2005-04-29 Jim Tison <jtison@us.ibm.com>
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blob65faf3a5ba9761b22eeaa6b0e333f62a002e4d3c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "errors.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "flags.h"
30 #include "tm_p.h"
31 #include "basic-block.h"
32 #include "timevar.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "tree-pass.h"
36 #include "tree-dump.h"
37 #include "langhooks.h"
39 static void tree_ssa_phiopt (void);
40 static bool conditional_replacement (basic_block, basic_block,
41 edge, edge, tree, tree, tree);
42 static bool value_replacement (basic_block, basic_block,
43 edge, edge, tree, tree, tree);
44 static bool minmax_replacement (basic_block, basic_block,
45 edge, edge, tree, tree, tree);
46 static bool abs_replacement (basic_block, basic_block,
47 edge, edge, tree, tree, tree);
48 static void replace_phi_edge_with_variable (basic_block, edge, tree, tree);
49 static basic_block *blocks_in_phiopt_order (void);
51 /* This pass tries to replaces an if-then-else block with an
52 assignment. We have four kinds of transformations. Some of these
53 transformations are also performed by the ifcvt RTL optimizer.
55 Conditional Replacement
56 -----------------------
58 This transformation, implemented in conditional_replacement,
59 replaces
61 bb0:
62 if (cond) goto bb2; else goto bb1;
63 bb1:
64 bb2:
65 x = PHI <0 (bb1), 1 (bb0), ...>;
67 with
69 bb0:
70 x' = cond;
71 goto bb2;
72 bb2:
73 x = PHI <x' (bb0), ...>;
75 We remove bb1 as it becomes unreachable. This occurs often due to
76 gimplification of conditionals.
78 Value Replacement
79 -----------------
81 This transformation, implemented in value_replacement, replaces
83 bb0:
84 if (a != b) goto bb2; else goto bb1;
85 bb1:
86 bb2:
87 x = PHI <a (bb1), b (bb0), ...>;
89 with
91 bb0:
92 bb2:
93 x = PHI <b (bb0), ...>;
95 This opportunity can sometimes occur as a result of other
96 optimizations.
98 ABS Replacement
99 ---------------
101 This transformation, implemented in abs_replacement, replaces
103 bb0:
104 if (a >= 0) goto bb2; else goto bb1;
105 bb1:
106 x = -a;
107 bb2:
108 x = PHI <x (bb1), a (bb0), ...>;
110 with
112 bb0:
113 x' = ABS_EXPR< a >;
114 bb2:
115 x = PHI <x' (bb0), ...>;
117 MIN/MAX Replacement
118 -------------------
120 This transformation, minmax_replacement replaces
122 bb0:
123 if (a <= b) goto bb2; else goto bb1;
124 bb1:
125 bb2:
126 x = PHI <b (bb1), a (bb0), ...>;
128 with
130 bb0:
131 x' = MIN_EXPR (a, b)
132 bb2:
133 x = PHI <x' (bb0), ...>;
135 A similar transformation is done for MAX_EXPR. */
137 static void
138 tree_ssa_phiopt (void)
140 basic_block bb;
141 basic_block *bb_order;
142 unsigned n, i;
144 /* Search every basic block for COND_EXPR we may be able to optimize.
146 We walk the blocks in order that guarantees that a block with
147 a single predecessor is processed before the predecessor.
