* include/bits/ptr_traits.h (__ptrtr_elt_type, __ptrtr_diff_type,
[official-gcc.git] / gcc / tree-outof-ssa.c
blobf985f4d1c243511cb891d708ebd32910777b0af1
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "alias.h"
26 #include "symtab.h"
27 #include "tree.h"
28 #include "fold-const.h"
29 #include "stor-layout.h"
30 #include "predict.h"
31 #include "hard-reg-set.h"
32 #include "function.h"
33 #include "dominance.h"
34 #include "cfg.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "basic-block.h"
38 #include "gimple-pretty-print.h"
39 #include "bitmap.h"
40 #include "sbitmap.h"
41 #include "tree-ssa-alias.h"
42 #include "internal-fn.h"
43 #include "tree-eh.h"
44 #include "gimple-expr.h"
45 #include "gimple.h"
46 #include "gimple-iterator.h"
47 #include "gimple-ssa.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "dumpfile.h"
54 #include "diagnostic-core.h"
55 #include "tree-ssa-live.h"
56 #include "tree-ssa-ter.h"
57 #include "tree-ssa-coalesce.h"
58 #include "tree-outof-ssa.h"
60 /* FIXME: A lot of code here deals with expanding to RTL. All that code
61 should be in cfgexpand.c. */
62 #include "rtl.h"
63 #include "flags.h"
64 #include "insn-config.h"
65 #include "expmed.h"
66 #include "dojump.h"
67 #include "explow.h"
68 #include "calls.h"
69 #include "emit-rtl.h"
70 #include "varasm.h"
71 #include "stmt.h"
72 #include "expr.h"
74 /* Return TRUE if expression STMT is suitable for replacement. */
76 bool
77 ssa_is_replaceable_p (gimple stmt)
79 use_operand_p use_p;
80 tree def;
81 gimple use_stmt;
83 /* Only consider modify stmts. */
84 if (!is_gimple_assign (stmt))
85 return false;
87 /* If the statement may throw an exception, it cannot be replaced. */
88 if (stmt_could_throw_p (stmt))
89 return false;
91 /* Punt if there is more than 1 def. */
92 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
93 if (!def)
94 return false;
96 /* Only consider definitions which have a single use. */
97 if (!single_imm_use (def, &use_p, &use_stmt))
98 return false;
100 /* Used in this block, but at the TOP of the block, not the end. */
101 if (gimple_code (use_stmt) == GIMPLE_PHI)
102 return false;
104 /* There must be no VDEFs. */
105 if (gimple_vdef (stmt))
106 return false;
108 /* Float expressions must go through memory if float-store is on. */
109 if (flag_float_store
110 && FLOAT_TYPE_P (gimple_expr_type (stmt)))
111 return false;
113 /* An assignment with a register variable on the RHS is not
114 replaceable. */
115 if (gimple_assign_rhs_code (stmt) == VAR_DECL
116 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
117 return false;
119 /* No function calls can be replaced. */
120 if (is_gimple_call (stmt))
121 return false;
123 /* Leave any stmt with volatile operands alone as well. */
124 if (gimple_has_volatile_ops (stmt))
125 return false;
127 return true;
131 /* Used to hold all the components required to do SSA PHI elimination.
132 The node and pred/succ list is a simple linear list of nodes and
133 edges represented as pairs of nodes.
135 The predecessor and successor list: Nodes are entered in pairs, where
136 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
137 predecessors, all the odd elements are successors.
139 Rationale:
140 When implemented as bitmaps, very large programs SSA->Normal times were
141 being dominated by clearing the interference graph.
143 Typically this list of edges is extremely small since it only includes
144 PHI results and uses from a single edge which have not coalesced with
145 each other. This means that no virtual PHI nodes are included, and
146 empirical evidence suggests that the number of edges rarely exceed
147 3, and in a bootstrap of GCC, the maximum size encountered was 7.
