2005-04-29 Jim Tison <jtison@us.ibm.com>
[official-gcc.git] / gcc / reg-stack.c
bloba49d9e9a10860e974b9098a5ea217b1e2adcf1dc
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180 static GTY(()) varray_type stack_regs_mentioned_data;
182 #ifdef STACK_REGS
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
193 REG_SET indicates which registers are live. */
195 typedef struct stack_def
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
200 } *stack;
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
205 typedef struct block_info_def
207 struct stack_def stack_in; /* Input stack configuration. */
208 struct stack_def stack_out; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
211 int predecessors; /* Number of predecessors that needs
212 to be visited. */
213 } *block_info;
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
217 /* Passed to change_stack to indicate where to emit insns. */
218 enum emit_where
220 EMIT_AFTER,
221 EMIT_BEFORE
224 /* The block we're currently working on. */
225 static basic_block current_block;
227 /* This is the register file for all register after conversion. */
228 static rtx
229 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
231 #define FP_MODE_REG(regno,mode) \
232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
234 /* Used to initialize uninitialized registers. */
235 static rtx not_a_num;
237 /* Forward declarations */
239 static int stack_regs_mentioned_p (rtx pat);
240 static void straighten_stack (rtx, stack);
241 static void pop_stack (stack, int);
242 static rtx *get_true_reg (rtx *);
244 static int check_asm_stack_operands (rtx);
245 static int get_asm_operand_n_inputs (rtx);
246 static rtx stack_result (tree);
247 static void replace_reg (rtx *, int);
248 static void remove_regno_note (rtx, enum reg_note, unsigned int);
249 static int get_hard_regnum (stack, rtx);
250 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
251 static void emit_swap_insn (rtx, stack, rtx);
252 static void swap_to_top(rtx, stack, rtx, rtx);
253 static bool move_for_stack_reg (rtx, stack, rtx);
254 static bool move_nan_for_stack_reg (rtx, stack, rtx);
255 static int swap_rtx_condition_1 (rtx);
256 static int swap_rtx_condition (rtx);
257 static void compare_for_stack_reg (rtx, stack, rtx);
258 static bool subst_stack_regs_pat (rtx, stack, rtx);
259 static void subst_asm_stack_regs (rtx, stack);
260 static bool subst_stack_regs (rtx, stack);
261 static void change_stack (rtx, stack, stack, enum emit_where);
262 static int convert_regs_entry (void);
263 static void convert_regs_exit (void);
264 static int convert_regs_1 (FILE *, basic_block);
265 static int convert_regs_2 (FILE *, basic_block);
266 static int convert_regs (FILE *);
267 static void print_stack (FILE *, stack);
268 static rtx next_flags_user (rtx);
269 static bool compensate_edge (edge, FILE *);
271 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
273 static int
274 stack_regs_mentioned_p (rtx pat)
276 const char *fmt;
277 int i;
279 if (STACK_REG_P (pat))
280 return 1;
282 fmt = GET_RTX_FORMAT (GET_CODE (pat));
283 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
285 if (fmt[i] == 'E')
287 int j;
289 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
290 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
291 return 1;
293 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
294 return 1;
297 return 0;
300 /* Return nonzero if INSN mentions stacked registers, else return zero. */
303 stack_regs_mentioned (rtx insn)
305 unsigned int uid, max;
306 int test;
308 if (! INSN_P (insn) || !stack_regs_mentioned_data)
309 return 0;
311 uid = INSN_UID (insn);
312 max = VARRAY_SIZE (stack_regs_mentioned_data);
313 if (uid >= max)
315 /* Allocate some extra size to avoid too many reallocs, but
316 do not grow too quickly. */
317 max = uid + uid / 20;
318 VARRAY_GROW (stack_regs_mentioned_data, max);
321 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
322 if (test == 0)
324 /* This insn has yet to be examined. Do so now. */
325 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
326 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
329 return test == 1;
332 static rtx ix86_flags_rtx;
334 static rtx
335 next_flags_user (rtx insn)
337 /* Search forward looking for the first use of this value.
338 Stop at block boundaries. */
340 while (insn != BB_END (current_block))
342 insn = NEXT_INSN (insn);
344 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
345 return insn;
347 if (CALL_P (insn))
348 return NULL_RTX;
350 return NULL_RTX;
353 /* Reorganize the stack into ascending numbers,
354 after this insn. */
356 static void
357 straighten_stack (rtx insn, stack regstack)
359 struct stack_def temp_stack;
360 int top;
362 /* If there is only a single register on the stack, then the stack is
363 already in increasing order and no reorganization is needed.
365 Similarly if the stack is empty. */
366 if (regstack->top <= 0)
367 return;
369 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
371 for (top = temp_stack.top = regstack->top; top >= 0; top--)
372 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
374 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
377 /* Pop a register from the stack. */
379 static void
380 pop_stack (stack regstack, int regno)
382 int top = regstack->top;
384 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
385 regstack->top--;
386 /* If regno was not at the top of stack then adjust stack. */
387 if (regstack->reg [top] != regno)
389 int i;
390 for (i = regstack->top; i >= 0; i--)
391 if (regstack->reg [i] == regno)
393 int j;
394 for (j = i; j < top; j++)
395 regstack->reg [j] = regstack->reg [j + 1];
396 break;
401 /* Convert register usage from "flat" register file usage to a "stack
402 register file. FILE is the dump file, if used.
404 Construct a CFG and run life analysis. Then convert each insn one
405 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
406 code duplication created when the converter inserts pop insns on
407 the edges. */
409 bool
410 reg_to_stack (FILE *file)
412 basic_block bb;
413 int i;
414 int max_uid;
416 /* Clean up previous run. */
417 stack_regs_mentioned_data = 0;
419 /* See if there is something to do. Flow analysis is quite
420 expensive so we might save some compilation time. */
421 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
422 if (regs_ever_live[i])
423 break;
424 if (i > LAST_STACK_REG)
425 return false;
427 /* Ok, floating point instructions exist. If not optimizing,
428 build the CFG and run life analysis.
429 Also need to rebuild life when superblock scheduling is done
430 as it don't update liveness yet. */
431 if (!optimize
432 || (flag_sched2_use_superblocks
433 && flag_schedule_insns_after_reload))
435 count_or_remove_death_notes (NULL, 1);
436 life_analysis (file, PROP_DEATH_NOTES);
438 mark_dfs_back_edges ();
440 /* Set up block info for each basic block. */
441 alloc_aux_for_blocks (sizeof (struct block_info_def));
442 FOR_EACH_BB_REVERSE (bb)
444 edge e;
445 edge_iterator ei;
447 FOR_EACH_EDGE (e, ei, bb->preds)
448 if (!(e->flags & EDGE_DFS_BACK)
449 && e->src != ENTRY_BLOCK_PTR)
450 BLOCK_INFO (bb)->predecessors++;
453 /* Create the replacement registers up front. */
454 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
456 enum machine_mode mode;
457 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
458 mode != VOIDmode;
459 mode = GET_MODE_WIDER_MODE (mode))
460 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
461 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
462 mode != VOIDmode;
463 mode = GET_MODE_WIDER_MODE (mode))
464 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
467 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
469 /* A QNaN for initializing uninitialized variables.
471 ??? We can't load from constant memory in PIC mode, because
472 we're inserting these instructions before the prologue and
473 the PIC register hasn't been set up. In that case, fall back
474 on zero, which we can get from `ldz'. */
476 if (flag_pic)
477 not_a_num = CONST0_RTX (SFmode);
478 else
480 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
481 not_a_num = force_const_mem (SFmode, not_a_num);
484 /* Allocate a cache for stack_regs_mentioned. */
485 max_uid = get_max_uid ();
486 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
487 "stack_regs_mentioned cache");
489 convert_regs (file);
491 free_aux_for_blocks ();
492 return true;
496 /* Return a pointer to the REG expression within PAT. If PAT is not a
497 REG, possible enclosed by a conversion rtx, return the inner part of
498 PAT that stopped the search. */
500 static rtx *
501 get_true_reg (rtx *pat)
503 for (;;)
504 switch (GET_CODE (*pat))
506 case SUBREG:
507 /* Eliminate FP subregister accesses in favor of the
508 actual FP register in use. */
510 rtx subreg;
511 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
513 int regno_off = subreg_regno_offset (REGNO (subreg),
514 GET_MODE (subreg),
515 SUBREG_BYTE (*pat),
516 GET_MODE (*pat));
517 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
518 GET_MODE (subreg));
519 default:
520 return pat;
523 case FLOAT:
524 case FIX:
525 case FLOAT_EXTEND:
526 pat = & XEXP (*pat, 0);
527 break;
529 case FLOAT_TRUNCATE:
530 if (!flag_unsafe_math_optimizations)
531 return pat;
532 pat = & XEXP (*pat, 0);
533 break;
537 /* Set if we find any malformed asms in a block. */
538 static bool any_malformed_asm;
540 /* There are many rules that an asm statement for stack-like regs must
541 follow. Those rules are explained at the top of this file: the rule
542 numbers below refer to that explanation. */
544 static int
545 check_asm_stack_operands (rtx insn)
547 int i;
548 int n_clobbers;
549 int malformed_asm = 0;
550 rtx body = PATTERN (insn);
552 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
553 char implicitly_dies[FIRST_PSEUDO_REGISTER];
554 int alt;
556 rtx *clobber_reg = 0;
557 int n_inputs, n_outputs;
559 /* Find out what the constraints require. If no constraint
560 alternative matches, this asm is malformed. */
561 extract_insn (insn);
562 constrain_operands (1);
563 alt = which_alternative;
565 preprocess_constraints ();
567 n_inputs = get_asm_operand_n_inputs (body);
568 n_outputs = recog_data.n_operands - n_inputs;
570 if (alt < 0)
572 malformed_asm = 1;
573 /* Avoid further trouble with this insn. */
574 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
575 return 0;
578 /* Strip SUBREGs here to make the following code simpler. */
579 for (i = 0; i < recog_data.n_operands; i++)
580 if (GET_CODE (recog_data.operand[i]) == SUBREG
581 && REG_P (SUBREG_REG (recog_data.operand[i])))
582 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
584 /* Set up CLOBBER_REG. */
586 n_clobbers = 0;
588 if (GET_CODE (body) == PARALLEL)
590 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
592 for (i = 0; i < XVECLEN (body, 0); i++)
593 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
595 rtx clobber = XVECEXP (body, 0, i);
596 rtx reg = XEXP (clobber, 0);
598 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
599 reg = SUBREG_REG (reg);
601 if (STACK_REG_P (reg))
603 clobber_reg[n_clobbers] = reg;
604 n_clobbers++;
609 /* Enforce rule #4: Output operands must specifically indicate which
610 reg an output appears in after an asm. "=f" is not allowed: the
611 operand constraints must select a class with a single reg.