148 This ensures that we collapse inner ifs before visiting the
149 outer ones, and also that we do not try to visit a removed
150 block. */
151 bb_order = blocks_in_phiopt_order ();
152 n = n_basic_blocks;
154 for (i = 0; i < n; i++)
156 tree cond_expr;
157 tree phi;
158 basic_block bb1, bb2;
159 edge e1, e2;
160 tree arg0, arg1;
162 bb = bb_order[i];
164 cond_expr = last_stmt (bb);
165 /* Check to see if the last statement is a COND_EXPR. */
166 if (!cond_expr
167 || TREE_CODE (cond_expr) != COND_EXPR)
168 continue;
170 e1 = EDGE_SUCC (bb, 0);
171 bb1 = e1->dest;
172 e2 = EDGE_SUCC (bb, 1);
173 bb2 = e2->dest;
175 /* We cannot do the optimization on abnormal edges. */
176 if ((e1->flags & EDGE_ABNORMAL) != 0
177 || (e2->flags & EDGE_ABNORMAL) != 0)
178 continue;
180 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
181 if (EDGE_COUNT (bb1->succs) == 0
182 || bb2 == NULL
183 || EDGE_COUNT (bb2->succs) == 0)
184 continue;
186 /* Find the bb which is the fall through to the other. */
187 if (EDGE_SUCC (bb1, 0)->dest == bb2)
189 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
191 basic_block bb_tmp = bb1;
192 edge e_tmp = e1;
193 bb1 = bb2;
194 bb2 = bb_tmp;
195 e1 = e2;
196 e2 = e_tmp;
198 else
199 continue;
201 e1 = EDGE_SUCC (bb1, 0);
203 /* Make sure that bb1 is just a fall through. */
204 if (!single_succ_p (bb1)
205 || (e1->flags & EDGE_FALLTHRU) == 0)
206 continue;
208 /* Also make sure that bb1 only have one predecessor and that it
209 is bb. */
210 if (!single_pred_p (bb1)
211 || single_pred (bb1) != bb)
212 continue;
214 phi = phi_nodes (bb2);
216 /* Check to make sure that there is only one PHI node.
217 TODO: we could do it with more than one iff the other PHI nodes
218 have the same elements for these two edges. */
219 if (!phi || PHI_CHAIN (phi) != NULL)
220 continue;
222 arg0 = PHI_ARG_DEF_TREE (phi, e1->dest_idx);
223 arg1 = PHI_ARG_DEF_TREE (phi, e2->dest_idx);
225 /* Something is wrong if we cannot find the arguments in the PHI
226 node. */
227 gcc_assert (arg0 != NULL && arg1 != NULL);
229 /* Do the replacement of conditional if it can be done. */
230 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
232 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
234 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
236 else
237 minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1);
240 free (bb_order);
243 /* Returns the list of basic blocks in the function in an order that guarantees
244 that if a block X has just a single predecessor Y, then Y is after X in the
245 ordering. */
247 static basic_block *
248 blocks_in_phiopt_order (void)
250 basic_block x, y;
251 basic_block *order = xmalloc (sizeof (basic_block) * n_basic_blocks);
252 unsigned n = n_basic_blocks, np, i;
253 sbitmap visited = sbitmap_alloc (last_basic_block + 2);
255 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index + 2))
256 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index + 2))
258 sbitmap_zero (visited);
260 MARK_VISITED (ENTRY_BLOCK_PTR);
261 FOR_EACH_BB (x)
263 if (VISITED_P (x))
264 continue;
266 /* Walk the predecessors of x as long as they have precisely one
267 predecessor and add them to the list, so that they get stored
268 after x. */
269 for (y = x, np = 1;
270 single_pred_p (y) && !VISITED_P (single_pred (y));
271 y = single_pred (y))
272 np++;
273 for (y = x, i = n - np;
274 single_pred_p (y) && !VISITED_P (single_pred (y));
275 y = single_pred (y), i++)
277 order[i] = y;
278 MARK_VISITED (y);
280 order[i] = y;
281 MARK_VISITED (y);
283 gcc_assert (i == n - 1);
284 n -= np;
287 sbitmap_free (visited);
288 gcc_assert (n == 0);
289 return order;
291 #undef MARK_VISITED
292 #undef VISITED_P
295 /* Return TRUE if block BB has no executable statements, otherwise return
296 FALSE. */
297 bool
298 empty_block_p (basic_block bb)
300 block_stmt_iterator bsi;
302 /* BB must have no executable statements. */
303 bsi = bsi_start (bb);
304 while (!bsi_end_p (bsi)
305 && (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR
306 || IS_EMPTY_STMT (bsi_stmt (bsi))))
307 bsi_next (&bsi);
309 if (!bsi_end_p (bsi))
310 return false;
312 return true;
315 /* Replace PHI node element whose edge is E in block BB with variable NEW.