148 This also limits the number of possible nodes that are involved to
149 rarely more than 6, and in the bootstrap of gcc, the maximum number
150 of nodes encountered was 12. */
152 typedef struct _elim_graph {
153 /* Size of the elimination vectors. */
154 int size;
156 /* List of nodes in the elimination graph. */
157 vec<int> nodes;
159 /* The predecessor and successor edge list. */
160 vec<int> edge_list;
162 /* Source locus on each edge */
163 vec<source_location> edge_locus;
165 /* Visited vector. */
166 sbitmap visited;
168 /* Stack for visited nodes. */
169 vec<int> stack;
171 /* The variable partition map. */
172 var_map map;
174 /* Edge being eliminated by this graph. */
175 edge e;
177 /* List of constant copies to emit. These are pushed on in pairs. */
178 vec<int> const_dests;
179 vec<tree> const_copies;
181 /* Source locations for any constant copies. */
182 vec<source_location> copy_locus;
183 } *elim_graph;
186 /* For an edge E find out a good source location to associate with
187 instructions inserted on edge E. If E has an implicit goto set,
188 use its location. Otherwise search instructions in predecessors
189 of E for a location, and use that one. That makes sense because
190 we insert on edges for PHI nodes, and effects of PHIs happen on
191 the end of the predecessor conceptually. */
193 static void
194 set_location_for_edge (edge e)
196 if (e->goto_locus)
198 set_curr_insn_location (e->goto_locus);
200 else
202 basic_block bb = e->src;
203 gimple_stmt_iterator gsi;
207 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
209 gimple stmt = gsi_stmt (gsi);
210 if (is_gimple_debug (stmt))
211 continue;
212 if (gimple_has_location (stmt) || gimple_block (stmt))
214 set_curr_insn_location (gimple_location (stmt));
215 return;
218 /* Nothing found in this basic block. Make a half-assed attempt
219 to continue with another block. */
220 if (single_pred_p (bb))
221 bb = single_pred (bb);
222 else
223 bb = e->src;
225 while (bb != e->src);
229 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
230 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
231 which we deduce the size to copy in that case. */
233 static inline rtx_insn *
234 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
236 start_sequence ();
238 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
239 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
240 if (GET_MODE (src) == BLKmode)
242 gcc_assert (GET_MODE (dest) == BLKmode);
243 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
245 else
246 emit_move_insn (dest, src);
248 rtx_insn *seq = get_insns ();
249 end_sequence ();
251 return seq;
254 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
256 static void
257 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
259 tree var;
260 if (dump_file && (dump_flags & TDF_DETAILS))
262 fprintf (dump_file,
263 "Inserting a partition copy on edge BB%d->BB%d :"
264 "PART.%d = PART.%d",
265 e->src->index,
266 e->dest->index, dest, src);
267 fprintf (dump_file, "\n");
270 gcc_assert (SA.partition_to_pseudo[dest]);
271 gcc_assert (SA.partition_to_pseudo[src]);
273 set_location_for_edge (e);
274 /* If a locus is provided, override the default. */
275 if (locus)
276 set_curr_insn_location (locus);
278 var = partition_to_var (SA.map, src);
279 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
280 copy_rtx (SA.partition_to_pseudo[src]),
281 TYPE_UNSIGNED (TREE_TYPE (var)),
282 var);
284 insert_insn_on_edge (seq, e);
287 /* Insert a copy instruction from expression SRC to partition DEST
288 onto edge E. */
290 static void
291 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
293 rtx dest_rtx, seq, x;
294 machine_mode dest_mode, src_mode;
295 int unsignedp;
296 tree var;
298 if (dump_file && (dump_flags & TDF_DETAILS))
300 fprintf (dump_file,
301 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
302 e->src->index,
303 e->dest->index, dest);
304 print_generic_expr (dump_file, src, TDF_SLIM);