613 Also enforce rule #5: Output operands must start at the top of
614 the reg-stack: output operands may not "skip" a reg. */
616 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
617 for (i = 0; i < n_outputs; i++)
618 if (STACK_REG_P (recog_data.operand[i]))
620 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
622 error_for_asm (insn, "output constraint %d must specify a single register", i);
623 malformed_asm = 1;
625 else
627 int j;
629 for (j = 0; j < n_clobbers; j++)
630 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
632 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
633 i, reg_names [REGNO (clobber_reg[j])]);
634 malformed_asm = 1;
635 break;
637 if (j == n_clobbers)
638 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
643 /* Search for first non-popped reg. */
644 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
645 if (! reg_used_as_output[i])
646 break;
648 /* If there are any other popped regs, that's an error. */
649 for (; i < LAST_STACK_REG + 1; i++)
650 if (reg_used_as_output[i])
651 break;
653 if (i != LAST_STACK_REG + 1)
655 error_for_asm (insn, "output regs must be grouped at top of stack");
656 malformed_asm = 1;
659 /* Enforce rule #2: All implicitly popped input regs must be closer
660 to the top of the reg-stack than any input that is not implicitly
661 popped. */
663 memset (implicitly_dies, 0, sizeof (implicitly_dies));
664 for (i = n_outputs; i < n_outputs + n_inputs; i++)
665 if (STACK_REG_P (recog_data.operand[i]))
667 /* An input reg is implicitly popped if it is tied to an
668 output, or if there is a CLOBBER for it. */
669 int j;
671 for (j = 0; j < n_clobbers; j++)
672 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
673 break;
675 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
676 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
679 /* Search for first non-popped reg. */
680 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
681 if (! implicitly_dies[i])
682 break;
684 /* If there are any other popped regs, that's an error. */
685 for (; i < LAST_STACK_REG + 1; i++)
686 if (implicitly_dies[i])
687 break;
689 if (i != LAST_STACK_REG + 1)
691 error_for_asm (insn,
692 "implicitly popped regs must be grouped at top of stack");
693 malformed_asm = 1;
696 /* Enforce rule #3: If any input operand uses the "f" constraint, all
697 output constraints must use the "&" earlyclobber.
699 ??? Detect this more deterministically by having constrain_asm_operands
700 record any earlyclobber. */
702 for (i = n_outputs; i < n_outputs + n_inputs; i++)
703 if (recog_op_alt[i][alt].matches == -1)
705 int j;
707 for (j = 0; j < n_outputs; j++)
708 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
710 error_for_asm (insn,
711 "output operand %d must use %<&%> constraint", j);
712 malformed_asm = 1;
716 if (malformed_asm)
718 /* Avoid further trouble with this insn. */
719 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
720 any_malformed_asm = true;
721 return 0;
724 return 1;
727 /* Calculate the number of inputs and outputs in BODY, an
728 asm_operands. N_OPERANDS is the total number of operands, and
729 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
730 placed. */
732 static int
733 get_asm_operand_n_inputs (rtx body)
735 switch (GET_CODE (body))
737 case SET:
738 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
739 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
741 case ASM_OPERANDS:
742 return ASM_OPERANDS_INPUT_LENGTH (body);
744 case PARALLEL:
745 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
747 default:
748 gcc_unreachable ();
752 /* If current function returns its result in an fp stack register,
753 return the REG. Otherwise, return 0. */
755 static rtx
756 stack_result (tree decl)
758 rtx result;
760 /* If the value is supposed to be returned in memory, then clearly
761 it is not returned in a stack register. */
762 if (aggregate_value_p (DECL_RESULT (decl), decl))
763 return 0;
765 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
766 if (result != 0)
768 #ifdef FUNCTION_OUTGOING_VALUE
769 result
770 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
771 #else
772 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
773 #endif
776 return result != 0 && STACK_REG_P (result) ? result : 0;
781 * This section deals with stack register substitution, and forms the second
782 * pass over the RTL.
785 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
786 the desired hard REGNO. */
788 static void
789 replace_reg (rtx *reg, int regno)
791 gcc_assert (regno >= FIRST_STACK_REG);
792 gcc_assert (regno <= LAST_STACK_REG);
793 gcc_assert (STACK_REG_P (*reg));
795 gcc_assert (GET_MODE_CLASS (GET_MODE (*reg)) == MODE_FLOAT
796 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
798 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
801 /* Remove a note of type NOTE, which must be found, for register
802 number REGNO from INSN. Remove only one such note. */
804 static void
805 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
807 rtx *note_link, this;
809 note_link = &REG_NOTES (insn);
810 for (this = *note_link; this; this = XEXP (this, 1))
811 if (REG_NOTE_KIND (this) == note
812 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
814 *note_link = XEXP (this, 1);
815 return;
817 else
818 note_link = &XEXP (this, 1);
820 gcc_unreachable ();
823 /* Find the hard register number of virtual register REG in REGSTACK.
824 The hard register number is relative to the top of the stack. -1 is
825 returned if the register is not found. */
827 static int
828 get_hard_regnum (stack regstack, rtx reg)
830 int i;
832 gcc_assert (STACK_REG_P (reg));
834 for (i = regstack->top; i >= 0; i--)
835 if (regstack->reg[i] == REGNO (reg))
836 break;
838 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
841 /* Emit an insn to pop virtual register REG before or after INSN.
842 REGSTACK is the stack state after INSN and is updated to reflect this
843 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
844 is represented as a SET whose destination is the register to be popped
845 and source is the top of stack. A death note for the top of stack
846 cases the movdf pattern to pop. */
848 static rtx
849 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
851 rtx pop_insn, pop_rtx;
852 int hard_regno;
854 /* For complex types take care to pop both halves. These may survive in
855 CLOBBER and USE expressions. */
856 if (COMPLEX_MODE_P (GET_MODE (reg)))
858 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
859 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
861 pop_insn = NULL_RTX;
862 if (get_hard_regnum (regstack, reg1) >= 0)
863 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
864 if (get_hard_regnum (regstack, reg2) >= 0)
865 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
866 gcc_assert (pop_insn);
867 return pop_insn;
870 hard_regno = get_hard_regnum (regstack, reg);
872 gcc_assert (hard_regno >= FIRST_STACK_REG);
874 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
875 FP_MODE_REG (FIRST_STACK_REG, DFmode));
877 if (where == EMIT_AFTER)
878 pop_insn = emit_insn_after (pop_rtx, insn);
879 else
880 pop_insn = emit_insn_before (pop_rtx, insn);
882 REG_NOTES (pop_insn)
883 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
884 REG_NOTES (pop_insn));
886 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
887 = regstack->reg[regstack->top];
888 regstack->top -= 1;
889 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
891 return pop_insn;
894 /* Emit an insn before or after INSN to swap virtual register REG with
895 the top of stack. REGSTACK is the stack state before the swap, and
896 is updated to reflect the swap. A swap insn is represented as a
897 PARALLEL of two patterns: each pattern moves one reg to the other.
899 If REG is already at the top of the stack, no insn is emitted. */
901 static void
902 emit_swap_insn (rtx insn, stack regstack, rtx reg)
904 int hard_regno;
905 rtx swap_rtx;
906 int tmp, other_reg; /* swap regno temps */
907 rtx i1; /* the stack-reg insn prior to INSN */
908 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
910 hard_regno = get_hard_regnum (regstack, reg);
912 gcc_assert (hard_regno >= FIRST_STACK_REG);
913 if (hard_regno == FIRST_STACK_REG)
914 return;
916 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
918 tmp = regstack->reg[other_reg];
919 regstack->reg[other_reg] = regstack->reg[regstack->top];
920 regstack->reg[regstack->top] = tmp;
922 /* Find the previous insn involving stack regs, but don't pass a
923 block boundary. */
924 i1 = NULL;
925 if (current_block && insn != BB_HEAD (current_block))
927 rtx tmp = PREV_INSN (insn);
928 rtx limit = PREV_INSN (BB_HEAD (current_block));
929 while (tmp != limit)
931 if (LABEL_P (tmp)
932 || CALL_P (tmp)
933 || NOTE_INSN_BASIC_BLOCK_P (tmp)
934 || (NONJUMP_INSN_P (tmp)
935 && stack_regs_mentioned (tmp)))
937 i1 = tmp;
938 break;
940 tmp = PREV_INSN (tmp);
944 if (i1 != NULL_RTX
945 && (i1set = single_set (i1)) != NULL_RTX)
947 rtx i1src = *get_true_reg (&SET_SRC (i1set));
948 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
950 /* If the previous register stack push was from the reg we are to
951 swap with, omit the swap. */
953 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
954 && REG_P (i1src)
955 && REGNO (i1src) == (unsigned) hard_regno - 1
956 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
957 return;
959 /* If the previous insn wrote to the reg we are to swap with,
960 omit the swap. */
962 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
963 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
964 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
965 return;
968 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
969 FP_MODE_REG (FIRST_STACK_REG, XFmode));
971 if (i1)
972 emit_insn_after (swap_rtx, i1);
973 else if (current_block)
974 emit_insn_before (swap_rtx, BB_HEAD (current_block));
975 else
976 emit_insn_before (swap_rtx, insn);