316 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
317 is known to have two edges, one of which must reach BB). */
319 static void
320 replace_phi_edge_with_variable (basic_block cond_block,
321 edge e, tree phi, tree new)
323 basic_block bb = bb_for_stmt (phi);
324 basic_block block_to_remove;
325 block_stmt_iterator bsi;
327 /* Change the PHI argument to new. */
328 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new);
330 /* Remove the empty basic block. */
331 if (EDGE_SUCC (cond_block, 0)->dest == bb)
333 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
334 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
336 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
338 else
340 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
341 EDGE_SUCC (cond_block, 1)->flags
342 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
344 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
346 delete_basic_block (block_to_remove);
348 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
349 bsi = bsi_last (cond_block);
350 bsi_remove (&bsi);
352 if (dump_file && (dump_flags & TDF_DETAILS))
353 fprintf (dump_file,
354 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
355 cond_block->index,
356 bb->index);
359 /* The function conditional_replacement does the main work of doing the
360 conditional replacement. Return true if the replacement is done.
361 Otherwise return false.
362 BB is the basic block where the replacement is going to be done on. ARG0
363 is argument 0 from PHI. Likewise for ARG1. */
365 static bool
366 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
367 edge e0, edge e1, tree phi,
368 tree arg0, tree arg1)
370 tree result;
371 tree old_result = NULL;
372 tree new, cond;
373 block_stmt_iterator bsi;
374 edge true_edge, false_edge;
375 tree new_var = NULL;
376 tree new_var1;
378 /* The PHI arguments have the constants 0 and 1, then convert
379 it to the conditional. */
380 if ((integer_zerop (arg0) && integer_onep (arg1))
381 || (integer_zerop (arg1) && integer_onep (arg0)))
383 else
384 return false;
386 if (!empty_block_p (middle_bb))
387 return false;
389 /* If the condition is not a naked SSA_NAME and its type does not
390 match the type of the result, then we have to create a new
391 variable to optimize this case as it would likely create
392 non-gimple code when the condition was converted to the
393 result's type. */
394 cond = COND_EXPR_COND (last_stmt (cond_bb));
395 result = PHI_RESULT (phi);
396 if (TREE_CODE (cond) != SSA_NAME
397 && !lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
399 new_var = make_rename_temp (TREE_TYPE (cond), NULL);
400 old_result = cond;
401 cond = new_var;
404 /* If the condition was a naked SSA_NAME and the type is not the
405 same as the type of the result, then convert the type of the
406 condition. */
407 if (!lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
408 cond = fold_convert (TREE_TYPE (result), cond);
410 /* We need to know which is the true edge and which is the false
411 edge so that we know when to invert the condition below. */
412 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
414 /* Insert our new statement at the end of conditional block before the
415 COND_EXPR. */
416 bsi = bsi_last (cond_bb);
417 bsi_insert_before (&bsi, build_empty_stmt (), BSI_NEW_STMT);
419 if (old_result)
421 tree new1;
422 if (!COMPARISON_CLASS_P (old_result))
423 return false;
425 new1 = build2 (TREE_CODE (old_result), TREE_TYPE (old_result),
426 TREE_OPERAND (old_result, 0),
427 TREE_OPERAND (old_result, 1));
429 new1 = build2 (MODIFY_EXPR, TREE_TYPE (old_result), new_var, new1);
430 bsi_insert_after (&bsi, new1, BSI_NEW_STMT);
433 new_var1 = duplicate_ssa_name (PHI_RESULT (phi), NULL);
436 /* At this point we know we have a COND_EXPR with two successors.
437 One successor is BB, the other successor is an empty block which
438 falls through into BB.
440 There is a single PHI node at the join point (BB) and its arguments
441 are constants (0, 1).