305 fprintf (dump_file, "\n");
308 dest_rtx = copy_rtx (SA.partition_to_pseudo[dest]);
309 gcc_assert (dest_rtx);
311 set_location_for_edge (e);
312 /* If a locus is provided, override the default. */
313 if (locus)
314 set_curr_insn_location (locus);
316 start_sequence ();
318 var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
319 src_mode = TYPE_MODE (TREE_TYPE (src));
320 dest_mode = GET_MODE (dest_rtx);
321 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
322 gcc_assert (!REG_P (dest_rtx)
323 || dest_mode == promote_decl_mode (var, &unsignedp));
325 if (src_mode != dest_mode)
327 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
328 x = convert_modes (dest_mode, src_mode, x, unsignedp);
330 else if (src_mode == BLKmode)
332 x = dest_rtx;
333 store_expr (src, x, 0, false);
335 else
336 x = expand_expr (src, dest_rtx, dest_mode, EXPAND_NORMAL);
338 if (x != dest_rtx)
339 emit_move_insn (dest_rtx, x);
340 seq = get_insns ();
341 end_sequence ();
343 insert_insn_on_edge (seq, e);
346 /* Insert a copy instruction from RTL expression SRC to partition DEST
347 onto edge E. */
349 static void
350 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
351 source_location locus)
353 if (dump_file && (dump_flags & TDF_DETAILS))
355 fprintf (dump_file,
356 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
357 e->src->index,
358 e->dest->index, dest);
359 print_simple_rtl (dump_file, src);
360 fprintf (dump_file, "\n");
363 gcc_assert (SA.partition_to_pseudo[dest]);
365 set_location_for_edge (e);
366 /* If a locus is provided, override the default. */
367 if (locus)
368 set_curr_insn_location (locus);
370 /* We give the destination as sizeexp in case src/dest are BLKmode
371 mems. Usually we give the source. As we result from SSA names
372 the left and right size should be the same (and no WITH_SIZE_EXPR
373 involved), so it doesn't matter. */
374 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
375 src, unsignedsrcp,
376 partition_to_var (SA.map, dest));
378 insert_insn_on_edge (seq, e);
381 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
382 onto edge E. */
384 static void
385 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
387 tree var;
388 if (dump_file && (dump_flags & TDF_DETAILS))
390 fprintf (dump_file,
391 "Inserting a temp copy on edge BB%d->BB%d : ",
392 e->src->index,
393 e->dest->index);
394 print_simple_rtl (dump_file, dest);
395 fprintf (dump_file, "= PART.%d\n", src);
398 gcc_assert (SA.partition_to_pseudo[src]);
400 set_location_for_edge (e);
401 /* If a locus is provided, override the default. */
402 if (locus)
403 set_curr_insn_location (locus);
405 var = partition_to_var (SA.map, src);
406 rtx_insn *seq = emit_partition_copy (dest,
407 copy_rtx (SA.partition_to_pseudo[src]),
408 TYPE_UNSIGNED (TREE_TYPE (var)),
409 var);
411 insert_insn_on_edge (seq, e);
415 /* Create an elimination graph with SIZE nodes and associated data
416 structures. */
418 static elim_graph
419 new_elim_graph (int size)
421 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
423 g->nodes.create (30);
424 g->const_dests.create (20);
425 g->const_copies.create (20);
426 g->copy_locus.create (10);
427 g->edge_list.create (20);
428 g->edge_locus.create (10);
429 g->stack.create (30);
431 g->visited = sbitmap_alloc (size);
433 return g;
437 /* Empty elimination graph G. */
439 static inline void
440 clear_elim_graph (elim_graph g)
442 g->nodes.truncate (0);
443 g->edge_list.truncate (0);
444 g->edge_locus.truncate (0);
448 /* Delete elimination graph G. */
450 static inline void
451 delete_elim_graph (elim_graph g)
453 sbitmap_free (g->visited);
454 g->stack.release ();
455 g->edge_list.release ();
456 g->const_copies.release ();
457 g->const_dests.release ();
458 g->nodes.release ();
459 g->copy_locus.release ();
460 g->edge_locus.release ();
462 free (g);
466 /* Return the number of nodes in graph G. */
468 static inline int
469 elim_graph_size (elim_graph g)
471 return g->nodes.length ();
