2005-04-29 Jim Tison <jtison@us.ibm.com>
[official-gcc.git] / gcc / dwarf2out.c
blobfc0213d121e6c6506722b422ed01986d614131af
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 int flags;
126 if (EH_TABLES_CAN_BE_READ_ONLY)
128 int fde_encoding;
129 int per_encoding;
130 int lsda_encoding;
132 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
133 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
134 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
135 flags = (! flag_pic
136 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
137 && (fde_encoding & 0x70) != DW_EH_PE_aligned
138 && (per_encoding & 0x70) != DW_EH_PE_absptr
139 && (per_encoding & 0x70) != DW_EH_PE_aligned
140 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
141 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
142 ? 0 : SECTION_WRITE;
144 else
145 flags = SECTION_WRITE;
146 named_section_flags (EH_FRAME_SECTION_NAME, flags);
147 #endif
150 /* Version of targetm.eh_frame_section for systems using collect2. */
151 void
152 collect2_eh_frame_section (void)
154 tree label = get_file_function_name ('F');
156 data_section ();
157 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
158 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
159 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
162 /* Default version of targetm.eh_frame_section. */
163 void
164 default_eh_frame_section (void)
166 #ifdef EH_FRAME_SECTION_NAME
167 named_section_eh_frame_section ();
168 #else
169 collect2_eh_frame_section ();
170 #endif
173 /* Array of RTXes referenced by the debugging information, which therefore
174 must be kept around forever. */
175 static GTY(()) varray_type used_rtx_varray;
177 /* A pointer to the base of a list of incomplete types which might be
178 completed at some later time. incomplete_types_list needs to be a VARRAY
179 because we want to tell the garbage collector about it. */
180 static GTY(()) varray_type incomplete_types;
182 /* A pointer to the base of a table of references to declaration
183 scopes. This table is a display which tracks the nesting
184 of declaration scopes at the current scope and containing
185 scopes. This table is used to find the proper place to
186 define type declaration DIE's. */
187 static GTY(()) varray_type decl_scope_table;
189 /* How to start an assembler comment. */
190 #ifndef ASM_COMMENT_START
191 #define ASM_COMMENT_START ";#"
192 #endif
194 typedef struct dw_cfi_struct *dw_cfi_ref;
195 typedef struct dw_fde_struct *dw_fde_ref;
196 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
198 /* Call frames are described using a sequence of Call Frame
199 Information instructions. The register number, offset
200 and address fields are provided as possible operands;
201 their use is selected by the opcode field. */
203 enum dw_cfi_oprnd_type {
204 dw_cfi_oprnd_unused,
205 dw_cfi_oprnd_reg_num,
206 dw_cfi_oprnd_offset,
207 dw_cfi_oprnd_addr,
208 dw_cfi_oprnd_loc
211 typedef union dw_cfi_oprnd_struct GTY(())
213 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
214 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
215 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
216 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
218 dw_cfi_oprnd;
220 typedef struct dw_cfi_struct GTY(())
222 dw_cfi_ref dw_cfi_next;
223 enum dwarf_call_frame_info dw_cfi_opc;
224 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
225 dw_cfi_oprnd1;
226 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
227 dw_cfi_oprnd2;
229 dw_cfi_node;
231 /* This is how we define the location of the CFA. We use to handle it
232 as REG + OFFSET all the time, but now it can be more complex.
233 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
234 Instead of passing around REG and OFFSET, we pass a copy
235 of this structure. */
236 typedef struct cfa_loc GTY(())
238 unsigned long reg;
239 HOST_WIDE_INT offset;
240 HOST_WIDE_INT base_offset;
241 int indirect; /* 1 if CFA is accessed via a dereference. */
242 } dw_cfa_location;
244 /* All call frame descriptions (FDE's) in the GCC generated DWARF
245 refer to a single Common Information Entry (CIE), defined at
246 the beginning of the .debug_frame section. This use of a single
247 CIE obviates the need to keep track of multiple CIE's
248 in the DWARF generation routines below. */
250 typedef struct dw_fde_struct GTY(())
252 tree decl;
253 const char *dw_fde_begin;
254 const char *dw_fde_current_label;
255 const char *dw_fde_end;
256 const char *dw_fde_hot_section_label;
257 const char *dw_fde_hot_section_end_label;
258 const char *dw_fde_unlikely_section_label;
259 const char *dw_fde_unlikely_section_end_label;
260 bool dw_fde_switched_sections;
261 dw_cfi_ref dw_fde_cfi;
262 unsigned funcdef_number;
263 unsigned all_throwers_are_sibcalls : 1;
264 unsigned nothrow : 1;
265 unsigned uses_eh_lsda : 1;
267 dw_fde_node;
269 /* Maximum size (in bytes) of an artificially generated label. */
270 #define MAX_ARTIFICIAL_LABEL_BYTES 30
272 /* The size of addresses as they appear in the Dwarf 2 data.
273 Some architectures use word addresses to refer to code locations,
274 but Dwarf 2 info always uses byte addresses. On such machines,
275 Dwarf 2 addresses need to be larger than the architecture's
276 pointers. */
277 #ifndef DWARF2_ADDR_SIZE
278 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
279 #endif
281 /* The size in bytes of a DWARF field indicating an offset or length
282 relative to a debug info section, specified to be 4 bytes in the
283 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
284 as PTR_SIZE. */
286 #ifndef DWARF_OFFSET_SIZE
287 #define DWARF_OFFSET_SIZE 4
288 #endif
290 /* According to the (draft) DWARF 3 specification, the initial length
291 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
292 bytes are 0xffffffff, followed by the length stored in the next 8
293 bytes.
295 However, the SGI/MIPS ABI uses an initial length which is equal to
296 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
298 #ifndef DWARF_INITIAL_LENGTH_SIZE
299 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
300 #endif
302 #define DWARF_VERSION 2
304 /* Round SIZE up to the nearest BOUNDARY. */
305 #define DWARF_ROUND(SIZE,BOUNDARY) \
306 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
308 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
309 #ifndef DWARF_CIE_DATA_ALIGNMENT
310 #ifdef STACK_GROWS_DOWNWARD
311 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
312 #else
313 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
314 #endif
315 #endif
317 /* A pointer to the base of a table that contains frame description
318 information for each routine. */
319 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
321 /* Number of elements currently allocated for fde_table. */
322 static GTY(()) unsigned fde_table_allocated;
324 /* Number of elements in fde_table currently in use. */
325 static GTY(()) unsigned fde_table_in_use;
327 /* Size (in elements) of increments by which we may expand the
328 fde_table. */
329 #define FDE_TABLE_INCREMENT 256
331 /* A list of call frame insns for the CIE. */
332 static GTY(()) dw_cfi_ref cie_cfi_head;
334 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
335 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
336 attribute that accelerates the lookup of the FDE associated
337 with the subprogram. This variable holds the table index of the FDE
338 associated with the current function (body) definition. */
339 static unsigned current_funcdef_fde;
340 #endif
342 struct indirect_string_node GTY(())
344 const char *str;
345 unsigned int refcount;
346 unsigned int form;
347 char *label;
350 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
352 static GTY(()) int dw2_string_counter;
353 static GTY(()) unsigned long dwarf2out_cfi_label_num;
355 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
357 /* Forward declarations for functions defined in this file. */
359 static char *stripattributes (const char *);
360 static const char *dwarf_cfi_name (unsigned);
361 static dw_cfi_ref new_cfi (void);
362 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
363 static void add_fde_cfi (const char *, dw_cfi_ref);
364 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
365 static void lookup_cfa (dw_cfa_location *);
366 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
367 static void initial_return_save (rtx);
368 static HOST_WIDE_INT stack_adjust_offset (rtx);
369 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
370 static void output_call_frame_info (int);
371 static void dwarf2out_stack_adjust (rtx, bool);
372 static void flush_queued_reg_saves (void);
373 static bool clobbers_queued_reg_save (rtx);
374 static void dwarf2out_frame_debug_expr (rtx, const char *);
376 /* Support for complex CFA locations. */
377 static void output_cfa_loc (dw_cfi_ref);
378 static void get_cfa_from_loc_descr (dw_cfa_location *,
379 struct dw_loc_descr_struct *);
380 static struct dw_loc_descr_struct *build_cfa_loc
381 (dw_cfa_location *);
382 static void def_cfa_1 (const char *, dw_cfa_location *);
384 /* How to start an assembler comment. */
385 #ifndef ASM_COMMENT_START
386 #define ASM_COMMENT_START ";#"
387 #endif
389 /* Data and reference forms for relocatable data. */
390 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
391 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
393 #ifndef DEBUG_FRAME_SECTION
394 #define DEBUG_FRAME_SECTION ".debug_frame"
395 #endif
397 #ifndef FUNC_BEGIN_LABEL
398 #define FUNC_BEGIN_LABEL "LFB"
399 #endif
401 #ifndef FUNC_END_LABEL
402 #define FUNC_END_LABEL "LFE"
403 #endif
405 #ifndef FRAME_BEGIN_LABEL
406 #define FRAME_BEGIN_LABEL "Lframe"
407 #endif
408 #define CIE_AFTER_SIZE_LABEL "LSCIE"
409 #define CIE_END_LABEL "LECIE"
410 #define FDE_LABEL "LSFDE"
411 #define FDE_AFTER_SIZE_LABEL "LASFDE"
412 #define FDE_END_LABEL "LEFDE"
413 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
414 #define LINE_NUMBER_END_LABEL "LELT"
415 #define LN_PROLOG_AS_LABEL "LASLTP"
416 #define LN_PROLOG_END_LABEL "LELTP"
417 #define DIE_LABEL_PREFIX "DW"
419 /* The DWARF 2 CFA column which tracks the return address. Normally this
420 is the column for PC, or the first column after all of the hard
421 registers. */
422 #ifndef DWARF_FRAME_RETURN_COLUMN
423 #ifdef PC_REGNUM
424 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
425 #else
426 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
427 #endif
428 #endif
430 /* The mapping from gcc register number to DWARF 2 CFA column number. By
431 default, we just provide columns for all registers. */
432 #ifndef DWARF_FRAME_REGNUM
433 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
434 #endif
436 /* The offset from the incoming value of %sp to the top of the stack frame
437 for the current function. */
438 #ifndef INCOMING_FRAME_SP_OFFSET
439 #define INCOMING_FRAME_SP_OFFSET 0
440 #endif
442 /* Hook used by __throw. */
445 expand_builtin_dwarf_sp_column (void)
447 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
450 /* Return a pointer to a copy of the section string name S with all
451 attributes stripped off, and an asterisk prepended (for assemble_name). */
453 static inline char *
454 stripattributes (const char *s)
456 char *stripped = xmalloc (strlen (s) + 2);
457 char *p = stripped;
459 *p++ = '*';
461 while (*s && *s != ',')
462 *p++ = *s++;
464 *p = '\0';
465 return stripped;
468 /* Generate code to initialize the register size table. */
470 void
471 expand_builtin_init_dwarf_reg_sizes (tree address)
473 int i;
474 enum machine_mode mode = TYPE_MODE (char_type_node);
475 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
476 rtx mem = gen_rtx_MEM (BLKmode, addr);
477 bool wrote_return_column = false;
479 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
480 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
482 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
483 enum machine_mode save_mode = reg_raw_mode[i];
484 HOST_WIDE_INT size;
486 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
487 save_mode = choose_hard_reg_mode (i, 1, true);
488 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
490 if (save_mode == VOIDmode)
491 continue;
492 wrote_return_column = true;
494 size = GET_MODE_SIZE (save_mode);
495 if (offset < 0)
496 continue;
498 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
501 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
502 gcc_assert (wrote_return_column);
503 i = DWARF_ALT_FRAME_RETURN_COLUMN;
504 wrote_return_column = false;
505 #else
506 i = DWARF_FRAME_RETURN_COLUMN;
507 #endif
509 if (! wrote_return_column)
511 enum machine_mode save_mode = Pmode;
512 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
513 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
514 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
518 /* Convert a DWARF call frame info. operation to its string name */
520 static const char *
521 dwarf_cfi_name (unsigned int cfi_opc)
523 switch (cfi_opc)
525 case DW_CFA_advance_loc:
526 return "DW_CFA_advance_loc";
527 case DW_CFA_offset:
528 return "DW_CFA_offset";
529 case DW_CFA_restore:
530 return "DW_CFA_restore";
531 case DW_CFA_nop:
532 return "DW_CFA_nop";
533 case DW_CFA_set_loc:
534 return "DW_CFA_set_loc";
535 case DW_CFA_advance_loc1:
536 return "DW_CFA_advance_loc1";
537 case DW_CFA_advance_loc2:
538 return "DW_CFA_advance_loc2";
539 case DW_CFA_advance_loc4:
540 return "DW_CFA_advance_loc4";
541 case DW_CFA_offset_extended:
542 return "DW_CFA_offset_extended";
543 case DW_CFA_restore_extended:
544 return "DW_CFA_restore_extended";
545 case DW_CFA_undefined:
546 return "DW_CFA_undefined";
547 case DW_CFA_same_value:
548 return "DW_CFA_same_value";
549 case DW_CFA_register:
550 return "DW_CFA_register";
551 case DW_CFA_remember_state:
552 return "DW_CFA_remember_state";
553 case DW_CFA_restore_state:
554 return "DW_CFA_restore_state";
555 case DW_CFA_def_cfa:
556 return "DW_CFA_def_cfa";
557 case DW_CFA_def_cfa_register:
558 return "DW_CFA_def_cfa_register";
559 case DW_CFA_def_cfa_offset:
560 return "DW_CFA_def_cfa_offset";
562 /* DWARF 3 */
563 case DW_CFA_def_cfa_expression:
564 return "DW_CFA_def_cfa_expression";
565 case DW_CFA_expression:
566 return "DW_CFA_expression";
567 case DW_CFA_offset_extended_sf:
568 return "DW_CFA_offset_extended_sf";
569 case DW_CFA_def_cfa_sf:
570 return "DW_CFA_def_cfa_sf";
571 case DW_CFA_def_cfa_offset_sf:
572 return "DW_CFA_def_cfa_offset_sf";
574 /* SGI/MIPS specific */
575 case DW_CFA_MIPS_advance_loc8:
576 return "DW_CFA_MIPS_advance_loc8";
578 /* GNU extensions */
579 case DW_CFA_GNU_window_save:
580 return "DW_CFA_GNU_window_save";
581 case DW_CFA_GNU_args_size:
582 return "DW_CFA_GNU_args_size";
583 case DW_CFA_GNU_negative_offset_extended:
584 return "DW_CFA_GNU_negative_offset_extended";
586 default:
587 return "DW_CFA_<unknown>";
591 /* Return a pointer to a newly allocated Call Frame Instruction. */
593 static inline dw_cfi_ref
594 new_cfi (void)
596 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
598 cfi->dw_cfi_next = NULL;
599 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
600 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
602 return cfi;
605 /* Add a Call Frame Instruction to list of instructions. */
607 static inline void
608 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
610 dw_cfi_ref *p;
612 /* Find the end of the chain. */
613 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
616 *p = cfi;
619 /* Generate a new label for the CFI info to refer to. */
621 char *
622 dwarf2out_cfi_label (void)
624 static char label[20];
626 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
627 ASM_OUTPUT_LABEL (asm_out_file, label);
628 return label;
631 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
632 or to the CIE if LABEL is NULL. */
634 static void
635 add_fde_cfi (const char *label, dw_cfi_ref cfi)
637 if (label)
639 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
641 if (*label == 0)
642 label = dwarf2out_cfi_label ();
644 if (fde->dw_fde_current_label == NULL
645 || strcmp (label, fde->dw_fde_current_label) != 0)
647 dw_cfi_ref xcfi;
649 fde->dw_fde_current_label = label = xstrdup (label);
651 /* Set the location counter to the new label. */
652 xcfi = new_cfi ();
653 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
654 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
655 add_cfi (&fde->dw_fde_cfi, xcfi);
658 add_cfi (&fde->dw_fde_cfi, cfi);
661 else
662 add_cfi (&cie_cfi_head, cfi);
665 /* Subroutine of lookup_cfa. */
667 static inline void
668 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
670 switch (cfi->dw_cfi_opc)
672 case DW_CFA_def_cfa_offset:
673 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
674 break;
675 case DW_CFA_def_cfa_register:
676 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
677 break;
678 case DW_CFA_def_cfa:
679 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
680 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
681 break;
682 case DW_CFA_def_cfa_expression:
683 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
684 break;
685 default:
686 break;
690 /* Find the previous value for the CFA. */
692 static void
693 lookup_cfa (dw_cfa_location *loc)
695 dw_cfi_ref cfi;
697 loc->reg = (unsigned long) -1;
698 loc->offset = 0;
699 loc->indirect = 0;
700 loc->base_offset = 0;
702 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
703 lookup_cfa_1 (cfi, loc);
705 if (fde_table_in_use)
707 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
708 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
709 lookup_cfa_1 (cfi, loc);
713 /* The current rule for calculating the DWARF2 canonical frame address. */
714 static dw_cfa_location cfa;
716 /* The register used for saving registers to the stack, and its offset
717 from the CFA. */
718 static dw_cfa_location cfa_store;
720 /* The running total of the size of arguments pushed onto the stack. */
721 static HOST_WIDE_INT args_size;
723 /* The last args_size we actually output. */
724 static HOST_WIDE_INT old_args_size;
726 /* Entry point to update the canonical frame address (CFA).
727 LABEL is passed to add_fde_cfi. The value of CFA is now to be
728 calculated from REG+OFFSET. */
730 void
731 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
733 dw_cfa_location loc;
734 loc.indirect = 0;
735 loc.base_offset = 0;
736 loc.reg = reg;
737 loc.offset = offset;
738 def_cfa_1 (label, &loc);
741 /* This routine does the actual work. The CFA is now calculated from
742 the dw_cfa_location structure. */
744 static void
745 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
747 dw_cfi_ref cfi;
748 dw_cfa_location old_cfa, loc;
750 cfa = *loc_p;
751 loc = *loc_p;
753 if (cfa_store.reg == loc.reg && loc.indirect == 0)
754 cfa_store.offset = loc.offset;
756 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
757 lookup_cfa (&old_cfa);
759 /* If nothing changed, no need to issue any call frame instructions. */
760 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
761 && loc.indirect == old_cfa.indirect
762 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
763 return;
765 cfi = new_cfi ();
767 if (loc.reg == old_cfa.reg && !loc.indirect)
769 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
770 indicating the CFA register did not change but the offset
771 did. */
772 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
773 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
776 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
777 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
778 && !loc.indirect)
780 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
781 indicating the CFA register has changed to <register> but the
782 offset has not changed. */
783 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
784 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
786 #endif
788 else if (loc.indirect == 0)
790 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
791 indicating the CFA register has changed to <register> with
792 the specified offset. */
793 cfi->dw_cfi_opc = DW_CFA_def_cfa;
794 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
795 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
797 else
799 /* Construct a DW_CFA_def_cfa_expression instruction to
800 calculate the CFA using a full location expression since no
801 register-offset pair is available. */
802 struct dw_loc_descr_struct *loc_list;
804 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
805 loc_list = build_cfa_loc (&loc);
806 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
809 add_fde_cfi (label, cfi);
812 /* Add the CFI for saving a register. REG is the CFA column number.
813 LABEL is passed to add_fde_cfi.
814 If SREG is -1, the register is saved at OFFSET from the CFA;
815 otherwise it is saved in SREG. */
817 static void
818 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
820 dw_cfi_ref cfi = new_cfi ();
822 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
824 if (sreg == INVALID_REGNUM)
826 if (reg & ~0x3f)
827 /* The register number won't fit in 6 bits, so we have to use
828 the long form. */
829 cfi->dw_cfi_opc = DW_CFA_offset_extended;
830 else
831 cfi->dw_cfi_opc = DW_CFA_offset;
833 #ifdef ENABLE_CHECKING
835 /* If we get an offset that is not a multiple of
836 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
837 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
838 description. */
839 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
841 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
843 #endif
844 offset /= DWARF_CIE_DATA_ALIGNMENT;
845 if (offset < 0)
846 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
848 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
850 else if (sreg == reg)
851 cfi->dw_cfi_opc = DW_CFA_same_value;
852 else
854 cfi->dw_cfi_opc = DW_CFA_register;
855 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
858 add_fde_cfi (label, cfi);
861 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
862 This CFI tells the unwinder that it needs to restore the window registers
863 from the previous frame's window save area.
865 ??? Perhaps we should note in the CIE where windows are saved (instead of
866 assuming 0(cfa)) and what registers are in the window. */
868 void
869 dwarf2out_window_save (const char *label)
871 dw_cfi_ref cfi = new_cfi ();
873 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
874 add_fde_cfi (label, cfi);
877 /* Add a CFI to update the running total of the size of arguments
878 pushed onto the stack. */
880 void
881 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
883 dw_cfi_ref cfi;
885 if (size == old_args_size)
886 return;
888 old_args_size = size;
890 cfi = new_cfi ();
891 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
892 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
893 add_fde_cfi (label, cfi);
896 /* Entry point for saving a register to the stack. REG is the GCC register
897 number. LABEL and OFFSET are passed to reg_save. */
899 void
900 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
902 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
905 /* Entry point for saving the return address in the stack.
906 LABEL and OFFSET are passed to reg_save. */
908 void
909 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
911 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
914 /* Entry point for saving the return address in a register.
915 LABEL and SREG are passed to reg_save. */
917 void
918 dwarf2out_return_reg (const char *label, unsigned int sreg)
920 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
923 /* Record the initial position of the return address. RTL is
924 INCOMING_RETURN_ADDR_RTX. */
926 static void
927 initial_return_save (rtx rtl)
929 unsigned int reg = INVALID_REGNUM;
930 HOST_WIDE_INT offset = 0;
932 switch (GET_CODE (rtl))
934 case REG:
935 /* RA is in a register. */
936 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
937 break;
939 case MEM:
940 /* RA is on the stack. */
941 rtl = XEXP (rtl, 0);
942 switch (GET_CODE (rtl))
944 case REG:
945 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
946 offset = 0;
947 break;
949 case PLUS:
950 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
951 offset = INTVAL (XEXP (rtl, 1));
952 break;
954 case MINUS:
955 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
956 offset = -INTVAL (XEXP (rtl, 1));
957 break;
959 default:
960 gcc_unreachable ();
963 break;
965 case PLUS:
966 /* The return address is at some offset from any value we can
967 actually load. For instance, on the SPARC it is in %i7+8. Just
968 ignore the offset for now; it doesn't matter for unwinding frames. */
969 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
970 initial_return_save (XEXP (rtl, 0));
971 return;
973 default:
974 gcc_unreachable ();
977 if (reg != DWARF_FRAME_RETURN_COLUMN)
978 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
981 /* Given a SET, calculate the amount of stack adjustment it
982 contains. */
984 static HOST_WIDE_INT
985 stack_adjust_offset (rtx pattern)
987 rtx src = SET_SRC (pattern);
988 rtx dest = SET_DEST (pattern);
989 HOST_WIDE_INT offset = 0;
990 enum rtx_code code;
992 if (dest == stack_pointer_rtx)
994 /* (set (reg sp) (plus (reg sp) (const_int))) */
995 code = GET_CODE (src);
996 if (! (code == PLUS || code == MINUS)
997 || XEXP (src, 0) != stack_pointer_rtx
998 || GET_CODE (XEXP (src, 1)) != CONST_INT)
999 return 0;
1001 offset = INTVAL (XEXP (src, 1));
1002 if (code == PLUS)
1003 offset = -offset;
1005 else if (MEM_P (dest))
1007 /* (set (mem (pre_dec (reg sp))) (foo)) */
1008 src = XEXP (dest, 0);
1009 code = GET_CODE (src);
1011 switch (code)
1013 case PRE_MODIFY:
1014 case POST_MODIFY:
1015 if (XEXP (src, 0) == stack_pointer_rtx)
1017 rtx val = XEXP (XEXP (src, 1), 1);
1018 /* We handle only adjustments by constant amount. */
1019 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1020 && GET_CODE (val) == CONST_INT);
1021 offset = -INTVAL (val);
1022 break;
1024 return 0;
1026 case PRE_DEC:
1027 case POST_DEC:
1028 if (XEXP (src, 0) == stack_pointer_rtx)
1030 offset = GET_MODE_SIZE (GET_MODE (dest));
1031 break;
1033 return 0;
1035 case PRE_INC:
1036 case POST_INC:
1037 if (XEXP (src, 0) == stack_pointer_rtx)
1039 offset = -GET_MODE_SIZE (GET_MODE (dest));
1040 break;
1042 return 0;
1044 default:
1045 return 0;
1048 else
1049 return 0;
1051 return offset;
1054 /* Check INSN to see if it looks like a push or a stack adjustment, and
1055 make a note of it if it does. EH uses this information to find out how
1056 much extra space it needs to pop off the stack. */
1058 static void
1059 dwarf2out_stack_adjust (rtx insn, bool after_p)
1061 HOST_WIDE_INT offset;
1062 const char *label;
1063 int i;
1065 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1066 with this function. Proper support would require all frame-related
1067 insns to be marked, and to be able to handle saving state around
1068 epilogues textually in the middle of the function. */
1069 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1070 return;
1072 /* If only calls can throw, and we have a frame pointer,
1073 save up adjustments until we see the CALL_INSN. */
1074 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1076 if (CALL_P (insn) && !after_p)
1078 /* Extract the size of the args from the CALL rtx itself. */
1079 insn = PATTERN (insn);
1080 if (GET_CODE (insn) == PARALLEL)
1081 insn = XVECEXP (insn, 0, 0);
1082 if (GET_CODE (insn) == SET)
1083 insn = SET_SRC (insn);
1084 gcc_assert (GET_CODE (insn) == CALL);
1085 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1087 return;
1090 if (CALL_P (insn) && !after_p)
1092 if (!flag_asynchronous_unwind_tables)
1093 dwarf2out_args_size ("", args_size);
1094 return;
1096 else if (BARRIER_P (insn))
1098 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1099 the compiler will have already emitted a stack adjustment, but
1100 doesn't bother for calls to noreturn functions. */
1101 #ifdef STACK_GROWS_DOWNWARD
1102 offset = -args_size;
1103 #else
1104 offset = args_size;
1105 #endif
1107 else if (GET_CODE (PATTERN (insn)) == SET)
1108 offset = stack_adjust_offset (PATTERN (insn));
1109 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1110 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1112 /* There may be stack adjustments inside compound insns. Search
1113 for them. */
1114 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1115 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1116 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1118 else
1119 return;
1121 if (offset == 0)
1122 return;
1124 if (cfa.reg == STACK_POINTER_REGNUM)
1125 cfa.offset += offset;
1127 #ifndef STACK_GROWS_DOWNWARD
1128 offset = -offset;
1129 #endif
1131 args_size += offset;
1132 if (args_size < 0)
1133 args_size = 0;
1135 label = dwarf2out_cfi_label ();
1136 def_cfa_1 (label, &cfa);
1137 if (flag_asynchronous_unwind_tables)
1138 dwarf2out_args_size (label, args_size);
1141 #endif
1143 /* We delay emitting a register save until either (a) we reach the end
1144 of the prologue or (b) the register is clobbered. This clusters
1145 register saves so that there are fewer pc advances. */
1147 struct queued_reg_save GTY(())
1149 struct queued_reg_save *next;
1150 rtx reg;
1151 HOST_WIDE_INT cfa_offset;
1152 rtx saved_reg;
1155 static GTY(()) struct queued_reg_save *queued_reg_saves;
1157 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1158 struct reg_saved_in_data GTY(()) {
1159 rtx orig_reg;
1160 rtx saved_in_reg;
1163 /* A list of registers saved in other registers.
1164 The list intentionally has a small maximum capacity of 4; if your
1165 port needs more than that, you might consider implementing a
1166 more efficient data structure. */
1167 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1168 static GTY(()) size_t num_regs_saved_in_regs;
1170 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1171 static const char *last_reg_save_label;
1173 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1174 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1176 static void
1177 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1179 struct queued_reg_save *q;
1181 /* Duplicates waste space, but it's also necessary to remove them
1182 for correctness, since the queue gets output in reverse
1183 order. */
1184 for (q = queued_reg_saves; q != NULL; q = q->next)
1185 if (REGNO (q->reg) == REGNO (reg))
1186 break;
1188 if (q == NULL)
1190 q = ggc_alloc (sizeof (*q));
1191 q->next = queued_reg_saves;
1192 queued_reg_saves = q;
1195 q->reg = reg;
1196 q->cfa_offset = offset;
1197 q->saved_reg = sreg;
1199 last_reg_save_label = label;
1202 /* Output all the entries in QUEUED_REG_SAVES. */
1204 static void
1205 flush_queued_reg_saves (void)
1207 struct queued_reg_save *q;
1209 for (q = queued_reg_saves; q; q = q->next)
1211 size_t i;
1212 unsigned int reg, sreg;
1214 for (i = 0; i < num_regs_saved_in_regs; i++)
1215 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1216 break;
1217 if (q->saved_reg && i == num_regs_saved_in_regs)
1219 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1220 num_regs_saved_in_regs++;
1222 if (i != num_regs_saved_in_regs)
1224 regs_saved_in_regs[i].orig_reg = q->reg;
1225 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1228 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1229 if (q->saved_reg)
1230 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1231 else
1232 sreg = INVALID_REGNUM;
1233 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1236 queued_reg_saves = NULL;
1237 last_reg_save_label = NULL;
1240 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1241 location for? Or, does it clobber a register which we've previously
1242 said that some other register is saved in, and for which we now
1243 have a new location for? */
1245 static bool
1246 clobbers_queued_reg_save (rtx insn)
1248 struct queued_reg_save *q;
1250 for (q = queued_reg_saves; q; q = q->next)
1252 size_t i;
1253 if (modified_in_p (q->reg, insn))
1254 return true;
1255 for (i = 0; i < num_regs_saved_in_regs; i++)
1256 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1257 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1258 return true;
1261 return false;
1264 /* What register, if any, is currently saved in REG? */
1266 static rtx
1267 reg_saved_in (rtx reg)
1269 unsigned int regn = REGNO (reg);
1270 size_t i;
1271 struct queued_reg_save *q;
1273 for (q = queued_reg_saves; q; q = q->next)
1274 if (q->saved_reg && regn == REGNO (q->saved_reg))
1275 return q->reg;
1277 for (i = 0; i < num_regs_saved_in_regs; i++)
1278 if (regs_saved_in_regs[i].saved_in_reg
1279 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1280 return regs_saved_in_regs[i].orig_reg;
1282 return NULL_RTX;
1286 /* A temporary register holding an integral value used in adjusting SP
1287 or setting up the store_reg. The "offset" field holds the integer
1288 value, not an offset. */
1289 static dw_cfa_location cfa_temp;
1291 /* Record call frame debugging information for an expression EXPR,
1292 which either sets SP or FP (adjusting how we calculate the frame
1293 address) or saves a register to the stack or another register.
1294 LABEL indicates the address of EXPR.
1296 This function encodes a state machine mapping rtxes to actions on
1297 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1298 users need not read the source code.
1300 The High-Level Picture
1302 Changes in the register we use to calculate the CFA: Currently we
1303 assume that if you copy the CFA register into another register, we
1304 should take the other one as the new CFA register; this seems to
1305 work pretty well. If it's wrong for some target, it's simple
1306 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1308 Changes in the register we use for saving registers to the stack:
1309 This is usually SP, but not always. Again, we deduce that if you
1310 copy SP into another register (and SP is not the CFA register),
1311 then the new register is the one we will be using for register
1312 saves. This also seems to work.
1314 Register saves: There's not much guesswork about this one; if
1315 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1316 register save, and the register used to calculate the destination
1317 had better be the one we think we're using for this purpose.
1318 It's also assumed that a copy from a call-saved register to another
1319 register is saving that register if RTX_FRAME_RELATED_P is set on
1320 that instruction. If the copy is from a call-saved register to
1321 the *same* register, that means that the register is now the same
1322 value as in the caller.
1324 Except: If the register being saved is the CFA register, and the
1325 offset is nonzero, we are saving the CFA, so we assume we have to
1326 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1327 the intent is to save the value of SP from the previous frame.
1329 In addition, if a register has previously been saved to a different
1330 register,
1332 Invariants / Summaries of Rules
1334 cfa current rule for calculating the CFA. It usually
1335 consists of a register and an offset.
1336 cfa_store register used by prologue code to save things to the stack
1337 cfa_store.offset is the offset from the value of
1338 cfa_store.reg to the actual CFA
1339 cfa_temp register holding an integral value. cfa_temp.offset
1340 stores the value, which will be used to adjust the
1341 stack pointer. cfa_temp is also used like cfa_store,
1342 to track stores to the stack via fp or a temp reg.
1344 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1345 with cfa.reg as the first operand changes the cfa.reg and its
1346 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1347 cfa_temp.offset.
1349 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1350 expression yielding a constant. This sets cfa_temp.reg
1351 and cfa_temp.offset.
1353 Rule 5: Create a new register cfa_store used to save items to the
1354 stack.
1356 Rules 10-14: Save a register to the stack. Define offset as the
1357 difference of the original location and cfa_store's
1358 location (or cfa_temp's location if cfa_temp is used).
1360 The Rules
1362 "{a,b}" indicates a choice of a xor b.
1363 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1365 Rule 1:
1366 (set <reg1> <reg2>:cfa.reg)
1367 effects: cfa.reg = <reg1>
1368 cfa.offset unchanged
1369 cfa_temp.reg = <reg1>
1370 cfa_temp.offset = cfa.offset
1372 Rule 2:
1373 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1374 {<const_int>,<reg>:cfa_temp.reg}))
1375 effects: cfa.reg = sp if fp used
1376 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1377 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1378 if cfa_store.reg==sp
1380 Rule 3:
1381 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1382 effects: cfa.reg = fp
1383 cfa_offset += +/- <const_int>
1385 Rule 4:
1386 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1387 constraints: <reg1> != fp
1388 <reg1> != sp
1389 effects: cfa.reg = <reg1>
1390 cfa_temp.reg = <reg1>
1391 cfa_temp.offset = cfa.offset
1393 Rule 5:
1394 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1395 constraints: <reg1> != fp
1396 <reg1> != sp
1397 effects: cfa_store.reg = <reg1>
1398 cfa_store.offset = cfa.offset - cfa_temp.offset
1400 Rule 6:
1401 (set <reg> <const_int>)
1402 effects: cfa_temp.reg = <reg>
1403 cfa_temp.offset = <const_int>
1405 Rule 7:
1406 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1407 effects: cfa_temp.reg = <reg1>
1408 cfa_temp.offset |= <const_int>
1410 Rule 8:
1411 (set <reg> (high <exp>))
1412 effects: none
1414 Rule 9:
1415 (set <reg> (lo_sum <exp> <const_int>))
1416 effects: cfa_temp.reg = <reg>
1417 cfa_temp.offset = <const_int>
1419 Rule 10:
1420 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1421 effects: cfa_store.offset -= <const_int>
1422 cfa.offset = cfa_store.offset if cfa.reg == sp
1423 cfa.reg = sp
1424 cfa.base_offset = -cfa_store.offset
1426 Rule 11:
1427 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1428 effects: cfa_store.offset += -/+ mode_size(mem)
1429 cfa.offset = cfa_store.offset if cfa.reg == sp
1430 cfa.reg = sp
1431 cfa.base_offset = -cfa_store.offset
1433 Rule 12:
1434 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1436 <reg2>)
1437 effects: cfa.reg = <reg1>
1438 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1440 Rule 13:
1441 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1442 effects: cfa.reg = <reg1>
1443 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1445 Rule 14:
1446 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1447 effects: cfa.reg = <reg1>
1448 cfa.base_offset = -cfa_temp.offset
1449 cfa_temp.offset -= mode_size(mem)
1451   Rule 15:
1452   (set <reg> {unspec, unspec_volatile})
1453   effects: target-dependent */
1455 static void
1456 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1458 rtx src, dest;
1459 HOST_WIDE_INT offset;
1461 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1462 the PARALLEL independently. The first element is always processed if
1463 it is a SET. This is for backward compatibility. Other elements
1464 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1465 flag is set in them. */
1466 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1468 int par_index;
1469 int limit = XVECLEN (expr, 0);
1471 for (par_index = 0; par_index < limit; par_index++)
1472 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1473 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1474 || par_index == 0))
1475 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1477 return;
1480 gcc_assert (GET_CODE (expr) == SET);
1482 src = SET_SRC (expr);
1483 dest = SET_DEST (expr);
1485 if (REG_P (src))
1487 rtx rsi = reg_saved_in (src);
1488 if (rsi)
1489 src = rsi;
1492 switch (GET_CODE (dest))
1494 case REG:
1495 switch (GET_CODE (src))
1497 /* Setting FP from SP. */
1498 case REG:
1499 if (cfa.reg == (unsigned) REGNO (src))
1501 /* Rule 1 */
1502 /* Update the CFA rule wrt SP or FP. Make sure src is
1503 relative to the current CFA register.
