2005-04-29 Jim Tison <jtison@us.ibm.com>
[official-gcc.git] / gcc / function.c
bloba092d6c62e0d6dbab1b545fa2744475c6de043e6
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
65 #ifndef LOCAL_ALIGNMENT
66 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
67 #endif
69 #ifndef STACK_ALIGNMENT_NEEDED
70 #define STACK_ALIGNMENT_NEEDED 1
71 #endif
73 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
75 /* Some systems use __main in a way incompatible with its use in gcc, in these
76 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
77 give the same symbol without quotes for an alternative entry point. You
78 must define both, or neither. */
79 #ifndef NAME__MAIN
80 #define NAME__MAIN "__main"
81 #endif
83 /* Round a value to the lowest integer less than it that is a multiple of
84 the required alignment. Avoid using division in case the value is
85 negative. Assume the alignment is a power of two. */
86 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
88 /* Similar, but round to the next highest integer that meets the
89 alignment. */
90 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
92 /* Nonzero if function being compiled doesn't contain any calls
93 (ignoring the prologue and epilogue). This is set prior to
94 local register allocation and is valid for the remaining
95 compiler passes. */
96 int current_function_is_leaf;
98 /* Nonzero if function being compiled doesn't modify the stack pointer
99 (ignoring the prologue and epilogue). This is only valid after
100 life_analysis has run. */
101 int current_function_sp_is_unchanging;
103 /* Nonzero if the function being compiled is a leaf function which only
104 uses leaf registers. This is valid after reload (specifically after
105 sched2) and is useful only if the port defines LEAF_REGISTERS. */
106 int current_function_uses_only_leaf_regs;
108 /* Nonzero once virtual register instantiation has been done.
109 assign_stack_local uses frame_pointer_rtx when this is nonzero.
110 calls.c:emit_library_call_value_1 uses it to set up
111 post-instantiation libcalls. */
112 int virtuals_instantiated;
114 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
115 static GTY(()) int funcdef_no;
117 /* These variables hold pointers to functions to create and destroy
118 target specific, per-function data structures. */
119 struct machine_function * (*init_machine_status) (void);
121 /* The currently compiled function. */
122 struct function *cfun = 0;
124 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
125 static GTY(()) varray_type prologue;
126 static GTY(()) varray_type epilogue;
128 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
129 in this function. */
130 static GTY(()) varray_type sibcall_epilogue;
132 /* In order to evaluate some expressions, such as function calls returning
133 structures in memory, we need to temporarily allocate stack locations.
134 We record each allocated temporary in the following structure.
136 Associated with each temporary slot is a nesting level. When we pop up
137 one level, all temporaries associated with the previous level are freed.
138 Normally, all temporaries are freed after the execution of the statement
139 in which they were created. However, if we are inside a ({...}) grouping,
140 the result may be in a temporary and hence must be preserved. If the
141 result could be in a temporary, we preserve it if we can determine which
142 one it is in. If we cannot determine which temporary may contain the
143 result, all temporaries are preserved. A temporary is preserved by
144 pretending it was allocated at the previous nesting level.
146 Automatic variables are also assigned temporary slots, at the nesting
147 level where they are defined. They are marked a "kept" so that
148 free_temp_slots will not free them. */
150 struct temp_slot GTY(())
152 /* Points to next temporary slot. */
153 struct temp_slot *next;
154 /* Points to previous temporary slot. */
155 struct temp_slot *prev;
157 /* The rtx to used to reference the slot. */
158 rtx slot;
159 /* The rtx used to represent the address if not the address of the
160 slot above. May be an EXPR_LIST if multiple addresses exist. */
161 rtx address;
162 /* The alignment (in bits) of the slot. */
163 unsigned int align;
164 /* The size, in units, of the slot. */
165 HOST_WIDE_INT size;
166 /* The type of the object in the slot, or zero if it doesn't correspond
167 to a type. We use this to determine whether a slot can be reused.
168 It can be reused if objects of the type of the new slot will always
169 conflict with objects of the type of the old slot. */
170 tree type;
171 /* Nonzero if this temporary is currently in use. */
172 char in_use;
173 /* Nonzero if this temporary has its address taken. */
174 char addr_taken;
175 /* Nesting level at which this slot is being used. */
176 int level;
177 /* Nonzero if this should survive a call to free_temp_slots. */
178 int keep;
179 /* The offset of the slot from the frame_pointer, including extra space
180 for alignment. This info is for combine_temp_slots. */
181 HOST_WIDE_INT base_offset;
182 /* The size of the slot, including extra space for alignment. This
183 info is for combine_temp_slots. */
184 HOST_WIDE_INT full_size;
187 /* Forward declarations. */
189 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
190 struct function *);
191 static struct temp_slot *find_temp_slot_from_address (rtx);
192 static void instantiate_decls (tree, int);
193 static void instantiate_decls_1 (tree, int);
194 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
195 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
196 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, varray_type *);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
207 static int contains (rtx, varray_type);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void instantiate_virtual_regs_lossage (rtx);
218 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
220 /* Pointer to chain of `struct function' for containing functions. */
221 struct function *outer_function_chain;
223 /* Given a function decl for a containing function,
224 return the `struct function' for it. */
226 struct function *
227 find_function_data (tree decl)
229 struct function *p;
231 for (p = outer_function_chain; p; p = p->outer)
232 if (p->decl == decl)
233 return p;
235 gcc_unreachable ();
238 /* Save the current context for compilation of a nested function.
239 This is called from language-specific code. The caller should use
240 the enter_nested langhook to save any language-specific state,
241 since this function knows only about language-independent
242 variables. */
244 void
245 push_function_context_to (tree context ATTRIBUTE_UNUSED)
247 struct function *p;
249 if (cfun == 0)
250 init_dummy_function_start ();
251 p = cfun;
253 p->outer = outer_function_chain;
254 outer_function_chain = p;
256 lang_hooks.function.enter_nested (p);
258 cfun = 0;
261 void
262 push_function_context (void)
264 push_function_context_to (current_function_decl);
267 /* Restore the last saved context, at the end of a nested function.
268 This function is called from language-specific code. */
270 void
271 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
273 struct function *p = outer_function_chain;
275 cfun = p;
276 outer_function_chain = p->outer;
278 current_function_decl = p->decl;
280 lang_hooks.function.leave_nested (p);
282 /* Reset variables that have known state during rtx generation. */
283 virtuals_instantiated = 0;
284 generating_concat_p = 1;
287 void
288 pop_function_context (void)
290 pop_function_context_from (current_function_decl);
293 /* Clear out all parts of the state in F that can safely be discarded
294 after the function has been parsed, but not compiled, to let
295 garbage collection reclaim the memory. */
297 void
298 free_after_parsing (struct function *f)
300 /* f->expr->forced_labels is used by code generation. */
301 /* f->emit->regno_reg_rtx is used by code generation. */
302 /* f->varasm is used by code generation. */
303 /* f->eh->eh_return_stub_label is used by code generation. */
305 lang_hooks.function.final (f);
308 /* Clear out all parts of the state in F that can safely be discarded
309 after the function has been compiled, to let garbage collection
310 reclaim the memory. */
312 void
313 free_after_compilation (struct function *f)
315 f->eh = NULL;
316 f->expr = NULL;
317 f->emit = NULL;
318 f->varasm = NULL;
319 f->machine = NULL;
320 f->cfg = NULL;
322 f->x_avail_temp_slots = NULL;
323 f->x_used_temp_slots = NULL;
324 f->arg_offset_rtx = NULL;
325 f->return_rtx = NULL;
326 f->internal_arg_pointer = NULL;
327 f->x_nonlocal_goto_handler_labels = NULL;
328 f->x_return_label = NULL;
329 f->x_naked_return_label = NULL;
330 f->x_stack_slot_list = NULL;
331 f->x_tail_recursion_reentry = NULL;
332 f->x_arg_pointer_save_area = NULL;
333 f->x_parm_birth_insn = NULL;
334 f->original_arg_vector = NULL;
335 f->original_decl_initial = NULL;
336 f->epilogue_delay_list = NULL;
339 /* Allocate fixed slots in the stack frame of the current function. */
341 /* Return size needed for stack frame based on slots so far allocated in
342 function F.
343 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
344 the caller may have to do that. */
346 static HOST_WIDE_INT
347 get_func_frame_size (struct function *f)
349 #ifdef FRAME_GROWS_DOWNWARD
350 return -f->x_frame_offset;
351 #else
352 return f->x_frame_offset;
353 #endif
356 /* Return size needed for stack frame based on slots so far allocated.
357 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
358 the caller may have to do that. */
359 HOST_WIDE_INT
360 get_frame_size (void)
362 return get_func_frame_size (cfun);
365 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
366 with machine mode MODE.
368 ALIGN controls the amount of alignment for the address of the slot:
369 0 means according to MODE,
370 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
371 -2 means use BITS_PER_UNIT,
372 positive specifies alignment boundary in bits.
374 We do not round to stack_boundary here.
376 FUNCTION specifies the function to allocate in. */
378 static rtx
379 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
380 struct function *function)
382 rtx x, addr;
383 int bigend_correction = 0;
384 unsigned int alignment;
385 int frame_off, frame_alignment, frame_phase;
387 if (align == 0)
389 tree type;
391 if (mode == BLKmode)
392 alignment = BIGGEST_ALIGNMENT;
393 else
394 alignment = GET_MODE_ALIGNMENT (mode);
396 /* Allow the target to (possibly) increase the alignment of this
397 stack slot. */
398 type = lang_hooks.types.type_for_mode (mode, 0);
399 if (type)
400 alignment = LOCAL_ALIGNMENT (type, alignment);
402 alignment /= BITS_PER_UNIT;
404 else if (align == -1)
406 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
407 size = CEIL_ROUND (size, alignment);
409 else if (align == -2)
410 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
411 else
412 alignment = align / BITS_PER_UNIT;
414 #ifdef FRAME_GROWS_DOWNWARD
415 function->x_frame_offset -= size;
416 #endif
418 /* Ignore alignment we can't do with expected alignment of the boundary. */
419 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
420 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
422 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
423 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
425 /* Calculate how many bytes the start of local variables is off from
426 stack alignment. */
427 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
428 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
429 frame_phase = frame_off ? frame_alignment - frame_off : 0;
431 /* Round the frame offset to the specified alignment. The default is
432 to always honor requests to align the stack but a port may choose to
433 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
434 if (STACK_ALIGNMENT_NEEDED
435 || mode != BLKmode
436 || size != 0)
438 /* We must be careful here, since FRAME_OFFSET might be negative and
439 division with a negative dividend isn't as well defined as we might
440 like. So we instead assume that ALIGNMENT is a power of two and
441 use logical operations which are unambiguous. */
442 #ifdef FRAME_GROWS_DOWNWARD
443 function->x_frame_offset
444 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
445 (unsigned HOST_WIDE_INT) alignment)
446 + frame_phase);
447 #else
448 function->x_frame_offset
449 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
450 (unsigned HOST_WIDE_INT) alignment)
451 + frame_phase);
452 #endif
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN && mode != BLKmode)
458 bigend_correction = size - GET_MODE_SIZE (mode);
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function == cfun && virtuals_instantiated)
463 addr = plus_constant (frame_pointer_rtx,
464 trunc_int_for_mode
465 (frame_offset + bigend_correction
466 + STARTING_FRAME_OFFSET, Pmode));
467 else
468 addr = plus_constant (virtual_stack_vars_rtx,
469 trunc_int_for_mode
470 (function->x_frame_offset + bigend_correction,
471 Pmode));
473 #ifndef FRAME_GROWS_DOWNWARD
474 function->x_frame_offset += size;
475 #endif
477 x = gen_rtx_MEM (mode, addr);
479 function->x_stack_slot_list
480 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
482 return x;
485 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
486 current function. */
489 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
491 return assign_stack_local_1 (mode, size, align, cfun);
495 /* Removes temporary slot TEMP from LIST. */
497 static void
498 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
500 if (temp->next)
501 temp->next->prev = temp->prev;
502 if (temp->prev)
503 temp->prev->next = temp->next;
504 else
505 *list = temp->next;
507 temp->prev = temp->next = NULL;
510 /* Inserts temporary slot TEMP to LIST. */
512 static void
513 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
515 temp->next = *list;
516 if (*list)
517 (*list)->prev = temp;
518 temp->prev = NULL;
519 *list = temp;
522 /* Returns the list of used temp slots at LEVEL. */
524 static struct temp_slot **
525 temp_slots_at_level (int level)
528 if (!used_temp_slots)
529 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
531 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
532 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
534 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
537 /* Returns the maximal temporary slot level. */
539 static int
540 max_slot_level (void)
542 if (!used_temp_slots)
543 return -1;
545 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
548 /* Moves temporary slot TEMP to LEVEL. */
550 static void
551 move_slot_to_level (struct temp_slot *temp, int level)
553 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
554 insert_slot_to_list (temp, temp_slots_at_level (level));
555 temp->level = level;
558 /* Make temporary slot TEMP available. */
560 static void
561 make_slot_available (struct temp_slot *temp)
563 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564 insert_slot_to_list (temp, &avail_temp_slots);
565 temp->in_use = 0;
566 temp->level = -1;
569 /* Allocate a temporary stack slot and record it for possible later
570 reuse.
572 MODE is the machine mode to be given to the returned rtx.
574 SIZE is the size in units of the space required. We do no rounding here
575 since assign_stack_local will do any required rounding.
577 KEEP is 1 if this slot is to be retained after a call to
578 free_temp_slots. Automatic variables for a block are allocated
579 with this flag. KEEP values of 2 or 3 were needed respectively
580 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
581 or for SAVE_EXPRs, but they are now unused.
583 TYPE is the type that will be used for the stack slot. */
586 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
587 int keep, tree type)
589 unsigned int align;
590 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
591 rtx slot;
593 /* If SIZE is -1 it means that somebody tried to allocate a temporary
594 of a variable size. */
595 gcc_assert (size != -1);
597 /* These are now unused. */
598 gcc_assert (keep <= 1);
600 if (mode == BLKmode)
601 align = BIGGEST_ALIGNMENT;
602 else
603 align = GET_MODE_ALIGNMENT (mode);
605 if (! type)
606 type = lang_hooks.types.type_for_mode (mode, 0);
608 if (type)
609 align = LOCAL_ALIGNMENT (type, align);
611 /* Try to find an available, already-allocated temporary of the proper
612 mode which meets the size and alignment requirements. Choose the
613 smallest one with the closest alignment. */
614 for (p = avail_temp_slots; p; p = p->next)
616 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
617 && objects_must_conflict_p (p->type, type)
618 && (best_p == 0 || best_p->size > p->size
619 || (best_p->size == p->size && best_p->align > p->align)))
621 if (p->align == align && p->size == size)
623 selected = p;
624 cut_slot_from_list (selected, &avail_temp_slots);
625 best_p = 0;
626 break;
628 best_p = p;
632 /* Make our best, if any, the one to use. */
633 if (best_p)
635 selected = best_p;
636 cut_slot_from_list (selected, &avail_temp_slots);
638 /* If there are enough aligned bytes left over, make them into a new
639 temp_slot so that the extra bytes don't get wasted. Do this only
640 for BLKmode slots, so that we can be sure of the alignment. */
641 if (GET_MODE (best_p->slot) == BLKmode)
643 int alignment = best_p->align / BITS_PER_UNIT;
644 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
646 if (best_p->size - rounded_size >= alignment)
648 p = ggc_alloc (sizeof (struct temp_slot));
649 p->in_use = p->addr_taken = 0;
650 p->size = best_p->size - rounded_size;
651 p->base_offset = best_p->base_offset + rounded_size;
652 p->full_size = best_p->full_size - rounded_size;
653 p->slot = gen_rtx_MEM (BLKmode,
654 plus_constant (XEXP (best_p->slot, 0),
655 rounded_size));
656 p->align = best_p->align;
657 p->address = 0;
658 p->type = best_p->type;
659 insert_slot_to_list (p, &avail_temp_slots);
661 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
662 stack_slot_list);
664 best_p->size = rounded_size;
665 best_p->full_size = rounded_size;
670 /* If we still didn't find one, make a new temporary. */
671 if (selected == 0)
673 HOST_WIDE_INT frame_offset_old = frame_offset;
675 p = ggc_alloc (sizeof (struct temp_slot));
677 /* We are passing an explicit alignment request to assign_stack_local.
678 One side effect of that is assign_stack_local will not round SIZE
679 to ensure the frame offset remains suitably aligned.
681 So for requests which depended on the rounding of SIZE, we go ahead
682 and round it now. We also make sure ALIGNMENT is at least
683 BIGGEST_ALIGNMENT. */
684 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
685 p->slot = assign_stack_local (mode,
686 (mode == BLKmode
687 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
688 : size),
689 align);
691 p->align = align;
693 /* The following slot size computation is necessary because we don't
694 know the actual size of the temporary slot until assign_stack_local
695 has performed all the frame alignment and size rounding for the
696 requested temporary. Note that extra space added for alignment
697 can be either above or below this stack slot depending on which
698 way the frame grows. We include the extra space if and only if it
699 is above this slot. */
700 #ifdef FRAME_GROWS_DOWNWARD
701 p->size = frame_offset_old - frame_offset;
702 #else
703 p->size = size;
704 #endif
706 /* Now define the fields used by combine_temp_slots. */
707 #ifdef FRAME_GROWS_DOWNWARD
708 p->base_offset = frame_offset;
709 p->full_size = frame_offset_old - frame_offset;
710 #else
711 p->base_offset = frame_offset_old;
712 p->full_size = frame_offset - frame_offset_old;
713 #endif
714 p->address = 0;
716 selected = p;
719 p = selected;
720 p->in_use = 1;
721 p->addr_taken = 0;
722 p->type = type;
723 p->level = temp_slot_level;
724 p->keep = keep;
726 pp = temp_slots_at_level (p->level);
727 insert_slot_to_list (p, pp);
729 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
730 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
731 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
733 /* If we know the alias set for the memory that will be used, use
734 it. If there's no TYPE, then we don't know anything about the
735 alias set for the memory. */
736 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
737 set_mem_align (slot, align);
739 /* If a type is specified, set the relevant flags. */
740 if (type != 0)
742 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
743 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
746 return slot;
749 /* Allocate a temporary stack slot and record it for possible later
750 reuse. First three arguments are same as in preceding function. */
753 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
755 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
758 /* Assign a temporary.
759 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
760 and so that should be used in error messages. In either case, we
761 allocate of the given type.