475 /* Add NODE to graph G, if it doesn't exist already. */
477 static inline void
478 elim_graph_add_node (elim_graph g, int node)
480 int x;
481 int t;
483 FOR_EACH_VEC_ELT (g->nodes, x, t)
484 if (t == node)
485 return;
486 g->nodes.safe_push (node);
490 /* Add the edge PRED->SUCC to graph G. */
492 static inline void
493 elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
495 g->edge_list.safe_push (pred);
496 g->edge_list.safe_push (succ);
497 g->edge_locus.safe_push (locus);
501 /* Remove an edge from graph G for which NODE is the predecessor, and
502 return the successor node. -1 is returned if there is no such edge. */
504 static inline int
505 elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
507 int y;
508 unsigned x;
509 for (x = 0; x < g->edge_list.length (); x += 2)
510 if (g->edge_list[x] == node)
512 g->edge_list[x] = -1;
513 y = g->edge_list[x + 1];
514 g->edge_list[x + 1] = -1;
515 *locus = g->edge_locus[x / 2];
516 g->edge_locus[x / 2] = UNKNOWN_LOCATION;
517 return y;
519 *locus = UNKNOWN_LOCATION;
520 return -1;
524 /* Find all the nodes in GRAPH which are successors to NODE in the
525 edge list. VAR will hold the partition number found. CODE is the
526 code fragment executed for every node found. */
528 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
529 do { \
530 unsigned x_; \
531 int y_; \
532 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
534 y_ = (GRAPH)->edge_list[x_]; \
535 if (y_ != (NODE)) \
536 continue; \
537 (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
538 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
539 CODE; \
541 } while (0)
544 /* Find all the nodes which are predecessors of NODE in the edge list for
545 GRAPH. VAR will hold the partition number found. CODE is the
546 code fragment executed for every node found. */
548 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
549 do { \
550 unsigned x_; \
551 int y_; \
552 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
554 y_ = (GRAPH)->edge_list[x_ + 1]; \
555 if (y_ != (NODE)) \
556 continue; \
557 (void) ((VAR) = (GRAPH)->edge_list[x_]); \
558 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
559 CODE; \
561 } while (0)
564 /* Add T to elimination graph G. */
566 static inline void
567 eliminate_name (elim_graph g, int T)
569 elim_graph_add_node (g, T);
572 /* Return true if this phi argument T should have a copy queued when using
573 var_map MAP. PHI nodes should contain only ssa_names and invariants. A
574 test for ssa_name is definitely simpler, but don't let invalid contents
575 slip through in the meantime. */
577 static inline bool
578 queue_phi_copy_p (var_map map, tree t)
580 if (TREE_CODE (t) == SSA_NAME)
582 if (var_to_partition (map, t) == NO_PARTITION)
583 return true;
584 return false;
586 gcc_checking_assert (is_gimple_min_invariant (t));
587 return true;
590 /* Build elimination graph G for basic block BB on incoming PHI edge
591 G->e. */
593 static void
594 eliminate_build (elim_graph g)
596 tree Ti;
597 int p0, pi;
598 gphi_iterator gsi;
600 clear_elim_graph (g);
602 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
604 gphi *phi = gsi.phi ();
605 source_location locus;
607 p0 = var_to_partition (g->map, gimple_phi_result (phi));
608 /* Ignore results which are not in partitions. */
609 if (p0 == NO_PARTITION)
610 continue;
612 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
613 locus = gimple_phi_arg_location_from_edge (phi, g->e);
615 /* If this argument is a constant, or a SSA_NAME which is being
616 left in SSA form, just queue a copy to be emitted on this
617 edge. */
618 if (queue_phi_copy_p (g->map, Ti))
620 /* Save constant copies until all other copies have been emitted
621 on this edge. */
622 g->const_dests.safe_push (p0);
623 g->const_copies.safe_push (Ti);
624 g->copy_locus.safe_push (locus);
626 else
628 pi = var_to_partition (g->map, Ti);
629 if (p0 != pi)
631 eliminate_name (g, p0);
632 eliminate_name (g, pi);
