2017-02-20 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / reg-stack.c
blob7bf007cea45ef6b2336dd44d47386281626a1987
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
70 * Methodology:
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
76 * asm_operands:
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
100 All explicitly referenced input operands may not "skip" a reg.
101 Otherwise we can have holes in the stack.
103 3. It is possible that if an input dies in an insn, reload might
104 use the input reg for an output reload. Consider this example:
106 asm ("foo" : "=t" (a) : "f" (b));
108 This asm says that input B is not popped by the asm, and that
109 the asm pushes a result onto the reg-stack, i.e., the stack is one
110 deeper after the asm than it was before. But, it is possible that
111 reload will think that it can use the same reg for both the input and
112 the output, if input B dies in this insn.
114 If any input operand uses the "f" constraint, all output reg
115 constraints must use the "&" earlyclobber.
117 The asm above would be written as
119 asm ("foo" : "=&t" (a) : "f" (b));
121 4. Some operands need to be in particular places on the stack. All
122 output operands fall in this category - there is no other way to
123 know which regs the outputs appear in unless the user indicates
124 this in the constraints.
126 Output operands must specifically indicate which reg an output
127 appears in after an asm. "=f" is not allowed: the operand
128 constraints must select a class with a single reg.
130 5. Output operands may not be "inserted" between existing stack regs.
131 Since no 387 opcode uses a read/write operand, all output operands
132 are dead before the asm_operands, and are pushed by the asm_operands.
133 It makes no sense to push anywhere but the top of the reg-stack.
135 Output operands must start at the top of the reg-stack: output
136 operands may not "skip" a reg.
138 6. Some asm statements may need extra stack space for internal
139 calculations. This can be guaranteed by clobbering stack registers
140 unrelated to the inputs and outputs.
142 Here are a couple of reasonable asms to want to write. This asm
143 takes one input, which is internally popped, and produces two outputs.
145 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
147 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148 and replaces them with one output. The user must code the "st(1)"
149 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
151 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
155 #include "config.h"
156 #include "system.h"
157 #include "coretypes.h"
158 #include "backend.h"
159 #include "target.h"
160 #include "rtl.h"
161 #include "tree.h"
162 #include "df.h"
163 #include "insn-config.h"
164 #include "memmodel.h"
165 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
166 #include "recog.h"
167 #include "varasm.h"
168 #include "rtl-error.h"
169 #include "cfgrtl.h"
170 #include "cfganal.h"
171 #include "cfgbuild.h"
172 #include "cfgcleanup.h"
173 #include "reload.h"
174 #include "tree-pass.h"
175 #include "rtl-iter.h"
177 #ifdef STACK_REGS
179 /* We use this array to cache info about insns, because otherwise we
180 spend too much time in stack_regs_mentioned_p.
182 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
183 the insn uses stack registers, two indicates the insn does not use
184 stack registers. */
185 static vec<char> stack_regs_mentioned_data;
187 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
189 int regstack_completed = 0;
191 /* This is the basic stack record. TOP is an index into REG[] such
192 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
194 If TOP is -2, REG[] is not yet initialized. Stack initialization
195 consists of placing each live reg in array `reg' and setting `top'
196 appropriately.
198 REG_SET indicates which registers are live. */
200 typedef struct stack_def
202 int top; /* index to top stack element */
203 HARD_REG_SET reg_set; /* set of live registers */
204 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
205 } *stack_ptr;
207 /* This is used to carry information about basic blocks. It is
208 attached to the AUX field of the standard CFG block. */
210 typedef struct block_info_def
212 struct stack_def stack_in; /* Input stack configuration. */
213 struct stack_def stack_out; /* Output stack configuration. */
214 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
215 int done; /* True if block already converted. */
216 int predecessors; /* Number of predecessors that need
217 to be visited. */
218 } *block_info;
220 #define BLOCK_INFO(B) ((block_info) (B)->aux)
222 /* Passed to change_stack to indicate where to emit insns. */
223 enum emit_where
225 EMIT_AFTER,
226 EMIT_BEFORE
229 /* The block we're currently working on. */
230 static basic_block current_block;
232 /* In the current_block, whether we're processing the first register
233 stack or call instruction, i.e. the regstack is currently the
234 same as BLOCK_INFO(current_block)->stack_in. */
235 static bool starting_stack_p;
237 /* This is the register file for all register after conversion. */
238 static rtx
239 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
241 #define FP_MODE_REG(regno,mode) \
242 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
244 /* Used to initialize uninitialized registers. */
245 static rtx not_a_num;
247 /* Forward declarations */
249 static int stack_regs_mentioned_p (const_rtx pat);
250 static void pop_stack (stack_ptr, int);
251 static rtx *get_true_reg (rtx *);
253 static int check_asm_stack_operands (rtx_insn *);
254 static void get_asm_operands_in_out (rtx, int *, int *);
255 static rtx stack_result (tree);
256 static void replace_reg (rtx *, int);
257 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
258 static int get_hard_regnum (stack_ptr, rtx);
259 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
260 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
261 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
262 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
263 static int swap_rtx_condition_1 (rtx);
264 static int swap_rtx_condition (rtx_insn *);
265 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx);
266 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
267 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
268 static bool subst_stack_regs (rtx_insn *, stack_ptr);
269 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
270 static void print_stack (FILE *, stack_ptr);
271 static rtx_insn *next_flags_user (rtx_insn *);
273 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
275 static int
276 stack_regs_mentioned_p (const_rtx pat)
278 const char *fmt;
279 int i;
281 if (STACK_REG_P (pat))
282 return 1;
284 fmt = GET_RTX_FORMAT (GET_CODE (pat));
285 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
287 if (fmt[i] == 'E')
289 int j;
291 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
292 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
293 return 1;
295 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
296 return 1;
299 return 0;
302 /* Return nonzero if INSN mentions stacked registers, else return zero. */
305 stack_regs_mentioned (const_rtx insn)
307 unsigned int uid, max;
308 int test;
310 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
311 return 0;
313 uid = INSN_UID (insn);
314 max = stack_regs_mentioned_data.length ();
315 if (uid >= max)
317 /* Allocate some extra size to avoid too many reallocs, but
318 do not grow too quickly. */
319 max = uid + uid / 20 + 1;
320 stack_regs_mentioned_data.safe_grow_cleared (max);
323 test = stack_regs_mentioned_data[uid];
324 if (test == 0)
326 /* This insn has yet to be examined. Do so now. */
327 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
328 stack_regs_mentioned_data[uid] = test;
331 return test == 1;
334 static rtx ix86_flags_rtx;
336 static rtx_insn *
337 next_flags_user (rtx_insn *insn)
339 /* Search forward looking for the first use of this value.
340 Stop at block boundaries. */
342 while (insn != BB_END (current_block))
344 insn = NEXT_INSN (insn);
346 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
347 return insn;
349 if (CALL_P (insn))
350 return NULL;
352 return NULL;
355 /* Reorganize the stack into ascending numbers, before this insn. */
357 static void
358 straighten_stack (rtx_insn *insn, stack_ptr regstack)
360 struct stack_def temp_stack;
361 int top;
363 /* If there is only a single register on the stack, then the stack is
364 already in increasing order and no reorganization is needed.
366 Similarly if the stack is empty. */
367 if (regstack->top <= 0)
368 return;
370 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
372 for (top = temp_stack.top = regstack->top; top >= 0; top--)
373 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
375 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
378 /* Pop a register from the stack. */
380 static void
381 pop_stack (stack_ptr regstack, int regno)
383 int top = regstack->top;
385 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
386 regstack->top--;
387 /* If regno was not at the top of stack then adjust stack. */
388 if (regstack->reg [top] != regno)
390 int i;
391 for (i = regstack->top; i >= 0; i--)
392 if (regstack->reg [i] == regno)
394 int j;
395 for (j = i; j < top; j++)
396 regstack->reg [j] = regstack->reg [j + 1];
397 break;
402 /* Return a pointer to the REG expression within PAT. If PAT is not a
403 REG, possible enclosed by a conversion rtx, return the inner part of
404 PAT that stopped the search. */
406 static rtx *
407 get_true_reg (rtx *pat)
409 for (;;)
410 switch (GET_CODE (*pat))
412 case SUBREG:
413 /* Eliminate FP subregister accesses in favor of the
414 actual FP register in use. */
416 rtx subreg;
417 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
419 int regno_off = subreg_regno_offset (REGNO (subreg),
420 GET_MODE (subreg),
421 SUBREG_BYTE (*pat),
422 GET_MODE (*pat));
423 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
424 GET_MODE (subreg));
425 return pat;
427 pat = &XEXP (*pat, 0);
428 break;
430 case FLOAT:
431 case FIX:
432 case FLOAT_EXTEND:
433 pat = &XEXP (*pat, 0);
434 break;
436 case UNSPEC:
437 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
438 || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
439 pat = &XVECEXP (*pat, 0, 0);
440 return pat;
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = &XEXP (*pat, 0);
446 break;
448 default:
449 return pat;
453 /* Set if we find any malformed asms in a block. */
454 static bool any_malformed_asm;
456 /* There are many rules that an asm statement for stack-like regs must
457 follow. Those rules are explained at the top of this file: the rule
458 numbers below refer to that explanation. */
460 static int
461 check_asm_stack_operands (rtx_insn *insn)
463 int i;
464 int n_clobbers;
465 int malformed_asm = 0;
466 rtx body = PATTERN (insn);
468 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469 char implicitly_dies[FIRST_PSEUDO_REGISTER];
470 char explicitly_used[FIRST_PSEUDO_REGISTER];
472 rtx *clobber_reg = 0;
473 int n_inputs, n_outputs;
475 /* Find out what the constraints require. If no constraint
476 alternative matches, this asm is malformed. */
477 extract_constrain_insn (insn);
479 preprocess_constraints (insn);
481 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
483 if (which_alternative < 0)
485 malformed_asm = 1;
486 /* Avoid further trouble with this insn. */
487 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
488 return 0;
490 const operand_alternative *op_alt = which_op_alt ();
492 /* Strip SUBREGs here to make the following code simpler. */
493 for (i = 0; i < recog_data.n_operands; i++)
494 if (GET_CODE (recog_data.operand[i]) == SUBREG
495 && REG_P (SUBREG_REG (recog_data.operand[i])))
496 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
498 /* Set up CLOBBER_REG. */
500 n_clobbers = 0;
502 if (GET_CODE (body) == PARALLEL)
504 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
506 for (i = 0; i < XVECLEN (body, 0); i++)
507 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
509 rtx clobber = XVECEXP (body, 0, i);
510 rtx reg = XEXP (clobber, 0);
512 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
513 reg = SUBREG_REG (reg);
515 if (STACK_REG_P (reg))
517 clobber_reg[n_clobbers] = reg;
518 n_clobbers++;
523 /* Enforce rule #4: Output operands must specifically indicate which
524 reg an output appears in after an asm. "=f" is not allowed: the
525 operand constraints must select a class with a single reg.
