2005-04-29 Jim Tison <jtison@us.ibm.com>
[official-gcc.git] / gcc / local-alloc.c
blob1cbc489e668ac1f49d147cba7c80ca3b30a5c5e2
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "coretypes.h"
65 #include "tm.h"
66 #include "hard-reg-set.h"
67 #include "rtl.h"
68 #include "tm_p.h"
69 #include "flags.h"
70 #include "regs.h"
71 #include "function.h"
72 #include "insn-config.h"
73 #include "insn-attr.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "toplev.h"
77 #include "except.h"
78 #include "integrate.h"
80 /* Next quantity number available for allocation. */
82 static int next_qty;
84 /* Information we maintain about each quantity. */
85 struct qty
87 /* The number of refs to quantity Q. */
89 int n_refs;
91 /* The frequency of uses of quantity Q. */
93 int freq;
95 /* Insn number (counting from head of basic block)
96 where quantity Q was born. -1 if birth has not been recorded. */
98 int birth;
100 /* Insn number (counting from head of basic block)
101 where given quantity died. Due to the way tying is done,
102 and the fact that we consider in this pass only regs that die but once,
103 a quantity can die only once. Each quantity's life span
104 is a set of consecutive insns. -1 if death has not been recorded. */
106 int death;
108 /* Number of words needed to hold the data in given quantity.
109 This depends on its machine mode. It is used for these purposes:
110 1. It is used in computing the relative importance of qtys,
111 which determines the order in which we look for regs for them.
112 2. It is used in rules that prevent tying several registers of
113 different sizes in a way that is geometrically impossible
114 (see combine_regs). */
116 int size;
118 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
120 int n_calls_crossed;
122 /* The register number of one pseudo register whose reg_qty value is Q.
123 This register should be the head of the chain
124 maintained in reg_next_in_qty. */
126 int first_reg;
128 /* Reg class contained in (smaller than) the preferred classes of all
129 the pseudo regs that are tied in given quantity.
130 This is the preferred class for allocating that quantity. */
132 enum reg_class min_class;
134 /* Register class within which we allocate given qty if we can't get
135 its preferred class. */
137 enum reg_class alternate_class;
139 /* This holds the mode of the registers that are tied to given qty,
140 or VOIDmode if registers with differing modes are tied together. */
142 enum machine_mode mode;
144 /* the hard reg number chosen for given quantity,
145 or -1 if none was found. */
147 short phys_reg;
150 static struct qty *qty;
152 /* These fields are kept separately to speedup their clearing. */
154 /* We maintain two hard register sets that indicate suggested hard registers
155 for each quantity. The first, phys_copy_sugg, contains hard registers
156 that are tied to the quantity by a simple copy. The second contains all
157 hard registers that are tied to the quantity via an arithmetic operation.
159 The former register set is given priority for allocation. This tends to
160 eliminate copy insns. */
162 /* Element Q is a set of hard registers that are suggested for quantity Q by
163 copy insns. */
165 static HARD_REG_SET *qty_phys_copy_sugg;
167 /* Element Q is a set of hard registers that are suggested for quantity Q by
168 arithmetic insns. */
170 static HARD_REG_SET *qty_phys_sugg;
172 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
174 static short *qty_phys_num_copy_sugg;
176 /* Element Q is the number of suggested registers in qty_phys_sugg. */
178 static short *qty_phys_num_sugg;
180 /* If (REG N) has been assigned a quantity number, is a register number
181 of another register assigned the same quantity number, or -1 for the
182 end of the chain. qty->first_reg point to the head of this chain. */
184 static int *reg_next_in_qty;
186 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
187 if it is >= 0,
188 of -1 if this register cannot be allocated by local-alloc,
189 or -2 if not known yet.
191 Note that if we see a use or death of pseudo register N with
192 reg_qty[N] == -2, register N must be local to the current block. If
193 it were used in more than one block, we would have reg_qty[N] == -1.
194 This relies on the fact that if reg_basic_block[N] is >= 0, register N
195 will not appear in any other block. We save a considerable number of
196 tests by exploiting this.
198 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
199 be referenced. */
201 static int *reg_qty;
203 /* The offset (in words) of register N within its quantity.
204 This can be nonzero if register N is SImode, and has been tied
205 to a subreg of a DImode register. */
207 static char *reg_offset;
209 /* Vector of substitutions of register numbers,
210 used to map pseudo regs into hardware regs.
211 This is set up as a result of register allocation.
212 Element N is the hard reg assigned to pseudo reg N,
213 or is -1 if no hard reg was assigned.
214 If N is a hard reg number, element N is N. */
216 short *reg_renumber;
218 /* Set of hard registers live at the current point in the scan
219 of the instructions in a basic block. */
221 static HARD_REG_SET regs_live;
223 /* Each set of hard registers indicates registers live at a particular
224 point in the basic block. For N even, regs_live_at[N] says which
225 hard registers are needed *after* insn N/2 (i.e., they may not
226 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
228 If an object is to conflict with the inputs of insn J but not the
229 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
230 if it is to conflict with the outputs of insn J but not the inputs of
231 insn J + 1, it is said to die at index J*2 + 1. */
233 static HARD_REG_SET *regs_live_at;
235 /* Communicate local vars `insn_number' and `insn'
236 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
237 static int this_insn_number;
238 static rtx this_insn;
240 struct equivalence
242 /* Set when an attempt should be made to replace a register
243 with the associated src_p entry. */
245 char replace;
247 /* Set when a REG_EQUIV note is found or created. Use to
248 keep track of what memory accesses might be created later,
249 e.g. by reload. */
251 rtx replacement;
253 rtx *src_p;
255 /* Loop depth is used to recognize equivalences which appear
256 to be present within the same loop (or in an inner loop). */
258 int loop_depth;
260 /* The list of each instruction which initializes this register. */
262 rtx init_insns;
265 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
266 structure for that register. */
268 static struct equivalence *reg_equiv;
270 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
271 static int recorded_label_ref;
273 static void alloc_qty (int, enum machine_mode, int, int);
274 static void validate_equiv_mem_from_store (rtx, rtx, void *);
275 static int validate_equiv_mem (rtx, rtx, rtx);
276 static int equiv_init_varies_p (rtx);
277 static int equiv_init_movable_p (rtx, int);
278 static int contains_replace_regs (rtx);
279 static int memref_referenced_p (rtx, rtx);
280 static int memref_used_between_p (rtx, rtx, rtx);
281 static void update_equiv_regs (void);
282 static void no_equiv (rtx, rtx, void *);
283 static void block_alloc (int);
284 static int qty_sugg_compare (int, int);
285 static int qty_sugg_compare_1 (const void *, const void *);
286 static int qty_compare (int, int);
287 static int qty_compare_1 (const void *, const void *);
288 static int combine_regs (rtx, rtx, int, int, rtx, int);
289 static int reg_meets_class_p (int, enum reg_class);
290 static void update_qty_class (int, int);
291 static void reg_is_set (rtx, rtx, void *);
292 static void reg_is_born (rtx, int);
293 static void wipe_dead_reg (rtx, int);
294 static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
295 int, int);
296 static void mark_life (int, enum machine_mode, int);
297 static void post_mark_life (int, enum machine_mode, int, int, int);
298 static int no_conflict_p (rtx, rtx, rtx);
299 static int requires_inout (const char *);
301 /* Allocate a new quantity (new within current basic block)
302 for register number REGNO which is born at index BIRTH
303 within the block. MODE and SIZE are info on reg REGNO. */
305 static void
306 alloc_qty (int regno, enum machine_mode mode, int size, int birth)
308 int qtyno = next_qty++;
310 reg_qty[regno] = qtyno;
311 reg_offset[regno] = 0;
312 reg_next_in_qty[regno] = -1;
314 qty[qtyno].first_reg = regno;
315 qty[qtyno].size = size;
316 qty[qtyno].mode = mode;
317 qty[qtyno].birth = birth;
318 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
319 qty[qtyno].min_class = reg_preferred_class (regno);
320 qty[qtyno].alternate_class = reg_alternate_class (regno);
321 qty[qtyno].n_refs = REG_N_REFS (regno);
322 qty[qtyno].freq = REG_FREQ (regno);
325 /* Main entry point of this file. */
328 local_alloc (void)
330 int i;
331 int max_qty;
332 basic_block b;
334 /* We need to keep track of whether or not we recorded a LABEL_REF so
335 that we know if the jump optimizer needs to be rerun. */
336 recorded_label_ref = 0;
338 /* Leaf functions and non-leaf functions have different needs.