633 elim_graph_add_edge (g, p0, pi, locus);
640 /* Push successors of T onto the elimination stack for G. */
642 static void
643 elim_forward (elim_graph g, int T)
645 int S;
646 source_location locus;
648 bitmap_set_bit (g->visited, T);
649 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
651 if (!bitmap_bit_p (g->visited, S))
652 elim_forward (g, S);
654 g->stack.safe_push (T);
658 /* Return 1 if there unvisited predecessors of T in graph G. */
660 static int
661 elim_unvisited_predecessor (elim_graph g, int T)
663 int P;
664 source_location locus;
666 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
668 if (!bitmap_bit_p (g->visited, P))
669 return 1;
671 return 0;
674 /* Process predecessors first, and insert a copy. */
676 static void
677 elim_backward (elim_graph g, int T)
679 int P;
680 source_location locus;
682 bitmap_set_bit (g->visited, T);
683 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
685 if (!bitmap_bit_p (g->visited, P))
687 elim_backward (g, P);
688 insert_partition_copy_on_edge (g->e, P, T, locus);
693 /* Allocate a new pseudo register usable for storing values sitting
694 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
696 static rtx
697 get_temp_reg (tree name)
699 tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
700 tree type = TREE_TYPE (var);
701 int unsignedp;
702 machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
703 rtx x = gen_reg_rtx (reg_mode);
704 if (POINTER_TYPE_P (type))
705 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
706 return x;
709 /* Insert required copies for T in graph G. Check for a strongly connected
710 region, and create a temporary to break the cycle if one is found. */
712 static void
713 elim_create (elim_graph g, int T)
715 int P, S;
716 source_location locus;
718 if (elim_unvisited_predecessor (g, T))
720 tree var = partition_to_var (g->map, T);
721 rtx U = get_temp_reg (var);
722 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
724 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
725 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
727 if (!bitmap_bit_p (g->visited, P))
729 elim_backward (g, P);
730 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
734 else
736 S = elim_graph_remove_succ_edge (g, T, &locus);
737 if (S != -1)
739 bitmap_set_bit (g->visited, T);
740 insert_partition_copy_on_edge (g->e, T, S, locus);
746 /* Eliminate all the phi nodes on edge E in graph G. */
748 static void
749 eliminate_phi (edge e, elim_graph g)
751 int x;
753 gcc_assert (g->const_copies.length () == 0);
754 gcc_assert (g->copy_locus.length () == 0);
756 /* Abnormal edges already have everything coalesced. */
757 if (e->flags & EDGE_ABNORMAL)
758 return;
760 g->e = e;
762 eliminate_build (g);
764 if (elim_graph_size (g) != 0)
766 int part;
768 bitmap_clear (g->visited);
769 g->stack.truncate (0);
771 FOR_EACH_VEC_ELT (g->nodes, x, part)
773 if (!bitmap_bit_p (g->visited, part))
774 elim_forward (g, part);
777 bitmap_clear (g->visited);
778 while (g->stack.length () > 0)
780 x = g->stack.pop ();
781 if (!bitmap_bit_p (g->visited, x))
782 elim_create (g, x);
786 /* If there are any pending constant copies, issue them now. */
787 while (g->const_copies.length () > 0)
789 int dest;
790 tree src;
791 source_location locus;
793 src = g->const_copies.pop ();
794 dest = g->const_dests.pop ();
795 locus = g->copy_locus.pop ();
796 insert_value_copy_on_edge (e, dest, src, locus);
801 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
802 check to see if this allows another PHI node to be removed. */
804 static void
805 remove_gimple_phi_args (gphi *phi)
807 use_operand_p arg_p;
808 ssa_op_iter iter;
810 if (dump_file && (dump_flags & TDF_DETAILS))
812 fprintf (dump_file, "Removing Dead PHI definition: ");
813 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
816 FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
818 tree arg = USE_FROM_PTR (arg_p);
819 if (TREE_CODE (arg) == SSA_NAME)