527 Also enforce rule #5: Output operands must start at the top of
528 the reg-stack: output operands may not "skip" a reg. */
530 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
531 for (i = 0; i < n_outputs; i++)
532 if (STACK_REG_P (recog_data.operand[i]))
534 if (reg_class_size[(int) op_alt[i].cl] != 1)
536 error_for_asm (insn, "output constraint %d must specify a single register", i);
537 malformed_asm = 1;
539 else
541 int j;
543 for (j = 0; j < n_clobbers; j++)
544 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
546 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
547 i, reg_names [REGNO (clobber_reg[j])]);
548 malformed_asm = 1;
549 break;
551 if (j == n_clobbers)
552 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
557 /* Search for first non-popped reg. */
558 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
559 if (! reg_used_as_output[i])
560 break;
562 /* If there are any other popped regs, that's an error. */
563 for (; i < LAST_STACK_REG + 1; i++)
564 if (reg_used_as_output[i])
565 break;
567 if (i != LAST_STACK_REG + 1)
569 error_for_asm (insn, "output regs must be grouped at top of stack");
570 malformed_asm = 1;
573 /* Enforce rule #2: All implicitly popped input regs must be closer
574 to the top of the reg-stack than any input that is not implicitly
575 popped. */
577 memset (implicitly_dies, 0, sizeof (implicitly_dies));
578 memset (explicitly_used, 0, sizeof (explicitly_used));
579 for (i = n_outputs; i < n_outputs + n_inputs; i++)
580 if (STACK_REG_P (recog_data.operand[i]))
582 /* An input reg is implicitly popped if it is tied to an
583 output, or if there is a CLOBBER for it. */
584 int j;
586 for (j = 0; j < n_clobbers; j++)
587 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
588 break;
590 if (j < n_clobbers || op_alt[i].matches >= 0)
591 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
592 else if (reg_class_size[(int) op_alt[i].cl] == 1)
593 explicitly_used[REGNO (recog_data.operand[i])] = 1;
596 /* Search for first non-popped reg. */
597 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
598 if (! implicitly_dies[i])
599 break;
601 /* If there are any other popped regs, that's an error. */
602 for (; i < LAST_STACK_REG + 1; i++)
603 if (implicitly_dies[i])
604 break;
606 if (i != LAST_STACK_REG + 1)
608 error_for_asm (insn,
609 "implicitly popped regs must be grouped at top of stack");
610 malformed_asm = 1;
613 /* Search for first not-explicitly used reg. */
614 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
615 if (! implicitly_dies[i] && ! explicitly_used[i])
616 break;
618 /* If there are any other explicitly used regs, that's an error. */
619 for (; i < LAST_STACK_REG + 1; i++)
620 if (explicitly_used[i])
621 break;
623 if (i != LAST_STACK_REG + 1)
625 error_for_asm (insn,
626 "explicitly used regs must be grouped at top of stack");
627 malformed_asm = 1;
630 /* Enforce rule #3: If any input operand uses the "f" constraint, all
631 output constraints must use the "&" earlyclobber.
633 ??? Detect this more deterministically by having constrain_asm_operands
634 record any earlyclobber. */
636 for (i = n_outputs; i < n_outputs + n_inputs; i++)
637 if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
639 int j;
641 for (j = 0; j < n_outputs; j++)
642 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
644 error_for_asm (insn,
645 "output operand %d must use %<&%> constraint", j);
646 malformed_asm = 1;
650 if (malformed_asm)
652 /* Avoid further trouble with this insn. */
653 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
654 any_malformed_asm = true;
655 return 0;
658 return 1;
661 /* Calculate the number of inputs and outputs in BODY, an
662 asm_operands. N_OPERANDS is the total number of operands, and
663 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
664 placed. */
666 static void
667 get_asm_operands_in_out (rtx body, int *pout, int *pin)
669 rtx asmop = extract_asm_operands (body);
671 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
672 *pout = (recog_data.n_operands
673 - ASM_OPERANDS_INPUT_LENGTH (asmop)
674 - ASM_OPERANDS_LABEL_LENGTH (asmop));
677 /* If current function returns its result in an fp stack register,
678 return the REG. Otherwise, return 0. */
680 static rtx
681 stack_result (tree decl)
683 rtx result;
685 /* If the value is supposed to be returned in memory, then clearly
686 it is not returned in a stack register. */
687 if (aggregate_value_p (DECL_RESULT (decl), decl))
688 return 0;
690 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
691 if (result != 0)
692 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
693 decl, true);
695 return result != 0 && STACK_REG_P (result) ? result : 0;
700 * This section deals with stack register substitution, and forms the second
701 * pass over the RTL.
704 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
705 the desired hard REGNO. */
707 static void
708 replace_reg (rtx *reg, int regno)
710 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
711 gcc_assert (STACK_REG_P (*reg));
713 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
714 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
716 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
719 /* Remove a note of type NOTE, which must be found, for register
720 number REGNO from INSN. Remove only one such note. */
722 static void
723 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
725 rtx *note_link, this_rtx;
727 note_link = &REG_NOTES (insn);
728 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
729 if (REG_NOTE_KIND (this_rtx) == note
730 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
732 *note_link = XEXP (this_rtx, 1);
733 return;
735 else
736 note_link = &XEXP (this_rtx, 1);
738 gcc_unreachable ();
741 /* Find the hard register number of virtual register REG in REGSTACK.
742 The hard register number is relative to the top of the stack. -1 is
743 returned if the register is not found. */
745 static int
746 get_hard_regnum (stack_ptr regstack, rtx reg)
748 int i;
750 gcc_assert (STACK_REG_P (reg));
752 for (i = regstack->top; i >= 0; i--)
753 if (regstack->reg[i] == REGNO (reg))
754 break;
756 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
759 /* Emit an insn to pop virtual register REG before or after INSN.
760 REGSTACK is the stack state after INSN and is updated to reflect this
761 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
762 is represented as a SET whose destination is the register to be popped
763 and source is the top of stack. A death note for the top of stack
764 cases the movdf pattern to pop. */
766 static rtx_insn *
767 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg, enum emit_where where)
769 rtx_insn *pop_insn;
770 rtx pop_rtx;
771 int hard_regno;
773 /* For complex types take care to pop both halves. These may survive in
774 CLOBBER and USE expressions. */
775 if (COMPLEX_MODE_P (GET_MODE (reg)))
777 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
778 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
780 pop_insn = NULL;
781 if (get_hard_regnum (regstack, reg1) >= 0)
782 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
783 if (get_hard_regnum (regstack, reg2) >= 0)
784 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
785 gcc_assert (pop_insn);
786 return pop_insn;
789 hard_regno = get_hard_regnum (regstack, reg);
791 gcc_assert (hard_regno >= FIRST_STACK_REG);
793 pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, DFmode),
794 FP_MODE_REG (FIRST_STACK_REG, DFmode));
796 if (where == EMIT_AFTER)
797 pop_insn = emit_insn_after (pop_rtx, insn);
798 else
799 pop_insn = emit_insn_before (pop_rtx, insn);
801 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
803 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
804 = regstack->reg[regstack->top];
805 regstack->top -= 1;
806 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
808 return pop_insn;
811 /* Emit an insn before or after INSN to swap virtual register REG with
812 the top of stack. REGSTACK is the stack state before the swap, and
813 is updated to reflect the swap. A swap insn is represented as a
814 PARALLEL of two patterns: each pattern moves one reg to the other.
816 If REG is already at the top of the stack, no insn is emitted. */
818 static void
819 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
821 int hard_regno;
822 rtx swap_rtx;
823 int other_reg; /* swap regno temps */
824 rtx_insn *i1; /* the stack-reg insn prior to INSN */
825 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
827 hard_regno = get_hard_regnum (regstack, reg);
829 if (hard_regno == FIRST_STACK_REG)
830 return;
831 if (hard_regno == -1)
833 /* Something failed if the register wasn't on the stack. If we had
834 malformed asms, we zapped the instruction itself, but that didn't
835 produce the same pattern of register sets as before. To prevent
836 further failure, adjust REGSTACK to include REG at TOP. */
837 gcc_assert (any_malformed_asm);
838 regstack->reg[++regstack->top] = REGNO (reg);
839 return;
841 gcc_assert (hard_regno >= FIRST_STACK_REG);
843 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
844 std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
846 /* Find the previous insn involving stack regs, but don't pass a
847 block boundary. */
848 i1 = NULL;
849 if (current_block && insn != BB_HEAD (current_block))
851 rtx_insn *tmp = PREV_INSN (insn);
852 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
853 while (tmp != limit)
855 if (LABEL_P (tmp)
856 || CALL_P (tmp)
857 || NOTE_INSN_BASIC_BLOCK_P (tmp)
858 || (NONJUMP_INSN_P (tmp)
859 && stack_regs_mentioned (tmp)))
861 i1 = tmp;
862 break;
864 tmp = PREV_INSN (tmp);
868 if (i1 != NULL_RTX
869 && (i1set = single_set (i1)) != NULL_RTX)
871 rtx i1src = *get_true_reg (&SET_SRC (i1set));
872 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
874 /* If the previous register stack push was from the reg we are to
875 swap with, omit the swap. */
877 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
878 && REG_P (i1src)
879 && REGNO (i1src) == (unsigned) hard_regno - 1
880 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
881 return;
883 /* If the previous insn wrote to the reg we are to swap with,
884 omit the swap. */
886 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
887 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
888 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
889 return;
891 /* Instead of
892 fld a
893 fld b
894 fxch %st(1)
895 just use
896 fld b
897 fld a
898 if possible. */
900 if (REG_P (i1dest)
901 && REGNO (i1dest) == FIRST_STACK_REG
902 && MEM_P (SET_SRC (i1set))
903 && !side_effects_p (SET_SRC (i1set))
904 && hard_regno == FIRST_STACK_REG + 1
905 && i1 != BB_HEAD (current_block))
907 /* i1 is the last insn that involves stack regs before insn, and
908 is known to be a load without other side-effects, i.e. fld b
909 in the above comment. */
910 rtx_insn *i2 = NULL;
911 rtx i2set;
912 rtx_insn *tmp = PREV_INSN (i1);
913 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
914 /* Find the previous insn involving stack regs, but don't pass a
915 block boundary. */
916 while (tmp != limit)
918 if (LABEL_P (tmp)
919 || CALL_P (tmp)
920 || NOTE_INSN_BASIC_BLOCK_P (tmp)
921 || (NONJUMP_INSN_P (tmp)
922 && stack_regs_mentioned (tmp)))
924 i2 = tmp;
925 break;
927 tmp = PREV_INSN (tmp);
929 if (i2 != NULL_RTX
930 && (i2set = single_set (i2)) != NULL_RTX)
932 rtx i2dest = *get_true_reg (&SET_DEST (i2set));
933 /* If the last two insns before insn that involve
934 stack regs are loads, where the latter (i1)
935 pushes onto the register stack and thus
936 moves the value from the first load (i2) from
937 %st to %st(1), consider swapping them. */
938 if (REG_P (i2dest)
939 && REGNO (i2dest) == FIRST_STACK_REG
940 && MEM_P (SET_SRC (i2set))
941 /* Ensure i2 doesn't have other side-effects. */
942 && !side_effects_p (SET_SRC (i2set))
943 /* And that the two instructions can actually be
944 swapped, i.e. there shouldn't be any stores
945 in between i2 and i1 that might alias with
946 the i1 memory, and the memory address can't
947 use registers set in between i2 and i1. */
948 && !modified_between_p (SET_SRC (i1set), i2, i1))
950 /* Move i1 (fld b above) right before i2 (fld a
951 above. */
952 remove_insn (i1);
953 SET_PREV_INSN (i1) = NULL_RTX;
954 SET_NEXT_INSN (i1) = NULL_RTX;
955 set_block_for_insn (i1, NULL);
956 emit_insn_before (i1, i2);
957 return;
963 /* Avoid emitting the swap if this is the first register stack insn
964 of the current_block. Instead update the current_block's stack_in
965 and let compensate edges take care of this for us. */
966 if (current_block && starting_stack_p)
968 BLOCK_INFO (current_block)->stack_in = *regstack;
969 starting_stack_p = false;
970 return;
973 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
974 FP_MODE_REG (FIRST_STACK_REG, XFmode));
976 if (i1)
977 emit_insn_after (swap_rtx, i1);
978 else if (current_block)
979 emit_insn_before (swap_rtx, BB_HEAD (current_block));
980 else
981 emit_insn_before (swap_rtx, insn);