339 If defined, let the machine say what kind of ordering we
340 should use. */
341 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
342 ORDER_REGS_FOR_LOCAL_ALLOC;
343 #endif
345 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
346 registers. */
347 if (optimize)
348 update_equiv_regs ();
350 /* This sets the maximum number of quantities we can have. Quantity
351 numbers start at zero and we can have one for each pseudo. */
352 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
354 /* Allocate vectors of temporary data.
355 See the declarations of these variables, above,
356 for what they mean. */
358 qty = xmalloc (max_qty * sizeof (struct qty));
359 qty_phys_copy_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
360 qty_phys_num_copy_sugg = xmalloc (max_qty * sizeof (short));
361 qty_phys_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
362 qty_phys_num_sugg = xmalloc (max_qty * sizeof (short));
364 reg_qty = xmalloc (max_regno * sizeof (int));
365 reg_offset = xmalloc (max_regno * sizeof (char));
366 reg_next_in_qty = xmalloc (max_regno * sizeof (int));
368 /* Determine which pseudo-registers can be allocated by local-alloc.
369 In general, these are the registers used only in a single block and
370 which only die once.
372 We need not be concerned with which block actually uses the register
373 since we will never see it outside that block. */
375 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
377 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
378 reg_qty[i] = -2;
379 else
380 reg_qty[i] = -1;
383 /* Force loop below to initialize entire quantity array. */
384 next_qty = max_qty;
386 /* Allocate each block's local registers, block by block. */
388 FOR_EACH_BB (b)
390 /* NEXT_QTY indicates which elements of the `qty_...'
391 vectors might need to be initialized because they were used
392 for the previous block; it is set to the entire array before
393 block 0. Initialize those, with explicit loop if there are few,
394 else with bzero and bcopy. Do not initialize vectors that are
395 explicit set by `alloc_qty'. */
397 if (next_qty < 6)
399 for (i = 0; i < next_qty; i++)
401 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
402 qty_phys_num_copy_sugg[i] = 0;
403 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
404 qty_phys_num_sugg[i] = 0;
407 else
409 #define CLEAR(vector) \
410 memset ((vector), 0, (sizeof (*(vector))) * next_qty);
412 CLEAR (qty_phys_copy_sugg);
413 CLEAR (qty_phys_num_copy_sugg);
414 CLEAR (qty_phys_sugg);
415 CLEAR (qty_phys_num_sugg);
418 next_qty = 0;
420 block_alloc (b->index);
423 free (qty);
424 free (qty_phys_copy_sugg);
425 free (qty_phys_num_copy_sugg);
426 free (qty_phys_sugg);
427 free (qty_phys_num_sugg);
429 free (reg_qty);
430 free (reg_offset);
431 free (reg_next_in_qty);
433 return recorded_label_ref;
436 /* Used for communication between the following two functions: contains
437 a MEM that we wish to ensure remains unchanged. */
438 static rtx equiv_mem;
440 /* Set nonzero if EQUIV_MEM is modified. */
441 static int equiv_mem_modified;
443 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
444 Called via note_stores. */
446 static void
447 validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
448 void *data ATTRIBUTE_UNUSED)
450 if ((REG_P (dest)
451 && reg_overlap_mentioned_p (dest, equiv_mem))
452 || (MEM_P (dest)
453 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
454 equiv_mem_modified = 1;
457 /* Verify that no store between START and the death of REG invalidates
458 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
459 by storing into an overlapping memory location, or with a non-const
460 CALL_INSN.
462 Return 1 if MEMREF remains valid. */
464 static int
465 validate_equiv_mem (rtx start, rtx reg, rtx memref)
467 rtx insn;
468 rtx note;
470 equiv_mem = memref;
471 equiv_mem_modified = 0;
473 /* If the memory reference has side effects or is volatile, it isn't a
474 valid equivalence. */
475 if (side_effects_p (memref))
476 return 0;
478 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
480 if (! INSN_P (insn))
481 continue;
483 if (find_reg_note (insn, REG_DEAD, reg))
484 return 1;
486 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
487 && ! CONST_OR_PURE_CALL_P (insn))
488 return 0;
490 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
492 /* If a register mentioned in MEMREF is modified via an
493 auto-increment, we lose the equivalence. Do the same if one
494 dies; although we could extend the life, it doesn't seem worth
495 the trouble. */
497 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
498 if ((REG_NOTE_KIND (note) == REG_INC
499 || REG_NOTE_KIND (note) == REG_DEAD)
500 && REG_P (XEXP (note, 0))
501 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
502 return 0;
505 return 0;
508 /* Returns zero if X is known to be invariant. */
510 static int
511 equiv_init_varies_p (rtx x)
513 RTX_CODE code = GET_CODE (x);
514 int i;
515 const char *fmt;
517 switch (code)
519 case MEM:
520 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
522 case CONST:
523 case CONST_INT:
524 case CONST_DOUBLE:
525 case CONST_VECTOR:
526 case SYMBOL_REF:
527 case LABEL_REF:
528 return 0;
530 case REG:
531 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
533 case ASM_OPERANDS:
534 if (MEM_VOLATILE_P (x))
535 return 1;
537 /* Fall through. */
539 default:
540 break;
543 fmt = GET_RTX_FORMAT (code);
544 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
545 if (fmt[i] == 'e')
547 if (equiv_init_varies_p (XEXP (x, i)))
548 return 1;
550 else if (fmt[i] == 'E')
552 int j;
553 for (j = 0; j < XVECLEN (x, i); j++)
554 if (equiv_init_varies_p (XVECEXP (x, i, j)))
555 return 1;
558 return 0;
561 /* Returns nonzero if X (used to initialize register REGNO) is movable.
562 X is only movable if the registers it uses have equivalent initializations
563 which appear to be within the same loop (or in an inner loop) and movable
564 or if they are not candidates for local_alloc and don't vary. */
566 static int
567 equiv_init_movable_p (rtx x, int regno)
569 int i, j;
570 const char *fmt;
571 enum rtx_code code = GET_CODE (x);
573 switch (code)
575 case SET:
576 return equiv_init_movable_p (SET_SRC (x), regno);
578 case CC0:
579 case CLOBBER:
580 return 0;
582 case PRE_INC:
583 case PRE_DEC:
584 case POST_INC:
585 case POST_DEC:
586 case PRE_MODIFY:
587 case POST_MODIFY:
588 return 0;
590 case REG:
591 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
592 && reg_equiv[REGNO (x)].replace)
593 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
595 case UNSPEC_VOLATILE:
596 return 0;
598 case ASM_OPERANDS:
599 if (MEM_VOLATILE_P (x))
600 return 0;
602 /* Fall through. */
604 default:
605 break;
608 fmt = GET_RTX_FORMAT (code);
609 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
610 switch (fmt[i])
612 case 'e':
613 if (! equiv_init_movable_p (XEXP (x, i), regno))
614 return 0;
615 break;
616 case 'E':
617 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
618 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
619 return 0;
620 break;
623 return 1;
626 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
628 static int
629 contains_replace_regs (rtx x)
631 int i, j;
632 const char *fmt;
633 enum rtx_code code = GET_CODE (x);
635 switch (code)
637 case CONST_INT:
638 case CONST:
639 case LABEL_REF:
640 case SYMBOL_REF:
641 case CONST_DOUBLE:
642 case CONST_VECTOR:
643 case PC:
644 case CC0:
645 case HIGH:
646 return 0;
648 case REG:
649 return reg_equiv[REGNO (x)].replace;
651 default:
652 break;
655 fmt = GET_RTX_FORMAT (code);
656 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
657 switch (fmt[i])
659 case 'e':
660 if (contains_replace_regs (XEXP (x, i)))
661 return 1;
662 break;
663 case 'E':
664 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
665 if (contains_replace_regs (XVECEXP (x, i, j)))
666 return 1;
667 break;
670 return 0;
673 /* TRUE if X references a memory location that would be affected by a store
674 to MEMREF. */
676 static int
677 memref_referenced_p (rtx memref, rtx x)
679 int i, j;
680 const char *fmt;
681 enum rtx_code code = GET_CODE (x);
683 switch (code)
685 case CONST_INT:
686 case CONST:
687 case LABEL_REF:
688 case SYMBOL_REF:
689 case CONST_DOUBLE:
690 case CONST_VECTOR:
691 case PC:
692 case CC0:
693 case HIGH:
694 case LO_SUM:
695 return 0;
697 case REG:
698 return (reg_equiv[REGNO (x)].replacement
699 && memref_referenced_p (memref,
700 reg_equiv[REGNO (x)].replacement));
702 case MEM:
703 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
704 return 1;
705 break;
707 case SET:
708 /* If we are setting a MEM, it doesn't count (its address does), but any
709 other SET_DEST that has a MEM in it is referencing the MEM. */
710 if (MEM_P (SET_DEST (x)))
712 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
713 return 1;
715 else if (memref_referenced_p (memref, SET_DEST (x)))
716 return 1;
718 return memref_referenced_p (memref, SET_SRC (x));
720 default:
721 break;
724 fmt = GET_RTX_FORMAT (code);
725 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
726 switch (fmt[i])
728 case 'e':
729 if (memref_referenced_p (memref, XEXP (x, i)))
730 return 1;
731 break;
732 case 'E':
733 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
734 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
735 return 1;
736 break;
739 return 0;
742 /* TRUE if some insn in the range (START, END] references a memory location
743 that would be affected by a store to MEMREF. */
745 static int
746 memref_used_between_p (rtx memref, rtx start, rtx end)
748 rtx insn;
750 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
751 insn = NEXT_INSN (insn))
752 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
753 return 1;
755 return 0;
758 /* Find registers that are equivalent to a single value throughout the
759 compilation (either because they can be referenced in memory or are set once
760 from a single constant). Lower their priority for a register.