821 /* Remove the reference to the existing argument. */
822 SET_USE (arg_p, NULL_TREE);
823 if (has_zero_uses (arg))
825 gimple stmt;
826 gimple_stmt_iterator gsi;
828 stmt = SSA_NAME_DEF_STMT (arg);
830 /* Also remove the def if it is a PHI node. */
831 if (gimple_code (stmt) == GIMPLE_PHI)
833 remove_gimple_phi_args (as_a <gphi *> (stmt));
834 gsi = gsi_for_stmt (stmt);
835 remove_phi_node (&gsi, true);
843 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
845 static void
846 eliminate_useless_phis (void)
848 basic_block bb;
849 gphi_iterator gsi;
850 tree result;
852 FOR_EACH_BB_FN (bb, cfun)
854 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
856 gphi *phi = gsi.phi ();
857 result = gimple_phi_result (phi);
858 if (virtual_operand_p (result))
860 #ifdef ENABLE_CHECKING
861 size_t i;
862 /* There should be no arguments which are not virtual, or the
863 results will be incorrect. */
864 for (i = 0; i < gimple_phi_num_args (phi); i++)
866 tree arg = PHI_ARG_DEF (phi, i);
867 if (TREE_CODE (arg) == SSA_NAME
868 && !virtual_operand_p (arg))
870 fprintf (stderr, "Argument of PHI is not virtual (");
871 print_generic_expr (stderr, arg, TDF_SLIM);
872 fprintf (stderr, "), but the result is :");
873 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
874 internal_error ("SSA corruption");
877 #endif
878 remove_phi_node (&gsi, true);
880 else
882 /* Also remove real PHIs with no uses. */
883 if (has_zero_uses (result))
885 remove_gimple_phi_args (phi);
886 remove_phi_node (&gsi, true);
888 else
889 gsi_next (&gsi);
896 /* This function will rewrite the current program using the variable mapping
897 found in MAP. If the replacement vector VALUES is provided, any
898 occurrences of partitions with non-null entries in the vector will be
899 replaced with the expression in the vector instead of its mapped
900 variable. */
902 static void
903 rewrite_trees (var_map map ATTRIBUTE_UNUSED)
905 #ifdef ENABLE_CHECKING
906 basic_block bb;
907 /* Search for PHIs where the destination has no partition, but one
908 or more arguments has a partition. This should not happen and can
909 create incorrect code. */
910 FOR_EACH_BB_FN (bb, cfun)
912 gphi_iterator gsi;
913 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
915 gphi *phi = gsi.phi ();
916 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
917 if (T0 == NULL_TREE)
919 size_t i;
920 for (i = 0; i < gimple_phi_num_args (phi); i++)
922 tree arg = PHI_ARG_DEF (phi, i);
924 if (TREE_CODE (arg) == SSA_NAME
925 && var_to_partition (map, arg) != NO_PARTITION)
927 fprintf (stderr, "Argument of PHI is in a partition :(");
928 print_generic_expr (stderr, arg, TDF_SLIM);
929 fprintf (stderr, "), but the result is not :");
930 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
931 internal_error ("SSA corruption");
937 #endif
940 /* Given the out-of-ssa info object SA (with prepared partitions)
941 eliminate all phi nodes in all basic blocks. Afterwards no
942 basic block will have phi nodes anymore and there are possibly
943 some RTL instructions inserted on edges. */
945 void
946 expand_phi_nodes (struct ssaexpand *sa)
948 basic_block bb;
949 elim_graph g = new_elim_graph (sa->map->num_partitions);
950 g->map = sa->map;
952 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
953 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
954 if (!gimple_seq_empty_p (phi_nodes (bb)))
956 edge e;
957 edge_iterator ei;
958 FOR_EACH_EDGE (e, ei, bb->preds)
959 eliminate_phi (e, g);
960 set_phi_nodes (bb, NULL);
961 /* We can't redirect EH edges in RTL land, so we need to do this
962 here. Redirection happens only when splitting is necessary,
963 which it is only for critical edges, normally. For EH edges
964 it might also be necessary when the successor has more than
965 one predecessor. In that case the edge is either required to
966 be fallthru (which EH edges aren't), or the predecessor needs
967 to end with a jump (which again, isn't the case with EH edges).