984 /* Emit an insns before INSN to swap virtual register SRC1 with
985 the top of stack and virtual register SRC2 with second stack
986 slot. REGSTACK is the stack state before the swaps, and
987 is updated to reflect the swaps. A swap insn is represented as a
988 PARALLEL of two patterns: each pattern moves one reg to the other.
990 If SRC1 and/or SRC2 are already at the right place, no swap insn
991 is emitted. */
993 static void
994 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
996 struct stack_def temp_stack;
997 int regno, j, k;
999 temp_stack = *regstack;
1001 /* Place operand 1 at the top of stack. */
1002 regno = get_hard_regnum (&temp_stack, src1);
1003 gcc_assert (regno >= 0);
1004 if (regno != FIRST_STACK_REG)
1006 k = temp_stack.top - (regno - FIRST_STACK_REG);
1007 j = temp_stack.top;
1009 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1012 /* Place operand 2 next on the stack. */
1013 regno = get_hard_regnum (&temp_stack, src2);
1014 gcc_assert (regno >= 0);
1015 if (regno != FIRST_STACK_REG + 1)
1017 k = temp_stack.top - (regno - FIRST_STACK_REG);
1018 j = temp_stack.top - 1;
1020 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1023 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1026 /* Handle a move to or from a stack register in PAT, which is in INSN.
1027 REGSTACK is the current stack. Return whether a control flow insn
1028 was deleted in the process. */
1030 static bool
1031 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
1033 rtx *psrc = get_true_reg (&SET_SRC (pat));
1034 rtx *pdest = get_true_reg (&SET_DEST (pat));
1035 rtx src, dest;
1036 rtx note;
1037 bool control_flow_insn_deleted = false;
1039 src = *psrc; dest = *pdest;
1041 if (STACK_REG_P (src) && STACK_REG_P (dest))
1043 /* Write from one stack reg to another. If SRC dies here, then
1044 just change the register mapping and delete the insn. */
1046 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1047 if (note)
1049 int i;
1051 /* If this is a no-op move, there must not be a REG_DEAD note. */
1052 gcc_assert (REGNO (src) != REGNO (dest));
1054 for (i = regstack->top; i >= 0; i--)
1055 if (regstack->reg[i] == REGNO (src))
1056 break;
1058 /* The destination must be dead, or life analysis is borked. */
1059 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1061 /* If the source is not live, this is yet another case of
1062 uninitialized variables. Load up a NaN instead. */
1063 if (i < 0)
1064 return move_nan_for_stack_reg (insn, regstack, dest);
1066 /* It is possible that the dest is unused after this insn.
1067 If so, just pop the src. */
1069 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1070 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1071 else
1073 regstack->reg[i] = REGNO (dest);
1074 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1075 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1078 control_flow_insn_deleted |= control_flow_insn_p (insn);
1079 delete_insn (insn);
1080 return control_flow_insn_deleted;
1083 /* The source reg does not die. */
1085 /* If this appears to be a no-op move, delete it, or else it
1086 will confuse the machine description output patterns. But if
1087 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1088 for REG_UNUSED will not work for deleted insns. */
1090 if (REGNO (src) == REGNO (dest))
1092 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1093 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1095 control_flow_insn_deleted |= control_flow_insn_p (insn);
1096 delete_insn (insn);
1097 return control_flow_insn_deleted;
1100 /* The destination ought to be dead. */
1101 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1103 replace_reg (psrc, get_hard_regnum (regstack, src));
1105 regstack->reg[++regstack->top] = REGNO (dest);
1106 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1107 replace_reg (pdest, FIRST_STACK_REG);
1109 else if (STACK_REG_P (src))
1111 /* Save from a stack reg to MEM, or possibly integer reg. Since
1112 only top of stack may be saved, emit an exchange first if
1113 needs be. */
1115 emit_swap_insn (insn, regstack, src);
1117 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1118 if (note)
1120 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1121 regstack->top--;
1122 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1124 else if ((GET_MODE (src) == XFmode)
1125 && regstack->top < REG_STACK_SIZE - 1)
1127 /* A 387 cannot write an XFmode value to a MEM without
1128 clobbering the source reg. The output code can handle
1129 this by reading back the value from the MEM.
1130 But it is more efficient to use a temp register if one is
1131 available. Push the source value here if the register
1132 stack is not full, and then write the value to memory via
1133 a pop. */
1134 rtx push_rtx;
1135 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1137 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1138 emit_insn_before (push_rtx, insn);
1139 add_reg_note (insn, REG_DEAD, top_stack_reg);
1142 replace_reg (psrc, FIRST_STACK_REG);
1144 else
1146 rtx pat = PATTERN (insn);
1148 gcc_assert (STACK_REG_P (dest));
1150 /* Load from MEM, or possibly integer REG or constant, into the
1151 stack regs. The actual target is always the top of the
1152 stack. The stack mapping is changed to reflect that DEST is
1153 now at top of stack. */
1155 /* The destination ought to be dead. However, there is a
1156 special case with i387 UNSPEC_TAN, where destination is live
1157 (an argument to fptan) but inherent load of 1.0 is modelled
1158 as a load from a constant. */
1159 if (GET_CODE (pat) == PARALLEL
1160 && XVECLEN (pat, 0) == 2
1161 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1162 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1163 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1164 emit_swap_insn (insn, regstack, dest);
1165 else
1166 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1168 gcc_assert (regstack->top < REG_STACK_SIZE);
1170 regstack->reg[++regstack->top] = REGNO (dest);
1171 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1172 replace_reg (pdest, FIRST_STACK_REG);
1175 return control_flow_insn_deleted;
1178 /* A helper function which replaces INSN with a pattern that loads up
1179 a NaN into DEST, then invokes move_for_stack_reg. */
1181 static bool
1182 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1184 rtx pat;
1186 dest = FP_MODE_REG (REGNO (dest), SFmode);
1187 pat = gen_rtx_SET (dest, not_a_num);
1188 PATTERN (insn) = pat;
1189 INSN_CODE (insn) = -1;
1191 return move_for_stack_reg (insn, regstack, pat);
1194 /* Swap the condition on a branch, if there is one. Return true if we
1195 found a condition to swap. False if the condition was not used as
1196 such. */
1198 static int
1199 swap_rtx_condition_1 (rtx pat)
1201 const char *fmt;
1202 int i, r = 0;
1204 if (COMPARISON_P (pat))
1206 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1207 r = 1;
1209 else
1211 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1212 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1214 if (fmt[i] == 'E')
1216 int j;
1218 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1219 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1221 else if (fmt[i] == 'e')
1222 r |= swap_rtx_condition_1 (XEXP (pat, i));
1226 return r;
1229 static int
1230 swap_rtx_condition (rtx_insn *insn)
1232 rtx pat = PATTERN (insn);
1234 /* We're looking for a single set to cc0 or an HImode temporary. */
1236 if (GET_CODE (pat) == SET
1237 && REG_P (SET_DEST (pat))
1238 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1240 insn = next_flags_user (insn);
1241 if (insn == NULL_RTX)
1242 return 0;
1243 pat = PATTERN (insn);
1246 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1247 with the cc value right now. We may be able to search for one
1248 though. */
1250 if (GET_CODE (pat) == SET
1251 && GET_CODE (SET_SRC (pat)) == UNSPEC
1252 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1254 rtx dest = SET_DEST (pat);
1256 /* Search forward looking for the first use of this value.
1257 Stop at block boundaries. */
1258 while (insn != BB_END (current_block))
1260 insn = NEXT_INSN (insn);
1261 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1262 break;
1263 if (CALL_P (insn))
1264 return 0;
1267 /* We haven't found it. */
1268 if (insn == BB_END (current_block))
1269 return 0;
1271 /* So we've found the insn using this value. If it is anything
1272 other than sahf or the value does not die (meaning we'd have
1273 to search further), then we must give up. */
1274 pat = PATTERN (insn);
1275 if (GET_CODE (pat) != SET
1276 || GET_CODE (SET_SRC (pat)) != UNSPEC
1277 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1278 || ! dead_or_set_p (insn, dest))
1279 return 0;
1281 /* Now we are prepared to handle this as a normal cc0 setter. */
1282 insn = next_flags_user (insn);
1283 if (insn == NULL_RTX)
1284 return 0;
1285 pat = PATTERN (insn);
1288 if (swap_rtx_condition_1 (pat))
1290 int fail = 0;
1291 INSN_CODE (insn) = -1;
1292 if (recog_memoized (insn) == -1)
1293 fail = 1;
1294 /* In case the flags don't die here, recurse to try fix
1295 following user too. */
1296 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1298 insn = next_flags_user (insn);
1299 if (!insn || !swap_rtx_condition (insn))
1300 fail = 1;
1302 if (fail)
1304 swap_rtx_condition_1 (pat);
1305 return 0;
1307 return 1;
1309 return 0;
1312 /* Handle a comparison. Special care needs to be taken to avoid
1313 causing comparisons that a 387 cannot do correctly, such as EQ.