762 KEEP is as for assign_stack_temp.
763 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
764 it is 0 if a register is OK.
765 DONT_PROMOTE is 1 if we should not promote values in register
766 to wider modes. */
769 assign_temp (tree type_or_decl, int keep, int memory_required,
770 int dont_promote ATTRIBUTE_UNUSED)
772 tree type, decl;
773 enum machine_mode mode;
774 #ifdef PROMOTE_MODE
775 int unsignedp;
776 #endif
778 if (DECL_P (type_or_decl))
779 decl = type_or_decl, type = TREE_TYPE (decl);
780 else
781 decl = NULL, type = type_or_decl;
783 mode = TYPE_MODE (type);
784 #ifdef PROMOTE_MODE
785 unsignedp = TYPE_UNSIGNED (type);
786 #endif
788 if (mode == BLKmode || memory_required)
790 HOST_WIDE_INT size = int_size_in_bytes (type);
791 tree size_tree;
792 rtx tmp;
794 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
795 problems with allocating the stack space. */
796 if (size == 0)
797 size = 1;
799 /* Unfortunately, we don't yet know how to allocate variable-sized
800 temporaries. However, sometimes we have a fixed upper limit on
801 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
802 instead. This is the case for Chill variable-sized strings. */
803 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
804 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
805 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
806 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
808 /* If we still haven't been able to get a size, see if the language
809 can compute a maximum size. */
810 if (size == -1
811 && (size_tree = lang_hooks.types.max_size (type)) != 0
812 && host_integerp (size_tree, 1))
813 size = tree_low_cst (size_tree, 1);
815 /* The size of the temporary may be too large to fit into an integer. */
816 /* ??? Not sure this should happen except for user silliness, so limit
817 this to things that aren't compiler-generated temporaries. The
818 rest of the time we'll die in assign_stack_temp_for_type. */
819 if (decl && size == -1
820 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
822 error ("%Jsize of variable %qD is too large", decl, decl);
823 size = 1;
826 tmp = assign_stack_temp_for_type (mode, size, keep, type);
827 return tmp;
830 #ifdef PROMOTE_MODE
831 if (! dont_promote)
832 mode = promote_mode (type, mode, &unsignedp, 0);
833 #endif
835 return gen_reg_rtx (mode);
838 /* Combine temporary stack slots which are adjacent on the stack.
840 This allows for better use of already allocated stack space. This is only
841 done for BLKmode slots because we can be sure that we won't have alignment
842 problems in this case. */
844 static void
845 combine_temp_slots (void)
847 struct temp_slot *p, *q, *next, *next_q;
848 int num_slots;
850 /* We can't combine slots, because the information about which slot
851 is in which alias set will be lost. */
852 if (flag_strict_aliasing)
853 return;
855 /* If there are a lot of temp slots, don't do anything unless
856 high levels of optimization. */
857 if (! flag_expensive_optimizations)
858 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
859 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
860 return;
862 for (p = avail_temp_slots; p; p = next)
864 int delete_p = 0;
866 next = p->next;
868 if (GET_MODE (p->slot) != BLKmode)
869 continue;
871 for (q = p->next; q; q = next_q)
873 int delete_q = 0;
875 next_q = q->next;
877 if (GET_MODE (q->slot) != BLKmode)
878 continue;
880 if (p->base_offset + p->full_size == q->base_offset)
882 /* Q comes after P; combine Q into P. */
883 p->size += q->size;
884 p->full_size += q->full_size;
885 delete_q = 1;
887 else if (q->base_offset + q->full_size == p->base_offset)
889 /* P comes after Q; combine P into Q. */
890 q->size += p->size;
891 q->full_size += p->full_size;
892 delete_p = 1;
893 break;
895 if (delete_q)
896 cut_slot_from_list (q, &avail_temp_slots);
899 /* Either delete P or advance past it. */
900 if (delete_p)
901 cut_slot_from_list (p, &avail_temp_slots);
905 /* Find the temp slot corresponding to the object at address X. */
907 static struct temp_slot *
908 find_temp_slot_from_address (rtx x)
910 struct temp_slot *p;
911 rtx next;
912 int i;
914 for (i = max_slot_level (); i >= 0; i--)
915 for (p = *temp_slots_at_level (i); p; p = p->next)
917 if (XEXP (p->slot, 0) == x
918 || p->address == x
919 || (GET_CODE (x) == PLUS
920 && XEXP (x, 0) == virtual_stack_vars_rtx
921 && GET_CODE (XEXP (x, 1)) == CONST_INT
922 && INTVAL (XEXP (x, 1)) >= p->base_offset
923 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
924 return p;
926 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
927 for (next = p->address; next; next = XEXP (next, 1))
928 if (XEXP (next, 0) == x)
929 return p;
932 /* If we have a sum involving a register, see if it points to a temp
933 slot. */
934 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
935 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
936 return p;
937 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
938 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
939 return p;
941 return 0;
944 /* Indicate that NEW is an alternate way of referring to the temp slot
945 that previously was known by OLD. */
947 void
948 update_temp_slot_address (rtx old, rtx new)
950 struct temp_slot *p;
952 if (rtx_equal_p (old, new))
953 return;
955 p = find_temp_slot_from_address (old);
957 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
958 is a register, see if one operand of the PLUS is a temporary
959 location. If so, NEW points into it. Otherwise, if both OLD and
960 NEW are a PLUS and if there is a register in common between them.
961 If so, try a recursive call on those values. */
962 if (p == 0)
964 if (GET_CODE (old) != PLUS)
965 return;
967 if (REG_P (new))
969 update_temp_slot_address (XEXP (old, 0), new);
970 update_temp_slot_address (XEXP (old, 1), new);
971 return;
973 else if (GET_CODE (new) != PLUS)
974 return;
976 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
977 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
978 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
979 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
980 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
981 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
982 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
983 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
985 return;
988 /* Otherwise add an alias for the temp's address. */
989 else if (p->address == 0)
990 p->address = new;
991 else
993 if (GET_CODE (p->address) != EXPR_LIST)
994 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
996 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1000 /* If X could be a reference to a temporary slot, mark the fact that its
1001 address was taken. */
1003 void
1004 mark_temp_addr_taken (rtx x)
1006 struct temp_slot *p;
1008 if (x == 0)
1009 return;
1011 /* If X is not in memory or is at a constant address, it cannot be in
1012 a temporary slot. */
1013 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1014 return;
1016 p = find_temp_slot_from_address (XEXP (x, 0));
1017 if (p != 0)
1018 p->addr_taken = 1;
1021 /* If X could be a reference to a temporary slot, mark that slot as
1022 belonging to the to one level higher than the current level. If X
1023 matched one of our slots, just mark that one. Otherwise, we can't
1024 easily predict which it is, so upgrade all of them. Kept slots
1025 need not be touched.
1027 This is called when an ({...}) construct occurs and a statement
1028 returns a value in memory. */
1030 void
1031 preserve_temp_slots (rtx x)
1033 struct temp_slot *p = 0, *next;
1035 /* If there is no result, we still might have some objects whose address
1036 were taken, so we need to make sure they stay around. */
1037 if (x == 0)
1039 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1041 next = p->next;
1043 if (p->addr_taken)
1044 move_slot_to_level (p, temp_slot_level - 1);
1047 return;
1050 /* If X is a register that is being used as a pointer, see if we have
1051 a temporary slot we know it points to. To be consistent with
1052 the code below, we really should preserve all non-kept slots
1053 if we can't find a match, but that seems to be much too costly. */
1054 if (REG_P (x) && REG_POINTER (x))
1055 p = find_temp_slot_from_address (x);
1057 /* If X is not in memory or is at a constant address, it cannot be in
1058 a temporary slot, but it can contain something whose address was
1059 taken. */
1060 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1062 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1064 next = p->next;
1066 if (p->addr_taken)
1067 move_slot_to_level (p, temp_slot_level - 1);
1070 return;
1073 /* First see if we can find a match. */
1074 if (p == 0)
1075 p = find_temp_slot_from_address (XEXP (x, 0));
1077 if (p != 0)
1079 /* Move everything at our level whose address was taken to our new
1080 level in case we used its address. */
1081 struct temp_slot *q;
1083 if (p->level == temp_slot_level)
1085 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1087 next = q->next;
1089 if (p != q && q->addr_taken)
1090 move_slot_to_level (q, temp_slot_level - 1);
1093 move_slot_to_level (p, temp_slot_level - 1);
1094 p->addr_taken = 0;
1096 return;
1099 /* Otherwise, preserve all non-kept slots at this level. */
1100 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1102 next = p->next;
1104 if (!p->keep)
1105 move_slot_to_level (p, temp_slot_level - 1);
1109 /* Free all temporaries used so far. This is normally called at the
1110 end of generating code for a statement. */
1112 void
1113 free_temp_slots (void)
1115 struct temp_slot *p, *next;
1117 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1119 next = p->next;
1121 if (!p->keep)
1122 make_slot_available (p);
1125 combine_temp_slots ();
1128 /* Push deeper into the nesting level for stack temporaries. */
1130 void
1131 push_temp_slots (void)
1133 temp_slot_level++;
1136 /* Pop a temporary nesting level. All slots in use in the current level
1137 are freed. */
1139 void
1140 pop_temp_slots (void)
1142 struct temp_slot *p, *next;
1144 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1146 next = p->next;
1147 make_slot_available (p);
1150 combine_temp_slots ();
1152 temp_slot_level--;
1155 /* Initialize temporary slots. */
1157 void
1158 init_temp_slots (void)
1160 /* We have not allocated any temporaries yet. */
1161 avail_temp_slots = 0;
1162 used_temp_slots = 0;
1163 temp_slot_level = 0;
1166 /* These routines are responsible for converting virtual register references
1167 to the actual hard register references once RTL generation is complete.
1169 The following four variables are used for communication between the
1170 routines. They contain the offsets of the virtual registers from their
1171 respective hard registers. */
1173 static int in_arg_offset;
1174 static int var_offset;
1175 static int dynamic_offset;
1176 static int out_arg_offset;
1177 static int cfa_offset;
1179 /* In most machines, the stack pointer register is equivalent to the bottom
1180 of the stack. */
1182 #ifndef STACK_POINTER_OFFSET
1183 #define STACK_POINTER_OFFSET 0
1184 #endif
1186 /* If not defined, pick an appropriate default for the offset of dynamically
1187 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1188 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1190 #ifndef STACK_DYNAMIC_OFFSET
1192 /* The bottom of the stack points to the actual arguments. If
1193 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1194 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1195 stack space for register parameters is not pushed by the caller, but
1196 rather part of the fixed stack areas and hence not included in
1197 `current_function_outgoing_args_size'. Nevertheless, we must allow
1198 for it when allocating stack dynamic objects. */
1200 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1201 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1202 ((ACCUMULATE_OUTGOING_ARGS \
1203 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1204 + (STACK_POINTER_OFFSET)) \
1206 #else
1207 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1208 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1209 + (STACK_POINTER_OFFSET))
1210 #endif
1211 #endif
1213 /* On most machines, the CFA coincides with the first incoming parm. */
1215 #ifndef ARG_POINTER_CFA_OFFSET
1216 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1217 #endif
1220 /* Pass through the INSNS of function FNDECL and convert virtual register
1221 references to hard register references. */
1223 void
1224 instantiate_virtual_regs (void)
1226 rtx insn;
1228 /* Compute the offsets to use for this function. */
1229 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1230 var_offset = STARTING_FRAME_OFFSET;
1231 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1232 out_arg_offset = STACK_POINTER_OFFSET;
1233 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1235 /* Scan all variables and parameters of this function. For each that is
1236 in memory, instantiate all virtual registers if the result is a valid
1237 address. If not, we do it later. That will handle most uses of virtual
1238 regs on many machines. */
1239 instantiate_decls (current_function_decl, 1);
1241 /* Initialize recognition, indicating that volatile is OK. */
1242 init_recog ();
1244 /* Scan through all the insns, instantiating every virtual register still
1245 present. */
1246 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1247 if (INSN_P (insn))
1249 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1250 if (INSN_DELETED_P (insn))
1251 continue;
1252 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1253 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1254 if (CALL_P (insn))
1255 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1256 NULL_RTX, 0);
1258 /* Past this point all ASM statements should match. Verify that
1259 to avoid failures later in the compilation process. */
1260 if (asm_noperands (PATTERN (insn)) >= 0
1261 && ! check_asm_operands (PATTERN (insn)))
1262 instantiate_virtual_regs_lossage (insn);
1265 /* Now instantiate the remaining register equivalences for debugging info.
1266 These will not be valid addresses. */
1267 instantiate_decls (current_function_decl, 0);
1269 /* Indicate that, from now on, assign_stack_local should use
1270 frame_pointer_rtx. */
1271 virtuals_instantiated = 1;
1274 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1275 all virtual registers in their DECL_RTL's.
1277 If VALID_ONLY, do this only if the resulting address is still valid.
1278 Otherwise, always do it. */
1280 static void
1281 instantiate_decls (tree fndecl, int valid_only)
1283 tree decl;
1285 /* Process all parameters of the function. */
1286 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1288 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1289 HOST_WIDE_INT size_rtl;
1291 instantiate_decl (DECL_RTL (decl), size, valid_only);
1293 /* If the parameter was promoted, then the incoming RTL mode may be
1294 larger than the declared type size. We must use the larger of
1295 the two sizes. */
1296 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1297 size = MAX (size_rtl, size);
1298 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1301 /* Now process all variables defined in the function or its subblocks. */
1302 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1305 /* Subroutine of instantiate_decls: Process all decls in the given
1306 BLOCK node and all its subblocks. */
1308 static void
1309 instantiate_decls_1 (tree let, int valid_only)
1311 tree t;
1313 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1314 if (DECL_RTL_SET_P (t))
1315 instantiate_decl (DECL_RTL (t),
1316 int_size_in_bytes (TREE_TYPE (t)),
1317 valid_only);
1319 /* Process all subblocks. */
1320 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1321 instantiate_decls_1 (t, valid_only);
1324 /* Subroutine of the preceding procedures: Given RTL representing a
1325 decl and the size of the object, do any instantiation required.
1327 If VALID_ONLY is nonzero, it means that the RTL should only be
1328 changed if the new address is valid. */
1330 static void
1331 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1333 enum machine_mode mode;
1334 rtx addr;
1336 if (x == 0)
1337 return;
1339 /* If this is a CONCAT, recurse for the pieces. */
1340 if (GET_CODE (x) == CONCAT)
1342 instantiate_decl (XEXP (x, 0), size / 2, valid_only);
1343 instantiate_decl (XEXP (x, 1), size / 2, valid_only);
1344 return;
1347 /* If this is not a MEM, no need to do anything. Similarly if the
1348 address is a constant or a register that is not a virtual register. */
1349 if (!MEM_P (x))
1350 return;
1352 addr = XEXP (x, 0);
1353 if (CONSTANT_P (addr)
1354 || (REG_P (addr)
1355 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1356 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1357 return;
1359 /* If we should only do this if the address is valid, copy the address.
1360 We need to do this so we can undo any changes that might make the
1361 address invalid. This copy is unfortunate, but probably can't be
1362 avoided. */
1364 if (valid_only)
1365 addr = copy_rtx (addr);
1367 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1369 if (valid_only && size >= 0)
1371 unsigned HOST_WIDE_INT decl_size = size;
1373 /* Now verify that the resulting address is valid for every integer or
1374 floating-point mode up to and including SIZE bytes long. We do this
1375 since the object might be accessed in any mode and frame addresses
1376 are shared. */
1378 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1379 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1380 mode = GET_MODE_WIDER_MODE (mode))
1381 if (! memory_address_p (mode, addr))
1382 return;
1384 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1385 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1386 mode = GET_MODE_WIDER_MODE (mode))
1387 if (! memory_address_p (mode, addr))
1388 return;
1391 /* Put back the address now that we have updated it and we either know
1392 it is valid or we don't care whether it is valid. */
1394 XEXP (x, 0) = addr;
1397 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1398 is a virtual register, return the equivalent hard register and set the
1399 offset indirectly through the pointer. Otherwise, return 0. */
1401 static rtx
1402 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1404 rtx new;
1405 HOST_WIDE_INT offset;
1407 if (x == virtual_incoming_args_rtx)
1408 new = arg_pointer_rtx, offset = in_arg_offset;
1409 else if (x == virtual_stack_vars_rtx)
1410 new = frame_pointer_rtx, offset = var_offset;
1411 else if (x == virtual_stack_dynamic_rtx)
1412 new = stack_pointer_rtx, offset = dynamic_offset;
1413 else if (x == virtual_outgoing_args_rtx)
1414 new = stack_pointer_rtx, offset = out_arg_offset;
1415 else if (x == virtual_cfa_rtx)
1416 new = arg_pointer_rtx, offset = cfa_offset;
1417 else
1418 return 0;
1420 *poffset = offset;
1421 return new;
1425 /* Called when instantiate_virtual_regs has failed to update the instruction.
1426 Usually this means that non-matching instruction has been emit, however for
1427 asm statements it may be the problem in the constraints. */
1428 static void
1429 instantiate_virtual_regs_lossage (rtx insn)
1431 gcc_assert (asm_noperands (PATTERN (insn)) >= 0);
1432 error_for_asm (insn, "impossible constraint in %<asm%>");
1433 delete_insn (insn);
1435 /* Given a pointer to a piece of rtx and an optional pointer to the
1436 containing object, instantiate any virtual registers present in it.
1438 If EXTRA_INSNS, we always do the replacement and generate
1439 any extra insns before OBJECT. If it zero, we do nothing if replacement
1440 is not valid.
