1722 be done if this is not an integer comparison, is to reverse
1723 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1724 of the IF_THEN_ELSE. If we can't do either, fail. */
1726 reversed_code = reversed_comparison_code (comp, insn);
1728 if (reversed_code != UNKNOWN)
1730 validate_change (insn, &XEXP (x, 0),
1731 gen_rtx_fmt_ee (reversed_code,
1732 GET_MODE (comp), XEXP (comp, 0),
1733 XEXP (comp, 1)),
1735 return 1;
1738 tem = XEXP (x, 1);
1739 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1740 validate_change (insn, &XEXP (x, 2), tem, 1);
1741 return 1;
1743 else
1744 return 0;
1747 /* Invert the condition of the jump JUMP, and make it jump to label
1748 NLABEL instead of where it jumps now. Accrue changes into the
1749 change group. Return false if we didn't see how to perform the
1750 inversion and redirection. */
1753 invert_jump_1 (rtx jump, rtx nlabel)
1755 rtx x = pc_set (jump);
1756 int ochanges;
1757 int ok;
1759 ochanges = num_validated_changes ();
1760 gcc_assert (x);
1761 ok = invert_exp_1 (SET_SRC (x), jump);
1762 gcc_assert (ok);
1764 if (num_validated_changes () == ochanges)
1765 return 0;
1767 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1768 in Pmode, so checking this is not merely an optimization. */
1769 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1772 /* Invert the condition of the jump JUMP, and make it jump to label
1773 NLABEL instead of where it jumps now. Return true if successful. */
1776 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1778 rtx olabel = JUMP_LABEL (jump);
1780 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1782 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1783 return 1;
1785 cancel_changes (0);
1786 return 0;
1790 /* Like rtx_equal_p except that it considers two REGs as equal
1791 if they renumber to the same value and considers two commutative
1792 operations to be the same if the order of the operands has been
1793 reversed. */
1796 rtx_renumbered_equal_p (rtx x, rtx y)
1798 int i;
1799 enum rtx_code code = GET_CODE (x);
1800 const char *fmt;
1802 if (x == y)
1803 return 1;
1805 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1806 && (REG_P (y) || (GET_CODE (y) == SUBREG
1807 && REG_P (SUBREG_REG (y)))))
1809 int reg_x = -1, reg_y = -1;
1810 int byte_x = 0, byte_y = 0;
1812 if (GET_MODE (x) != GET_MODE (y))
1813 return 0;
1815 /* If we haven't done any renumbering, don't
1816 make any assumptions. */
1817 if (reg_renumber == 0)
1818 return rtx_equal_p (x, y);
1820 if (code == SUBREG)
1822 reg_x = REGNO (SUBREG_REG (x));
1823 byte_x = SUBREG_BYTE (x);
1825 if (reg_renumber[reg_x] >= 0)
1827 reg_x = subreg_regno_offset (reg_renumber[reg_x],
1828 GET_MODE (SUBREG_REG (x)),
1829 byte_x,
1830 GET_MODE (x));
1831 byte_x = 0;
1834 else
1836 reg_x = REGNO (x);
1837 if (reg_renumber[reg_x] >= 0)
1838 reg_x = reg_renumber[reg_x];
1841 if (GET_CODE (y) == SUBREG)
1843 reg_y = REGNO (SUBREG_REG (y));
1844 byte_y = SUBREG_BYTE (y);
1846 if (reg_renumber[reg_y] >= 0)
1848 reg_y = subreg_regno_offset (reg_renumber[reg_y],
1849 GET_MODE (SUBREG_REG (y)),
1850 byte_y,
1851 GET_MODE (y));
1852 byte_y = 0;
1855 else
1857 reg_y = REGNO (y);
1858 if (reg_renumber[reg_y] >= 0)
1859 reg_y = reg_renumber[reg_y];
1862 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1865 /* Now we have disposed of all the cases
1866 in which different rtx codes can match. */
1867 if (code != GET_CODE (y))
1868 return 0;
1870 switch (code)
1872 case PC:
1873 case CC0:
1874 case ADDR_VEC:
1875 case ADDR_DIFF_VEC:
1876 case CONST_INT:
1877 case CONST_DOUBLE:
1878 return 0;
1880 case LABEL_REF:
1881 /* We can't assume nonlocal labels have their following insns yet. */
1882 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1883 return XEXP (x, 0) == XEXP (y, 0);
1885 /* Two label-refs are equivalent if they point at labels
1886 in the same position in the instruction stream. */
1887 return (next_real_insn (XEXP (x, 0))
1888 == next_real_insn (XEXP (y, 0)));
1890 case SYMBOL_REF:
1891 return XSTR (x, 0) == XSTR (y, 0);
1893 case CODE_LABEL:
1894 /* If we didn't match EQ equality above, they aren't the same. */
1895 return 0;
1897 default:
1898 break;
1901 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1903 if (GET_MODE (x) != GET_MODE (y))
1904 return 0;
1906 /* For commutative operations, the RTX match if the operand match in any
1907 order. Also handle the simple binary and unary cases without a loop. */
1908 if (targetm.commutative_p (x, UNKNOWN))
1909 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1910 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1911 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1912 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1913 else if (NON_COMMUTATIVE_P (x))
1914 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1915 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1916 else if (UNARY_P (x))
1917 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1919 /* Compare the elements. If any pair of corresponding elements
1920 fail to match, return 0 for the whole things. */
1922 fmt = GET_RTX_FORMAT (code);
1923 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1925 int j;
1926 switch (fmt[i])
1928 case 'w':
1929 if (XWINT (x, i) != XWINT (y, i))
1930 return 0;
1931 break;
1933 case 'i':
1934 if (XINT (x, i) != XINT (y, i))
1935 return 0;
1936 break;
1938 case 't':
1939 if (XTREE (x, i) != XTREE (y, i))
1940 return 0;
1941 break;
1943 case 's':
1944 if (strcmp (XSTR (x, i), XSTR (y, i)))
1945 return 0;
1946 break;
1948 case 'e':
1949 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1950 return 0;
1951 break;
1953 case 'u':
1954 if (XEXP (x, i) != XEXP (y, i))
1955 return 0;
1956 /* Fall through. */
1957 case '0':
1958 break;
1960 case 'E':
1961 if (XVECLEN (x, i) != XVECLEN (y, i))
1962 return 0;
1963 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1964 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1965 return 0;
1966 break;
1968 default:
1969 gcc_unreachable ();
1972 return 1;
1975 /* If X is a hard register or equivalent to one or a subregister of one,
1976 return the hard register number. If X is a pseudo register that was not
1977 assigned a hard register, return the pseudo register number. Otherwise,
1978 return -1. Any rtx is valid for X. */
1981 true_regnum (rtx x)
1983 if (REG_P (x))
1985 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1986 return reg_renumber[REGNO (x)];
1987 return REGNO (x);
1989 if (GET_CODE (x) == SUBREG)
1991 int base = true_regnum (SUBREG_REG (x));
1992 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
1993 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
1994 GET_MODE (SUBREG_REG (x)),
1995 SUBREG_BYTE (x), GET_MODE (x));
1997 return -1;
2000 /* Return regno of the register REG and handle subregs too. */
2001 unsigned int
2002 reg_or_subregno (rtx reg)
2004 if (GET_CODE (reg) == SUBREG)
2005 reg = SUBREG_REG (reg);
2006 gcc_assert (REG_P (reg));
2007 return REGNO (reg);