1315 Also, a pop insn may need to be emitted. The 387 does have an
1316 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1317 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1318 set up. */
1320 static void
1321 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat_src)
1323 rtx *src1, *src2;
1324 rtx src1_note, src2_note;
1326 src1 = get_true_reg (&XEXP (pat_src, 0));
1327 src2 = get_true_reg (&XEXP (pat_src, 1));
1329 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1330 registers that die in this insn - move those to stack top first. */
1331 if ((! STACK_REG_P (*src1)
1332 || (STACK_REG_P (*src2)
1333 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1334 && swap_rtx_condition (insn))
1336 std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1338 src1 = get_true_reg (&XEXP (pat_src, 0));
1339 src2 = get_true_reg (&XEXP (pat_src, 1));
1341 INSN_CODE (insn) = -1;
1344 /* We will fix any death note later. */
1346 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1348 if (STACK_REG_P (*src2))
1349 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1350 else
1351 src2_note = NULL_RTX;
1353 emit_swap_insn (insn, regstack, *src1);
1355 replace_reg (src1, FIRST_STACK_REG);
1357 if (STACK_REG_P (*src2))
1358 replace_reg (src2, get_hard_regnum (regstack, *src2));
1360 if (src1_note)
1362 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1363 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1366 /* If the second operand dies, handle that. But if the operands are
1367 the same stack register, don't bother, because only one death is
1368 needed, and it was just handled. */
1370 if (src2_note
1371 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1372 && REGNO (*src1) == REGNO (*src2)))
1374 /* As a special case, two regs may die in this insn if src2 is
1375 next to top of stack and the top of stack also dies. Since
1376 we have already popped src1, "next to top of stack" is really
1377 at top (FIRST_STACK_REG) now. */
1379 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1380 && src1_note)
1382 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1383 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1385 else
1387 /* The 386 can only represent death of the first operand in
1388 the case handled above. In all other cases, emit a separate
1389 pop and remove the death note from here. */
1390 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1391 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1392 EMIT_AFTER);
1397 /* Substitute hardware stack regs in debug insn INSN, using stack
1398 layout REGSTACK. If we can't find a hardware stack reg for any of
1399 the REGs in it, reset the debug insn. */
1401 static void
1402 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1404 subrtx_ptr_iterator::array_type array;
1405 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1407 rtx *loc = *iter;
1408 rtx x = *loc;
1409 if (STACK_REG_P (x))
1411 int hard_regno = get_hard_regnum (regstack, x);
1413 /* If we can't find an active register, reset this debug insn. */
1414 if (hard_regno == -1)
1416 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1417 return;
1420 gcc_assert (hard_regno >= FIRST_STACK_REG);
1421 replace_reg (loc, hard_regno);
1422 iter.skip_subrtxes ();
1427 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1428 is the current register layout. Return whether a control flow insn
1429 was deleted in the process. */
1431 static bool
1432 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1434 rtx *dest, *src;
1435 bool control_flow_insn_deleted = false;
1437 switch (GET_CODE (pat))
1439 case USE:
1440 /* Deaths in USE insns can happen in non optimizing compilation.
1441 Handle them by popping the dying register. */
1442 src = get_true_reg (&XEXP (pat, 0));
1443 if (STACK_REG_P (*src)
1444 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1446 /* USEs are ignored for liveness information so USEs of dead
1447 register might happen. */
1448 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1449 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1450 return control_flow_insn_deleted;
1452 /* Uninitialized USE might happen for functions returning uninitialized
1453 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1454 so it is safe to ignore the use here. This is consistent with behavior
1455 of dataflow analyzer that ignores USE too. (This also imply that
1456 forcibly initializing the register to NaN here would lead to ICE later,
1457 since the REG_DEAD notes are not issued.) */
1458 break;
1460 case VAR_LOCATION:
1461 gcc_unreachable ();
1463 case CLOBBER:
1465 rtx note;
1467 dest = get_true_reg (&XEXP (pat, 0));
1468 if (STACK_REG_P (*dest))
1470 note = find_reg_note (insn, REG_DEAD, *dest);
1472 if (pat != PATTERN (insn))
1474 /* The fix_truncdi_1 pattern wants to be able to
1475 allocate its own scratch register. It does this by
1476 clobbering an fp reg so that it is assured of an
1477 empty reg-stack register. If the register is live,
1478 kill it now. Remove the DEAD/UNUSED note so we
1479 don't try to kill it later too.
1481 In reality the UNUSED note can be absent in some
1482 complicated cases when the register is reused for
1483 partially set variable. */
1485 if (note)
1486 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1487 else
1488 note = find_reg_note (insn, REG_UNUSED, *dest);
1489 if (note)
1490 remove_note (insn, note);
1491 replace_reg (dest, FIRST_STACK_REG + 1);
1493 else
1495 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1496 indicates an uninitialized value. Because reload removed
1497 all other clobbers, this must be due to a function
1498 returning without a value. Load up a NaN. */
1500 if (!note)
1502 rtx t = *dest;
1503 if (COMPLEX_MODE_P (GET_MODE (t)))
1505 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1506 if (get_hard_regnum (regstack, u) == -1)
1508 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1509 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1510 control_flow_insn_deleted
1511 |= move_nan_for_stack_reg (insn2, regstack, u);
1514 if (get_hard_regnum (regstack, t) == -1)
1515 control_flow_insn_deleted
1516 |= move_nan_for_stack_reg (insn, regstack, t);
1520 break;
1523 case SET:
1525 rtx *src1 = (rtx *) 0, *src2;
1526 rtx src1_note, src2_note;
1527 rtx pat_src;
1529 dest = get_true_reg (&SET_DEST (pat));
1530 src = get_true_reg (&SET_SRC (pat));
1531 pat_src = SET_SRC (pat);
1533 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1534 if (STACK_REG_P (*src)
1535 || (STACK_REG_P (*dest)
1536 && (REG_P (*src) || MEM_P (*src)
1537 || CONST_DOUBLE_P (*src))))
1539 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1540 break;
1543 switch (GET_CODE (pat_src))
1545 case COMPARE:
1546 compare_for_stack_reg (insn, regstack, pat_src);
1547 break;
1549 case CALL:
1551 int count;
1552 for (count = REG_NREGS (*dest); --count >= 0;)
1554 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1555 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1558 replace_reg (dest, FIRST_STACK_REG);
1559 break;
1561 case REG:
1562 /* This is a `tstM2' case. */
1563 gcc_assert (*dest == cc0_rtx);
1564 src1 = src;
1566 /* Fall through. */
1568 case FLOAT_TRUNCATE:
1569 case SQRT:
1570 case ABS:
1571 case NEG:
1572 /* These insns only operate on the top of the stack. DEST might
1573 be cc0_rtx if we're processing a tstM pattern. Also, it's
1574 possible that the tstM case results in a REG_DEAD note on the
1575 source. */
1577 if (src1 == 0)
1578 src1 = get_true_reg (&XEXP (pat_src, 0));
1580 emit_swap_insn (insn, regstack, *src1);
1582 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1584 if (STACK_REG_P (*dest))
1585 replace_reg (dest, FIRST_STACK_REG);
1587 if (src1_note)
1589 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1590 regstack->top--;
1591 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1594 replace_reg (src1, FIRST_STACK_REG);
1595 break;
1597 case MINUS:
1598 case DIV:
1599 /* On i386, reversed forms of subM3 and divM3 exist for
1600 MODE_FLOAT, so the same code that works for addM3 and mulM3
1601 can be used. */
1602 case MULT:
1603 case PLUS:
1604 /* These insns can accept the top of stack as a destination
1605 from a stack reg or mem, or can use the top of stack as a
1606 source and some other stack register (possibly top of stack)
1607 as a destination. */
1609 src1 = get_true_reg (&XEXP (pat_src, 0));
1610 src2 = get_true_reg (&XEXP (pat_src, 1));
1612 /* We will fix any death note later. */
1614 if (STACK_REG_P (*src1))
1615 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1616 else
1617 src1_note = NULL_RTX;
1618 if (STACK_REG_P (*src2))
1619 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1620 else
1621 src2_note = NULL_RTX;
1623 /* If either operand is not a stack register, then the dest
1624 must be top of stack. */
1626 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1627 emit_swap_insn (insn, regstack, *dest);
1628 else
1630 /* Both operands are REG. If neither operand is already
1631 at the top of stack, choose to make the one that is the
1632 dest the new top of stack. */
1634 int src1_hard_regnum, src2_hard_regnum;
1636 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1637 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1639 /* If the source is not live, this is yet another case of
1640 uninitialized variables. Load up a NaN instead. */
1641 if (src1_hard_regnum == -1)
1643 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1644 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1645 control_flow_insn_deleted
1646 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1648 if (src2_hard_regnum == -1)
1650 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1651 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1652 control_flow_insn_deleted
1653 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1656 if (src1_hard_regnum != FIRST_STACK_REG
1657 && src2_hard_regnum != FIRST_STACK_REG)
1658 emit_swap_insn (insn, regstack, *dest);
1661 if (STACK_REG_P (*src1))
1662 replace_reg (src1, get_hard_regnum (regstack, *src1));
1663 if (STACK_REG_P (*src2))
1664 replace_reg (src2, get_hard_regnum (regstack, *src2));
1666 if (src1_note)
1668 rtx src1_reg = XEXP (src1_note, 0);
1670 /* If the register that dies is at the top of stack, then
1671 the destination is somewhere else - merely substitute it.
1672 But if the reg that dies is not at top of stack, then
1673 move the top of stack to the dead reg, as though we had
1674 done the insn and then a store-with-pop. */
1676 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1678 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1679 replace_reg (dest, get_hard_regnum (regstack, *dest));
1681 else
1683 int regno = get_hard_regnum (regstack, src1_reg);
1685 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1686 replace_reg (dest, regno);
1688 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1689 = regstack->reg[regstack->top];
1692 CLEAR_HARD_REG_BIT (regstack->reg_set,
1693 REGNO (XEXP (src1_note, 0)));
1694 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1695 regstack->top--;
1697 else if (src2_note)
1699 rtx src2_reg = XEXP (src2_note, 0);
1700 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1702 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1703 replace_reg (dest, get_hard_regnum (regstack, *dest));
1705 else
1707 int regno = get_hard_regnum (regstack, src2_reg);
1709 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1710 replace_reg (dest, regno);
1712 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1713 = regstack->reg[regstack->top];
1716 CLEAR_HARD_REG_BIT (regstack->reg_set,
1717 REGNO (XEXP (src2_note, 0)));
1718 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1719 regstack->top--;
1721 else
1723 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1724 replace_reg (dest, get_hard_regnum (regstack, *dest));
1727 /* Keep operand 1 matching with destination. */
1728 if (COMMUTATIVE_ARITH_P (pat_src)
1729 && REG_P (*src1) && REG_P (*src2)
1730 && REGNO (*src1) != REGNO (*dest))
1732 int tmp = REGNO (*src1);
1733 replace_reg (src1, REGNO (*src2));
1734 replace_reg (src2, tmp);
1736 break;
1738 case UNSPEC:
1739 switch (XINT (pat_src, 1))
1741 case UNSPEC_FIST:
1742 case UNSPEC_FIST_ATOMIC:
1744 case UNSPEC_FIST_FLOOR:
1745 case UNSPEC_FIST_CEIL:
1747 /* These insns only operate on the top of the stack. */
1749 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1750 emit_swap_insn (insn, regstack, *src1);
1752 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1754 if (STACK_REG_P (*dest))
1755 replace_reg (dest, FIRST_STACK_REG);
1757 if (src1_note)
1759 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1760 regstack->top--;
1761 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1764 replace_reg (src1, FIRST_STACK_REG);
1765 break;
1767 case UNSPEC_FXAM:
1769 /* This insn only operate on the top of the stack. */
1771 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1772 emit_swap_insn (insn, regstack, *src1);
1774 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1776 replace_reg (src1, FIRST_STACK_REG);
1778 if (src1_note)
1780 remove_regno_note (insn, REG_DEAD,
1781 REGNO (XEXP (src1_note, 0)));
1782 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1783 EMIT_AFTER);
1786 break;
1788 case UNSPEC_SIN:
1789 case UNSPEC_COS:
1790 case UNSPEC_FRNDINT:
1791 case UNSPEC_F2XM1:
1793 case UNSPEC_FRNDINT_FLOOR:
1794 case UNSPEC_FRNDINT_CEIL:
1795 case UNSPEC_FRNDINT_TRUNC:
1796 case UNSPEC_FRNDINT_MASK_PM:
1798 /* Above insns operate on the top of the stack. */
1800 case UNSPEC_SINCOS_COS:
1801 case UNSPEC_XTRACT_FRACT:
1803 /* Above insns operate on the top two stack slots,
1804 first part of one input, double output insn. */
1806 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1808 emit_swap_insn (insn, regstack, *src1);
1810 /* Input should never die, it is replaced with output. */
1811 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1812 gcc_assert (!src1_note);
1814 if (STACK_REG_P (*dest))
1815 replace_reg (dest, FIRST_STACK_REG);
1817 replace_reg (src1, FIRST_STACK_REG);
1818 break;
1820 case UNSPEC_SINCOS_SIN:
1821 case UNSPEC_XTRACT_EXP:
1823 /* These insns operate on the top two stack slots,
1824 second part of one input, double output insn. */
1826 regstack->top++;
1827 /* FALLTHRU */
1829 case UNSPEC_TAN:
1831 /* For UNSPEC_TAN, regstack->top is already increased
1832 by inherent load of constant 1.0. */
1834 /* Output value is generated in the second stack slot.