1505 We used to require that dest be either SP or FP, but the
1506 ARM copies SP to a temporary register, and from there to
1507 FP. So we just rely on the backends to only set
1508 RTX_FRAME_RELATED_P on appropriate insns. */
1509 cfa.reg = REGNO (dest);
1510 cfa_temp.reg = cfa.reg;
1511 cfa_temp.offset = cfa.offset;
1513 else
1515 /* Saving a register in a register. */
1516 gcc_assert (call_used_regs [REGNO (dest)]
1517 && (!fixed_regs [REGNO (dest)]
1518 /* For the SPARC and its register window. */
1519 || DWARF_FRAME_REGNUM (REGNO (src))
1520 == DWARF_FRAME_RETURN_COLUMN));
1521 queue_reg_save (label, src, dest, 0);
1523 break;
1525 case PLUS:
1526 case MINUS:
1527 case LO_SUM:
1528 if (dest == stack_pointer_rtx)
1530 /* Rule 2 */
1531 /* Adjusting SP. */
1532 switch (GET_CODE (XEXP (src, 1)))
1534 case CONST_INT:
1535 offset = INTVAL (XEXP (src, 1));
1536 break;
1537 case REG:
1538 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1539 == cfa_temp.reg);
1540 offset = cfa_temp.offset;
1541 break;
1542 default:
1543 gcc_unreachable ();
1546 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1548 /* Restoring SP from FP in the epilogue. */
1549 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1550 cfa.reg = STACK_POINTER_REGNUM;
1552 else if (GET_CODE (src) == LO_SUM)
1553 /* Assume we've set the source reg of the LO_SUM from sp. */
1555 else
1556 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1558 if (GET_CODE (src) != MINUS)
1559 offset = -offset;
1560 if (cfa.reg == STACK_POINTER_REGNUM)
1561 cfa.offset += offset;
1562 if (cfa_store.reg == STACK_POINTER_REGNUM)
1563 cfa_store.offset += offset;
1565 else if (dest == hard_frame_pointer_rtx)
1567 /* Rule 3 */
1568 /* Either setting the FP from an offset of the SP,
1569 or adjusting the FP */
1570 gcc_assert (frame_pointer_needed);
1572 gcc_assert (REG_P (XEXP (src, 0))
1573 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1574 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1575 offset = INTVAL (XEXP (src, 1));
1576 if (GET_CODE (src) != MINUS)
1577 offset = -offset;
1578 cfa.offset += offset;
1579 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1581 else
1583 gcc_assert (GET_CODE (src) != MINUS);
1585 /* Rule 4 */
1586 if (REG_P (XEXP (src, 0))
1587 && REGNO (XEXP (src, 0)) == cfa.reg
1588 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1590 /* Setting a temporary CFA register that will be copied
1591 into the FP later on. */
1592 offset = - INTVAL (XEXP (src, 1));
1593 cfa.offset += offset;
1594 cfa.reg = REGNO (dest);
1595 /* Or used to save regs to the stack. */
1596 cfa_temp.reg = cfa.reg;
1597 cfa_temp.offset = cfa.offset;
1600 /* Rule 5 */
1601 else if (REG_P (XEXP (src, 0))
1602 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1603 && XEXP (src, 1) == stack_pointer_rtx)
1605 /* Setting a scratch register that we will use instead
1606 of SP for saving registers to the stack. */
1607 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1608 cfa_store.reg = REGNO (dest);
1609 cfa_store.offset = cfa.offset - cfa_temp.offset;
1612 /* Rule 9 */
1613 else if (GET_CODE (src) == LO_SUM
1614 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1616 cfa_temp.reg = REGNO (dest);
1617 cfa_temp.offset = INTVAL (XEXP (src, 1));
1619 else
1620 gcc_unreachable ();
1622 break;
1624 /* Rule 6 */
1625 case CONST_INT:
1626 cfa_temp.reg = REGNO (dest);
1627 cfa_temp.offset = INTVAL (src);
1628 break;
1630 /* Rule 7 */
1631 case IOR:
1632 gcc_assert (REG_P (XEXP (src, 0))
1633 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1634 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1636 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1637 cfa_temp.reg = REGNO (dest);
1638 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1639 break;
1641 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1642 which will fill in all of the bits. */
1643 /* Rule 8 */
1644 case HIGH:
1645 break;
1647 /* Rule 15 */
1648 case UNSPEC:
1649 case UNSPEC_VOLATILE:
1650 gcc_assert (targetm.dwarf_handle_frame_unspec);
1651 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1652 break;
1654 default:
1655 gcc_unreachable ();
1658 def_cfa_1 (label, &cfa);
1659 break;
1661 case MEM:
1662 gcc_assert (REG_P (src));
1664 /* Saving a register to the stack. Make sure dest is relative to the
1665 CFA register. */
1666 switch (GET_CODE (XEXP (dest, 0)))
1668 /* Rule 10 */
1669 /* With a push. */
1670 case PRE_MODIFY:
1671 /* We can't handle variable size modifications. */
1672 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1673 == CONST_INT);
1674 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1676 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1677 && cfa_store.reg == STACK_POINTER_REGNUM);
1679 cfa_store.offset += offset;
1680 if (cfa.reg == STACK_POINTER_REGNUM)
1681 cfa.offset = cfa_store.offset;
1683 offset = -cfa_store.offset;
1684 break;
1686 /* Rule 11 */
1687 case PRE_INC:
1688 case PRE_DEC:
1689 offset = GET_MODE_SIZE (GET_MODE (dest));
1690 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1691 offset = -offset;
1693 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1694 && cfa_store.reg == STACK_POINTER_REGNUM);
1696 cfa_store.offset += offset;
1697 if (cfa.reg == STACK_POINTER_REGNUM)
1698 cfa.offset = cfa_store.offset;
1700 offset = -cfa_store.offset;
1701 break;
1703 /* Rule 12 */
1704 /* With an offset. */
1705 case PLUS:
1706 case MINUS:
1707 case LO_SUM:
1709 int regno;
1711 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1712 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1713 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1714 offset = -offset;
1716 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1718 if (cfa_store.reg == (unsigned) regno)
1719 offset -= cfa_store.offset;
1720 else
1722 gcc_assert (cfa_temp.reg == (unsigned) regno);
1723 offset -= cfa_temp.offset;
1726 break;
1728 /* Rule 13 */
1729 /* Without an offset. */
1730 case REG:
1732 int regno = REGNO (XEXP (dest, 0));
1734 if (cfa_store.reg == (unsigned) regno)
1735 offset = -cfa_store.offset;
1736 else
1738 gcc_assert (cfa_temp.reg == (unsigned) regno);
1739 offset = -cfa_temp.offset;
1742 break;
1744 /* Rule 14 */
1745 case POST_INC:
1746 gcc_assert (cfa_temp.reg
1747 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1748 offset = -cfa_temp.offset;
1749 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1750 break;
1752 default:
1753 gcc_unreachable ();
1756 if (REGNO (src) != STACK_POINTER_REGNUM
1757 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1758 && (unsigned) REGNO (src) == cfa.reg)
1760 /* We're storing the current CFA reg into the stack. */
1762 if (cfa.offset == 0)
1764 /* If the source register is exactly the CFA, assume
1765 we're saving SP like any other register; this happens
1766 on the ARM. */
1767 def_cfa_1 (label, &cfa);
1768 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1769 break;
1771 else
1773 /* Otherwise, we'll need to look in the stack to
1774 calculate the CFA. */
1775 rtx x = XEXP (dest, 0);
1777 if (!REG_P (x))
1778 x = XEXP (x, 0);
1779 gcc_assert (REG_P (x));
1781 cfa.reg = REGNO (x);
1782 cfa.base_offset = offset;
1783 cfa.indirect = 1;
1784 def_cfa_1 (label, &cfa);
1785 break;
1789 def_cfa_1 (label, &cfa);
1790 queue_reg_save (label, src, NULL_RTX, offset);
1791 break;
1793 default:
1794 gcc_unreachable ();
1798 /* Record call frame debugging information for INSN, which either
1799 sets SP or FP (adjusting how we calculate the frame address) or saves a
1800 register to the stack. If INSN is NULL_RTX, initialize our state.
1802 If AFTER_P is false, we're being called before the insn is emitted,
1803 otherwise after. Call instructions get invoked twice. */
1805 void
1806 dwarf2out_frame_debug (rtx insn, bool after_p)
1808 const char *label;
1809 rtx src;
1811 if (insn == NULL_RTX)
1813 size_t i;
1815 /* Flush any queued register saves. */
1816 flush_queued_reg_saves ();
1818 /* Set up state for generating call frame debug info. */
1819 lookup_cfa (&cfa);
1820 gcc_assert (cfa.reg
1821 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1823 cfa.reg = STACK_POINTER_REGNUM;
1824 cfa_store = cfa;
1825 cfa_temp.reg = -1;
1826 cfa_temp.offset = 0;
1828 for (i = 0; i < num_regs_saved_in_regs; i++)
1830 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1831 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1833 num_regs_saved_in_regs = 0;
1834 return;
1837 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1838 flush_queued_reg_saves ();
1840 if (! RTX_FRAME_RELATED_P (insn))
1842 if (!ACCUMULATE_OUTGOING_ARGS)
1843 dwarf2out_stack_adjust (insn, after_p);
1844 return;
1847 label = dwarf2out_cfi_label ();
1848 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1849 if (src)
1850 insn = XEXP (src, 0);
1851 else
1852 insn = PATTERN (insn);
1854 dwarf2out_frame_debug_expr (insn, label);
1857 #endif
1859 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1860 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1861 (enum dwarf_call_frame_info cfi);
1863 static enum dw_cfi_oprnd_type
1864 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1866 switch (cfi)
1868 case DW_CFA_nop:
1869 case DW_CFA_GNU_window_save:
1870 return dw_cfi_oprnd_unused;
1872 case DW_CFA_set_loc:
1873 case DW_CFA_advance_loc1:
1874 case DW_CFA_advance_loc2:
1875 case DW_CFA_advance_loc4:
1876 case DW_CFA_MIPS_advance_loc8:
1877 return dw_cfi_oprnd_addr;
1879 case DW_CFA_offset:
1880 case DW_CFA_offset_extended:
1881 case DW_CFA_def_cfa:
1882 case DW_CFA_offset_extended_sf:
1883 case DW_CFA_def_cfa_sf:
1884 case DW_CFA_restore_extended:
1885 case DW_CFA_undefined:
1886 case DW_CFA_same_value:
1887 case DW_CFA_def_cfa_register:
1888 case DW_CFA_register:
1889 return dw_cfi_oprnd_reg_num;
1891 case DW_CFA_def_cfa_offset:
1892 case DW_CFA_GNU_args_size:
1893 case DW_CFA_def_cfa_offset_sf:
1894 return dw_cfi_oprnd_offset;
1896 case DW_CFA_def_cfa_expression:
1897 case DW_CFA_expression:
1898 return dw_cfi_oprnd_loc;
1900 default:
1901 gcc_unreachable ();
1905 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1906 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1907 (enum dwarf_call_frame_info cfi);
1909 static enum dw_cfi_oprnd_type
1910 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1912 switch (cfi)
1914 case DW_CFA_def_cfa:
1915 case DW_CFA_def_cfa_sf:
1916 case DW_CFA_offset:
1917 case DW_CFA_offset_extended_sf:
1918 case DW_CFA_offset_extended:
1919 return dw_cfi_oprnd_offset;
1921 case DW_CFA_register:
1922 return dw_cfi_oprnd_reg_num;
1924 default:
1925 return dw_cfi_oprnd_unused;
1929 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1931 /* Map register numbers held in the call frame info that gcc has
1932 collected using DWARF_FRAME_REGNUM to those that should be output in
1933 .debug_frame and .eh_frame. */
1934 #ifndef DWARF2_FRAME_REG_OUT
1935 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1936 #endif
1938 /* Output a Call Frame Information opcode and its operand(s). */
1940 static void
1941 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1943 unsigned long r;
1944 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1945 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1946 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1947 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1948 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1949 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1951 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1952 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1953 "DW_CFA_offset, column 0x%lx", r);
1954 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1956 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1958 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1959 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1960 "DW_CFA_restore, column 0x%lx", r);
1962 else
1964 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1965 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1967 switch (cfi->dw_cfi_opc)
1969 case DW_CFA_set_loc:
1970 if (for_eh)
1971 dw2_asm_output_encoded_addr_rtx (
1972 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1973 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1974 NULL);
1975 else
1976 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1977 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1978 break;
1980 case DW_CFA_advance_loc1:
1981 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1982 fde->dw_fde_current_label, NULL);
1983 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1984 break;
1986 case DW_CFA_advance_loc2:
1987 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1988 fde->dw_fde_current_label, NULL);
1989 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1990 break;
1992 case DW_CFA_advance_loc4:
1993 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1994 fde->dw_fde_current_label, NULL);
1995 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1996 break;
1998 case DW_CFA_MIPS_advance_loc8:
1999 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2000 fde->dw_fde_current_label, NULL);
2001 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2002 break;
2004 case DW_CFA_offset_extended:
2005 case DW_CFA_def_cfa:
2006 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2007 dw2_asm_output_data_uleb128 (r, NULL);
2008 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2009 break;
2011 case DW_CFA_offset_extended_sf:
2012 case DW_CFA_def_cfa_sf:
2013 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2014 dw2_asm_output_data_uleb128 (r, NULL);
2015 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2016 break;
2018 case DW_CFA_restore_extended:
2019 case DW_CFA_undefined:
2020 case DW_CFA_same_value:
2021 case DW_CFA_def_cfa_register:
2022 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2023 dw2_asm_output_data_uleb128 (r, NULL);
2024 break;
2026 case DW_CFA_register:
2027 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2028 dw2_asm_output_data_uleb128 (r, NULL);
2029 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2030 dw2_asm_output_data_uleb128 (r, NULL);
2031 break;
2033 case DW_CFA_def_cfa_offset:
2034 case DW_CFA_GNU_args_size:
2035 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2036 break;
2038 case DW_CFA_def_cfa_offset_sf:
2039 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2040 break;
2042 case DW_CFA_GNU_window_save:
2043 break;
2045 case DW_CFA_def_cfa_expression:
2046 case DW_CFA_expression:
2047 output_cfa_loc (cfi);
2048 break;
2050 case DW_CFA_GNU_negative_offset_extended:
2051 /* Obsoleted by DW_CFA_offset_extended_sf. */
2052 gcc_unreachable ();
2054 default:
2055 break;
2060 /* Output the call frame information used to record information
2061 that relates to calculating the frame pointer, and records the
2062 location of saved registers. */
2064 static void
2065 output_call_frame_info (int for_eh)
2067 unsigned int i;
2068 dw_fde_ref fde;
2069 dw_cfi_ref cfi;
2070 char l1[20], l2[20], section_start_label[20];
2071 bool any_lsda_needed = false;
2072 char augmentation[6];
2073 int augmentation_size;
2074 int fde_encoding = DW_EH_PE_absptr;
2075 int per_encoding = DW_EH_PE_absptr;
2076 int lsda_encoding = DW_EH_PE_absptr;
2078 /* Don't emit a CIE if there won't be any FDEs. */
2079 if (fde_table_in_use == 0)
2080 return;
2082 /* If we make FDEs linkonce, we may have to emit an empty label for
2083 an FDE that wouldn't otherwise be emitted. We want to avoid
2084 having an FDE kept around when the function it refers to is
2085 discarded. Example where this matters: a primary function
2086 template in C++ requires EH information, but an explicit
2087 specialization doesn't. */
2088 if (TARGET_USES_WEAK_UNWIND_INFO
2089 && ! flag_asynchronous_unwind_tables
2090 && for_eh)
2091 for (i = 0; i < fde_table_in_use; i++)
2092 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2093 && !fde_table[i].uses_eh_lsda
2094 && ! DECL_WEAK (fde_table[i].decl))
2095 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2096 for_eh, /* empty */ 1);
2098 /* If we don't have any functions we'll want to unwind out of, don't
2099 emit any EH unwind information. Note that if exceptions aren't
2100 enabled, we won't have collected nothrow information, and if we
2101 asked for asynchronous tables, we always want this info. */
2102 if (for_eh)
2104 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2106 for (i = 0; i < fde_table_in_use; i++)
2107 if (fde_table[i].uses_eh_lsda)
2108 any_eh_needed = any_lsda_needed = true;
2109 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2110 any_eh_needed = true;
2111 else if (! fde_table[i].nothrow
2112 && ! fde_table[i].all_throwers_are_sibcalls)
2113 any_eh_needed = true;
2115 if (! any_eh_needed)
2116 return;
2119 /* We're going to be generating comments, so turn on app. */
2120 if (flag_debug_asm)
2121 app_enable ();
2123 if (for_eh)
2124 targetm.asm_out.eh_frame_section ();
2125 else
2126 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2128 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2129 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2131 /* Output the CIE. */
2132 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2133 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2134 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2135 "Length of Common Information Entry");
2136 ASM_OUTPUT_LABEL (asm_out_file, l1);
2138 /* Now that the CIE pointer is PC-relative for EH,
2139 use 0 to identify the CIE. */
2140 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2141 (for_eh ? 0 : DW_CIE_ID),
2142 "CIE Identifier Tag");
2144 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2146 augmentation[0] = 0;
2147 augmentation_size = 0;
2148 if (for_eh)
2150 char *p;
2152 /* Augmentation:
2153 z Indicates that a uleb128 is present to size the
2154 augmentation section.
2155 L Indicates the encoding (and thus presence) of
2156 an LSDA pointer in the FDE augmentation.
2157 R Indicates a non-default pointer encoding for
2158 FDE code pointers.
2159 P Indicates the presence of an encoding + language
2160 personality routine in the CIE augmentation. */
2162 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2163 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2164 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2166 p = augmentation + 1;
2167 if (eh_personality_libfunc)
2169 *p++ = 'P';
2170 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2172 if (any_lsda_needed)
2174 *p++ = 'L';
2175 augmentation_size += 1;
2177 if (fde_encoding != DW_EH_PE_absptr)
2179 *p++ = 'R';
2180 augmentation_size += 1;
2182 if (p > augmentation + 1)
2184 augmentation[0] = 'z';
2185 *p = '\0';
2188 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2189 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2191 int offset = ( 4 /* Length */
2192 + 4 /* CIE Id */
2193 + 1 /* CIE version */
2194 + strlen (augmentation) + 1 /* Augmentation */
2195 + size_of_uleb128 (1) /* Code alignment */
2196 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2197 + 1 /* RA column */
2198 + 1 /* Augmentation size */
2199 + 1 /* Personality encoding */ );
2200 int pad = -offset & (PTR_SIZE - 1);
2202 augmentation_size += pad;
2204 /* Augmentations should be small, so there's scarce need to
2205 iterate for a solution. Die if we exceed one uleb128 byte. */
2206 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2210 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2211 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2212 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2213 "CIE Data Alignment Factor");
2215 if (DW_CIE_VERSION == 1)
2216 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2217 else
2218 dw2_asm_output_data_uleb128 (DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2220 if (augmentation[0])
2222 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2223 if (eh_personality_libfunc)
2225 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2226 eh_data_format_name (per_encoding));
2227 dw2_asm_output_encoded_addr_rtx (per_encoding,
2228 eh_personality_libfunc, NULL);
2231 if (any_lsda_needed)
2232 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2233 eh_data_format_name (lsda_encoding));
2235 if (fde_encoding != DW_EH_PE_absptr)
2236 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2237 eh_data_format_name (fde_encoding));
2240 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2241 output_cfi (cfi, NULL, for_eh);
2243 /* Pad the CIE out to an address sized boundary. */
2244 ASM_OUTPUT_ALIGN (asm_out_file,
2245 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2246 ASM_OUTPUT_LABEL (asm_out_file, l2);
2248 /* Loop through all of the FDE's. */
2249 for (i = 0; i < fde_table_in_use; i++)
2251 fde = &fde_table[i];
2253 /* Don't emit EH unwind info for leaf functions that don't need it. */
2254 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2255 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2256 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2257 && !fde->uses_eh_lsda)
2258 continue;
2260 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2261 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2262 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2263 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2264 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2265 "FDE Length");
2266 ASM_OUTPUT_LABEL (asm_out_file, l1);
2268 if (for_eh)
2269 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2270 else
2271 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2272 "FDE CIE offset");
2274 if (for_eh)
2276 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2277 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2278 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2279 sym_ref,
2280 "FDE initial location");
2281 if (fde->dw_fde_switched_sections)
2283 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2284 fde->dw_fde_unlikely_section_label);
2285 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2286 fde->dw_fde_hot_section_label);
2287 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2288 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2289 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3,
2290 "FDE initial location");
2291 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2292 fde->dw_fde_hot_section_end_label,
2293 fde->dw_fde_hot_section_label,
2294 "FDE address range");
2295 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2,
2296 "FDE initial location");
2297 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2298 fde->dw_fde_unlikely_section_end_label,
2299 fde->dw_fde_unlikely_section_label,
2300 "FDE address range");
2302 else
2303 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2304 fde->dw_fde_end, fde->dw_fde_begin,
2305 "FDE address range");
2307 else
2309 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2310 "FDE initial location");
2311 if (fde->dw_fde_switched_sections)
2313 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2314 fde->dw_fde_hot_section_label,
2315 "FDE initial location");
2316 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2317 fde->dw_fde_hot_section_end_label,
2318 fde->dw_fde_hot_section_label,
2319 "FDE address range");
2320 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2321 fde->dw_fde_unlikely_section_label,
2322 "FDE initial location");
2323 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2324 fde->dw_fde_unlikely_section_end_label,
2325 fde->dw_fde_unlikely_section_label,
2326 "FDE address range");
2328 else
2329 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2330 fde->dw_fde_end, fde->dw_fde_begin,
2331 "FDE address range");
2334 if (augmentation[0])
2336 if (any_lsda_needed)
2338 int size = size_of_encoded_value (lsda_encoding);
2340 if (lsda_encoding == DW_EH_PE_aligned)
2342 int offset = ( 4 /* Length */
2343 + 4 /* CIE offset */
2344 + 2 * size_of_encoded_value (fde_encoding)
2345 + 1 /* Augmentation size */ );
2346 int pad = -offset & (PTR_SIZE - 1);
2348 size += pad;
2349 gcc_assert (size_of_uleb128 (size) == 1);
2352 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2354 if (fde->uses_eh_lsda)
2356 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2357 fde->funcdef_number);
2358 dw2_asm_output_encoded_addr_rtx (
2359 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2360 "Language Specific Data Area");
2362 else
2364 if (lsda_encoding == DW_EH_PE_aligned)
2365 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2366 dw2_asm_output_data
2367 (size_of_encoded_value (lsda_encoding), 0,
2368 "Language Specific Data Area (none)");
2371 else
2372 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2375 /* Loop through the Call Frame Instructions associated with
2376 this FDE. */
2377 fde->dw_fde_current_label = fde->dw_fde_begin;
2378 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2379 output_cfi (cfi, fde, for_eh);
2381 /* Pad the FDE out to an address sized boundary. */
2382 ASM_OUTPUT_ALIGN (asm_out_file,
2383 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2384 ASM_OUTPUT_LABEL (asm_out_file, l2);
2387 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2388 dw2_asm_output_data (4, 0, "End of Table");
2389 #ifdef MIPS_DEBUGGING_INFO
2390 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2391 get a value of 0. Putting .align 0 after the label fixes it. */
2392 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2393 #endif
2395 /* Turn off app to make assembly quicker. */
2396 if (flag_debug_asm)
2397 app_disable ();
2400 /* Output a marker (i.e. a label) for the beginning of a function, before
2401 the prologue. */
2403 void
2404 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2405 const char *file ATTRIBUTE_UNUSED)
2407 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2408 char * dup_label;
2409 dw_fde_ref fde;
2411 current_function_func_begin_label = NULL;
2413 #ifdef TARGET_UNWIND_INFO
2414 /* ??? current_function_func_begin_label is also used by except.c
2415 for call-site information. We must emit this label if it might
2416 be used. */
2417 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2418 && ! dwarf2out_do_frame ())
2419 return;
2420 #else
2421 if (! dwarf2out_do_frame ())
2422 return;
2423 #endif
2425 function_section (current_function_decl);
2426 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2427 current_function_funcdef_no);
2428 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2429 current_function_funcdef_no);
2430 dup_label = xstrdup (label);
2431 current_function_func_begin_label = dup_label;
2433 #ifdef TARGET_UNWIND_INFO
2434 /* We can elide the fde allocation if we're not emitting debug info. */
2435 if (! dwarf2out_do_frame ())
2436 return;
2437 #endif
2439 /* Expand the fde table if necessary. */
2440 if (fde_table_in_use == fde_table_allocated)
2442 fde_table_allocated += FDE_TABLE_INCREMENT;
2443 fde_table = ggc_realloc (fde_table,
2444 fde_table_allocated * sizeof (dw_fde_node));
2445 memset (fde_table + fde_table_in_use, 0,
2446 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2449 /* Record the FDE associated with this function. */
2450 current_funcdef_fde = fde_table_in_use;
2452 /* Add the new FDE at the end of the fde_table. */
2453 fde = &fde_table[fde_table_in_use++];
2454 fde->decl = current_function_decl;
2455 fde->dw_fde_begin = dup_label;
2456 fde->dw_fde_current_label = NULL;
2457 fde->dw_fde_hot_section_label = NULL;
2458 fde->dw_fde_hot_section_end_label = NULL;
2459 fde->dw_fde_unlikely_section_label = NULL;
2460 fde->dw_fde_unlikely_section_end_label = NULL;
2461 fde->dw_fde_switched_sections = false;
2462 fde->dw_fde_end = NULL;
2463 fde->dw_fde_cfi = NULL;
2464 fde->funcdef_number = current_function_funcdef_no;
2465 fde->nothrow = TREE_NOTHROW (current_function_decl);
2466 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2467 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2469 args_size = old_args_size = 0;
2471 /* We only want to output line number information for the genuine dwarf2
2472 prologue case, not the eh frame case. */
2473 #ifdef DWARF2_DEBUGGING_INFO
2474 if (file)
2475 dwarf2out_source_line (line, file);
2476 #endif
2479 /* Output a marker (i.e. a label) for the absolute end of the generated code
2480 for a function definition. This gets called *after* the epilogue code has
2481 been generated. */
2483 void
2484 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2485 const char *file ATTRIBUTE_UNUSED)
2487 dw_fde_ref fde;
2488 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2490 /* Output a label to mark the endpoint of the code generated for this
2491 function. */
2492 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2493 current_function_funcdef_no);
2494 ASM_OUTPUT_LABEL (asm_out_file, label);
2495 fde = &fde_table[fde_table_in_use - 1];
2496 fde->dw_fde_end = xstrdup (label);
2499 void
2500 dwarf2out_frame_init (void)
2502 /* Allocate the initial hunk of the fde_table. */
2503 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2504 fde_table_allocated = FDE_TABLE_INCREMENT;
2505 fde_table_in_use = 0;
2507 /* Generate the CFA instructions common to all FDE's. Do it now for the
2508 sake of lookup_cfa. */
2510 #ifdef DWARF2_UNWIND_INFO
2511 /* On entry, the Canonical Frame Address is at SP. */
2512 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2513 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2514 #endif
2517 void
2518 dwarf2out_frame_finish (void)
2520 /* Output call frame information. */
2521 if (write_symbols == DWARF2_DEBUG
2522 || write_symbols == VMS_AND_DWARF2_DEBUG
2523 #ifdef DWARF2_FRAME_INFO
2524 || DWARF2_FRAME_INFO
2525 #endif
2527 output_call_frame_info (0);
2529 #ifndef TARGET_UNWIND_INFO
2530 /* Output another copy for the unwinder. */
2531 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2532 output_call_frame_info (1);
2533 #endif
2535 #endif
2537 /* And now, the subset of the debugging information support code necessary
2538 for emitting location expressions. */
2540 /* We need some way to distinguish DW_OP_addr with a direct symbol
2541 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2542 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2545 typedef struct dw_val_struct *dw_val_ref;
2546 typedef struct die_struct *dw_die_ref;
2547 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2548 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2550 /* Each DIE may have a series of attribute/value pairs. Values
2551 can take on several forms. The forms that are used in this
2552 implementation are listed below. */
2554 enum dw_val_class
2556 dw_val_class_addr,
2557 dw_val_class_offset,
2558 dw_val_class_loc,
2559 dw_val_class_loc_list,
2560 dw_val_class_range_list,
2561 dw_val_class_const,
2562 dw_val_class_unsigned_const,
2563 dw_val_class_long_long,
2564 dw_val_class_vec,
2565 dw_val_class_flag,
2566 dw_val_class_die_ref,
2567 dw_val_class_fde_ref,
2568 dw_val_class_lbl_id,
2569 dw_val_class_lbl_offset,
2570 dw_val_class_str
2573 /* Describe a double word constant value. */
2574 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2576 typedef struct dw_long_long_struct GTY(())
2578 unsigned long hi;
2579 unsigned long low;
2581 dw_long_long_const;
2583 /* Describe a floating point constant value, or a vector constant value. */
2585 typedef struct dw_vec_struct GTY(())
2587 unsigned char * GTY((length ("%h.length"))) array;
2588 unsigned length;
2589 unsigned elt_size;
2591 dw_vec_const;
2593 /* The dw_val_node describes an attribute's value, as it is
2594 represented internally. */
2596 typedef struct dw_val_struct GTY(())
2598 enum dw_val_class val_class;
2599 union dw_val_struct_union
2601 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2602 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2603 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2604 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2605 HOST_WIDE_INT GTY ((default)) val_int;
2606 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2607 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2608 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2609 struct dw_val_die_union
2611 dw_die_ref die;
2612 int external;
2613 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2614 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2615 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2616 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2617 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2619 GTY ((desc ("%1.val_class"))) v;
2621 dw_val_node;
2623 /* Locations in memory are described using a sequence of stack machine
2624 operations. */
2626 typedef struct dw_loc_descr_struct GTY(())
2628 dw_loc_descr_ref dw_loc_next;
2629 enum dwarf_location_atom dw_loc_opc;
2630 dw_val_node dw_loc_oprnd1;
2631 dw_val_node dw_loc_oprnd2;
2632 int dw_loc_addr;
2634 dw_loc_descr_node;
2636 /* Location lists are ranges + location descriptions for that range,
2637 so you can track variables that are in different places over
2638 their entire life. */
2639 typedef struct dw_loc_list_struct GTY(())
2641 dw_loc_list_ref dw_loc_next;
2642 const char *begin; /* Label for begin address of range */
2643 const char *end; /* Label for end address of range */
2644 char *ll_symbol; /* Label for beginning of location list.