1442 Return 1 if we either had nothing to do or if we were able to do the
1443 needed replacement. Return 0 otherwise; we only return zero if
1444 EXTRA_INSNS is zero.
1446 We first try some simple transformations to avoid the creation of extra
1447 pseudos. */
1449 static int
1450 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1452 rtx x;
1453 RTX_CODE code;
1454 rtx new = 0;
1455 HOST_WIDE_INT offset = 0;
1456 rtx temp;
1457 rtx seq;
1458 int i, j;
1459 const char *fmt;
1461 /* Re-start here to avoid recursion in common cases. */
1462 restart:
1464 x = *loc;
1465 if (x == 0)
1466 return 1;
1468 /* We may have detected and deleted invalid asm statements. */
1469 if (object && INSN_P (object) && INSN_DELETED_P (object))
1470 return 1;
1472 code = GET_CODE (x);
1474 /* Check for some special cases. */
1475 switch (code)
1477 case CONST_INT:
1478 case CONST_DOUBLE:
1479 case CONST_VECTOR:
1480 case CONST:
1481 case SYMBOL_REF:
1482 case CODE_LABEL:
1483 case PC:
1484 case CC0:
1485 case ASM_INPUT:
1486 case ADDR_VEC:
1487 case ADDR_DIFF_VEC:
1488 case RETURN:
1489 return 1;
1491 case SET:
1492 /* We are allowed to set the virtual registers. This means that
1493 the actual register should receive the source minus the
1494 appropriate offset. This is used, for example, in the handling
1495 of non-local gotos. */
1496 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1498 rtx src = SET_SRC (x);
1500 /* We are setting the register, not using it, so the relevant
1501 offset is the negative of the offset to use were we using
1502 the register. */
1503 offset = - offset;
1504 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1506 /* The only valid sources here are PLUS or REG. Just do
1507 the simplest possible thing to handle them. */
1508 if (!REG_P (src) && GET_CODE (src) != PLUS)
1510 instantiate_virtual_regs_lossage (object);
1511 return 1;
1514 start_sequence ();
1515 if (!REG_P (src))
1516 temp = force_operand (src, NULL_RTX);
1517 else
1518 temp = src;
1519 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1520 seq = get_insns ();
1521 end_sequence ();
1523 emit_insn_before (seq, object);
1524 SET_DEST (x) = new;
1526 if (! validate_change (object, &SET_SRC (x), temp, 0)
1527 || ! extra_insns)
1528 instantiate_virtual_regs_lossage (object);
1530 return 1;
1533 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1534 loc = &SET_SRC (x);
1535 goto restart;
1537 case PLUS:
1538 /* Handle special case of virtual register plus constant. */
1539 if (CONSTANT_P (XEXP (x, 1)))
1541 rtx old, new_offset;
1543 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1544 if (GET_CODE (XEXP (x, 0)) == PLUS)
1546 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1548 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1549 extra_insns);
1550 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1552 else
1554 loc = &XEXP (x, 0);
1555 goto restart;
1559 #ifdef POINTERS_EXTEND_UNSIGNED
1560 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1561 we can commute the PLUS and SUBREG because pointers into the
1562 frame are well-behaved. */
1563 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1564 && GET_CODE (XEXP (x, 1)) == CONST_INT
1565 && 0 != (new
1566 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1567 &offset))
1568 && validate_change (object, loc,
1569 plus_constant (gen_lowpart (ptr_mode,
1570 new),
1571 offset
1572 + INTVAL (XEXP (x, 1))),
1574 return 1;
1575 #endif
1576 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1578 /* We know the second operand is a constant. Unless the
1579 first operand is a REG (which has been already checked),
1580 it needs to be checked. */
1581 if (!REG_P (XEXP (x, 0)))
1583 loc = &XEXP (x, 0);
1584 goto restart;
1586 return 1;
1589 new_offset = plus_constant (XEXP (x, 1), offset);
1591 /* If the new constant is zero, try to replace the sum with just
1592 the register. */
1593 if (new_offset == const0_rtx
1594 && validate_change (object, loc, new, 0))
1595 return 1;
1597 /* Next try to replace the register and new offset.
1598 There are two changes to validate here and we can't assume that
1599 in the case of old offset equals new just changing the register
1600 will yield a valid insn. In the interests of a little efficiency,
1601 however, we only call validate change once (we don't queue up the
1602 changes and then call apply_change_group). */
1604 old = XEXP (x, 0);
1605 if (offset == 0
1606 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1607 : (XEXP (x, 0) = new,
1608 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1610 if (! extra_insns)
1612 XEXP (x, 0) = old;
1613 return 0;
1616 /* Otherwise copy the new constant into a register and replace
1617 constant with that register. */
1618 temp = gen_reg_rtx (Pmode);
1619 XEXP (x, 0) = new;
1620 if (validate_change (object, &XEXP (x, 1), temp, 0))
1621 emit_insn_before (gen_move_insn (temp, new_offset), object);
1622 else
1624 /* If that didn't work, replace this expression with a
1625 register containing the sum. */
1627 XEXP (x, 0) = old;
1628 new = gen_rtx_PLUS (Pmode, new, new_offset);
1630 start_sequence ();
1631 temp = force_operand (new, NULL_RTX);
1632 seq = get_insns ();
1633 end_sequence ();
1635 emit_insn_before (seq, object);
1636 if (! validate_change (object, loc, temp, 0)
1637 && ! validate_replace_rtx (x, temp, object))
1639 instantiate_virtual_regs_lossage (object);
1640 return 1;
1645 return 1;
1648 /* Fall through to generic two-operand expression case. */
1649 case EXPR_LIST:
1650 case CALL:
1651 case COMPARE:
1652 case MINUS:
1653 case MULT:
1654 case DIV: case UDIV:
1655 case MOD: case UMOD:
1656 case AND: case IOR: case XOR:
1657 case ROTATERT: case ROTATE:
1658 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1659 case NE: case EQ:
1660 case GE: case GT: case GEU: case GTU:
1661 case LE: case LT: case LEU: case LTU:
1662 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1663 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1664 loc = &XEXP (x, 0);
1665 goto restart;
1667 case MEM:
1668 /* Most cases of MEM that convert to valid addresses have already been
1669 handled by our scan of decls. The only special handling we
1670 need here is to make a copy of the rtx to ensure it isn't being
1671 shared if we have to change it to a pseudo.
1673 If the rtx is a simple reference to an address via a virtual register,
1674 it can potentially be shared. In such cases, first try to make it
1675 a valid address, which can also be shared. Otherwise, copy it and
1676 proceed normally.
1678 First check for common cases that need no processing. These are
1679 usually due to instantiation already being done on a previous instance
1680 of a shared rtx. */
1682 temp = XEXP (x, 0);
1683 if (CONSTANT_ADDRESS_P (temp)
1684 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1685 || temp == arg_pointer_rtx
1686 #endif
1687 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1688 || temp == hard_frame_pointer_rtx
1689 #endif
1690 || temp == frame_pointer_rtx)
1691 return 1;
1693 if (GET_CODE (temp) == PLUS
1694 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1695 && (XEXP (temp, 0) == frame_pointer_rtx
1696 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1697 || XEXP (temp, 0) == hard_frame_pointer_rtx
1698 #endif
1699 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1700 || XEXP (temp, 0) == arg_pointer_rtx
1701 #endif
1703 return 1;
1705 if (temp == virtual_stack_vars_rtx
1706 || temp == virtual_incoming_args_rtx
1707 || (GET_CODE (temp) == PLUS
1708 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1709 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1710 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1712 /* This MEM may be shared. If the substitution can be done without
1713 the need to generate new pseudos, we want to do it in place
1714 so all copies of the shared rtx benefit. The call below will
1715 only make substitutions if the resulting address is still
1716 valid.
1718 Note that we cannot pass X as the object in the recursive call
1719 since the insn being processed may not allow all valid
1720 addresses. However, if we were not passed on object, we can
1721 only modify X without copying it if X will have a valid
1722 address.
1724 ??? Also note that this can still lose if OBJECT is an insn that
1725 has less restrictions on an address that some other insn.
1726 In that case, we will modify the shared address. This case
1727 doesn't seem very likely, though. One case where this could
1728 happen is in the case of a USE or CLOBBER reference, but we
1729 take care of that below. */
1731 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1732 object ? object : x, 0))
1733 return 1;
1735 /* Otherwise make a copy and process that copy. We copy the entire
1736 RTL expression since it might be a PLUS which could also be
1737 shared. */
1738 *loc = x = copy_rtx (x);
1741 /* Fall through to generic unary operation case. */
1742 case PREFETCH:
1743 case SUBREG:
1744 case STRICT_LOW_PART:
1745 case NEG: case NOT:
1746 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1747 case SIGN_EXTEND: case ZERO_EXTEND:
1748 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1749 case FLOAT: case FIX:
1750 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1751 case ABS:
1752 case SQRT:
1753 case FFS:
1754 case CLZ: case CTZ:
1755 case POPCOUNT: case PARITY:
1756 /* These case either have just one operand or we know that we need not
1757 check the rest of the operands. */
1758 loc = &XEXP (x, 0);
1759 goto restart;
1761 case USE:
1762 case CLOBBER:
1763 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1764 go ahead and make the invalid one, but do it to a copy. For a REG,
1765 just make the recursive call, since there's no chance of a problem. */
1767 if ((MEM_P (XEXP (x, 0))
1768 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1770 || (REG_P (XEXP (x, 0))
1771 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1772 return 1;
1774 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1775 loc = &XEXP (x, 0);
1776 goto restart;
1778 case REG:
1779 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1780 in front of this insn and substitute the temporary. */
1781 if ((new = instantiate_new_reg (x, &offset)) != 0)
1783 temp = plus_constant (new, offset);
1784 if (!validate_change (object, loc, temp, 0))
1786 if (! extra_insns)
1787 return 0;
1789 start_sequence ();
1790 temp = force_operand (temp, NULL_RTX);
1791 seq = get_insns ();
1792 end_sequence ();
1794 emit_insn_before (seq, object);
1795 if (! validate_change (object, loc, temp, 0)
1796 && ! validate_replace_rtx (x, temp, object))
1797 instantiate_virtual_regs_lossage (object);
1801 return 1;
1803 default:
1804 break;
1807 /* Scan all subexpressions. */
1808 fmt = GET_RTX_FORMAT (code);
1809 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1810 if (*fmt == 'e')
1812 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1813 return 0;
1815 else if (*fmt == 'E')
1816 for (j = 0; j < XVECLEN (x, i); j++)
1817 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1818 extra_insns))
1819 return 0;
1821 return 1;
1824 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1825 This means a type for which function calls must pass an address to the
1826 function or get an address back from the function.
1827 EXP may be a type node or an expression (whose type is tested). */
1830 aggregate_value_p (tree exp, tree fntype)
1832 int i, regno, nregs;
1833 rtx reg;
1835 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1837 if (fntype)
1838 switch (TREE_CODE (fntype))
1840 case CALL_EXPR:
1841 fntype = get_callee_fndecl (fntype);
1842 fntype = fntype ? TREE_TYPE (fntype) : 0;
1843 break;
1844 case FUNCTION_DECL:
1845 fntype = TREE_TYPE (fntype);
1846 break;
1847 case FUNCTION_TYPE:
1848 case METHOD_TYPE:
1849 break;
1850 case IDENTIFIER_NODE:
1851 fntype = 0;
1852 break;
1853 default:
1854 /* We don't expect other rtl types here. */
1855 gcc_unreachable ();
1858 if (TREE_CODE (type) == VOID_TYPE)
1859 return 0;
1860 /* If the front end has decided that this needs to be passed by
1861 reference, do so. */
1862 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1863 && DECL_BY_REFERENCE (exp))
1864 return 1;
1865 if (targetm.calls.return_in_memory (type, fntype))
1866 return 1;
1867 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1868 and thus can't be returned in registers. */
1869 if (TREE_ADDRESSABLE (type))
1870 return 1;
1871 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1872 return 1;
1873 /* Make sure we have suitable call-clobbered regs to return
1874 the value in; if not, we must return it in memory. */
1875 reg = hard_function_value (type, 0, 0);
1877 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1878 it is OK. */
1879 if (!REG_P (reg))
1880 return 0;
1882 regno = REGNO (reg);
1883 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1884 for (i = 0; i < nregs; i++)
1885 if (! call_used_regs[regno + i])
1886 return 1;
1887 return 0;
1890 /* Return true if we should assign DECL a pseudo register; false if it
1891 should live on the local stack. */
1893 bool
1894 use_register_for_decl (tree decl)
1896 /* Honor volatile. */
1897 if (TREE_SIDE_EFFECTS (decl))
1898 return false;
1900 /* Honor addressability. */
1901 if (TREE_ADDRESSABLE (decl))
1902 return false;
1904 /* Only register-like things go in registers. */
1905 if (DECL_MODE (decl) == BLKmode)
1906 return false;
1908 /* If -ffloat-store specified, don't put explicit float variables
1909 into registers. */
1910 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1911 propagates values across these stores, and it probably shouldn't. */
1912 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1913 return false;
1915 /* If we're not interested in tracking debugging information for
1916 this decl, then we can certainly put it in a register. */
1917 if (DECL_IGNORED_P (decl))
1918 return true;
1920 return (optimize || DECL_REGISTER (decl));
1923 /* Return true if TYPE should be passed by invisible reference. */
1925 bool
1926 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1927 tree type, bool named_arg)
1929 if (type)
1931 /* If this type contains non-trivial constructors, then it is
1932 forbidden for the middle-end to create any new copies. */
1933 if (TREE_ADDRESSABLE (type))
1934 return true;
1936 /* GCC post 3.4 passes *all* variable sized types by reference. */
1937 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1938 return true;
1941 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1944 /* Return true if TYPE, which is passed by reference, should be callee
1945 copied instead of caller copied. */
1947 bool
1948 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1949 tree type, bool named_arg)
1951 if (type && TREE_ADDRESSABLE (type))
1952 return false;
1953 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1956 /* Structures to communicate between the subroutines of assign_parms.
1957 The first holds data persistent across all parameters, the second
1958 is cleared out for each parameter. */
1960 struct assign_parm_data_all
1962 CUMULATIVE_ARGS args_so_far;
1963 struct args_size stack_args_size;
1964 tree function_result_decl;
1965 tree orig_fnargs;
1966 rtx conversion_insns;
1967 HOST_WIDE_INT pretend_args_size;
1968 HOST_WIDE_INT extra_pretend_bytes;
1969 int reg_parm_stack_space;
1972 struct assign_parm_data_one
1974 tree nominal_type;
1975 tree passed_type;
1976 rtx entry_parm;
1977 rtx stack_parm;
1978 enum machine_mode nominal_mode;
1979 enum machine_mode passed_mode;
1980 enum machine_mode promoted_mode;
1981 struct locate_and_pad_arg_data locate;
1982 int partial;
1983 BOOL_BITFIELD named_arg : 1;
1984 BOOL_BITFIELD passed_pointer : 1;
1985 BOOL_BITFIELD on_stack : 1;
1986 BOOL_BITFIELD loaded_in_reg : 1;
1989 /* A subroutine of assign_parms. Initialize ALL. */
1991 static void
1992 assign_parms_initialize_all (struct assign_parm_data_all *all)
1994 tree fntype;
1996 memset (all, 0, sizeof (*all));
1998 fntype = TREE_TYPE (current_function_decl);
2000 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2001 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2002 #else
2003 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2004 current_function_decl, -1);
2005 #endif
2007 #ifdef REG_PARM_STACK_SPACE
2008 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2009 #endif
2012 /* If ARGS contains entries with complex types, split the entry into two
2013 entries of the component type. Return a new list of substitutions are
2014 needed, else the old list. */
2016 static tree
2017 split_complex_args (tree args)
2019 tree p;
2021 /* Before allocating memory, check for the common case of no complex. */
2022 for (p = args; p; p = TREE_CHAIN (p))
2024 tree type = TREE_TYPE (p);
2025 if (TREE_CODE (type) == COMPLEX_TYPE
2026 && targetm.calls.split_complex_arg (type))
2027 goto found;
2029 return args;
2031 found:
2032 args = copy_list (args);
2034 for (p = args; p; p = TREE_CHAIN (p))
2036 tree type = TREE_TYPE (p);
2037 if (TREE_CODE (type) == COMPLEX_TYPE
2038 && targetm.calls.split_complex_arg (type))
2040 tree decl;
2041 tree subtype = TREE_TYPE (type);
2042 bool addressable = TREE_ADDRESSABLE (p);
2044 /* Rewrite the PARM_DECL's type with its component. */
2045 TREE_TYPE (p) = subtype;
2046 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2047 DECL_MODE (p) = VOIDmode;
2048 DECL_SIZE (p) = NULL;
2049 DECL_SIZE_UNIT (p) = NULL;
2050 /* If this arg must go in memory, put it in a pseudo here.
2051 We can't allow it to go in memory as per normal parms,
2052 because the usual place might not have the imag part
2053 adjacent to the real part. */
2054 DECL_ARTIFICIAL (p) = addressable;
2055 DECL_IGNORED_P (p) = addressable;
2056 TREE_ADDRESSABLE (p) = 0;
2057 layout_decl (p, 0);
2059 /* Build a second synthetic decl. */
2060 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2061 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2062 DECL_ARTIFICIAL (decl) = addressable;
2063 DECL_IGNORED_P (decl) = addressable;
2064 layout_decl (decl, 0);
2066 /* Splice it in; skip the new decl. */
2067 TREE_CHAIN (decl) = TREE_CHAIN (p);
2068 TREE_CHAIN (p) = decl;
2069 p = decl;
2073 return args;
2076 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2077 the hidden struct return argument, and (abi willing) complex args.