1835 Move current value from second slot to the top. */
1836 regstack->reg[regstack->top]
1837 = regstack->reg[regstack->top - 1];
1839 gcc_assert (STACK_REG_P (*dest));
1841 regstack->reg[regstack->top - 1] = REGNO (*dest);
1842 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1843 replace_reg (dest, FIRST_STACK_REG + 1);
1845 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1847 replace_reg (src1, FIRST_STACK_REG);
1848 break;
1850 case UNSPEC_FPATAN:
1851 case UNSPEC_FYL2X:
1852 case UNSPEC_FYL2XP1:
1853 /* These insns operate on the top two stack slots. */
1855 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1856 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1858 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1859 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1861 swap_to_top (insn, regstack, *src1, *src2);
1863 replace_reg (src1, FIRST_STACK_REG);
1864 replace_reg (src2, FIRST_STACK_REG + 1);
1866 if (src1_note)
1867 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1868 if (src2_note)
1869 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1871 /* Pop both input operands from the stack. */
1872 CLEAR_HARD_REG_BIT (regstack->reg_set,
1873 regstack->reg[regstack->top]);
1874 CLEAR_HARD_REG_BIT (regstack->reg_set,
1875 regstack->reg[regstack->top - 1]);
1876 regstack->top -= 2;
1878 /* Push the result back onto the stack. */
1879 regstack->reg[++regstack->top] = REGNO (*dest);
1880 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1881 replace_reg (dest, FIRST_STACK_REG);
1882 break;
1884 case UNSPEC_FSCALE_FRACT:
1885 case UNSPEC_FPREM_F:
1886 case UNSPEC_FPREM1_F:
1887 /* These insns operate on the top two stack slots,
1888 first part of double input, double output insn. */
1890 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1891 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1893 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1894 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1896 /* Inputs should never die, they are
1897 replaced with outputs. */
1898 gcc_assert (!src1_note);
1899 gcc_assert (!src2_note);
1901 swap_to_top (insn, regstack, *src1, *src2);
1903 /* Push the result back onto stack. Empty stack slot
1904 will be filled in second part of insn. */
1905 if (STACK_REG_P (*dest))
1907 regstack->reg[regstack->top] = REGNO (*dest);
1908 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1909 replace_reg (dest, FIRST_STACK_REG);
1912 replace_reg (src1, FIRST_STACK_REG);
1913 replace_reg (src2, FIRST_STACK_REG + 1);
1914 break;
1916 case UNSPEC_FSCALE_EXP:
1917 case UNSPEC_FPREM_U:
1918 case UNSPEC_FPREM1_U:
1919 /* These insns operate on the top two stack slots,
1920 second part of double input, double output insn. */
1922 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1923 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1925 /* Push the result back onto stack. Fill empty slot from
1926 first part of insn and fix top of stack pointer. */
1927 if (STACK_REG_P (*dest))
1929 regstack->reg[regstack->top - 1] = REGNO (*dest);
1930 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1931 replace_reg (dest, FIRST_STACK_REG + 1);
1934 replace_reg (src1, FIRST_STACK_REG);
1935 replace_reg (src2, FIRST_STACK_REG + 1);
1936 break;
1938 case UNSPEC_C2_FLAG:
1939 /* This insn operates on the top two stack slots,
1940 third part of C2 setting double input insn. */
1942 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1943 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1945 replace_reg (src1, FIRST_STACK_REG);
1946 replace_reg (src2, FIRST_STACK_REG + 1);
1947 break;
1949 case UNSPEC_SAHF:
1950 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1951 The combination matches the PPRO fcomi instruction. */
1953 pat_src = XVECEXP (pat_src, 0, 0);
1954 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1955 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1956 /* Fall through. */
1958 case UNSPEC_FNSTSW:
1959 /* Combined fcomp+fnstsw generated for doing well with
1960 CSE. When optimizing this would have been broken
1961 up before now. */
1963 pat_src = XVECEXP (pat_src, 0, 0);
1964 gcc_assert (GET_CODE (pat_src) == COMPARE);
1966 compare_for_stack_reg (insn, regstack, pat_src);
1967 break;
1969 default:
1970 gcc_unreachable ();
1972 break;
1974 case IF_THEN_ELSE:
1975 /* This insn requires the top of stack to be the destination. */
1977 src1 = get_true_reg (&XEXP (pat_src, 1));
1978 src2 = get_true_reg (&XEXP (pat_src, 2));
1980 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1981 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1983 /* If the comparison operator is an FP comparison operator,
1984 it is handled correctly by compare_for_stack_reg () who
1985 will move the destination to the top of stack. But if the
1986 comparison operator is not an FP comparison operator, we
1987 have to handle it here. */
1988 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1989 && REGNO (*dest) != regstack->reg[regstack->top])
1991 /* In case one of operands is the top of stack and the operands
1992 dies, it is safe to make it the destination operand by
1993 reversing the direction of cmove and avoid fxch. */
1994 if ((REGNO (*src1) == regstack->reg[regstack->top]
1995 && src1_note)
1996 || (REGNO (*src2) == regstack->reg[regstack->top]
1997 && src2_note))
1999 int idx1 = (get_hard_regnum (regstack, *src1)
2000 - FIRST_STACK_REG);
2001 int idx2 = (get_hard_regnum (regstack, *src2)
2002 - FIRST_STACK_REG);
2004 /* Make reg-stack believe that the operands are already
2005 swapped on the stack */
2006 regstack->reg[regstack->top - idx1] = REGNO (*src2);
2007 regstack->reg[regstack->top - idx2] = REGNO (*src1);
2009 /* Reverse condition to compensate the operand swap.
2010 i386 do have comparison always reversible. */
2011 PUT_CODE (XEXP (pat_src, 0),
2012 reversed_comparison_code (XEXP (pat_src, 0), insn));
2014 else
2015 emit_swap_insn (insn, regstack, *dest);
2019 rtx src_note [3];
2020 int i;
2022 src_note[0] = 0;
2023 src_note[1] = src1_note;
2024 src_note[2] = src2_note;
2026 if (STACK_REG_P (*src1))
2027 replace_reg (src1, get_hard_regnum (regstack, *src1));
2028 if (STACK_REG_P (*src2))
2029 replace_reg (src2, get_hard_regnum (regstack, *src2));
2031 for (i = 1; i <= 2; i++)
2032 if (src_note [i])
2034 int regno = REGNO (XEXP (src_note[i], 0));
2036 /* If the register that dies is not at the top of
2037 stack, then move the top of stack to the dead reg.
2038 Top of stack should never die, as it is the
2039 destination. */
2040 gcc_assert (regno != regstack->reg[regstack->top]);
2041 remove_regno_note (insn, REG_DEAD, regno);
2042 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
2043 EMIT_AFTER);
2047 /* Make dest the top of stack. Add dest to regstack if
2048 not present. */
2049 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2050 regstack->reg[++regstack->top] = REGNO (*dest);
2051 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2052 replace_reg (dest, FIRST_STACK_REG);
2053 break;
2055 default:
2056 gcc_unreachable ();
2058 break;
2061 default:
2062 break;
2065 return control_flow_insn_deleted;
2068 /* Substitute hard regnums for any stack regs in INSN, which has
2069 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2070 before the insn, and is updated with changes made here.
2072 There are several requirements and assumptions about the use of
2073 stack-like regs in asm statements. These rules are enforced by
2074 record_asm_stack_regs; see comments there for details. Any
2075 asm_operands left in the RTL at this point may be assume to meet the
2076 requirements, since record_asm_stack_regs removes any problem asm. */
2078 static void
2079 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2081 rtx body = PATTERN (insn);
2083 rtx *note_reg; /* Array of note contents */
2084 rtx **note_loc; /* Address of REG field of each note */
2085 enum reg_note *note_kind; /* The type of each note */
2087 rtx *clobber_reg = 0;
2088 rtx **clobber_loc = 0;
2090 struct stack_def temp_stack;
2091 int n_notes;
2092 int n_clobbers;
2093 rtx note;
2094 int i;
2095 int n_inputs, n_outputs;
2097 if (! check_asm_stack_operands (insn))
2098 return;
2100 /* Find out what the constraints required. If no constraint
2101 alternative matches, that is a compiler bug: we should have caught
2102 such an insn in check_asm_stack_operands. */
2103 extract_constrain_insn (insn);
2105 preprocess_constraints (insn);
2106 const operand_alternative *op_alt = which_op_alt ();
2108 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2110 /* Strip SUBREGs here to make the following code simpler. */
2111 for (i = 0; i < recog_data.n_operands; i++)
2112 if (GET_CODE (recog_data.operand[i]) == SUBREG
2113 && REG_P (SUBREG_REG (recog_data.operand[i])))
2115 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2116 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2119 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2121 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2122 i++;
2124 note_reg = XALLOCAVEC (rtx, i);
2125 note_loc = XALLOCAVEC (rtx *, i);
2126 note_kind = XALLOCAVEC (enum reg_note, i);
2128 n_notes = 0;
2129 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2131 if (GET_CODE (note) != EXPR_LIST)
2132 continue;
2133 rtx reg = XEXP (note, 0);
2134 rtx *loc = & XEXP (note, 0);
2136 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2138 loc = & SUBREG_REG (reg);
2139 reg = SUBREG_REG (reg);
2142 if (STACK_REG_P (reg)
2143 && (REG_NOTE_KIND (note) == REG_DEAD
2144 || REG_NOTE_KIND (note) == REG_UNUSED))
2146 note_reg[n_notes] = reg;
2147 note_loc[n_notes] = loc;
2148 note_kind[n_notes] = REG_NOTE_KIND (note);
2149 n_notes++;
2153 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2155 n_clobbers = 0;
2157 if (GET_CODE (body) == PARALLEL)
2159 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2160 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2162 for (i = 0; i < XVECLEN (body, 0); i++)
2163 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2165 rtx clobber = XVECEXP (body, 0, i);
2166 rtx reg = XEXP (clobber, 0);
2167 rtx *loc = & XEXP (clobber, 0);
2169 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2171 loc = & SUBREG_REG (reg);
2172 reg = SUBREG_REG (reg);
2175 if (STACK_REG_P (reg))
2177 clobber_reg[n_clobbers] = reg;
2178 clobber_loc[n_clobbers] = loc;
2179 n_clobbers++;
2184 temp_stack = *regstack;
2186 /* Put the input regs into the desired place in TEMP_STACK. */
2188 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2189 if (STACK_REG_P (recog_data.operand[i])
2190 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2191 && op_alt[i].cl != FLOAT_REGS)
2193 /* If an operand needs to be in a particular reg in
2194 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2195 these constraints are for single register classes, and
2196 reload guaranteed that operand[i] is already in that class,
2197 we can just use REGNO (recog_data.operand[i]) to know which
2198 actual reg this operand needs to be in. */
2200 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2202 gcc_assert (regno >= 0);
2204 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2206 /* recog_data.operand[i] is not in the right place. Find
2207 it and swap it with whatever is already in I's place.