443 So, given the condition COND, and the two PHI arguments, we can
444 rewrite this PHI into non-branching code:
446 dest = (COND) or dest = COND'
448 We use the condition as-is if the argument associated with the
449 true edge has the value one or the argument associated with the
450 false edge as the value zero. Note that those conditions are not
451 the same since only one of the outgoing edges from the COND_EXPR
452 will directly reach BB and thus be associated with an argument. */
453 if ((e0 == true_edge && integer_onep (arg0))
454 || (e0 == false_edge && integer_zerop (arg0))
455 || (e1 == true_edge && integer_onep (arg1))
456 || (e1 == false_edge && integer_zerop (arg1)))
458 new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
460 else
462 tree cond1 = invert_truthvalue (cond);
464 cond = cond1;
465 /* If what we get back is a conditional expression, there is no
466 way that it can be gimple. */
467 if (TREE_CODE (cond) == COND_EXPR)
469 release_ssa_name (new_var1);
470 return false;
473 /* If what we get back is not gimple try to create it as gimple by
474 using a temporary variable. */
475 if (is_gimple_cast (cond)
476 && !is_gimple_val (TREE_OPERAND (cond, 0)))
478 tree temp = TREE_OPERAND (cond, 0);
479 tree new_var_1 = make_rename_temp (TREE_TYPE (temp), NULL);
480 new = build2 (MODIFY_EXPR, TREE_TYPE (new_var_1), new_var_1, temp);
481 bsi_insert_after (&bsi, new, BSI_NEW_STMT);
482 cond = fold_convert (TREE_TYPE (result), new_var_1);
485 if (TREE_CODE (cond) == TRUTH_NOT_EXPR
486 && !is_gimple_val (TREE_OPERAND (cond, 0)))
488 release_ssa_name (new_var1);
489 return false;
492 new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
495 bsi_insert_after (&bsi, new, BSI_NEW_STMT);
497 SSA_NAME_DEF_STMT (new_var1) = new;
499 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var1);
501 /* Note that we optimized this PHI. */
502 return true;
505 /* The function value_replacement does the main work of doing the value
506 replacement. Return true if the replacement is done. Otherwise return
507 false.
508 BB is the basic block where the replacement is going to be done on. ARG0
509 is argument 0 from the PHI. Likewise for ARG1. */
511 static bool
512 value_replacement (basic_block cond_bb, basic_block middle_bb,
513 edge e0, edge e1, tree phi,
514 tree arg0, tree arg1)
516 tree cond;
517 edge true_edge, false_edge;
519 /* If the type says honor signed zeros we cannot do this
520 optimization. */
521 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
522 return false;
524 if (!empty_block_p (middle_bb))
525 return false;
527 cond = COND_EXPR_COND (last_stmt (cond_bb));
529 /* This transformation is only valid for equality comparisons. */
530 if (TREE_CODE (cond) != NE_EXPR && TREE_CODE (cond) != EQ_EXPR)
531 return false;
533 /* We need to know which is the true edge and which is the false
534 edge so that we know if have abs or negative abs. */
535 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
537 /* At this point we know we have a COND_EXPR with two successors.
538 One successor is BB, the other successor is an empty block which
539 falls through into BB.
541 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
543 There is a single PHI node at the join point (BB) with two arguments.
545 We now need to verify that the two arguments in the PHI node match
546 the two arguments to the equality comparison. */
548 if ((operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 0))
549 && operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 1)))
550 || (operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 0))
551 && operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 1))))
553 edge e;
554 tree arg;
556 /* For NE_EXPR, we want to build an assignment result = arg where
557 arg is the PHI argument associated with the true edge. For
558 EQ_EXPR we want the PHI argument associated with the false edge. */
559 e = (TREE_CODE (cond) == NE_EXPR ? true_edge : false_edge);
561 /* Unfortunately, E may not reach BB (it may instead have gone to
562 OTHER_BLOCK). If that is the case, then we want the single outgoing
563 edge from OTHER_BLOCK which reaches BB and represents the desired
564 path from COND_BLOCK. */
565 if (e->dest == middle_bb)
566 e = single_succ_edge (e->dest);
568 /* Now we know the incoming edge to BB that has the argument for the
569 RHS of our new assignment statement. */
570 if (e0 == e)
571 arg = arg0;
572 else
573 arg = arg1;
575 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
577 /* Note that we optimized this PHI. */
578 return true;
580 return false;
583 /* The function minmax_replacement does the main work of doing the minmax
584 replacement. Return true if the replacement is done. Otherwise return
585 false.