2645 Only on head of list */
2646 const char *section; /* Section this loclist is relative to */
2647 dw_loc_descr_ref expr;
2648 } dw_loc_list_node;
2650 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2652 static const char *dwarf_stack_op_name (unsigned);
2653 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2654 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2655 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2656 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2657 static unsigned long size_of_locs (dw_loc_descr_ref);
2658 static void output_loc_operands (dw_loc_descr_ref);
2659 static void output_loc_sequence (dw_loc_descr_ref);
2661 /* Convert a DWARF stack opcode into its string name. */
2663 static const char *
2664 dwarf_stack_op_name (unsigned int op)
2666 switch (op)
2668 case DW_OP_addr:
2669 case INTERNAL_DW_OP_tls_addr:
2670 return "DW_OP_addr";
2671 case DW_OP_deref:
2672 return "DW_OP_deref";
2673 case DW_OP_const1u:
2674 return "DW_OP_const1u";
2675 case DW_OP_const1s:
2676 return "DW_OP_const1s";
2677 case DW_OP_const2u:
2678 return "DW_OP_const2u";
2679 case DW_OP_const2s:
2680 return "DW_OP_const2s";
2681 case DW_OP_const4u:
2682 return "DW_OP_const4u";
2683 case DW_OP_const4s:
2684 return "DW_OP_const4s";
2685 case DW_OP_const8u:
2686 return "DW_OP_const8u";
2687 case DW_OP_const8s:
2688 return "DW_OP_const8s";
2689 case DW_OP_constu:
2690 return "DW_OP_constu";
2691 case DW_OP_consts:
2692 return "DW_OP_consts";
2693 case DW_OP_dup:
2694 return "DW_OP_dup";
2695 case DW_OP_drop:
2696 return "DW_OP_drop";
2697 case DW_OP_over:
2698 return "DW_OP_over";
2699 case DW_OP_pick:
2700 return "DW_OP_pick";
2701 case DW_OP_swap:
2702 return "DW_OP_swap";
2703 case DW_OP_rot:
2704 return "DW_OP_rot";
2705 case DW_OP_xderef:
2706 return "DW_OP_xderef";
2707 case DW_OP_abs:
2708 return "DW_OP_abs";
2709 case DW_OP_and:
2710 return "DW_OP_and";
2711 case DW_OP_div:
2712 return "DW_OP_div";
2713 case DW_OP_minus:
2714 return "DW_OP_minus";
2715 case DW_OP_mod:
2716 return "DW_OP_mod";
2717 case DW_OP_mul:
2718 return "DW_OP_mul";
2719 case DW_OP_neg:
2720 return "DW_OP_neg";
2721 case DW_OP_not:
2722 return "DW_OP_not";
2723 case DW_OP_or:
2724 return "DW_OP_or";
2725 case DW_OP_plus:
2726 return "DW_OP_plus";
2727 case DW_OP_plus_uconst:
2728 return "DW_OP_plus_uconst";
2729 case DW_OP_shl:
2730 return "DW_OP_shl";
2731 case DW_OP_shr:
2732 return "DW_OP_shr";
2733 case DW_OP_shra:
2734 return "DW_OP_shra";
2735 case DW_OP_xor:
2736 return "DW_OP_xor";
2737 case DW_OP_bra:
2738 return "DW_OP_bra";
2739 case DW_OP_eq:
2740 return "DW_OP_eq";
2741 case DW_OP_ge:
2742 return "DW_OP_ge";
2743 case DW_OP_gt:
2744 return "DW_OP_gt";
2745 case DW_OP_le:
2746 return "DW_OP_le";
2747 case DW_OP_lt:
2748 return "DW_OP_lt";
2749 case DW_OP_ne:
2750 return "DW_OP_ne";
2751 case DW_OP_skip:
2752 return "DW_OP_skip";
2753 case DW_OP_lit0:
2754 return "DW_OP_lit0";
2755 case DW_OP_lit1:
2756 return "DW_OP_lit1";
2757 case DW_OP_lit2:
2758 return "DW_OP_lit2";
2759 case DW_OP_lit3:
2760 return "DW_OP_lit3";
2761 case DW_OP_lit4:
2762 return "DW_OP_lit4";
2763 case DW_OP_lit5:
2764 return "DW_OP_lit5";
2765 case DW_OP_lit6:
2766 return "DW_OP_lit6";
2767 case DW_OP_lit7:
2768 return "DW_OP_lit7";
2769 case DW_OP_lit8:
2770 return "DW_OP_lit8";
2771 case DW_OP_lit9:
2772 return "DW_OP_lit9";
2773 case DW_OP_lit10:
2774 return "DW_OP_lit10";
2775 case DW_OP_lit11:
2776 return "DW_OP_lit11";
2777 case DW_OP_lit12:
2778 return "DW_OP_lit12";
2779 case DW_OP_lit13:
2780 return "DW_OP_lit13";
2781 case DW_OP_lit14:
2782 return "DW_OP_lit14";
2783 case DW_OP_lit15:
2784 return "DW_OP_lit15";
2785 case DW_OP_lit16:
2786 return "DW_OP_lit16";
2787 case DW_OP_lit17:
2788 return "DW_OP_lit17";
2789 case DW_OP_lit18:
2790 return "DW_OP_lit18";
2791 case DW_OP_lit19:
2792 return "DW_OP_lit19";
2793 case DW_OP_lit20:
2794 return "DW_OP_lit20";
2795 case DW_OP_lit21:
2796 return "DW_OP_lit21";
2797 case DW_OP_lit22:
2798 return "DW_OP_lit22";
2799 case DW_OP_lit23:
2800 return "DW_OP_lit23";
2801 case DW_OP_lit24:
2802 return "DW_OP_lit24";
2803 case DW_OP_lit25:
2804 return "DW_OP_lit25";
2805 case DW_OP_lit26:
2806 return "DW_OP_lit26";
2807 case DW_OP_lit27:
2808 return "DW_OP_lit27";
2809 case DW_OP_lit28:
2810 return "DW_OP_lit28";
2811 case DW_OP_lit29:
2812 return "DW_OP_lit29";
2813 case DW_OP_lit30:
2814 return "DW_OP_lit30";
2815 case DW_OP_lit31:
2816 return "DW_OP_lit31";
2817 case DW_OP_reg0:
2818 return "DW_OP_reg0";
2819 case DW_OP_reg1:
2820 return "DW_OP_reg1";
2821 case DW_OP_reg2:
2822 return "DW_OP_reg2";
2823 case DW_OP_reg3:
2824 return "DW_OP_reg3";
2825 case DW_OP_reg4:
2826 return "DW_OP_reg4";
2827 case DW_OP_reg5:
2828 return "DW_OP_reg5";
2829 case DW_OP_reg6:
2830 return "DW_OP_reg6";
2831 case DW_OP_reg7:
2832 return "DW_OP_reg7";
2833 case DW_OP_reg8:
2834 return "DW_OP_reg8";
2835 case DW_OP_reg9:
2836 return "DW_OP_reg9";
2837 case DW_OP_reg10:
2838 return "DW_OP_reg10";
2839 case DW_OP_reg11:
2840 return "DW_OP_reg11";
2841 case DW_OP_reg12:
2842 return "DW_OP_reg12";
2843 case DW_OP_reg13:
2844 return "DW_OP_reg13";
2845 case DW_OP_reg14:
2846 return "DW_OP_reg14";
2847 case DW_OP_reg15:
2848 return "DW_OP_reg15";
2849 case DW_OP_reg16:
2850 return "DW_OP_reg16";
2851 case DW_OP_reg17:
2852 return "DW_OP_reg17";
2853 case DW_OP_reg18:
2854 return "DW_OP_reg18";
2855 case DW_OP_reg19:
2856 return "DW_OP_reg19";
2857 case DW_OP_reg20:
2858 return "DW_OP_reg20";
2859 case DW_OP_reg21:
2860 return "DW_OP_reg21";
2861 case DW_OP_reg22:
2862 return "DW_OP_reg22";
2863 case DW_OP_reg23:
2864 return "DW_OP_reg23";
2865 case DW_OP_reg24:
2866 return "DW_OP_reg24";
2867 case DW_OP_reg25:
2868 return "DW_OP_reg25";
2869 case DW_OP_reg26:
2870 return "DW_OP_reg26";
2871 case DW_OP_reg27:
2872 return "DW_OP_reg27";
2873 case DW_OP_reg28:
2874 return "DW_OP_reg28";
2875 case DW_OP_reg29:
2876 return "DW_OP_reg29";
2877 case DW_OP_reg30:
2878 return "DW_OP_reg30";
2879 case DW_OP_reg31:
2880 return "DW_OP_reg31";
2881 case DW_OP_breg0:
2882 return "DW_OP_breg0";
2883 case DW_OP_breg1:
2884 return "DW_OP_breg1";
2885 case DW_OP_breg2:
2886 return "DW_OP_breg2";
2887 case DW_OP_breg3:
2888 return "DW_OP_breg3";
2889 case DW_OP_breg4:
2890 return "DW_OP_breg4";
2891 case DW_OP_breg5:
2892 return "DW_OP_breg5";
2893 case DW_OP_breg6:
2894 return "DW_OP_breg6";
2895 case DW_OP_breg7:
2896 return "DW_OP_breg7";
2897 case DW_OP_breg8:
2898 return "DW_OP_breg8";
2899 case DW_OP_breg9:
2900 return "DW_OP_breg9";
2901 case DW_OP_breg10:
2902 return "DW_OP_breg10";
2903 case DW_OP_breg11:
2904 return "DW_OP_breg11";
2905 case DW_OP_breg12:
2906 return "DW_OP_breg12";
2907 case DW_OP_breg13:
2908 return "DW_OP_breg13";
2909 case DW_OP_breg14:
2910 return "DW_OP_breg14";
2911 case DW_OP_breg15:
2912 return "DW_OP_breg15";
2913 case DW_OP_breg16:
2914 return "DW_OP_breg16";
2915 case DW_OP_breg17:
2916 return "DW_OP_breg17";
2917 case DW_OP_breg18:
2918 return "DW_OP_breg18";
2919 case DW_OP_breg19:
2920 return "DW_OP_breg19";
2921 case DW_OP_breg20:
2922 return "DW_OP_breg20";
2923 case DW_OP_breg21:
2924 return "DW_OP_breg21";
2925 case DW_OP_breg22:
2926 return "DW_OP_breg22";
2927 case DW_OP_breg23:
2928 return "DW_OP_breg23";
2929 case DW_OP_breg24:
2930 return "DW_OP_breg24";
2931 case DW_OP_breg25:
2932 return "DW_OP_breg25";
2933 case DW_OP_breg26:
2934 return "DW_OP_breg26";
2935 case DW_OP_breg27:
2936 return "DW_OP_breg27";
2937 case DW_OP_breg28:
2938 return "DW_OP_breg28";
2939 case DW_OP_breg29:
2940 return "DW_OP_breg29";
2941 case DW_OP_breg30:
2942 return "DW_OP_breg30";
2943 case DW_OP_breg31:
2944 return "DW_OP_breg31";
2945 case DW_OP_regx:
2946 return "DW_OP_regx";
2947 case DW_OP_fbreg:
2948 return "DW_OP_fbreg";
2949 case DW_OP_bregx:
2950 return "DW_OP_bregx";
2951 case DW_OP_piece:
2952 return "DW_OP_piece";
2953 case DW_OP_deref_size:
2954 return "DW_OP_deref_size";
2955 case DW_OP_xderef_size:
2956 return "DW_OP_xderef_size";
2957 case DW_OP_nop:
2958 return "DW_OP_nop";
2959 case DW_OP_push_object_address:
2960 return "DW_OP_push_object_address";
2961 case DW_OP_call2:
2962 return "DW_OP_call2";
2963 case DW_OP_call4:
2964 return "DW_OP_call4";
2965 case DW_OP_call_ref:
2966 return "DW_OP_call_ref";
2967 case DW_OP_GNU_push_tls_address:
2968 return "DW_OP_GNU_push_tls_address";
2969 default:
2970 return "OP_<unknown>";
2974 /* Return a pointer to a newly allocated location description. Location
2975 descriptions are simple expression terms that can be strung
2976 together to form more complicated location (address) descriptions. */
2978 static inline dw_loc_descr_ref
2979 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2980 unsigned HOST_WIDE_INT oprnd2)
2982 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2984 descr->dw_loc_opc = op;
2985 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2986 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2987 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2988 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2990 return descr;
2994 /* Add a location description term to a location description expression. */
2996 static inline void
2997 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2999 dw_loc_descr_ref *d;
3001 /* Find the end of the chain. */
3002 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3005 *d = descr;
3008 /* Return the size of a location descriptor. */
3010 static unsigned long
3011 size_of_loc_descr (dw_loc_descr_ref loc)
3013 unsigned long size = 1;
3015 switch (loc->dw_loc_opc)
3017 case DW_OP_addr:
3018 case INTERNAL_DW_OP_tls_addr:
3019 size += DWARF2_ADDR_SIZE;
3020 break;
3021 case DW_OP_const1u:
3022 case DW_OP_const1s:
3023 size += 1;
3024 break;
3025 case DW_OP_const2u:
3026 case DW_OP_const2s:
3027 size += 2;
3028 break;
3029 case DW_OP_const4u:
3030 case DW_OP_const4s:
3031 size += 4;
3032 break;
3033 case DW_OP_const8u:
3034 case DW_OP_const8s:
3035 size += 8;
3036 break;
3037 case DW_OP_constu:
3038 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3039 break;
3040 case DW_OP_consts:
3041 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3042 break;
3043 case DW_OP_pick:
3044 size += 1;
3045 break;
3046 case DW_OP_plus_uconst:
3047 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3048 break;
3049 case DW_OP_skip:
3050 case DW_OP_bra:
3051 size += 2;
3052 break;
3053 case DW_OP_breg0:
3054 case DW_OP_breg1:
3055 case DW_OP_breg2:
3056 case DW_OP_breg3:
3057 case DW_OP_breg4:
3058 case DW_OP_breg5:
3059 case DW_OP_breg6:
3060 case DW_OP_breg7:
3061 case DW_OP_breg8:
3062 case DW_OP_breg9:
3063 case DW_OP_breg10:
3064 case DW_OP_breg11:
3065 case DW_OP_breg12:
3066 case DW_OP_breg13:
3067 case DW_OP_breg14:
3068 case DW_OP_breg15:
3069 case DW_OP_breg16:
3070 case DW_OP_breg17:
3071 case DW_OP_breg18:
3072 case DW_OP_breg19:
3073 case DW_OP_breg20:
3074 case DW_OP_breg21:
3075 case DW_OP_breg22:
3076 case DW_OP_breg23:
3077 case DW_OP_breg24:
3078 case DW_OP_breg25:
3079 case DW_OP_breg26:
3080 case DW_OP_breg27:
3081 case DW_OP_breg28:
3082 case DW_OP_breg29:
3083 case DW_OP_breg30:
3084 case DW_OP_breg31:
3085 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3086 break;
3087 case DW_OP_regx:
3088 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3089 break;
3090 case DW_OP_fbreg:
3091 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3092 break;
3093 case DW_OP_bregx:
3094 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3095 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3096 break;
3097 case DW_OP_piece:
3098 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3099 break;
3100 case DW_OP_deref_size:
3101 case DW_OP_xderef_size:
3102 size += 1;
3103 break;
3104 case DW_OP_call2:
3105 size += 2;
3106 break;
3107 case DW_OP_call4:
3108 size += 4;
3109 break;
3110 case DW_OP_call_ref:
3111 size += DWARF2_ADDR_SIZE;
3112 break;
3113 default:
3114 break;
3117 return size;
3120 /* Return the size of a series of location descriptors. */
3122 static unsigned long
3123 size_of_locs (dw_loc_descr_ref loc)
3125 unsigned long size;
3127 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3129 loc->dw_loc_addr = size;
3130 size += size_of_loc_descr (loc);
3133 return size;
3136 /* Output location description stack opcode's operands (if any). */
3138 static void
3139 output_loc_operands (dw_loc_descr_ref loc)
3141 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3142 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3144 switch (loc->dw_loc_opc)
3146 #ifdef DWARF2_DEBUGGING_INFO
3147 case DW_OP_addr:
3148 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3149 break;
3150 case DW_OP_const2u:
3151 case DW_OP_const2s:
3152 dw2_asm_output_data (2, val1->v.val_int, NULL);
3153 break;
3154 case DW_OP_const4u:
3155 case DW_OP_const4s:
3156 dw2_asm_output_data (4, val1->v.val_int, NULL);
3157 break;
3158 case DW_OP_const8u:
3159 case DW_OP_const8s:
3160 gcc_assert (HOST_BITS_PER_LONG >= 64);
3161 dw2_asm_output_data (8, val1->v.val_int, NULL);
3162 break;
3163 case DW_OP_skip:
3164 case DW_OP_bra:
3166 int offset;
3168 gcc_assert (val1->val_class == dw_val_class_loc);
3169 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3171 dw2_asm_output_data (2, offset, NULL);
3173 break;
3174 #else
3175 case DW_OP_addr:
3176 case DW_OP_const2u:
3177 case DW_OP_const2s:
3178 case DW_OP_const4u:
3179 case DW_OP_const4s:
3180 case DW_OP_const8u:
3181 case DW_OP_const8s:
3182 case DW_OP_skip:
3183 case DW_OP_bra:
3184 /* We currently don't make any attempt to make sure these are
3185 aligned properly like we do for the main unwind info, so
3186 don't support emitting things larger than a byte if we're
3187 only doing unwinding. */
3188 gcc_unreachable ();
3189 #endif
3190 case DW_OP_const1u:
3191 case DW_OP_const1s:
3192 dw2_asm_output_data (1, val1->v.val_int, NULL);
3193 break;
3194 case DW_OP_constu:
3195 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3196 break;
3197 case DW_OP_consts:
3198 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3199 break;
3200 case DW_OP_pick:
3201 dw2_asm_output_data (1, val1->v.val_int, NULL);
3202 break;
3203 case DW_OP_plus_uconst:
3204 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3205 break;
3206 case DW_OP_breg0:
3207 case DW_OP_breg1:
3208 case DW_OP_breg2:
3209 case DW_OP_breg3:
3210 case DW_OP_breg4:
3211 case DW_OP_breg5:
3212 case DW_OP_breg6:
3213 case DW_OP_breg7:
3214 case DW_OP_breg8:
3215 case DW_OP_breg9:
3216 case DW_OP_breg10:
3217 case DW_OP_breg11:
3218 case DW_OP_breg12:
3219 case DW_OP_breg13:
3220 case DW_OP_breg14:
3221 case DW_OP_breg15:
3222 case DW_OP_breg16:
3223 case DW_OP_breg17:
3224 case DW_OP_breg18:
3225 case DW_OP_breg19:
3226 case DW_OP_breg20:
3227 case DW_OP_breg21:
3228 case DW_OP_breg22:
3229 case DW_OP_breg23:
3230 case DW_OP_breg24:
3231 case DW_OP_breg25:
3232 case DW_OP_breg26:
3233 case DW_OP_breg27:
3234 case DW_OP_breg28:
3235 case DW_OP_breg29:
3236 case DW_OP_breg30:
3237 case DW_OP_breg31:
3238 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3239 break;
3240 case DW_OP_regx:
3241 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3242 break;
3243 case DW_OP_fbreg:
3244 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3245 break;
3246 case DW_OP_bregx:
3247 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3248 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3249 break;
3250 case DW_OP_piece:
3251 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3252 break;
3253 case DW_OP_deref_size:
3254 case DW_OP_xderef_size:
3255 dw2_asm_output_data (1, val1->v.val_int, NULL);
3256 break;
3258 case INTERNAL_DW_OP_tls_addr:
3259 #ifdef ASM_OUTPUT_DWARF_DTPREL
3260 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3261 val1->v.val_addr);
3262 fputc ('\n', asm_out_file);
3263 #else
3264 gcc_unreachable ();
3265 #endif
3266 break;
3268 default:
3269 /* Other codes have no operands. */
3270 break;
3274 /* Output a sequence of location operations. */
3276 static void
3277 output_loc_sequence (dw_loc_descr_ref loc)
3279 for (; loc != NULL; loc = loc->dw_loc_next)
3281 /* Output the opcode. */
3282 dw2_asm_output_data (1, loc->dw_loc_opc,
3283 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3285 /* Output the operand(s) (if any). */
3286 output_loc_operands (loc);
3290 /* This routine will generate the correct assembly data for a location
3291 description based on a cfi entry with a complex address. */
3293 static void
3294 output_cfa_loc (dw_cfi_ref cfi)
3296 dw_loc_descr_ref loc;
3297 unsigned long size;
3299 /* Output the size of the block. */
3300 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3301 size = size_of_locs (loc);
3302 dw2_asm_output_data_uleb128 (size, NULL);
3304 /* Now output the operations themselves. */
3305 output_loc_sequence (loc);
3308 /* This function builds a dwarf location descriptor sequence from
3309 a dw_cfa_location. */
3311 static struct dw_loc_descr_struct *
3312 build_cfa_loc (dw_cfa_location *cfa)
3314 struct dw_loc_descr_struct *head, *tmp;
3316 gcc_assert (cfa->indirect);
3318 if (cfa->base_offset)
3320 if (cfa->reg <= 31)
3321 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3322 else
3323 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3325 else if (cfa->reg <= 31)
3326 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3327 else
3328 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3330 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3331 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3332 add_loc_descr (&head, tmp);
3333 if (cfa->offset != 0)
3335 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3336 add_loc_descr (&head, tmp);
3339 return head;
3342 /* This function fills in aa dw_cfa_location structure from a dwarf location
3343 descriptor sequence. */
3345 static void
3346 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3348 struct dw_loc_descr_struct *ptr;
3349 cfa->offset = 0;
3350 cfa->base_offset = 0;
3351 cfa->indirect = 0;
3352 cfa->reg = -1;
3354 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3356 enum dwarf_location_atom op = ptr->dw_loc_opc;
3358 switch (op)
3360 case DW_OP_reg0:
3361 case DW_OP_reg1:
3362 case DW_OP_reg2:
3363 case DW_OP_reg3:
3364 case DW_OP_reg4:
3365 case DW_OP_reg5:
3366 case DW_OP_reg6:
3367 case DW_OP_reg7:
3368 case DW_OP_reg8:
3369 case DW_OP_reg9:
3370 case DW_OP_reg10:
3371 case DW_OP_reg11:
3372 case DW_OP_reg12:
3373 case DW_OP_reg13:
3374 case DW_OP_reg14:
3375 case DW_OP_reg15:
3376 case DW_OP_reg16:
3377 case DW_OP_reg17:
3378 case DW_OP_reg18:
3379 case DW_OP_reg19:
3380 case DW_OP_reg20:
3381 case DW_OP_reg21:
3382 case DW_OP_reg22:
3383 case DW_OP_reg23:
3384 case DW_OP_reg24:
3385 case DW_OP_reg25:
3386 case DW_OP_reg26:
3387 case DW_OP_reg27:
3388 case DW_OP_reg28:
3389 case DW_OP_reg29:
3390 case DW_OP_reg30:
3391 case DW_OP_reg31:
3392 cfa->reg = op - DW_OP_reg0;
3393 break;
3394 case DW_OP_regx:
3395 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3396 break;
3397 case DW_OP_breg0:
3398 case DW_OP_breg1:
3399 case DW_OP_breg2:
3400 case DW_OP_breg3:
3401 case DW_OP_breg4:
3402 case DW_OP_breg5:
3403 case DW_OP_breg6:
3404 case DW_OP_breg7:
3405 case DW_OP_breg8:
3406 case DW_OP_breg9:
3407 case DW_OP_breg10:
3408 case DW_OP_breg11:
3409 case DW_OP_breg12:
3410 case DW_OP_breg13:
3411 case DW_OP_breg14:
3412 case DW_OP_breg15:
3413 case DW_OP_breg16:
3414 case DW_OP_breg17:
3415 case DW_OP_breg18:
3416 case DW_OP_breg19:
3417 case DW_OP_breg20:
3418 case DW_OP_breg21:
3419 case DW_OP_breg22:
3420 case DW_OP_breg23:
3421 case DW_OP_breg24:
3422 case DW_OP_breg25:
3423 case DW_OP_breg26:
3424 case DW_OP_breg27:
3425 case DW_OP_breg28:
3426 case DW_OP_breg29:
3427 case DW_OP_breg30:
3428 case DW_OP_breg31:
3429 cfa->reg = op - DW_OP_breg0;
3430 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3431 break;
3432 case DW_OP_bregx:
3433 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3434 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3435 break;
3436 case DW_OP_deref:
3437 cfa->indirect = 1;
3438 break;
3439 case DW_OP_plus_uconst:
3440 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3441 break;
3442 default:
3443 internal_error ("DW_LOC_OP %s not implemented\n",
3444 dwarf_stack_op_name (ptr->dw_loc_opc));
3448 #endif /* .debug_frame support */
3450 /* And now, the support for symbolic debugging information. */
3451 #ifdef DWARF2_DEBUGGING_INFO
3453 /* .debug_str support. */
3454 static int output_indirect_string (void **, void *);
3456 static void dwarf2out_init (const char *);
3457 static void dwarf2out_finish (const char *);
3458 static void dwarf2out_define (unsigned int, const char *);
3459 static void dwarf2out_undef (unsigned int, const char *);
3460 static void dwarf2out_start_source_file (unsigned, const char *);
3461 static void dwarf2out_end_source_file (unsigned);
3462 static void dwarf2out_begin_block (unsigned, unsigned);
3463 static void dwarf2out_end_block (unsigned, unsigned);
3464 static bool dwarf2out_ignore_block (tree);
3465 static void dwarf2out_global_decl (tree);
3466 static void dwarf2out_type_decl (tree, int);
3467 static void dwarf2out_imported_module_or_decl (tree, tree);
3468 static void dwarf2out_abstract_function (tree);
3469 static void dwarf2out_var_location (rtx);
3470 static void dwarf2out_begin_function (tree);
3471 static void dwarf2out_switch_text_section (void);
3473 /* The debug hooks structure. */
3475 const struct gcc_debug_hooks dwarf2_debug_hooks =
3477 dwarf2out_init,
3478 dwarf2out_finish,
3479 dwarf2out_define,
3480 dwarf2out_undef,
3481 dwarf2out_start_source_file,
3482 dwarf2out_end_source_file,
3483 dwarf2out_begin_block,
3484 dwarf2out_end_block,
3485 dwarf2out_ignore_block,
3486 dwarf2out_source_line,
3487 dwarf2out_begin_prologue,
3488 debug_nothing_int_charstar, /* end_prologue */
3489 dwarf2out_end_epilogue,
3490 dwarf2out_begin_function,
3491 debug_nothing_int, /* end_function */
3492 dwarf2out_decl, /* function_decl */
3493 dwarf2out_global_decl,
3494 dwarf2out_type_decl, /* type_decl */
3495 dwarf2out_imported_module_or_decl,
3496 debug_nothing_tree, /* deferred_inline_function */
3497 /* The DWARF 2 backend tries to reduce debugging bloat by not
3498 emitting the abstract description of inline functions until
3499 something tries to reference them. */
3500 dwarf2out_abstract_function, /* outlining_inline_function */
3501 debug_nothing_rtx, /* label */
3502 debug_nothing_int, /* handle_pch */
3503 dwarf2out_var_location,
3504 dwarf2out_switch_text_section,
3505 1 /* start_end_main_source_file */
3507 #endif
3509 /* NOTE: In the comments in this file, many references are made to
3510 "Debugging Information Entries". This term is abbreviated as `DIE'
3511 throughout the remainder of this file. */
3513 /* An internal representation of the DWARF output is built, and then
3514 walked to generate the DWARF debugging info. The walk of the internal
3515 representation is done after the entire program has been compiled.
3516 The types below are used to describe the internal representation. */
3518 /* Various DIE's use offsets relative to the beginning of the
3519 .debug_info section to refer to each other. */
3521 typedef long int dw_offset;
3523 /* Define typedefs here to avoid circular dependencies. */
3525 typedef struct dw_attr_struct *dw_attr_ref;
3526 typedef struct dw_line_info_struct *dw_line_info_ref;
3527 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3528 typedef struct pubname_struct *pubname_ref;
3529 typedef struct dw_ranges_struct *dw_ranges_ref;
3531 /* Each entry in the line_info_table maintains the file and
3532 line number associated with the label generated for that
3533 entry. The label gives the PC value associated with
3534 the line number entry. */
3536 typedef struct dw_line_info_struct GTY(())
3538 unsigned long dw_file_num;
3539 unsigned long dw_line_num;
3541 dw_line_info_entry;
3543 /* Line information for functions in separate sections; each one gets its
3544 own sequence. */
3545 typedef struct dw_separate_line_info_struct GTY(())
3547 unsigned long dw_file_num;
3548 unsigned long dw_line_num;
3549 unsigned long function;
3551 dw_separate_line_info_entry;
3553 /* Each DIE attribute has a field specifying the attribute kind,
3554 a link to the next attribute in the chain, and an attribute value.
3555 Attributes are typically linked below the DIE they modify. */
3557 typedef struct dw_attr_struct GTY(())
3559 enum dwarf_attribute dw_attr;
3560 dw_attr_ref dw_attr_next;
3561 dw_val_node dw_attr_val;
3563 dw_attr_node;
3565 /* The Debugging Information Entry (DIE) structure */
3567 typedef struct die_struct GTY(())
3569 enum dwarf_tag die_tag;
3570 char *die_symbol;
3571 dw_attr_ref die_attr;
3572 dw_die_ref die_parent;
3573 dw_die_ref die_child;
3574 dw_die_ref die_sib;
3575 dw_die_ref die_definition; /* ref from a specification to its definition */
3576 dw_offset die_offset;
3577 unsigned long die_abbrev;
3578 int die_mark;
3579 unsigned int decl_id;
3581 die_node;
3583 /* The pubname structure */
3585 typedef struct pubname_struct GTY(())
3587 dw_die_ref die;
3588 char *name;
3590 pubname_entry;
3592 struct dw_ranges_struct GTY(())
3594 int block_num;
3597 /* The limbo die list structure. */
3598 typedef struct limbo_die_struct GTY(())
3600 dw_die_ref die;
3601 tree created_for;
3602 struct limbo_die_struct *next;
3604 limbo_die_node;
3606 /* How to start an assembler comment. */
3607 #ifndef ASM_COMMENT_START
3608 #define ASM_COMMENT_START ";#"
3609 #endif
3611 /* Define a macro which returns nonzero for a TYPE_DECL which was
3612 implicitly generated for a tagged type.
3614 Note that unlike the gcc front end (which generates a NULL named
3615 TYPE_DECL node for each complete tagged type, each array type, and
3616 each function type node created) the g++ front end generates a
3617 _named_ TYPE_DECL node for each tagged type node created.
3618 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3619 generate a DW_TAG_typedef DIE for them. */
3621 #define TYPE_DECL_IS_STUB(decl) \
3622 (DECL_NAME (decl) == NULL_TREE \
3623 || (DECL_ARTIFICIAL (decl) \
3624 && is_tagged_type (TREE_TYPE (decl)) \
3625 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3626 /* This is necessary for stub decls that \
3627 appear in nested inline functions. */ \
3628 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3629 && (decl_ultimate_origin (decl) \
3630 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3632 /* Information concerning the compilation unit's programming
3633 language, and compiler version. */
3635 /* Fixed size portion of the DWARF compilation unit header. */
3636 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3637 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3639 /* Fixed size portion of public names info. */
3640 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3642 /* Fixed size portion of the address range info. */
3643 #define DWARF_ARANGES_HEADER_SIZE \
3644 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3645 DWARF2_ADDR_SIZE * 2) \
3646 - DWARF_INITIAL_LENGTH_SIZE)
3648 /* Size of padding portion in the address range info. It must be
3649 aligned to twice the pointer size. */
3650 #define DWARF_ARANGES_PAD_SIZE \
3651 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3652 DWARF2_ADDR_SIZE * 2) \
3653 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3655 /* Use assembler line directives if available. */
3656 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3657 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3658 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3659 #else
3660 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3661 #endif
3662 #endif
3664 /* Minimum line offset in a special line info. opcode.
3665 This value was chosen to give a reasonable range of values. */
3666 #define DWARF_LINE_BASE -10
3668 /* First special line opcode - leave room for the standard opcodes. */
3669 #define DWARF_LINE_OPCODE_BASE 10
3671 /* Range of line offsets in a special line info. opcode. */
3672 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3674 /* Flag that indicates the initial value of the is_stmt_start flag.
3675 In the present implementation, we do not mark any lines as
3676 the beginning of a source statement, because that information
3677 is not made available by the GCC front-end. */
3678 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3680 #ifdef DWARF2_DEBUGGING_INFO
3681 /* This location is used by calc_die_sizes() to keep track
3682 the offset of each DIE within the .debug_info section. */
3683 static unsigned long next_die_offset;
3684 #endif
3686 /* Record the root of the DIE's built for the current compilation unit. */
3687 static GTY(()) dw_die_ref comp_unit_die;
3689 /* A list of DIEs with a NULL parent waiting to be relocated. */
3690 static GTY(()) limbo_die_node *limbo_die_list;
3692 /* Filenames referenced by this compilation unit. */
3693 static GTY(()) varray_type file_table;
3694 static GTY(()) varray_type file_table_emitted;
3695 static GTY(()) size_t file_table_last_lookup_index;
3697 /* A hash table of references to DIE's that describe declarations.