2208 K is where recog_data.operand[i] is now. J is where it
2209 should be. */
2210 int j, k;
2212 k = temp_stack.top - (regno - FIRST_STACK_REG);
2213 j = (temp_stack.top
2214 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2216 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2220 /* Emit insns before INSN to make sure the reg-stack is in the right
2221 order. */
2223 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2225 /* Make the needed input register substitutions. Do death notes and
2226 clobbers too, because these are for inputs, not outputs. */
2228 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2229 if (STACK_REG_P (recog_data.operand[i]))
2231 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2233 gcc_assert (regnum >= 0);
2235 replace_reg (recog_data.operand_loc[i], regnum);
2238 for (i = 0; i < n_notes; i++)
2239 if (note_kind[i] == REG_DEAD)
2241 int regnum = get_hard_regnum (regstack, note_reg[i]);
2243 gcc_assert (regnum >= 0);
2245 replace_reg (note_loc[i], regnum);
2248 for (i = 0; i < n_clobbers; i++)
2250 /* It's OK for a CLOBBER to reference a reg that is not live.
2251 Don't try to replace it in that case. */
2252 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2254 if (regnum >= 0)
2256 /* Sigh - clobbers always have QImode. But replace_reg knows
2257 that these regs can't be MODE_INT and will assert. Just put
2258 the right reg there without calling replace_reg. */
2260 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2264 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2266 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2267 if (STACK_REG_P (recog_data.operand[i]))
2269 /* An input reg is implicitly popped if it is tied to an
2270 output, or if there is a CLOBBER for it. */
2271 int j;
2273 for (j = 0; j < n_clobbers; j++)
2274 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2275 break;
2277 if (j < n_clobbers || op_alt[i].matches >= 0)
2279 /* recog_data.operand[i] might not be at the top of stack.
2280 But that's OK, because all we need to do is pop the
2281 right number of regs off of the top of the reg-stack.
2282 record_asm_stack_regs guaranteed that all implicitly
2283 popped regs were grouped at the top of the reg-stack. */
2285 CLEAR_HARD_REG_BIT (regstack->reg_set,
2286 regstack->reg[regstack->top]);
2287 regstack->top--;
2291 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2292 Note that there isn't any need to substitute register numbers.
2293 ??? Explain why this is true. */
2295 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2297 /* See if there is an output for this hard reg. */
2298 int j;
2300 for (j = 0; j < n_outputs; j++)
2301 if (STACK_REG_P (recog_data.operand[j])
2302 && REGNO (recog_data.operand[j]) == (unsigned) i)
2304 regstack->reg[++regstack->top] = i;
2305 SET_HARD_REG_BIT (regstack->reg_set, i);
2306 break;
2310 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2311 input that the asm didn't implicitly pop. If the asm didn't
2312 implicitly pop an input reg, that reg will still be live.
2314 Note that we can't use find_regno_note here: the register numbers
2315 in the death notes have already been substituted. */
2317 for (i = 0; i < n_outputs; i++)
2318 if (STACK_REG_P (recog_data.operand[i]))
2320 int j;
2322 for (j = 0; j < n_notes; j++)
2323 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2324 && note_kind[j] == REG_UNUSED)
2326 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2327 EMIT_AFTER);
2328 break;
2332 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2333 if (STACK_REG_P (recog_data.operand[i]))
2335 int j;
2337 for (j = 0; j < n_notes; j++)
2338 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2339 && note_kind[j] == REG_DEAD
2340 && TEST_HARD_REG_BIT (regstack->reg_set,
2341 REGNO (recog_data.operand[i])))
2343 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2344 EMIT_AFTER);
2345 break;
2350 /* Substitute stack hard reg numbers for stack virtual registers in
2351 INSN. Non-stack register numbers are not changed. REGSTACK is the
2352 current stack content. Insns may be emitted as needed to arrange the
2353 stack for the 387 based on the contents of the insn. Return whether
2354 a control flow insn was deleted in the process. */
2356 static bool
2357 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2359 rtx *note_link, note;
2360 bool control_flow_insn_deleted = false;
2361 int i;
2363 if (CALL_P (insn))
2365 int top = regstack->top;
2367 /* If there are any floating point parameters to be passed in
2368 registers for this call, make sure they are in the right
2369 order. */
2371 if (top >= 0)
2373 straighten_stack (insn, regstack);
2375 /* Now mark the arguments as dead after the call. */
2377 while (regstack->top >= 0)
2379 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2380 regstack->top--;
2385 /* Do the actual substitution if any stack regs are mentioned.
2386 Since we only record whether entire insn mentions stack regs, and
2387 subst_stack_regs_pat only works for patterns that contain stack regs,
2388 we must check each pattern in a parallel here. A call_value_pop could
2389 fail otherwise. */
2391 if (stack_regs_mentioned (insn))
2393 int n_operands = asm_noperands (PATTERN (insn));
2394 if (n_operands >= 0)
2396 /* This insn is an `asm' with operands. Decode the operands,
2397 decide how many are inputs, and do register substitution.
2398 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2400 subst_asm_stack_regs (insn, regstack);
2401 return control_flow_insn_deleted;
2404 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2405 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2407 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2409 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2410 XVECEXP (PATTERN (insn), 0, i)
2411 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2412 control_flow_insn_deleted
2413 |= subst_stack_regs_pat (insn, regstack,
2414 XVECEXP (PATTERN (insn), 0, i));
2417 else
2418 control_flow_insn_deleted
2419 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2422 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2423 REG_UNUSED will already have been dealt with, so just return. */
2425 if (NOTE_P (insn) || insn->deleted ())
2426 return control_flow_insn_deleted;
2428 /* If this a noreturn call, we can't insert pop insns after it.
2429 Instead, reset the stack state to empty. */
2430 if (CALL_P (insn)
2431 && find_reg_note (insn, REG_NORETURN, NULL))
2433 regstack->top = -1;
2434 CLEAR_HARD_REG_SET (regstack->reg_set);
2435 return control_flow_insn_deleted;
2438 /* If there is a REG_UNUSED note on a stack register on this insn,
2439 the indicated reg must be popped. The REG_UNUSED note is removed,
2440 since the form of the newly emitted pop insn references the reg,
2441 making it no longer `unset'. */
2443 note_link = &REG_NOTES (insn);
2444 for (note = *note_link; note; note = XEXP (note, 1))
2445 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2447 *note_link = XEXP (note, 1);
2448 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2450 else
2451 note_link = &XEXP (note, 1);
2453 return control_flow_insn_deleted;
2456 /* Change the organization of the stack so that it fits a new basic
2457 block. Some registers might have to be popped, but there can never be
2458 a register live in the new block that is not now live.
2460 Insert any needed insns before or after INSN, as indicated by
2461 WHERE. OLD is the original stack layout, and NEW is the desired
2462 form. OLD is updated to reflect the code emitted, i.e., it will be
2463 the same as NEW upon return.
2465 This function will not preserve block_end[]. But that information
2466 is no longer needed once this has executed. */
2468 static void
2469 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2470 enum emit_where where)
2472 int reg;
2473 int update_end = 0;
2474 int i;
2476 /* Stack adjustments for the first insn in a block update the
2477 current_block's stack_in instead of inserting insns directly.
2478 compensate_edges will add the necessary code later. */
2479 if (current_block
2480 && starting_stack_p
2481 && where == EMIT_BEFORE)
2483 BLOCK_INFO (current_block)->stack_in = *new_stack;
2484 starting_stack_p = false;
2485 *old = *new_stack;
2486 return;
2489 /* We will be inserting new insns "backwards". If we are to insert
2490 after INSN, find the next insn, and insert before it. */
2492 if (where == EMIT_AFTER)
2494 if (current_block && BB_END (current_block) == insn)
2495 update_end = 1;
2496 insn = NEXT_INSN (insn);
2499 /* Initialize partially dead variables. */
2500 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2501 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2502 && !TEST_HARD_REG_BIT (old->reg_set, i))
2504 old->reg[++old->top] = i;
2505 SET_HARD_REG_BIT (old->reg_set, i);
2506 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2507 insn);
2510 /* Pop any registers that are not needed in the new block. */
2512 /* If the destination block's stack already has a specified layout
2513 and contains two or more registers, use a more intelligent algorithm
2514 to pop registers that minimizes the number of fxchs below. */
2515 if (new_stack->top > 0)
2517 bool slots[REG_STACK_SIZE];
2518 int pops[REG_STACK_SIZE];
2519 int next, dest, topsrc;
2521 /* First pass to determine the free slots. */
2522 for (reg = 0; reg <= new_stack->top; reg++)
2523 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2525 /* Second pass to allocate preferred slots. */
2526 topsrc = -1;
2527 for (reg = old->top; reg > new_stack->top; reg--)
2528 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2530 dest = -1;
2531 for (next = 0; next <= new_stack->top; next++)
2532 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2534 /* If this is a preference for the new top of stack, record
2535 the fact by remembering it's old->reg in topsrc. */
2536 if (next == new_stack->top)
2537 topsrc = reg;
2538 slots[next] = true;
2539 dest = next;
2540 break;
2542 pops[reg] = dest;
2544 else
2545 pops[reg] = reg;
2547 /* Intentionally, avoid placing the top of stack in it's correct
2548 location, if we still need to permute the stack below and we
2549 can usefully place it somewhere else. This is the case if any
2550 slot is still unallocated, in which case we should place the
2551 top of stack there. */
2552 if (topsrc != -1)
2553 for (reg = 0; reg < new_stack->top; reg++)
2554 if (!slots[reg])
2556 pops[topsrc] = reg;
2557 slots[new_stack->top] = false;
2558 slots[reg] = true;
2559 break;
2562 /* Third pass allocates remaining slots and emits pop insns. */
2563 next = new_stack->top;
2564 for (reg = old->top; reg > new_stack->top; reg--)
2566 dest = pops[reg];
2567 if (dest == -1)
2569 /* Find next free slot. */
2570 while (slots[next])
2571 next--;
2572 dest = next--;
2574 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2575 EMIT_BEFORE);
2578 else
2580 /* The following loop attempts to maximize the number of times we
2581 pop the top of the stack, as this permits the use of the faster
2582 ffreep instruction on platforms that support it. */
2583 int live, next;
2585 live = 0;
2586 for (reg = 0; reg <= old->top; reg++)
2587 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2588 live++;
2590 next = live;
2591 while (old->top >= live)
2592 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2594 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2595 next--;
2596 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2597 EMIT_BEFORE);
2599 else
2600 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2601 EMIT_BEFORE);
2604 if (new_stack->top == -2)
2606 /* If the new block has never been processed, then it can inherit
2607 the old stack order. */
2609 new_stack->top = old->top;
2610 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2612 else
2614 /* This block has been entered before, and we must match the
2615 previously selected stack order. */
2617 /* By now, the only difference should be the order of the stack,
2618 not their depth or liveliness. */
2620 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2621 gcc_assert (old->top == new_stack->top);
2623 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2624 swaps until the stack is correct.