979 /* Emit an insns before INSN to swap virtual register SRC1 with
980 the top of stack and virtual register SRC2 with second stack
981 slot. REGSTACK is the stack state before the swaps, and
982 is updated to reflect the swaps. A swap insn is represented as a
983 PARALLEL of two patterns: each pattern moves one reg to the other.
985 If SRC1 and/or SRC2 are already at the right place, no swap insn
986 is emitted. */
988 static void
989 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
991 struct stack_def temp_stack;
992 int regno, j, k, temp;
994 temp_stack = *regstack;
996 /* Place operand 1 at the top of stack. */
997 regno = get_hard_regnum (&temp_stack, src1);
998 gcc_assert (regno >= 0);
999 if (regno != FIRST_STACK_REG)
1001 k = temp_stack.top - (regno - FIRST_STACK_REG);
1002 j = temp_stack.top;
1004 temp = temp_stack.reg[k];
1005 temp_stack.reg[k] = temp_stack.reg[j];
1006 temp_stack.reg[j] = temp;
1009 /* Place operand 2 next on the stack. */
1010 regno = get_hard_regnum (&temp_stack, src2);
1011 gcc_assert (regno >= 0);
1012 if (regno != FIRST_STACK_REG + 1)
1014 k = temp_stack.top - (regno - FIRST_STACK_REG);
1015 j = temp_stack.top - 1;
1017 temp = temp_stack.reg[k];
1018 temp_stack.reg[k] = temp_stack.reg[j];
1019 temp_stack.reg[j] = temp;
1022 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1025 /* Handle a move to or from a stack register in PAT, which is in INSN.
1026 REGSTACK is the current stack. Return whether a control flow insn
1027 was deleted in the process. */
1029 static bool
1030 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
1032 rtx *psrc = get_true_reg (&SET_SRC (pat));
1033 rtx *pdest = get_true_reg (&SET_DEST (pat));
1034 rtx src, dest;
1035 rtx note;
1036 bool control_flow_insn_deleted = false;
1038 src = *psrc; dest = *pdest;
1040 if (STACK_REG_P (src) && STACK_REG_P (dest))
1042 /* Write from one stack reg to another. If SRC dies here, then
1043 just change the register mapping and delete the insn. */
1045 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1046 if (note)
1048 int i;
1050 /* If this is a no-op move, there must not be a REG_DEAD note. */
1051 gcc_assert (REGNO (src) != REGNO (dest));
1053 for (i = regstack->top; i >= 0; i--)
1054 if (regstack->reg[i] == REGNO (src))
1055 break;
1057 /* The destination must be dead, or life analysis is borked. */
1058 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1060 /* If the source is not live, this is yet another case of
1061 uninitialized variables. Load up a NaN instead. */
1062 if (i < 0)
1063 return move_nan_for_stack_reg (insn, regstack, dest);
1065 /* It is possible that the dest is unused after this insn.
1066 If so, just pop the src. */
1068 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1069 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1070 else
1072 regstack->reg[i] = REGNO (dest);
1073 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1074 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1077 control_flow_insn_deleted |= control_flow_insn_p (insn);
1078 delete_insn (insn);
1079 return control_flow_insn_deleted;
1082 /* The source reg does not die. */
1084 /* If this appears to be a no-op move, delete it, or else it
1085 will confuse the machine description output patterns. But if
1086 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1087 for REG_UNUSED will not work for deleted insns. */
1089 if (REGNO (src) == REGNO (dest))
1091 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1092 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1094 control_flow_insn_deleted |= control_flow_insn_p (insn);
1095 delete_insn (insn);
1096 return control_flow_insn_deleted;
1099 /* The destination ought to be dead. */
1100 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1102 replace_reg (psrc, get_hard_regnum (regstack, src));
1104 regstack->reg[++regstack->top] = REGNO (dest);
1105 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1106 replace_reg (pdest, FIRST_STACK_REG);
1108 else if (STACK_REG_P (src))
1110 /* Save from a stack reg to MEM, or possibly integer reg. Since
1111 only top of stack may be saved, emit an exchange first if
1112 needs be. */
1114 emit_swap_insn (insn, regstack, src);
1116 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1117 if (note)
1119 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1120 regstack->top--;
1121 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1123 else if ((GET_MODE (src) == XFmode)
1124 && regstack->top < REG_STACK_SIZE - 1)
1126 /* A 387 cannot write an XFmode value to a MEM without
1127 clobbering the source reg. The output code can handle
1128 this by reading back the value from the MEM.
1129 But it is more efficient to use a temp register if one is
1130 available. Push the source value here if the register
1131 stack is not full, and then write the value to memory via
1132 a pop. */
1133 rtx push_rtx;
1134 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1136 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1137 emit_insn_before (push_rtx, insn);
1138 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1139 REG_NOTES (insn));
1142 replace_reg (psrc, FIRST_STACK_REG);
1144 else
1146 gcc_assert (STACK_REG_P (dest));
1148 /* Load from MEM, or possibly integer REG or constant, into the
1149 stack regs. The actual target is always the top of the
1150 stack. The stack mapping is changed to reflect that DEST is
1151 now at top of stack. */
1153 /* The destination ought to be dead. */
1154 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1156 gcc_assert (regstack->top < REG_STACK_SIZE);
1158 regstack->reg[++regstack->top] = REGNO (dest);
1159 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1160 replace_reg (pdest, FIRST_STACK_REG);
1163 return control_flow_insn_deleted;
1166 /* A helper function which replaces INSN with a pattern that loads up
1167 a NaN into DEST, then invokes move_for_stack_reg. */
1169 static bool
1170 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1172 rtx pat;
1174 dest = FP_MODE_REG (REGNO (dest), SFmode);
1175 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1176 PATTERN (insn) = pat;
1177 INSN_CODE (insn) = -1;
1179 return move_for_stack_reg (insn, regstack, pat);
1182 /* Swap the condition on a branch, if there is one. Return true if we
1183 found a condition to swap. False if the condition was not used as
1184 such. */
1186 static int
1187 swap_rtx_condition_1 (rtx pat)
1189 const char *fmt;
1190 int i, r = 0;
1192 if (COMPARISON_P (pat))
1194 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1195 r = 1;
1197 else
1199 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1200 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1202 if (fmt[i] == 'E')
1204 int j;
1206 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1207 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1209 else if (fmt[i] == 'e')
1210 r |= swap_rtx_condition_1 (XEXP (pat, i));
1214 return r;
1217 static int
1218 swap_rtx_condition (rtx insn)
1220 rtx pat = PATTERN (insn);
1222 /* We're looking for a single set to cc0 or an HImode temporary. */
1224 if (GET_CODE (pat) == SET
1225 && REG_P (SET_DEST (pat))
1226 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1228 insn = next_flags_user (insn);
1229 if (insn == NULL_RTX)
1230 return 0;
1231 pat = PATTERN (insn);
1234 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1235 not doing anything with the cc value right now. We may be able to
1236 search for one though. */
1238 if (GET_CODE (pat) == SET
1239 && GET_CODE (SET_SRC (pat)) == UNSPEC
1240 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1242 rtx dest = SET_DEST (pat);
1244 /* Search forward looking for the first use of this value.
1245 Stop at block boundaries. */
1246 while (insn != BB_END (current_block))
1248 insn = NEXT_INSN (insn);
1249 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1250 break;
1251 if (CALL_P (insn))
1252 return 0;
1255 /* So we've found the insn using this value. If it is anything
1256 other than sahf, aka unspec 10, or the value does not die
1257 (meaning we'd have to search further), then we must give up. */
1258 pat = PATTERN (insn);
1259 if (GET_CODE (pat) != SET
1260 || GET_CODE (SET_SRC (pat)) != UNSPEC
1261 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1262 || ! dead_or_set_p (insn, dest))
1263 return 0;
1265 /* Now we are prepared to handle this as a normal cc0 setter. */
1266 insn = next_flags_user (insn);
1267 if (insn == NULL_RTX)
1268 return 0;
1269 pat = PATTERN (insn);
1272 if (swap_rtx_condition_1 (pat))
1274 int fail = 0;
1275 INSN_CODE (insn) = -1;
1276 if (recog_memoized (insn) == -1)
1277 fail = 1;
1278 /* In case the flags don't die here, recurse to try fix
1279 following user too. */
1280 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1282 insn = next_flags_user (insn);
1283 if (!insn || !swap_rtx_condition (insn))
1284 fail = 1;
1286 if (fail)
1288 swap_rtx_condition_1 (pat);
1289 return 0;
1291 return 1;
1293 return 0;
1296 /* Handle a comparison. Special care needs to be taken to avoid
1297 causing comparisons that a 387 cannot do correctly, such as EQ.