3698 The key is a DECL_UID() which is a unique number identifying each decl. */
3699 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3701 /* Node of the variable location list. */
3702 struct var_loc_node GTY ((chain_next ("%h.next")))
3704 rtx GTY (()) var_loc_note;
3705 const char * GTY (()) label;
3706 const char * GTY (()) section_label;
3707 struct var_loc_node * GTY (()) next;
3710 /* Variable location list. */
3711 struct var_loc_list_def GTY (())
3713 struct var_loc_node * GTY (()) first;
3715 /* Do not mark the last element of the chained list because
3716 it is marked through the chain. */
3717 struct var_loc_node * GTY ((skip ("%h"))) last;
3719 /* DECL_UID of the variable decl. */
3720 unsigned int decl_id;
3722 typedef struct var_loc_list_def var_loc_list;
3725 /* Table of decl location linked lists. */
3726 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3728 /* A pointer to the base of a list of references to DIE's that
3729 are uniquely identified by their tag, presence/absence of
3730 children DIE's, and list of attribute/value pairs. */
3731 static GTY((length ("abbrev_die_table_allocated")))
3732 dw_die_ref *abbrev_die_table;
3734 /* Number of elements currently allocated for abbrev_die_table. */
3735 static GTY(()) unsigned abbrev_die_table_allocated;
3737 /* Number of elements in type_die_table currently in use. */
3738 static GTY(()) unsigned abbrev_die_table_in_use;
3740 /* Size (in elements) of increments by which we may expand the
3741 abbrev_die_table. */
3742 #define ABBREV_DIE_TABLE_INCREMENT 256
3744 /* A pointer to the base of a table that contains line information
3745 for each source code line in .text in the compilation unit. */
3746 static GTY((length ("line_info_table_allocated")))
3747 dw_line_info_ref line_info_table;
3749 /* Number of elements currently allocated for line_info_table. */
3750 static GTY(()) unsigned line_info_table_allocated;
3752 /* Number of elements in line_info_table currently in use. */
3753 static GTY(()) unsigned line_info_table_in_use;
3755 /* A pointer to the base of a table that contains line information
3756 for each source code line outside of .text in the compilation unit. */
3757 static GTY ((length ("separate_line_info_table_allocated")))
3758 dw_separate_line_info_ref separate_line_info_table;
3760 /* Number of elements currently allocated for separate_line_info_table. */
3761 static GTY(()) unsigned separate_line_info_table_allocated;
3763 /* Number of elements in separate_line_info_table currently in use. */
3764 static GTY(()) unsigned separate_line_info_table_in_use;
3766 /* Size (in elements) of increments by which we may expand the
3767 line_info_table. */
3768 #define LINE_INFO_TABLE_INCREMENT 1024
3770 /* A pointer to the base of a table that contains a list of publicly
3771 accessible names. */
3772 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3774 /* Number of elements currently allocated for pubname_table. */
3775 static GTY(()) unsigned pubname_table_allocated;
3777 /* Number of elements in pubname_table currently in use. */
3778 static GTY(()) unsigned pubname_table_in_use;
3780 /* Size (in elements) of increments by which we may expand the
3781 pubname_table. */
3782 #define PUBNAME_TABLE_INCREMENT 64
3784 /* Array of dies for which we should generate .debug_arange info. */
3785 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3787 /* Number of elements currently allocated for arange_table. */
3788 static GTY(()) unsigned arange_table_allocated;
3790 /* Number of elements in arange_table currently in use. */
3791 static GTY(()) unsigned arange_table_in_use;
3793 /* Size (in elements) of increments by which we may expand the
3794 arange_table. */
3795 #define ARANGE_TABLE_INCREMENT 64
3797 /* Array of dies for which we should generate .debug_ranges info. */
3798 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3800 /* Number of elements currently allocated for ranges_table. */
3801 static GTY(()) unsigned ranges_table_allocated;
3803 /* Number of elements in ranges_table currently in use. */
3804 static GTY(()) unsigned ranges_table_in_use;
3806 /* Size (in elements) of increments by which we may expand the
3807 ranges_table. */
3808 #define RANGES_TABLE_INCREMENT 64
3810 /* Whether we have location lists that need outputting */
3811 static GTY(()) unsigned have_location_lists;
3813 /* Unique label counter. */
3814 static GTY(()) unsigned int loclabel_num;
3816 #ifdef DWARF2_DEBUGGING_INFO
3817 /* Record whether the function being analyzed contains inlined functions. */
3818 static int current_function_has_inlines;
3819 #endif
3820 #if 0 && defined (MIPS_DEBUGGING_INFO)
3821 static int comp_unit_has_inlines;
3822 #endif
3824 /* Number of file tables emitted in maybe_emit_file(). */
3825 static GTY(()) int emitcount = 0;
3827 /* Number of internal labels generated by gen_internal_sym(). */
3828 static GTY(()) int label_num;
3830 #ifdef DWARF2_DEBUGGING_INFO
3832 /* Forward declarations for functions defined in this file. */
3834 static int is_pseudo_reg (rtx);
3835 static tree type_main_variant (tree);
3836 static int is_tagged_type (tree);
3837 static const char *dwarf_tag_name (unsigned);
3838 static const char *dwarf_attr_name (unsigned);
3839 static const char *dwarf_form_name (unsigned);
3840 static tree decl_ultimate_origin (tree);
3841 static tree block_ultimate_origin (tree);
3842 static tree decl_class_context (tree);
3843 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3844 static inline enum dw_val_class AT_class (dw_attr_ref);
3845 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3846 static inline unsigned AT_flag (dw_attr_ref);
3847 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3848 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3849 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3850 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3851 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3852 unsigned long);
3853 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3854 unsigned int, unsigned char *);
3855 static hashval_t debug_str_do_hash (const void *);
3856 static int debug_str_eq (const void *, const void *);
3857 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3858 static inline const char *AT_string (dw_attr_ref);
3859 static int AT_string_form (dw_attr_ref);
3860 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3861 static void add_AT_specification (dw_die_ref, dw_die_ref);
3862 static inline dw_die_ref AT_ref (dw_attr_ref);
3863 static inline int AT_ref_external (dw_attr_ref);
3864 static inline void set_AT_ref_external (dw_attr_ref, int);
3865 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3866 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3867 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3868 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3869 dw_loc_list_ref);
3870 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3871 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3872 static inline rtx AT_addr (dw_attr_ref);
3873 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3874 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3875 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3876 unsigned HOST_WIDE_INT);
3877 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3878 unsigned long);
3879 static inline const char *AT_lbl (dw_attr_ref);
3880 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3881 static const char *get_AT_low_pc (dw_die_ref);
3882 static const char *get_AT_hi_pc (dw_die_ref);
3883 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3884 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3885 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3886 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3887 static bool is_c_family (void);
3888 static bool is_cxx (void);
3889 static bool is_java (void);
3890 static bool is_fortran (void);
3891 static bool is_ada (void);
3892 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3893 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3894 static inline void free_die (dw_die_ref);
3895 static void remove_children (dw_die_ref);
3896 static void add_child_die (dw_die_ref, dw_die_ref);
3897 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3898 static dw_die_ref lookup_type_die (tree);
3899 static void equate_type_number_to_die (tree, dw_die_ref);
3900 static hashval_t decl_die_table_hash (const void *);
3901 static int decl_die_table_eq (const void *, const void *);
3902 static dw_die_ref lookup_decl_die (tree);
3903 static hashval_t decl_loc_table_hash (const void *);
3904 static int decl_loc_table_eq (const void *, const void *);
3905 static var_loc_list *lookup_decl_loc (tree);
3906 static void equate_decl_number_to_die (tree, dw_die_ref);
3907 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3908 static void print_spaces (FILE *);
3909 static void print_die (dw_die_ref, FILE *);
3910 static void print_dwarf_line_table (FILE *);
3911 static void reverse_die_lists (dw_die_ref);
3912 static void reverse_all_dies (dw_die_ref);
3913 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3914 static dw_die_ref pop_compile_unit (dw_die_ref);
3915 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3916 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3917 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3918 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3919 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3920 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3921 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3922 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3923 static void compute_section_prefix (dw_die_ref);
3924 static int is_type_die (dw_die_ref);
3925 static int is_comdat_die (dw_die_ref);
3926 static int is_symbol_die (dw_die_ref);
3927 static void assign_symbol_names (dw_die_ref);
3928 static void break_out_includes (dw_die_ref);
3929 static hashval_t htab_cu_hash (const void *);
3930 static int htab_cu_eq (const void *, const void *);
3931 static void htab_cu_del (void *);
3932 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3933 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3934 static void add_sibling_attributes (dw_die_ref);
3935 static void build_abbrev_table (dw_die_ref);
3936 static void output_location_lists (dw_die_ref);
3937 static int constant_size (long unsigned);
3938 static unsigned long size_of_die (dw_die_ref);
3939 static void calc_die_sizes (dw_die_ref);
3940 static void mark_dies (dw_die_ref);
3941 static void unmark_dies (dw_die_ref);
3942 static void unmark_all_dies (dw_die_ref);
3943 static unsigned long size_of_pubnames (void);
3944 static unsigned long size_of_aranges (void);
3945 static enum dwarf_form value_format (dw_attr_ref);
3946 static void output_value_format (dw_attr_ref);
3947 static void output_abbrev_section (void);
3948 static void output_die_symbol (dw_die_ref);
3949 static void output_die (dw_die_ref);
3950 static void output_compilation_unit_header (void);
3951 static void output_comp_unit (dw_die_ref, int);
3952 static const char *dwarf2_name (tree, int);
3953 static void add_pubname (tree, dw_die_ref);
3954 static void output_pubnames (void);
3955 static void add_arange (tree, dw_die_ref);
3956 static void output_aranges (void);
3957 static unsigned int add_ranges (tree);
3958 static void output_ranges (void);
3959 static void output_line_info (void);
3960 static void output_file_names (void);
3961 static dw_die_ref base_type_die (tree);
3962 static tree root_type (tree);
3963 static int is_base_type (tree);
3964 static bool is_subrange_type (tree);
3965 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3966 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3967 static int type_is_enum (tree);
3968 static unsigned int dbx_reg_number (rtx);
3969 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3970 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3971 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3972 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3973 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3974 static int is_based_loc (rtx);
3975 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3976 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3977 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3978 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
3979 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
3980 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3981 static tree field_type (tree);
3982 static unsigned int simple_type_align_in_bits (tree);
3983 static unsigned int simple_decl_align_in_bits (tree);
3984 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3985 static HOST_WIDE_INT field_byte_offset (tree);
3986 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3987 dw_loc_descr_ref);
3988 static void add_data_member_location_attribute (dw_die_ref, tree);
3989 static void add_const_value_attribute (dw_die_ref, rtx);
3990 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3991 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3992 static void insert_float (rtx, unsigned char *);
3993 static rtx rtl_for_decl_location (tree);
3994 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3995 enum dwarf_attribute);
3996 static void tree_add_const_value_attribute (dw_die_ref, tree);
3997 static void add_name_attribute (dw_die_ref, const char *);
3998 static void add_comp_dir_attribute (dw_die_ref);
3999 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4000 static void add_subscript_info (dw_die_ref, tree);
4001 static void add_byte_size_attribute (dw_die_ref, tree);
4002 static void add_bit_offset_attribute (dw_die_ref, tree);
4003 static void add_bit_size_attribute (dw_die_ref, tree);
4004 static void add_prototyped_attribute (dw_die_ref, tree);
4005 static void add_abstract_origin_attribute (dw_die_ref, tree);
4006 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4007 static void add_src_coords_attributes (dw_die_ref, tree);
4008 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4009 static void push_decl_scope (tree);
4010 static void pop_decl_scope (void);
4011 static dw_die_ref scope_die_for (tree, dw_die_ref);
4012 static inline int local_scope_p (dw_die_ref);
4013 static inline int class_or_namespace_scope_p (dw_die_ref);
4014 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4015 static void add_calling_convention_attribute (dw_die_ref, tree);
4016 static const char *type_tag (tree);
4017 static tree member_declared_type (tree);
4018 #if 0
4019 static const char *decl_start_label (tree);
4020 #endif
4021 static void gen_array_type_die (tree, dw_die_ref);
4022 #if 0
4023 static void gen_entry_point_die (tree, dw_die_ref);
4024 #endif
4025 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4026 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4027 static void gen_inlined_union_type_die (tree, dw_die_ref);
4028 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4029 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4030 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4031 static void gen_formal_types_die (tree, dw_die_ref);
4032 static void gen_subprogram_die (tree, dw_die_ref);
4033 static void gen_variable_die (tree, dw_die_ref);
4034 static void gen_label_die (tree, dw_die_ref);
4035 static void gen_lexical_block_die (tree, dw_die_ref, int);
4036 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4037 static void gen_field_die (tree, dw_die_ref);
4038 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4039 static dw_die_ref gen_compile_unit_die (const char *);
4040 static void gen_string_type_die (tree, dw_die_ref);
4041 static void gen_inheritance_die (tree, tree, dw_die_ref);
4042 static void gen_member_die (tree, dw_die_ref);
4043 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4044 static void gen_subroutine_type_die (tree, dw_die_ref);
4045 static void gen_typedef_die (tree, dw_die_ref);
4046 static void gen_type_die (tree, dw_die_ref);
4047 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4048 static void gen_block_die (tree, dw_die_ref, int);
4049 static void decls_for_scope (tree, dw_die_ref, int);
4050 static int is_redundant_typedef (tree);
4051 static void gen_namespace_die (tree);
4052 static void gen_decl_die (tree, dw_die_ref);
4053 static dw_die_ref force_decl_die (tree);
4054 static dw_die_ref force_type_die (tree);
4055 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4056 static void declare_in_namespace (tree, dw_die_ref);
4057 static unsigned lookup_filename (const char *);
4058 static void init_file_table (void);
4059 static void retry_incomplete_types (void);
4060 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4061 static void splice_child_die (dw_die_ref, dw_die_ref);
4062 static int file_info_cmp (const void *, const void *);
4063 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4064 const char *, const char *, unsigned);
4065 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4066 const char *, const char *,
4067 const char *);
4068 static void output_loc_list (dw_loc_list_ref);
4069 static char *gen_internal_sym (const char *);
4071 static void prune_unmark_dies (dw_die_ref);
4072 static void prune_unused_types_mark (dw_die_ref, int);
4073 static void prune_unused_types_walk (dw_die_ref);
4074 static void prune_unused_types_walk_attribs (dw_die_ref);
4075 static void prune_unused_types_prune (dw_die_ref);
4076 static void prune_unused_types (void);
4077 static int maybe_emit_file (int);
4079 /* Section names used to hold DWARF debugging information. */
4080 #ifndef DEBUG_INFO_SECTION
4081 #define DEBUG_INFO_SECTION ".debug_info"
4082 #endif
4083 #ifndef DEBUG_ABBREV_SECTION
4084 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4085 #endif
4086 #ifndef DEBUG_ARANGES_SECTION
4087 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4088 #endif
4089 #ifndef DEBUG_MACINFO_SECTION
4090 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4091 #endif
4092 #ifndef DEBUG_LINE_SECTION
4093 #define DEBUG_LINE_SECTION ".debug_line"
4094 #endif
4095 #ifndef DEBUG_LOC_SECTION
4096 #define DEBUG_LOC_SECTION ".debug_loc"
4097 #endif
4098 #ifndef DEBUG_PUBNAMES_SECTION
4099 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4100 #endif
4101 #ifndef DEBUG_STR_SECTION
4102 #define DEBUG_STR_SECTION ".debug_str"
4103 #endif
4104 #ifndef DEBUG_RANGES_SECTION
4105 #define DEBUG_RANGES_SECTION ".debug_ranges"
4106 #endif
4108 /* Standard ELF section names for compiled code and data. */
4109 #ifndef TEXT_SECTION_NAME
4110 #define TEXT_SECTION_NAME ".text"
4111 #endif
4113 /* Section flags for .debug_str section. */
4114 #define DEBUG_STR_SECTION_FLAGS \
4115 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4116 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4117 : SECTION_DEBUG)
4119 /* Labels we insert at beginning sections we can reference instead of
4120 the section names themselves. */
4122 #ifndef TEXT_SECTION_LABEL
4123 #define TEXT_SECTION_LABEL "Ltext"
4124 #endif
4125 #ifndef COLD_TEXT_SECTION_LABEL
4126 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4127 #endif
4128 #ifndef DEBUG_LINE_SECTION_LABEL
4129 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4130 #endif
4131 #ifndef DEBUG_INFO_SECTION_LABEL
4132 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4133 #endif
4134 #ifndef DEBUG_ABBREV_SECTION_LABEL
4135 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4136 #endif
4137 #ifndef DEBUG_LOC_SECTION_LABEL
4138 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4139 #endif
4140 #ifndef DEBUG_RANGES_SECTION_LABEL
4141 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4142 #endif
4143 #ifndef DEBUG_MACINFO_SECTION_LABEL
4144 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4145 #endif
4147 /* Definitions of defaults for formats and names of various special
4148 (artificial) labels which may be generated within this file (when the -g
4149 options is used and DWARF2_DEBUGGING_INFO is in effect.
4150 If necessary, these may be overridden from within the tm.h file, but
4151 typically, overriding these defaults is unnecessary. */
4153 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4154 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4155 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4156 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4157 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4158 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4159 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4160 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4161 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4162 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4164 #ifndef TEXT_END_LABEL
4165 #define TEXT_END_LABEL "Letext"
4166 #endif
4167 #ifndef COLD_END_LABEL
4168 #define COLD_END_LABEL "Letext_cold"
4169 #endif
4170 #ifndef BLOCK_BEGIN_LABEL
4171 #define BLOCK_BEGIN_LABEL "LBB"
4172 #endif
4173 #ifndef BLOCK_END_LABEL
4174 #define BLOCK_END_LABEL "LBE"
4175 #endif
4176 #ifndef LINE_CODE_LABEL
4177 #define LINE_CODE_LABEL "LM"
4178 #endif
4179 #ifndef SEPARATE_LINE_CODE_LABEL
4180 #define SEPARATE_LINE_CODE_LABEL "LSM"
4181 #endif
4183 /* We allow a language front-end to designate a function that is to be
4184 called to "demangle" any name before it is put into a DIE. */
4186 static const char *(*demangle_name_func) (const char *);
4188 void
4189 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4191 demangle_name_func = func;
4194 /* Test if rtl node points to a pseudo register. */
4196 static inline int
4197 is_pseudo_reg (rtx rtl)
4199 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4200 || (GET_CODE (rtl) == SUBREG
4201 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4204 /* Return a reference to a type, with its const and volatile qualifiers
4205 removed. */
4207 static inline tree
4208 type_main_variant (tree type)
4210 type = TYPE_MAIN_VARIANT (type);
4212 /* ??? There really should be only one main variant among any group of
4213 variants of a given type (and all of the MAIN_VARIANT values for all
4214 members of the group should point to that one type) but sometimes the C
4215 front-end messes this up for array types, so we work around that bug
4216 here. */
4217 if (TREE_CODE (type) == ARRAY_TYPE)
4218 while (type != TYPE_MAIN_VARIANT (type))
4219 type = TYPE_MAIN_VARIANT (type);
4221 return type;
4224 /* Return nonzero if the given type node represents a tagged type. */
4226 static inline int
4227 is_tagged_type (tree type)
4229 enum tree_code code = TREE_CODE (type);
4231 return (code == RECORD_TYPE || code == UNION_TYPE
4232 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4235 /* Convert a DIE tag into its string name. */
4237 static const char *
4238 dwarf_tag_name (unsigned int tag)
4240 switch (tag)
4242 case DW_TAG_padding:
4243 return "DW_TAG_padding";
4244 case DW_TAG_array_type:
4245 return "DW_TAG_array_type";
4246 case DW_TAG_class_type:
4247 return "DW_TAG_class_type";
4248 case DW_TAG_entry_point:
4249 return "DW_TAG_entry_point";
4250 case DW_TAG_enumeration_type:
4251 return "DW_TAG_enumeration_type";
4252 case DW_TAG_formal_parameter:
4253 return "DW_TAG_formal_parameter";
4254 case DW_TAG_imported_declaration:
4255 return "DW_TAG_imported_declaration";
4256 case DW_TAG_label:
4257 return "DW_TAG_label";
4258 case DW_TAG_lexical_block:
4259 return "DW_TAG_lexical_block";
4260 case DW_TAG_member:
4261 return "DW_TAG_member";
4262 case DW_TAG_pointer_type:
4263 return "DW_TAG_pointer_type";
4264 case DW_TAG_reference_type:
4265 return "DW_TAG_reference_type";
4266 case DW_TAG_compile_unit:
4267 return "DW_TAG_compile_unit";
4268 case DW_TAG_string_type:
4269 return "DW_TAG_string_type";
4270 case DW_TAG_structure_type:
4271 return "DW_TAG_structure_type";
4272 case DW_TAG_subroutine_type:
4273 return "DW_TAG_subroutine_type";
4274 case DW_TAG_typedef:
4275 return "DW_TAG_typedef";
4276 case DW_TAG_union_type:
4277 return "DW_TAG_union_type";
4278 case DW_TAG_unspecified_parameters:
4279 return "DW_TAG_unspecified_parameters";
4280 case DW_TAG_variant:
4281 return "DW_TAG_variant";
4282 case DW_TAG_common_block:
4283 return "DW_TAG_common_block";
4284 case DW_TAG_common_inclusion:
4285 return "DW_TAG_common_inclusion";
4286 case DW_TAG_inheritance:
4287 return "DW_TAG_inheritance";
4288 case DW_TAG_inlined_subroutine:
4289 return "DW_TAG_inlined_subroutine";
4290 case DW_TAG_module:
4291 return "DW_TAG_module";
4292 case DW_TAG_ptr_to_member_type:
4293 return "DW_TAG_ptr_to_member_type";
4294 case DW_TAG_set_type:
4295 return "DW_TAG_set_type";
4296 case DW_TAG_subrange_type:
4297 return "DW_TAG_subrange_type";
4298 case DW_TAG_with_stmt:
4299 return "DW_TAG_with_stmt";
4300 case DW_TAG_access_declaration:
4301 return "DW_TAG_access_declaration";
4302 case DW_TAG_base_type:
4303 return "DW_TAG_base_type";
4304 case DW_TAG_catch_block:
4305 return "DW_TAG_catch_block";
4306 case DW_TAG_const_type:
4307 return "DW_TAG_const_type";
4308 case DW_TAG_constant:
4309 return "DW_TAG_constant";
4310 case DW_TAG_enumerator:
4311 return "DW_TAG_enumerator";
4312 case DW_TAG_file_type:
4313 return "DW_TAG_file_type";
4314 case DW_TAG_friend:
4315 return "DW_TAG_friend";
4316 case DW_TAG_namelist:
4317 return "DW_TAG_namelist";
4318 case DW_TAG_namelist_item:
4319 return "DW_TAG_namelist_item";
4320 case DW_TAG_namespace:
4321 return "DW_TAG_namespace";
4322 case DW_TAG_packed_type:
4323 return "DW_TAG_packed_type";
4324 case DW_TAG_subprogram:
4325 return "DW_TAG_subprogram";
4326 case DW_TAG_template_type_param:
4327 return "DW_TAG_template_type_param";
4328 case DW_TAG_template_value_param:
4329 return "DW_TAG_template_value_param";
4330 case DW_TAG_thrown_type:
4331 return "DW_TAG_thrown_type";
4332 case DW_TAG_try_block:
4333 return "DW_TAG_try_block";
4334 case DW_TAG_variant_part:
4335 return "DW_TAG_variant_part";
4336 case DW_TAG_variable:
4337 return "DW_TAG_variable";
4338 case DW_TAG_volatile_type:
4339 return "DW_TAG_volatile_type";
4340 case DW_TAG_imported_module:
4341 return "DW_TAG_imported_module";
4342 case DW_TAG_MIPS_loop:
4343 return "DW_TAG_MIPS_loop";
4344 case DW_TAG_format_label:
4345 return "DW_TAG_format_label";
4346 case DW_TAG_function_template:
4347 return "DW_TAG_function_template";
4348 case DW_TAG_class_template:
4349 return "DW_TAG_class_template";
4350 case DW_TAG_GNU_BINCL:
4351 return "DW_TAG_GNU_BINCL";
4352 case DW_TAG_GNU_EINCL:
4353 return "DW_TAG_GNU_EINCL";
4354 default:
4355 return "DW_TAG_<unknown>";
4359 /* Convert a DWARF attribute code into its string name. */
4361 static const char *
4362 dwarf_attr_name (unsigned int attr)
4364 switch (attr)
4366 case DW_AT_sibling:
4367 return "DW_AT_sibling";
4368 case DW_AT_location:
4369 return "DW_AT_location";
4370 case DW_AT_name:
4371 return "DW_AT_name";
4372 case DW_AT_ordering:
4373 return "DW_AT_ordering";
4374 case DW_AT_subscr_data:
4375 return "DW_AT_subscr_data";
4376 case DW_AT_byte_size:
4377 return "DW_AT_byte_size";
4378 case DW_AT_bit_offset:
4379 return "DW_AT_bit_offset";
4380 case DW_AT_bit_size:
4381 return "DW_AT_bit_size";
4382 case DW_AT_element_list:
4383 return "DW_AT_element_list";
4384 case DW_AT_stmt_list:
4385 return "DW_AT_stmt_list";
4386 case DW_AT_low_pc:
4387 return "DW_AT_low_pc";
4388 case DW_AT_high_pc:
4389 return "DW_AT_high_pc";
4390 case DW_AT_language:
4391 return "DW_AT_language";
4392 case DW_AT_member:
4393 return "DW_AT_member";
4394 case DW_AT_discr:
4395 return "DW_AT_discr";
4396 case DW_AT_discr_value:
4397 return "DW_AT_discr_value";
4398 case DW_AT_visibility:
4399 return "DW_AT_visibility";
4400 case DW_AT_import:
4401 return "DW_AT_import";
4402 case DW_AT_string_length:
4403 return "DW_AT_string_length";
4404 case DW_AT_common_reference:
4405 return "DW_AT_common_reference";
4406 case DW_AT_comp_dir:
4407 return "DW_AT_comp_dir";
4408 case DW_AT_const_value:
4409 return "DW_AT_const_value";
4410 case DW_AT_containing_type:
4411 return "DW_AT_containing_type";
4412 case DW_AT_default_value:
4413 return "DW_AT_default_value";
4414 case DW_AT_inline:
4415 return "DW_AT_inline";
4416 case DW_AT_is_optional:
4417 return "DW_AT_is_optional";
4418 case DW_AT_lower_bound:
4419 return "DW_AT_lower_bound";
4420 case DW_AT_producer:
4421 return "DW_AT_producer";
4422 case DW_AT_prototyped:
4423 return "DW_AT_prototyped";
4424 case DW_AT_return_addr:
4425 return "DW_AT_return_addr";
4426 case DW_AT_start_scope:
4427 return "DW_AT_start_scope";
4428 case DW_AT_stride_size:
4429 return "DW_AT_stride_size";
4430 case DW_AT_upper_bound:
4431 return "DW_AT_upper_bound";
4432 case DW_AT_abstract_origin:
4433 return "DW_AT_abstract_origin";
4434 case DW_AT_accessibility:
4435 return "DW_AT_accessibility";
4436 case DW_AT_address_class:
4437 return "DW_AT_address_class";
4438 case DW_AT_artificial:
4439 return "DW_AT_artificial";
4440 case DW_AT_base_types:
4441 return "DW_AT_base_types";
4442 case DW_AT_calling_convention:
4443 return "DW_AT_calling_convention";
4444 case DW_AT_count:
4445 return "DW_AT_count";
4446 case DW_AT_data_member_location:
4447 return "DW_AT_data_member_location";
4448 case DW_AT_decl_column:
4449 return "DW_AT_decl_column";
4450 case DW_AT_decl_file:
4451 return "DW_AT_decl_file";
4452 case DW_AT_decl_line:
4453 return "DW_AT_decl_line";
4454 case DW_AT_declaration:
4455 return "DW_AT_declaration";
4456 case DW_AT_discr_list:
4457 return "DW_AT_discr_list";
4458 case DW_AT_encoding:
4459 return "DW_AT_encoding";
4460 case DW_AT_external:
4461 return "DW_AT_external";
4462 case DW_AT_frame_base:
4463 return "DW_AT_frame_base";
4464 case DW_AT_friend:
4465 return "DW_AT_friend";
4466 case DW_AT_identifier_case:
4467 return "DW_AT_identifier_case";
4468 case DW_AT_macro_info:
4469 return "DW_AT_macro_info";
4470 case DW_AT_namelist_items:
4471 return "DW_AT_namelist_items";
4472 case DW_AT_priority:
4473 return "DW_AT_priority";
4474 case DW_AT_segment:
4475 return "DW_AT_segment";
4476 case DW_AT_specification:
4477 return "DW_AT_specification";
4478 case DW_AT_static_link:
4479 return "DW_AT_static_link";
4480 case DW_AT_type:
4481 return "DW_AT_type";
4482 case DW_AT_use_location:
4483 return "DW_AT_use_location";
4484 case DW_AT_variable_parameter:
4485 return "DW_AT_variable_parameter";
4486 case DW_AT_virtuality:
4487 return "DW_AT_virtuality";
4488 case DW_AT_vtable_elem_location:
4489 return "DW_AT_vtable_elem_location";
4491 case DW_AT_allocated:
4492 return "DW_AT_allocated";
4493 case DW_AT_associated:
4494 return "DW_AT_associated";
4495 case DW_AT_data_location:
4496 return "DW_AT_data_location";
4497 case DW_AT_stride:
4498 return "DW_AT_stride";
4499 case DW_AT_entry_pc:
4500 return "DW_AT_entry_pc";
4501 case DW_AT_use_UTF8:
4502 return "DW_AT_use_UTF8";
4503 case DW_AT_extension:
4504 return "DW_AT_extension";
4505 case DW_AT_ranges:
4506 return "DW_AT_ranges";
4507 case DW_AT_trampoline:
4508 return "DW_AT_trampoline";
4509 case DW_AT_call_column:
4510 return "DW_AT_call_column";
4511 case DW_AT_call_file:
4512 return "DW_AT_call_file";
4513 case DW_AT_call_line:
4514 return "DW_AT_call_line";
4516 case DW_AT_MIPS_fde:
4517 return "DW_AT_MIPS_fde";
4518 case DW_AT_MIPS_loop_begin:
4519 return "DW_AT_MIPS_loop_begin";
4520 case DW_AT_MIPS_tail_loop_begin:
4521 return "DW_AT_MIPS_tail_loop_begin";
4522 case DW_AT_MIPS_epilog_begin:
4523 return "DW_AT_MIPS_epilog_begin";
4524 case DW_AT_MIPS_loop_unroll_factor:
4525 return "DW_AT_MIPS_loop_unroll_factor";
4526 case DW_AT_MIPS_software_pipeline_depth:
4527 return "DW_AT_MIPS_software_pipeline_depth";
4528 case DW_AT_MIPS_linkage_name:
4529 return "DW_AT_MIPS_linkage_name";
4530 case DW_AT_MIPS_stride:
4531 return "DW_AT_MIPS_stride";
4532 case DW_AT_MIPS_abstract_name:
4533 return "DW_AT_MIPS_abstract_name";
4534 case DW_AT_MIPS_clone_origin:
4535 return "DW_AT_MIPS_clone_origin";
4536 case DW_AT_MIPS_has_inlines:
4537 return "DW_AT_MIPS_has_inlines";
4539 case DW_AT_sf_names:
4540 return "DW_AT_sf_names";
4541 case DW_AT_src_info:
4542 return "DW_AT_src_info";
4543 case DW_AT_mac_info:
4544 return "DW_AT_mac_info";
4545 case DW_AT_src_coords:
4546 return "DW_AT_src_coords";
4547 case DW_AT_body_begin:
4548 return "DW_AT_body_begin";
4549 case DW_AT_body_end:
4550 return "DW_AT_body_end";
4551 case DW_AT_GNU_vector:
4552 return "DW_AT_GNU_vector";
4554 case DW_AT_VMS_rtnbeg_pd_address:
4555 return "DW_AT_VMS_rtnbeg_pd_address";
4557 default:
4558 return "DW_AT_<unknown>";
4562 /* Convert a DWARF value form code into its string name. */
4564 static const char *
4565 dwarf_form_name (unsigned int form)
4567 switch (form)
4569 case DW_FORM_addr:
4570 return "DW_FORM_addr";
4571 case DW_FORM_block2:
4572 return "DW_FORM_block2";
4573 case DW_FORM_block4:
4574 return "DW_FORM_block4";
4575 case DW_FORM_data2:
4576 return "DW_FORM_data2";
4577 case DW_FORM_data4:
4578 return "DW_FORM_data4";
4579 case DW_FORM_data8:
4580 return "DW_FORM_data8";
4581 case DW_FORM_string:
4582 return "DW_FORM_string";
4583 case DW_FORM_block:
4584 return "DW_FORM_block";
4585 case DW_FORM_block1:
4586 return "DW_FORM_block1";
4587 case DW_FORM_data1:
4588 return "DW_FORM_data1";
4589 case DW_FORM_flag:
4590 return "DW_FORM_flag";
4591 case DW_FORM_sdata:
4592 return "DW_FORM_sdata";
4593 case DW_FORM_strp:
4594 return "DW_FORM_strp";
4595 case DW_FORM_udata:
4596 return "DW_FORM_udata";
4597 case DW_FORM_ref_addr:
4598 return "DW_FORM_ref_addr";
4599 case DW_FORM_ref1:
4600 return "DW_FORM_ref1";
4601 case DW_FORM_ref2:
4602 return "DW_FORM_ref2";
4603 case DW_FORM_ref4:
4604 return "DW_FORM_ref4";
4605 case DW_FORM_ref8:
4606 return "DW_FORM_ref8";
4607 case DW_FORM_ref_udata:
4608 return "DW_FORM_ref_udata";
4609 case DW_FORM_indirect:
4610 return "DW_FORM_indirect";
4611 default:
4612 return "DW_FORM_<unknown>";
4616 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4617 instance of an inlined instance of a decl which is local to an inline
4618 function, so we have to trace all of the way back through the origin chain
4619 to find out what sort of node actually served as the original seed for the
4620 given block. */
4622 static tree
4623 decl_ultimate_origin (tree decl)
4625 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4626 nodes in the function to point to themselves; ignore that if
4627 we're trying to output the abstract instance of this function. */
4628 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4629 return NULL_TREE;
4631 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4632 most distant ancestor, this should never happen. */
4633 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4635 return DECL_ABSTRACT_ORIGIN (decl);
4638 /* Determine the "ultimate origin" of a block. The block may be an inlined
4639 instance of an inlined instance of a block which is local to an inline
4640 function, so we have to trace all of the way back through the origin chain
4641 to find out what sort of node actually served as the original seed for the
4642 given block. */
4644 static tree
4645 block_ultimate_origin (tree block)
4647 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4649 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4650 nodes in the function to point to themselves; ignore that if
4651 we're trying to output the abstract instance of this function. */
4652 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4653 return NULL_TREE;
4655 if (immediate_origin == NULL_TREE)
4656 return NULL_TREE;
4657 else
4659 tree ret_val;
4660 tree lookahead = immediate_origin;
4664 ret_val = lookahead;
4665 lookahead = (TREE_CODE (ret_val) == BLOCK
4666 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4668 while (lookahead != NULL && lookahead != ret_val);
4670 /* The block's abstract origin chain may not be the *ultimate* origin of
4671 the block. It could lead to a DECL that has an abstract origin set.