2078 Return the new parameter list. */
2080 static tree
2081 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2083 tree fndecl = current_function_decl;
2084 tree fntype = TREE_TYPE (fndecl);
2085 tree fnargs = DECL_ARGUMENTS (fndecl);
2087 /* If struct value address is treated as the first argument, make it so. */
2088 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2089 && ! current_function_returns_pcc_struct
2090 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2092 tree type = build_pointer_type (TREE_TYPE (fntype));
2093 tree decl;
2095 decl = build_decl (PARM_DECL, NULL_TREE, type);
2096 DECL_ARG_TYPE (decl) = type;
2097 DECL_ARTIFICIAL (decl) = 1;
2098 DECL_IGNORED_P (decl) = 1;
2100 TREE_CHAIN (decl) = fnargs;
2101 fnargs = decl;
2102 all->function_result_decl = decl;
2105 all->orig_fnargs = fnargs;
2107 /* If the target wants to split complex arguments into scalars, do so. */
2108 if (targetm.calls.split_complex_arg)
2109 fnargs = split_complex_args (fnargs);
2111 return fnargs;
2114 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2115 data for the parameter. Incorporate ABI specifics such as pass-by-
2116 reference and type promotion. */
2118 static void
2119 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2120 struct assign_parm_data_one *data)
2122 tree nominal_type, passed_type;
2123 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2125 memset (data, 0, sizeof (*data));
2127 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2128 if (!current_function_stdarg)
2129 data->named_arg = 1; /* No varadic parms. */
2130 else if (TREE_CHAIN (parm))
2131 data->named_arg = 1; /* Not the last non-varadic parm. */
2132 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2133 data->named_arg = 1; /* Only varadic ones are unnamed. */
2134 else
2135 data->named_arg = 0; /* Treat as varadic. */
2137 nominal_type = TREE_TYPE (parm);
2138 passed_type = DECL_ARG_TYPE (parm);
2140 /* Look out for errors propagating this far. Also, if the parameter's
2141 type is void then its value doesn't matter. */
2142 if (TREE_TYPE (parm) == error_mark_node
2143 /* This can happen after weird syntax errors
2144 or if an enum type is defined among the parms. */
2145 || TREE_CODE (parm) != PARM_DECL
2146 || passed_type == NULL
2147 || VOID_TYPE_P (nominal_type))
2149 nominal_type = passed_type = void_type_node;
2150 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2151 goto egress;
2154 /* Find mode of arg as it is passed, and mode of arg as it should be
2155 during execution of this function. */
2156 passed_mode = TYPE_MODE (passed_type);
2157 nominal_mode = TYPE_MODE (nominal_type);
2159 /* If the parm is to be passed as a transparent union, use the type of
2160 the first field for the tests below. We have already verified that
2161 the modes are the same. */
2162 if (DECL_TRANSPARENT_UNION (parm)
2163 || (TREE_CODE (passed_type) == UNION_TYPE
2164 && TYPE_TRANSPARENT_UNION (passed_type)))
2165 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2167 /* See if this arg was passed by invisible reference. */
2168 if (pass_by_reference (&all->args_so_far, passed_mode,
2169 passed_type, data->named_arg))
2171 passed_type = nominal_type = build_pointer_type (passed_type);
2172 data->passed_pointer = true;
2173 passed_mode = nominal_mode = Pmode;
2176 /* Find mode as it is passed by the ABI. */
2177 promoted_mode = passed_mode;
2178 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2180 int unsignedp = TYPE_UNSIGNED (passed_type);
2181 promoted_mode = promote_mode (passed_type, promoted_mode,
2182 &unsignedp, 1);
2185 egress:
2186 data->nominal_type = nominal_type;
2187 data->passed_type = passed_type;
2188 data->nominal_mode = nominal_mode;
2189 data->passed_mode = passed_mode;
2190 data->promoted_mode = promoted_mode;
2193 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2195 static void
2196 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2197 struct assign_parm_data_one *data, bool no_rtl)
2199 int varargs_pretend_bytes = 0;
2201 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2202 data->promoted_mode,
2203 data->passed_type,
2204 &varargs_pretend_bytes, no_rtl);
2206 /* If the back-end has requested extra stack space, record how much is
2207 needed. Do not change pretend_args_size otherwise since it may be
2208 nonzero from an earlier partial argument. */
2209 if (varargs_pretend_bytes > 0)
2210 all->pretend_args_size = varargs_pretend_bytes;
2213 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2214 the incoming location of the current parameter. */
2216 static void
2217 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2218 struct assign_parm_data_one *data)
2220 HOST_WIDE_INT pretend_bytes = 0;
2221 rtx entry_parm;
2222 bool in_regs;
2224 if (data->promoted_mode == VOIDmode)
2226 data->entry_parm = data->stack_parm = const0_rtx;
2227 return;
2230 #ifdef FUNCTION_INCOMING_ARG
2231 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2232 data->passed_type, data->named_arg);
2233 #else
2234 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2235 data->passed_type, data->named_arg);
2236 #endif
2238 if (entry_parm == 0)
2239 data->promoted_mode = data->passed_mode;
2241 /* Determine parm's home in the stack, in case it arrives in the stack
2242 or we should pretend it did. Compute the stack position and rtx where
2243 the argument arrives and its size.
2245 There is one complexity here: If this was a parameter that would
2246 have been passed in registers, but wasn't only because it is
2247 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2248 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2249 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2250 as it was the previous time. */
2251 in_regs = entry_parm != 0;
2252 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2253 in_regs = true;
2254 #endif
2255 if (!in_regs && !data->named_arg)
2257 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2259 rtx tem;
2260 #ifdef FUNCTION_INCOMING_ARG
2261 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2262 data->passed_type, true);
2263 #else
2264 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2265 data->passed_type, true);
2266 #endif
2267 in_regs = tem != NULL;
2271 /* If this parameter was passed both in registers and in the stack, use
2272 the copy on the stack. */
2273 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2274 data->passed_type))
2275 entry_parm = 0;
2277 if (entry_parm)
2279 int partial;
2281 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2282 data->promoted_mode,
2283 data->passed_type,
2284 data->named_arg);
2285 data->partial = partial;
2287 /* The caller might already have allocated stack space for the
2288 register parameters. */
2289 if (partial != 0 && all->reg_parm_stack_space == 0)
2291 /* Part of this argument is passed in registers and part
2292 is passed on the stack. Ask the prologue code to extend
2293 the stack part so that we can recreate the full value.
2295 PRETEND_BYTES is the size of the registers we need to store.
2296 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2297 stack space that the prologue should allocate.
2299 Internally, gcc assumes that the argument pointer is aligned
2300 to STACK_BOUNDARY bits. This is used both for alignment
2301 optimizations (see init_emit) and to locate arguments that are
2302 aligned to more than PARM_BOUNDARY bits. We must preserve this
2303 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2304 a stack boundary. */
2306 /* We assume at most one partial arg, and it must be the first
2307 argument on the stack. */
2308 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2310 pretend_bytes = partial;
2311 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2313 /* We want to align relative to the actual stack pointer, so
2314 don't include this in the stack size until later. */
2315 all->extra_pretend_bytes = all->pretend_args_size;
2319 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2320 entry_parm ? data->partial : 0, current_function_decl,
2321 &all->stack_args_size, &data->locate);
2323 /* Adjust offsets to include the pretend args. */
2324 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2325 data->locate.slot_offset.constant += pretend_bytes;
2326 data->locate.offset.constant += pretend_bytes;
2328 data->entry_parm = entry_parm;
2331 /* A subroutine of assign_parms. If there is actually space on the stack
2332 for this parm, count it in stack_args_size and return true. */
2334 static bool
2335 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2336 struct assign_parm_data_one *data)
2338 /* Trivially true if we've no incoming register. */
2339 if (data->entry_parm == NULL)
2341 /* Also true if we're partially in registers and partially not,
2342 since we've arranged to drop the entire argument on the stack. */
2343 else if (data->partial != 0)
2345 /* Also true if the target says that it's passed in both registers
2346 and on the stack. */
2347 else if (GET_CODE (data->entry_parm) == PARALLEL
2348 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2350 /* Also true if the target says that there's stack allocated for
2351 all register parameters. */
2352 else if (all->reg_parm_stack_space > 0)
2354 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2355 else
2356 return false;
2358 all->stack_args_size.constant += data->locate.size.constant;
2359 if (data->locate.size.var)
2360 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2362 return true;
2365 /* A subroutine of assign_parms. Given that this parameter is allocated
2366 stack space by the ABI, find it. */
2368 static void
2369 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2371 rtx offset_rtx, stack_parm;
2372 unsigned int align, boundary;
2374 /* If we're passing this arg using a reg, make its stack home the
2375 aligned stack slot. */
2376 if (data->entry_parm)
2377 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2378 else
2379 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2381 stack_parm = current_function_internal_arg_pointer;
2382 if (offset_rtx != const0_rtx)
2383 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2384 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2386 set_mem_attributes (stack_parm, parm, 1);
2388 boundary = data->locate.boundary;
2389 align = BITS_PER_UNIT;
2391 /* If we're padding upward, we know that the alignment of the slot
2392 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2393 intentionally forcing upward padding. Otherwise we have to come
2394 up with a guess at the alignment based on OFFSET_RTX. */
2395 if (data->locate.where_pad != downward || data->entry_parm)
2396 align = boundary;
2397 else if (GET_CODE (offset_rtx) == CONST_INT)
2399 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2400 align = align & -align;
2402 set_mem_align (stack_parm, align);
2404 if (data->entry_parm)
2405 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2407 data->stack_parm = stack_parm;
2410 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2411 always valid and contiguous. */
2413 static void
2414 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2416 rtx entry_parm = data->entry_parm;
2417 rtx stack_parm = data->stack_parm;
2419 /* If this parm was passed part in regs and part in memory, pretend it
2420 arrived entirely in memory by pushing the register-part onto the stack.
2421 In the special case of a DImode or DFmode that is split, we could put
2422 it together in a pseudoreg directly, but for now that's not worth
2423 bothering with. */
2424 if (data->partial != 0)
2426 /* Handle calls that pass values in multiple non-contiguous
2427 locations. The Irix 6 ABI has examples of this. */
2428 if (GET_CODE (entry_parm) == PARALLEL)
2429 emit_group_store (validize_mem (stack_parm), entry_parm,
2430 data->passed_type,
2431 int_size_in_bytes (data->passed_type));
2432 else
2434 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2435 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2436 data->partial / UNITS_PER_WORD);
2439 entry_parm = stack_parm;
2442 /* If we didn't decide this parm came in a register, by default it came
2443 on the stack. */
2444 else if (entry_parm == NULL)
2445 entry_parm = stack_parm;
2447 /* When an argument is passed in multiple locations, we can't make use
2448 of this information, but we can save some copying if the whole argument
2449 is passed in a single register. */
2450 else if (GET_CODE (entry_parm) == PARALLEL
2451 && data->nominal_mode != BLKmode
2452 && data->passed_mode != BLKmode)
2454 size_t i, len = XVECLEN (entry_parm, 0);
2456 for (i = 0; i < len; i++)
2457 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2458 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2459 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2460 == data->passed_mode)
2461 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2463 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2464 break;
2468 data->entry_parm = entry_parm;
2471 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2472 always valid and properly aligned. */
2474 static void
2475 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2477 rtx stack_parm = data->stack_parm;
2479 /* If we can't trust the parm stack slot to be aligned enough for its
2480 ultimate type, don't use that slot after entry. We'll make another
2481 stack slot, if we need one. */
2482 if (stack_parm
2483 && ((STRICT_ALIGNMENT
2484 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2485 || (data->nominal_type
2486 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2487 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2488 stack_parm = NULL;
2490 /* If parm was passed in memory, and we need to convert it on entry,
2491 don't store it back in that same slot. */
2492 else if (data->entry_parm == stack_parm
2493 && data->nominal_mode != BLKmode
2494 && data->nominal_mode != data->passed_mode)
2495 stack_parm = NULL;
2497 data->stack_parm = stack_parm;
2500 /* A subroutine of assign_parms. Return true if the current parameter
2501 should be stored as a BLKmode in the current frame. */
2503 static bool
2504 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2506 if (data->nominal_mode == BLKmode)
2507 return true;
2508 if (GET_CODE (data->entry_parm) == PARALLEL)
2509 return true;
2511 #ifdef BLOCK_REG_PADDING
2512 /* Only assign_parm_setup_block knows how to deal with register arguments
2513 that are padded at the least significant end. */
2514 if (REG_P (data->entry_parm)
2515 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2516 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2517 == (BYTES_BIG_ENDIAN ? upward : downward)))
2518 return true;
2519 #endif
2521 return false;
2524 /* A subroutine of assign_parms. Arrange for the parameter to be
2525 present and valid in DATA->STACK_RTL. */
2527 static void
2528 assign_parm_setup_block (struct assign_parm_data_all *all,
2529 tree parm, struct assign_parm_data_one *data)
2531 rtx entry_parm = data->entry_parm;
2532 rtx stack_parm = data->stack_parm;
2533 HOST_WIDE_INT size;
2534 HOST_WIDE_INT size_stored;
2535 rtx orig_entry_parm = entry_parm;
2537 if (GET_CODE (entry_parm) == PARALLEL)
2538 entry_parm = emit_group_move_into_temps (entry_parm);
2540 /* If we've a non-block object that's nevertheless passed in parts,
2541 reconstitute it in register operations rather than on the stack. */
2542 if (GET_CODE (entry_parm) == PARALLEL
2543 && data->nominal_mode != BLKmode)
2545 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2547 if ((XVECLEN (entry_parm, 0) > 1
2548 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2549 && use_register_for_decl (parm))
2551 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2553 push_to_sequence (all->conversion_insns);
2555 /* For values returned in multiple registers, handle possible
2556 incompatible calls to emit_group_store.
2558 For example, the following would be invalid, and would have to
2559 be fixed by the conditional below:
2561 emit_group_store ((reg:SF), (parallel:DF))
2562 emit_group_store ((reg:SI), (parallel:DI))
2564 An example of this are doubles in e500 v2:
2565 (parallel:DF (expr_list (reg:SI) (const_int 0))
2566 (expr_list (reg:SI) (const_int 4))). */
2567 if (data->nominal_mode != data->passed_mode)
2569 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2570 emit_group_store (t, entry_parm, NULL_TREE,
2571 GET_MODE_SIZE (GET_MODE (entry_parm)));
2572 convert_move (parmreg, t, 0);
2574 else
2575 emit_group_store (parmreg, entry_parm, data->nominal_type,
2576 int_size_in_bytes (data->nominal_type));
2578 all->conversion_insns = get_insns ();
2579 end_sequence ();
2581 SET_DECL_RTL (parm, parmreg);
2582 return;
2586 size = int_size_in_bytes (data->passed_type);
2587 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2588 if (stack_parm == 0)
2590 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2591 stack_parm = assign_stack_local (BLKmode, size_stored,
2592 DECL_ALIGN (parm));
2593 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2594 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2595 set_mem_attributes (stack_parm, parm, 1);
2598 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2599 calls that pass values in multiple non-contiguous locations. */
2600 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2602 rtx mem;
2604 /* Note that we will be storing an integral number of words.
2605 So we have to be careful to ensure that we allocate an
2606 integral number of words. We do this above when we call
2607 assign_stack_local if space was not allocated in the argument
2608 list. If it was, this will not work if PARM_BOUNDARY is not
2609 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2610 if it becomes a problem. Exception is when BLKmode arrives
2611 with arguments not conforming to word_mode. */
2613 if (data->stack_parm == 0)
2615 else if (GET_CODE (entry_parm) == PARALLEL)
2617 else
2618 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2620 mem = validize_mem (stack_parm);
2622 /* Handle values in multiple non-contiguous locations. */
2623 if (GET_CODE (entry_parm) == PARALLEL)
2625 push_to_sequence (all->conversion_insns);
2626 emit_group_store (mem, entry_parm, data->passed_type, size);
2627 all->conversion_insns = get_insns ();
2628 end_sequence ();
2631 else if (size == 0)
2634 /* If SIZE is that of a mode no bigger than a word, just use
2635 that mode's store operation. */
2636 else if (size <= UNITS_PER_WORD)
2638 enum machine_mode mode
2639 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2641 if (mode != BLKmode
2642 #ifdef BLOCK_REG_PADDING
2643 && (size == UNITS_PER_WORD
2644 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2645 != (BYTES_BIG_ENDIAN ? upward : downward)))
2646 #endif
2649 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2650 emit_move_insn (change_address (mem, mode, 0), reg);
2653 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2654 machine must be aligned to the left before storing
2655 to memory. Note that the previous test doesn't
2656 handle all cases (e.g. SIZE == 3). */
2657 else if (size != UNITS_PER_WORD
2658 #ifdef BLOCK_REG_PADDING
2659 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2660 == downward)
2661 #else
2662 && BYTES_BIG_ENDIAN
2663 #endif
2666 rtx tem, x;
2667 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2668 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2670 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2671 build_int_cst (NULL_TREE, by),
2672 NULL_RTX, 1);
2673 tem = change_address (mem, word_mode, 0);
2674 emit_move_insn (tem, x);
2676 else
2677 move_block_from_reg (REGNO (entry_parm), mem,
2678 size_stored / UNITS_PER_WORD);
2680 else
2681 move_block_from_reg (REGNO (entry_parm), mem,
2682 size_stored / UNITS_PER_WORD);
2684 else if (data->stack_parm == 0)
2686 push_to_sequence (all->conversion_insns);
2687 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2688 BLOCK_OP_NORMAL);
2689 all->conversion_insns = get_insns ();
2690 end_sequence ();
2693 data->stack_parm = stack_parm;
2694 SET_DECL_RTL (parm, stack_parm);
2697 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2698 parameter. Get it there. Perform all ABI specified conversions. */
2700 static void
2701 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2702 struct assign_parm_data_one *data)
2704 rtx parmreg;
2705 enum machine_mode promoted_nominal_mode;
2706 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2707 bool did_conversion = false;
2709 /* Store the parm in a pseudoregister during the function, but we may
2710 need to do it in a wider mode. */
2712 promoted_nominal_mode
2713 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2715 parmreg = gen_reg_rtx (promoted_nominal_mode);
2717 if (!DECL_ARTIFICIAL (parm))
2718 mark_user_reg (parmreg);
2720 /* If this was an item that we received a pointer to,
2721 set DECL_RTL appropriately. */
2722 if (data->passed_pointer)
2724 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2725 set_mem_attributes (x, parm, 1);
2726 SET_DECL_RTL (parm, x);
2728 else
2729 SET_DECL_RTL (parm, parmreg);
2731 /* Copy the value into the register. */
2732 if (data->nominal_mode != data->passed_mode
2733 || promoted_nominal_mode != data->promoted_mode)
2735 int save_tree_used;
2737 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2738 mode, by the caller. We now have to convert it to
2739 NOMINAL_MODE, if different. However, PARMREG may be in
2740 a different mode than NOMINAL_MODE if it is being stored
2741 promoted.
2743 If ENTRY_PARM is a hard register, it might be in a register
2744 not valid for operating in its mode (e.g., an odd-numbered
2745 register for a DFmode). In that case, moves are the only
2746 thing valid, so we can't do a convert from there. This
2747 occurs when the calling sequence allow such misaligned
2748 usages.