1299 Also, a pop insn may need to be emitted. The 387 does have an
1300 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1301 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1302 set up. */
1304 static void
1305 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1307 rtx *src1, *src2;
1308 rtx src1_note, src2_note;
1310 src1 = get_true_reg (&XEXP (pat_src, 0));
1311 src2 = get_true_reg (&XEXP (pat_src, 1));
1313 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1314 registers that die in this insn - move those to stack top first. */
1315 if ((! STACK_REG_P (*src1)
1316 || (STACK_REG_P (*src2)
1317 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1318 && swap_rtx_condition (insn))
1320 rtx temp;
1321 temp = XEXP (pat_src, 0);
1322 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1323 XEXP (pat_src, 1) = temp;
1325 src1 = get_true_reg (&XEXP (pat_src, 0));
1326 src2 = get_true_reg (&XEXP (pat_src, 1));
1328 INSN_CODE (insn) = -1;
1331 /* We will fix any death note later. */
1333 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1335 if (STACK_REG_P (*src2))
1336 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1337 else
1338 src2_note = NULL_RTX;
1340 emit_swap_insn (insn, regstack, *src1);
1342 replace_reg (src1, FIRST_STACK_REG);
1344 if (STACK_REG_P (*src2))
1345 replace_reg (src2, get_hard_regnum (regstack, *src2));
1347 if (src1_note)
1349 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1350 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1353 /* If the second operand dies, handle that. But if the operands are
1354 the same stack register, don't bother, because only one death is
1355 needed, and it was just handled. */
1357 if (src2_note
1358 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1359 && REGNO (*src1) == REGNO (*src2)))
1361 /* As a special case, two regs may die in this insn if src2 is
1362 next to top of stack and the top of stack also dies. Since
1363 we have already popped src1, "next to top of stack" is really
1364 at top (FIRST_STACK_REG) now. */
1366 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1367 && src1_note)
1369 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1370 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1372 else
1374 /* The 386 can only represent death of the first operand in
1375 the case handled above. In all other cases, emit a separate
1376 pop and remove the death note from here. */
1378 /* link_cc0_insns (insn); */
1380 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1382 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1383 EMIT_AFTER);
1388 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1389 is the current register layout. Return whether a control flow insn
1390 was deleted in the process. */
1392 static bool
1393 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1395 rtx *dest, *src;
1396 bool control_flow_insn_deleted = false;
1398 switch (GET_CODE (pat))
1400 case USE:
1401 /* Deaths in USE insns can happen in non optimizing compilation.
1402 Handle them by popping the dying register. */
1403 src = get_true_reg (&XEXP (pat, 0));
1404 if (STACK_REG_P (*src)
1405 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1407 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1408 return control_flow_insn_deleted;
1410 /* ??? Uninitialized USE should not happen. */
1411 else
1412 gcc_assert (get_hard_regnum (regstack, *src) != -1);
1413 break;
1415 case CLOBBER:
1417 rtx note;
1419 dest = get_true_reg (&XEXP (pat, 0));
1420 if (STACK_REG_P (*dest))
1422 note = find_reg_note (insn, REG_DEAD, *dest);
1424 if (pat != PATTERN (insn))
1426 /* The fix_truncdi_1 pattern wants to be able to allocate
1427 its own scratch register. It does this by clobbering
1428 an fp reg so that it is assured of an empty reg-stack
1429 register. If the register is live, kill it now.
1430 Remove the DEAD/UNUSED note so we don't try to kill it
1431 later too. */
1433 if (note)
1434 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1435 else
1437 note = find_reg_note (insn, REG_UNUSED, *dest);
1438 gcc_assert (note);
1440 remove_note (insn, note);
1441 replace_reg (dest, FIRST_STACK_REG + 1);
1443 else
1445 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1446 indicates an uninitialized value. Because reload removed
1447 all other clobbers, this must be due to a function
1448 returning without a value. Load up a NaN. */
1450 if (!note)
1452 rtx t = *dest;
1453 if (get_hard_regnum (regstack, t) == -1)
1454 control_flow_insn_deleted
1455 |= move_nan_for_stack_reg (insn, regstack, t);
1456 if (COMPLEX_MODE_P (GET_MODE (t)))
1458 t = FP_MODE_REG (REGNO (t) + 1, DFmode);
1459 if (get_hard_regnum (regstack, t) == -1)
1460 control_flow_insn_deleted
1461 |= move_nan_for_stack_reg (insn, regstack, t);
1466 break;
1469 case SET:
1471 rtx *src1 = (rtx *) 0, *src2;
1472 rtx src1_note, src2_note;
1473 rtx pat_src;
1475 dest = get_true_reg (&SET_DEST (pat));
1476 src = get_true_reg (&SET_SRC (pat));
1477 pat_src = SET_SRC (pat);
1479 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1480 if (STACK_REG_P (*src)
1481 || (STACK_REG_P (*dest)
1482 && (REG_P (*src) || MEM_P (*src)
1483 || GET_CODE (*src) == CONST_DOUBLE)))
1485 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1486 break;
1489 switch (GET_CODE (pat_src))
1491 case COMPARE:
1492 compare_for_stack_reg (insn, regstack, pat_src);
1493 break;
1495 case CALL:
1497 int count;
1498 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1499 --count >= 0;)
1501 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1502 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1505 replace_reg (dest, FIRST_STACK_REG);
1506 break;
1508 case REG:
1509 /* This is a `tstM2' case. */
1510 gcc_assert (*dest == cc0_rtx);
1511 src1 = src;
1513 /* Fall through. */
1515 case FLOAT_TRUNCATE:
1516 case SQRT:
1517 case ABS:
1518 case NEG:
1519 /* These insns only operate on the top of the stack. DEST might
1520 be cc0_rtx if we're processing a tstM pattern. Also, it's
1521 possible that the tstM case results in a REG_DEAD note on the
1522 source. */
1524 if (src1 == 0)
1525 src1 = get_true_reg (&XEXP (pat_src, 0));
1527 emit_swap_insn (insn, regstack, *src1);
1529 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1531 if (STACK_REG_P (*dest))
1532 replace_reg (dest, FIRST_STACK_REG);
1534 if (src1_note)
1536 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1537 regstack->top--;
1538 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1541 replace_reg (src1, FIRST_STACK_REG);
1542 break;
1544 case MINUS:
1545 case DIV:
1546 /* On i386, reversed forms of subM3 and divM3 exist for
1547 MODE_FLOAT, so the same code that works for addM3 and mulM3
1548 can be used. */
1549 case MULT:
1550 case PLUS:
1551 /* These insns can accept the top of stack as a destination
1552 from a stack reg or mem, or can use the top of stack as a
1553 source and some other stack register (possibly top of stack)
1554 as a destination. */
1556 src1 = get_true_reg (&XEXP (pat_src, 0));
1557 src2 = get_true_reg (&XEXP (pat_src, 1));
1559 /* We will fix any death note later. */
1561 if (STACK_REG_P (*src1))
1562 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1563 else
1564 src1_note = NULL_RTX;
1565 if (STACK_REG_P (*src2))
1566 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1567 else
1568 src2_note = NULL_RTX;
1570 /* If either operand is not a stack register, then the dest
1571 must be top of stack. */
1573 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1574 emit_swap_insn (insn, regstack, *dest);
1575 else
1577 /* Both operands are REG. If neither operand is already
1578 at the top of stack, choose to make the one that is the dest
1579 the new top of stack. */
1581 int src1_hard_regnum, src2_hard_regnum;
1583 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1584 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1585 gcc_assert (src1_hard_regnum != -1);
1586 gcc_assert (src2_hard_regnum != -1);
1588 if (src1_hard_regnum != FIRST_STACK_REG
1589 && src2_hard_regnum != FIRST_STACK_REG)
1590 emit_swap_insn (insn, regstack, *dest);
1593 if (STACK_REG_P (*src1))
1594 replace_reg (src1, get_hard_regnum (regstack, *src1));
1595 if (STACK_REG_P (*src2))
1596 replace_reg (src2, get_hard_regnum (regstack, *src2));
1598 if (src1_note)
1600 rtx src1_reg = XEXP (src1_note, 0);
1602 /* If the register that dies is at the top of stack, then
1603 the destination is somewhere else - merely substitute it.
1604 But if the reg that dies is not at top of stack, then
1605 move the top of stack to the dead reg, as though we had
1606 done the insn and then a store-with-pop. */
1608 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1610 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1611 replace_reg (dest, get_hard_regnum (regstack, *dest));
1613 else
1615 int regno = get_hard_regnum (regstack, src1_reg);
1617 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1618 replace_reg (dest, regno);
1620 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1621 = regstack->reg[regstack->top];
1624 CLEAR_HARD_REG_BIT (regstack->reg_set,
1625 REGNO (XEXP (src1_note, 0)));
1626 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1627 regstack->top--;
1629 else if (src2_note)
1631 rtx src2_reg = XEXP (src2_note, 0);
1632 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1634 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1635 replace_reg (dest, get_hard_regnum (regstack, *dest));
1637 else
1639 int regno = get_hard_regnum (regstack, src2_reg);
1641 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1642 replace_reg (dest, regno);
1644 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1645 = regstack->reg[regstack->top];
1648 CLEAR_HARD_REG_BIT (regstack->reg_set,
1649 REGNO (XEXP (src2_note, 0)));
1650 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1651 regstack->top--;
1653 else
1655 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1656 replace_reg (dest, get_hard_regnum (regstack, *dest));
1659 /* Keep operand 1 matching with destination. */
1660 if (COMMUTATIVE_ARITH_P (pat_src)
1661 && REG_P (*src1) && REG_P (*src2)
1662 && REGNO (*src1) != REGNO (*dest))
1664 int tmp = REGNO (*src1);
1665 replace_reg (src1, REGNO (*src2));
1666 replace_reg (src2, tmp);
1668 break;
1670 case UNSPEC:
1671 switch (XINT (pat_src, 1))
1673 case UNSPEC_FIST:
1675 case UNSPEC_FIST_FLOOR:
1676 case UNSPEC_FIST_CEIL:
1678 /* These insns only operate on the top of the stack. */
1680 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1681 emit_swap_insn (insn, regstack, *src1);
1683 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1685 if (STACK_REG_P (*dest))
1686 replace_reg (dest, FIRST_STACK_REG);
1688 if (src1_note)
1690 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1691 regstack->top--;
1692 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1695 replace_reg (src1, FIRST_STACK_REG);
1696 break;
1698 case UNSPEC_SIN:
1699 case UNSPEC_COS:
1700 case UNSPEC_FRNDINT:
1701 case UNSPEC_F2XM1:
1703 case UNSPEC_FRNDINT_FLOOR:
1704 case UNSPEC_FRNDINT_CEIL:
1705 case UNSPEC_FRNDINT_TRUNC:
1706 case UNSPEC_FRNDINT_MASK_PM:
1708 /* These insns only operate on the top of the stack. */
1710 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1712 emit_swap_insn (insn, regstack, *src1);
1714 /* Input should never die, it is
1715 replaced with output. */
1716 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1717 gcc_assert (!src1_note);
1719 if (STACK_REG_P (*dest))
1720 replace_reg (dest, FIRST_STACK_REG);
1722 replace_reg (src1, FIRST_STACK_REG);
1723 break;
1725 case UNSPEC_FPATAN:
1726 case UNSPEC_FYL2X:
1727 case UNSPEC_FYL2XP1:
1728 /* These insns operate on the top two stack slots. */
1730 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1731 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1733 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1734 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1736 swap_to_top (insn, regstack, *src1, *src2);
1738 replace_reg (src1, FIRST_STACK_REG);
1739 replace_reg (src2, FIRST_STACK_REG + 1);
1741 if (src1_note)
1742 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1743 if (src2_note)
1744 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1746 /* Pop both input operands from the stack. */
1747 CLEAR_HARD_REG_BIT (regstack->reg_set,
1748 regstack->reg[regstack->top]);
1749 CLEAR_HARD_REG_BIT (regstack->reg_set,
1750 regstack->reg[regstack->top - 1]);
1751 regstack->top -= 2;
1753 /* Push the result back onto the stack. */
1754 regstack->reg[++regstack->top] = REGNO (*dest);
1755 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1756 replace_reg (dest, FIRST_STACK_REG);
1757 break;
1759 case UNSPEC_FSCALE_FRACT:
1760 case UNSPEC_FPREM_F:
1761 case UNSPEC_FPREM1_F:
1762 /* These insns operate on the top two stack slots.