762 If such a register is only referenced once, try substituting its value
763 into the using insn. If it succeeds, we can eliminate the register
764 completely. */
766 static void
767 update_equiv_regs (void)
769 rtx insn;
770 basic_block bb;
771 int loop_depth;
772 regset_head cleared_regs;
773 int clear_regnos = 0;
775 reg_equiv = xcalloc (max_regno, sizeof *reg_equiv);
776 INIT_REG_SET (&cleared_regs);
778 init_alias_analysis ();
780 /* Scan the insns and find which registers have equivalences. Do this
781 in a separate scan of the insns because (due to -fcse-follow-jumps)
782 a register can be set below its use. */
783 FOR_EACH_BB (bb)
785 loop_depth = bb->loop_depth;
787 for (insn = BB_HEAD (bb);
788 insn != NEXT_INSN (BB_END (bb));
789 insn = NEXT_INSN (insn))
791 rtx note;
792 rtx set;
793 rtx dest, src;
794 int regno;
796 if (! INSN_P (insn))
797 continue;
799 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
800 if (REG_NOTE_KIND (note) == REG_INC)
801 no_equiv (XEXP (note, 0), note, NULL);
803 set = single_set (insn);
805 /* If this insn contains more (or less) than a single SET,
806 only mark all destinations as having no known equivalence. */
807 if (set == 0)
809 note_stores (PATTERN (insn), no_equiv, NULL);
810 continue;
812 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
814 int i;
816 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
818 rtx part = XVECEXP (PATTERN (insn), 0, i);
819 if (part != set)
820 note_stores (part, no_equiv, NULL);
824 dest = SET_DEST (set);
825 src = SET_SRC (set);
827 /* If this sets a MEM to the contents of a REG that is only used
828 in a single basic block, see if the register is always equivalent
829 to that memory location and if moving the store from INSN to the
830 insn that set REG is safe. If so, put a REG_EQUIV note on the
831 initializing insn.
833 Don't add a REG_EQUIV note if the insn already has one. The existing
834 REG_EQUIV is likely more useful than the one we are adding.
836 If one of the regs in the address has reg_equiv[REGNO].replace set,
837 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
838 optimization may move the set of this register immediately before
839 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
840 the mention in the REG_EQUIV note would be to an uninitialized
841 pseudo. */
842 /* ????? This test isn't good enough; we might see a MEM with a use of
843 a pseudo register before we see its setting insn that will cause
844 reg_equiv[].replace for that pseudo to be set.
845 Equivalences to MEMs should be made in another pass, after the
846 reg_equiv[].replace information has been gathered. */
848 if (MEM_P (dest) && REG_P (src)
849 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
850 && REG_BASIC_BLOCK (regno) >= 0
851 && REG_N_SETS (regno) == 1
852 && reg_equiv[regno].init_insns != 0
853 && reg_equiv[regno].init_insns != const0_rtx
854 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
855 REG_EQUIV, NULL_RTX)
856 && ! contains_replace_regs (XEXP (dest, 0)))
858 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
859 if (validate_equiv_mem (init_insn, src, dest)
860 && ! memref_used_between_p (dest, init_insn, insn))
861 REG_NOTES (init_insn)
862 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
865 /* We only handle the case of a pseudo register being set
866 once, or always to the same value. */
867 /* ??? The mn10200 port breaks if we add equivalences for
868 values that need an ADDRESS_REGS register and set them equivalent
869 to a MEM of a pseudo. The actual problem is in the over-conservative
870 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
871 calculate_needs, but we traditionally work around this problem
872 here by rejecting equivalences when the destination is in a register
873 that's likely spilled. This is fragile, of course, since the
874 preferred class of a pseudo depends on all instructions that set
875 or use it. */
877 if (!REG_P (dest)
878 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
879 || reg_equiv[regno].init_insns == const0_rtx
880 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
881 && MEM_P (src)))
883 /* This might be setting a SUBREG of a pseudo, a pseudo that is
884 also set somewhere else to a constant. */
885 note_stores (set, no_equiv, NULL);
886 continue;
889 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
891 /* cse sometimes generates function invariants, but doesn't put a
892 REG_EQUAL note on the insn. Since this note would be redundant,
893 there's no point creating it earlier than here. */
894 if (! note && ! rtx_varies_p (src, 0))
895 note = set_unique_reg_note (insn, REG_EQUAL, src);
897 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
898 since it represents a function call */
899 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
900 note = NULL_RTX;
902 if (REG_N_SETS (regno) != 1
903 && (! note
904 || rtx_varies_p (XEXP (note, 0), 0)
905 || (reg_equiv[regno].replacement
906 && ! rtx_equal_p (XEXP (note, 0),
907 reg_equiv[regno].replacement))))
909 no_equiv (dest, set, NULL);
910 continue;
912 /* Record this insn as initializing this register. */
913 reg_equiv[regno].init_insns
914 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
916 /* If this register is known to be equal to a constant, record that
917 it is always equivalent to the constant. */
918 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
919 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
921 /* If this insn introduces a "constant" register, decrease the priority
922 of that register. Record this insn if the register is only used once
923 more and the equivalence value is the same as our source.
925 The latter condition is checked for two reasons: First, it is an
926 indication that it may be more efficient to actually emit the insn
927 as written (if no registers are available, reload will substitute
928 the equivalence). Secondly, it avoids problems with any registers
929 dying in this insn whose death notes would be missed.