968 Hence, split all EH edges on which we inserted instructions
969 and whose successor has multiple predecessors. */
970 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
972 if (e->insns.r && (e->flags & EDGE_EH)
973 && !single_pred_p (e->dest))
975 rtx_insn *insns = e->insns.r;
976 basic_block bb;
977 e->insns.r = NULL;
978 bb = split_edge (e);
979 single_pred_edge (bb)->insns.r = insns;
981 else
982 ei_next (&ei);
986 delete_elim_graph (g);
990 /* Remove the ssa-names in the current function and translate them into normal
991 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
992 should also be used. */
994 static void
995 remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
997 bitmap values = NULL;
998 var_map map;
999 unsigned i;
1001 map = coalesce_ssa_name ();
1003 /* Return to viewing the variable list as just all reference variables after
1004 coalescing has been performed. */
1005 partition_view_normal (map, false);
1007 if (dump_file && (dump_flags & TDF_DETAILS))
1009 fprintf (dump_file, "After Coalescing:\n");
1010 dump_var_map (dump_file, map);
1013 if (perform_ter)
1015 values = find_replaceable_exprs (map);
1016 if (values && dump_file && (dump_flags & TDF_DETAILS))
1017 dump_replaceable_exprs (dump_file, values);
1020 rewrite_trees (map);
1022 sa->map = map;
1023 sa->values = values;
1024 sa->partition_has_default_def = BITMAP_ALLOC (NULL);
1025 for (i = 1; i < num_ssa_names; i++)
1027 tree t = ssa_name (i);
1028 if (t && SSA_NAME_IS_DEFAULT_DEF (t))
1030 int p = var_to_partition (map, t);
1031 if (p != NO_PARTITION)
1032 bitmap_set_bit (sa->partition_has_default_def, p);
1038 /* If not already done so for basic block BB, assign increasing uids
1039 to each of its instructions. */
1041 static void
1042 maybe_renumber_stmts_bb (basic_block bb)
1044 unsigned i = 0;
1045 gimple_stmt_iterator gsi;
1047 if (!bb->aux)
1048 return;
1049 bb->aux = NULL;
1050 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1052 gimple stmt = gsi_stmt (gsi);
1053 gimple_set_uid (stmt, i);
1054 i++;
1059 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
1060 of a PHI node) and ARG (one of its arguments) conflict. Return false
1061 otherwise, also when we simply aren't sure. */
1063 static bool
1064 trivially_conflicts_p (basic_block bb, tree result, tree arg)
1066 use_operand_p use;
1067 imm_use_iterator imm_iter;
1068 gimple defa = SSA_NAME_DEF_STMT (arg);
1070 /* If ARG isn't defined in the same block it's too complicated for
1071 our little mind. */
1072 if (gimple_bb (defa) != bb)
1073 return false;
1075 FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
1077 gimple use_stmt = USE_STMT (use);
1078 if (is_gimple_debug (use_stmt))
1079 continue;
1080 /* Now, if there's a use of RESULT that lies outside this basic block,
1081 then there surely is a conflict with ARG. */
1082 if (gimple_bb (use_stmt) != bb)
1083 return true;
1084 if (gimple_code (use_stmt) == GIMPLE_PHI)
1085 continue;
1086 /* The use now is in a real stmt of BB, so if ARG was defined
1087 in a PHI node (like RESULT) both conflict. */
1088 if (gimple_code (defa) == GIMPLE_PHI)
1089 return true;
1090 maybe_renumber_stmts_bb (bb);
1091 /* If the use of RESULT occurs after the definition of ARG,
1092 the two conflict too. */
1093 if (gimple_uid (defa) < gimple_uid (use_stmt))
1094 return true;
1097 return false;
1101 /* Search every PHI node for arguments associated with backedges which
1102 we can trivially determine will need a copy (the argument is either
1103 not an SSA_NAME or the argument has a different underlying variable
1104 than the PHI result).