4672 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4673 will give us if it has one). Note that DECL's abstract origins are
4674 supposed to be the most distant ancestor (or so decl_ultimate_origin
4675 claims), so we don't need to loop following the DECL origins. */
4676 if (DECL_P (ret_val))
4677 return DECL_ORIGIN (ret_val);
4679 return ret_val;
4683 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4684 of a virtual function may refer to a base class, so we check the 'this'
4685 parameter. */
4687 static tree
4688 decl_class_context (tree decl)
4690 tree context = NULL_TREE;
4692 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4693 context = DECL_CONTEXT (decl);
4694 else
4695 context = TYPE_MAIN_VARIANT
4696 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4698 if (context && !TYPE_P (context))
4699 context = NULL_TREE;
4701 return context;
4704 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4705 addition order, and correct that in reverse_all_dies. */
4707 static inline void
4708 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4710 if (die != NULL && attr != NULL)
4712 attr->dw_attr_next = die->die_attr;
4713 die->die_attr = attr;
4717 static inline enum dw_val_class
4718 AT_class (dw_attr_ref a)
4720 return a->dw_attr_val.val_class;
4723 /* Add a flag value attribute to a DIE. */
4725 static inline void
4726 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4728 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4730 attr->dw_attr_next = NULL;
4731 attr->dw_attr = attr_kind;
4732 attr->dw_attr_val.val_class = dw_val_class_flag;
4733 attr->dw_attr_val.v.val_flag = flag;
4734 add_dwarf_attr (die, attr);
4737 static inline unsigned
4738 AT_flag (dw_attr_ref a)
4740 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4741 return a->dw_attr_val.v.val_flag;
4744 /* Add a signed integer attribute value to a DIE. */
4746 static inline void
4747 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4749 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4751 attr->dw_attr_next = NULL;
4752 attr->dw_attr = attr_kind;
4753 attr->dw_attr_val.val_class = dw_val_class_const;
4754 attr->dw_attr_val.v.val_int = int_val;
4755 add_dwarf_attr (die, attr);
4758 static inline HOST_WIDE_INT
4759 AT_int (dw_attr_ref a)
4761 gcc_assert (a && AT_class (a) == dw_val_class_const);
4762 return a->dw_attr_val.v.val_int;
4765 /* Add an unsigned integer attribute value to a DIE. */
4767 static inline void
4768 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4769 unsigned HOST_WIDE_INT unsigned_val)
4771 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4773 attr->dw_attr_next = NULL;
4774 attr->dw_attr = attr_kind;
4775 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4776 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4777 add_dwarf_attr (die, attr);
4780 static inline unsigned HOST_WIDE_INT
4781 AT_unsigned (dw_attr_ref a)
4783 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4784 return a->dw_attr_val.v.val_unsigned;
4787 /* Add an unsigned double integer attribute value to a DIE. */
4789 static inline void
4790 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4791 long unsigned int val_hi, long unsigned int val_low)
4793 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4795 attr->dw_attr_next = NULL;
4796 attr->dw_attr = attr_kind;
4797 attr->dw_attr_val.val_class = dw_val_class_long_long;
4798 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4799 attr->dw_attr_val.v.val_long_long.low = val_low;
4800 add_dwarf_attr (die, attr);
4803 /* Add a floating point attribute value to a DIE and return it. */
4805 static inline void
4806 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4807 unsigned int length, unsigned int elt_size, unsigned char *array)
4809 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4811 attr->dw_attr_next = NULL;
4812 attr->dw_attr = attr_kind;
4813 attr->dw_attr_val.val_class = dw_val_class_vec;
4814 attr->dw_attr_val.v.val_vec.length = length;
4815 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4816 attr->dw_attr_val.v.val_vec.array = array;
4817 add_dwarf_attr (die, attr);
4820 /* Hash and equality functions for debug_str_hash. */
4822 static hashval_t
4823 debug_str_do_hash (const void *x)
4825 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4828 static int
4829 debug_str_eq (const void *x1, const void *x2)
4831 return strcmp ((((const struct indirect_string_node *)x1)->str),
4832 (const char *)x2) == 0;
4835 /* Add a string attribute value to a DIE. */
4837 static inline void
4838 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4840 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4841 struct indirect_string_node *node;
4842 void **slot;
4844 if (! debug_str_hash)
4845 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4846 debug_str_eq, NULL);
4848 slot = htab_find_slot_with_hash (debug_str_hash, str,
4849 htab_hash_string (str), INSERT);
4850 if (*slot == NULL)
4851 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4852 node = (struct indirect_string_node *) *slot;
4853 node->str = ggc_strdup (str);
4854 node->refcount++;
4856 attr->dw_attr_next = NULL;
4857 attr->dw_attr = attr_kind;
4858 attr->dw_attr_val.val_class = dw_val_class_str;
4859 attr->dw_attr_val.v.val_str = node;
4860 add_dwarf_attr (die, attr);
4863 static inline const char *
4864 AT_string (dw_attr_ref a)
4866 gcc_assert (a && AT_class (a) == dw_val_class_str);
4867 return a->dw_attr_val.v.val_str->str;
4870 /* Find out whether a string should be output inline in DIE
4871 or out-of-line in .debug_str section. */
4873 static int
4874 AT_string_form (dw_attr_ref a)
4876 struct indirect_string_node *node;
4877 unsigned int len;
4878 char label[32];
4880 gcc_assert (a && AT_class (a) == dw_val_class_str);
4882 node = a->dw_attr_val.v.val_str;
4883 if (node->form)
4884 return node->form;
4886 len = strlen (node->str) + 1;
4888 /* If the string is shorter or equal to the size of the reference, it is
4889 always better to put it inline. */
4890 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4891 return node->form = DW_FORM_string;
4893 /* If we cannot expect the linker to merge strings in .debug_str
4894 section, only put it into .debug_str if it is worth even in this
4895 single module. */
4896 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4897 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4898 return node->form = DW_FORM_string;
4900 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4901 ++dw2_string_counter;
4902 node->label = xstrdup (label);
4904 return node->form = DW_FORM_strp;
4907 /* Add a DIE reference attribute value to a DIE. */
4909 static inline void
4910 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4912 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4914 attr->dw_attr_next = NULL;
4915 attr->dw_attr = attr_kind;
4916 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4917 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4918 attr->dw_attr_val.v.val_die_ref.external = 0;
4919 add_dwarf_attr (die, attr);
4922 /* Add an AT_specification attribute to a DIE, and also make the back
4923 pointer from the specification to the definition. */
4925 static inline void
4926 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4928 add_AT_die_ref (die, DW_AT_specification, targ_die);
4929 gcc_assert (!targ_die->die_definition);
4930 targ_die->die_definition = die;
4933 static inline dw_die_ref
4934 AT_ref (dw_attr_ref a)
4936 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4937 return a->dw_attr_val.v.val_die_ref.die;
4940 static inline int
4941 AT_ref_external (dw_attr_ref a)
4943 if (a && AT_class (a) == dw_val_class_die_ref)
4944 return a->dw_attr_val.v.val_die_ref.external;
4946 return 0;
4949 static inline void
4950 set_AT_ref_external (dw_attr_ref a, int i)
4952 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4953 a->dw_attr_val.v.val_die_ref.external = i;
4956 /* Add an FDE reference attribute value to a DIE. */
4958 static inline void
4959 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4961 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4963 attr->dw_attr_next = NULL;
4964 attr->dw_attr = attr_kind;
4965 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4966 attr->dw_attr_val.v.val_fde_index = targ_fde;
4967 add_dwarf_attr (die, attr);
4970 /* Add a location description attribute value to a DIE. */
4972 static inline void
4973 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4975 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4977 attr->dw_attr_next = NULL;
4978 attr->dw_attr = attr_kind;
4979 attr->dw_attr_val.val_class = dw_val_class_loc;
4980 attr->dw_attr_val.v.val_loc = loc;
4981 add_dwarf_attr (die, attr);
4984 static inline dw_loc_descr_ref
4985 AT_loc (dw_attr_ref a)
4987 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4988 return a->dw_attr_val.v.val_loc;
4991 static inline void
4992 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4994 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4996 attr->dw_attr_next = NULL;
4997 attr->dw_attr = attr_kind;
4998 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4999 attr->dw_attr_val.v.val_loc_list = loc_list;
5000 add_dwarf_attr (die, attr);
5001 have_location_lists = 1;
5004 static inline dw_loc_list_ref
5005 AT_loc_list (dw_attr_ref a)
5007 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5008 return a->dw_attr_val.v.val_loc_list;
5011 /* Add an address constant attribute value to a DIE. */
5013 static inline void
5014 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5016 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5018 attr->dw_attr_next = NULL;
5019 attr->dw_attr = attr_kind;
5020 attr->dw_attr_val.val_class = dw_val_class_addr;
5021 attr->dw_attr_val.v.val_addr = addr;
5022 add_dwarf_attr (die, attr);
5025 static inline rtx
5026 AT_addr (dw_attr_ref a)
5028 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5029 return a->dw_attr_val.v.val_addr;
5032 /* Add a label identifier attribute value to a DIE. */
5034 static inline void
5035 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5037 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5039 attr->dw_attr_next = NULL;
5040 attr->dw_attr = attr_kind;
5041 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5042 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5043 add_dwarf_attr (die, attr);
5046 /* Add a section offset attribute value to a DIE. */
5048 static inline void
5049 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5051 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5053 attr->dw_attr_next = NULL;
5054 attr->dw_attr = attr_kind;
5055 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5056 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5057 add_dwarf_attr (die, attr);
5060 /* Add an offset attribute value to a DIE. */
5062 static inline void
5063 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5064 unsigned HOST_WIDE_INT offset)
5066 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5068 attr->dw_attr_next = NULL;
5069 attr->dw_attr = attr_kind;
5070 attr->dw_attr_val.val_class = dw_val_class_offset;
5071 attr->dw_attr_val.v.val_offset = offset;
5072 add_dwarf_attr (die, attr);
5075 /* Add an range_list attribute value to a DIE. */
5077 static void
5078 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5079 long unsigned int offset)
5081 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5083 attr->dw_attr_next = NULL;
5084 attr->dw_attr = attr_kind;
5085 attr->dw_attr_val.val_class = dw_val_class_range_list;
5086 attr->dw_attr_val.v.val_offset = offset;
5087 add_dwarf_attr (die, attr);
5090 static inline const char *
5091 AT_lbl (dw_attr_ref a)
5093 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5094 || AT_class (a) == dw_val_class_lbl_offset));
5095 return a->dw_attr_val.v.val_lbl_id;
5098 /* Get the attribute of type attr_kind. */
5100 static dw_attr_ref
5101 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5103 dw_attr_ref a;
5104 dw_die_ref spec = NULL;
5106 if (die != NULL)
5108 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5109 if (a->dw_attr == attr_kind)
5110 return a;
5111 else if (a->dw_attr == DW_AT_specification
5112 || a->dw_attr == DW_AT_abstract_origin)
5113 spec = AT_ref (a);
5115 if (spec)
5116 return get_AT (spec, attr_kind);
5119 return NULL;
5122 /* Return the "low pc" attribute value, typically associated with a subprogram
5123 DIE. Return null if the "low pc" attribute is either not present, or if it
5124 cannot be represented as an assembler label identifier. */
5126 static inline const char *
5127 get_AT_low_pc (dw_die_ref die)
5129 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5131 return a ? AT_lbl (a) : NULL;
5134 /* Return the "high pc" attribute value, typically associated with a subprogram
5135 DIE. Return null if the "high pc" attribute is either not present, or if it
5136 cannot be represented as an assembler label identifier. */
5138 static inline const char *
5139 get_AT_hi_pc (dw_die_ref die)
5141 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5143 return a ? AT_lbl (a) : NULL;
5146 /* Return the value of the string attribute designated by ATTR_KIND, or
5147 NULL if it is not present. */
5149 static inline const char *
5150 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5152 dw_attr_ref a = get_AT (die, attr_kind);
5154 return a ? AT_string (a) : NULL;
5157 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5158 if it is not present. */
5160 static inline int
5161 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5163 dw_attr_ref a = get_AT (die, attr_kind);
5165 return a ? AT_flag (a) : 0;
5168 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5169 if it is not present. */
5171 static inline unsigned
5172 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5174 dw_attr_ref a = get_AT (die, attr_kind);
5176 return a ? AT_unsigned (a) : 0;
5179 static inline dw_die_ref
5180 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5182 dw_attr_ref a = get_AT (die, attr_kind);
5184 return a ? AT_ref (a) : NULL;
5187 /* Return TRUE if the language is C or C++. */
5189 static inline bool
5190 is_c_family (void)
5192 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5194 return (lang == DW_LANG_C || lang == DW_LANG_C89
5195 || lang == DW_LANG_C_plus_plus);
5198 /* Return TRUE if the language is C++. */
5200 static inline bool
5201 is_cxx (void)
5203 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5204 == DW_LANG_C_plus_plus);
5207 /* Return TRUE if the language is Fortran. */
5209 static inline bool
5210 is_fortran (void)
5212 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5214 return (lang == DW_LANG_Fortran77
5215 || lang == DW_LANG_Fortran90
5216 || lang == DW_LANG_Fortran95);
5219 /* Return TRUE if the language is Java. */
5221 static inline bool
5222 is_java (void)
5224 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5226 return lang == DW_LANG_Java;
5229 /* Return TRUE if the language is Ada. */
5231 static inline bool
5232 is_ada (void)
5234 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5236 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5239 /* Free up the memory used by A. */
5241 static inline void free_AT (dw_attr_ref);
5242 static inline void
5243 free_AT (dw_attr_ref a)
5245 if (AT_class (a) == dw_val_class_str)
5246 if (a->dw_attr_val.v.val_str->refcount)
5247 a->dw_attr_val.v.val_str->refcount--;
5250 /* Remove the specified attribute if present. */
5252 static void
5253 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5255 dw_attr_ref *p;
5256 dw_attr_ref removed = NULL;
5258 if (die != NULL)
5260 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5261 if ((*p)->dw_attr == attr_kind)
5263 removed = *p;
5264 *p = (*p)->dw_attr_next;
5265 break;
5268 if (removed != 0)
5269 free_AT (removed);
5273 /* Remove child die whose die_tag is specified tag. */
5275 static void
5276 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5278 dw_die_ref current, prev, next;
5279 current = die->die_child;
5280 prev = NULL;
5281 while (current != NULL)
5283 if (current->die_tag == tag)
5285 next = current->die_sib;
5286 if (prev == NULL)
5287 die->die_child = next;
5288 else
5289 prev->die_sib = next;
5290 free_die (current);
5291 current = next;
5293 else
5295 prev = current;
5296 current = current->die_sib;
5301 /* Free up the memory used by DIE. */
5303 static inline void
5304 free_die (dw_die_ref die)
5306 remove_children (die);
5309 /* Discard the children of this DIE. */
5311 static void
5312 remove_children (dw_die_ref die)
5314 dw_die_ref child_die = die->die_child;
5316 die->die_child = NULL;
5318 while (child_die != NULL)
5320 dw_die_ref tmp_die = child_die;
5321 dw_attr_ref a;
5323 child_die = child_die->die_sib;
5325 for (a = tmp_die->die_attr; a != NULL;)
5327 dw_attr_ref tmp_a = a;
5329 a = a->dw_attr_next;
5330 free_AT (tmp_a);
5333 free_die (tmp_die);
5337 /* Add a child DIE below its parent. We build the lists up in reverse
5338 addition order, and correct that in reverse_all_dies. */
5340 static inline void
5341 add_child_die (dw_die_ref die, dw_die_ref child_die)
5343 if (die != NULL && child_die != NULL)
5345 gcc_assert (die != child_die);
5347 child_die->die_parent = die;
5348 child_die->die_sib = die->die_child;
5349 die->die_child = child_die;
5353 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5354 is the specification, to the front of PARENT's list of children. */
5356 static void
5357 splice_child_die (dw_die_ref parent, dw_die_ref child)
5359 dw_die_ref *p;
5361 /* We want the declaration DIE from inside the class, not the
5362 specification DIE at toplevel. */
5363 if (child->die_parent != parent)
5365 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5367 if (tmp)
5368 child = tmp;
5371 gcc_assert (child->die_parent == parent
5372 || (child->die_parent
5373 == get_AT_ref (parent, DW_AT_specification)));
5375 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5376 if (*p == child)
5378 *p = child->die_sib;
5379 break;
5382 child->die_parent = parent;
5383 child->die_sib = parent->die_child;
5384 parent->die_child = child;
5387 /* Return a pointer to a newly created DIE node. */
5389 static inline dw_die_ref
5390 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5392 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5394 die->die_tag = tag_value;
5396 if (parent_die != NULL)
5397 add_child_die (parent_die, die);
5398 else
5400 limbo_die_node *limbo_node;
5402 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5403 limbo_node->die = die;
5404 limbo_node->created_for = t;
5405 limbo_node->next = limbo_die_list;
5406 limbo_die_list = limbo_node;
5409 return die;
5412 /* Return the DIE associated with the given type specifier. */
5414 static inline dw_die_ref
5415 lookup_type_die (tree type)
5417 return TYPE_SYMTAB_DIE (type);
5420 /* Equate a DIE to a given type specifier. */
5422 static inline void
5423 equate_type_number_to_die (tree type, dw_die_ref type_die)
5425 TYPE_SYMTAB_DIE (type) = type_die;
5428 /* Returns a hash value for X (which really is a die_struct). */
5430 static hashval_t
5431 decl_die_table_hash (const void *x)
5433 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5436 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5438 static int
5439 decl_die_table_eq (const void *x, const void *y)
5441 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5444 /* Return the DIE associated with a given declaration. */
5446 static inline dw_die_ref
5447 lookup_decl_die (tree decl)
5449 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5452 /* Returns a hash value for X (which really is a var_loc_list). */
5454 static hashval_t
5455 decl_loc_table_hash (const void *x)
5457 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5460 /* Return nonzero if decl_id of var_loc_list X is the same as
5461 UID of decl *Y. */
5463 static int
5464 decl_loc_table_eq (const void *x, const void *y)
5466 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5469 /* Return the var_loc list associated with a given declaration. */
5471 static inline var_loc_list *
5472 lookup_decl_loc (tree decl)
5474 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5477 /* Equate a DIE to a particular declaration. */
5479 static void
5480 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5482 unsigned int decl_id = DECL_UID (decl);
5483 void **slot;
5485 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5486 *slot = decl_die;
5487 decl_die->decl_id = decl_id;
5490 /* Add a variable location node to the linked list for DECL. */
5492 static void
5493 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5495 unsigned int decl_id = DECL_UID (decl);
5496 var_loc_list *temp;
5497 void **slot;
5499 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5500 if (*slot == NULL)
5502 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5503 temp->decl_id = decl_id;
5504 *slot = temp;
5506 else
5507 temp = *slot;
5509 if (temp->last)
5511 /* If the current location is the same as the end of the list,
5512 we have nothing to do. */
5513 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5514 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5516 /* Add LOC to the end of list and update LAST. */
5517 temp->last->next = loc;
5518 temp->last = loc;
5521 /* Do not add empty location to the beginning of the list. */
5522 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5524 temp->first = loc;
5525 temp->last = loc;
5529 /* Keep track of the number of spaces used to indent the
5530 output of the debugging routines that print the structure of
5531 the DIE internal representation. */
5532 static int print_indent;
5534 /* Indent the line the number of spaces given by print_indent. */
5536 static inline void
5537 print_spaces (FILE *outfile)
5539 fprintf (outfile, "%*s", print_indent, "");
5542 /* Print the information associated with a given DIE, and its children.
5543 This routine is a debugging aid only. */
5545 static void
5546 print_die (dw_die_ref die, FILE *outfile)
5548 dw_attr_ref a;
5549 dw_die_ref c;
5551 print_spaces (outfile);
5552 fprintf (outfile, "DIE %4lu: %s\n",
5553 die->die_offset, dwarf_tag_name (die->die_tag));
5554 print_spaces (outfile);
5555 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5556 fprintf (outfile, " offset: %lu\n", die->die_offset);
5558 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5560 print_spaces (outfile);
5561 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5563 switch (AT_class (a))
5565 case dw_val_class_addr:
5566 fprintf (outfile, "address");
5567 break;
5568 case dw_val_class_offset:
5569 fprintf (outfile, "offset");
5570 break;
5571 case dw_val_class_loc:
5572 fprintf (outfile, "location descriptor");
5573 break;
5574 case dw_val_class_loc_list:
5575 fprintf (outfile, "location list -> label:%s",
5576 AT_loc_list (a)->ll_symbol);
5577 break;
5578 case dw_val_class_range_list:
5579 fprintf (outfile, "range list");
5580 break;
5581 case dw_val_class_const:
5582 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5583 break;
5584 case dw_val_class_unsigned_const:
5585 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5586 break;
5587 case dw_val_class_long_long:
5588 fprintf (outfile, "constant (%lu,%lu)",
5589 a->dw_attr_val.v.val_long_long.hi,
5590 a->dw_attr_val.v.val_long_long.low);
5591 break;
5592 case dw_val_class_vec:
5593 fprintf (outfile, "floating-point or vector constant");
5594 break;
5595 case dw_val_class_flag:
5596 fprintf (outfile, "%u", AT_flag (a));
5597 break;
5598 case dw_val_class_die_ref:
5599 if (AT_ref (a) != NULL)
5601 if (AT_ref (a)->die_symbol)
5602 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5603 else
5604 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5606 else
5607 fprintf (outfile, "die -> <null>");
5608 break;
5609 case dw_val_class_lbl_id:
5610 case dw_val_class_lbl_offset:
5611 fprintf (outfile, "label: %s", AT_lbl (a));
5612 break;
5613 case dw_val_class_str:
5614 if (AT_string (a) != NULL)
5615 fprintf (outfile, "\"%s\"", AT_string (a));
5616 else
5617 fprintf (outfile, "<null>");
5618 break;
5619 default:
5620 break;
5623 fprintf (outfile, "\n");
5626 if (die->die_child != NULL)
5628 print_indent += 4;
5629 for (c = die->die_child; c != NULL; c = c->die_sib)
5630 print_die (c, outfile);
5632 print_indent -= 4;
5634 if (print_indent == 0)
5635 fprintf (outfile, "\n");
5638 /* Print the contents of the source code line number correspondence table.
5639 This routine is a debugging aid only. */
5641 static void
5642 print_dwarf_line_table (FILE *outfile)
5644 unsigned i;
5645 dw_line_info_ref line_info;
5647 fprintf (outfile, "\n\nDWARF source line information\n");
5648 for (i = 1; i < line_info_table_in_use; i++)
5650 line_info = &line_info_table[i];
5651 fprintf (outfile, "%5d: ", i);
5652 fprintf (outfile, "%-20s",
5653 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5654 fprintf (outfile, "%6ld", line_info->dw_line_num);
5655 fprintf (outfile, "\n");
5658 fprintf (outfile, "\n\n");
5661 /* Print the information collected for a given DIE. */
5663 void
5664 debug_dwarf_die (dw_die_ref die)
5666 print_die (die, stderr);
5669 /* Print all DWARF information collected for the compilation unit.
5670 This routine is a debugging aid only. */
5672 void
5673 debug_dwarf (void)
5675 print_indent = 0;
5676 print_die (comp_unit_die, stderr);
5677 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5678 print_dwarf_line_table (stderr);
5681 /* We build up the lists of children and attributes by pushing new ones
5682 onto the beginning of the list. Reverse the lists for DIE so that
5683 they are in order of addition. */
5685 static void
5686 reverse_die_lists (dw_die_ref die)
5688 dw_die_ref c, cp, cn;
5689 dw_attr_ref a, ap, an;
5691 for (a = die->die_attr, ap = 0; a; a = an)
5693 an = a->dw_attr_next;
5694 a->dw_attr_next = ap;
5695 ap = a;
5698 die->die_attr = ap;
5700 for (c = die->die_child, cp = 0; c; c = cn)
5702 cn = c->die_sib;
5703 c->die_sib = cp;
5704 cp = c;
5707 die->die_child = cp;
5710 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5711 reverse all dies in add_sibling_attributes, which runs through all the dies,
5712 it would reverse all the dies. Now, however, since we don't call
5713 reverse_die_lists in add_sibling_attributes, we need a routine to
5714 recursively reverse all the dies. This is that routine. */
5716 static void
5717 reverse_all_dies (dw_die_ref die)
5719 dw_die_ref c;
5721 reverse_die_lists (die);
5723 for (c = die->die_child; c; c = c->die_sib)
5724 reverse_all_dies (c);
5727 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5728 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5729 DIE that marks the start of the DIEs for this include file. */
5731 static dw_die_ref
5732 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5734 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5735 dw_die_ref new_unit = gen_compile_unit_die (filename);
5737 new_unit->die_sib = old_unit;
5738 return new_unit;
5741 /* Close an include-file CU and reopen the enclosing one. */
5743 static dw_die_ref
5744 pop_compile_unit (dw_die_ref old_unit)
5746 dw_die_ref new_unit = old_unit->die_sib;
5748 old_unit->die_sib = NULL;
5749 return new_unit;
5752 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5753 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5755 /* Calculate the checksum of a location expression. */
5757 static inline void
5758 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5760 CHECKSUM (loc->dw_loc_opc);
5761 CHECKSUM (loc->dw_loc_oprnd1);
5762 CHECKSUM (loc->dw_loc_oprnd2);
5765 /* Calculate the checksum of an attribute. */
5767 static void
5768 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5770 dw_loc_descr_ref loc;
5771 rtx r;
5773 CHECKSUM (at->dw_attr);
5775 /* We don't care about differences in file numbering. */
5776 if (at->dw_attr == DW_AT_decl_file
5777 /* Or that this was compiled with a different compiler snapshot; if
5778 the output is the same, that's what matters. */
5779 || at->dw_attr == DW_AT_producer)
5780 return;
5782 switch (AT_class (at))
5784 case dw_val_class_const:
5785 CHECKSUM (at->dw_attr_val.v.val_int);
5786 break;
5787 case dw_val_class_unsigned_const:
5788 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5789 break;
5790 case dw_val_class_long_long:
5791 CHECKSUM (at->dw_attr_val.v.val_long_long);
5792 break;
5793 case dw_val_class_vec:
5794 CHECKSUM (at->dw_attr_val.v.val_vec);
5795 break;
5796 case dw_val_class_flag:
5797 CHECKSUM (at->dw_attr_val.v.val_flag);
5798 break;
5799 case dw_val_class_str:
5800 CHECKSUM_STRING (AT_string (at));
5801 break;
5803 case dw_val_class_addr:
5804 r = AT_addr (at);
5805 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5806 CHECKSUM_STRING (XSTR (r, 0));
5807 break;
5809 case dw_val_class_offset:
5810 CHECKSUM (at->dw_attr_val.v.val_offset);
5811 break;
5813 case dw_val_class_loc:
5814 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5815 loc_checksum (loc, ctx);
5816 break;
5818 case dw_val_class_die_ref:
5819 die_checksum (AT_ref (at), ctx, mark);
5820 break;
5822 case dw_val_class_fde_ref:
5823 case dw_val_class_lbl_id:
5824 case dw_val_class_lbl_offset:
5825 break;
5827 default:
5828 break;
5832 /* Calculate the checksum of a DIE. */
5834 static void
5835 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5837 dw_die_ref c;
5838 dw_attr_ref a;
5840 /* To avoid infinite recursion. */
5841 if (die->die_mark)
5843 CHECKSUM (die->die_mark);
5844 return;
5846 die->die_mark = ++(*mark);
5848 CHECKSUM (die->die_tag);
5850 for (a = die->die_attr; a; a = a->dw_attr_next)
5851 attr_checksum (a, ctx, mark);
5853 for (c = die->die_child; c; c = c->die_sib)
5854 die_checksum (c, ctx, mark);
5857 #undef CHECKSUM
5858 #undef CHECKSUM_STRING
5860 /* Do the location expressions look same? */
5861 static inline int
5862 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5864 return loc1->dw_loc_opc == loc2->dw_loc_opc
5865 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5866 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5869 /* Do the values look the same? */
5870 static int
5871 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5873 dw_loc_descr_ref loc1, loc2;
5874 rtx r1, r2;
5876 if (v1->val_class != v2->val_class)
5877 return 0;
5879 switch (v1->val_class)
5881 case dw_val_class_const:
5882 return v1->v.val_int == v2->v.val_int;
5883 case dw_val_class_unsigned_const:
5884 return v1->v.val_unsigned == v2->v.val_unsigned;
5885 case dw_val_class_long_long:
5886 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5887 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5888 case dw_val_class_vec:
5889 if (v1->v.val_vec.length != v2->v.val_vec.length
5890 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5891 return 0;
5892 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5893 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5894 return 0;
5895 return 1;
5896 case dw_val_class_flag:
5897 return v1->v.val_flag == v2->v.val_flag;
5898 case dw_val_class_str:
5899 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5901 case dw_val_class_addr:
5902 r1 = v1->v.val_addr;
5903 r2 = v2->v.val_addr;
5904 if (GET_CODE (r1) != GET_CODE (r2))
5905 return 0;
5906 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5907 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5909 case dw_val_class_offset:
5910 return v1->v.val_offset == v2->v.val_offset;
5912 case dw_val_class_loc:
5913 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5914 loc1 && loc2;
5915 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5916 if (!same_loc_p (loc1, loc2, mark))
5917 return 0;
5918 return !loc1 && !loc2;
5920 case dw_val_class_die_ref:
5921 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5923 case dw_val_class_fde_ref:
5924 case dw_val_class_lbl_id:
5925 case dw_val_class_lbl_offset:
5926 return 1;
5928 default:
5929 return 1;
5933 /* Do the attributes look the same? */
5935 static int
5936 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5938 if (at1->dw_attr != at2->dw_attr)
5939 return 0;
5941 /* We don't care about differences in file numbering. */
5942 if (at1->dw_attr == DW_AT_decl_file
5943 /* Or that this was compiled with a different compiler snapshot; if
5944 the output is the same, that's what matters. */
5945 || at1->dw_attr == DW_AT_producer)
5946 return 1;
5948 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5951 /* Do the dies look the same? */
5953 static int
5954 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5956 dw_die_ref c1, c2;
5957 dw_attr_ref a1, a2;
5959 /* To avoid infinite recursion. */
5960 if (die1->die_mark)
5961 return die1->die_mark == die2->die_mark;
5962 die1->die_mark = die2->die_mark = ++(*mark);
5964 if (die1->die_tag != die2->die_tag)
5965 return 0;
5967 for (a1 = die1->die_attr, a2 = die2->die_attr;
5968 a1 && a2;
5969 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5970 if (!same_attr_p (a1, a2, mark))
5971 return 0;
5972 if (a1 || a2)
5973 return 0;
5975 for (c1 = die1->die_child, c2 = die2->die_child;
5976 c1 && c2;
5977 c1 = c1->die_sib, c2 = c2->die_sib)
5978 if (!same_die_p (c1, c2, mark))
5979 return 0;
5980 if (c1 || c2)
5981 return 0;
5983 return 1;
5986 /* Do the dies look the same? Wrapper around same_die_p. */
5988 static int
5989 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5991 int mark = 0;
5992 int ret = same_die_p (die1, die2, &mark);
5994 unmark_all_dies (die1);
5995 unmark_all_dies (die2);
5997 return ret;
6000 /* The prefix to attach to symbols on DIEs in the current comdat debug
6001 info section. */
6002 static char *comdat_symbol_id;
6004 /* The index of the current symbol within the current comdat CU. */
6005 static unsigned int comdat_symbol_number;
6007 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6008 children, and set comdat_symbol_id accordingly. */
6010 static void
6011 compute_section_prefix (dw_die_ref unit_die)
6013 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6014 const char *base = die_name ? lbasename (die_name) : "anonymous";
6015 char *name = alloca (strlen (base) + 64);
6016 char *p;
6017 int i, mark;
6018 unsigned char checksum[16];
6019 struct md5_ctx ctx;
6021 /* Compute the checksum of the DIE, then append part of it as hex digits to
6022 the name filename of the unit. */
6024 md5_init_ctx (&ctx);
6025 mark = 0;
6026 die_checksum (unit_die, &ctx, &mark);
6027 unmark_all_dies (unit_die);
6028 md5_finish_ctx (&ctx, checksum);
6030 sprintf (name, "%s.", base);
6031 clean_symbol_name (name);
6033 p = name + strlen (name);
6034 for (i = 0; i < 4; i++)
6036 sprintf (p, "%.2x", checksum[i]);
6037 p += 2;
6040 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6041 comdat_symbol_number = 0;
6044 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6046 static int
6047 is_type_die (dw_die_ref die)
6049 switch (die->die_tag)
6051 case DW_TAG_array_type:
6052 case DW_TAG_class_type:
6053 case DW_TAG_enumeration_type:
6054 case DW_TAG_pointer_type:
6055 case DW_TAG_reference_type:
6056 case DW_TAG_string_type:
6057 case DW_TAG_structure_type:
6058 case DW_TAG_subroutine_type:
6059 case DW_TAG_union_type:
6060 case DW_TAG_ptr_to_member_type:
6061 case DW_TAG_set_type:
6062 case DW_TAG_subrange_type:
6063 case DW_TAG_base_type:
6064 case DW_TAG_const_type:
6065 case DW_TAG_file_type:
6066 case DW_TAG_packed_type:
6067 case DW_TAG_volatile_type:
6068 case DW_TAG_typedef:
6069 return 1;
6070 default:
6071 return 0;
6075 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6076 Basically, we want to choose the bits that are likely to be shared between
6077 compilations (types) and leave out the bits that are specific to individual
6078 compilations (functions). */
6080 static int
6081 is_comdat_die (dw_die_ref c)
6083 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6084 we do for stabs. The advantage is a greater likelihood of sharing between
6085 objects that don't include headers in the same order (and therefore would
6086 put the base types in a different comdat). jason 8/28/00 */
6088 if (c->die_tag == DW_TAG_base_type)
6089 return 0;
6091 if (c->die_tag == DW_TAG_pointer_type
6092 || c->die_tag == DW_TAG_reference_type
6093 || c->die_tag == DW_TAG_const_type
6094 || c->die_tag == DW_TAG_volatile_type)
6096 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6098 return t ? is_comdat_die (t) : 0;
6101 return is_type_die (c);
6104 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6105 compilation unit. */
6107 static int
6108 is_symbol_die (dw_die_ref c)
6110 return (is_type_die (c)
6111 || (get_AT (c, DW_AT_declaration)
6112 && !get_AT (c, DW_AT_specification)));
6115 static char *
6116 gen_internal_sym (const char *prefix)
6118 char buf[256];
6120 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6121 return xstrdup (buf);
6124 /* Assign symbols to all worthy DIEs under DIE. */
6126 static void
6127 assign_symbol_names (dw_die_ref die)
6129 dw_die_ref c;
6131 if (is_symbol_die (die))
6133 if (comdat_symbol_id)
6135 char *p = alloca (strlen (comdat_symbol_id) + 64);
6137 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6138 comdat_symbol_id, comdat_symbol_number++);
6139 die->die_symbol = xstrdup (p);
6141 else
6142 die->die_symbol = gen_internal_sym ("LDIE");
6145 for (c = die->die_child; c != NULL; c = c->die_sib)
6146 assign_symbol_names (c);
6149 struct cu_hash_table_entry
6151 dw_die_ref cu;
6152 unsigned min_comdat_num, max_comdat_num;
6153 struct cu_hash_table_entry *next;
6156 /* Routines to manipulate hash table of CUs. */
6157 static hashval_t
6158 htab_cu_hash (const void *of)
6160 const struct cu_hash_table_entry *entry = of;
6162 return htab_hash_string (entry->cu->die_symbol);
6165 static int
6166 htab_cu_eq (const void *of1, const void *of2)
6168 const struct cu_hash_table_entry *entry1 = of1;
6169 const struct die_struct *entry2 = of2;
6171 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6174 static void
6175 htab_cu_del (void *what)
6177 struct cu_hash_table_entry *next, *entry = what;
6179 while (entry)
6181 next = entry->next;
6182 free (entry);
6183 entry = next;
6187 /* Check whether we have already seen this CU and set up SYM_NUM
6188 accordingly. */
6189 static int
6190 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6192 struct cu_hash_table_entry dummy;
6193 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6195 dummy.max_comdat_num = 0;
6197 slot = (struct cu_hash_table_entry **)
6198 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6199 INSERT);
6200 entry = *slot;
6202 for (; entry; last = entry, entry = entry->next)
6204 if (same_die_p_wrap (cu, entry->cu))
6205 break;
6208 if (entry)
6210 *sym_num = entry->min_comdat_num;
6211 return 1;
6214 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6215 entry->cu = cu;
6216 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6217 entry->next = *slot;
6218 *slot = entry;
6220 return 0;
6223 /* Record SYM_NUM to record of CU in HTABLE. */
6224 static void
6225 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6227 struct cu_hash_table_entry **slot, *entry;
6229 slot = (struct cu_hash_table_entry **)
6230 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6231 NO_INSERT);
6232 entry = *slot;
6234 entry->max_comdat_num = sym_num;
6237 /* Traverse the DIE (which is always comp_unit_die), and set up
6238 additional compilation units for each of the include files we see
6239 bracketed by BINCL/EINCL. */
6241 static void
6242 break_out_includes (dw_die_ref die)
6244 dw_die_ref *ptr;
6245 dw_die_ref unit = NULL;
6246 limbo_die_node *node, **pnode;
6247 htab_t cu_hash_table;
6249 for (ptr = &(die->die_child); *ptr;)
6251 dw_die_ref c = *ptr;
6253 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6254 || (unit && is_comdat_die (c)))
6256 /* This DIE is for a secondary CU; remove it from the main one. */
6257 *ptr = c->die_sib;
6259 if (c->die_tag == DW_TAG_GNU_BINCL)
6261 unit = push_new_compile_unit (unit, c);
6262 free_die (c);
6264 else if (c->die_tag == DW_TAG_GNU_EINCL)
6266 unit = pop_compile_unit (unit);
6267 free_die (c);
6269 else
6270 add_child_die (unit, c);
6272 else
6274 /* Leave this DIE in the main CU. */
6275 ptr = &(c->die_sib);
6276 continue;
6280 #if 0
6281 /* We can only use this in debugging, since the frontend doesn't check
6282 to make sure that we leave every include file we enter. */
6283 gcc_assert (!unit);
6284 #endif
6286 assign_symbol_names (die);
6287 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6288 for (node = limbo_die_list, pnode = &limbo_die_list;
6289 node;
6290 node = node->next)
6292 int is_dupl;
6294 compute_section_prefix (node->die);
6295 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6296 &comdat_symbol_number);
6297 assign_symbol_names (node->die);
6298 if (is_dupl)
6299 *pnode = node->next;
6300 else
6302 pnode = &node->next;
6303 record_comdat_symbol_number (node->die, cu_hash_table,
6304 comdat_symbol_number);
6307 htab_delete (cu_hash_table);
6310 /* Traverse the DIE and add a sibling attribute if it may have the