931 If we don't have a REG_EQUIV note, see if this insn is loading
932 a register used only in one basic block from a MEM. If so, and the
933 MEM remains unchanged for the life of the register, add a REG_EQUIV
934 note. */
936 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
938 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
939 && MEM_P (SET_SRC (set))
940 && validate_equiv_mem (insn, dest, SET_SRC (set)))
941 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
942 REG_NOTES (insn));
944 if (note)
946 int regno = REGNO (dest);
948 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
949 We might end up substituting the LABEL_REF for uses of the
950 pseudo here or later. That kind of transformation may turn an
951 indirect jump into a direct jump, in which case we must rerun the
952 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
953 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
954 || (GET_CODE (XEXP (note, 0)) == CONST
955 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
956 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
957 == LABEL_REF)))
958 recorded_label_ref = 1;
960 reg_equiv[regno].replacement = XEXP (note, 0);
961 reg_equiv[regno].src_p = &SET_SRC (set);
962 reg_equiv[regno].loop_depth = loop_depth;
964 /* Don't mess with things live during setjmp. */
965 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
967 /* Note that the statement below does not affect the priority
968 in local-alloc! */
969 REG_LIVE_LENGTH (regno) *= 2;
972 /* If the register is referenced exactly twice, meaning it is
973 set once and used once, indicate that the reference may be
974 replaced by the equivalence we computed above. Do this
975 even if the register is only used in one block so that
976 dependencies can be handled where the last register is
977 used in a different block (i.e. HIGH / LO_SUM sequences)
978 and to reduce the number of registers alive across
979 calls. */
981 if (REG_N_REFS (regno) == 2
982 && (rtx_equal_p (XEXP (note, 0), src)
983 || ! equiv_init_varies_p (src))
984 && NONJUMP_INSN_P (insn)
985 && equiv_init_movable_p (PATTERN (insn), regno))
986 reg_equiv[regno].replace = 1;
992 /* Now scan all regs killed in an insn to see if any of them are
993 registers only used that once. If so, see if we can replace the
994 reference with the equivalent from. If we can, delete the
995 initializing reference and this register will go away. If we
996 can't replace the reference, and the initializing reference is
997 within the same loop (or in an inner loop), then move the register
998 initialization just before the use, so that they are in the same
999 basic block. */
1000 FOR_EACH_BB_REVERSE (bb)
1002 loop_depth = bb->loop_depth;
1003 for (insn = BB_END (bb);
1004 insn != PREV_INSN (BB_HEAD (bb));
1005 insn = PREV_INSN (insn))
1007 rtx link;
1009 if (! INSN_P (insn))
1010 continue;
1012 /* Don't substitute into a non-local goto, this confuses CFG. */
1013 if (JUMP_P (insn)
1014 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1015 continue;
1017 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1019 if (REG_NOTE_KIND (link) == REG_DEAD
1020 /* Make sure this insn still refers to the register. */
1021 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1023 int regno = REGNO (XEXP (link, 0));
1024 rtx equiv_insn;
1026 if (! reg_equiv[regno].replace
1027 || reg_equiv[regno].loop_depth < loop_depth)
1028 continue;
1030 /* reg_equiv[REGNO].replace gets set only when
1031 REG_N_REFS[REGNO] is 2, i.e. the register is set
1032 once and used once. (If it were only set, but not used,
1033 flow would have deleted the setting insns.) Hence
1034 there can only be one insn in reg_equiv[REGNO].init_insns. */
1035 gcc_assert (reg_equiv[regno].init_insns
1036 && !XEXP (reg_equiv[regno].init_insns, 1));
1037 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1039 /* We may not move instructions that can throw, since
1040 that changes basic block boundaries and we are not
1041 prepared to adjust the CFG to match. */
1042 if (can_throw_internal (equiv_insn))
1043 continue;
1045 if (asm_noperands (PATTERN (equiv_insn)) < 0
1046 && validate_replace_rtx (regno_reg_rtx[regno],
1047 *(reg_equiv[regno].src_p), insn))
1049 rtx equiv_link;
1050 rtx last_link;
1051 rtx note;
1053 /* Find the last note. */
1054 for (last_link = link; XEXP (last_link, 1);
1055 last_link = XEXP (last_link, 1))
1058 /* Append the REG_DEAD notes from equiv_insn. */
1059 equiv_link = REG_NOTES (equiv_insn);
1060 while (equiv_link)
1062 note = equiv_link;
1063 equiv_link = XEXP (equiv_link, 1);
1064 if (REG_NOTE_KIND (note) == REG_DEAD)
1066 remove_note (equiv_insn, note);
1067 XEXP (last_link, 1) = note;
1068 XEXP (note, 1) = NULL_RTX;
1069 last_link = note;
1073 remove_death (regno, insn);
1074 REG_N_REFS (regno) = 0;
1075 REG_FREQ (regno) = 0;
1076 delete_insn (equiv_insn);
1078 reg_equiv[regno].init_insns
1079 = XEXP (reg_equiv[regno].init_insns, 1);
1081 /* Move the initialization of the register to just before
1082 INSN. Update the flow information. */
1083 else if (PREV_INSN (insn) != equiv_insn)
1085 rtx new_insn;
1087 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1088 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1089 REG_NOTES (equiv_insn) = 0;
1091 /* Make sure this insn is recognized before
1092 reload begins, otherwise
1093 eliminate_regs_in_insn will die. */
1094 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1096 delete_insn (equiv_insn);
1098 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1100 REG_BASIC_BLOCK (regno) = bb->index;
1101 REG_N_CALLS_CROSSED (regno) = 0;
1102 REG_LIVE_LENGTH (regno) = 2;
1104 if (insn == BB_HEAD (bb))
1105 BB_HEAD (bb) = PREV_INSN (insn);
1107 /* Remember to clear REGNO from all basic block's live
1108 info. */
1109 SET_REGNO_REG_SET (&cleared_regs, regno);
1110 clear_regnos++;
1117 /* Clear all dead REGNOs from all basic block's live info. */
1118 if (clear_regnos)
1120 unsigned j;
1122 if (clear_regnos > 8)
1124 FOR_EACH_BB (bb)
1126 AND_COMPL_REG_SET (bb->global_live_at_start, &cleared_regs);
1127 AND_COMPL_REG_SET (bb->global_live_at_end, &cleared_regs);
1130 else
1132 reg_set_iterator rsi;
1133 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j, rsi)
1135 FOR_EACH_BB (bb)
1137 CLEAR_REGNO_REG_SET (bb->global_live_at_start, j);
1138 CLEAR_REGNO_REG_SET (bb->global_live_at_end, j);
1144 /* Clean up. */
1145 end_alias_analysis ();
1146 CLEAR_REG_SET (&cleared_regs);
1147 free (reg_equiv);
1150 /* Mark REG as having no known equivalence.
1151 Some instructions might have been processed before and furnished
1152 with REG_EQUIV notes for this register; these notes will have to be
1153 removed.
1154 STORE is the piece of RTL that does the non-constant / conflicting
1155 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1156 but needs to be there because this function is called from note_stores. */
1157 static void
1158 no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1160 int regno;
1161 rtx list;
1163 if (!REG_P (reg))
1164 return;
1165 regno = REGNO (reg);
1166 list = reg_equiv[regno].init_insns;
1167 if (list == const0_rtx)
1168 return;
1169 for (; list; list = XEXP (list, 1))
1171 rtx insn = XEXP (list, 0);
1172 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1174 reg_equiv[regno].init_insns = const0_rtx;
1175 reg_equiv[regno].replacement = NULL_RTX;
1178 /* Allocate hard regs to the pseudo regs used only within block number B.
1179 Only the pseudos that die but once can be handled. */
1181 static void
1182 block_alloc (int b)
1184 int i, q;
1185 rtx insn;
1186 rtx note, hard_reg;
1187 int insn_number = 0;
1188 int insn_count = 0;
1189 int max_uid = get_max_uid ();
1190 int *qty_order;
1191 int no_conflict_combined_regno = -1;
1193 /* Count the instructions in the basic block. */
1195 insn = BB_END (BASIC_BLOCK (b));
1196 while (1)
1198 if (!NOTE_P (insn))
1200 ++insn_count;
1201 gcc_assert (insn_count <= max_uid);
1203 if (insn == BB_HEAD (BASIC_BLOCK (b)))
1204 break;
1205 insn = PREV_INSN (insn);
1208 /* +2 to leave room for a post_mark_life at the last insn and for
1209 the birth of a CLOBBER in the first insn. */
1210 regs_live_at = xcalloc ((2 * insn_count + 2), sizeof (HARD_REG_SET));
1212 /* Initialize table of hardware registers currently live. */
1214 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1216 /* This loop scans the instructions of the basic block
1217 and assigns quantities to registers.
1218 It computes which registers to tie. */
1220 insn = BB_HEAD (BASIC_BLOCK (b));
1221 while (1)
1223 if (!NOTE_P (insn))
1224 insn_number++;
1226 if (INSN_P (insn))
1228 rtx link, set;
1229 int win = 0;
1230 rtx r0, r1 = NULL_RTX;
1231 int combined_regno = -1;
1232 int i;
1234 this_insn_number = insn_number;
1235 this_insn = insn;
1237 extract_insn (insn);
1238 which_alternative = -1;
1240 /* Is this insn suitable for tying two registers?
1241 If so, try doing that.
1242 Suitable insns are those with at least two operands and where
1243 operand 0 is an output that is a register that is not
1244 earlyclobber.