586 BB is the basic block where the replacement is going to be done on. ARG0
587 is argument 0 from the PHI. Likewise for ARG1. */
589 static bool
590 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
591 edge e0, edge e1, tree phi,
592 tree arg0, tree arg1)
594 tree result, type;
595 tree cond, new;
596 edge true_edge, false_edge;
597 enum tree_code cmp, minmax, ass_code;
598 tree smaller, larger, arg_true, arg_false;
599 block_stmt_iterator bsi, bsi_from;
601 type = TREE_TYPE (PHI_RESULT (phi));
603 /* The optimization may be unsafe due to NaNs. */
604 if (HONOR_NANS (TYPE_MODE (type)))
605 return false;
607 cond = COND_EXPR_COND (last_stmt (cond_bb));
608 cmp = TREE_CODE (cond);
609 result = PHI_RESULT (phi);
611 /* This transformation is only valid for order comparisons. Record which
612 operand is smaller/larger if the result of the comparison is true. */
613 if (cmp == LT_EXPR || cmp == LE_EXPR)
615 smaller = TREE_OPERAND (cond, 0);
616 larger = TREE_OPERAND (cond, 1);
618 else if (cmp == GT_EXPR || cmp == GE_EXPR)
620 smaller = TREE_OPERAND (cond, 1);
621 larger = TREE_OPERAND (cond, 0);
623 else
624 return false;
626 /* We need to know which is the true edge and which is the false
627 edge so that we know if have abs or negative abs. */
628 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
630 /* Forward the edges over the middle basic block. */
631 if (true_edge->dest == middle_bb)
632 true_edge = EDGE_SUCC (true_edge->dest, 0);
633 if (false_edge->dest == middle_bb)
634 false_edge = EDGE_SUCC (false_edge->dest, 0);
636 if (true_edge == e0)
638 gcc_assert (false_edge == e1);
639 arg_true = arg0;
640 arg_false = arg1;
642 else
644 gcc_assert (false_edge == e0);
645 gcc_assert (true_edge == e1);
646 arg_true = arg1;
647 arg_false = arg0;
650 if (empty_block_p (middle_bb))
652 if (operand_equal_for_phi_arg_p (arg_true, smaller)
653 && operand_equal_for_phi_arg_p (arg_false, larger))
655 /* Case
657 if (smaller < larger)
658 rslt = smaller;
659 else
660 rslt = larger; */
661 minmax = MIN_EXPR;
663 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
664 && operand_equal_for_phi_arg_p (arg_true, larger))
665 minmax = MAX_EXPR;
666 else
667 return false;
669 else
671 /* Recognize the following case, assuming d <= u:
673 if (a <= u)
674 b = MAX (a, d);
675 x = PHI <b, u>
677 This is equivalent to
679 b = MAX (a, d);
680 x = MIN (b, u); */
682 tree assign = last_and_only_stmt (middle_bb);
683 tree lhs, rhs, op0, op1, bound;
685 if (!assign
686 || TREE_CODE (assign) != MODIFY_EXPR)
687 return false;
689 lhs = TREE_OPERAND (assign, 0);
690 rhs = TREE_OPERAND (assign, 1);
691 ass_code = TREE_CODE (rhs);
692 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
693 return false;
694 op0 = TREE_OPERAND (rhs, 0);
695 op1 = TREE_OPERAND (rhs, 1);
697 if (true_edge->src == middle_bb)
699 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
700 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
701 return false;
703 if (operand_equal_for_phi_arg_p (arg_false, larger))
705 /* Case
707 if (smaller < larger)
709 r' = MAX_EXPR (smaller, bound)