2626 The worst case number of swaps emitted is N + 2, where N is the
2627 depth of the stack. In some cases, the reg at the top of
2628 stack may be correct, but swapped anyway in order to fix
2629 other regs. But since we never swap any other reg away from
2630 its correct slot, this algorithm will converge. */
2632 if (new_stack->top != -1)
2635 /* Swap the reg at top of stack into the position it is
2636 supposed to be in, until the correct top of stack appears. */
2638 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2640 for (reg = new_stack->top; reg >= 0; reg--)
2641 if (new_stack->reg[reg] == old->reg[old->top])
2642 break;
2644 gcc_assert (reg != -1);
2646 emit_swap_insn (insn, old,
2647 FP_MODE_REG (old->reg[reg], DFmode));
2650 /* See if any regs remain incorrect. If so, bring an
2651 incorrect reg to the top of stack, and let the while loop
2652 above fix it. */
2654 for (reg = new_stack->top; reg >= 0; reg--)
2655 if (new_stack->reg[reg] != old->reg[reg])
2657 emit_swap_insn (insn, old,
2658 FP_MODE_REG (old->reg[reg], DFmode));
2659 break;
2661 } while (reg >= 0);
2663 /* At this point there must be no differences. */
2665 for (reg = old->top; reg >= 0; reg--)
2666 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2669 if (update_end)
2670 BB_END (current_block) = PREV_INSN (insn);
2673 /* Print stack configuration. */
2675 static void
2676 print_stack (FILE *file, stack_ptr s)
2678 if (! file)
2679 return;
2681 if (s->top == -2)
2682 fprintf (file, "uninitialized\n");
2683 else if (s->top == -1)
2684 fprintf (file, "empty\n");
2685 else
2687 int i;
2688 fputs ("[ ", file);
2689 for (i = 0; i <= s->top; ++i)
2690 fprintf (file, "%d ", s->reg[i]);
2691 fputs ("]\n", file);
2695 /* This function was doing life analysis. We now let the regular live
2696 code do it's job, so we only need to check some extra invariants
2697 that reg-stack expects. Primary among these being that all registers
2698 are initialized before use.
2700 The function returns true when code was emitted to CFG edges and
2701 commit_edge_insertions needs to be called. */
2703 static int
2704 convert_regs_entry (void)
2706 int inserted = 0;
2707 edge e;
2708 edge_iterator ei;
2710 /* Load something into each stack register live at function entry.
2711 Such live registers can be caused by uninitialized variables or
2712 functions not returning values on all paths. In order to keep
2713 the push/pop code happy, and to not scrog the register stack, we
2714 must put something in these registers. Use a QNaN.
2716 Note that we are inserting converted code here. This code is
2717 never seen by the convert_regs pass. */
2719 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2721 basic_block block = e->dest;
2722 block_info bi = BLOCK_INFO (block);
2723 int reg, top = -1;
2725 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2726 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2728 rtx init;
2730 bi->stack_in.reg[++top] = reg;
2732 init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2733 not_a_num);
2734 insert_insn_on_edge (init, e);
2735 inserted = 1;
2738 bi->stack_in.top = top;
2741 return inserted;
2744 /* Construct the desired stack for function exit. This will either
2745 be `empty', or the function return value at top-of-stack. */
2747 static void
2748 convert_regs_exit (void)
2750 int value_reg_low, value_reg_high;
2751 stack_ptr output_stack;
2752 rtx retvalue;
2754 retvalue = stack_result (current_function_decl);
2755 value_reg_low = value_reg_high = -1;
2756 if (retvalue)
2758 value_reg_low = REGNO (retvalue);
2759 value_reg_high = END_REGNO (retvalue) - 1;
2762 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2763 if (value_reg_low == -1)
2764 output_stack->top = -1;
2765 else
2767 int reg;
2769 output_stack->top = value_reg_high - value_reg_low;
2770 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2772 output_stack->reg[value_reg_high - reg] = reg;
2773 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2778 /* Copy the stack info from the end of edge E's source block to the
2779 start of E's destination block. */
2781 static void
2782 propagate_stack (edge e)
2784 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2785 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2786 int reg;
2788 /* Preserve the order of the original stack, but check whether
2789 any pops are needed. */
2790 dest_stack->top = -1;
2791 for (reg = 0; reg <= src_stack->top; ++reg)
2792 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2793 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2795 /* Push in any partially dead values. */
2796 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2797 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2798 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2799 dest_stack->reg[++dest_stack->top] = reg;
2803 /* Adjust the stack of edge E's source block on exit to match the stack
2804 of it's target block upon input. The stack layouts of both blocks
2805 should have been defined by now. */
2807 static bool
2808 compensate_edge (edge e)
2810 basic_block source = e->src, target = e->dest;
2811 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2812 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2813 struct stack_def regstack;
2814 int reg;
2816 if (dump_file)
2817 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2819 gcc_assert (target_stack->top != -2);
2821 /* Check whether stacks are identical. */
2822 if (target_stack->top == source_stack->top)
2824 for (reg = target_stack->top; reg >= 0; --reg)
2825 if (target_stack->reg[reg] != source_stack->reg[reg])
2826 break;
2828 if (reg == -1)
2830 if (dump_file)
2831 fprintf (dump_file, "no changes needed\n");
2832 return false;
2836 if (dump_file)
2838 fprintf (dump_file, "correcting stack to ");
2839 print_stack (dump_file, target_stack);
2842 /* Abnormal calls may appear to have values live in st(0), but the
2843 abnormal return path will not have actually loaded the values. */
2844 if (e->flags & EDGE_ABNORMAL_CALL)
2846 /* Assert that the lifetimes are as we expect -- one value
2847 live at st(0) on the end of the source block, and no
2848 values live at the beginning of the destination block.
2849 For complex return values, we may have st(1) live as well. */
2850 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2851 gcc_assert (target_stack->top == -1);
2852 return false;
2855 /* Handle non-call EH edges specially. The normal return path have
2856 values in registers. These will be popped en masse by the unwind
2857 library. */
2858 if (e->flags & EDGE_EH)
2860 gcc_assert (target_stack->top == -1);
2861 return false;
2864 /* We don't support abnormal edges. Global takes care to
2865 avoid any live register across them, so we should never
2866 have to insert instructions on such edges. */
2867 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2869 /* Make a copy of source_stack as change_stack is destructive. */
2870 regstack = *source_stack;
2872 /* It is better to output directly to the end of the block
2873 instead of to the edge, because emit_swap can do minimal
2874 insn scheduling. We can do this when there is only one
2875 edge out, and it is not abnormal. */
2876 if (EDGE_COUNT (source->succs) == 1)
2878 current_block = source;
2879 change_stack (BB_END (source), &regstack, target_stack,
2880 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2882 else
2884 rtx_insn *seq;
2885 rtx_note *after;
2887 current_block = NULL;
2888 start_sequence ();
2890 /* ??? change_stack needs some point to emit insns after. */
2891 after = emit_note (NOTE_INSN_DELETED);
2893 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2895 seq = get_insns ();
2896 end_sequence ();
2898 insert_insn_on_edge (seq, e);
2899 return true;
2901 return false;
2904 /* Traverse all non-entry edges in the CFG, and emit the necessary
2905 edge compensation code to change the stack from stack_out of the
2906 source block to the stack_in of the destination block. */
2908 static bool
2909 compensate_edges (void)
2911 bool inserted = false;
2912 basic_block bb;
2914 starting_stack_p = false;
2916 FOR_EACH_BB_FN (bb, cfun)
2917 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2919 edge e;
2920 edge_iterator ei;
2922 FOR_EACH_EDGE (e, ei, bb->succs)
2923 inserted |= compensate_edge (e);
2925 return inserted;
2928 /* Select the better of two edges E1 and E2 to use to determine the
2929 stack layout for their shared destination basic block. This is
2930 typically the more frequently executed. The edge E1 may be NULL
2931 (in which case E2 is returned), but E2 is always non-NULL. */
2933 static edge
2934 better_edge (edge e1, edge e2)
2936 if (!e1)
2937 return e2;
2939 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2940 return e1;
2941 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2942 return e2;
2944 if (e1->count > e2->count)
2945 return e1;
2946 if (e1->count < e2->count)
2947 return e2;
2949 /* Prefer critical edges to minimize inserting compensation code on
2950 critical edges. */
2952 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2953 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2955 /* Avoid non-deterministic behavior. */
2956 return (e1->src->index < e2->src->index) ? e1 : e2;
2959 /* Convert stack register references in one block. Return true if the CFG
2960 has been modified in the process. */
2962 static bool
2963 convert_regs_1 (basic_block block)
2965 struct stack_def regstack;
2966 block_info bi = BLOCK_INFO (block);
2967 int reg;
2968 rtx_insn *insn, *next;
2969 bool control_flow_insn_deleted = false;
2970 bool cfg_altered = false;
2971 int debug_insns_with_starting_stack = 0;
2973 any_malformed_asm = false;
2975 /* Choose an initial stack layout, if one hasn't already been chosen. */
2976 if (bi->stack_in.top == -2)
2978 edge e, beste = NULL;
2979 edge_iterator ei;
2981 /* Select the best incoming edge (typically the most frequent) to
2982 use as a template for this basic block. */
2983 FOR_EACH_EDGE (e, ei, block->preds)
2984 if (BLOCK_INFO (e->src)->done)
2985 beste = better_edge (beste, e);
2987 if (beste)
2988 propagate_stack (beste);
2989 else
2991 /* No predecessors. Create an arbitrary input stack. */
2992 bi->stack_in.top = -1;
2993 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2994 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2995 bi->stack_in.reg[++bi->stack_in.top] = reg;
2999 if (dump_file)
3001 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
3002 print_stack (dump_file, &bi->stack_in);
3005 /* Process all insns in this block. Keep track of NEXT so that we
3006 don't process insns emitted while substituting in INSN. */
3007 current_block = block;
3008 next = BB_HEAD (block);
3009 regstack = bi->stack_in;
3010 starting_stack_p = true;
3014 insn = next;
3015 next = NEXT_INSN (insn);
3017 /* Ensure we have not missed a block boundary. */
3018 gcc_assert (next);
3019 if (insn == BB_END (block))
3020 next = NULL;
3022 /* Don't bother processing unless there is a stack reg
3023 mentioned or if it's a CALL_INSN. */
3024 if (DEBUG_INSN_P (insn))
3026 if (starting_stack_p)
3027 debug_insns_with_starting_stack++;
3028 else
3030 subst_all_stack_regs_in_debug_insn (insn, &regstack);
3032 /* Nothing must ever die at a debug insn. If something
3033 is referenced in it that becomes dead, it should have
3034 died before and the reference in the debug insn
3035 should have been removed so as to avoid changing code
3036 generation. */
3037 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
3040 else if (stack_regs_mentioned (insn)
3041 || CALL_P (insn))
3043 if (dump_file)
3045 fprintf (dump_file, " insn %d input stack: ",
3046 INSN_UID (insn));
3047 print_stack (dump_file, &regstack);
3049 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3050 starting_stack_p = false;
3053 while (next);
3055 if (debug_insns_with_starting_stack)
3057 /* Since it's the first non-debug instruction that determines
3058 the stack requirements of the current basic block, we refrain
3059 from updating debug insns before it in the loop above, and
3060 fix them up here. */
3061 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3062 insn = NEXT_INSN (insn))
3064 if (!DEBUG_INSN_P (insn))
3065 continue;
3067 debug_insns_with_starting_stack--;
3068 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3072 if (dump_file)
3074 fprintf (dump_file, "Expected live registers [");
3075 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3076 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3077 fprintf (dump_file, " %d", reg);
3078 fprintf (dump_file, " ]\nOutput stack: ");
3079 print_stack (dump_file, &regstack);
3082 insn = BB_END (block);
3083 if (JUMP_P (insn))
3084 insn = PREV_INSN (insn);
3086 /* If the function is declared to return a value, but it returns one
3087 in only some cases, some registers might come live here. Emit
3088 necessary moves for them. */
3090 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3092 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3093 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3095 rtx set;
3097 if (dump_file)
3098 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3100 set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3101 insn = emit_insn_after (set, insn);
3102 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3106 /* Amongst the insns possibly deleted during the substitution process above,
3107 might have been the only trapping insn in the block. We purge the now
3108 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3109 called at the end of convert_regs. The order in which we process the
3110 blocks ensures that we never delete an already processed edge.