1246 We can tie operand 0 with some operand that dies in this insn.
1247 First look for operands that are required to be in the same
1248 register as operand 0. If we find such, only try tying that
1249 operand or one that can be put into that operand if the
1250 operation is commutative. If we don't find an operand
1251 that is required to be in the same register as operand 0,
1252 we can tie with any operand.
1254 Subregs in place of regs are also ok.
1256 If tying is done, WIN is set nonzero. */
1258 if (optimize
1259 && recog_data.n_operands > 1
1260 && recog_data.constraints[0][0] == '='
1261 && recog_data.constraints[0][1] != '&')
1263 /* If non-negative, is an operand that must match operand 0. */
1264 int must_match_0 = -1;
1265 /* Counts number of alternatives that require a match with
1266 operand 0. */
1267 int n_matching_alts = 0;
1269 for (i = 1; i < recog_data.n_operands; i++)
1271 const char *p = recog_data.constraints[i];
1272 int this_match = requires_inout (p);
1274 n_matching_alts += this_match;
1275 if (this_match == recog_data.n_alternatives)
1276 must_match_0 = i;
1279 r0 = recog_data.operand[0];
1280 for (i = 1; i < recog_data.n_operands; i++)
1282 /* Skip this operand if we found an operand that
1283 must match operand 0 and this operand isn't it
1284 and can't be made to be it by commutativity. */
1286 if (must_match_0 >= 0 && i != must_match_0
1287 && ! (i == must_match_0 + 1
1288 && recog_data.constraints[i-1][0] == '%')
1289 && ! (i == must_match_0 - 1
1290 && recog_data.constraints[i][0] == '%'))
1291 continue;
1293 /* Likewise if each alternative has some operand that
1294 must match operand zero. In that case, skip any
1295 operand that doesn't list operand 0 since we know that
1296 the operand always conflicts with operand 0. We
1297 ignore commutativity in this case to keep things simple. */
1298 if (n_matching_alts == recog_data.n_alternatives
1299 && 0 == requires_inout (recog_data.constraints[i]))
1300 continue;
1302 r1 = recog_data.operand[i];
1304 /* If the operand is an address, find a register in it.
1305 There may be more than one register, but we only try one
1306 of them. */
1307 if (recog_data.constraints[i][0] == 'p'
1308 || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1309 recog_data.constraints[i]))
1310 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1311 r1 = XEXP (r1, 0);
1313 /* Avoid making a call-saved register unnecessarily
1314 clobbered. */
1315 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1316 if (hard_reg != NULL_RTX)
1318 if (REG_P (hard_reg)
1319 && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1320 && !call_used_regs[REGNO (hard_reg)])
1321 continue;
1324 if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1326 /* We have two priorities for hard register preferences.
1327 If we have a move insn or an insn whose first input
1328 can only be in the same register as the output, give
1329 priority to an equivalence found from that insn. */
1330 int may_save_copy
1331 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1333 if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1334 win = combine_regs (r1, r0, may_save_copy,
1335 insn_number, insn, 0);
1337 if (win)
1338 break;
1342 /* Recognize an insn sequence with an ultimate result
1343 which can safely overlap one of the inputs.
1344 The sequence begins with a CLOBBER of its result,
1345 and ends with an insn that copies the result to itself
1346 and has a REG_EQUAL note for an equivalent formula.
1347 That note indicates what the inputs are.
1348 The result and the input can overlap if each insn in
1349 the sequence either doesn't mention the input
1350 or has a REG_NO_CONFLICT note to inhibit the conflict.
1352 We do the combining test at the CLOBBER so that the
1353 destination register won't have had a quantity number
1354 assigned, since that would prevent combining. */
1356 if (optimize
1357 && GET_CODE (PATTERN (insn)) == CLOBBER
1358 && (r0 = XEXP (PATTERN (insn), 0),
1359 REG_P (r0))
1360 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1361 && XEXP (link, 0) != 0
1362 && NONJUMP_INSN_P (XEXP (link, 0))
1363 && (set = single_set (XEXP (link, 0))) != 0
1364 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1365 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1366 NULL_RTX)) != 0)
1368 if (r1 = XEXP (note, 0), REG_P (r1)
1369 /* Check that we have such a sequence. */
1370 && no_conflict_p (insn, r0, r1))
1371 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1372 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1373 && (r1 = XEXP (XEXP (note, 0), 0),
1374 REG_P (r1) || GET_CODE (r1) == SUBREG)
1375 && no_conflict_p (insn, r0, r1))
1376 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1378 /* Here we care if the operation to be computed is
1379 commutative. */
1380 else if (COMMUTATIVE_P (XEXP (note, 0))
1381 && (r1 = XEXP (XEXP (note, 0), 1),
1382 (REG_P (r1) || GET_CODE (r1) == SUBREG))
1383 && no_conflict_p (insn, r0, r1))
1384 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1386 /* If we did combine something, show the register number
1387 in question so that we know to ignore its death. */
1388 if (win)
1389 no_conflict_combined_regno = REGNO (r1);
1392 /* If registers were just tied, set COMBINED_REGNO
1393 to the number of the register used in this insn
1394 that was tied to the register set in this insn.
1395 This register's qty should not be "killed". */
1397 if (win)
1399 while (GET_CODE (r1) == SUBREG)
1400 r1 = SUBREG_REG (r1);
1401 combined_regno = REGNO (r1);
1404 /* Mark the death of everything that dies in this instruction,
1405 except for anything that was just combined. */
1407 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1408 if (REG_NOTE_KIND (link) == REG_DEAD
1409 && REG_P (XEXP (link, 0))
1410 && combined_regno != (int) REGNO (XEXP (link, 0))
1411 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1412 || ! find_reg_note (insn, REG_NO_CONFLICT,
1413 XEXP (link, 0))))
1414 wipe_dead_reg (XEXP (link, 0), 0);
1416 /* Allocate qty numbers for all registers local to this block
1417 that are born (set) in this instruction.
1418 A pseudo that already has a qty is not changed. */
1420 note_stores (PATTERN (insn), reg_is_set, NULL);
1422 /* If anything is set in this insn and then unused, mark it as dying
1423 after this insn, so it will conflict with our outputs. This
1424 can't match with something that combined, and it doesn't matter
1425 if it did. Do this after the calls to reg_is_set since these
1426 die after, not during, the current insn. */
1428 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1429 if (REG_NOTE_KIND (link) == REG_UNUSED
1430 && REG_P (XEXP (link, 0)))
1431 wipe_dead_reg (XEXP (link, 0), 1);
1433 /* If this is an insn that has a REG_RETVAL note pointing at a
1434 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1435 block, so clear any register number that combined within it. */
1436 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1437 && NONJUMP_INSN_P (XEXP (note, 0))
1438 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1439 no_conflict_combined_regno = -1;
1442 /* Set the registers live after INSN_NUMBER. Note that we never
1443 record the registers live before the block's first insn, since no
1444 pseudos we care about are live before that insn. */
1446 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1447 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1449 if (insn == BB_END (BASIC_BLOCK (b)))
1450 break;
1452 insn = NEXT_INSN (insn);
1455 /* Now every register that is local to this basic block
1456 should have been given a quantity, or else -1 meaning ignore it.
1457 Every quantity should have a known birth and death.
1459 Order the qtys so we assign them registers in order of the
1460 number of suggested registers they need so we allocate those with
1461 the most restrictive needs first. */
1463 qty_order = xmalloc (next_qty * sizeof (int));
1464 for (i = 0; i < next_qty; i++)
1465 qty_order[i] = i;
1467 #define EXCHANGE(I1, I2) \
1468 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1470 switch (next_qty)
1472 case 3:
1473 /* Make qty_order[2] be the one to allocate last. */
1474 if (qty_sugg_compare (0, 1) > 0)
1475 EXCHANGE (0, 1);
1476 if (qty_sugg_compare (1, 2) > 0)
1477 EXCHANGE (2, 1);
1479 /* ... Fall through ... */
1480 case 2:
1481 /* Put the best one to allocate in qty_order[0]. */
1482 if (qty_sugg_compare (0, 1) > 0)
1483 EXCHANGE (0, 1);
1485 /* ... Fall through ... */
1487 case 1:
1488 case 0:
1489 /* Nothing to do here. */
1490 break;
1492 default:
1493 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1496 /* Try to put each quantity in a suggested physical register, if it has one.