1763 first part of double input, double output insn. */
1765 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1766 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1768 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1769 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1771 /* Inputs should never die, they are
1772 replaced with outputs. */
1773 gcc_assert (!src1_note);
1774 gcc_assert (!src2_note);
1776 swap_to_top (insn, regstack, *src1, *src2);
1778 /* Push the result back onto stack. Empty stack slot
1779 will be filled in second part of insn. */
1780 if (STACK_REG_P (*dest)) {
1781 regstack->reg[regstack->top] = REGNO (*dest);
1782 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1783 replace_reg (dest, FIRST_STACK_REG);
1786 replace_reg (src1, FIRST_STACK_REG);
1787 replace_reg (src2, FIRST_STACK_REG + 1);
1788 break;
1790 case UNSPEC_FSCALE_EXP:
1791 case UNSPEC_FPREM_U:
1792 case UNSPEC_FPREM1_U:
1793 /* These insns operate on the top two stack slots./
1794 second part of double input, double output insn. */
1796 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1797 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1799 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1800 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1802 /* Inputs should never die, they are
1803 replaced with outputs. */
1804 gcc_assert (!src1_note);
1805 gcc_assert (!src2_note);
1807 swap_to_top (insn, regstack, *src1, *src2);
1809 /* Push the result back onto stack. Fill empty slot from
1810 first part of insn and fix top of stack pointer. */
1811 if (STACK_REG_P (*dest)) {
1812 regstack->reg[regstack->top - 1] = REGNO (*dest);
1813 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1814 replace_reg (dest, FIRST_STACK_REG + 1);
1817 replace_reg (src1, FIRST_STACK_REG);
1818 replace_reg (src2, FIRST_STACK_REG + 1);
1819 break;
1821 case UNSPEC_SINCOS_COS:
1822 case UNSPEC_TAN_ONE:
1823 case UNSPEC_XTRACT_FRACT:
1824 /* These insns operate on the top two stack slots,
1825 first part of one input, double output insn. */
1827 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1829 emit_swap_insn (insn, regstack, *src1);
1831 /* Input should never die, it is
1832 replaced with output. */
1833 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1834 gcc_assert (!src1_note);
1836 /* Push the result back onto stack. Empty stack slot
1837 will be filled in second part of insn. */
1838 if (STACK_REG_P (*dest)) {
1839 regstack->reg[regstack->top + 1] = REGNO (*dest);
1840 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1841 replace_reg (dest, FIRST_STACK_REG);
1844 replace_reg (src1, FIRST_STACK_REG);
1845 break;
1847 case UNSPEC_SINCOS_SIN:
1848 case UNSPEC_TAN_TAN:
1849 case UNSPEC_XTRACT_EXP:
1850 /* These insns operate on the top two stack slots,
1851 second part of one input, double output insn. */
1853 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1855 emit_swap_insn (insn, regstack, *src1);
1857 /* Input should never die, it is
1858 replaced with output. */
1859 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1860 gcc_assert (!src1_note);
1862 /* Push the result back onto stack. Fill empty slot from
1863 first part of insn and fix top of stack pointer. */
1864 if (STACK_REG_P (*dest)) {
1865 regstack->reg[regstack->top] = REGNO (*dest);
1866 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1867 replace_reg (dest, FIRST_STACK_REG + 1);
1869 regstack->top++;
1872 replace_reg (src1, FIRST_STACK_REG);
1873 break;
1875 case UNSPEC_SAHF:
1876 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1877 The combination matches the PPRO fcomi instruction. */
1879 pat_src = XVECEXP (pat_src, 0, 0);
1880 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1881 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1882 /* Fall through. */
1884 case UNSPEC_FNSTSW:
1885 /* Combined fcomp+fnstsw generated for doing well with
1886 CSE. When optimizing this would have been broken
1887 up before now. */
1889 pat_src = XVECEXP (pat_src, 0, 0);
1890 gcc_assert (GET_CODE (pat_src) == COMPARE);
1892 compare_for_stack_reg (insn, regstack, pat_src);
1893 break;
1895 default:
1896 gcc_unreachable ();
1898 break;
1900 case IF_THEN_ELSE:
1901 /* This insn requires the top of stack to be the destination. */
1903 src1 = get_true_reg (&XEXP (pat_src, 1));
1904 src2 = get_true_reg (&XEXP (pat_src, 2));
1906 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1907 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1909 /* If the comparison operator is an FP comparison operator,
1910 it is handled correctly by compare_for_stack_reg () who
1911 will move the destination to the top of stack. But if the
1912 comparison operator is not an FP comparison operator, we
1913 have to handle it here. */
1914 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1915 && REGNO (*dest) != regstack->reg[regstack->top])
1917 /* In case one of operands is the top of stack and the operands
1918 dies, it is safe to make it the destination operand by
1919 reversing the direction of cmove and avoid fxch. */
1920 if ((REGNO (*src1) == regstack->reg[regstack->top]
1921 && src1_note)
1922 || (REGNO (*src2) == regstack->reg[regstack->top]
1923 && src2_note))
1925 int idx1 = (get_hard_regnum (regstack, *src1)
1926 - FIRST_STACK_REG);
1927 int idx2 = (get_hard_regnum (regstack, *src2)
1928 - FIRST_STACK_REG);
1930 /* Make reg-stack believe that the operands are already
1931 swapped on the stack */
1932 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1933 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1935 /* Reverse condition to compensate the operand swap.
1936 i386 do have comparison always reversible. */
1937 PUT_CODE (XEXP (pat_src, 0),
1938 reversed_comparison_code (XEXP (pat_src, 0), insn));
1940 else
1941 emit_swap_insn (insn, regstack, *dest);
1945 rtx src_note [3];
1946 int i;
1948 src_note[0] = 0;
1949 src_note[1] = src1_note;
1950 src_note[2] = src2_note;
1952 if (STACK_REG_P (*src1))
1953 replace_reg (src1, get_hard_regnum (regstack, *src1));
1954 if (STACK_REG_P (*src2))
1955 replace_reg (src2, get_hard_regnum (regstack, *src2));
1957 for (i = 1; i <= 2; i++)
1958 if (src_note [i])
1960 int regno = REGNO (XEXP (src_note[i], 0));
1962 /* If the register that dies is not at the top of
1963 stack, then move the top of stack to the dead reg.
1964 Top of stack should never die, as it is the
1965 destination. */
1966 gcc_assert (regno != regstack->reg[regstack->top]);
1967 remove_regno_note (insn, REG_DEAD, regno);
1968 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1969 EMIT_AFTER);
1973 /* Make dest the top of stack. Add dest to regstack if
1974 not present. */
1975 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1976 regstack->reg[++regstack->top] = REGNO (*dest);
1977 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1978 replace_reg (dest, FIRST_STACK_REG);
1979 break;
1981 default:
1982 gcc_unreachable ();
1984 break;
1987 default:
1988 break;
1991 return control_flow_insn_deleted;
1994 /* Substitute hard regnums for any stack regs in INSN, which has
1995 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1996 before the insn, and is updated with changes made here.