3112 Note that, at this point, the CFG may have been damaged by the emission
3113 of instructions after an abnormal call, which moves the basic block end
3114 (and is the reason why we call fixup_abnormal_edges later). So we must
3115 be sure that the trapping insn has been deleted before trying to purge
3116 dead edges, otherwise we risk purging valid edges.
3118 ??? We are normally supposed not to delete trapping insns, so we pretend
3119 that the insns deleted above don't actually trap. It would have been
3120 better to detect this earlier and avoid creating the EH edge in the first
3121 place, still, but we don't have enough information at that time. */
3123 if (control_flow_insn_deleted)
3124 cfg_altered |= purge_dead_edges (block);
3126 /* Something failed if the stack lives don't match. If we had malformed
3127 asms, we zapped the instruction itself, but that didn't produce the
3128 same pattern of register kills as before. */
3130 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3131 || any_malformed_asm);
3132 bi->stack_out = regstack;
3133 bi->done = true;
3135 return cfg_altered;
3138 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3139 CFG has been modified in the process. */
3141 static bool
3142 convert_regs_2 (basic_block block)
3144 basic_block *stack, *sp;
3145 bool cfg_altered = false;
3147 /* We process the blocks in a top-down manner, in a way such that one block
3148 is only processed after all its predecessors. The number of predecessors
3149 of every block has already been computed. */
3151 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3152 sp = stack;
3154 *sp++ = block;
3158 edge e;
3159 edge_iterator ei;
3161 block = *--sp;
3163 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3164 some dead EH outgoing edge after the deletion of the trapping
3165 insn inside the block. Since the number of predecessors of
3166 BLOCK's successors was computed based on the initial edge set,
3167 we check the necessity to process some of these successors
3168 before such an edge deletion may happen. However, there is
3169 a pitfall: if BLOCK is the only predecessor of a successor and
3170 the edge between them happens to be deleted, the successor
3171 becomes unreachable and should not be processed. The problem
3172 is that there is no way to preventively detect this case so we
3173 stack the successor in all cases and hand over the task of
3174 fixing up the discrepancy to convert_regs_1. */
3176 FOR_EACH_EDGE (e, ei, block->succs)
3177 if (! (e->flags & EDGE_DFS_BACK))
3179 BLOCK_INFO (e->dest)->predecessors--;
3180 if (!BLOCK_INFO (e->dest)->predecessors)
3181 *sp++ = e->dest;
3184 cfg_altered |= convert_regs_1 (block);
3186 while (sp != stack);
3188 free (stack);
3190 return cfg_altered;
3193 /* Traverse all basic blocks in a function, converting the register
3194 references in each insn from the "flat" register file that gcc uses,
3195 to the stack-like registers the 387 uses. */
3197 static void
3198 convert_regs (void)
3200 bool cfg_altered = false;
3201 int inserted;
3202 basic_block b;
3203 edge e;
3204 edge_iterator ei;
3206 /* Initialize uninitialized registers on function entry. */
3207 inserted = convert_regs_entry ();
3209 /* Construct the desired stack for function exit. */
3210 convert_regs_exit ();
3211 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3213 /* ??? Future: process inner loops first, and give them arbitrary
3214 initial stacks which emit_swap_insn can modify. This ought to
3215 prevent double fxch that often appears at the head of a loop. */
3217 /* Process all blocks reachable from all entry points. */
3218 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3219 cfg_altered |= convert_regs_2 (e->dest);
3221 /* ??? Process all unreachable blocks. Though there's no excuse
3222 for keeping these even when not optimizing. */
3223 FOR_EACH_BB_FN (b, cfun)
3225 block_info bi = BLOCK_INFO (b);
3227 if (! bi->done)
3228 cfg_altered |= convert_regs_2 (b);
3231 /* We must fix up abnormal edges before inserting compensation code
3232 because both mechanisms insert insns on edges. */
3233 inserted |= fixup_abnormal_edges ();
3235 inserted |= compensate_edges ();
3237 clear_aux_for_blocks ();
3239 if (inserted)
3240 commit_edge_insertions ();
3242 if (cfg_altered)
3243 cleanup_cfg (0);
3245 if (dump_file)
3246 fputc ('\n', dump_file);
3249 /* Convert register usage from "flat" register file usage to a "stack
3250 register file. FILE is the dump file, if used.
3252 Construct a CFG and run life analysis. Then convert each insn one
3253 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3254 code duplication created when the converter inserts pop insns on
3255 the edges. */
3257 static bool
3258 reg_to_stack (void)
3260 basic_block bb;
3261 int i;
3262 int max_uid;
3264 /* Clean up previous run. */
3265 stack_regs_mentioned_data.release ();
3267 /* See if there is something to do. Flow analysis is quite
3268 expensive so we might save some compilation time. */
3269 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3270 if (df_regs_ever_live_p (i))
3271 break;
3272 if (i > LAST_STACK_REG)
3273 return false;
3275 df_note_add_problem ();
3276 df_analyze ();
3278 mark_dfs_back_edges ();
3280 /* Set up block info for each basic block. */
3281 alloc_aux_for_blocks (sizeof (struct block_info_def));
3282 FOR_EACH_BB_FN (bb, cfun)
3284 block_info bi = BLOCK_INFO (bb);
3285 edge_iterator ei;
3286 edge e;
3287 int reg;
3289 FOR_EACH_EDGE (e, ei, bb->preds)
3290 if (!(e->flags & EDGE_DFS_BACK)
3291 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3292 bi->predecessors++;
3294 /* Set current register status at last instruction `uninitialized'. */
3295 bi->stack_in.top = -2;
3297 /* Copy live_at_end and live_at_start into temporaries. */
3298 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3300 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3301 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3302 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3303 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3307 /* Create the replacement registers up front. */
3308 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3310 machine_mode mode;
3311 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3312 mode != VOIDmode;
3313 mode = GET_MODE_WIDER_MODE (mode))
3314 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3315 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3316 mode != VOIDmode;
3317 mode = GET_MODE_WIDER_MODE (mode))
3318 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3321 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3323 /* A QNaN for initializing uninitialized variables.
3325 ??? We can't load from constant memory in PIC mode, because
3326 we're inserting these instructions before the prologue and
3327 the PIC register hasn't been set up. In that case, fall back
3328 on zero, which we can get from `fldz'. */
3330 if ((flag_pic && !TARGET_64BIT)
3331 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3332 not_a_num = CONST0_RTX (SFmode);
3333 else
3335 REAL_VALUE_TYPE r;
3337 real_nan (&r, "", 1, SFmode);
3338 not_a_num = const_double_from_real_value (r, SFmode);
3339 not_a_num = force_const_mem (SFmode, not_a_num);
3342 /* Allocate a cache for stack_regs_mentioned. */
3343 max_uid = get_max_uid ();
3344 stack_regs_mentioned_data.create (max_uid + 1);
3345 memset (stack_regs_mentioned_data.address (),
3346 0, sizeof (char) * (max_uid + 1));
3348 convert_regs ();
3350 free_aux_for_blocks ();
3351 return true;
3353 #endif /* STACK_REGS */
3355 namespace {
3357 const pass_data pass_data_stack_regs =
3359 RTL_PASS, /* type */
3360 "*stack_regs", /* name */
3361 OPTGROUP_NONE, /* optinfo_flags */
3362 TV_REG_STACK, /* tv_id */
3363 0, /* properties_required */
3364 0, /* properties_provided */
3365 0, /* properties_destroyed */
3366 0, /* todo_flags_start */
3367 0, /* todo_flags_finish */
3370 class pass_stack_regs : public rtl_opt_pass
3372 public:
3373 pass_stack_regs (gcc::context *ctxt)
3374 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3377 /* opt_pass methods: */
3378 virtual bool gate (function *)
3380 #ifdef STACK_REGS
3381 return true;
3382 #else
3383 return false;
3384 #endif
3387 }; // class pass_stack_regs
3389 } // anon namespace
3391 rtl_opt_pass *
3392 make_pass_stack_regs (gcc::context *ctxt)
3394 return new pass_stack_regs (ctxt);
3397 /* Convert register usage from flat register file usage to a stack
3398 register file. */
3399 static unsigned int
3400 rest_of_handle_stack_regs (void)
3402 #ifdef STACK_REGS
3403 reg_to_stack ();
3404 regstack_completed = 1;
3405 #endif
3406 return 0;
3409 namespace {
3411 const pass_data pass_data_stack_regs_run =
3413 RTL_PASS, /* type */
3414 "stack", /* name */
3415 OPTGROUP_NONE, /* optinfo_flags */
3416 TV_REG_STACK, /* tv_id */
3417 0, /* properties_required */
3418 0, /* properties_provided */
3419 0, /* properties_destroyed */
3420 0, /* todo_flags_start */
3421 TODO_df_finish, /* todo_flags_finish */
3424 class pass_stack_regs_run : public rtl_opt_pass
3426 public:
3427 pass_stack_regs_run (gcc::context *ctxt)
3428 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3431 /* opt_pass methods: */
3432 virtual unsigned int execute (function *)
3434 return rest_of_handle_stack_regs ();
3437 }; // class pass_stack_regs_run
3439 } // anon namespace
3441 rtl_opt_pass *
3442 make_pass_stack_regs_run (gcc::context *ctxt)
3444 return new pass_stack_regs_run (ctxt);