1497 This may cause registers to be allocated that otherwise wouldn't be, but
1498 this seems acceptable in local allocation (unlike global allocation). */
1499 for (i = 0; i < next_qty; i++)
1501 q = qty_order[i];
1502 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1503 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1504 0, 1, qty[q].birth, qty[q].death);
1505 else
1506 qty[q].phys_reg = -1;
1509 /* Order the qtys so we assign them registers in order of
1510 decreasing length of life. Normally call qsort, but if we
1511 have only a very small number of quantities, sort them ourselves. */
1513 for (i = 0; i < next_qty; i++)
1514 qty_order[i] = i;
1516 #define EXCHANGE(I1, I2) \
1517 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1519 switch (next_qty)
1521 case 3:
1522 /* Make qty_order[2] be the one to allocate last. */
1523 if (qty_compare (0, 1) > 0)
1524 EXCHANGE (0, 1);
1525 if (qty_compare (1, 2) > 0)
1526 EXCHANGE (2, 1);
1528 /* ... Fall through ... */
1529 case 2:
1530 /* Put the best one to allocate in qty_order[0]. */
1531 if (qty_compare (0, 1) > 0)
1532 EXCHANGE (0, 1);
1534 /* ... Fall through ... */
1536 case 1:
1537 case 0:
1538 /* Nothing to do here. */
1539 break;
1541 default:
1542 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1545 /* Now for each qty that is not a hardware register,
1546 look for a hardware register to put it in.
1547 First try the register class that is cheapest for this qty,
1548 if there is more than one class. */
1550 for (i = 0; i < next_qty; i++)
1552 q = qty_order[i];
1553 if (qty[q].phys_reg < 0)
1555 #ifdef INSN_SCHEDULING
1556 /* These values represent the adjusted lifetime of a qty so
1557 that it conflicts with qtys which appear near the start/end
1558 of this qty's lifetime.
1560 The purpose behind extending the lifetime of this qty is to
1561 discourage the register allocator from creating false
1562 dependencies.
1564 The adjustment value is chosen to indicate that this qty
1565 conflicts with all the qtys in the instructions immediately
1566 before and after the lifetime of this qty.
1568 Experiments have shown that higher values tend to hurt
1569 overall code performance.
1571 If allocation using the extended lifetime fails we will try
1572 again with the qty's unadjusted lifetime. */
1573 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1574 int fake_death = MIN (insn_number * 2 + 1,
1575 qty[q].death + 2 - qty[q].death % 2);
1576 #endif
1578 if (N_REG_CLASSES > 1)
1580 #ifdef INSN_SCHEDULING
1581 /* We try to avoid using hard registers allocated to qtys which
1582 are born immediately after this qty or die immediately before
1583 this qty.
1585 This optimization is only appropriate when we will run
1586 a scheduling pass after reload and we are not optimizing
1587 for code size. */
1588 if (flag_schedule_insns_after_reload
1589 && !optimize_size
1590 && !SMALL_REGISTER_CLASSES)
1592 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1593 qty[q].mode, q, 0, 0,
1594 fake_birth, fake_death);
1595 if (qty[q].phys_reg >= 0)
1596 continue;
1598 #endif
1599 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1600 qty[q].mode, q, 0, 0,
1601 qty[q].birth, qty[q].death);
1602 if (qty[q].phys_reg >= 0)
1603 continue;
1606 #ifdef INSN_SCHEDULING
1607 /* Similarly, avoid false dependencies. */
1608 if (flag_schedule_insns_after_reload
1609 && !optimize_size
1610 && !SMALL_REGISTER_CLASSES
1611 && qty[q].alternate_class != NO_REGS)
1612 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1613 qty[q].mode, q, 0, 0,
1614 fake_birth, fake_death);
1615 #endif
1616 if (qty[q].alternate_class != NO_REGS)
1617 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1618 qty[q].mode, q, 0, 0,
1619 qty[q].birth, qty[q].death);
1623 /* Now propagate the register assignments
1624 to the pseudo regs belonging to the qtys. */
1626 for (q = 0; q < next_qty; q++)
1627 if (qty[q].phys_reg >= 0)
1629 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1630 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1633 /* Clean up. */
1634 free (regs_live_at);
1635 free (qty_order);
1638 /* Compare two quantities' priority for getting real registers.
1639 We give shorter-lived quantities higher priority.
1640 Quantities with more references are also preferred, as are quantities that
1641 require multiple registers. This is the identical prioritization as
1642 done by global-alloc.
1644 We used to give preference to registers with *longer* lives, but using
1645 the same algorithm in both local- and global-alloc can speed up execution
1646 of some programs by as much as a factor of three! */
1648 /* Note that the quotient will never be bigger than
1649 the value of floor_log2 times the maximum number of
1650 times a register can occur in one insn (surely less than 100)
1651 weighted by frequency (max REG_FREQ_MAX).
1652 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1653 QTY_CMP_PRI is also used by qty_sugg_compare. */
1655 #define QTY_CMP_PRI(q) \
1656 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1657 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1659 static int
1660 qty_compare (int q1, int q2)
1662 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1665 static int
1666 qty_compare_1 (const void *q1p, const void *q2p)
1668 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1669 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1671 if (tem != 0)
1672 return tem;
1674 /* If qtys are equally good, sort by qty number,
1675 so that the results of qsort leave nothing to chance. */
1676 return q1 - q2;
1679 /* Compare two quantities' priority for getting real registers. This version
1680 is called for quantities that have suggested hard registers. First priority
1681 goes to quantities that have copy preferences, then to those that have
1682 normal preferences. Within those groups, quantities with the lower
1683 number of preferences have the highest priority. Of those, we use the same
1684 algorithm as above. */
1686 #define QTY_CMP_SUGG(q) \
1687 (qty_phys_num_copy_sugg[q] \
1688 ? qty_phys_num_copy_sugg[q] \
1689 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1691 static int
1692 qty_sugg_compare (int q1, int q2)
1694 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1696 if (tem != 0)
1697 return tem;
1699 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1702 static int
1703 qty_sugg_compare_1 (const void *q1p, const void *q2p)
1705 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1706 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1708 if (tem != 0)
1709 return tem;
1711 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1712 if (tem != 0)
1713 return tem;
1715 /* If qtys are equally good, sort by qty number,
1716 so that the results of qsort leave nothing to chance. */
1717 return q1 - q2;
1720 #undef QTY_CMP_SUGG
1721 #undef QTY_CMP_PRI
1723 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1724 Returns 1 if have done so, or 0 if cannot.
1726 Combining registers means marking them as having the same quantity
1727 and adjusting the offsets within the quantity if either of
1728 them is a SUBREG.
1730 We don't actually combine a hard reg with a pseudo; instead
1731 we just record the hard reg as the suggestion for the pseudo's quantity.
1732 If we really combined them, we could lose if the pseudo lives
1733 across an insn that clobbers the hard reg (eg, movmem).
1735 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1736 there is no REG_DEAD note on INSN. This occurs during the processing
1737 of REG_NO_CONFLICT blocks.