711 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
712 if (ass_code != MAX_EXPR)
713 return false;
715 minmax = MIN_EXPR;
716 if (operand_equal_for_phi_arg_p (op0, smaller))
717 bound = op1;
718 else if (operand_equal_for_phi_arg_p (op1, smaller))
719 bound = op0;
720 else
721 return false;
723 /* We need BOUND <= LARGER. */
724 if (!integer_nonzerop (fold (build2 (LE_EXPR, boolean_type_node,
725 bound, larger))))
726 return false;
728 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
730 /* Case
732 if (smaller < larger)
734 r' = MIN_EXPR (larger, bound)
736 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
737 if (ass_code != MIN_EXPR)
738 return false;
740 minmax = MAX_EXPR;
741 if (operand_equal_for_phi_arg_p (op0, larger))
742 bound = op1;
743 else if (operand_equal_for_phi_arg_p (op1, larger))
744 bound = op0;
745 else
746 return false;
748 /* We need BOUND >= SMALLER. */
749 if (!integer_nonzerop (fold (build2 (GE_EXPR, boolean_type_node,
750 bound, smaller))))
751 return false;
753 else
754 return false;
756 else
758 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
759 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
760 return false;
762 if (operand_equal_for_phi_arg_p (arg_true, larger))
764 /* Case
766 if (smaller > larger)
768 r' = MIN_EXPR (smaller, bound)
770 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
771 if (ass_code != MIN_EXPR)
772 return false;
774 minmax = MAX_EXPR;
775 if (operand_equal_for_phi_arg_p (op0, smaller))
776 bound = op1;
777 else if (operand_equal_for_phi_arg_p (op1, smaller))
778 bound = op0;
779 else
780 return false;
782 /* We need BOUND >= LARGER. */
783 if (!integer_nonzerop (fold (build2 (GE_EXPR, boolean_type_node,
784 bound, larger))))
785 return false;
787 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
789 /* Case
791 if (smaller > larger)
793 r' = MAX_EXPR (larger, bound)
795 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
796 if (ass_code != MAX_EXPR)
797 return false;
799 minmax = MIN_EXPR;
800 if (operand_equal_for_phi_arg_p (op0, larger))
801 bound = op1;
802 else if (operand_equal_for_phi_arg_p (op1, larger))
803 bound = op0;
804 else
805 return false;
807 /* We need BOUND <= SMALLER. */
808 if (!integer_nonzerop (fold (build2 (LE_EXPR, boolean_type_node,
809 bound, smaller))))
810 return false;
812 else
813 return false;
816 /* Move the statement from the middle block. */
817 bsi = bsi_last (cond_bb);
818 bsi_from = bsi_last (middle_bb);
819 bsi_move_before (&bsi_from, &bsi);
822 /* Emit the statement to compute min/max. */
823 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
824 new = build2 (MODIFY_EXPR, type, result,
825 build2 (minmax, type, arg0, arg1));
826 SSA_NAME_DEF_STMT (result) = new;
827 bsi = bsi_last (cond_bb);
828 bsi_insert_before (&bsi, new, BSI_NEW_STMT);
830 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
831 return true;
834 /* The function absolute_replacement does the main work of doing the absolute
835 replacement. Return true if the replacement is done. Otherwise return
836 false.