6311 effect of speeding up access to siblings. To save some space,
6312 avoid generating sibling attributes for DIE's without children. */
6314 static void
6315 add_sibling_attributes (dw_die_ref die)
6317 dw_die_ref c;
6319 if (die->die_tag != DW_TAG_compile_unit
6320 && die->die_sib && die->die_child != NULL)
6321 /* Add the sibling link to the front of the attribute list. */
6322 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6324 for (c = die->die_child; c != NULL; c = c->die_sib)
6325 add_sibling_attributes (c);
6328 /* Output all location lists for the DIE and its children. */
6330 static void
6331 output_location_lists (dw_die_ref die)
6333 dw_die_ref c;
6334 dw_attr_ref d_attr;
6336 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6337 if (AT_class (d_attr) == dw_val_class_loc_list)
6338 output_loc_list (AT_loc_list (d_attr));
6340 for (c = die->die_child; c != NULL; c = c->die_sib)
6341 output_location_lists (c);
6345 /* The format of each DIE (and its attribute value pairs) is encoded in an
6346 abbreviation table. This routine builds the abbreviation table and assigns
6347 a unique abbreviation id for each abbreviation entry. The children of each
6348 die are visited recursively. */
6350 static void
6351 build_abbrev_table (dw_die_ref die)
6353 unsigned long abbrev_id;
6354 unsigned int n_alloc;
6355 dw_die_ref c;
6356 dw_attr_ref d_attr, a_attr;
6358 /* Scan the DIE references, and mark as external any that refer to
6359 DIEs from other CUs (i.e. those which are not marked). */
6360 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6361 if (AT_class (d_attr) == dw_val_class_die_ref
6362 && AT_ref (d_attr)->die_mark == 0)
6364 gcc_assert (AT_ref (d_attr)->die_symbol);
6366 set_AT_ref_external (d_attr, 1);
6369 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6371 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6373 if (abbrev->die_tag == die->die_tag)
6375 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6377 a_attr = abbrev->die_attr;
6378 d_attr = die->die_attr;
6380 while (a_attr != NULL && d_attr != NULL)
6382 if ((a_attr->dw_attr != d_attr->dw_attr)
6383 || (value_format (a_attr) != value_format (d_attr)))
6384 break;
6386 a_attr = a_attr->dw_attr_next;
6387 d_attr = d_attr->dw_attr_next;
6390 if (a_attr == NULL && d_attr == NULL)
6391 break;
6396 if (abbrev_id >= abbrev_die_table_in_use)
6398 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6400 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6401 abbrev_die_table = ggc_realloc (abbrev_die_table,
6402 sizeof (dw_die_ref) * n_alloc);
6404 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6405 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6406 abbrev_die_table_allocated = n_alloc;
6409 ++abbrev_die_table_in_use;
6410 abbrev_die_table[abbrev_id] = die;
6413 die->die_abbrev = abbrev_id;
6414 for (c = die->die_child; c != NULL; c = c->die_sib)
6415 build_abbrev_table (c);
6418 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6420 static int
6421 constant_size (long unsigned int value)
6423 int log;
6425 if (value == 0)
6426 log = 0;
6427 else
6428 log = floor_log2 (value);
6430 log = log / 8;
6431 log = 1 << (floor_log2 (log) + 1);
6433 return log;
6436 /* Return the size of a DIE as it is represented in the
6437 .debug_info section. */
6439 static unsigned long
6440 size_of_die (dw_die_ref die)
6442 unsigned long size = 0;
6443 dw_attr_ref a;
6445 size += size_of_uleb128 (die->die_abbrev);
6446 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6448 switch (AT_class (a))
6450 case dw_val_class_addr:
6451 size += DWARF2_ADDR_SIZE;
6452 break;
6453 case dw_val_class_offset:
6454 size += DWARF_OFFSET_SIZE;
6455 break;
6456 case dw_val_class_loc:
6458 unsigned long lsize = size_of_locs (AT_loc (a));
6460 /* Block length. */
6461 size += constant_size (lsize);
6462 size += lsize;
6464 break;
6465 case dw_val_class_loc_list:
6466 size += DWARF_OFFSET_SIZE;
6467 break;
6468 case dw_val_class_range_list:
6469 size += DWARF_OFFSET_SIZE;
6470 break;
6471 case dw_val_class_const:
6472 size += size_of_sleb128 (AT_int (a));
6473 break;
6474 case dw_val_class_unsigned_const:
6475 size += constant_size (AT_unsigned (a));
6476 break;
6477 case dw_val_class_long_long:
6478 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6479 break;
6480 case dw_val_class_vec:
6481 size += 1 + (a->dw_attr_val.v.val_vec.length
6482 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6483 break;
6484 case dw_val_class_flag:
6485 size += 1;
6486 break;
6487 case dw_val_class_die_ref:
6488 if (AT_ref_external (a))
6489 size += DWARF2_ADDR_SIZE;
6490 else
6491 size += DWARF_OFFSET_SIZE;
6492 break;
6493 case dw_val_class_fde_ref:
6494 size += DWARF_OFFSET_SIZE;
6495 break;
6496 case dw_val_class_lbl_id:
6497 size += DWARF2_ADDR_SIZE;
6498 break;
6499 case dw_val_class_lbl_offset:
6500 size += DWARF_OFFSET_SIZE;
6501 break;
6502 case dw_val_class_str:
6503 if (AT_string_form (a) == DW_FORM_strp)
6504 size += DWARF_OFFSET_SIZE;
6505 else
6506 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6507 break;
6508 default:
6509 gcc_unreachable ();
6513 return size;
6516 /* Size the debugging information associated with a given DIE. Visits the
6517 DIE's children recursively. Updates the global variable next_die_offset, on
6518 each time through. Uses the current value of next_die_offset to update the
6519 die_offset field in each DIE. */
6521 static void
6522 calc_die_sizes (dw_die_ref die)
6524 dw_die_ref c;
6526 die->die_offset = next_die_offset;
6527 next_die_offset += size_of_die (die);
6529 for (c = die->die_child; c != NULL; c = c->die_sib)
6530 calc_die_sizes (c);
6532 if (die->die_child != NULL)
6533 /* Count the null byte used to terminate sibling lists. */
6534 next_die_offset += 1;
6537 /* Set the marks for a die and its children. We do this so
6538 that we know whether or not a reference needs to use FORM_ref_addr; only
6539 DIEs in the same CU will be marked. We used to clear out the offset
6540 and use that as the flag, but ran into ordering problems. */
6542 static void
6543 mark_dies (dw_die_ref die)
6545 dw_die_ref c;
6547 gcc_assert (!die->die_mark);
6549 die->die_mark = 1;
6550 for (c = die->die_child; c; c = c->die_sib)
6551 mark_dies (c);
6554 /* Clear the marks for a die and its children. */
6556 static void
6557 unmark_dies (dw_die_ref die)
6559 dw_die_ref c;
6561 gcc_assert (die->die_mark);
6563 die->die_mark = 0;
6564 for (c = die->die_child; c; c = c->die_sib)
6565 unmark_dies (c);
6568 /* Clear the marks for a die, its children and referred dies. */
6570 static void
6571 unmark_all_dies (dw_die_ref die)
6573 dw_die_ref c;
6574 dw_attr_ref a;
6576 if (!die->die_mark)
6577 return;
6578 die->die_mark = 0;
6580 for (c = die->die_child; c; c = c->die_sib)
6581 unmark_all_dies (c);
6583 for (a = die->die_attr; a; a = a->dw_attr_next)
6584 if (AT_class (a) == dw_val_class_die_ref)
6585 unmark_all_dies (AT_ref (a));
6588 /* Return the size of the .debug_pubnames table generated for the
6589 compilation unit. */
6591 static unsigned long
6592 size_of_pubnames (void)
6594 unsigned long size;
6595 unsigned i;
6597 size = DWARF_PUBNAMES_HEADER_SIZE;
6598 for (i = 0; i < pubname_table_in_use; i++)
6600 pubname_ref p = &pubname_table[i];
6601 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6604 size += DWARF_OFFSET_SIZE;
6605 return size;
6608 /* Return the size of the information in the .debug_aranges section. */
6610 static unsigned long
6611 size_of_aranges (void)
6613 unsigned long size;
6615 size = DWARF_ARANGES_HEADER_SIZE;
6617 /* Count the address/length pair for this compilation unit. */
6618 size += 2 * DWARF2_ADDR_SIZE;
6619 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6621 /* Count the two zero words used to terminated the address range table. */
6622 size += 2 * DWARF2_ADDR_SIZE;
6623 return size;
6626 /* Select the encoding of an attribute value. */
6628 static enum dwarf_form
6629 value_format (dw_attr_ref a)
6631 switch (a->dw_attr_val.val_class)
6633 case dw_val_class_addr:
6634 return DW_FORM_addr;
6635 case dw_val_class_range_list:
6636 case dw_val_class_offset:
6637 switch (DWARF_OFFSET_SIZE)
6639 case 4:
6640 return DW_FORM_data4;
6641 case 8:
6642 return DW_FORM_data8;
6643 default:
6644 gcc_unreachable ();
6646 case dw_val_class_loc_list:
6647 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6648 .debug_loc section */
6649 return DW_FORM_data4;
6650 case dw_val_class_loc:
6651 switch (constant_size (size_of_locs (AT_loc (a))))
6653 case 1:
6654 return DW_FORM_block1;
6655 case 2:
6656 return DW_FORM_block2;
6657 default:
6658 gcc_unreachable ();
6660 case dw_val_class_const:
6661 return DW_FORM_sdata;
6662 case dw_val_class_unsigned_const:
6663 switch (constant_size (AT_unsigned (a)))
6665 case 1:
6666 return DW_FORM_data1;
6667 case 2:
6668 return DW_FORM_data2;
6669 case 4:
6670 return DW_FORM_data4;
6671 case 8:
6672 return DW_FORM_data8;
6673 default:
6674 gcc_unreachable ();
6676 case dw_val_class_long_long:
6677 return DW_FORM_block1;
6678 case dw_val_class_vec:
6679 return DW_FORM_block1;
6680 case dw_val_class_flag:
6681 return DW_FORM_flag;
6682 case dw_val_class_die_ref:
6683 if (AT_ref_external (a))
6684 return DW_FORM_ref_addr;
6685 else
6686 return DW_FORM_ref;
6687 case dw_val_class_fde_ref:
6688 return DW_FORM_data;
6689 case dw_val_class_lbl_id:
6690 return DW_FORM_addr;
6691 case dw_val_class_lbl_offset:
6692 return DW_FORM_data;
6693 case dw_val_class_str:
6694 return AT_string_form (a);
6696 default:
6697 gcc_unreachable ();
6701 /* Output the encoding of an attribute value. */
6703 static void
6704 output_value_format (dw_attr_ref a)
6706 enum dwarf_form form = value_format (a);
6708 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6711 /* Output the .debug_abbrev section which defines the DIE abbreviation
6712 table. */
6714 static void
6715 output_abbrev_section (void)
6717 unsigned long abbrev_id;
6719 dw_attr_ref a_attr;
6721 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6723 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6725 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6726 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6727 dwarf_tag_name (abbrev->die_tag));
6729 if (abbrev->die_child != NULL)
6730 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6731 else
6732 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6734 for (a_attr = abbrev->die_attr; a_attr != NULL;
6735 a_attr = a_attr->dw_attr_next)
6737 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6738 dwarf_attr_name (a_attr->dw_attr));
6739 output_value_format (a_attr);
6742 dw2_asm_output_data (1, 0, NULL);
6743 dw2_asm_output_data (1, 0, NULL);
6746 /* Terminate the table. */
6747 dw2_asm_output_data (1, 0, NULL);
6750 /* Output a symbol we can use to refer to this DIE from another CU. */
6752 static inline void
6753 output_die_symbol (dw_die_ref die)
6755 char *sym = die->die_symbol;
6757 if (sym == 0)
6758 return;
6760 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6761 /* We make these global, not weak; if the target doesn't support
6762 .linkonce, it doesn't support combining the sections, so debugging
6763 will break. */
6764 targetm.asm_out.globalize_label (asm_out_file, sym);
6766 ASM_OUTPUT_LABEL (asm_out_file, sym);
6769 /* Return a new location list, given the begin and end range, and the
6770 expression. gensym tells us whether to generate a new internal symbol for
6771 this location list node, which is done for the head of the list only. */
6773 static inline dw_loc_list_ref
6774 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6775 const char *section, unsigned int gensym)
6777 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6779 retlist->begin = begin;
6780 retlist->end = end;
6781 retlist->expr = expr;
6782 retlist->section = section;
6783 if (gensym)
6784 retlist->ll_symbol = gen_internal_sym ("LLST");
6786 return retlist;
6789 /* Add a location description expression to a location list. */
6791 static inline void
6792 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6793 const char *begin, const char *end,
6794 const char *section)
6796 dw_loc_list_ref *d;
6798 /* Find the end of the chain. */
6799 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6802 /* Add a new location list node to the list. */
6803 *d = new_loc_list (descr, begin, end, section, 0);
6806 static void
6807 dwarf2out_switch_text_section (void)
6809 dw_fde_ref fde;
6811 if (!cfun)
6812 internal_error ("Attempt to switch text sections without any code.");
6814 fde = &fde_table[fde_table_in_use - 1];
6815 fde->dw_fde_switched_sections = true;
6816 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6817 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6818 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6819 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6820 separate_line_info_table_in_use++;
6823 /* Output the location list given to us. */
6825 static void
6826 output_loc_list (dw_loc_list_ref list_head)
6828 dw_loc_list_ref curr = list_head;
6830 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6832 /* Walk the location list, and output each range + expression. */
6833 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6835 unsigned long size;
6836 if (separate_line_info_table_in_use == 0)
6838 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6839 "Location list begin address (%s)",
6840 list_head->ll_symbol);
6841 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6842 "Location list end address (%s)",
6843 list_head->ll_symbol);
6845 else
6847 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6848 "Location list begin address (%s)",
6849 list_head->ll_symbol);
6850 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6851 "Location list end address (%s)",
6852 list_head->ll_symbol);
6854 size = size_of_locs (curr->expr);
6856 /* Output the block length for this list of location operations. */
6857 gcc_assert (size <= 0xffff);
6858 dw2_asm_output_data (2, size, "%s", "Location expression size");
6860 output_loc_sequence (curr->expr);
6863 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6864 "Location list terminator begin (%s)",
6865 list_head->ll_symbol);
6866 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6867 "Location list terminator end (%s)",
6868 list_head->ll_symbol);
6871 /* Output the DIE and its attributes. Called recursively to generate
6872 the definitions of each child DIE. */
6874 static void
6875 output_die (dw_die_ref die)
6877 dw_attr_ref a;
6878 dw_die_ref c;
6879 unsigned long size;
6881 /* If someone in another CU might refer to us, set up a symbol for
6882 them to point to. */
6883 if (die->die_symbol)
6884 output_die_symbol (die);
6886 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6887 die->die_offset, dwarf_tag_name (die->die_tag));
6889 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6891 const char *name = dwarf_attr_name (a->dw_attr);
6893 switch (AT_class (a))
6895 case dw_val_class_addr:
6896 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6897 break;
6899 case dw_val_class_offset:
6900 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6901 "%s", name);
6902 break;
6904 case dw_val_class_range_list:
6906 char *p = strchr (ranges_section_label, '\0');
6908 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6909 a->dw_attr_val.v.val_offset);
6910 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6911 "%s", name);
6912 *p = '\0';
6914 break;
6916 case dw_val_class_loc:
6917 size = size_of_locs (AT_loc (a));
6919 /* Output the block length for this list of location operations. */
6920 dw2_asm_output_data (constant_size (size), size, "%s", name);
6922 output_loc_sequence (AT_loc (a));
6923 break;
6925 case dw_val_class_const:
6926 /* ??? It would be slightly more efficient to use a scheme like is
6927 used for unsigned constants below, but gdb 4.x does not sign
6928 extend. Gdb 5.x does sign extend. */
6929 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6930 break;
6932 case dw_val_class_unsigned_const:
6933 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6934 AT_unsigned (a), "%s", name);
6935 break;
6937 case dw_val_class_long_long:
6939 unsigned HOST_WIDE_INT first, second;
6941 dw2_asm_output_data (1,
6942 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6943 "%s", name);
6945 if (WORDS_BIG_ENDIAN)
6947 first = a->dw_attr_val.v.val_long_long.hi;
6948 second = a->dw_attr_val.v.val_long_long.low;
6950 else
6952 first = a->dw_attr_val.v.val_long_long.low;
6953 second = a->dw_attr_val.v.val_long_long.hi;
6956 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6957 first, "long long constant");
6958 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6959 second, NULL);
6961 break;
6963 case dw_val_class_vec:
6965 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6966 unsigned int len = a->dw_attr_val.v.val_vec.length;
6967 unsigned int i;
6968 unsigned char *p;
6970 dw2_asm_output_data (1, len * elt_size, "%s", name);
6971 if (elt_size > sizeof (HOST_WIDE_INT))
6973 elt_size /= 2;
6974 len *= 2;
6976 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6977 i < len;
6978 i++, p += elt_size)
6979 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6980 "fp or vector constant word %u", i);
6981 break;
6984 case dw_val_class_flag:
6985 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6986 break;
6988 case dw_val_class_loc_list:
6990 char *sym = AT_loc_list (a)->ll_symbol;
6992 gcc_assert (sym);
6993 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6995 break;
6997 case dw_val_class_die_ref:
6998 if (AT_ref_external (a))
7000 char *sym = AT_ref (a)->die_symbol;
7002 gcc_assert (sym);
7003 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
7005 else
7007 gcc_assert (AT_ref (a)->die_offset);
7008 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7009 "%s", name);
7011 break;
7013 case dw_val_class_fde_ref:
7015 char l1[20];
7017 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7018 a->dw_attr_val.v.val_fde_index * 2);
7019 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7021 break;
7023 case dw_val_class_lbl_id:
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7025 break;
7027 case dw_val_class_lbl_offset:
7028 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7029 break;
7031 case dw_val_class_str:
7032 if (AT_string_form (a) == DW_FORM_strp)
7033 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7034 a->dw_attr_val.v.val_str->label,
7035 "%s: \"%s\"", name, AT_string (a));
7036 else
7037 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7038 break;
7040 default:
7041 gcc_unreachable ();
7045 for (c = die->die_child; c != NULL; c = c->die_sib)
7046 output_die (c);
7048 /* Add null byte to terminate sibling list. */
7049 if (die->die_child != NULL)
7050 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7051 die->die_offset);
7054 /* Output the compilation unit that appears at the beginning of the
7055 .debug_info section, and precedes the DIE descriptions. */
7057 static void
7058 output_compilation_unit_header (void)
7060 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7061 dw2_asm_output_data (4, 0xffffffff,
7062 "Initial length escape value indicating 64-bit DWARF extension");
7063 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7064 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7065 "Length of Compilation Unit Info");
7066 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7067 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7068 "Offset Into Abbrev. Section");
7069 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7072 /* Output the compilation unit DIE and its children. */
7074 static void
7075 output_comp_unit (dw_die_ref die, int output_if_empty)
7077 const char *secname;
7078 char *oldsym, *tmp;
7080 /* Unless we are outputting main CU, we may throw away empty ones. */
7081 if (!output_if_empty && die->die_child == NULL)
7082 return;
7084 /* Even if there are no children of this DIE, we must output the information
7085 about the compilation unit. Otherwise, on an empty translation unit, we
7086 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7087 will then complain when examining the file. First mark all the DIEs in
7088 this CU so we know which get local refs. */
7089 mark_dies (die);
7091 build_abbrev_table (die);
7093 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7094 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7095 calc_die_sizes (die);
7097 oldsym = die->die_symbol;
7098 if (oldsym)
7100 tmp = alloca (strlen (oldsym) + 24);
7102 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7103 secname = tmp;
7104 die->die_symbol = NULL;
7106 else
7107 secname = (const char *) DEBUG_INFO_SECTION;
7109 /* Output debugging information. */
7110 named_section_flags (secname, SECTION_DEBUG);
7111 output_compilation_unit_header ();
7112 output_die (die);
7114 /* Leave the marks on the main CU, so we can check them in
7115 output_pubnames. */
7116 if (oldsym)
7118 unmark_dies (die);
7119 die->die_symbol = oldsym;
7123 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7124 output of lang_hooks.decl_printable_name for C++ looks like
7125 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7127 static const char *
7128 dwarf2_name (tree decl, int scope)
7130 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7133 /* Add a new entry to .debug_pubnames if appropriate. */
7135 static void
7136 add_pubname (tree decl, dw_die_ref die)
7138 pubname_ref p;
7140 if (! TREE_PUBLIC (decl))
7141 return;
7143 if (pubname_table_in_use == pubname_table_allocated)
7145 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7146 pubname_table
7147 = ggc_realloc (pubname_table,
7148 (pubname_table_allocated * sizeof (pubname_entry)));
7149 memset (pubname_table + pubname_table_in_use, 0,
7150 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7153 p = &pubname_table[pubname_table_in_use++];
7154 p->die = die;
7155 p->name = xstrdup (dwarf2_name (decl, 1));
7158 /* Output the public names table used to speed up access to externally
7159 visible names. For now, only generate entries for externally
7160 visible procedures. */
7162 static void
7163 output_pubnames (void)
7165 unsigned i;
7166 unsigned long pubnames_length = size_of_pubnames ();
7168 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7169 dw2_asm_output_data (4, 0xffffffff,
7170 "Initial length escape value indicating 64-bit DWARF extension");
7171 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7172 "Length of Public Names Info");
7173 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7174 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7175 "Offset of Compilation Unit Info");
7176 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7177 "Compilation Unit Length");
7179 for (i = 0; i < pubname_table_in_use; i++)
7181 pubname_ref pub = &pubname_table[i];
7183 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7184 gcc_assert (pub->die->die_mark);
7186 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7187 "DIE offset");
7189 dw2_asm_output_nstring (pub->name, -1, "external name");
7192 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7195 /* Add a new entry to .debug_aranges if appropriate. */
7197 static void
7198 add_arange (tree decl, dw_die_ref die)
7200 if (! DECL_SECTION_NAME (decl))
7201 return;
7203 if (arange_table_in_use == arange_table_allocated)
7205 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7206 arange_table = ggc_realloc (arange_table,
7207 (arange_table_allocated
7208 * sizeof (dw_die_ref)));
7209 memset (arange_table + arange_table_in_use, 0,
7210 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7213 arange_table[arange_table_in_use++] = die;
7216 /* Output the information that goes into the .debug_aranges table.
7217 Namely, define the beginning and ending address range of the
7218 text section generated for this compilation unit. */
7220 static void
7221 output_aranges (void)
7223 unsigned i;
7224 unsigned long aranges_length = size_of_aranges ();
7226 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7227 dw2_asm_output_data (4, 0xffffffff,
7228 "Initial length escape value indicating 64-bit DWARF extension");
7229 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7230 "Length of Address Ranges Info");
7231 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7232 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7233 "Offset of Compilation Unit Info");
7234 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7235 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7237 /* We need to align to twice the pointer size here. */
7238 if (DWARF_ARANGES_PAD_SIZE)
7240 /* Pad using a 2 byte words so that padding is correct for any
7241 pointer size. */
7242 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7243 2 * DWARF2_ADDR_SIZE);
7244 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7245 dw2_asm_output_data (2, 0, NULL);
7248 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7249 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7250 text_section_label, "Length");
7251 if (flag_reorder_blocks_and_partition)
7253 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7254 "Address");
7255 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7256 cold_text_section_label, "Length");
7259 for (i = 0; i < arange_table_in_use; i++)
7261 dw_die_ref die = arange_table[i];
7263 /* We shouldn't see aranges for DIEs outside of the main CU. */
7264 gcc_assert (die->die_mark);
7266 if (die->die_tag == DW_TAG_subprogram)
7268 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7269 "Address");
7270 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7271 get_AT_low_pc (die), "Length");
7273 else
7275 /* A static variable; extract the symbol from DW_AT_location.
7276 Note that this code isn't currently hit, as we only emit
7277 aranges for functions (jason 9/23/99). */
7278 dw_attr_ref a = get_AT (die, DW_AT_location);
7279 dw_loc_descr_ref loc;
7281 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7283 loc = AT_loc (a);
7284 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7286 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7287 loc->dw_loc_oprnd1.v.val_addr, "Address");
7288 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7289 get_AT_unsigned (die, DW_AT_byte_size),
7290 "Length");
7294 /* Output the terminator words. */
7295 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7296 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7299 /* Add a new entry to .debug_ranges. Return the offset at which it
7300 was placed. */
7302 static unsigned int
7303 add_ranges (tree block)
7305 unsigned int in_use = ranges_table_in_use;
7307 if (in_use == ranges_table_allocated)
7309 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7310 ranges_table
7311 = ggc_realloc (ranges_table, (ranges_table_allocated
7312 * sizeof (struct dw_ranges_struct)));
7313 memset (ranges_table + ranges_table_in_use, 0,
7314 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7317 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7318 ranges_table_in_use = in_use + 1;
7320 return in_use * 2 * DWARF2_ADDR_SIZE;
7323 static void
7324 output_ranges (void)
7326 unsigned i;
7327 static const char *const start_fmt = "Offset 0x%x";
7328 const char *fmt = start_fmt;
7330 for (i = 0; i < ranges_table_in_use; i++)
7332 int block_num = ranges_table[i].block_num;
7334 if (block_num)
7336 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7337 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7339 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7340 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7342 /* If all code is in the text section, then the compilation
7343 unit base address defaults to DW_AT_low_pc, which is the
7344 base of the text section. */
7345 if (separate_line_info_table_in_use == 0)
7347 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7348 text_section_label,
7349 fmt, i * 2 * DWARF2_ADDR_SIZE);
7350 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7351 text_section_label, NULL);
7354 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7355 compilation unit base address to zero, which allows us to
7356 use absolute addresses, and not worry about whether the
7357 target supports cross-section arithmetic. */
7358 else
7360 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7361 fmt, i * 2 * DWARF2_ADDR_SIZE);
7362 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7365 fmt = NULL;
7367 else
7369 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7370 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7371 fmt = start_fmt;
7376 /* Data structure containing information about input files. */
7377 struct file_info
7379 char *path; /* Complete file name. */
7380 char *fname; /* File name part. */
7381 int length; /* Length of entire string. */
7382 int file_idx; /* Index in input file table. */
7383 int dir_idx; /* Index in directory table. */
7386 /* Data structure containing information about directories with source
7387 files. */
7388 struct dir_info
7390 char *path; /* Path including directory name. */
7391 int length; /* Path length. */
7392 int prefix; /* Index of directory entry which is a prefix. */
7393 int count; /* Number of files in this directory. */
7394 int dir_idx; /* Index of directory used as base. */
7395 int used; /* Used in the end? */
7398 /* Callback function for file_info comparison. We sort by looking at
7399 the directories in the path. */
7401 static int
7402 file_info_cmp (const void *p1, const void *p2)
7404 const struct file_info *s1 = p1;
7405 const struct file_info *s2 = p2;
7406 unsigned char *cp1;
7407 unsigned char *cp2;
7409 /* Take care of file names without directories. We need to make sure that
7410 we return consistent values to qsort since some will get confused if
7411 we return the same value when identical operands are passed in opposite
7412 orders. So if neither has a directory, return 0 and otherwise return
7413 1 or -1 depending on which one has the directory. */
7414 if ((s1->path == s1->fname || s2->path == s2->fname))
7415 return (s2->path == s2->fname) - (s1->path == s1->fname);
7417 cp1 = (unsigned char *) s1->path;
7418 cp2 = (unsigned char *) s2->path;
7420 while (1)
7422 ++cp1;
7423 ++cp2;
7424 /* Reached the end of the first path? If so, handle like above. */
7425 if ((cp1 == (unsigned char *) s1->fname)
7426 || (cp2 == (unsigned char *) s2->fname))
7427 return ((cp2 == (unsigned char *) s2->fname)
7428 - (cp1 == (unsigned char *) s1->fname));
7430 /* Character of current path component the same? */
7431 else if (*cp1 != *cp2)
7432 return *cp1 - *cp2;
7436 /* Output the directory table and the file name table. We try to minimize
7437 the total amount of memory needed. A heuristic is used to avoid large
7438 slowdowns with many input files. */
7440 static void
7441 output_file_names (void)
7443 struct file_info *files;
7444 struct dir_info *dirs;
7445 int *saved;
7446 int *savehere;
7447 int *backmap;
7448 size_t ndirs;
7449 int idx_offset;
7450 size_t i;
7451 int idx;
7453 /* Handle the case where file_table is empty. */
7454 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7456 dw2_asm_output_data (1, 0, "End directory table");
7457 dw2_asm_output_data (1, 0, "End file name table");
7458 return;
7461 /* Allocate the various arrays we need. */
7462 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7463 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7465 /* Sort the file names. */
7466 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7468 char *f;
7470 /* Skip all leading "./". */
7471 f = VARRAY_CHAR_PTR (file_table, i);
7472 while (f[0] == '.' && f[1] == '/')
7473 f += 2;
7475 /* Create a new array entry. */
7476 files[i].path = f;
7477 files[i].length = strlen (f);
7478 files[i].file_idx = i;
7480 /* Search for the file name part. */
7481 f = strrchr (f, '/');
7482 files[i].fname = f == NULL ? files[i].path : f + 1;
7485 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7486 sizeof (files[0]), file_info_cmp);
7488 /* Find all the different directories used. */
7489 dirs[0].path = files[1].path;
7490 dirs[0].length = files[1].fname - files[1].path;
7491 dirs[0].prefix = -1;
7492 dirs[0].count = 1;
7493 dirs[0].dir_idx = 0;
7494 dirs[0].used = 0;
7495 files[1].dir_idx = 0;
7496 ndirs = 1;
7498 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7499 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7500 && memcmp (dirs[ndirs - 1].path, files[i].path,
7501 dirs[ndirs - 1].length) == 0)
7503 /* Same directory as last entry. */
7504 files[i].dir_idx = ndirs - 1;
7505 ++dirs[ndirs - 1].count;
7507 else
7509 size_t j;
7511 /* This is a new directory. */
7512 dirs[ndirs].path = files[i].path;
7513 dirs[ndirs].length = files[i].fname - files[i].path;
7514 dirs[ndirs].count = 1;
7515 dirs[ndirs].dir_idx = ndirs;
7516 dirs[ndirs].used = 0;
7517 files[i].dir_idx = ndirs;
7519 /* Search for a prefix. */
7520 dirs[ndirs].prefix = -1;
7521 for (j = 0; j < ndirs; j++)
7522 if (dirs[j].length < dirs[ndirs].length
7523 && dirs[j].length > 1
7524 && (dirs[ndirs].prefix == -1
7525 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7526 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7527 dirs[ndirs].prefix = j;
7529 ++ndirs;
7532 /* Now to the actual work. We have to find a subset of the directories which
7533 allow expressing the file name using references to the directory table
7534 with the least amount of characters. We do not do an exhaustive search
7535 where we would have to check out every combination of every single
7536 possible prefix. Instead we use a heuristic which provides nearly optimal
7537 results in most cases and never is much off. */
7538 saved = alloca (ndirs * sizeof (int));
7539 savehere = alloca (ndirs * sizeof (int));
7541 memset (saved, '\0', ndirs * sizeof (saved[0]));
7542 for (i = 0; i < ndirs; i++)
7544 size_t j;
7545 int total;
7547 /* We can always save some space for the current directory. But this
7548 does not mean it will be enough to justify adding the directory. */
7549 savehere[i] = dirs[i].length;
7550 total = (savehere[i] - saved[i]) * dirs[i].count;
7552 for (j = i + 1; j < ndirs; j++)
7554 savehere[j] = 0;
7555 if (saved[j] < dirs[i].length)
7557 /* Determine whether the dirs[i] path is a prefix of the
7558 dirs[j] path. */
7559 int k;
7561 k = dirs[j].prefix;
7562 while (k != -1 && k != (int) i)
7563 k = dirs[k].prefix;
7565 if (k == (int) i)
7567 /* Yes it is. We can possibly safe some memory but
7568 writing the filenames in dirs[j] relative to
7569 dirs[i]. */
7570 savehere[j] = dirs[i].length;
7571 total += (savehere[j] - saved[j]) * dirs[j].count;
7576 /* Check whether we can safe enough to justify adding the dirs[i]
7577 directory. */
7578 if (total > dirs[i].length + 1)
7580 /* It's worthwhile adding. */
7581 for (j = i; j < ndirs; j++)
7582 if (savehere[j] > 0)
7584 /* Remember how much we saved for this directory so far. */
7585 saved[j] = savehere[j];
7587 /* Remember the prefix directory. */
7588 dirs[j].dir_idx = i;
7593 /* We have to emit them in the order they appear in the file_table array
7594 since the index is used in the debug info generation. To do this
7595 efficiently we generate a back-mapping of the indices first. */
7596 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7597 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7599 backmap[files[i].file_idx] = i;
7601 /* Mark this directory as used. */
7602 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7605 /* That was it. We are ready to emit the information. First emit the
7606 directory name table. We have to make sure the first actually emitted
7607 directory name has index one; zero is reserved for the current working
7608 directory. Make sure we do not confuse these indices with the one for the
7609 constructed table (even though most of the time they are identical). */
7610 idx = 1;
7611 idx_offset = dirs[0].length > 0 ? 1 : 0;
7612 for (i = 1 - idx_offset; i < ndirs; i++)
7613 if (dirs[i].used != 0)
7615 dirs[i].used = idx++;
7616 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7617 "Directory Entry: 0x%x", dirs[i].used);
7620 dw2_asm_output_data (1, 0, "End directory table");
7622 /* Correct the index for the current working directory entry if it
7623 exists. */
7624 if (idx_offset == 0)
7625 dirs[0].used = 0;
7627 /* Now write all the file names. */
7628 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7630 int file_idx = backmap[i];
7631 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7633 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7634 "File Entry: 0x%lx", (unsigned long) i);
7636 /* Include directory index. */
7637 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7639 /* Modification time. */
7640 dw2_asm_output_data_uleb128 (0, NULL);
7642 /* File length in bytes. */
7643 dw2_asm_output_data_uleb128 (0, NULL);
7646 dw2_asm_output_data (1, 0, "End file name table");
7650 /* Output the source line number correspondence information. This
7651 information goes into the .debug_line section. */
7653 static void
7654 output_line_info (void)
7656 char l1[20], l2[20], p1[20], p2[20];
7657 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7658 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7659 unsigned opc;
7660 unsigned n_op_args;
7661 unsigned long lt_index;
7662 unsigned long current_line;
7663 long line_offset;
7664 long line_delta;
7665 unsigned long current_file;
7666 unsigned long function;
7668 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7669 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7670 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7671 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7673 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7674 dw2_asm_output_data (4, 0xffffffff,
7675 "Initial length escape value indicating 64-bit DWARF extension");
7676 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7677 "Length of Source Line Info");
7678 ASM_OUTPUT_LABEL (asm_out_file, l1);
7680 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7681 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7682 ASM_OUTPUT_LABEL (asm_out_file, p1);
7684 /* Define the architecture-dependent minimum instruction length (in
7685 bytes). In this implementation of DWARF, this field is used for
7686 information purposes only. Since GCC generates assembly language,
7687 we have no a priori knowledge of how many instruction bytes are
7688 generated for each source line, and therefore can use only the
7689 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7690 commands. Accordingly, we fix this as `1', which is "correct
7691 enough" for all architectures, and don't let the target override. */
7692 dw2_asm_output_data (1, 1,
7693 "Minimum Instruction Length");
7695 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7696 "Default is_stmt_start flag");
7697 dw2_asm_output_data (1, DWARF_LINE_BASE,
7698 "Line Base Value (Special Opcodes)");
7699 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7700 "Line Range Value (Special Opcodes)");
7701 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7702 "Special Opcode Base");
7704 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7706 switch (opc)
7708 case DW_LNS_advance_pc:
7709 case DW_LNS_advance_line:
7710 case DW_LNS_set_file:
7711 case DW_LNS_set_column:
7712 case DW_LNS_fixed_advance_pc:
7713 n_op_args = 1;
7714 break;
7715 default:
7716 n_op_args = 0;
7717 break;
7720 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7721 opc, n_op_args);
7724 /* Write out the information about the files we use. */
7725 output_file_names ();
7726 ASM_OUTPUT_LABEL (asm_out_file, p2);
7728 /* We used to set the address register to the first location in the text
7729 section here, but that didn't accomplish anything since we already
7730 have a line note for the opening brace of the first function. */
7732 /* Generate the line number to PC correspondence table, encoded as
7733 a series of state machine operations. */
7734 current_file = 1;
7735 current_line = 1;
7737 if (cfun
7738 && (last_text_section == in_unlikely_executed_text
7739 || (last_text_section == in_named
7740 && last_text_section_name == cfun->unlikely_text_section_name)))
7741 strcpy (prev_line_label, cfun->cold_section_label);
7742 else
7743 strcpy (prev_line_label, text_section_label);
7744 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7746 dw_line_info_ref line_info = &line_info_table[lt_index];
7748 #if 0
7749 /* Disable this optimization for now; GDB wants to see two line notes
7750 at the beginning of a function so it can find the end of the
7751 prologue. */
7753 /* Don't emit anything for redundant notes. Just updating the
7754 address doesn't accomplish anything, because we already assume
7755 that anything after the last address is this line. */
7756 if (line_info->dw_line_num == current_line
7757 && line_info->dw_file_num == current_file)
7758 continue;
7759 #endif
7761 /* Emit debug info for the address of the current line.