1739 MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1740 SETREG or if the input and output must share a register.
1741 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1743 There are elaborate checks for the validity of combining. */
1745 static int
1746 combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1747 rtx insn, int already_dead)
1749 int ureg, sreg;
1750 int offset = 0;
1751 int usize, ssize;
1752 int sqty;
1754 /* Determine the numbers and sizes of registers being used. If a subreg
1755 is present that does not change the entire register, don't consider
1756 this a copy insn. */
1758 while (GET_CODE (usedreg) == SUBREG)
1760 rtx subreg = SUBREG_REG (usedreg);
1762 if (REG_P (subreg))
1764 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1765 may_save_copy = 0;
1767 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1768 offset += subreg_regno_offset (REGNO (subreg),
1769 GET_MODE (subreg),
1770 SUBREG_BYTE (usedreg),
1771 GET_MODE (usedreg));
1772 else
1773 offset += (SUBREG_BYTE (usedreg)
1774 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1777 usedreg = subreg;
1780 if (!REG_P (usedreg))
1781 return 0;
1783 ureg = REGNO (usedreg);
1784 if (ureg < FIRST_PSEUDO_REGISTER)
1785 usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1786 else
1787 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1788 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1789 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1791 while (GET_CODE (setreg) == SUBREG)
1793 rtx subreg = SUBREG_REG (setreg);
1795 if (REG_P (subreg))
1797 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1798 may_save_copy = 0;
1800 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1801 offset -= subreg_regno_offset (REGNO (subreg),
1802 GET_MODE (subreg),
1803 SUBREG_BYTE (setreg),
1804 GET_MODE (setreg));
1805 else
1806 offset -= (SUBREG_BYTE (setreg)
1807 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1810 setreg = subreg;
1813 if (!REG_P (setreg))
1814 return 0;
1816 sreg = REGNO (setreg);
1817 if (sreg < FIRST_PSEUDO_REGISTER)
1818 ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1819 else
1820 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1821 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1822 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1824 /* If UREG is a pseudo-register that hasn't already been assigned a
1825 quantity number, it means that it is not local to this block or dies
1826 more than once. In either event, we can't do anything with it. */
1827 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1828 /* Do not combine registers unless one fits within the other. */
1829 || (offset > 0 && usize + offset > ssize)
1830 || (offset < 0 && usize + offset < ssize)
1831 /* Do not combine with a smaller already-assigned object
1832 if that smaller object is already combined with something bigger. */
1833 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1834 && usize < qty[reg_qty[ureg]].size)
1835 /* Can't combine if SREG is not a register we can allocate. */
1836 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1837 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1838 These have already been taken care of. This probably wouldn't
1839 combine anyway, but don't take any chances. */
1840 || (ureg >= FIRST_PSEUDO_REGISTER
1841 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1842 /* Don't tie something to itself. In most cases it would make no
1843 difference, but it would screw up if the reg being tied to itself
1844 also dies in this insn. */
1845 || ureg == sreg
1846 /* Don't try to connect two different hardware registers. */
1847 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1848 /* Don't connect two different machine modes if they have different
1849 implications as to which registers may be used. */
1850 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1851 return 0;
1853 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1854 qty_phys_sugg for the pseudo instead of tying them.
1856 Return "failure" so that the lifespan of UREG is terminated here;
1857 that way the two lifespans will be disjoint and nothing will prevent
1858 the pseudo reg from being given this hard reg. */
1860 if (ureg < FIRST_PSEUDO_REGISTER)
1862 /* Allocate a quantity number so we have a place to put our
1863 suggestions. */
1864 if (reg_qty[sreg] == -2)
1865 reg_is_born (setreg, 2 * insn_number);
1867 if (reg_qty[sreg] >= 0)
1869 if (may_save_copy
1870 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1872 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1873 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1875 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1877 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1878 qty_phys_num_sugg[reg_qty[sreg]]++;
1881 return 0;
1884 /* Similarly for SREG a hard register and UREG a pseudo register. */
1886 if (sreg < FIRST_PSEUDO_REGISTER)
1888 if (may_save_copy
1889 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1891 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1892 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1894 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1896 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1897 qty_phys_num_sugg[reg_qty[ureg]]++;
1899 return 0;
1902 /* At this point we know that SREG and UREG are both pseudos.
1903 Do nothing if SREG already has a quantity or is a register that we
1904 don't allocate. */
1905 if (reg_qty[sreg] >= -1
1906 /* If we are not going to let any regs live across calls,
1907 don't tie a call-crossing reg to a non-call-crossing reg. */
1908 || (current_function_has_nonlocal_label
1909 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1910 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1911 return 0;
1913 /* We don't already know about SREG, so tie it to UREG
1914 if this is the last use of UREG, provided the classes they want
1915 are compatible. */
1917 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1918 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1920 /* Add SREG to UREG's quantity. */
1921 sqty = reg_qty[ureg];
1922 reg_qty[sreg] = sqty;
1923 reg_offset[sreg] = reg_offset[ureg] + offset;
1924 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1925 qty[sqty].first_reg = sreg;
1927 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1928 update_qty_class (sqty, sreg);
1930 /* Update info about quantity SQTY. */
1931 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1932 qty[sqty].n_refs += REG_N_REFS (sreg);
1933 qty[sqty].freq += REG_FREQ (sreg);
1934 if (usize < ssize)
1936 int i;
1938 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1939 reg_offset[i] -= offset;
1941 qty[sqty].size = ssize;
1942 qty[sqty].mode = GET_MODE (setreg);
1945 else
1946 return 0;
1948 return 1;
1951 /* Return 1 if the preferred class of REG allows it to be tied
1952 to a quantity or register whose class is CLASS.
1953 True if REG's reg class either contains or is contained in CLASS. */
1955 static int
1956 reg_meets_class_p (int reg, enum reg_class class)
1958 enum reg_class rclass = reg_preferred_class (reg);
1959 return (reg_class_subset_p (rclass, class)
1960 || reg_class_subset_p (class, rclass));
1963 /* Update the class of QTYNO assuming that REG is being tied to it. */
1965 static void
1966 update_qty_class (int qtyno, int reg)
1968 enum reg_class rclass = reg_preferred_class (reg);
1969 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1970 qty[qtyno].min_class = rclass;
1972 rclass = reg_alternate_class (reg);
1973 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1974 qty[qtyno].alternate_class = rclass;
1977 /* Handle something which alters the value of an rtx REG.
1979 REG is whatever is set or clobbered. SETTER is the rtx that
1980 is modifying the register.
1982 If it is not really a register, we do nothing.
1983 The file-global variables `this_insn' and `this_insn_number'
1984 carry info from `block_alloc'. */
1986 static void
1987 reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
1989 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1990 a hard register. These may actually not exist any more. */
1992 if (GET_CODE (reg) != SUBREG
1993 && !REG_P (reg))
1994 return;
1996 /* Mark this register as being born. If it is used in a CLOBBER, mark
1997 it as being born halfway between the previous insn and this insn so that
1998 it conflicts with our inputs but not the outputs of the previous insn. */
2000 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2003 /* Handle beginning of the life of register REG.
2004 BIRTH is the index at which this is happening. */
2006 static void
2007 reg_is_born (rtx reg, int birth)
2009 int regno;
2011 if (GET_CODE (reg) == SUBREG)
2013 regno = REGNO (SUBREG_REG (reg));
2014 if (regno < FIRST_PSEUDO_REGISTER)
2015 regno = subreg_regno (reg);
2017 else
2018 regno = REGNO (reg);
2020 if (regno < FIRST_PSEUDO_REGISTER)
2022 mark_life (regno, GET_MODE (reg), 1);
2024 /* If the register was to have been born earlier that the present
2025 insn, mark it as live where it is actually born. */
2026 if (birth < 2 * this_insn_number)
2027 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2029 else
2031 if (reg_qty[regno] == -2)
2032 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2034 /* If this register has a quantity number, show that it isn't dead. */
2035 if (reg_qty[regno] >= 0)
2036 qty[reg_qty[regno]].death = -1;
2040 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2041 REG is an output that is dying (i.e., it is never used), otherwise it
2042 is an input (the normal case).
2043 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2045 static void
2046 wipe_dead_reg (rtx reg, int output_p)
2048 int regno = REGNO (reg);
2050 /* If this insn has multiple results,
2051 and the dead reg is used in one of the results,
2052 extend its life to after this insn,
2053 so it won't get allocated together with any other result of this insn.
2055 It is unsafe to use !single_set here since it will ignore an unused
2056 output. Just because an output is unused does not mean the compiler
2057 can assume the side effect will not occur. Consider if REG appears
2058 in the address of an output and we reload the output. If we allocate
2059 REG to the same hard register as an unused output we could set the hard
2060 register before the output reload insn. */
2061 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2062 && multiple_sets (this_insn))
2064 int i;
2065 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2067 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2068 if (GET_CODE (set) == SET
2069 && !REG_P (SET_DEST (set))
2070 && !rtx_equal_p (reg, SET_DEST (set))
2071 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2072 output_p = 1;
2076 /* If this register is used in an auto-increment address, then extend its
2077 life to after this insn, so that it won't get allocated together with
2078 the result of this insn. */
2079 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2080 output_p = 1;
2082 if (regno < FIRST_PSEUDO_REGISTER)
2084 mark_life (regno, GET_MODE (reg), 0);
2086 /* If a hard register is dying as an output, mark it as in use at
2087 the beginning of this insn (the above statement would cause this
2088 not to happen). */
2089 if (output_p)
2090 post_mark_life (regno, GET_MODE (reg), 1,
2091 2 * this_insn_number, 2 * this_insn_number + 1);
2094 else if (reg_qty[regno] >= 0)
2095 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2098 /* Find a block of SIZE words of hard regs in reg_class CLASS
2099 that can hold something of machine-mode MODE
2100 (but actually we test only the first of the block for holding MODE)
2101 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2102 and return the number of the first of them.