1998 There are several requirements and assumptions about the use of
1999 stack-like regs in asm statements. These rules are enforced by
2000 record_asm_stack_regs; see comments there for details. Any
2001 asm_operands left in the RTL at this point may be assume to meet the
2002 requirements, since record_asm_stack_regs removes any problem asm. */
2004 static void
2005 subst_asm_stack_regs (rtx insn, stack regstack)
2007 rtx body = PATTERN (insn);
2008 int alt;
2010 rtx *note_reg; /* Array of note contents */
2011 rtx **note_loc; /* Address of REG field of each note */
2012 enum reg_note *note_kind; /* The type of each note */
2014 rtx *clobber_reg = 0;
2015 rtx **clobber_loc = 0;
2017 struct stack_def temp_stack;
2018 int n_notes;
2019 int n_clobbers;
2020 rtx note;
2021 int i;
2022 int n_inputs, n_outputs;
2024 if (! check_asm_stack_operands (insn))
2025 return;
2027 /* Find out what the constraints required. If no constraint
2028 alternative matches, that is a compiler bug: we should have caught
2029 such an insn in check_asm_stack_operands. */
2030 extract_insn (insn);
2031 constrain_operands (1);
2032 alt = which_alternative;
2034 preprocess_constraints ();
2036 n_inputs = get_asm_operand_n_inputs (body);
2037 n_outputs = recog_data.n_operands - n_inputs;
2039 gcc_assert (alt >= 0);
2041 /* Strip SUBREGs here to make the following code simpler. */
2042 for (i = 0; i < recog_data.n_operands; i++)
2043 if (GET_CODE (recog_data.operand[i]) == SUBREG
2044 && REG_P (SUBREG_REG (recog_data.operand[i])))
2046 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2047 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2050 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2052 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2053 i++;
2055 note_reg = alloca (i * sizeof (rtx));
2056 note_loc = alloca (i * sizeof (rtx *));
2057 note_kind = alloca (i * sizeof (enum reg_note));
2059 n_notes = 0;
2060 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2062 rtx reg = XEXP (note, 0);
2063 rtx *loc = & XEXP (note, 0);
2065 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2067 loc = & SUBREG_REG (reg);
2068 reg = SUBREG_REG (reg);
2071 if (STACK_REG_P (reg)
2072 && (REG_NOTE_KIND (note) == REG_DEAD
2073 || REG_NOTE_KIND (note) == REG_UNUSED))
2075 note_reg[n_notes] = reg;
2076 note_loc[n_notes] = loc;
2077 note_kind[n_notes] = REG_NOTE_KIND (note);
2078 n_notes++;
2082 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2084 n_clobbers = 0;
2086 if (GET_CODE (body) == PARALLEL)
2088 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2089 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2091 for (i = 0; i < XVECLEN (body, 0); i++)
2092 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2094 rtx clobber = XVECEXP (body, 0, i);
2095 rtx reg = XEXP (clobber, 0);
2096 rtx *loc = & XEXP (clobber, 0);
2098 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2100 loc = & SUBREG_REG (reg);
2101 reg = SUBREG_REG (reg);
2104 if (STACK_REG_P (reg))
2106 clobber_reg[n_clobbers] = reg;
2107 clobber_loc[n_clobbers] = loc;
2108 n_clobbers++;
2113 temp_stack = *regstack;
2115 /* Put the input regs into the desired place in TEMP_STACK. */
2117 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2118 if (STACK_REG_P (recog_data.operand[i])
2119 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2120 FLOAT_REGS)
2121 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2123 /* If an operand needs to be in a particular reg in
2124 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2125 these constraints are for single register classes, and
2126 reload guaranteed that operand[i] is already in that class,
2127 we can just use REGNO (recog_data.operand[i]) to know which
2128 actual reg this operand needs to be in. */
2130 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2132 gcc_assert (regno >= 0);
2134 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2136 /* recog_data.operand[i] is not in the right place. Find
2137 it and swap it with whatever is already in I's place.
2138 K is where recog_data.operand[i] is now. J is where it
2139 should be. */
2140 int j, k, temp;
2142 k = temp_stack.top - (regno - FIRST_STACK_REG);
2143 j = (temp_stack.top
2144 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2146 temp = temp_stack.reg[k];
2147 temp_stack.reg[k] = temp_stack.reg[j];
2148 temp_stack.reg[j] = temp;
2152 /* Emit insns before INSN to make sure the reg-stack is in the right
2153 order. */
2155 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2157 /* Make the needed input register substitutions. Do death notes and
2158 clobbers too, because these are for inputs, not outputs. */
2160 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2161 if (STACK_REG_P (recog_data.operand[i]))
2163 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2165 gcc_assert (regnum >= 0);
2167 replace_reg (recog_data.operand_loc[i], regnum);
2170 for (i = 0; i < n_notes; i++)
2171 if (note_kind[i] == REG_DEAD)
2173 int regnum = get_hard_regnum (regstack, note_reg[i]);
2175 gcc_assert (regnum >= 0);
2177 replace_reg (note_loc[i], regnum);
2180 for (i = 0; i < n_clobbers; i++)
2182 /* It's OK for a CLOBBER to reference a reg that is not live.
2183 Don't try to replace it in that case. */
2184 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2186 if (regnum >= 0)
2188 /* Sigh - clobbers always have QImode. But replace_reg knows
2189 that these regs can't be MODE_INT and will assert. Just put
2190 the right reg there without calling replace_reg. */
2192 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2196 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2198 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2199 if (STACK_REG_P (recog_data.operand[i]))
2201 /* An input reg is implicitly popped if it is tied to an
2202 output, or if there is a CLOBBER for it. */
2203 int j;
2205 for (j = 0; j < n_clobbers; j++)
2206 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2207 break;
2209 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2211 /* recog_data.operand[i] might not be at the top of stack.
2212 But that's OK, because all we need to do is pop the
2213 right number of regs off of the top of the reg-stack.
2214 record_asm_stack_regs guaranteed that all implicitly
2215 popped regs were grouped at the top of the reg-stack. */
2217 CLEAR_HARD_REG_BIT (regstack->reg_set,
2218 regstack->reg[regstack->top]);
2219 regstack->top--;
2223 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2224 Note that there isn't any need to substitute register numbers.
2225 ??? Explain why this is true. */
2227 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2229 /* See if there is an output for this hard reg. */
2230 int j;
2232 for (j = 0; j < n_outputs; j++)
2233 if (STACK_REG_P (recog_data.operand[j])
2234 && REGNO (recog_data.operand[j]) == (unsigned) i)
2236 regstack->reg[++regstack->top] = i;
2237 SET_HARD_REG_BIT (regstack->reg_set, i);
2238 break;
2242 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2243 input that the asm didn't implicitly pop. If the asm didn't
2244 implicitly pop an input reg, that reg will still be live.
2246 Note that we can't use find_regno_note here: the register numbers
2247 in the death notes have already been substituted. */
2249 for (i = 0; i < n_outputs; i++)
2250 if (STACK_REG_P (recog_data.operand[i]))
2252 int j;
2254 for (j = 0; j < n_notes; j++)
2255 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2256 && note_kind[j] == REG_UNUSED)
2258 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2259 EMIT_AFTER);
2260 break;
2264 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2265 if (STACK_REG_P (recog_data.operand[i]))
2267 int j;
2269 for (j = 0; j < n_notes; j++)
2270 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2271 && note_kind[j] == REG_DEAD
2272 && TEST_HARD_REG_BIT (regstack->reg_set,
2273 REGNO (recog_data.operand[i])))
2275 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2276 EMIT_AFTER);
2277 break;
2282 /* Substitute stack hard reg numbers for stack virtual registers in
2283 INSN. Non-stack register numbers are not changed. REGSTACK is the
2284 current stack content. Insns may be emitted as needed to arrange the
2285 stack for the 387 based on the contents of the insn. Return whether
2286 a control flow insn was deleted in the process. */
2288 static bool
2289 subst_stack_regs (rtx insn, stack regstack)
2291 rtx *note_link, note;
2292 bool control_flow_insn_deleted = false;
2293 int i;
2295 if (CALL_P (insn))
2297 int top = regstack->top;
2299 /* If there are any floating point parameters to be passed in
2300 registers for this call, make sure they are in the right
2301 order. */
2303 if (top >= 0)
2305 straighten_stack (PREV_INSN (insn), regstack);
2307 /* Now mark the arguments as dead after the call. */
2309 while (regstack->top >= 0)
2311 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2312 regstack->top--;
2317 /* Do the actual substitution if any stack regs are mentioned.
2318 Since we only record whether entire insn mentions stack regs, and
2319 subst_stack_regs_pat only works for patterns that contain stack regs,
2320 we must check each pattern in a parallel here. A call_value_pop could
2321 fail otherwise. */
2323 if (stack_regs_mentioned (insn))
2325 int n_operands = asm_noperands (PATTERN (insn));
2326 if (n_operands >= 0)
2328 /* This insn is an `asm' with operands. Decode the operands,
2329 decide how many are inputs, and do register substitution.
2330 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2332 subst_asm_stack_regs (insn, regstack);
2333 return control_flow_insn_deleted;
2336 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2337 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2339 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2341 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2342 XVECEXP (PATTERN (insn), 0, i)
2343 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2344 control_flow_insn_deleted
2345 |= subst_stack_regs_pat (insn, regstack,
2346 XVECEXP (PATTERN (insn), 0, i));
2349 else
2350 control_flow_insn_deleted
2351 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2354 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2355 REG_UNUSED will already have been dealt with, so just return. */
2357 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2358 return control_flow_insn_deleted;
2360 /* If there is a REG_UNUSED note on a stack register on this insn,
2361 the indicated reg must be popped. The REG_UNUSED note is removed,
2362 since the form of the newly emitted pop insn references the reg,
2363 making it no longer `unset'. */
2365 note_link = &REG_NOTES (insn);
2366 for (note = *note_link; note; note = XEXP (note, 1))
2367 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2369 *note_link = XEXP (note, 1);
2370 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2372 else
2373 note_link = &XEXP (note, 1);
2375 return control_flow_insn_deleted;
2378 /* Change the organization of the stack so that it fits a new basic
2379 block. Some registers might have to be popped, but there can never be
2380 a register live in the new block that is not now live.
2382 Insert any needed insns before or after INSN, as indicated by
2383 WHERE. OLD is the original stack layout, and NEW is the desired
2384 form. OLD is updated to reflect the code emitted, i.e., it will be
2385 the same as NEW upon return.