7763 Unfortunately, we have little choice here currently, and must always
7764 use the most general form. GCC does not know the address delta
7765 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7766 attributes which will give an upper bound on the address range. We
7767 could perhaps use length attributes to determine when it is safe to
7768 use DW_LNS_fixed_advance_pc. */
7770 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7771 if (0)
7773 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7774 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7775 "DW_LNS_fixed_advance_pc");
7776 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7778 else
7780 /* This can handle any delta. This takes
7781 4+DWARF2_ADDR_SIZE bytes. */
7782 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7783 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7784 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7785 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7788 strcpy (prev_line_label, line_label);
7790 /* Emit debug info for the source file of the current line, if
7791 different from the previous line. */
7792 if (line_info->dw_file_num != current_file)
7794 current_file = line_info->dw_file_num;
7795 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7796 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7797 VARRAY_CHAR_PTR (file_table,
7798 current_file));
7801 /* Emit debug info for the current line number, choosing the encoding
7802 that uses the least amount of space. */
7803 if (line_info->dw_line_num != current_line)
7805 line_offset = line_info->dw_line_num - current_line;
7806 line_delta = line_offset - DWARF_LINE_BASE;
7807 current_line = line_info->dw_line_num;
7808 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7809 /* This can handle deltas from -10 to 234, using the current
7810 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7811 takes 1 byte. */
7812 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7813 "line %lu", current_line);
7814 else
7816 /* This can handle any delta. This takes at least 4 bytes,
7817 depending on the value being encoded. */
7818 dw2_asm_output_data (1, DW_LNS_advance_line,
7819 "advance to line %lu", current_line);
7820 dw2_asm_output_data_sleb128 (line_offset, NULL);
7821 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7824 else
7825 /* We still need to start a new row, so output a copy insn. */
7826 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7829 /* Emit debug info for the address of the end of the function. */
7830 if (0)
7832 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7833 "DW_LNS_fixed_advance_pc");
7834 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7836 else
7838 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7839 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7840 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7841 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7844 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7845 dw2_asm_output_data_uleb128 (1, NULL);
7846 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7848 function = 0;
7849 current_file = 1;
7850 current_line = 1;
7851 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7853 dw_separate_line_info_ref line_info
7854 = &separate_line_info_table[lt_index];
7856 #if 0
7857 /* Don't emit anything for redundant notes. */
7858 if (line_info->dw_line_num == current_line
7859 && line_info->dw_file_num == current_file
7860 && line_info->function == function)
7861 goto cont;
7862 #endif
7864 /* Emit debug info for the address of the current line. If this is
7865 a new function, or the first line of a function, then we need
7866 to handle it differently. */
7867 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7868 lt_index);
7869 if (function != line_info->function)
7871 function = line_info->function;
7873 /* Set the address register to the first line in the function. */
7874 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7875 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7876 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7877 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7879 else
7881 /* ??? See the DW_LNS_advance_pc comment above. */
7882 if (0)
7884 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7885 "DW_LNS_fixed_advance_pc");
7886 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7888 else
7890 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7891 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7892 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7893 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7897 strcpy (prev_line_label, line_label);
7899 /* Emit debug info for the source file of the current line, if
7900 different from the previous line. */
7901 if (line_info->dw_file_num != current_file)
7903 current_file = line_info->dw_file_num;
7904 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7905 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7906 VARRAY_CHAR_PTR (file_table,
7907 current_file));
7910 /* Emit debug info for the current line number, choosing the encoding
7911 that uses the least amount of space. */
7912 if (line_info->dw_line_num != current_line)
7914 line_offset = line_info->dw_line_num - current_line;
7915 line_delta = line_offset - DWARF_LINE_BASE;
7916 current_line = line_info->dw_line_num;
7917 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7918 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7919 "line %lu", current_line);
7920 else
7922 dw2_asm_output_data (1, DW_LNS_advance_line,
7923 "advance to line %lu", current_line);
7924 dw2_asm_output_data_sleb128 (line_offset, NULL);
7925 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7928 else
7929 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7931 #if 0
7932 cont:
7933 #endif
7935 lt_index++;
7937 /* If we're done with a function, end its sequence. */
7938 if (lt_index == separate_line_info_table_in_use
7939 || separate_line_info_table[lt_index].function != function)
7941 current_file = 1;
7942 current_line = 1;
7944 /* Emit debug info for the address of the end of the function. */
7945 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7946 if (0)
7948 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7949 "DW_LNS_fixed_advance_pc");
7950 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7952 else
7954 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7955 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7956 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7957 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7960 /* Output the marker for the end of this sequence. */
7961 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7962 dw2_asm_output_data_uleb128 (1, NULL);
7963 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7967 /* Output the marker for the end of the line number info. */
7968 ASM_OUTPUT_LABEL (asm_out_file, l2);
7971 /* Given a pointer to a tree node for some base type, return a pointer to
7972 a DIE that describes the given type.
7974 This routine must only be called for GCC type nodes that correspond to
7975 Dwarf base (fundamental) types. */
7977 static dw_die_ref
7978 base_type_die (tree type)
7980 dw_die_ref base_type_result;
7981 const char *type_name;
7982 enum dwarf_type encoding;
7983 tree name = TYPE_NAME (type);
7985 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7986 return 0;
7988 if (name)
7990 if (TREE_CODE (name) == TYPE_DECL)
7991 name = DECL_NAME (name);
7993 type_name = IDENTIFIER_POINTER (name);
7995 else
7996 type_name = "__unknown__";
7998 switch (TREE_CODE (type))
8000 case INTEGER_TYPE:
8001 /* Carefully distinguish the C character types, without messing
8002 up if the language is not C. Note that we check only for the names
8003 that contain spaces; other names might occur by coincidence in other
8004 languages. */
8005 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
8006 && (type == char_type_node
8007 || ! strcmp (type_name, "signed char")
8008 || ! strcmp (type_name, "unsigned char"))))
8010 if (TYPE_UNSIGNED (type))
8011 encoding = DW_ATE_unsigned;
8012 else
8013 encoding = DW_ATE_signed;
8014 break;
8016 /* else fall through. */
8018 case CHAR_TYPE:
8019 /* GNU Pascal/Ada CHAR type. Not used in C. */
8020 if (TYPE_UNSIGNED (type))
8021 encoding = DW_ATE_unsigned_char;
8022 else
8023 encoding = DW_ATE_signed_char;
8024 break;
8026 case REAL_TYPE:
8027 encoding = DW_ATE_float;
8028 break;
8030 /* Dwarf2 doesn't know anything about complex ints, so use
8031 a user defined type for it. */
8032 case COMPLEX_TYPE:
8033 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8034 encoding = DW_ATE_complex_float;
8035 else
8036 encoding = DW_ATE_lo_user;
8037 break;
8039 case BOOLEAN_TYPE:
8040 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8041 encoding = DW_ATE_boolean;
8042 break;
8044 default:
8045 /* No other TREE_CODEs are Dwarf fundamental types. */
8046 gcc_unreachable ();
8049 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8050 if (demangle_name_func)
8051 type_name = (*demangle_name_func) (type_name);
8053 add_AT_string (base_type_result, DW_AT_name, type_name);
8054 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8055 int_size_in_bytes (type));
8056 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8058 return base_type_result;
8061 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8062 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8063 a given type is generally the same as the given type, except that if the
8064 given type is a pointer or reference type, then the root type of the given
8065 type is the root type of the "basis" type for the pointer or reference
8066 type. (This definition of the "root" type is recursive.) Also, the root
8067 type of a `const' qualified type or a `volatile' qualified type is the
8068 root type of the given type without the qualifiers. */
8070 static tree
8071 root_type (tree type)
8073 if (TREE_CODE (type) == ERROR_MARK)
8074 return error_mark_node;
8076 switch (TREE_CODE (type))
8078 case ERROR_MARK:
8079 return error_mark_node;
8081 case POINTER_TYPE:
8082 case REFERENCE_TYPE:
8083 return type_main_variant (root_type (TREE_TYPE (type)));
8085 default:
8086 return type_main_variant (type);
8090 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8091 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8093 static inline int
8094 is_base_type (tree type)
8096 switch (TREE_CODE (type))
8098 case ERROR_MARK:
8099 case VOID_TYPE:
8100 case INTEGER_TYPE:
8101 case REAL_TYPE:
8102 case COMPLEX_TYPE:
8103 case BOOLEAN_TYPE:
8104 case CHAR_TYPE:
8105 return 1;
8107 case ARRAY_TYPE:
8108 case RECORD_TYPE:
8109 case UNION_TYPE:
8110 case QUAL_UNION_TYPE:
8111 case ENUMERAL_TYPE:
8112 case FUNCTION_TYPE:
8113 case METHOD_TYPE:
8114 case POINTER_TYPE:
8115 case REFERENCE_TYPE:
8116 case OFFSET_TYPE:
8117 case LANG_TYPE:
8118 case VECTOR_TYPE:
8119 return 0;
8121 default:
8122 gcc_unreachable ();
8125 return 0;
8128 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8129 node, return the size in bits for the type if it is a constant, or else
8130 return the alignment for the type if the type's size is not constant, or
8131 else return BITS_PER_WORD if the type actually turns out to be an
8132 ERROR_MARK node. */
8134 static inline unsigned HOST_WIDE_INT
8135 simple_type_size_in_bits (tree type)
8137 if (TREE_CODE (type) == ERROR_MARK)
8138 return BITS_PER_WORD;
8139 else if (TYPE_SIZE (type) == NULL_TREE)
8140 return 0;
8141 else if (host_integerp (TYPE_SIZE (type), 1))
8142 return tree_low_cst (TYPE_SIZE (type), 1);
8143 else
8144 return TYPE_ALIGN (type);
8147 /* Return true if the debug information for the given type should be
8148 emitted as a subrange type. */
8150 static inline bool
8151 is_subrange_type (tree type)
8153 tree subtype = TREE_TYPE (type);
8155 /* Subrange types are identified by the fact that they are integer
8156 types, and that they have a subtype which is either an integer type
8157 or an enumeral type. */
8159 if (TREE_CODE (type) != INTEGER_TYPE
8160 || subtype == NULL_TREE)
8161 return false;
8163 if (TREE_CODE (subtype) != INTEGER_TYPE
8164 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8165 return false;
8167 if (TREE_CODE (type) == TREE_CODE (subtype)
8168 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8169 && TYPE_MIN_VALUE (type) != NULL
8170 && TYPE_MIN_VALUE (subtype) != NULL
8171 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8172 && TYPE_MAX_VALUE (type) != NULL
8173 && TYPE_MAX_VALUE (subtype) != NULL
8174 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8176 /* The type and its subtype have the same representation. If in
8177 addition the two types also have the same name, then the given
8178 type is not a subrange type, but rather a plain base type. */
8179 /* FIXME: brobecker/2004-03-22:
8180 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8181 therefore be sufficient to check the TYPE_SIZE node pointers
8182 rather than checking the actual size. Unfortunately, we have
8183 found some cases, such as in the Ada "integer" type, where
8184 this is not the case. Until this problem is solved, we need to
8185 keep checking the actual size. */
8186 tree type_name = TYPE_NAME (type);
8187 tree subtype_name = TYPE_NAME (subtype);
8189 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8190 type_name = DECL_NAME (type_name);
8192 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8193 subtype_name = DECL_NAME (subtype_name);
8195 if (type_name == subtype_name)
8196 return false;
8199 return true;
8202 /* Given a pointer to a tree node for a subrange type, return a pointer
8203 to a DIE that describes the given type. */
8205 static dw_die_ref
8206 subrange_type_die (tree type, dw_die_ref context_die)
8208 dw_die_ref subtype_die;
8209 dw_die_ref subrange_die;
8210 tree name = TYPE_NAME (type);
8211 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8212 tree subtype = TREE_TYPE (type);
8214 if (context_die == NULL)
8215 context_die = comp_unit_die;
8217 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8218 subtype_die = gen_enumeration_type_die (subtype, context_die);
8219 else
8220 subtype_die = base_type_die (subtype);
8222 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8224 if (name != NULL)
8226 if (TREE_CODE (name) == TYPE_DECL)
8227 name = DECL_NAME (name);
8228 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8231 if (int_size_in_bytes (subtype) != size_in_bytes)
8233 /* The size of the subrange type and its base type do not match,
8234 so we need to generate a size attribute for the subrange type. */
8235 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8238 if (TYPE_MIN_VALUE (type) != NULL)
8239 add_bound_info (subrange_die, DW_AT_lower_bound,
8240 TYPE_MIN_VALUE (type));
8241 if (TYPE_MAX_VALUE (type) != NULL)
8242 add_bound_info (subrange_die, DW_AT_upper_bound,
8243 TYPE_MAX_VALUE (type));
8244 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8246 return subrange_die;
8249 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8250 entry that chains various modifiers in front of the given type. */
8252 static dw_die_ref
8253 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8254 dw_die_ref context_die)
8256 enum tree_code code = TREE_CODE (type);
8257 dw_die_ref mod_type_die = NULL;
8258 dw_die_ref sub_die = NULL;
8259 tree item_type = NULL;
8261 if (code != ERROR_MARK)
8263 tree qualified_type;
8265 /* See if we already have the appropriately qualified variant of
8266 this type. */
8267 qualified_type
8268 = get_qualified_type (type,
8269 ((is_const_type ? TYPE_QUAL_CONST : 0)
8270 | (is_volatile_type
8271 ? TYPE_QUAL_VOLATILE : 0)));
8273 /* If we do, then we can just use its DIE, if it exists. */
8274 if (qualified_type)
8276 mod_type_die = lookup_type_die (qualified_type);
8277 if (mod_type_die)
8278 return mod_type_die;
8281 /* Handle C typedef types. */
8282 if (qualified_type && TYPE_NAME (qualified_type)
8283 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8284 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8286 tree type_name = TYPE_NAME (qualified_type);
8287 tree dtype = TREE_TYPE (type_name);
8289 if (qualified_type == dtype)
8291 /* For a named type, use the typedef. */
8292 gen_type_die (qualified_type, context_die);
8293 mod_type_die = lookup_type_die (qualified_type);
8295 else if (is_const_type < TYPE_READONLY (dtype)
8296 || is_volatile_type < TYPE_VOLATILE (dtype))
8297 /* cv-unqualified version of named type. Just use the unnamed
8298 type to which it refers. */
8299 mod_type_die
8300 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8301 is_const_type, is_volatile_type,
8302 context_die);
8304 /* Else cv-qualified version of named type; fall through. */
8307 if (mod_type_die)
8308 /* OK. */
8310 else if (is_const_type)
8312 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8313 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8315 else if (is_volatile_type)
8317 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8318 sub_die = modified_type_die (type, 0, 0, context_die);
8320 else if (code == POINTER_TYPE)
8322 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8323 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8324 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8325 #if 0
8326 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8327 #endif
8328 item_type = TREE_TYPE (type);
8330 else if (code == REFERENCE_TYPE)
8332 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8333 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8334 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8335 #if 0
8336 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8337 #endif
8338 item_type = TREE_TYPE (type);
8340 else if (is_subrange_type (type))
8341 mod_type_die = subrange_type_die (type, context_die);
8342 else if (is_base_type (type))
8343 mod_type_die = base_type_die (type);
8344 else
8346 gen_type_die (type, context_die);
8348 /* We have to get the type_main_variant here (and pass that to the
8349 `lookup_type_die' routine) because the ..._TYPE node we have
8350 might simply be a *copy* of some original type node (where the
8351 copy was created to help us keep track of typedef names) and
8352 that copy might have a different TYPE_UID from the original
8353 ..._TYPE node. */
8354 if (TREE_CODE (type) != VECTOR_TYPE)
8355 mod_type_die = lookup_type_die (type_main_variant (type));
8356 else
8357 /* Vectors have the debugging information in the type,
8358 not the main variant. */
8359 mod_type_die = lookup_type_die (type);
8360 gcc_assert (mod_type_die);
8363 /* We want to equate the qualified type to the die below. */
8364 type = qualified_type;
8367 if (type)
8368 equate_type_number_to_die (type, mod_type_die);
8369 if (item_type)
8370 /* We must do this after the equate_type_number_to_die call, in case
8371 this is a recursive type. This ensures that the modified_type_die
8372 recursion will terminate even if the type is recursive. Recursive
8373 types are possible in Ada. */
8374 sub_die = modified_type_die (item_type,
8375 TYPE_READONLY (item_type),
8376 TYPE_VOLATILE (item_type),
8377 context_die);
8379 if (sub_die != NULL)
8380 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8382 return mod_type_die;
8385 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8386 an enumerated type. */
8388 static inline int
8389 type_is_enum (tree type)
8391 return TREE_CODE (type) == ENUMERAL_TYPE;
8394 /* Return the DBX register number described by a given RTL node. */
8396 static unsigned int
8397 dbx_reg_number (rtx rtl)
8399 unsigned regno = REGNO (rtl);
8401 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8403 return DBX_REGISTER_NUMBER (regno);
8406 /* Return a location descriptor that designates a machine register or
8407 zero if there is none. */
8409 static dw_loc_descr_ref
8410 reg_loc_descriptor (rtx rtl)
8412 unsigned reg;
8413 rtx regs;
8415 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8416 return 0;
8418 reg = dbx_reg_number (rtl);
8419 regs = targetm.dwarf_register_span (rtl);
8421 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8422 || regs)
8423 return multiple_reg_loc_descriptor (rtl, regs);
8424 else
8425 return one_reg_loc_descriptor (reg);
8428 /* Return a location descriptor that designates a machine register for
8429 a given hard register number. */
8431 static dw_loc_descr_ref
8432 one_reg_loc_descriptor (unsigned int regno)
8434 if (regno <= 31)
8435 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8436 else
8437 return new_loc_descr (DW_OP_regx, regno, 0);
8440 /* Given an RTL of a register, return a location descriptor that
8441 designates a value that spans more than one register. */
8443 static dw_loc_descr_ref
8444 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8446 int nregs, size, i;
8447 unsigned reg;
8448 dw_loc_descr_ref loc_result = NULL;
8450 reg = dbx_reg_number (rtl);
8451 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8453 /* Simple, contiguous registers. */
8454 if (regs == NULL_RTX)
8456 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8458 loc_result = NULL;
8459 while (nregs--)
8461 dw_loc_descr_ref t;
8463 t = one_reg_loc_descriptor (reg);
8464 add_loc_descr (&loc_result, t);
8465 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8466 ++reg;
8468 return loc_result;
8471 /* Now onto stupid register sets in non contiguous locations. */
8473 gcc_assert (GET_CODE (regs) == PARALLEL);
8475 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8476 loc_result = NULL;
8478 for (i = 0; i < XVECLEN (regs, 0); ++i)
8480 dw_loc_descr_ref t;
8482 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8483 add_loc_descr (&loc_result, t);
8484 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8485 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8487 return loc_result;
8490 /* Return a location descriptor that designates a constant. */
8492 static dw_loc_descr_ref
8493 int_loc_descriptor (HOST_WIDE_INT i)
8495 enum dwarf_location_atom op;
8497 /* Pick the smallest representation of a constant, rather than just
8498 defaulting to the LEB encoding. */
8499 if (i >= 0)
8501 if (i <= 31)
8502 op = DW_OP_lit0 + i;
8503 else if (i <= 0xff)
8504 op = DW_OP_const1u;
8505 else if (i <= 0xffff)
8506 op = DW_OP_const2u;
8507 else if (HOST_BITS_PER_WIDE_INT == 32
8508 || i <= 0xffffffff)
8509 op = DW_OP_const4u;
8510 else
8511 op = DW_OP_constu;
8513 else
8515 if (i >= -0x80)
8516 op = DW_OP_const1s;
8517 else if (i >= -0x8000)
8518 op = DW_OP_const2s;
8519 else if (HOST_BITS_PER_WIDE_INT == 32
8520 || i >= -0x80000000)
8521 op = DW_OP_const4s;
8522 else
8523 op = DW_OP_consts;
8526 return new_loc_descr (op, i, 0);
8529 /* Return a location descriptor that designates a base+offset location. */
8531 static dw_loc_descr_ref
8532 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8534 dw_loc_descr_ref loc_result;
8535 /* For the "frame base", we use the frame pointer or stack pointer
8536 registers, since the RTL for local variables is relative to one of
8537 them. */
8538 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8539 ? HARD_FRAME_POINTER_REGNUM
8540 : STACK_POINTER_REGNUM);
8542 if (reg == fp_reg && can_use_fbreg)
8543 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8544 else if (reg <= 31)
8545 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8546 else
8547 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8549 return loc_result;
8552 /* Return true if this RTL expression describes a base+offset calculation. */
8554 static inline int
8555 is_based_loc (rtx rtl)
8557 return (GET_CODE (rtl) == PLUS
8558 && ((REG_P (XEXP (rtl, 0))
8559 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8560 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8563 /* The following routine converts the RTL for a variable or parameter
8564 (resident in memory) into an equivalent Dwarf representation of a
8565 mechanism for getting the address of that same variable onto the top of a
8566 hypothetical "address evaluation" stack.
8568 When creating memory location descriptors, we are effectively transforming
8569 the RTL for a memory-resident object into its Dwarf postfix expression
8570 equivalent. This routine recursively descends an RTL tree, turning
8571 it into Dwarf postfix code as it goes.
8573 MODE is the mode of the memory reference, needed to handle some
8574 autoincrement addressing modes.
8576 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8577 list for RTL. We can't use it when we are emitting location list for
8578 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8579 which describes how frame base changes when !frame_pointer_needed.
8581 Return 0 if we can't represent the location. */
8583 static dw_loc_descr_ref
8584 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8586 dw_loc_descr_ref mem_loc_result = NULL;
8587 enum dwarf_location_atom op;
8589 /* Note that for a dynamically sized array, the location we will generate a
8590 description of here will be the lowest numbered location which is
8591 actually within the array. That's *not* necessarily the same as the
8592 zeroth element of the array. */
8594 rtl = targetm.delegitimize_address (rtl);
8596 switch (GET_CODE (rtl))
8598 case POST_INC:
8599 case POST_DEC:
8600 case POST_MODIFY:
8601 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8602 just fall into the SUBREG code. */
8604 /* ... fall through ... */
8606 case SUBREG:
8607 /* The case of a subreg may arise when we have a local (register)
8608 variable or a formal (register) parameter which doesn't quite fill
8609 up an entire register. For now, just assume that it is
8610 legitimate to make the Dwarf info refer to the whole register which
8611 contains the given subreg. */
8612 rtl = SUBREG_REG (rtl);
8614 /* ... fall through ... */
8616 case REG:
8617 /* Whenever a register number forms a part of the description of the
8618 method for calculating the (dynamic) address of a memory resident
8619 object, DWARF rules require the register number be referred to as
8620 a "base register". This distinction is not based in any way upon
8621 what category of register the hardware believes the given register
8622 belongs to. This is strictly DWARF terminology we're dealing with
8623 here. Note that in cases where the location of a memory-resident
8624 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8625 OP_CONST (0)) the actual DWARF location descriptor that we generate
8626 may just be OP_BASEREG (basereg). This may look deceptively like
8627 the object in question was allocated to a register (rather than in
8628 memory) so DWARF consumers need to be aware of the subtle
8629 distinction between OP_REG and OP_BASEREG. */
8630 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8631 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8632 can_use_fbreg);
8633 break;
8635 case MEM:
8636 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8637 can_use_fbreg);
8638 if (mem_loc_result != 0)
8639 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8640 break;
8642 case LO_SUM:
8643 rtl = XEXP (rtl, 1);
8645 /* ... fall through ... */
8647 case LABEL_REF:
8648 /* Some ports can transform a symbol ref into a label ref, because
8649 the symbol ref is too far away and has to be dumped into a constant
8650 pool. */
8651 case CONST:
8652 case SYMBOL_REF:
8653 /* Alternatively, the symbol in the constant pool might be referenced
8654 by a different symbol. */
8655 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8657 bool marked;
8658 rtx tmp = get_pool_constant_mark (rtl, &marked);
8660 if (GET_CODE (tmp) == SYMBOL_REF)
8662 rtl = tmp;
8663 if (CONSTANT_POOL_ADDRESS_P (tmp))
8664 get_pool_constant_mark (tmp, &marked);
8665 else
8666 marked = true;
8669 /* If all references to this pool constant were optimized away,
8670 it was not output and thus we can't represent it.
8671 FIXME: might try to use DW_OP_const_value here, though
8672 DW_OP_piece complicates it. */
8673 if (!marked)
8674 return 0;
8677 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8678 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8679 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8680 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8681 break;
8683 case PRE_MODIFY:
8684 /* Extract the PLUS expression nested inside and fall into
8685 PLUS code below. */
8686 rtl = XEXP (rtl, 1);
8687 goto plus;
8689 case PRE_INC:
8690 case PRE_DEC:
8691 /* Turn these into a PLUS expression and fall into the PLUS code
8692 below. */
8693 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8694 GEN_INT (GET_CODE (rtl) == PRE_INC
8695 ? GET_MODE_UNIT_SIZE (mode)
8696 : -GET_MODE_UNIT_SIZE (mode)));
8698 /* ... fall through ... */
8700 case PLUS:
8701 plus:
8702 if (is_based_loc (rtl))
8703 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8704 INTVAL (XEXP (rtl, 1)),
8705 can_use_fbreg);
8706 else
8708 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8709 can_use_fbreg);
8710 if (mem_loc_result == 0)
8711 break;
8713 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8714 && INTVAL (XEXP (rtl, 1)) >= 0)
8715 add_loc_descr (&mem_loc_result,
8716 new_loc_descr (DW_OP_plus_uconst,
8717 INTVAL (XEXP (rtl, 1)), 0));
8718 else
8720 add_loc_descr (&mem_loc_result,
8721 mem_loc_descriptor (XEXP (rtl, 1), mode,
8722 can_use_fbreg));
8723 add_loc_descr (&mem_loc_result,
8724 new_loc_descr (DW_OP_plus, 0, 0));
8727 break;
8729 /* If a pseudo-reg is optimized away, it is possible for it to
8730 be replaced with a MEM containing a multiply or shift. */
8731 case MULT:
8732 op = DW_OP_mul;
8733 goto do_binop;
8735 case ASHIFT:
8736 op = DW_OP_shl;
8737 goto do_binop;
8739 case ASHIFTRT:
8740 op = DW_OP_shra;
8741 goto do_binop;
8743 case LSHIFTRT:
8744 op = DW_OP_shr;
8745 goto do_binop;
8747 do_binop:
8749 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8750 can_use_fbreg);
8751 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8752 can_use_fbreg);
8754 if (op0 == 0 || op1 == 0)
8755 break;
8757 mem_loc_result = op0;
8758 add_loc_descr (&mem_loc_result, op1);
8759 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8760 break;
8763 case CONST_INT:
8764 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8765 break;
8767 default:
8768 gcc_unreachable ();
8771 return mem_loc_result;
8774 /* Return a descriptor that describes the concatenation of two locations.
8775 This is typically a complex variable. */
8777 static dw_loc_descr_ref
8778 concat_loc_descriptor (rtx x0, rtx x1)
8780 dw_loc_descr_ref cc_loc_result = NULL;
8781 dw_loc_descr_ref x0_ref = loc_descriptor (x0, false);
8782 dw_loc_descr_ref x1_ref = loc_descriptor (x1, false);
8784 if (x0_ref == 0 || x1_ref == 0)
8785 return 0;
8787 cc_loc_result = x0_ref;
8788 add_loc_descr (&cc_loc_result,
8789 new_loc_descr (DW_OP_piece,
8790 GET_MODE_SIZE (GET_MODE (x0)), 0));
8792 add_loc_descr (&cc_loc_result, x1_ref);
8793 add_loc_descr (&cc_loc_result,
8794 new_loc_descr (DW_OP_piece,
8795 GET_MODE_SIZE (GET_MODE (x1)), 0));
8797 return cc_loc_result;
8800 /* Output a proper Dwarf location descriptor for a variable or parameter
8801 which is either allocated in a register or in a memory location. For a
8802 register, we just generate an OP_REG and the register number. For a
8803 memory location we provide a Dwarf postfix expression describing how to
8804 generate the (dynamic) address of the object onto the address stack.