2750 In addition, the conversion may involve a call, which could
2751 clobber parameters which haven't been copied to pseudo
2752 registers yet. Therefore, we must first copy the parm to
2753 a pseudo reg here, and save the conversion until after all
2754 parameters have been moved. */
2756 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2758 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2760 push_to_sequence (all->conversion_insns);
2761 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2763 if (GET_CODE (tempreg) == SUBREG
2764 && GET_MODE (tempreg) == data->nominal_mode
2765 && REG_P (SUBREG_REG (tempreg))
2766 && data->nominal_mode == data->passed_mode
2767 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2768 && GET_MODE_SIZE (GET_MODE (tempreg))
2769 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2771 /* The argument is already sign/zero extended, so note it
2772 into the subreg. */
2773 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2774 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2777 /* TREE_USED gets set erroneously during expand_assignment. */
2778 save_tree_used = TREE_USED (parm);
2779 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2780 TREE_USED (parm) = save_tree_used;
2781 all->conversion_insns = get_insns ();
2782 end_sequence ();
2784 did_conversion = true;
2786 else
2787 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2789 /* If we were passed a pointer but the actual value can safely live
2790 in a register, put it in one. */
2791 if (data->passed_pointer
2792 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2793 /* If by-reference argument was promoted, demote it. */
2794 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2795 || use_register_for_decl (parm)))
2797 /* We can't use nominal_mode, because it will have been set to
2798 Pmode above. We must use the actual mode of the parm. */
2799 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2800 mark_user_reg (parmreg);
2802 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2804 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2805 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2807 push_to_sequence (all->conversion_insns);
2808 emit_move_insn (tempreg, DECL_RTL (parm));
2809 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2810 emit_move_insn (parmreg, tempreg);
2811 all->conversion_insns = get_insns ();
2812 end_sequence ();
2814 did_conversion = true;
2816 else
2817 emit_move_insn (parmreg, DECL_RTL (parm));
2819 SET_DECL_RTL (parm, parmreg);
2821 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2822 now the parm. */
2823 data->stack_parm = NULL;
2826 /* Mark the register as eliminable if we did no conversion and it was
2827 copied from memory at a fixed offset, and the arg pointer was not
2828 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2829 offset formed an invalid address, such memory-equivalences as we
2830 make here would screw up life analysis for it. */
2831 if (data->nominal_mode == data->passed_mode
2832 && !did_conversion
2833 && data->stack_parm != 0
2834 && MEM_P (data->stack_parm)
2835 && data->locate.offset.var == 0
2836 && reg_mentioned_p (virtual_incoming_args_rtx,
2837 XEXP (data->stack_parm, 0)))
2839 rtx linsn = get_last_insn ();
2840 rtx sinsn, set;
2842 /* Mark complex types separately. */
2843 if (GET_CODE (parmreg) == CONCAT)
2845 enum machine_mode submode
2846 = GET_MODE_INNER (GET_MODE (parmreg));
2847 int regnor = REGNO (XEXP (parmreg, 0));
2848 int regnoi = REGNO (XEXP (parmreg, 1));
2849 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2850 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2851 GET_MODE_SIZE (submode));
2853 /* Scan backwards for the set of the real and
2854 imaginary parts. */
2855 for (sinsn = linsn; sinsn != 0;
2856 sinsn = prev_nonnote_insn (sinsn))
2858 set = single_set (sinsn);
2859 if (set == 0)
2860 continue;
2862 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2863 REG_NOTES (sinsn)
2864 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2865 REG_NOTES (sinsn));
2866 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2867 REG_NOTES (sinsn)
2868 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2869 REG_NOTES (sinsn));
2872 else if ((set = single_set (linsn)) != 0
2873 && SET_DEST (set) == parmreg)
2874 REG_NOTES (linsn)
2875 = gen_rtx_EXPR_LIST (REG_EQUIV,
2876 data->stack_parm, REG_NOTES (linsn));
2879 /* For pointer data type, suggest pointer register. */
2880 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2881 mark_reg_pointer (parmreg,
2882 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2885 /* A subroutine of assign_parms. Allocate stack space to hold the current
2886 parameter. Get it there. Perform all ABI specified conversions. */
2888 static void
2889 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2890 struct assign_parm_data_one *data)
2892 /* Value must be stored in the stack slot STACK_PARM during function
2893 execution. */
2894 bool to_conversion = false;
2896 if (data->promoted_mode != data->nominal_mode)
2898 /* Conversion is required. */
2899 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2901 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2903 push_to_sequence (all->conversion_insns);
2904 to_conversion = true;
2906 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2907 TYPE_UNSIGNED (TREE_TYPE (parm)));
2909 if (data->stack_parm)
2910 /* ??? This may need a big-endian conversion on sparc64. */
2911 data->stack_parm
2912 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2915 if (data->entry_parm != data->stack_parm)
2917 rtx src, dest;
2919 if (data->stack_parm == 0)
2921 data->stack_parm
2922 = assign_stack_local (GET_MODE (data->entry_parm),
2923 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2924 TYPE_ALIGN (data->passed_type));
2925 set_mem_attributes (data->stack_parm, parm, 1);
2928 dest = validize_mem (data->stack_parm);
2929 src = validize_mem (data->entry_parm);
2931 if (MEM_P (src))
2933 /* Use a block move to handle potentially misaligned entry_parm. */
2934 if (!to_conversion)
2935 push_to_sequence (all->conversion_insns);
2936 to_conversion = true;
2938 emit_block_move (dest, src,
2939 GEN_INT (int_size_in_bytes (data->passed_type)),
2940 BLOCK_OP_NORMAL);
2942 else
2943 emit_move_insn (dest, src);
2946 if (to_conversion)
2948 all->conversion_insns = get_insns ();
2949 end_sequence ();
2952 SET_DECL_RTL (parm, data->stack_parm);
2955 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2956 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2958 static void
2959 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2961 tree parm;
2962 tree orig_fnargs = all->orig_fnargs;
2964 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2966 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2967 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2969 rtx tmp, real, imag;
2970 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2972 real = DECL_RTL (fnargs);
2973 imag = DECL_RTL (TREE_CHAIN (fnargs));
2974 if (inner != GET_MODE (real))
2976 real = gen_lowpart_SUBREG (inner, real);
2977 imag = gen_lowpart_SUBREG (inner, imag);
2980 if (TREE_ADDRESSABLE (parm))
2982 rtx rmem, imem;
2983 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2985 /* split_complex_arg put the real and imag parts in
2986 pseudos. Move them to memory. */
2987 tmp = assign_stack_local (DECL_MODE (parm), size,
2988 TYPE_ALIGN (TREE_TYPE (parm)));
2989 set_mem_attributes (tmp, parm, 1);
2990 rmem = adjust_address_nv (tmp, inner, 0);
2991 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2992 push_to_sequence (all->conversion_insns);
2993 emit_move_insn (rmem, real);
2994 emit_move_insn (imem, imag);
2995 all->conversion_insns = get_insns ();
2996 end_sequence ();
2998 else
2999 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3000 SET_DECL_RTL (parm, tmp);
3002 real = DECL_INCOMING_RTL (fnargs);
3003 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3004 if (inner != GET_MODE (real))
3006 real = gen_lowpart_SUBREG (inner, real);
3007 imag = gen_lowpart_SUBREG (inner, imag);
3009 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3010 set_decl_incoming_rtl (parm, tmp);
3011 fnargs = TREE_CHAIN (fnargs);
3013 else
3015 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3016 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
3018 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3019 instead of the copy of decl, i.e. FNARGS. */
3020 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3021 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3024 fnargs = TREE_CHAIN (fnargs);
3028 /* Assign RTL expressions to the function's parameters. This may involve
3029 copying them into registers and using those registers as the DECL_RTL. */
3031 static void
3032 assign_parms (tree fndecl)
3034 struct assign_parm_data_all all;
3035 tree fnargs, parm;
3036 rtx internal_arg_pointer;
3038 /* If the reg that the virtual arg pointer will be translated into is
3039 not a fixed reg or is the stack pointer, make a copy of the virtual
3040 arg pointer, and address parms via the copy. The frame pointer is
3041 considered fixed even though it is not marked as such.
3043 The second time through, simply use ap to avoid generating rtx. */
3045 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3046 || ! (fixed_regs[ARG_POINTER_REGNUM]
3047 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3048 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3049 else
3050 internal_arg_pointer = virtual_incoming_args_rtx;
3051 current_function_internal_arg_pointer = internal_arg_pointer;
3053 assign_parms_initialize_all (&all);
3054 fnargs = assign_parms_augmented_arg_list (&all);
3056 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3058 struct assign_parm_data_one data;
3060 /* Extract the type of PARM; adjust it according to ABI. */
3061 assign_parm_find_data_types (&all, parm, &data);
3063 /* Early out for errors and void parameters. */
3064 if (data.passed_mode == VOIDmode)
3066 SET_DECL_RTL (parm, const0_rtx);
3067 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3068 continue;
3071 if (current_function_stdarg && !TREE_CHAIN (parm))
3072 assign_parms_setup_varargs (&all, &data, false);
3074 /* Find out where the parameter arrives in this function. */
3075 assign_parm_find_entry_rtl (&all, &data);
3077 /* Find out where stack space for this parameter might be. */
3078 if (assign_parm_is_stack_parm (&all, &data))
3080 assign_parm_find_stack_rtl (parm, &data);
3081 assign_parm_adjust_entry_rtl (&data);
3084 /* Record permanently how this parm was passed. */
3085 set_decl_incoming_rtl (parm, data.entry_parm);
3087 /* Update info on where next arg arrives in registers. */
3088 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3089 data.passed_type, data.named_arg);
3091 assign_parm_adjust_stack_rtl (&data);
3093 if (assign_parm_setup_block_p (&data))
3094 assign_parm_setup_block (&all, parm, &data);
3095 else if (data.passed_pointer || use_register_for_decl (parm))
3096 assign_parm_setup_reg (&all, parm, &data);
3097 else
3098 assign_parm_setup_stack (&all, parm, &data);
3101 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3102 assign_parms_unsplit_complex (&all, fnargs);
3104 /* Output all parameter conversion instructions (possibly including calls)
3105 now that all parameters have been copied out of hard registers. */
3106 emit_insn (all.conversion_insns);
3108 /* If we are receiving a struct value address as the first argument, set up
3109 the RTL for the function result. As this might require code to convert
3110 the transmitted address to Pmode, we do this here to ensure that possible
3111 preliminary conversions of the address have been emitted already. */
3112 if (all.function_result_decl)
3114 tree result = DECL_RESULT (current_function_decl);
3115 rtx addr = DECL_RTL (all.function_result_decl);
3116 rtx x;
3118 if (DECL_BY_REFERENCE (result))
3119 x = addr;
3120 else
3122 addr = convert_memory_address (Pmode, addr);
3123 x = gen_rtx_MEM (DECL_MODE (result), addr);
3124 set_mem_attributes (x, result, 1);
3126 SET_DECL_RTL (result, x);
3129 /* We have aligned all the args, so add space for the pretend args. */
3130 current_function_pretend_args_size = all.pretend_args_size;
3131 all.stack_args_size.constant += all.extra_pretend_bytes;
3132 current_function_args_size = all.stack_args_size.constant;
3134 /* Adjust function incoming argument size for alignment and
3135 minimum length. */
3137 #ifdef REG_PARM_STACK_SPACE
3138 current_function_args_size = MAX (current_function_args_size,
3139 REG_PARM_STACK_SPACE (fndecl));
3140 #endif
3142 current_function_args_size
3143 = ((current_function_args_size + STACK_BYTES - 1)
3144 / STACK_BYTES) * STACK_BYTES;
3146 #ifdef ARGS_GROW_DOWNWARD
3147 current_function_arg_offset_rtx
3148 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3149 : expand_expr (size_diffop (all.stack_args_size.var,
3150 size_int (-all.stack_args_size.constant)),
3151 NULL_RTX, VOIDmode, 0));
3152 #else
3153 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3154 #endif
3156 /* See how many bytes, if any, of its args a function should try to pop
3157 on return. */
3159 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3160 current_function_args_size);
3162 /* For stdarg.h function, save info about
3163 regs and stack space used by the named args. */
3165 current_function_args_info = all.args_so_far;
3167 /* Set the rtx used for the function return value. Put this in its
3168 own variable so any optimizers that need this information don't have
3169 to include tree.h. Do this here so it gets done when an inlined
3170 function gets output. */
3172 current_function_return_rtx
3173 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3174 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3176 /* If scalar return value was computed in a pseudo-reg, or was a named
3177 return value that got dumped to the stack, copy that to the hard
3178 return register. */
3179 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3181 tree decl_result = DECL_RESULT (fndecl);
3182 rtx decl_rtl = DECL_RTL (decl_result);
3184 if (REG_P (decl_rtl)
3185 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3186 : DECL_REGISTER (decl_result))
3188 rtx real_decl_rtl;
3190 #ifdef FUNCTION_OUTGOING_VALUE
3191 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3192 fndecl);
3193 #else
3194 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3195 fndecl);
3196 #endif
3197 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3198 /* The delay slot scheduler assumes that current_function_return_rtx
3199 holds the hard register containing the return value, not a
3200 temporary pseudo. */
3201 current_function_return_rtx = real_decl_rtl;
3206 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3207 For all seen types, gimplify their sizes. */
3209 static tree
3210 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3212 tree t = *tp;
3214 *walk_subtrees = 0;
3215 if (TYPE_P (t))
3217 if (POINTER_TYPE_P (t))
3218 *walk_subtrees = 1;
3219 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3220 && !TYPE_SIZES_GIMPLIFIED (t))
3222 gimplify_type_sizes (t, (tree *) data);
3223 *walk_subtrees = 1;
3227 return NULL;
3230 /* Gimplify the parameter list for current_function_decl. This involves
3231 evaluating SAVE_EXPRs of variable sized parameters and generating code
3232 to implement callee-copies reference parameters. Returns a list of
3233 statements to add to the beginning of the function, or NULL if nothing
3234 to do. */
3236 tree
3237 gimplify_parameters (void)
3239 struct assign_parm_data_all all;
3240 tree fnargs, parm, stmts = NULL;
3242 assign_parms_initialize_all (&all);
3243 fnargs = assign_parms_augmented_arg_list (&all);
3245 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3247 struct assign_parm_data_one data;
3249 /* Extract the type of PARM; adjust it according to ABI. */
3250 assign_parm_find_data_types (&all, parm, &data);
3252 /* Early out for errors and void parameters. */
3253 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3254 continue;
3256 /* Update info on where next arg arrives in registers. */
3257 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3258 data.passed_type, data.named_arg);
3260 /* ??? Once upon a time variable_size stuffed parameter list
3261 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3262 turned out to be less than manageable in the gimple world.
3263 Now we have to hunt them down ourselves. */
3264 walk_tree_without_duplicates (&data.passed_type,
3265 gimplify_parm_type, &stmts);
3267 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3269 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3270 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3273 if (data.passed_pointer)
3275 tree type = TREE_TYPE (data.passed_type);
3276 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3277 type, data.named_arg))
3279 tree local, t;
3281 /* For constant sized objects, this is trivial; for
3282 variable-sized objects, we have to play games. */
3283 if (TREE_CONSTANT (DECL_SIZE (parm)))
3285 local = create_tmp_var (type, get_name (parm));
3286 DECL_IGNORED_P (local) = 0;
3288 else
3290 tree ptr_type, addr, args;
3292 ptr_type = build_pointer_type (type);
3293 addr = create_tmp_var (ptr_type, get_name (parm));
3294 DECL_IGNORED_P (addr) = 0;
3295 local = build_fold_indirect_ref (addr);
3297 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3298 t = built_in_decls[BUILT_IN_ALLOCA];
3299 t = build_function_call_expr (t, args);
3300 t = fold_convert (ptr_type, t);
3301 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3302 gimplify_and_add (t, &stmts);
3305 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3306 gimplify_and_add (t, &stmts);
3308 DECL_VALUE_EXPR (parm) = local;
3313 return stmts;
3316 /* Indicate whether REGNO is an incoming argument to the current function
3317 that was promoted to a wider mode. If so, return the RTX for the
3318 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3319 that REGNO is promoted from and whether the promotion was signed or
3320 unsigned. */
3323 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3325 tree arg;
3327 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3328 arg = TREE_CHAIN (arg))
3329 if (REG_P (DECL_INCOMING_RTL (arg))
3330 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3331 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3333 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3334 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3336 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3337 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3338 && mode != DECL_MODE (arg))
3340 *pmode = DECL_MODE (arg);
3341 *punsignedp = unsignedp;
3342 return DECL_INCOMING_RTL (arg);
3346 return 0;
3350 /* Compute the size and offset from the start of the stacked arguments for a
3351 parm passed in mode PASSED_MODE and with type TYPE.
3353 INITIAL_OFFSET_PTR points to the current offset into the stacked
3354 arguments.
3356 The starting offset and size for this parm are returned in
3357 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3358 nonzero, the offset is that of stack slot, which is returned in
3359 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3360 padding required from the initial offset ptr to the stack slot.
3362 IN_REGS is nonzero if the argument will be passed in registers. It will
3363 never be set if REG_PARM_STACK_SPACE is not defined.
3365 FNDECL is the function in which the argument was defined.
3367 There are two types of rounding that are done. The first, controlled by
3368 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3369 list to be aligned to the specific boundary (in bits). This rounding
3370 affects the initial and starting offsets, but not the argument size.