2387 This function will not preserve block_end[]. But that information
2388 is no longer needed once this has executed. */
2390 static void
2391 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2393 int reg;
2394 int update_end = 0;
2396 /* We will be inserting new insns "backwards". If we are to insert
2397 after INSN, find the next insn, and insert before it. */
2399 if (where == EMIT_AFTER)
2401 if (current_block && BB_END (current_block) == insn)
2402 update_end = 1;
2403 insn = NEXT_INSN (insn);
2406 /* Pop any registers that are not needed in the new block. */
2408 /* If the destination block's stack already has a specified layout
2409 and contains two or more registers, use a more intelligent algorithm
2410 to pop registers that minimizes the number number of fxchs below. */
2411 if (new->top > 0)
2413 bool slots[REG_STACK_SIZE];
2414 int pops[REG_STACK_SIZE];
2415 int next, dest, topsrc;
2417 /* First pass to determine the free slots. */
2418 for (reg = 0; reg <= new->top; reg++)
2419 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2421 /* Second pass to allocate preferred slots. */
2422 topsrc = -1;
2423 for (reg = old->top; reg > new->top; reg--)
2424 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2426 dest = -1;
2427 for (next = 0; next <= new->top; next++)
2428 if (!slots[next] && new->reg[next] == old->reg[reg])
2430 /* If this is a preference for the new top of stack, record
2431 the fact by remembering it's old->reg in topsrc. */
2432 if (next == new->top)
2433 topsrc = reg;
2434 slots[next] = true;
2435 dest = next;
2436 break;
2438 pops[reg] = dest;
2440 else
2441 pops[reg] = reg;
2443 /* Intentionally, avoid placing the top of stack in it's correct
2444 location, if we still need to permute the stack below and we
2445 can usefully place it somewhere else. This is the case if any
2446 slot is still unallocated, in which case we should place the
2447 top of stack there. */
2448 if (topsrc != -1)
2449 for (reg = 0; reg < new->top; reg++)
2450 if (!slots[reg])
2452 pops[topsrc] = reg;
2453 slots[new->top] = false;
2454 slots[reg] = true;
2455 break;
2458 /* Third pass allocates remaining slots and emits pop insns. */
2459 next = new->top;
2460 for (reg = old->top; reg > new->top; reg--)
2462 dest = pops[reg];
2463 if (dest == -1)
2465 /* Find next free slot. */
2466 while (slots[next])
2467 next--;
2468 dest = next--;
2470 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2471 EMIT_BEFORE);
2474 else
2476 /* The following loop attempts to maximize the number of times we
2477 pop the top of the stack, as this permits the use of the faster
2478 ffreep instruction on platforms that support it. */
2479 int live, next;
2481 live = 0;
2482 for (reg = 0; reg <= old->top; reg++)
2483 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2484 live++;
2486 next = live;
2487 while (old->top >= live)
2488 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2490 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2491 next--;
2492 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2493 EMIT_BEFORE);
2495 else
2496 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2497 EMIT_BEFORE);
2500 if (new->top == -2)
2502 /* If the new block has never been processed, then it can inherit
2503 the old stack order. */
2505 new->top = old->top;
2506 memcpy (new->reg, old->reg, sizeof (new->reg));
2508 else
2510 /* This block has been entered before, and we must match the
2511 previously selected stack order. */
2513 /* By now, the only difference should be the order of the stack,
2514 not their depth or liveliness. */
2516 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2517 gcc_unreachable ();
2518 win:
2519 gcc_assert (old->top == new->top);
2521 /* If the stack is not empty (new->top != -1), loop here emitting
2522 swaps until the stack is correct.
2524 The worst case number of swaps emitted is N + 2, where N is the
2525 depth of the stack. In some cases, the reg at the top of
2526 stack may be correct, but swapped anyway in order to fix
2527 other regs. But since we never swap any other reg away from
2528 its correct slot, this algorithm will converge. */
2530 if (new->top != -1)
2533 /* Swap the reg at top of stack into the position it is
2534 supposed to be in, until the correct top of stack appears. */
2536 while (old->reg[old->top] != new->reg[new->top])
2538 for (reg = new->top; reg >= 0; reg--)
2539 if (new->reg[reg] == old->reg[old->top])
2540 break;
2542 gcc_assert (reg != -1);
2544 emit_swap_insn (insn, old,
2545 FP_MODE_REG (old->reg[reg], DFmode));
2548 /* See if any regs remain incorrect. If so, bring an
2549 incorrect reg to the top of stack, and let the while loop
2550 above fix it. */
2552 for (reg = new->top; reg >= 0; reg--)
2553 if (new->reg[reg] != old->reg[reg])
2555 emit_swap_insn (insn, old,
2556 FP_MODE_REG (old->reg[reg], DFmode));
2557 break;
2559 } while (reg >= 0);
2561 /* At this point there must be no differences. */
2563 for (reg = old->top; reg >= 0; reg--)
2564 gcc_assert (old->reg[reg] == new->reg[reg]);
2567 if (update_end)
2568 BB_END (current_block) = PREV_INSN (insn);
2571 /* Print stack configuration. */
2573 static void
2574 print_stack (FILE *file, stack s)
2576 if (! file)
2577 return;
2579 if (s->top == -2)
2580 fprintf (file, "uninitialized\n");
2581 else if (s->top == -1)
2582 fprintf (file, "empty\n");
2583 else
2585 int i;
2586 fputs ("[ ", file);
2587 for (i = 0; i <= s->top; ++i)
2588 fprintf (file, "%d ", s->reg[i]);
2589 fputs ("]\n", file);
2593 /* This function was doing life analysis. We now let the regular live
2594 code do it's job, so we only need to check some extra invariants
2595 that reg-stack expects. Primary among these being that all registers
2596 are initialized before use.
2598 The function returns true when code was emitted to CFG edges and
2599 commit_edge_insertions needs to be called. */
2601 static int
2602 convert_regs_entry (void)
2604 int inserted = 0;
2605 edge e;
2606 edge_iterator ei;
2607 basic_block block;
2609 FOR_EACH_BB_REVERSE (block)
2611 block_info bi = BLOCK_INFO (block);
2612 int reg;
2614 /* Set current register status at last instruction `uninitialized'. */
2615 bi->stack_in.top = -2;
2617 /* Copy live_at_end and live_at_start into temporaries. */
2618 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2620 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2621 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2622 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2623 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2627 /* Load something into each stack register live at function entry.
2628 Such live registers can be caused by uninitialized variables or
2629 functions not returning values on all paths. In order to keep
2630 the push/pop code happy, and to not scrog the register stack, we
2631 must put something in these registers. Use a QNaN.
2633 Note that we are inserting converted code here. This code is
2634 never seen by the convert_regs pass. */
2636 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2638 basic_block block = e->dest;
2639 block_info bi = BLOCK_INFO (block);
2640 int reg, top = -1;
2642 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2643 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2645 rtx init;
2647 bi->stack_in.reg[++top] = reg;
2649 init = gen_rtx_SET (VOIDmode,
2650 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2651 not_a_num);
2652 insert_insn_on_edge (init, e);
2653 inserted = 1;
2656 bi->stack_in.top = top;
2659 return inserted;
2662 /* Construct the desired stack for function exit. This will either
2663 be `empty', or the function return value at top-of-stack. */
2665 static void
2666 convert_regs_exit (void)
2668 int value_reg_low, value_reg_high;
2669 stack output_stack;
2670 rtx retvalue;
2672 retvalue = stack_result (current_function_decl);
2673 value_reg_low = value_reg_high = -1;
2674 if (retvalue)
2676 value_reg_low = REGNO (retvalue);
2677 value_reg_high = value_reg_low
2678 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2681 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2682 if (value_reg_low == -1)
2683 output_stack->top = -1;
2684 else
2686 int reg;
2688 output_stack->top = value_reg_high - value_reg_low;
2689 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2691 output_stack->reg[value_reg_high - reg] = reg;
2692 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2697 /* Adjust the stack of this block on exit to match the stack of the
2698 target block, or copy stack info into the stack of the successor
2699 of the successor hasn't been processed yet. */
2700 static bool
2701 compensate_edge (edge e, FILE *file)
2703 basic_block block = e->src, target = e->dest;
2704 block_info bi = BLOCK_INFO (block);
2705 struct stack_def regstack, tmpstack;
2706 stack target_stack = &BLOCK_INFO (target)->stack_in;
2707 int reg;
2709 current_block = block;
2710 regstack = bi->stack_out;
2711 if (file)
2712 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2714 if (target_stack->top == -2)
2716 /* The target block hasn't had a stack order selected.
2717 We need merely ensure that no pops are needed. */
2718 for (reg = regstack.top; reg >= 0; --reg)
2719 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2720 break;
2722 if (reg == -1)
2724 if (file)
2725 fprintf (file, "new block; copying stack position\n");
2727 /* change_stack kills values in regstack. */
2728 tmpstack = regstack;
2730 change_stack (BB_END (block), &tmpstack, target_stack, EMIT_AFTER);
2731 return false;
2734 if (file)
2735 fprintf (file, "new block; pops needed\n");
2737 else
2739 if (target_stack->top == regstack.top)
2741 for (reg = target_stack->top; reg >= 0; --reg)
2742 if (target_stack->reg[reg] != regstack.reg[reg])
2743 break;
2745 if (reg == -1)
2747 if (file)
2748 fprintf (file, "no changes needed\n");
2749 return false;
2753 if (file)
2755 fprintf (file, "correcting stack to ");
2756 print_stack (file, target_stack);
2760 /* Care for non-call EH edges specially. The normal return path have
2761 values in registers. These will be popped en masse by the unwind
2762 library. */
2763 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2764 target_stack->top = -1;
2766 /* Other calls may appear to have values live in st(0), but the
2767 abnormal return path will not have actually loaded the values. */
2768 else if (e->flags & EDGE_ABNORMAL_CALL)
2770 /* Assert that the lifetimes are as we expect -- one value
2771 live at st(0) on the end of the source block, and no
2772 values live at the beginning of the destination block. */
2773 HARD_REG_SET tmp;
2775 CLEAR_HARD_REG_SET (tmp);
2776 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2777 gcc_unreachable ();
2778 eh1:
2780 /* We are sure that there is st(0) live, otherwise we won't compensate.