1106 Insert a copy from the PHI argument to a new destination at the
1107 end of the block with the backedge to the top of the loop. Update
1108 the PHI argument to reference this new destination. */
1110 static void
1111 insert_backedge_copies (void)
1113 basic_block bb;
1114 gphi_iterator gsi;
1116 mark_dfs_back_edges ();
1118 FOR_EACH_BB_FN (bb, cfun)
1120 /* Mark block as possibly needing calculation of UIDs. */
1121 bb->aux = &bb->aux;
1123 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1125 gphi *phi = gsi.phi ();
1126 tree result = gimple_phi_result (phi);
1127 size_t i;
1129 if (virtual_operand_p (result))
1130 continue;
1132 for (i = 0; i < gimple_phi_num_args (phi); i++)
1134 tree arg = gimple_phi_arg_def (phi, i);
1135 edge e = gimple_phi_arg_edge (phi, i);
1137 /* If the argument is not an SSA_NAME, then we will need a
1138 constant initialization. If the argument is an SSA_NAME with
1139 a different underlying variable then a copy statement will be
1140 needed. */
1141 if ((e->flags & EDGE_DFS_BACK)
1142 && (TREE_CODE (arg) != SSA_NAME
1143 || SSA_NAME_VAR (arg) != SSA_NAME_VAR (result)
1144 || trivially_conflicts_p (bb, result, arg)))
1146 tree name;
1147 gassign *stmt;
1148 gimple last = NULL;
1149 gimple_stmt_iterator gsi2;
1151 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
1152 if (!gsi_end_p (gsi2))
1153 last = gsi_stmt (gsi2);
1155 /* In theory the only way we ought to get back to the
1156 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1157 However, better safe than sorry.
1158 If the block ends with a control statement or
1159 something that might throw, then we have to
1160 insert this assignment before the last
1161 statement. Else insert it after the last statement. */
1162 if (last && stmt_ends_bb_p (last))
1164 /* If the last statement in the block is the definition
1165 site of the PHI argument, then we can't insert
1166 anything after it. */
1167 if (TREE_CODE (arg) == SSA_NAME
1168 && SSA_NAME_DEF_STMT (arg) == last)
1169 continue;
1172 /* Create a new instance of the underlying variable of the
1173 PHI result. */
1174 name = copy_ssa_name (result);
1175 stmt = gimple_build_assign (name,
1176 gimple_phi_arg_def (phi, i));
1178 /* copy location if present. */
1179 if (gimple_phi_arg_has_location (phi, i))
1180 gimple_set_location (stmt,
1181 gimple_phi_arg_location (phi, i));
1183 /* Insert the new statement into the block and update
1184 the PHI node. */
1185 if (last && stmt_ends_bb_p (last))
1186 gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
1187 else
1188 gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
1189 SET_PHI_ARG_DEF (phi, i, name);
1194 /* Unmark this block again. */
1195 bb->aux = NULL;
1199 /* Free all memory associated with going out of SSA form. SA is
1200 the outof-SSA info object. */
1202 void
1203 finish_out_of_ssa (struct ssaexpand *sa)
1205 free (sa->partition_to_pseudo);
1206 if (sa->values)
1207 BITMAP_FREE (sa->values);
1208 delete_var_map (sa->map);
1209 BITMAP_FREE (sa->partition_has_default_def);
1210 memset (sa, 0, sizeof *sa);
1213 /* Take the current function out of SSA form, translating PHIs as described in
1214 R. Morgan, ``Building an Optimizing Compiler'',
1215 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1217 unsigned int
1218 rewrite_out_of_ssa (struct ssaexpand *sa)
1220 /* If elimination of a PHI requires inserting a copy on a backedge,
1221 then we will have to split the backedge which has numerous
1222 undesirable performance effects.
1224 A significant number of such cases can be handled here by inserting
1225 copies into the loop itself. */
1226 insert_backedge_copies ();
1229 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1230 eliminate_useless_phis ();
1232 if (dump_file && (dump_flags & TDF_DETAILS))
1233 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1235 remove_ssa_form (flag_tree_ter, sa);
1237 if (dump_file && (dump_flags & TDF_DETAILS))
1238 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1240 return 0;