3372 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3373 optionally rounds the size of the parm to PARM_BOUNDARY. The
3374 initial offset is not affected by this rounding, while the size always
3375 is and the starting offset may be. */
3377 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3378 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3379 callers pass in the total size of args so far as
3380 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3382 void
3383 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3384 int partial, tree fndecl ATTRIBUTE_UNUSED,
3385 struct args_size *initial_offset_ptr,
3386 struct locate_and_pad_arg_data *locate)
3388 tree sizetree;
3389 enum direction where_pad;
3390 int boundary;
3391 int reg_parm_stack_space = 0;
3392 int part_size_in_regs;
3394 #ifdef REG_PARM_STACK_SPACE
3395 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3397 /* If we have found a stack parm before we reach the end of the
3398 area reserved for registers, skip that area. */
3399 if (! in_regs)
3401 if (reg_parm_stack_space > 0)
3403 if (initial_offset_ptr->var)
3405 initial_offset_ptr->var
3406 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3407 ssize_int (reg_parm_stack_space));
3408 initial_offset_ptr->constant = 0;
3410 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3411 initial_offset_ptr->constant = reg_parm_stack_space;
3414 #endif /* REG_PARM_STACK_SPACE */
3416 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3418 sizetree
3419 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3420 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3421 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3422 locate->where_pad = where_pad;
3423 locate->boundary = boundary;
3425 #ifdef ARGS_GROW_DOWNWARD
3426 locate->slot_offset.constant = -initial_offset_ptr->constant;
3427 if (initial_offset_ptr->var)
3428 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3429 initial_offset_ptr->var);
3432 tree s2 = sizetree;
3433 if (where_pad != none
3434 && (!host_integerp (sizetree, 1)
3435 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3436 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3437 SUB_PARM_SIZE (locate->slot_offset, s2);
3440 locate->slot_offset.constant += part_size_in_regs;
3442 if (!in_regs
3443 #ifdef REG_PARM_STACK_SPACE
3444 || REG_PARM_STACK_SPACE (fndecl) > 0
3445 #endif
3447 pad_to_arg_alignment (&locate->slot_offset, boundary,
3448 &locate->alignment_pad);
3450 locate->size.constant = (-initial_offset_ptr->constant
3451 - locate->slot_offset.constant);
3452 if (initial_offset_ptr->var)
3453 locate->size.var = size_binop (MINUS_EXPR,
3454 size_binop (MINUS_EXPR,
3455 ssize_int (0),
3456 initial_offset_ptr->var),
3457 locate->slot_offset.var);
3459 /* Pad_below needs the pre-rounded size to know how much to pad
3460 below. */
3461 locate->offset = locate->slot_offset;
3462 if (where_pad == downward)
3463 pad_below (&locate->offset, passed_mode, sizetree);
3465 #else /* !ARGS_GROW_DOWNWARD */
3466 if (!in_regs
3467 #ifdef REG_PARM_STACK_SPACE
3468 || REG_PARM_STACK_SPACE (fndecl) > 0
3469 #endif
3471 pad_to_arg_alignment (initial_offset_ptr, boundary,
3472 &locate->alignment_pad);
3473 locate->slot_offset = *initial_offset_ptr;
3475 #ifdef PUSH_ROUNDING
3476 if (passed_mode != BLKmode)
3477 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3478 #endif
3480 /* Pad_below needs the pre-rounded size to know how much to pad below
3481 so this must be done before rounding up. */
3482 locate->offset = locate->slot_offset;
3483 if (where_pad == downward)
3484 pad_below (&locate->offset, passed_mode, sizetree);
3486 if (where_pad != none
3487 && (!host_integerp (sizetree, 1)
3488 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3489 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3491 ADD_PARM_SIZE (locate->size, sizetree);
3493 locate->size.constant -= part_size_in_regs;
3494 #endif /* ARGS_GROW_DOWNWARD */
3497 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3498 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3500 static void
3501 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3502 struct args_size *alignment_pad)
3504 tree save_var = NULL_TREE;
3505 HOST_WIDE_INT save_constant = 0;
3506 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3507 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3509 #ifdef SPARC_STACK_BOUNDARY_HACK
3510 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3511 higher than the real alignment of %sp. However, when it does this,
3512 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3513 This is a temporary hack while the sparc port is fixed. */
3514 if (SPARC_STACK_BOUNDARY_HACK)
3515 sp_offset = 0;
3516 #endif
3518 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3520 save_var = offset_ptr->var;
3521 save_constant = offset_ptr->constant;
3524 alignment_pad->var = NULL_TREE;
3525 alignment_pad->constant = 0;
3527 if (boundary > BITS_PER_UNIT)
3529 if (offset_ptr->var)
3531 tree sp_offset_tree = ssize_int (sp_offset);
3532 tree offset = size_binop (PLUS_EXPR,
3533 ARGS_SIZE_TREE (*offset_ptr),
3534 sp_offset_tree);
3535 #ifdef ARGS_GROW_DOWNWARD
3536 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3537 #else
3538 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3539 #endif
3541 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3542 /* ARGS_SIZE_TREE includes constant term. */
3543 offset_ptr->constant = 0;
3544 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3545 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3546 save_var);
3548 else
3550 offset_ptr->constant = -sp_offset +
3551 #ifdef ARGS_GROW_DOWNWARD
3552 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3553 #else
3554 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3555 #endif
3556 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3557 alignment_pad->constant = offset_ptr->constant - save_constant;
3562 static void
3563 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3565 if (passed_mode != BLKmode)
3567 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3568 offset_ptr->constant
3569 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3570 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3571 - GET_MODE_SIZE (passed_mode));
3573 else
3575 if (TREE_CODE (sizetree) != INTEGER_CST
3576 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3578 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3579 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3580 /* Add it in. */
3581 ADD_PARM_SIZE (*offset_ptr, s2);
3582 SUB_PARM_SIZE (*offset_ptr, sizetree);
3587 /* Walk the tree of blocks describing the binding levels within a function
3588 and warn about variables the might be killed by setjmp or vfork.
3589 This is done after calling flow_analysis and before global_alloc
3590 clobbers the pseudo-regs to hard regs. */
3592 void
3593 setjmp_vars_warning (tree block)
3595 tree decl, sub;
3597 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3599 if (TREE_CODE (decl) == VAR_DECL
3600 && DECL_RTL_SET_P (decl)
3601 && REG_P (DECL_RTL (decl))
3602 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3603 warning (0, "%Jvariable %qD might be clobbered by %<longjmp%>"
3604 " or %<vfork%>",
3605 decl, decl);
3608 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3609 setjmp_vars_warning (sub);
3612 /* Do the appropriate part of setjmp_vars_warning
3613 but for arguments instead of local variables. */
3615 void
3616 setjmp_args_warning (void)
3618 tree decl;
3619 for (decl = DECL_ARGUMENTS (current_function_decl);
3620 decl; decl = TREE_CHAIN (decl))
3621 if (DECL_RTL (decl) != 0
3622 && REG_P (DECL_RTL (decl))
3623 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3624 warning (0, "%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
3625 decl, decl);
3629 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3630 and create duplicate blocks. */
3631 /* ??? Need an option to either create block fragments or to create
3632 abstract origin duplicates of a source block. It really depends
3633 on what optimization has been performed. */
3635 void
3636 reorder_blocks (void)
3638 tree block = DECL_INITIAL (current_function_decl);
3639 varray_type block_stack;
3641 if (block == NULL_TREE)
3642 return;
3644 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3646 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3647 clear_block_marks (block);
3649 /* Prune the old trees away, so that they don't get in the way. */
3650 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3651 BLOCK_CHAIN (block) = NULL_TREE;
3653 /* Recreate the block tree from the note nesting. */
3654 reorder_blocks_1 (get_insns (), block, &block_stack);
3655 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3657 /* Remove deleted blocks from the block fragment chains. */
3658 reorder_fix_fragments (block);
3661 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3663 void
3664 clear_block_marks (tree block)
3666 while (block)
3668 TREE_ASM_WRITTEN (block) = 0;
3669 clear_block_marks (BLOCK_SUBBLOCKS (block));
3670 block = BLOCK_CHAIN (block);
3674 static void
3675 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3677 rtx insn;
3679 for (insn = insns; insn; insn = NEXT_INSN (insn))
3681 if (NOTE_P (insn))
3683 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3685 tree block = NOTE_BLOCK (insn);
3687 /* If we have seen this block before, that means it now
3688 spans multiple address regions. Create a new fragment. */
3689 if (TREE_ASM_WRITTEN (block))
3691 tree new_block = copy_node (block);
3692 tree origin;
3694 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3695 ? BLOCK_FRAGMENT_ORIGIN (block)
3696 : block);
3697 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3698 BLOCK_FRAGMENT_CHAIN (new_block)
3699 = BLOCK_FRAGMENT_CHAIN (origin);
3700 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3702 NOTE_BLOCK (insn) = new_block;
3703 block = new_block;
3706 BLOCK_SUBBLOCKS (block) = 0;
3707 TREE_ASM_WRITTEN (block) = 1;
3708 /* When there's only one block for the entire function,
3709 current_block == block and we mustn't do this, it
3710 will cause infinite recursion. */
3711 if (block != current_block)
3713 BLOCK_SUPERCONTEXT (block) = current_block;
3714 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3715 BLOCK_SUBBLOCKS (current_block) = block;
3716 current_block = block;
3718 VARRAY_PUSH_TREE (*p_block_stack, block);
3720 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3722 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3723 VARRAY_POP (*p_block_stack);
3724 BLOCK_SUBBLOCKS (current_block)
3725 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3726 current_block = BLOCK_SUPERCONTEXT (current_block);
3732 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3733 appears in the block tree, select one of the fragments to become
3734 the new origin block. */
3736 static void
3737 reorder_fix_fragments (tree block)
3739 while (block)
3741 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3742 tree new_origin = NULL_TREE;
3744 if (dup_origin)
3746 if (! TREE_ASM_WRITTEN (dup_origin))
3748 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3750 /* Find the first of the remaining fragments. There must
3751 be at least one -- the current block. */
3752 while (! TREE_ASM_WRITTEN (new_origin))
3753 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3754 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3757 else if (! dup_origin)
3758 new_origin = block;
3760 /* Re-root the rest of the fragments to the new origin. In the
3761 case that DUP_ORIGIN was null, that means BLOCK was the origin
3762 of a chain of fragments and we want to remove those fragments
3763 that didn't make it to the output. */
3764 if (new_origin)
3766 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3767 tree chain = *pp;
3769 while (chain)
3771 if (TREE_ASM_WRITTEN (chain))
3773 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3774 *pp = chain;
3775 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3777 chain = BLOCK_FRAGMENT_CHAIN (chain);
3779 *pp = NULL_TREE;
3782 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3783 block = BLOCK_CHAIN (block);
3787 /* Reverse the order of elements in the chain T of blocks,
3788 and return the new head of the chain (old last element). */
3790 tree
3791 blocks_nreverse (tree t)
3793 tree prev = 0, decl, next;
3794 for (decl = t; decl; decl = next)
3796 next = BLOCK_CHAIN (decl);
3797 BLOCK_CHAIN (decl) = prev;
3798 prev = decl;
3800 return prev;
3803 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3804 non-NULL, list them all into VECTOR, in a depth-first preorder
3805 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3806 blocks. */
3808 static int
3809 all_blocks (tree block, tree *vector)
3811 int n_blocks = 0;
3813 while (block)
3815 TREE_ASM_WRITTEN (block) = 0;
3817 /* Record this block. */
3818 if (vector)
3819 vector[n_blocks] = block;
3821 ++n_blocks;
3823 /* Record the subblocks, and their subblocks... */
3824 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3825 vector ? vector + n_blocks : 0);
3826 block = BLOCK_CHAIN (block);
3829 return n_blocks;
3832 /* Return a vector containing all the blocks rooted at BLOCK. The
3833 number of elements in the vector is stored in N_BLOCKS_P. The
3834 vector is dynamically allocated; it is the caller's responsibility
3835 to call `free' on the pointer returned. */
3837 static tree *
3838 get_block_vector (tree block, int *n_blocks_p)
3840 tree *block_vector;
3842 *n_blocks_p = all_blocks (block, NULL);
3843 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3844 all_blocks (block, block_vector);
3846 return block_vector;
3849 static GTY(()) int next_block_index = 2;
3851 /* Set BLOCK_NUMBER for all the blocks in FN. */
3853 void
3854 number_blocks (tree fn)
3856 int i;
3857 int n_blocks;
3858 tree *block_vector;
3860 /* For SDB and XCOFF debugging output, we start numbering the blocks
3861 from 1 within each function, rather than keeping a running
3862 count. */
3863 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3864 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3865 next_block_index = 1;
3866 #endif
3868 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3870 /* The top-level BLOCK isn't numbered at all. */
3871 for (i = 1; i < n_blocks; ++i)
3872 /* We number the blocks from two. */
3873 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3875 free (block_vector);
3877 return;
3880 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3882 tree
3883 debug_find_var_in_block_tree (tree var, tree block)
3885 tree t;
3887 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3888 if (t == var)
3889 return block;
3891 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3893 tree ret = debug_find_var_in_block_tree (var, t);
3894 if (ret)
3895 return ret;
3898 return NULL_TREE;
3901 /* Allocate a function structure for FNDECL and set its contents
3902 to the defaults. */
3904 void
3905 allocate_struct_function (tree fndecl)
3907 tree result;
3908 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3910 cfun = ggc_alloc_cleared (sizeof (struct function));
3911 cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
3913 n_edges = 0;
3915 cfun->stack_alignment_needed = STACK_BOUNDARY;
3916 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3918 current_function_funcdef_no = funcdef_no++;
3920 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3922 init_eh_for_function ();
3924 lang_hooks.function.init (cfun);
3925 if (init_machine_status)
3926 cfun->machine = (*init_machine_status) ();
3928 if (fndecl == NULL)
3929 return;
3931 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3932 cfun->decl = fndecl;
3934 result = DECL_RESULT (fndecl);
3935 if (aggregate_value_p (result, fndecl))
3937 #ifdef PCC_STATIC_STRUCT_RETURN
3938 current_function_returns_pcc_struct = 1;
3939 #endif
3940 current_function_returns_struct = 1;
3943 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3945 current_function_stdarg
3946 = (fntype
3947 && TYPE_ARG_TYPES (fntype) != 0
3948 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3949 != void_type_node));
3951 /* Assume all registers in stdarg functions need to be saved. */
3952 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3953 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3956 /* Reset cfun, and other non-struct-function variables to defaults as
3957 appropriate for emitting rtl at the start of a function. */
3959 static void
3960 prepare_function_start (tree fndecl)
3962 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3963 cfun = DECL_STRUCT_FUNCTION (fndecl);
3964 else
3965 allocate_struct_function (fndecl);
3966 init_emit ();
3967 init_varasm_status (cfun);
3968 init_expr ();
3970 cse_not_expected = ! optimize;
3972 /* Caller save not needed yet. */
3973 caller_save_needed = 0;
3975 /* We haven't done register allocation yet. */
3976 reg_renumber = 0;
3978 /* Indicate that we have not instantiated virtual registers yet. */
3979 virtuals_instantiated = 0;
3981 /* Indicate that we want CONCATs now. */
3982 generating_concat_p = 1;
3984 /* Indicate we have no need of a frame pointer yet. */
3985 frame_pointer_needed = 0;
3988 /* Initialize the rtl expansion mechanism so that we can do simple things
3989 like generate sequences. This is used to provide a context during global
3990 initialization of some passes. */
3991 void
3992 init_dummy_function_start (void)
3994 prepare_function_start (NULL);
3997 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3998 and initialize static variables for generating RTL for the statements
3999 of the function. */
4001 void
4002 init_function_start (tree subr)
4004 prepare_function_start (subr);
4006 /* Prevent ever trying to delete the first instruction of a
4007 function. Also tell final how to output a linenum before the
4008 function prologue. Note linenums could be missing, e.g. when
4009 compiling a Java .class file. */
4010 if (! DECL_IS_BUILTIN (subr))
4011 emit_line_note (DECL_SOURCE_LOCATION (subr));
4013 /* Make sure first insn is a note even if we don't want linenums.
4014 This makes sure the first insn will never be deleted.
4015 Also, final expects a note to appear there. */
4016 emit_note (NOTE_INSN_DELETED);
4018 /* Warn if this value is an aggregate type,
4019 regardless of which calling convention we are using for it. */
4020 if (warn_aggregate_return
4021 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4022 warning (0, "function returns an aggregate");
4025 /* Make sure all values used by the optimization passes have sane
4026 defaults. */
4027 void
4028 init_function_for_compilation (void)
4030 reg_renumber = 0;
4032 /* No prologue/epilogue insns yet. */
4033 VARRAY_GROW (prologue, 0);
4034 VARRAY_GROW (epilogue, 0);
4035 VARRAY_GROW (sibcall_epilogue, 0);
4038 /* Define IVOKE__main if we should emit a call to __main at the start
4039 of "main". */
4040 #if (!defined(INVOKE__main) \
4041 && !defined(INIT_SECTION_ASM_OP) \
4042 && !defined(INIT_ARRAY_SECTION_ASM_OP))
4043 #define INVOKE__main
4044 #endif
4046 void
4047 expand_main_function (void)
4049 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
4050 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
4052 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
4053 rtx tmp, seq;
4055 start_sequence ();
4056 /* Forcibly align the stack. */
4057 #ifdef STACK_GROWS_DOWNWARD
4058 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
4059 stack_pointer_rtx, 1, OPTAB_WIDEN);
4060 #else
4061 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
4062 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
4063 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
4064 stack_pointer_rtx, 1, OPTAB_WIDEN);
4065 #endif
4066 if (tmp != stack_pointer_rtx)
4067 emit_move_insn (stack_pointer_rtx, tmp);
4069 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
4070 tmp = force_reg (Pmode, const0_rtx);
4071 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
4072 seq = get_insns ();
4073 end_sequence ();
4075 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
4076 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
4077 break;
4078 if (tmp)
4079 emit_insn_before (seq, tmp);
4080 else
4081 emit_insn (seq);
4083 #endif
4085 #if defined(INVOKE__main)
4086 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4087 #endif
4090 /* Start the RTL for a new function, and set variables used for
4091 emitting RTL.
4092 SUBR is the FUNCTION_DECL node.
4093 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4094 the function's parameters, which must be run at any return statement. */
4096 void
4097 expand_function_start (tree subr)
4099 /* Make sure volatile mem refs aren't considered
4100 valid operands of arithmetic insns. */
4101 init_recog_no_volatile ();
4103 current_function_profile
4104 = (profile_flag
4105 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4107 current_function_limit_stack
4108 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4110 /* Make the label for return statements to jump to. Do not special
4111 case machines with special return instructions -- they will be
4112 handled later during jump, ifcvt, or epilogue creation. */
4113 return_label = gen_label_rtx ();
4115 /* Initialize rtx used to return the value. */
4116 /* Do this before assign_parms so that we copy the struct value address
4117 before any library calls that assign parms might generate. */
4119 /* Decide whether to return the value in memory or in a register. */
4120 if (aggregate_value_p (DECL_RESULT (subr), subr))
4122 /* Returning something that won't go in a register. */
4123 rtx value_address = 0;
4125 #ifdef PCC_STATIC_STRUCT_RETURN
4126 if (current_function_returns_pcc_struct)
4128 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4129 value_address = assemble_static_space (size);
4131 else
4132 #endif
4134 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4135 /* Expect to be passed the address of a place to store the value.
4136 If it is passed as an argument, assign_parms will take care of
4137 it. */
4138 if (sv)
4140 value_address = gen_reg_rtx (Pmode);
4141 emit_move_insn (value_address, sv);
4144 if (value_address)
4146 rtx x = value_address;
4147 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4149 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4150 set_mem_attributes (x, DECL_RESULT (subr), 1);
4152 SET_DECL_RTL (DECL_RESULT (subr), x);
4155 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4156 /* If return mode is void, this decl rtl should not be used. */
4157 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4158 else
4160 /* Compute the return values into a pseudo reg, which we will copy
4161 into the true return register after the cleanups are done. */
4162 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4163 if (TYPE_MODE (return_type) != BLKmode
4164 && targetm.calls.return_in_msb (return_type))
4165 /* expand_function_end will insert the appropriate padding in
4166 this case. Use the return value's natural (unpadded) mode
4167 within the function proper. */
4168 SET_DECL_RTL (DECL_RESULT (subr),
4169 gen_reg_rtx (TYPE_MODE (return_type)));
4170 else
4172 /* In order to figure out what mode to use for the pseudo, we
4173 figure out what the mode of the eventual return register will
4174 actually be, and use that. */
4175 rtx hard_reg = hard_function_value (return_type, subr, 1);
4177 /* Structures that are returned in registers are not
4178 aggregate_value_p, so we may see a PARALLEL or a REG. */
4179 if (REG_P (hard_reg))
4180 SET_DECL_RTL (DECL_RESULT (subr),
4181 gen_reg_rtx (GET_MODE (hard_reg)));
4182 else
4184 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4185 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4189 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4190 result to the real return register(s). */
4191 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4194 /* Initialize rtx for parameters and local variables.