837 bb is the basic block where the replacement is going to be done on. arg0
838 is argument 0 from the phi. Likewise for arg1. */
840 static bool
841 abs_replacement (basic_block cond_bb, basic_block middle_bb,
842 edge e0 ATTRIBUTE_UNUSED, edge e1,
843 tree phi, tree arg0, tree arg1)
845 tree result;
846 tree new, cond;
847 block_stmt_iterator bsi;
848 edge true_edge, false_edge;
849 tree assign;
850 edge e;
851 tree rhs, lhs;
852 bool negate;
853 enum tree_code cond_code;
855 /* If the type says honor signed zeros we cannot do this
856 optimization. */
857 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
858 return false;
860 /* OTHER_BLOCK must have only one executable statement which must have the
861 form arg0 = -arg1 or arg1 = -arg0. */
863 assign = last_and_only_stmt (middle_bb);
864 /* If we did not find the proper negation assignment, then we can not
865 optimize. */
866 if (assign == NULL)
867 return false;
869 /* If we got here, then we have found the only executable statement
870 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
871 arg1 = -arg0, then we can not optimize. */
872 if (TREE_CODE (assign) != MODIFY_EXPR)
873 return false;
875 lhs = TREE_OPERAND (assign, 0);
876 rhs = TREE_OPERAND (assign, 1);
878 if (TREE_CODE (rhs) != NEGATE_EXPR)
879 return false;
881 rhs = TREE_OPERAND (rhs, 0);
883 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
884 if (!(lhs == arg0 && rhs == arg1)
885 && !(lhs == arg1 && rhs == arg0))
886 return false;
888 cond = COND_EXPR_COND (last_stmt (cond_bb));
889 result = PHI_RESULT (phi);
891 /* Only relationals comparing arg[01] against zero are interesting. */
892 cond_code = TREE_CODE (cond);
893 if (cond_code != GT_EXPR && cond_code != GE_EXPR
894 && cond_code != LT_EXPR && cond_code != LE_EXPR)
895 return false;
897 /* Make sure the conditional is arg[01] OP y. */
898 if (TREE_OPERAND (cond, 0) != rhs)
899 return false;
901 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))
902 ? real_zerop (TREE_OPERAND (cond, 1))
903 : integer_zerop (TREE_OPERAND (cond, 1)))
905 else
906 return false;
908 /* We need to know which is the true edge and which is the false
909 edge so that we know if have abs or negative abs. */
910 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
912 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
913 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
914 the false edge goes to OTHER_BLOCK. */
915 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
916 e = true_edge;
917 else
918 e = false_edge;
920 if (e->dest == middle_bb)
921 negate = true;
922 else
923 negate = false;
925 result = duplicate_ssa_name (result, NULL);
927 if (negate)
928 lhs = make_rename_temp (TREE_TYPE (result), NULL);
929 else
930 lhs = result;
932 /* Build the modify expression with abs expression. */
933 new = build2 (MODIFY_EXPR, TREE_TYPE (lhs),
934 lhs, build1 (ABS_EXPR, TREE_TYPE (lhs), rhs));
936 bsi = bsi_last (cond_bb);
937 bsi_insert_before (&bsi, new, BSI_NEW_STMT);
939 if (negate)
941 /* Get the right BSI. We want to insert after the recently
942 added ABS_EXPR statement (which we know is the first statement
943 in the block. */
944 new = build2 (MODIFY_EXPR, TREE_TYPE (result),
945 result, build1 (NEGATE_EXPR, TREE_TYPE (lhs), lhs));
947 bsi_insert_after (&bsi, new, BSI_NEW_STMT);
950 SSA_NAME_DEF_STMT (result) = new;
951 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
953 /* Note that we optimized this PHI. */
954 return true;
958 /* Always do these optimizations if we have SSA
959 trees to work on. */
960 static bool
961 gate_phiopt (void)
963 return 1;
966 struct tree_opt_pass pass_phiopt =
968 "phiopt", /* name */
969 gate_phiopt, /* gate */
970 tree_ssa_phiopt, /* execute */
971 NULL, /* sub */
972 NULL, /* next */
973 0, /* static_pass_number */
974 TV_TREE_PHIOPT, /* tv_id */
975 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
976 0, /* properties_provided */
977 0, /* properties_destroyed */
978 0, /* todo_flags_start */
979 TODO_cleanup_cfg
980 | TODO_dump_func
981 | TODO_ggc_collect
982 | TODO_verify_ssa
983 | TODO_update_ssa
984 | TODO_verify_flow
985 | TODO_verify_stmts, /* todo_flags_finish */
986 0 /* letter */