2781 For complex return values, we may have st(1) live as well. */
2782 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2783 if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2784 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
2785 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2786 gcc_unreachable ();
2787 eh2:
2789 target_stack->top = -1;
2792 /* It is better to output directly to the end of the block
2793 instead of to the edge, because emit_swap can do minimal
2794 insn scheduling. We can do this when there is only one
2795 edge out, and it is not abnormal. */
2796 else if (EDGE_COUNT (block->succs) == 1 && !(e->flags & EDGE_ABNORMAL))
2798 /* change_stack kills values in regstack. */
2799 tmpstack = regstack;
2801 change_stack (BB_END (block), &tmpstack, target_stack,
2802 (JUMP_P (BB_END (block))
2803 ? EMIT_BEFORE : EMIT_AFTER));
2805 else
2807 rtx seq, after;
2809 /* We don't support abnormal edges. Global takes care to
2810 avoid any live register across them, so we should never
2811 have to insert instructions on such edges. */
2812 gcc_assert (!(e->flags & EDGE_ABNORMAL));
2814 current_block = NULL;
2815 start_sequence ();
2817 /* ??? change_stack needs some point to emit insns after. */
2818 after = emit_note (NOTE_INSN_DELETED);
2820 tmpstack = regstack;
2821 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2823 seq = get_insns ();
2824 end_sequence ();
2826 insert_insn_on_edge (seq, e);
2827 return true;
2829 return false;
2832 /* Convert stack register references in one block. */
2834 static int
2835 convert_regs_1 (FILE *file, basic_block block)
2837 struct stack_def regstack;
2838 block_info bi = BLOCK_INFO (block);
2839 int inserted, reg;
2840 rtx insn, next;
2841 edge e, beste = NULL;
2842 bool control_flow_insn_deleted = false;
2843 edge_iterator ei;
2845 inserted = 0;
2846 any_malformed_asm = false;
2848 /* Find the edge we will copy stack from. It should be the most frequent
2849 one as it will get cheapest after compensation code is generated,
2850 if multiple such exists, take one with largest count, prefer critical
2851 one (as splitting critical edges is more expensive), or one with lowest
2852 index, to avoid random changes with different orders of the edges. */
2853 FOR_EACH_EDGE (e, ei, block->preds)
2855 if (e->flags & EDGE_DFS_BACK)
2857 else if (! beste)
2858 beste = e;
2859 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2860 beste = e;
2861 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2863 else if (beste->count < e->count)
2864 beste = e;
2865 else if (beste->count > e->count)
2867 else if ((EDGE_CRITICAL_P (e) != 0)
2868 != (EDGE_CRITICAL_P (beste) != 0))
2870 if (EDGE_CRITICAL_P (e))
2871 beste = e;
2873 else if (e->src->index < beste->src->index)
2874 beste = e;
2877 /* Initialize stack at block entry. */
2878 if (bi->stack_in.top == -2)
2880 if (beste)
2881 inserted |= compensate_edge (beste, file);
2882 else
2884 /* No predecessors. Create an arbitrary input stack. */
2885 int reg;
2887 bi->stack_in.top = -1;
2888 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2889 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2890 bi->stack_in.reg[++bi->stack_in.top] = reg;
2893 else
2894 /* Entry blocks do have stack already initialized. */
2895 beste = NULL;
2897 current_block = block;
2899 if (file)
2901 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2902 print_stack (file, &bi->stack_in);
2905 /* Process all insns in this block. Keep track of NEXT so that we
2906 don't process insns emitted while substituting in INSN. */
2907 next = BB_HEAD (block);
2908 regstack = bi->stack_in;
2911 insn = next;
2912 next = NEXT_INSN (insn);
2914 /* Ensure we have not missed a block boundary. */
2915 gcc_assert (next);
2916 if (insn == BB_END (block))
2917 next = NULL;
2919 /* Don't bother processing unless there is a stack reg
2920 mentioned or if it's a CALL_INSN. */
2921 if (stack_regs_mentioned (insn)
2922 || CALL_P (insn))
2924 if (file)
2926 fprintf (file, " insn %d input stack: ",
2927 INSN_UID (insn));
2928 print_stack (file, &regstack);
2930 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2933 while (next);
2935 if (file)
2937 fprintf (file, "Expected live registers [");
2938 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2939 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2940 fprintf (file, " %d", reg);
2941 fprintf (file, " ]\nOutput stack: ");
2942 print_stack (file, &regstack);
2945 insn = BB_END (block);
2946 if (JUMP_P (insn))
2947 insn = PREV_INSN (insn);
2949 /* If the function is declared to return a value, but it returns one
2950 in only some cases, some registers might come live here. Emit
2951 necessary moves for them. */
2953 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2955 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2956 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2958 rtx set;
2960 if (file)
2961 fprintf (file, "Emitting insn initializing reg %d\n", reg);
2963 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2964 insn = emit_insn_after (set, insn);
2965 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2969 /* Amongst the insns possibly deleted during the substitution process above,
2970 might have been the only trapping insn in the block. We purge the now
2971 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2972 called at the end of convert_regs. The order in which we process the
2973 blocks ensures that we never delete an already processed edge.
2975 Note that, at this point, the CFG may have been damaged by the emission
2976 of instructions after an abnormal call, which moves the basic block end
2977 (and is the reason why we call fixup_abnormal_edges later). So we must
2978 be sure that the trapping insn has been deleted before trying to purge
2979 dead edges, otherwise we risk purging valid edges.
2981 ??? We are normally supposed not to delete trapping insns, so we pretend
2982 that the insns deleted above don't actually trap. It would have been
2983 better to detect this earlier and avoid creating the EH edge in the first
2984 place, still, but we don't have enough information at that time. */
2986 if (control_flow_insn_deleted)
2987 purge_dead_edges (block);
2989 /* Something failed if the stack lives don't match. If we had malformed
2990 asms, we zapped the instruction itself, but that didn't produce the
2991 same pattern of register kills as before. */
2992 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2993 gcc_assert (any_malformed_asm);
2994 win:
2995 bi->stack_out = regstack;
2997 /* Compensate the back edges, as those wasn't visited yet. */
2998 FOR_EACH_EDGE (e, ei, block->succs)
3000 if (e->flags & EDGE_DFS_BACK
3001 || (e->dest == EXIT_BLOCK_PTR))
3003 gcc_assert (BLOCK_INFO (e->dest)->done
3004 || e->dest == block);
3005 inserted |= compensate_edge (e, file);
3008 FOR_EACH_EDGE (e, ei, block->preds)
3010 if (e != beste && !(e->flags & EDGE_DFS_BACK)
3011 && e->src != ENTRY_BLOCK_PTR)
3013 gcc_assert (BLOCK_INFO (e->src)->done);
3014 inserted |= compensate_edge (e, file);
3018 return inserted;
3021 /* Convert registers in all blocks reachable from BLOCK. */
3023 static int
3024 convert_regs_2 (FILE *file, basic_block block)
3026 basic_block *stack, *sp;
3027 int inserted;
3029 /* We process the blocks in a top-down manner, in a way such that one block
3030 is only processed after all its predecessors. The number of predecessors
3031 of every block has already been computed. */
3033 stack = xmalloc (sizeof (*stack) * n_basic_blocks);
3034 sp = stack;
3036 *sp++ = block;
3038 inserted = 0;
3041 edge e;
3042 edge_iterator ei;
3044 block = *--sp;
3046 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3047 some dead EH outgoing edge after the deletion of the trapping
3048 insn inside the block. Since the number of predecessors of
3049 BLOCK's successors was computed based on the initial edge set,
3050 we check the necessity to process some of these successors
3051 before such an edge deletion may happen. However, there is
3052 a pitfall: if BLOCK is the only predecessor of a successor and
3053 the edge between them happens to be deleted, the successor
3054 becomes unreachable and should not be processed. The problem
3055 is that there is no way to preventively detect this case so we
3056 stack the successor in all cases and hand over the task of
3057 fixing up the discrepancy to convert_regs_1. */
3059 FOR_EACH_EDGE (e, ei, block->succs)
3060 if (! (e->flags & EDGE_DFS_BACK))
3062 BLOCK_INFO (e->dest)->predecessors--;
3063 if (!BLOCK_INFO (e->dest)->predecessors)
3064 *sp++ = e->dest;
3067 inserted |= convert_regs_1 (file, block);
3068 BLOCK_INFO (block)->done = 1;
3070 while (sp != stack);
3072 free (stack);
3074 return inserted;
3077 /* Traverse all basic blocks in a function, converting the register
3078 references in each insn from the "flat" register file that gcc uses,
3079 to the stack-like registers the 387 uses. */
3081 static int
3082 convert_regs (FILE *file)
3084 int inserted;
3085 basic_block b;
3086 edge e;
3087 edge_iterator ei;
3089 /* Initialize uninitialized registers on function entry. */
3090 inserted = convert_regs_entry ();
3092 /* Construct the desired stack for function exit. */
3093 convert_regs_exit ();
3094 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3096 /* ??? Future: process inner loops first, and give them arbitrary
3097 initial stacks which emit_swap_insn can modify. This ought to
3098 prevent double fxch that often appears at the head of a loop. */
3100 /* Process all blocks reachable from all entry points. */
3101 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3102 inserted |= convert_regs_2 (file, e->dest);
3104 /* ??? Process all unreachable blocks. Though there's no excuse
3105 for keeping these even when not optimizing. */
3106 FOR_EACH_BB (b)
3108 block_info bi = BLOCK_INFO (b);
3110 if (! bi->done)
3111 inserted |= convert_regs_2 (file, b);
3113 clear_aux_for_blocks ();
3115 fixup_abnormal_edges ();
3116 if (inserted)
3117 commit_edge_insertions ();
3119 if (file)
3120 fputc ('\n', file);
3122 return inserted;
3124 #endif /* STACK_REGS */
3126 #include "gt-reg-stack.h"