4195 In some cases this requires emitting insns. */
4196 assign_parms (subr);
4198 /* If function gets a static chain arg, store it. */
4199 if (cfun->static_chain_decl)
4201 tree parm = cfun->static_chain_decl;
4202 rtx local = gen_reg_rtx (Pmode);
4204 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4205 SET_DECL_RTL (parm, local);
4206 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4208 emit_move_insn (local, static_chain_incoming_rtx);
4211 /* If the function receives a non-local goto, then store the
4212 bits we need to restore the frame pointer. */
4213 if (cfun->nonlocal_goto_save_area)
4215 tree t_save;
4216 rtx r_save;
4218 /* ??? We need to do this save early. Unfortunately here is
4219 before the frame variable gets declared. Help out... */
4220 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4222 t_save = build4 (ARRAY_REF, ptr_type_node,
4223 cfun->nonlocal_goto_save_area,
4224 integer_zero_node, NULL_TREE, NULL_TREE);
4225 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4226 r_save = convert_memory_address (Pmode, r_save);
4228 emit_move_insn (r_save, virtual_stack_vars_rtx);
4229 update_nonlocal_goto_save_area ();
4232 /* The following was moved from init_function_start.
4233 The move is supposed to make sdb output more accurate. */
4234 /* Indicate the beginning of the function body,
4235 as opposed to parm setup. */
4236 emit_note (NOTE_INSN_FUNCTION_BEG);
4238 if (!NOTE_P (get_last_insn ()))
4239 emit_note (NOTE_INSN_DELETED);
4240 parm_birth_insn = get_last_insn ();
4242 if (current_function_profile)
4244 #ifdef PROFILE_HOOK
4245 PROFILE_HOOK (current_function_funcdef_no);
4246 #endif
4249 /* After the display initializations is where the tail-recursion label
4250 should go, if we end up needing one. Ensure we have a NOTE here
4251 since some things (like trampolines) get placed before this. */
4252 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4254 /* Make sure there is a line number after the function entry setup code. */
4255 force_next_line_note ();
4258 /* Undo the effects of init_dummy_function_start. */
4259 void
4260 expand_dummy_function_end (void)
4262 /* End any sequences that failed to be closed due to syntax errors. */
4263 while (in_sequence_p ())
4264 end_sequence ();
4266 /* Outside function body, can't compute type's actual size
4267 until next function's body starts. */
4269 free_after_parsing (cfun);
4270 free_after_compilation (cfun);
4271 cfun = 0;
4274 /* Call DOIT for each hard register used as a return value from
4275 the current function. */
4277 void
4278 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4280 rtx outgoing = current_function_return_rtx;
4282 if (! outgoing)
4283 return;
4285 if (REG_P (outgoing))
4286 (*doit) (outgoing, arg);
4287 else if (GET_CODE (outgoing) == PARALLEL)
4289 int i;
4291 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4293 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4295 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4296 (*doit) (x, arg);
4301 static void
4302 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4304 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4307 void
4308 clobber_return_register (void)
4310 diddle_return_value (do_clobber_return_reg, NULL);
4312 /* In case we do use pseudo to return value, clobber it too. */
4313 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4315 tree decl_result = DECL_RESULT (current_function_decl);
4316 rtx decl_rtl = DECL_RTL (decl_result);
4317 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4319 do_clobber_return_reg (decl_rtl, NULL);
4324 static void
4325 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4327 emit_insn (gen_rtx_USE (VOIDmode, reg));
4330 void
4331 use_return_register (void)
4333 diddle_return_value (do_use_return_reg, NULL);
4336 /* Possibly warn about unused parameters. */
4337 void
4338 do_warn_unused_parameter (tree fn)
4340 tree decl;
4342 for (decl = DECL_ARGUMENTS (fn);
4343 decl; decl = TREE_CHAIN (decl))
4344 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4345 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4346 warning (0, "%Junused parameter %qD", decl, decl);
4349 static GTY(()) rtx initial_trampoline;
4351 /* Generate RTL for the end of the current function. */
4353 void
4354 expand_function_end (void)
4356 rtx clobber_after;
4358 /* If arg_pointer_save_area was referenced only from a nested
4359 function, we will not have initialized it yet. Do that now. */
4360 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4361 get_arg_pointer_save_area (cfun);
4363 /* If we are doing stack checking and this function makes calls,
4364 do a stack probe at the start of the function to ensure we have enough
4365 space for another stack frame. */
4366 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4368 rtx insn, seq;
4370 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4371 if (CALL_P (insn))
4373 start_sequence ();
4374 probe_stack_range (STACK_CHECK_PROTECT,
4375 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4376 seq = get_insns ();
4377 end_sequence ();
4378 emit_insn_before (seq, tail_recursion_reentry);
4379 break;
4383 /* Possibly warn about unused parameters.
4384 When frontend does unit-at-a-time, the warning is already
4385 issued at finalization time. */
4386 if (warn_unused_parameter
4387 && !lang_hooks.callgraph.expand_function)
4388 do_warn_unused_parameter (current_function_decl);
4390 /* End any sequences that failed to be closed due to syntax errors. */
4391 while (in_sequence_p ())
4392 end_sequence ();
4394 clear_pending_stack_adjust ();
4395 do_pending_stack_adjust ();
4397 /* @@@ This is a kludge. We want to ensure that instructions that
4398 may trap are not moved into the epilogue by scheduling, because
4399 we don't always emit unwind information for the epilogue.
4400 However, not all machine descriptions define a blockage insn, so
4401 emit an ASM_INPUT to act as one. */
4402 if (flag_non_call_exceptions)
4403 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4405 /* Mark the end of the function body.
4406 If control reaches this insn, the function can drop through
4407 without returning a value. */
4408 emit_note (NOTE_INSN_FUNCTION_END);
4410 /* Must mark the last line number note in the function, so that the test
4411 coverage code can avoid counting the last line twice. This just tells
4412 the code to ignore the immediately following line note, since there
4413 already exists a copy of this note somewhere above. This line number
4414 note is still needed for debugging though, so we can't delete it. */
4415 if (flag_test_coverage)
4416 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4418 /* Output a linenumber for the end of the function.
4419 SDB depends on this. */
4420 force_next_line_note ();
4421 emit_line_note (input_location);
4423 /* Before the return label (if any), clobber the return
4424 registers so that they are not propagated live to the rest of
4425 the function. This can only happen with functions that drop
4426 through; if there had been a return statement, there would
4427 have either been a return rtx, or a jump to the return label.
4429 We delay actual code generation after the current_function_value_rtx
4430 is computed. */
4431 clobber_after = get_last_insn ();
4433 /* Output the label for the actual return from the function. */
4434 emit_label (return_label);
4436 /* Let except.c know where it should emit the call to unregister
4437 the function context for sjlj exceptions. */
4438 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4439 sjlj_emit_function_exit_after (get_last_insn ());
4441 /* If scalar return value was computed in a pseudo-reg, or was a named
4442 return value that got dumped to the stack, copy that to the hard
4443 return register. */
4444 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4446 tree decl_result = DECL_RESULT (current_function_decl);
4447 rtx decl_rtl = DECL_RTL (decl_result);
4449 if (REG_P (decl_rtl)
4450 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4451 : DECL_REGISTER (decl_result))
4453 rtx real_decl_rtl = current_function_return_rtx;
4455 /* This should be set in assign_parms. */
4456 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4458 /* If this is a BLKmode structure being returned in registers,
4459 then use the mode computed in expand_return. Note that if
4460 decl_rtl is memory, then its mode may have been changed,
4461 but that current_function_return_rtx has not. */
4462 if (GET_MODE (real_decl_rtl) == BLKmode)
4463 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4465 /* If a non-BLKmode return value should be padded at the least
4466 significant end of the register, shift it left by the appropriate
4467 amount. BLKmode results are handled using the group load/store
4468 machinery. */
4469 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4470 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4472 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4473 REGNO (real_decl_rtl)),
4474 decl_rtl);
4475 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4477 /* If a named return value dumped decl_return to memory, then
4478 we may need to re-do the PROMOTE_MODE signed/unsigned
4479 extension. */
4480 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4482 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4484 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4485 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4486 &unsignedp, 1);
4488 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4490 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4492 /* If expand_function_start has created a PARALLEL for decl_rtl,
4493 move the result to the real return registers. Otherwise, do
4494 a group load from decl_rtl for a named return. */
4495 if (GET_CODE (decl_rtl) == PARALLEL)
4496 emit_group_move (real_decl_rtl, decl_rtl);
4497 else
4498 emit_group_load (real_decl_rtl, decl_rtl,
4499 TREE_TYPE (decl_result),
4500 int_size_in_bytes (TREE_TYPE (decl_result)));
4502 else
4503 emit_move_insn (real_decl_rtl, decl_rtl);
4507 /* If returning a structure, arrange to return the address of the value
4508 in a place where debuggers expect to find it.
4510 If returning a structure PCC style,
4511 the caller also depends on this value.
4512 And current_function_returns_pcc_struct is not necessarily set. */
4513 if (current_function_returns_struct
4514 || current_function_returns_pcc_struct)
4516 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4517 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4518 rtx outgoing;
4520 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4521 type = TREE_TYPE (type);
4522 else
4523 value_address = XEXP (value_address, 0);
4525 #ifdef FUNCTION_OUTGOING_VALUE
4526 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4527 current_function_decl);
4528 #else
4529 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4530 current_function_decl);
4531 #endif
4533 /* Mark this as a function return value so integrate will delete the
4534 assignment and USE below when inlining this function. */
4535 REG_FUNCTION_VALUE_P (outgoing) = 1;
4537 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4538 value_address = convert_memory_address (GET_MODE (outgoing),
4539 value_address);
4541 emit_move_insn (outgoing, value_address);
4543 /* Show return register used to hold result (in this case the address
4544 of the result. */
4545 current_function_return_rtx = outgoing;
4548 /* If this is an implementation of throw, do what's necessary to
4549 communicate between __builtin_eh_return and the epilogue. */
4550 expand_eh_return ();
4552 /* Emit the actual code to clobber return register. */
4554 rtx seq;
4556 start_sequence ();
4557 clobber_return_register ();
4558 expand_naked_return ();
4559 seq = get_insns ();
4560 end_sequence ();
4562 emit_insn_after (seq, clobber_after);
4565 /* Output the label for the naked return from the function. */
4566 emit_label (naked_return_label);
4568 /* If we had calls to alloca, and this machine needs
4569 an accurate stack pointer to exit the function,
4570 insert some code to save and restore the stack pointer. */
4571 if (! EXIT_IGNORE_STACK
4572 && current_function_calls_alloca)
4574 rtx tem = 0;
4576 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4577 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4580 /* ??? This should no longer be necessary since stupid is no longer with
4581 us, but there are some parts of the compiler (eg reload_combine, and
4582 sh mach_dep_reorg) that still try and compute their own lifetime info
4583 instead of using the general framework. */
4584 use_return_register ();
4588 get_arg_pointer_save_area (struct function *f)
4590 rtx ret = f->x_arg_pointer_save_area;
4592 if (! ret)
4594 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4595 f->x_arg_pointer_save_area = ret;
4598 if (f == cfun && ! f->arg_pointer_save_area_init)
4600 rtx seq;
4602 /* Save the arg pointer at the beginning of the function. The
4603 generated stack slot may not be a valid memory address, so we
4604 have to check it and fix it if necessary. */
4605 start_sequence ();
4606 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4607 seq = get_insns ();
4608 end_sequence ();
4610 push_topmost_sequence ();
4611 emit_insn_after (seq, entry_of_function ());
4612 pop_topmost_sequence ();
4615 return ret;
4618 /* Extend a vector that records the INSN_UIDs of INSNS
4619 (a list of one or more insns). */
4621 static void
4622 record_insns (rtx insns, varray_type *vecp)
4624 int i, len;
4625 rtx tmp;
4627 tmp = insns;
4628 len = 0;
4629 while (tmp != NULL_RTX)
4631 len++;
4632 tmp = NEXT_INSN (tmp);
4635 i = VARRAY_SIZE (*vecp);
4636 VARRAY_GROW (*vecp, i + len);
4637 tmp = insns;
4638 while (tmp != NULL_RTX)
4640 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4641 i++;
4642 tmp = NEXT_INSN (tmp);
4646 /* Set the locator of the insn chain starting at INSN to LOC. */
4647 static void
4648 set_insn_locators (rtx insn, int loc)
4650 while (insn != NULL_RTX)
4652 if (INSN_P (insn))
4653 INSN_LOCATOR (insn) = loc;
4654 insn = NEXT_INSN (insn);
4658 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4659 be running after reorg, SEQUENCE rtl is possible. */
4661 static int
4662 contains (rtx insn, varray_type vec)
4664 int i, j;
4666 if (NONJUMP_INSN_P (insn)
4667 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4669 int count = 0;
4670 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4671 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4672 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4673 count++;
4674 return count;
4676 else
4678 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4679 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4680 return 1;
4682 return 0;
4686 prologue_epilogue_contains (rtx insn)
4688 if (contains (insn, prologue))
4689 return 1;
4690 if (contains (insn, epilogue))
4691 return 1;
4692 return 0;
4696 sibcall_epilogue_contains (rtx insn)
4698 if (sibcall_epilogue)
4699 return contains (insn, sibcall_epilogue);
4700 return 0;
4703 #ifdef HAVE_return
4704 /* Insert gen_return at the end of block BB. This also means updating
4705 block_for_insn appropriately. */
4707 static void
4708 emit_return_into_block (basic_block bb, rtx line_note)
4710 emit_jump_insn_after (gen_return (), BB_END (bb));
4711 if (line_note)
4712 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4714 #endif /* HAVE_return */
4716 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4718 /* These functions convert the epilogue into a variant that does not
4719 modify the stack pointer. This is used in cases where a function
4720 returns an object whose size is not known until it is computed.
4721 The called function leaves the object on the stack, leaves the
4722 stack depressed, and returns a pointer to the object.
4724 What we need to do is track all modifications and references to the
4725 stack pointer, deleting the modifications and changing the
4726 references to point to the location the stack pointer would have
4727 pointed to had the modifications taken place.
4729 These functions need to be portable so we need to make as few
4730 assumptions about the epilogue as we can. However, the epilogue
4731 basically contains three things: instructions to reset the stack
4732 pointer, instructions to reload registers, possibly including the
4733 frame pointer, and an instruction to return to the caller.
4735 We must be sure of what a relevant epilogue insn is doing. We also
4736 make no attempt to validate the insns we make since if they are
4737 invalid, we probably can't do anything valid. The intent is that
4738 these routines get "smarter" as more and more machines start to use
4739 them and they try operating on different epilogues.