2103 Return -1 if such a block cannot be found.
2104 If QTYNO crosses calls, insist on a register preserved by calls,
2105 unless ACCEPT_CALL_CLOBBERED is nonzero.
2107 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2108 register is available. If not, return -1. */
2110 static int
2111 find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2112 int accept_call_clobbered, int just_try_suggested,
2113 int born_index, int dead_index)
2115 int i, ins;
2116 HARD_REG_SET first_used, used;
2117 #ifdef ELIMINABLE_REGS
2118 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2119 #endif
2121 /* Validate our parameters. */
2122 gcc_assert (born_index >= 0 && born_index <= dead_index);
2124 /* Don't let a pseudo live in a reg across a function call
2125 if we might get a nonlocal goto. */
2126 if (current_function_has_nonlocal_label
2127 && qty[qtyno].n_calls_crossed > 0)
2128 return -1;
2130 if (accept_call_clobbered)
2131 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2132 else if (qty[qtyno].n_calls_crossed == 0)
2133 COPY_HARD_REG_SET (used, fixed_reg_set);
2134 else
2135 COPY_HARD_REG_SET (used, call_used_reg_set);
2137 if (accept_call_clobbered)
2138 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2140 for (ins = born_index; ins < dead_index; ins++)
2141 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2143 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2145 /* Don't use the frame pointer reg in local-alloc even if
2146 we may omit the frame pointer, because if we do that and then we
2147 need a frame pointer, reload won't know how to move the pseudo
2148 to another hard reg. It can move only regs made by global-alloc.
2150 This is true of any register that can be eliminated. */
2151 #ifdef ELIMINABLE_REGS
2152 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2153 SET_HARD_REG_BIT (used, eliminables[i].from);
2154 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2155 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2156 that it might be eliminated into. */
2157 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2158 #endif
2159 #else
2160 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2161 #endif
2163 #ifdef CANNOT_CHANGE_MODE_CLASS
2164 cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2165 #endif
2167 /* Normally, the registers that can be used for the first register in
2168 a multi-register quantity are the same as those that can be used for
2169 subsequent registers. However, if just trying suggested registers,
2170 restrict our consideration to them. If there are copy-suggested
2171 register, try them. Otherwise, try the arithmetic-suggested
2172 registers. */
2173 COPY_HARD_REG_SET (first_used, used);
2175 if (just_try_suggested)
2177 if (qty_phys_num_copy_sugg[qtyno] != 0)
2178 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2179 else
2180 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2183 /* If all registers are excluded, we can't do anything. */
2184 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2186 /* If at least one would be suitable, test each hard reg. */
2188 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2190 #ifdef REG_ALLOC_ORDER
2191 int regno = reg_alloc_order[i];
2192 #else
2193 int regno = i;
2194 #endif
2195 if (! TEST_HARD_REG_BIT (first_used, regno)
2196 && HARD_REGNO_MODE_OK (regno, mode)
2197 && (qty[qtyno].n_calls_crossed == 0
2198 || accept_call_clobbered
2199 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2201 int j;
2202 int size1 = hard_regno_nregs[regno][mode];
2203 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2204 if (j == size1)
2206 /* Mark that this register is in use between its birth and death
2207 insns. */
2208 post_mark_life (regno, mode, 1, born_index, dead_index);
2209 return regno;
2211 #ifndef REG_ALLOC_ORDER
2212 /* Skip starting points we know will lose. */
2213 i += j;
2214 #endif
2218 fail:
2219 /* If we are just trying suggested register, we have just tried copy-
2220 suggested registers, and there are arithmetic-suggested registers,
2221 try them. */
2223 /* If it would be profitable to allocate a call-clobbered register
2224 and save and restore it around calls, do that. */
2225 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2226 && qty_phys_num_sugg[qtyno] != 0)
2228 /* Don't try the copy-suggested regs again. */
2229 qty_phys_num_copy_sugg[qtyno] = 0;
2230 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2231 born_index, dead_index);
2234 /* We need not check to see if the current function has nonlocal
2235 labels because we don't put any pseudos that are live over calls in
2236 registers in that case. */
2238 if (! accept_call_clobbered
2239 && flag_caller_saves
2240 && ! just_try_suggested
2241 && qty[qtyno].n_calls_crossed != 0
2242 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2243 qty[qtyno].n_calls_crossed))
2245 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2246 if (i >= 0)
2247 caller_save_needed = 1;
2248 return i;
2250 return -1;
2253 /* Mark that REGNO with machine-mode MODE is live starting from the current
2254 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2255 is zero). */
2257 static void
2258 mark_life (int regno, enum machine_mode mode, int life)
2260 int j = hard_regno_nregs[regno][mode];
2261 if (life)
2262 while (--j >= 0)
2263 SET_HARD_REG_BIT (regs_live, regno + j);
2264 else
2265 while (--j >= 0)
2266 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2269 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2270 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2271 to insn number DEATH (exclusive). */
2273 static void
2274 post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2275 int death)
2277 int j = hard_regno_nregs[regno][mode];
2278 HARD_REG_SET this_reg;
2280 CLEAR_HARD_REG_SET (this_reg);
2281 while (--j >= 0)
2282 SET_HARD_REG_BIT (this_reg, regno + j);
2284 if (life)
2285 while (birth < death)
2287 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2288 birth++;
2290 else
2291 while (birth < death)
2293 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2294 birth++;
2298 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2299 is the register being clobbered, and R1 is a register being used in
2300 the equivalent expression.
2302 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2303 in which it is used, return 1.
2305 Otherwise, return 0. */
2307 static int
2308 no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2310 int ok = 0;
2311 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2312 rtx p, last;
2314 /* If R1 is a hard register, return 0 since we handle this case
2315 when we scan the insns that actually use it. */
2317 if (note == 0
2318 || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2319 || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2320 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2321 return 0;
2323 last = XEXP (note, 0);
2325 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2326 if (INSN_P (p))
2328 if (find_reg_note (p, REG_DEAD, r1))
2329 ok = 1;
2331 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2332 some earlier optimization pass has inserted instructions into
2333 the sequence, and it is not safe to perform this optimization.
2334 Note that emit_no_conflict_block always ensures that this is
2335 true when these sequences are created. */
2336 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2337 return 0;
2340 return ok;
2343 /* Return the number of alternatives for which the constraint string P
2344 indicates that the operand must be equal to operand 0 and that no register
2345 is acceptable. */
2347 static int
2348 requires_inout (const char *p)
2350 char c;
2351 int found_zero = 0;
2352 int reg_allowed = 0;
2353 int num_matching_alts = 0;
2354 int len;
2356 for ( ; (c = *p); p += len)
2358 len = CONSTRAINT_LEN (c, p);
2359 switch (c)
2361 case '=': case '+': case '?':
2362 case '#': case '&': case '!':
2363 case '*': case '%':
2364 case 'm': case '<': case '>': case 'V': case 'o':
2365 case 'E': case 'F': case 'G': case 'H':
2366 case 's': case 'i': case 'n':
2367 case 'I': case 'J': case 'K': case 'L':
2368 case 'M': case 'N': case 'O': case 'P':
2369 case 'X':
2370 /* These don't say anything we care about. */
2371 break;
2373 case ',':
2374 if (found_zero && ! reg_allowed)
2375 num_matching_alts++;
2377 found_zero = reg_allowed = 0;
2378 break;
2380 case '0':
2381 found_zero = 1;
2382 break;
2384 case '1': case '2': case '3': case '4': case '5':
2385 case '6': case '7': case '8': case '9':
2386 /* Skip the balance of the matching constraint. */
2388 p++;
2389 while (ISDIGIT (*p));
2390 len = 0;
2391 break;
2393 default:
2394 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2395 && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2396 break;
2397 /* Fall through. */
2398 case 'p':
2399 case 'g': case 'r':
2400 reg_allowed = 1;
2401 break;
2405 if (found_zero && ! reg_allowed)
2406 num_matching_alts++;
2408 return num_matching_alts;
2411 void
2412 dump_local_alloc (FILE *file)
2414 int i;
2415 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2416 if (reg_renumber[i] != -1)
2417 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);