4741 We use the following structure to track what the part of the
4742 epilogue that we've already processed has done. We keep two copies
4743 of the SP equivalence, one for use during the insn we are
4744 processing and one for use in the next insn. The difference is
4745 because one part of a PARALLEL may adjust SP and the other may use
4746 it. */
4748 struct epi_info
4750 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4751 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4752 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4753 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4754 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4755 should be set to once we no longer need
4756 its value. */
4757 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4758 for registers. */
4761 static void handle_epilogue_set (rtx, struct epi_info *);
4762 static void update_epilogue_consts (rtx, rtx, void *);
4763 static void emit_equiv_load (struct epi_info *);
4765 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4766 no modifications to the stack pointer. Return the new list of insns. */
4768 static rtx
4769 keep_stack_depressed (rtx insns)
4771 int j;
4772 struct epi_info info;
4773 rtx insn, next;
4775 /* If the epilogue is just a single instruction, it must be OK as is. */
4776 if (NEXT_INSN (insns) == NULL_RTX)
4777 return insns;
4779 /* Otherwise, start a sequence, initialize the information we have, and
4780 process all the insns we were given. */
4781 start_sequence ();
4783 info.sp_equiv_reg = stack_pointer_rtx;
4784 info.sp_offset = 0;
4785 info.equiv_reg_src = 0;
4787 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4788 info.const_equiv[j] = 0;
4790 insn = insns;
4791 next = NULL_RTX;
4792 while (insn != NULL_RTX)
4794 next = NEXT_INSN (insn);
4796 if (!INSN_P (insn))
4798 add_insn (insn);
4799 insn = next;
4800 continue;
4803 /* If this insn references the register that SP is equivalent to and
4804 we have a pending load to that register, we must force out the load
4805 first and then indicate we no longer know what SP's equivalent is. */
4806 if (info.equiv_reg_src != 0
4807 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4809 emit_equiv_load (&info);
4810 info.sp_equiv_reg = 0;
4813 info.new_sp_equiv_reg = info.sp_equiv_reg;
4814 info.new_sp_offset = info.sp_offset;
4816 /* If this is a (RETURN) and the return address is on the stack,
4817 update the address and change to an indirect jump. */
4818 if (GET_CODE (PATTERN (insn)) == RETURN
4819 || (GET_CODE (PATTERN (insn)) == PARALLEL
4820 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4822 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4823 rtx base = 0;
4824 HOST_WIDE_INT offset = 0;
4825 rtx jump_insn, jump_set;
4827 /* If the return address is in a register, we can emit the insn
4828 unchanged. Otherwise, it must be a MEM and we see what the
4829 base register and offset are. In any case, we have to emit any
4830 pending load to the equivalent reg of SP, if any. */
4831 if (REG_P (retaddr))
4833 emit_equiv_load (&info);
4834 add_insn (insn);
4835 insn = next;
4836 continue;
4838 else
4840 rtx ret_ptr;
4841 gcc_assert (MEM_P (retaddr));
4843 ret_ptr = XEXP (retaddr, 0);
4845 if (REG_P (ret_ptr))
4847 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4848 offset = 0;
4850 else
4852 gcc_assert (GET_CODE (ret_ptr) == PLUS
4853 && REG_P (XEXP (ret_ptr, 0))
4854 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4855 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4856 offset = INTVAL (XEXP (ret_ptr, 1));
4860 /* If the base of the location containing the return pointer
4861 is SP, we must update it with the replacement address. Otherwise,
4862 just build the necessary MEM. */
4863 retaddr = plus_constant (base, offset);
4864 if (base == stack_pointer_rtx)
4865 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4866 plus_constant (info.sp_equiv_reg,
4867 info.sp_offset));
4869 retaddr = gen_rtx_MEM (Pmode, retaddr);
4871 /* If there is a pending load to the equivalent register for SP
4872 and we reference that register, we must load our address into
4873 a scratch register and then do that load. */
4874 if (info.equiv_reg_src
4875 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4877 unsigned int regno;
4878 rtx reg;
4880 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4881 if (HARD_REGNO_MODE_OK (regno, Pmode)
4882 && !fixed_regs[regno]
4883 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4884 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4885 regno)
4886 && !refers_to_regno_p (regno,
4887 regno + hard_regno_nregs[regno]
4888 [Pmode],
4889 info.equiv_reg_src, NULL)
4890 && info.const_equiv[regno] == 0)
4891 break;
4893 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4895 reg = gen_rtx_REG (Pmode, regno);
4896 emit_move_insn (reg, retaddr);
4897 retaddr = reg;
4900 emit_equiv_load (&info);
4901 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4903 /* Show the SET in the above insn is a RETURN. */
4904 jump_set = single_set (jump_insn);
4905 gcc_assert (jump_set);
4906 SET_IS_RETURN_P (jump_set) = 1;
4909 /* If SP is not mentioned in the pattern and its equivalent register, if
4910 any, is not modified, just emit it. Otherwise, if neither is set,
4911 replace the reference to SP and emit the insn. If none of those are
4912 true, handle each SET individually. */
4913 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4914 && (info.sp_equiv_reg == stack_pointer_rtx
4915 || !reg_set_p (info.sp_equiv_reg, insn)))
4916 add_insn (insn);
4917 else if (! reg_set_p (stack_pointer_rtx, insn)
4918 && (info.sp_equiv_reg == stack_pointer_rtx
4919 || !reg_set_p (info.sp_equiv_reg, insn)))
4921 int changed;
4923 changed = validate_replace_rtx (stack_pointer_rtx,
4924 plus_constant (info.sp_equiv_reg,
4925 info.sp_offset),
4926 insn);
4927 gcc_assert (changed);
4929 add_insn (insn);
4931 else if (GET_CODE (PATTERN (insn)) == SET)
4932 handle_epilogue_set (PATTERN (insn), &info);
4933 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4935 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4936 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4937 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4939 else
4940 add_insn (insn);
4942 info.sp_equiv_reg = info.new_sp_equiv_reg;
4943 info.sp_offset = info.new_sp_offset;
4945 /* Now update any constants this insn sets. */
4946 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4947 insn = next;
4950 insns = get_insns ();
4951 end_sequence ();
4952 return insns;
4955 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4956 structure that contains information about what we've seen so far. We
4957 process this SET by either updating that data or by emitting one or
4958 more insns. */
4960 static void
4961 handle_epilogue_set (rtx set, struct epi_info *p)
4963 /* First handle the case where we are setting SP. Record what it is being
4964 set from, which we must be able to determine */
4965 if (reg_set_p (stack_pointer_rtx, set))
4967 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4969 if (GET_CODE (SET_SRC (set)) == PLUS)
4971 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4972 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4973 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4974 else
4976 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4977 && (REGNO (XEXP (SET_SRC (set), 1))
4978 < FIRST_PSEUDO_REGISTER)
4979 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4980 p->new_sp_offset
4981 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4984 else
4985 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4987 /* If we are adjusting SP, we adjust from the old data. */
4988 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4990 p->new_sp_equiv_reg = p->sp_equiv_reg;
4991 p->new_sp_offset += p->sp_offset;
4994 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4996 return;
4999 /* Next handle the case where we are setting SP's equivalent
5000 register. We must not already have a value to set it to. We
5001 could update, but there seems little point in handling that case.
5002 Note that we have to allow for the case where we are setting the
5003 register set in the previous part of a PARALLEL inside a single
5004 insn. But use the old offset for any updates within this insn.
5005 We must allow for the case where the register is being set in a
5006 different (usually wider) mode than Pmode). */
5007 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
5009 gcc_assert (!p->equiv_reg_src
5010 && REG_P (p->new_sp_equiv_reg)
5011 && REG_P (SET_DEST (set))
5012 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
5013 <= BITS_PER_WORD)
5014 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
5015 p->equiv_reg_src
5016 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5017 plus_constant (p->sp_equiv_reg,
5018 p->sp_offset));
5021 /* Otherwise, replace any references to SP in the insn to its new value
5022 and emit the insn. */
5023 else
5025 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5026 plus_constant (p->sp_equiv_reg,
5027 p->sp_offset));
5028 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5029 plus_constant (p->sp_equiv_reg,
5030 p->sp_offset));
5031 emit_insn (set);
5035 /* Update the tracking information for registers set to constants. */
5037 static void
5038 update_epilogue_consts (rtx dest, rtx x, void *data)
5040 struct epi_info *p = (struct epi_info *) data;
5041 rtx new;
5043 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5044 return;
5046 /* If we are either clobbering a register or doing a partial set,
5047 show we don't know the value. */
5048 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5049 p->const_equiv[REGNO (dest)] = 0;
5051 /* If we are setting it to a constant, record that constant. */
5052 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5053 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5055 /* If this is a binary operation between a register we have been tracking
5056 and a constant, see if we can compute a new constant value. */
5057 else if (ARITHMETIC_P (SET_SRC (x))
5058 && REG_P (XEXP (SET_SRC (x), 0))
5059 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5060 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5061 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5062 && 0 != (new = simplify_binary_operation
5063 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5064 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5065 XEXP (SET_SRC (x), 1)))
5066 && GET_CODE (new) == CONST_INT)
5067 p->const_equiv[REGNO (dest)] = new;
5069 /* Otherwise, we can't do anything with this value. */
5070 else
5071 p->const_equiv[REGNO (dest)] = 0;
5074 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5076 static void
5077 emit_equiv_load (struct epi_info *p)
5079 if (p->equiv_reg_src != 0)
5081 rtx dest = p->sp_equiv_reg;
5083 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5084 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5085 REGNO (p->sp_equiv_reg));
5087 emit_move_insn (dest, p->equiv_reg_src);
5088 p->equiv_reg_src = 0;
5091 #endif
5093 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5094 this into place with notes indicating where the prologue ends and where
5095 the epilogue begins. Update the basic block information when possible. */
5097 void
5098 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5100 int inserted = 0;
5101 edge e;
5102 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5103 rtx seq;
5104 #endif
5105 #ifdef HAVE_prologue
5106 rtx prologue_end = NULL_RTX;
5107 #endif
5108 #if defined (HAVE_epilogue) || defined(HAVE_return)
5109 rtx epilogue_end = NULL_RTX;
5110 #endif
5111 edge_iterator ei;
5113 #ifdef HAVE_prologue
5114 if (HAVE_prologue)
5116 start_sequence ();
5117 seq = gen_prologue ();
5118 emit_insn (seq);
5120 /* Retain a map of the prologue insns. */
5121 record_insns (seq, &prologue);
5122 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5124 seq = get_insns ();
5125 end_sequence ();
5126 set_insn_locators (seq, prologue_locator);
5128 /* Can't deal with multiple successors of the entry block
5129 at the moment. Function should always have at least one
5130 entry point. */
5131 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5133 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5134 inserted = 1;
5136 #endif
5138 /* If the exit block has no non-fake predecessors, we don't need
5139 an epilogue. */
5140 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5141 if ((e->flags & EDGE_FAKE) == 0)
5142 break;
5143 if (e == NULL)
5144 goto epilogue_done;
5146 #ifdef HAVE_return
5147 if (optimize && HAVE_return)
5149 /* If we're allowed to generate a simple return instruction,
5150 then by definition we don't need a full epilogue. Examine
5151 the block that falls through to EXIT. If it does not
5152 contain any code, examine its predecessors and try to
5153 emit (conditional) return instructions. */
5155 basic_block last;
5156 rtx label;
5158 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5159 if (e->flags & EDGE_FALLTHRU)
5160 break;
5161 if (e == NULL)
5162 goto epilogue_done;
5163 last = e->src;
5165 /* Verify that there are no active instructions in the last block. */
5166 label = BB_END (last);
5167 while (label && !LABEL_P (label))
5169 if (active_insn_p (label))
5170 break;
5171 label = PREV_INSN (label);
5174 if (BB_HEAD (last) == label && LABEL_P (label))
5176 edge_iterator ei2;
5177 rtx epilogue_line_note = NULL_RTX;
5179 /* Locate the line number associated with the closing brace,
5180 if we can find one. */
5181 for (seq = get_last_insn ();
5182 seq && ! active_insn_p (seq);
5183 seq = PREV_INSN (seq))
5184 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5186 epilogue_line_note = seq;
5187 break;
5190 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5192 basic_block bb = e->src;
5193 rtx jump;
5195 if (bb == ENTRY_BLOCK_PTR)
5197 ei_next (&ei2);
5198 continue;
5201 jump = BB_END (bb);
5202 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5204 ei_next (&ei2);
5205 continue;
5208 /* If we have an unconditional jump, we can replace that
5209 with a simple return instruction. */
5210 if (simplejump_p (jump))
5212 emit_return_into_block (bb, epilogue_line_note);
5213 delete_insn (jump);
5216 /* If we have a conditional jump, we can try to replace
5217 that with a conditional return instruction. */
5218 else if (condjump_p (jump))
5220 if (! redirect_jump (jump, 0, 0))
5222 ei_next (&ei2);
5223 continue;
5226 /* If this block has only one successor, it both jumps
5227 and falls through to the fallthru block, so we can't
5228 delete the edge. */
5229 if (single_succ_p (bb))
5231 ei_next (&ei2);
5232 continue;
5235 else
5237 ei_next (&ei2);
5238 continue;
5241 /* Fix up the CFG for the successful change we just made. */
5242 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5245 /* Emit a return insn for the exit fallthru block. Whether
5246 this is still reachable will be determined later. */
5248 emit_barrier_after (BB_END (last));
5249 emit_return_into_block (last, epilogue_line_note);
5250 epilogue_end = BB_END (last);
5251 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5252 goto epilogue_done;
5255 #endif
5256 /* Find the edge that falls through to EXIT. Other edges may exist
5257 due to RETURN instructions, but those don't need epilogues.
5258 There really shouldn't be a mixture -- either all should have
5259 been converted or none, however... */
5261 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5262 if (e->flags & EDGE_FALLTHRU)
5263 break;
5264 if (e == NULL)
5265 goto epilogue_done;
5267 #ifdef HAVE_epilogue
5268 if (HAVE_epilogue)
5270 start_sequence ();
5271 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5273 seq = gen_epilogue ();
5275 #ifdef INCOMING_RETURN_ADDR_RTX
5276 /* If this function returns with the stack depressed and we can support
5277 it, massage the epilogue to actually do that. */
5278 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5279 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5280 seq = keep_stack_depressed (seq);
5281 #endif
5283 emit_jump_insn (seq);
5285 /* Retain a map of the epilogue insns. */
5286 record_insns (seq, &epilogue);
5287 set_insn_locators (seq, epilogue_locator);
5289 seq = get_insns ();
5290 end_sequence ();
5292 insert_insn_on_edge (seq, e);
5293 inserted = 1;
5295 else
5296 #endif
5298 basic_block cur_bb;
5300 if (! next_active_insn (BB_END (e->src)))
5301 goto epilogue_done;
5302 /* We have a fall-through edge to the exit block, the source is not
5303 at the end of the function, and there will be an assembler epilogue
5304 at the end of the function.
5305 We can't use force_nonfallthru here, because that would try to
5306 use return. Inserting a jump 'by hand' is extremely messy, so
5307 we take advantage of cfg_layout_finalize using
5308 fixup_fallthru_exit_predecessor. */
5309 cfg_layout_initialize (0);
5310 FOR_EACH_BB (cur_bb)
5311 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5312 cur_bb->rbi->next = cur_bb->next_bb;
5313 cfg_layout_finalize ();
5315 epilogue_done:
5317 if (inserted)
5318 commit_edge_insertions ();
5320 #ifdef HAVE_sibcall_epilogue
5321 /* Emit sibling epilogues before any sibling call sites. */
5322 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5324 basic_block bb = e->src;
5325 rtx insn = BB_END (bb);
5327 if (!CALL_P (insn)
5328 || ! SIBLING_CALL_P (insn))
5330 ei_next (&ei);
5331 continue;
5334 start_sequence ();
5335 emit_insn (gen_sibcall_epilogue ());
5336 seq = get_insns ();
5337 end_sequence ();
5339 /* Retain a map of the epilogue insns. Used in life analysis to
5340 avoid getting rid of sibcall epilogue insns. Do this before we
5341 actually emit the sequence. */
5342 record_insns (seq, &sibcall_epilogue);
5343 set_insn_locators (seq, epilogue_locator);
5345 emit_insn_before (seq, insn);
5346 ei_next (&ei);
5348 #endif
5350 #ifdef HAVE_prologue
5351 /* This is probably all useless now that we use locators. */
5352 if (prologue_end)
5354 rtx insn, prev;
5356 /* GDB handles `break f' by setting a breakpoint on the first
5357 line note after the prologue. Which means (1) that if
5358 there are line number notes before where we inserted the
5359 prologue we should move them, and (2) we should generate a
5360 note before the end of the first basic block, if there isn't
5361 one already there.
5363 ??? This behavior is completely broken when dealing with
5364 multiple entry functions. We simply place the note always
5365 into first basic block and let alternate entry points
5366 to be missed.
5369 for (insn = prologue_end; insn; insn = prev)
5371 prev = PREV_INSN (insn);
5372 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5374 /* Note that we cannot reorder the first insn in the
5375 chain, since rest_of_compilation relies on that
5376 remaining constant. */
5377 if (prev == NULL)
5378 break;
5379 reorder_insns (insn, insn, prologue_end);
5383 /* Find the last line number note in the first block. */
5384 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5385 insn != prologue_end && insn;
5386 insn = PREV_INSN (insn))
5387 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5388 break;
5390 /* If we didn't find one, make a copy of the first line number
5391 we run across. */
5392 if (! insn)
5394 for (insn = next_active_insn (prologue_end);
5395 insn;
5396 insn = PREV_INSN (insn))
5397 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5399 emit_note_copy_after (insn, prologue_end);
5400 break;
5404 #endif
5405 #ifdef HAVE_epilogue
5406 if (epilogue_end)
5408 rtx insn, next;
5410 /* Similarly, move any line notes that appear after the epilogue.
5411 There is no need, however, to be quite so anal about the existence
5412 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5413 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5414 info generation. */
5415 for (insn = epilogue_end; insn; insn = next)
5417 next = NEXT_INSN (insn);
5418 if (NOTE_P (insn)
5419 && (NOTE_LINE_NUMBER (insn) > 0
5420 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5421 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5422 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5425 #endif
5428 /* Reposition the prologue-end and epilogue-begin notes after instruction
5429 scheduling and delayed branch scheduling. */
5431 void
5432 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5434 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5435 rtx insn, last, note;
5436 int len;
5438 if ((len = VARRAY_SIZE (prologue)) > 0)
5440 last = 0, note = 0;
5442 /* Scan from the beginning until we reach the last prologue insn.
5443 We apparently can't depend on basic_block_{head,end} after
5444 reorg has run. */
5445 for (insn = f; insn; insn = NEXT_INSN (insn))
5447 if (NOTE_P (insn))
5449 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5450 note = insn;
5452 else if (contains (insn, prologue))
5454 last = insn;
5455 if (--len == 0)
5456 break;
5460 if (last)
5462 /* Find the prologue-end note if we haven't already, and
5463 move it to just after the last prologue insn. */
5464 if (note == 0)
5466 for (note = last; (note = NEXT_INSN (note));)
5467 if (NOTE_P (note)
5468 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5469 break;
5472 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5473 if (LABEL_P (last))
5474 last = NEXT_INSN (last);
5475 reorder_insns (note, note, last);
5479 if ((len = VARRAY_SIZE (epilogue)) > 0)
5481 last = 0, note = 0;
5483 /* Scan from the end until we reach the first epilogue insn.
5484 We apparently can't depend on basic_block_{head,end} after
5485 reorg has run. */
5486 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5488 if (NOTE_P (insn))
5490 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5491 note = insn;
5493 else if (contains (insn, epilogue))
5495 last = insn;
5496 if (--len == 0)
5497 break;
5501 if (last)
5503 /* Find the epilogue-begin note if we haven't already, and
5504 move it to just before the first epilogue insn. */
5505 if (note == 0)
5507 for (note = insn; (note = PREV_INSN (note));)
5508 if (NOTE_P (note)
5509 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5510 break;
5513 if (PREV_INSN (last) != note)
5514 reorder_insns (note, note, PREV_INSN (last));
5517 #endif /* HAVE_prologue or HAVE_epilogue */
5520 /* Called once, at initialization, to initialize function.c. */
5522 void
5523 init_function_once (void)
5525 VARRAY_INT_INIT (prologue, 0, "prologue");
5526 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5527 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5530 /* Resets insn_block_boundaries array. */
5532 void
5533 reset_block_changes (void)
5535 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5536 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5539 /* Record the boundary for BLOCK. */
5540 void
5541 record_block_change (tree block)
5543 int i, n;
5544 tree last_block;
5546 if (!block)
5547 return;
5549 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5550 VARRAY_POP (cfun->ib_boundaries_block);
5551 n = get_max_uid ();
5552 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5553 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5555 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5558 /* Finishes record of boundaries. */
5559 void finalize_block_changes (void)
5561 record_block_change (DECL_INITIAL (current_function_decl));
5564 /* For INSN return the BLOCK it belongs to. */
5565 void
5566 check_block_change (rtx insn, tree *block)
5568 unsigned uid = INSN_UID (insn);
5570 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5571 return;
5573 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5576 /* Releases the ib_boundaries_block records. */
5577 void
5578 free_block_changes (void)
5580 cfun->ib_boundaries_block = NULL;
5583 /* Returns the name of the current function. */
5584 const char *
5585 current_function_name (void)
5587 return lang_hooks.decl_printable_name (cfun->decl, 2);
5590 #include "gt-function.h"