8806 If we don't know how to describe it, return 0. */
8808 static dw_loc_descr_ref
8809 loc_descriptor (rtx rtl, bool can_use_fbreg)
8811 dw_loc_descr_ref loc_result = NULL;
8813 switch (GET_CODE (rtl))
8815 case SUBREG:
8816 /* The case of a subreg may arise when we have a local (register)
8817 variable or a formal (register) parameter which doesn't quite fill
8818 up an entire register. For now, just assume that it is
8819 legitimate to make the Dwarf info refer to the whole register which
8820 contains the given subreg. */
8821 rtl = SUBREG_REG (rtl);
8823 /* ... fall through ... */
8825 case REG:
8826 loc_result = reg_loc_descriptor (rtl);
8827 break;
8829 case MEM:
8830 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8831 can_use_fbreg);
8832 break;
8834 case CONCAT:
8835 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8836 break;
8838 case VAR_LOCATION:
8839 /* Single part. */
8840 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8842 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8843 break;
8846 rtl = XEXP (rtl, 1);
8847 /* FALLTHRU */
8849 case PARALLEL:
8851 rtvec par_elems = XVEC (rtl, 0);
8852 int num_elem = GET_NUM_ELEM (par_elems);
8853 enum machine_mode mode;
8854 int i;
8856 /* Create the first one, so we have something to add to. */
8857 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8858 can_use_fbreg);
8859 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8860 add_loc_descr (&loc_result,
8861 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8862 for (i = 1; i < num_elem; i++)
8864 dw_loc_descr_ref temp;
8866 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8867 can_use_fbreg);
8868 add_loc_descr (&loc_result, temp);
8869 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8870 add_loc_descr (&loc_result,
8871 new_loc_descr (DW_OP_piece,
8872 GET_MODE_SIZE (mode), 0));
8875 break;
8877 default:
8878 gcc_unreachable ();
8881 return loc_result;
8884 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8885 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8886 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8887 top-level invocation, and we require the address of LOC; is 0 if we require
8888 the value of LOC. */
8890 static dw_loc_descr_ref
8891 loc_descriptor_from_tree_1 (tree loc, int want_address)
8893 dw_loc_descr_ref ret, ret1;
8894 int have_address = 0;
8895 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8896 enum dwarf_location_atom op;
8898 /* ??? Most of the time we do not take proper care for sign/zero
8899 extending the values properly. Hopefully this won't be a real
8900 problem... */
8902 switch (TREE_CODE (loc))
8904 case ERROR_MARK:
8905 return 0;
8907 case PLACEHOLDER_EXPR:
8908 /* This case involves extracting fields from an object to determine the
8909 position of other fields. We don't try to encode this here. The
8910 only user of this is Ada, which encodes the needed information using
8911 the names of types. */
8912 return 0;
8914 case CALL_EXPR:
8915 return 0;
8917 case PREINCREMENT_EXPR:
8918 case PREDECREMENT_EXPR:
8919 case POSTINCREMENT_EXPR:
8920 case POSTDECREMENT_EXPR:
8921 /* There are no opcodes for these operations. */
8922 return 0;
8924 case ADDR_EXPR:
8925 /* If we already want an address, there's nothing we can do. */
8926 if (want_address)
8927 return 0;
8929 /* Otherwise, process the argument and look for the address. */
8930 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
8932 case VAR_DECL:
8933 if (DECL_THREAD_LOCAL (loc))
8935 rtx rtl;
8937 #ifndef ASM_OUTPUT_DWARF_DTPREL
8938 /* If this is not defined, we have no way to emit the data. */
8939 return 0;
8940 #endif
8942 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8943 look up addresses of objects in the current module. */
8944 if (DECL_EXTERNAL (loc))
8945 return 0;
8947 rtl = rtl_for_decl_location (loc);
8948 if (rtl == NULL_RTX)
8949 return 0;
8951 if (!MEM_P (rtl))
8952 return 0;
8953 rtl = XEXP (rtl, 0);
8954 if (! CONSTANT_P (rtl))
8955 return 0;
8957 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8958 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8959 ret->dw_loc_oprnd1.v.val_addr = rtl;
8961 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8962 add_loc_descr (&ret, ret1);
8964 have_address = 1;
8965 break;
8967 /* FALLTHRU */
8969 case PARM_DECL:
8970 if (DECL_VALUE_EXPR (loc))
8971 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc), want_address);
8972 /* FALLTHRU */
8974 case RESULT_DECL:
8976 rtx rtl = rtl_for_decl_location (loc);
8978 if (rtl == NULL_RTX)
8979 return 0;
8980 else if (GET_CODE (rtl) == CONST_INT)
8982 HOST_WIDE_INT val = INTVAL (rtl);
8983 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
8984 val &= GET_MODE_MASK (DECL_MODE (loc));
8985 ret = int_loc_descriptor (val);
8987 else if (GET_CODE (rtl) == CONST_STRING)
8988 return 0;
8989 else if (CONSTANT_P (rtl))
8991 ret = new_loc_descr (DW_OP_addr, 0, 0);
8992 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8993 ret->dw_loc_oprnd1.v.val_addr = rtl;
8995 else
8997 enum machine_mode mode;
8999 /* Certain constructs can only be represented at top-level. */
9000 if (want_address == 2)
9001 return loc_descriptor (rtl, false);
9003 mode = GET_MODE (rtl);
9004 if (MEM_P (rtl))
9006 rtl = XEXP (rtl, 0);
9007 have_address = 1;
9009 ret = mem_loc_descriptor (rtl, mode, false);
9012 break;
9014 case INDIRECT_REF:
9015 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9016 have_address = 1;
9017 break;
9019 case COMPOUND_EXPR:
9020 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9022 case NOP_EXPR:
9023 case CONVERT_EXPR:
9024 case NON_LVALUE_EXPR:
9025 case VIEW_CONVERT_EXPR:
9026 case SAVE_EXPR:
9027 case MODIFY_EXPR:
9028 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9030 case COMPONENT_REF:
9031 case BIT_FIELD_REF:
9032 case ARRAY_REF:
9033 case ARRAY_RANGE_REF:
9035 tree obj, offset;
9036 HOST_WIDE_INT bitsize, bitpos, bytepos;
9037 enum machine_mode mode;
9038 int volatilep;
9040 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9041 &unsignedp, &volatilep, false);
9043 if (obj == loc)
9044 return 0;
9046 ret = loc_descriptor_from_tree_1 (obj, 1);
9047 if (ret == 0
9048 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9049 return 0;
9051 if (offset != NULL_TREE)
9053 /* Variable offset. */
9054 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9055 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9058 bytepos = bitpos / BITS_PER_UNIT;
9059 if (bytepos > 0)
9060 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9061 else if (bytepos < 0)
9063 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9064 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9067 have_address = 1;
9068 break;
9071 case INTEGER_CST:
9072 if (host_integerp (loc, 0))
9073 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9074 else
9075 return 0;
9076 break;
9078 case CONSTRUCTOR:
9080 /* Get an RTL for this, if something has been emitted. */
9081 rtx rtl = lookup_constant_def (loc);
9082 enum machine_mode mode;
9084 if (!rtl || !MEM_P (rtl))
9085 return 0;
9086 mode = GET_MODE (rtl);
9087 rtl = XEXP (rtl, 0);
9088 ret = mem_loc_descriptor (rtl, mode, false);
9089 have_address = 1;
9090 break;
9093 case TRUTH_AND_EXPR:
9094 case TRUTH_ANDIF_EXPR:
9095 case BIT_AND_EXPR:
9096 op = DW_OP_and;
9097 goto do_binop;
9099 case TRUTH_XOR_EXPR:
9100 case BIT_XOR_EXPR:
9101 op = DW_OP_xor;
9102 goto do_binop;
9104 case TRUTH_OR_EXPR:
9105 case TRUTH_ORIF_EXPR:
9106 case BIT_IOR_EXPR:
9107 op = DW_OP_or;
9108 goto do_binop;
9110 case FLOOR_DIV_EXPR:
9111 case CEIL_DIV_EXPR:
9112 case ROUND_DIV_EXPR:
9113 case TRUNC_DIV_EXPR:
9114 op = DW_OP_div;
9115 goto do_binop;
9117 case MINUS_EXPR:
9118 op = DW_OP_minus;
9119 goto do_binop;
9121 case FLOOR_MOD_EXPR:
9122 case CEIL_MOD_EXPR:
9123 case ROUND_MOD_EXPR:
9124 case TRUNC_MOD_EXPR:
9125 op = DW_OP_mod;
9126 goto do_binop;
9128 case MULT_EXPR:
9129 op = DW_OP_mul;
9130 goto do_binop;
9132 case LSHIFT_EXPR:
9133 op = DW_OP_shl;
9134 goto do_binop;
9136 case RSHIFT_EXPR:
9137 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9138 goto do_binop;
9140 case PLUS_EXPR:
9141 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9142 && host_integerp (TREE_OPERAND (loc, 1), 0))
9144 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9145 if (ret == 0)
9146 return 0;
9148 add_loc_descr (&ret,
9149 new_loc_descr (DW_OP_plus_uconst,
9150 tree_low_cst (TREE_OPERAND (loc, 1),
9152 0));
9153 break;
9156 op = DW_OP_plus;
9157 goto do_binop;
9159 case LE_EXPR:
9160 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9161 return 0;
9163 op = DW_OP_le;
9164 goto do_binop;
9166 case GE_EXPR:
9167 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9168 return 0;
9170 op = DW_OP_ge;
9171 goto do_binop;
9173 case LT_EXPR:
9174 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9175 return 0;
9177 op = DW_OP_lt;
9178 goto do_binop;
9180 case GT_EXPR:
9181 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9182 return 0;
9184 op = DW_OP_gt;
9185 goto do_binop;
9187 case EQ_EXPR:
9188 op = DW_OP_eq;
9189 goto do_binop;
9191 case NE_EXPR:
9192 op = DW_OP_ne;
9193 goto do_binop;
9195 do_binop:
9196 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9197 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9198 if (ret == 0 || ret1 == 0)
9199 return 0;
9201 add_loc_descr (&ret, ret1);
9202 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9203 break;
9205 case TRUTH_NOT_EXPR:
9206 case BIT_NOT_EXPR:
9207 op = DW_OP_not;
9208 goto do_unop;
9210 case ABS_EXPR:
9211 op = DW_OP_abs;
9212 goto do_unop;
9214 case NEGATE_EXPR:
9215 op = DW_OP_neg;
9216 goto do_unop;
9218 do_unop:
9219 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9220 if (ret == 0)
9221 return 0;
9223 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9224 break;
9226 case MIN_EXPR:
9227 case MAX_EXPR:
9229 const enum tree_code code =
9230 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9232 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9233 build2 (code, integer_type_node,
9234 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9235 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9238 /* ... fall through ... */
9240 case COND_EXPR:
9242 dw_loc_descr_ref lhs
9243 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9244 dw_loc_descr_ref rhs
9245 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9246 dw_loc_descr_ref bra_node, jump_node, tmp;
9248 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9249 if (ret == 0 || lhs == 0 || rhs == 0)
9250 return 0;
9252 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9253 add_loc_descr (&ret, bra_node);
9255 add_loc_descr (&ret, rhs);
9256 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9257 add_loc_descr (&ret, jump_node);
9259 add_loc_descr (&ret, lhs);
9260 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9261 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9263 /* ??? Need a node to point the skip at. Use a nop. */
9264 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9265 add_loc_descr (&ret, tmp);
9266 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9267 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9269 break;
9271 case FIX_TRUNC_EXPR:
9272 case FIX_CEIL_EXPR:
9273 case FIX_FLOOR_EXPR:
9274 case FIX_ROUND_EXPR:
9275 return 0;
9277 default:
9278 /* Leave front-end specific codes as simply unknown. This comes
9279 up, for instance, with the C STMT_EXPR. */
9280 if ((unsigned int) TREE_CODE (loc)
9281 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9282 return 0;
9284 #ifdef ENABLE_CHECKING
9285 /* Otherwise this is a generic code; we should just lists all of
9286 these explicitly. We forgot one. */
9287 gcc_unreachable ();
9288 #else
9289 /* In a release build, we want to degrade gracefully: better to
9290 generate incomplete debugging information than to crash. */
9291 return NULL;
9292 #endif
9295 /* Show if we can't fill the request for an address. */
9296 if (want_address && !have_address)
9297 return 0;
9299 /* If we've got an address and don't want one, dereference. */
9300 if (!want_address && have_address)
9302 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9304 if (size > DWARF2_ADDR_SIZE || size == -1)
9305 return 0;
9306 else if (size == DWARF2_ADDR_SIZE)
9307 op = DW_OP_deref;
9308 else
9309 op = DW_OP_deref_size;
9311 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9314 return ret;
9317 static inline dw_loc_descr_ref
9318 loc_descriptor_from_tree (tree loc)
9320 return loc_descriptor_from_tree_1 (loc, 2);
9323 /* Given a value, round it up to the lowest multiple of `boundary'
9324 which is not less than the value itself. */
9326 static inline HOST_WIDE_INT
9327 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9329 return (((value + boundary - 1) / boundary) * boundary);
9332 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9333 pointer to the declared type for the relevant field variable, or return
9334 `integer_type_node' if the given node turns out to be an
9335 ERROR_MARK node. */
9337 static inline tree
9338 field_type (tree decl)
9340 tree type;
9342 if (TREE_CODE (decl) == ERROR_MARK)
9343 return integer_type_node;
9345 type = DECL_BIT_FIELD_TYPE (decl);
9346 if (type == NULL_TREE)
9347 type = TREE_TYPE (decl);
9349 return type;
9352 /* Given a pointer to a tree node, return the alignment in bits for
9353 it, or else return BITS_PER_WORD if the node actually turns out to
9354 be an ERROR_MARK node. */
9356 static inline unsigned
9357 simple_type_align_in_bits (tree type)
9359 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9362 static inline unsigned
9363 simple_decl_align_in_bits (tree decl)
9365 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9368 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9369 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9370 or return 0 if we are unable to determine what that offset is, either
9371 because the argument turns out to be a pointer to an ERROR_MARK node, or
9372 because the offset is actually variable. (We can't handle the latter case
9373 just yet). */
9375 static HOST_WIDE_INT
9376 field_byte_offset (tree decl)
9378 unsigned int type_align_in_bits;
9379 unsigned int decl_align_in_bits;
9380 unsigned HOST_WIDE_INT type_size_in_bits;
9381 HOST_WIDE_INT object_offset_in_bits;
9382 tree type;
9383 tree field_size_tree;
9384 HOST_WIDE_INT bitpos_int;
9385 HOST_WIDE_INT deepest_bitpos;
9386 unsigned HOST_WIDE_INT field_size_in_bits;
9388 if (TREE_CODE (decl) == ERROR_MARK)
9389 return 0;
9391 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9393 type = field_type (decl);
9394 field_size_tree = DECL_SIZE (decl);
9396 /* The size could be unspecified if there was an error, or for
9397 a flexible array member. */
9398 if (! field_size_tree)
9399 field_size_tree = bitsize_zero_node;
9401 /* We cannot yet cope with fields whose positions are variable, so
9402 for now, when we see such things, we simply return 0. Someday, we may
9403 be able to handle such cases, but it will be damn difficult. */
9404 if (! host_integerp (bit_position (decl), 0))
9405 return 0;
9407 bitpos_int = int_bit_position (decl);
9409 /* If we don't know the size of the field, pretend it's a full word. */
9410 if (host_integerp (field_size_tree, 1))
9411 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9412 else
9413 field_size_in_bits = BITS_PER_WORD;
9415 type_size_in_bits = simple_type_size_in_bits (type);
9416 type_align_in_bits = simple_type_align_in_bits (type);
9417 decl_align_in_bits = simple_decl_align_in_bits (decl);
9419 /* The GCC front-end doesn't make any attempt to keep track of the starting
9420 bit offset (relative to the start of the containing structure type) of the
9421 hypothetical "containing object" for a bit-field. Thus, when computing
9422 the byte offset value for the start of the "containing object" of a
9423 bit-field, we must deduce this information on our own. This can be rather
9424 tricky to do in some cases. For example, handling the following structure
9425 type definition when compiling for an i386/i486 target (which only aligns
9426 long long's to 32-bit boundaries) can be very tricky:
9428 struct S { int field1; long long field2:31; };
9430 Fortunately, there is a simple rule-of-thumb which can be used in such
9431 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9432 structure shown above. It decides to do this based upon one simple rule
9433 for bit-field allocation. GCC allocates each "containing object" for each
9434 bit-field at the first (i.e. lowest addressed) legitimate alignment
9435 boundary (based upon the required minimum alignment for the declared type
9436 of the field) which it can possibly use, subject to the condition that
9437 there is still enough available space remaining in the containing object
9438 (when allocated at the selected point) to fully accommodate all of the
9439 bits of the bit-field itself.
9441 This simple rule makes it obvious why GCC allocates 8 bytes for each
9442 object of the structure type shown above. When looking for a place to
9443 allocate the "containing object" for `field2', the compiler simply tries
9444 to allocate a 64-bit "containing object" at each successive 32-bit
9445 boundary (starting at zero) until it finds a place to allocate that 64-
9446 bit field such that at least 31 contiguous (and previously unallocated)
9447 bits remain within that selected 64 bit field. (As it turns out, for the
9448 example above, the compiler finds it is OK to allocate the "containing
9449 object" 64-bit field at bit-offset zero within the structure type.)
9451 Here we attempt to work backwards from the limited set of facts we're
9452 given, and we try to deduce from those facts, where GCC must have believed
9453 that the containing object started (within the structure type). The value
9454 we deduce is then used (by the callers of this routine) to generate
9455 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9456 and, in the case of DW_AT_location, regular fields as well). */
9458 /* Figure out the bit-distance from the start of the structure to the
9459 "deepest" bit of the bit-field. */
9460 deepest_bitpos = bitpos_int + field_size_in_bits;
9462 /* This is the tricky part. Use some fancy footwork to deduce where the
9463 lowest addressed bit of the containing object must be. */
9464 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9466 /* Round up to type_align by default. This works best for bitfields. */
9467 object_offset_in_bits += type_align_in_bits - 1;
9468 object_offset_in_bits /= type_align_in_bits;
9469 object_offset_in_bits *= type_align_in_bits;
9471 if (object_offset_in_bits > bitpos_int)
9473 /* Sigh, the decl must be packed. */
9474 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9476 /* Round up to decl_align instead. */
9477 object_offset_in_bits += decl_align_in_bits - 1;
9478 object_offset_in_bits /= decl_align_in_bits;
9479 object_offset_in_bits *= decl_align_in_bits;
9482 return object_offset_in_bits / BITS_PER_UNIT;
9485 /* The following routines define various Dwarf attributes and any data
9486 associated with them. */
9488 /* Add a location description attribute value to a DIE.
9490 This emits location attributes suitable for whole variables and
9491 whole parameters. Note that the location attributes for struct fields are
9492 generated by the routine `data_member_location_attribute' below. */
9494 static inline void
9495 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9496 dw_loc_descr_ref descr)
9498 if (descr != 0)
9499 add_AT_loc (die, attr_kind, descr);
9502 /* Attach the specialized form of location attribute used for data members of
9503 struct and union types. In the special case of a FIELD_DECL node which
9504 represents a bit-field, the "offset" part of this special location
9505 descriptor must indicate the distance in bytes from the lowest-addressed
9506 byte of the containing struct or union type to the lowest-addressed byte of
9507 the "containing object" for the bit-field. (See the `field_byte_offset'
9508 function above).
9510 For any given bit-field, the "containing object" is a hypothetical object
9511 (of some integral or enum type) within which the given bit-field lives. The
9512 type of this hypothetical "containing object" is always the same as the
9513 declared type of the individual bit-field itself (for GCC anyway... the
9514 DWARF spec doesn't actually mandate this). Note that it is the size (in
9515 bytes) of the hypothetical "containing object" which will be given in the
9516 DW_AT_byte_size attribute for this bit-field. (See the
9517 `byte_size_attribute' function below.) It is also used when calculating the
9518 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9519 function below.) */
9521 static void
9522 add_data_member_location_attribute (dw_die_ref die, tree decl)
9524 HOST_WIDE_INT offset;
9525 dw_loc_descr_ref loc_descr = 0;
9527 if (TREE_CODE (decl) == TREE_BINFO)
9529 /* We're working on the TAG_inheritance for a base class. */
9530 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9532 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9533 aren't at a fixed offset from all (sub)objects of the same
9534 type. We need to extract the appropriate offset from our
9535 vtable. The following dwarf expression means
9537 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9539 This is specific to the V3 ABI, of course. */
9541 dw_loc_descr_ref tmp;
9543 /* Make a copy of the object address. */
9544 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9545 add_loc_descr (&loc_descr, tmp);
9547 /* Extract the vtable address. */
9548 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9549 add_loc_descr (&loc_descr, tmp);
9551 /* Calculate the address of the offset. */
9552 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9553 gcc_assert (offset < 0);
9555 tmp = int_loc_descriptor (-offset);
9556 add_loc_descr (&loc_descr, tmp);
9557 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9558 add_loc_descr (&loc_descr, tmp);
9560 /* Extract the offset. */
9561 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9562 add_loc_descr (&loc_descr, tmp);
9564 /* Add it to the object address. */
9565 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9566 add_loc_descr (&loc_descr, tmp);
9568 else
9569 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9571 else
9572 offset = field_byte_offset (decl);
9574 if (! loc_descr)
9576 enum dwarf_location_atom op;
9578 /* The DWARF2 standard says that we should assume that the structure
9579 address is already on the stack, so we can specify a structure field
9580 address by using DW_OP_plus_uconst. */
9582 #ifdef MIPS_DEBUGGING_INFO
9583 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9584 operator correctly. It works only if we leave the offset on the
9585 stack. */
9586 op = DW_OP_constu;
9587 #else
9588 op = DW_OP_plus_uconst;
9589 #endif
9591 loc_descr = new_loc_descr (op, offset, 0);
9594 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9597 /* Writes integer values to dw_vec_const array. */
9599 static void
9600 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9602 while (size != 0)
9604 *dest++ = val & 0xff;
9605 val >>= 8;
9606 --size;
9610 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9612 static HOST_WIDE_INT
9613 extract_int (const unsigned char *src, unsigned int size)
9615 HOST_WIDE_INT val = 0;
9617 src += size;
9618 while (size != 0)
9620 val <<= 8;
9621 val |= *--src & 0xff;
9622 --size;
9624 return val;
9627 /* Writes floating point values to dw_vec_const array. */
9629 static void
9630 insert_float (rtx rtl, unsigned char *array)
9632 REAL_VALUE_TYPE rv;
9633 long val[4];
9634 int i;
9636 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9637 real_to_target (val, &rv, GET_MODE (rtl));
9639 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9640 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9642 insert_int (val[i], 4, array);
9643 array += 4;
9647 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9648 does not have a "location" either in memory or in a register. These
9649 things can arise in GNU C when a constant is passed as an actual parameter
9650 to an inlined function. They can also arise in C++ where declared
9651 constants do not necessarily get memory "homes". */
9653 static void
9654 add_const_value_attribute (dw_die_ref die, rtx rtl)
9656 switch (GET_CODE (rtl))
9658 case CONST_INT:
9660 HOST_WIDE_INT val = INTVAL (rtl);
9662 if (val < 0)
9663 add_AT_int (die, DW_AT_const_value, val);
9664 else
9665 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9667 break;
9669 case CONST_DOUBLE:
9670 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9671 floating-point constant. A CONST_DOUBLE is used whenever the
9672 constant requires more than one word in order to be adequately
9673 represented. We output CONST_DOUBLEs as blocks. */
9675 enum machine_mode mode = GET_MODE (rtl);
9677 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9679 unsigned int length = GET_MODE_SIZE (mode);
9680 unsigned char *array = ggc_alloc (length);
9682 insert_float (rtl, array);
9683 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9685 else
9687 /* ??? We really should be using HOST_WIDE_INT throughout. */
9688 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9690 add_AT_long_long (die, DW_AT_const_value,
9691 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9694 break;
9696 case CONST_VECTOR:
9698 enum machine_mode mode = GET_MODE (rtl);
9699 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9700 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9701 unsigned char *array = ggc_alloc (length * elt_size);
9702 unsigned int i;
9703 unsigned char *p;
9705 switch (GET_MODE_CLASS (mode))
9707 case MODE_VECTOR_INT:
9708 for (i = 0, p = array; i < length; i++, p += elt_size)
9710 rtx elt = CONST_VECTOR_ELT (rtl, i);
9711 HOST_WIDE_INT lo, hi;
9713 switch (GET_CODE (elt))
9715 case CONST_INT:
9716 lo = INTVAL (elt);
9717 hi = -(lo < 0);
9718 break;
9720 case CONST_DOUBLE:
9721 lo = CONST_DOUBLE_LOW (elt);
9722 hi = CONST_DOUBLE_HIGH (elt);
9723 break;
9725 default:
9726 gcc_unreachable ();
9729 if (elt_size <= sizeof (HOST_WIDE_INT))
9730 insert_int (lo, elt_size, p);
9731 else
9733 unsigned char *p0 = p;
9734 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9736 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9737 if (WORDS_BIG_ENDIAN)
9739 p0 = p1;
9740 p1 = p;
9742 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9743 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9746 break;
9748 case MODE_VECTOR_FLOAT:
9749 for (i = 0, p = array; i < length; i++, p += elt_size)
9751 rtx elt = CONST_VECTOR_ELT (rtl, i);
9752 insert_float (elt, p);
9754 break;
9756 default:
9757 gcc_unreachable ();
9760 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9762 break;
9764 case CONST_STRING:
9765 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9766 break;
9768 case SYMBOL_REF:
9769 case LABEL_REF:
9770 case CONST:
9771 add_AT_addr (die, DW_AT_const_value, rtl);
9772 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9773 break;
9775 case PLUS:
9776 /* In cases where an inlined instance of an inline function is passed
9777 the address of an `auto' variable (which is local to the caller) we
9778 can get a situation where the DECL_RTL of the artificial local
9779 variable (for the inlining) which acts as a stand-in for the
9780 corresponding formal parameter (of the inline function) will look
9781 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9782 exactly a compile-time constant expression, but it isn't the address
9783 of the (artificial) local variable either. Rather, it represents the
9784 *value* which the artificial local variable always has during its
9785 lifetime. We currently have no way to represent such quasi-constant
9786 values in Dwarf, so for now we just punt and generate nothing. */
9787 break;
9789 default:
9790 /* No other kinds of rtx should be possible here. */
9791 gcc_unreachable ();
9796 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9797 for use in a later add_const_value_attribute call. */
9799 static rtx
9800 rtl_for_decl_init (tree init, tree type)
9802 rtx rtl = NULL_RTX;
9804 /* If a variable is initialized with a string constant without embedded
9805 zeros, build CONST_STRING. */
9806 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9808 tree enttype = TREE_TYPE (type);
9809 tree domain = TYPE_DOMAIN (type);
9810 enum machine_mode mode = TYPE_MODE (enttype);
9812 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9813 && domain
9814 && integer_zerop (TYPE_MIN_VALUE (domain))
9815 && compare_tree_int (TYPE_MAX_VALUE (domain),
9816 TREE_STRING_LENGTH (init) - 1) == 0
9817 && ((size_t) TREE_STRING_LENGTH (init)
9818 == strlen (TREE_STRING_POINTER (init)) + 1))
9819 rtl = gen_rtx_CONST_STRING (VOIDmode,
9820 ggc_strdup (TREE_STRING_POINTER (init)));
9822 /* If the initializer is something that we know will expand into an
9823 immediate RTL constant, expand it now. Expanding anything else
9824 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9825 /* Aggregate, vector, and complex types may contain constructors that may
9826 result in code being generated when expand_expr is called, so we can't
9827 handle them here. Integer and float are useful and safe types to handle
9828 here. */
9829 else if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
9830 && initializer_constant_valid_p (init, type) == null_pointer_node)
9832 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9834 /* If expand_expr returns a MEM, it wasn't immediate. */
9835 gcc_assert (!rtl || !MEM_P (rtl));
9838 return rtl;
9841 /* Generate RTL for the variable DECL to represent its location. */
9843 static rtx
9844 rtl_for_decl_location (tree decl)
9846 rtx rtl;
9848 /* Here we have to decide where we are going to say the parameter "lives"
9849 (as far as the debugger is concerned). We only have a couple of
9850 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9852 DECL_RTL normally indicates where the parameter lives during most of the
9853 activation of the function. If optimization is enabled however, this
9854 could be either NULL or else a pseudo-reg. Both of those cases indicate
9855 that the parameter doesn't really live anywhere (as far as the code
9856 generation parts of GCC are concerned) during most of the function's
9857 activation. That will happen (for example) if the parameter is never
9858 referenced within the function.
9860 We could just generate a location descriptor here for all non-NULL
9861 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9862 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9863 where DECL_RTL is NULL or is a pseudo-reg.
9865 Note however that we can only get away with using DECL_INCOMING_RTL as
9866 a backup substitute for DECL_RTL in certain limited cases. In cases
9867 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9868 we can be sure that the parameter was passed using the same type as it is
9869 declared to have within the function, and that its DECL_INCOMING_RTL
9870 points us to a place where a value of that type is passed.
9872 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9873 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9874 because in these cases DECL_INCOMING_RTL points us to a value of some
9875 type which is *different* from the type of the parameter itself. Thus,
9876 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9877 such cases, the debugger would end up (for example) trying to fetch a
9878 `float' from a place which actually contains the first part of a
9879 `double'. That would lead to really incorrect and confusing
9880 output at debug-time.
9882 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9883 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9884 are a couple of exceptions however. On little-endian machines we can
9885 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9886 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9887 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9888 when (on a little-endian machine) a non-prototyped function has a
9889 parameter declared to be of type `short' or `char'. In such cases,
9890 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9891 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9892 passed `int' value. If the debugger then uses that address to fetch
9893 a `short' or a `char' (on a little-endian machine) the result will be
9894 the correct data, so we allow for such exceptional cases below.
9896 Note that our goal here is to describe the place where the given formal
9897 parameter lives during most of the function's activation (i.e. between the
9898 end of the prologue and the start of the epilogue). We'll do that as best
9899 as we can. Note however that if the given formal parameter is modified
9900 sometime during the execution of the function, then a stack backtrace (at
9901 debug-time) will show the function as having been called with the *new*
9902 value rather than the value which was originally passed in. This happens
9903 rarely enough that it is not a major problem, but it *is* a problem, and
9904 I'd like to fix it.
9906 A future version of dwarf2out.c may generate two additional attributes for
9907 any given DW_TAG_formal_parameter DIE which will describe the "passed
9908 type" and the "passed location" for the given formal parameter in addition
9909 to the attributes we now generate to indicate the "declared type" and the
9910 "active location" for each parameter. This additional set of attributes
9911 could be used by debuggers for stack backtraces. Separately, note that
9912 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9913 This happens (for example) for inlined-instances of inline function formal
9914 parameters which are never referenced. This really shouldn't be
9915 happening. All PARM_DECL nodes should get valid non-NULL
9916 DECL_INCOMING_RTL values. FIXME. */
9918 /* Use DECL_RTL as the "location" unless we find something better. */
9919 rtl = DECL_RTL_IF_SET (decl);
9921 /* When generating abstract instances, ignore everything except
9922 constants, symbols living in memory, and symbols living in
9923 fixed registers. */
9924 if (! reload_completed)
9926 if (rtl
9927 && (CONSTANT_P (rtl)
9928 || (MEM_P (rtl)
9929 && CONSTANT_P (XEXP (rtl, 0)))
9930 || (REG_P (rtl)
9931 && TREE_CODE (decl) == VAR_DECL
9932 && TREE_STATIC (decl))))
9934 rtl = targetm.delegitimize_address (rtl);
9935 return rtl;
9937 rtl = NULL_RTX;
9939 else if (TREE_CODE (decl) == PARM_DECL)
9941 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9943 tree declared_type = TREE_TYPE (decl);
9944 tree passed_type = DECL_ARG_TYPE (decl);
9945 enum machine_mode dmode = TYPE_MODE (declared_type);
9946 enum machine_mode pmode = TYPE_MODE (passed_type);
9948 /* This decl represents a formal parameter which was optimized out.
9949 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9950 all cases where (rtl == NULL_RTX) just below. */
9951 if (dmode == pmode)
9952 rtl = DECL_INCOMING_RTL (decl);
9953 else if (SCALAR_INT_MODE_P (dmode)
9954 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
9955 && DECL_INCOMING_RTL (decl))
9957 rtx inc = DECL_INCOMING_RTL (decl);
9958 if (REG_P (inc))
9959 rtl = inc;
9960 else if (MEM_P (inc))
9962 if (BYTES_BIG_ENDIAN)
9963 rtl = adjust_address_nv (inc, dmode,
9964 GET_MODE_SIZE (pmode)
9965 - GET_MODE_SIZE (dmode));
9966 else
9967 rtl = inc;
9972 /* If the parm was passed in registers, but lives on the stack, then
9973 make a big endian correction if the mode of the type of the
9974 parameter is not the same as the mode of the rtl. */
9975 /* ??? This is the same series of checks that are made in dbxout.c before
9976 we reach the big endian correction code there. It isn't clear if all
9977 of these checks are necessary here, but keeping them all is the safe
9978 thing to do. */
9979 else if (MEM_P (rtl)
9980 && XEXP (rtl, 0) != const0_rtx
9981 && ! CONSTANT_P (XEXP (rtl, 0))
9982 /* Not passed in memory. */
9983 && !MEM_P (DECL_INCOMING_RTL (decl))
9984 /* Not passed by invisible reference. */
9985 && (!REG_P (XEXP (rtl, 0))
9986 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9987 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9988 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9989 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9990 #endif
9992 /* Big endian correction check. */
9993 && BYTES_BIG_ENDIAN
9994 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9995 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9996 < UNITS_PER_WORD))
9998 int offset = (UNITS_PER_WORD
9999 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10001 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10002 plus_constant (XEXP (rtl, 0), offset));
10005 else if (TREE_CODE (decl) == VAR_DECL
10006 && rtl
10007 && MEM_P (rtl)
10008 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10009 && BYTES_BIG_ENDIAN)
10011 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10012 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10014 /* If a variable is declared "register" yet is smaller than
10015 a register, then if we store the variable to memory, it
10016 looks like we're storing a register-sized value, when in
10017 fact we are not. We need to adjust the offset of the
10018 storage location to reflect the actual value's bytes,
10019 else gdb will not be able to display it. */
10020 if (rsize > dsize)
10021 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10022 plus_constant (XEXP (rtl, 0), rsize-dsize));
10025 if (rtl != NULL_RTX)
10027 rtl = eliminate_regs (rtl, 0, NULL_RTX);
10028 #ifdef LEAF_REG_REMAP
10029 if (current_function_uses_only_leaf_regs)
10030 leaf_renumber_regs_insn (rtl);
10031 #endif
10034 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10035 and will have been substituted directly into all expressions that use it.
10036 C does not have such a concept, but C++ and other languages do. */
10037 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10038 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10040 if (rtl)
10041 rtl = targetm.delegitimize_address (rtl);
10043 /* If we don't look past the constant pool, we risk emitting a
10044 reference to a constant pool entry that isn't referenced from
10045 code, and thus is not emitted. */
10046 if (rtl)
10047 rtl = avoid_constant_pool_reference (rtl);
10049 return rtl;
10052 /* Return true if DECL's containing function has a frame base attribute.
10053 Return false otherwise. */
10055 static bool
10056 containing_function_has_frame_base (tree decl)
10058 tree declcontext = decl_function_context (decl);
10059 dw_die_ref context;
10060 dw_attr_ref attr;
10062 if (!declcontext)
10063 return false;
10065 context = lookup_decl_die (declcontext);
10066 if (!context)
10067 return false;
10069 for (attr = context->die_attr; attr; attr = attr->dw_attr_next)
10070 if (attr->dw_attr == DW_AT_frame_base)
10071 return true;
10072 return false;
10075 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10076 data attribute for a variable or a parameter. We generate the
10077 DW_AT_const_value attribute only in those cases where the given variable
10078 or parameter does not have a true "location" either in memory or in a
10079 register. This can happen (for example) when a constant is passed as an
10080 actual argument in a call to an inline function. (It's possible that
10081 these things can crop up in other ways also.) Note that one type of
10082 constant value which can be passed into an inlined function is a constant
10083 pointer. This can happen for example if an actual argument in an inlined
10084 function call evaluates to a compile-time constant address. */
10086 static void
10087 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10088 enum dwarf_attribute attr)
10090 rtx rtl;
10091 dw_loc_descr_ref descr;
10092 var_loc_list *loc_list;
10093 bool can_use_fb;
10094 struct var_loc_node *node;
10095 if (TREE_CODE (decl) == ERROR_MARK)
10096 return;
10098 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10099 || TREE_CODE (decl) == RESULT_DECL);
10101 can_use_fb = containing_function_has_frame_base (decl);
10103 /* See if we possibly have multiple locations for this variable. */
10104 loc_list = lookup_decl_loc (decl);
10106 /* If it truly has multiple locations, the first and last node will
10107 differ. */
10108 if (loc_list && loc_list->first != loc_list->last)
10110 const char *secname;
10111 const char *endname;
10112 dw_loc_list_ref list;
10113 rtx varloc;
10115 /* We need to figure out what section we should use as the base
10116 for the address ranges where a given location is valid.
10117 1. If this particular DECL has a section associated with it,
10118 use that.
10119 2. If this function has a section associated with it, use
10120 that.
10121 3. Otherwise, use the text section.
10122 XXX: If you split a variable across multiple sections, this
10123 won't notice. */
10125 if (DECL_SECTION_NAME (decl))
10127 tree sectree = DECL_SECTION_NAME (decl);
10128 secname = TREE_STRING_POINTER (sectree);
10130 else if (current_function_decl
10131 && DECL_SECTION_NAME (current_function_decl))
10133 tree sectree = DECL_SECTION_NAME (current_function_decl);
10134 secname = TREE_STRING_POINTER (sectree);
10136 else if (cfun
10137 && (last_text_section == in_unlikely_executed_text
10138 || (last_text_section == in_named
10139 && last_text_section_name ==
10140 cfun->unlikely_text_section_name)))
10141 secname = cfun->cold_section_label;
10142 else
10143 secname = text_section_label;
10145 /* Now that we know what section we are using for a base,
10146 actually construct the list of locations.
10147 The first location information is what is passed to the
10148 function that creates the location list, and the remaining
10149 locations just get added on to that list.
10150 Note that we only know the start address for a location
10151 (IE location changes), so to build the range, we use
10152 the range [current location start, next location start].
10153 This means we have to special case the last node, and generate
10154 a range of [last location start, end of function label]. */
10156 node = loc_list->first;
10157 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10158 list = new_loc_list (loc_descriptor (varloc, can_use_fb),
10159 node->label, node->next->label, secname, 1);
10160 node = node->next;
10162 for (; node->next; node = node->next)
10163 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10165 /* The variable has a location between NODE->LABEL and
10166 NODE->NEXT->LABEL. */
10167 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10168 add_loc_descr_to_loc_list (&list,
10169 loc_descriptor (varloc,
10170 can_use_fb),
10171 node->label, node->next->label, secname);
10174 /* If the variable has a location at the last label
10175 it keeps its location until the end of function. */
10176 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10178 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10180 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10181 if (!current_function_decl)
10182 endname = text_end_label;
10183 else
10185 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10186 current_function_funcdef_no);
10187 endname = ggc_strdup (label_id);
10189 add_loc_descr_to_loc_list (&list,
10190 loc_descriptor (varloc,
10191 can_use_fb),
10192 node->label, endname, secname);
10195 /* Finally, add the location list to the DIE, and we are done. */
10196 add_AT_loc_list (die, attr, list);
10197 return;
10200 /* Try to get some constant RTL for this decl, and use that as the value of
10201 the location. */
10203 rtl = rtl_for_decl_location (decl);
10204 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10206 add_const_value_attribute (die, rtl);
10207 return;
10210 /* We couldn't get any rtl, and we had no >1 element location list, so try
10211 directly generating the location description from the tree. */
10212 descr = loc_descriptor_from_tree (decl);
10213 if (descr)
10215 add_AT_location_description (die, attr, descr);
10216 return;
10219 /* Lastly, if we have tried to generate the location otherwise, and it
10220 didn't work out (we wouldn't be here if we did), and we have a one entry
10221 location list, try generating a location from that. */
10222 if (loc_list && loc_list->first)
10224 node = loc_list->first;
10225 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note),
10226 can_use_fb);
10227 if (descr)
10228 add_AT_location_description (die, attr, descr);
10232 /* If we don't have a copy of this variable in memory for some reason (such
10233 as a C++ member constant that doesn't have an out-of-line definition),
10234 we should tell the debugger about the constant value. */
10236 static void
10237 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10239 tree init = DECL_INITIAL (decl);
10240 tree type = TREE_TYPE (decl);
10241 rtx rtl;
10243 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10244 /* OK */;
10245 else
10246 return;
10248 rtl = rtl_for_decl_init (init, type);
10249 if (rtl)
10250 add_const_value_attribute (var_die, rtl);
10253 /* Generate a DW_AT_name attribute given some string value to be included as
10254 the value of the attribute. */
10256 static void
10257 add_name_attribute (dw_die_ref die, const char *name_string)
10259 if (name_string != NULL && *name_string != 0)
10261 if (demangle_name_func)
10262 name_string = (*demangle_name_func) (name_string);
10264 add_AT_string (die, DW_AT_name, name_string);
10268 /* Generate a DW_AT_comp_dir attribute for DIE. */
10270 static void
10271 add_comp_dir_attribute (dw_die_ref die)
10273 const char *wd = get_src_pwd ();
10274 if (wd != NULL)
10275 add_AT_string (die, DW_AT_comp_dir, wd);
10278 /* Given a tree node describing an array bound (either lower or upper) output
10279 a representation for that bound. */
10281 static void
10282 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10284 switch (TREE_CODE (bound))
10286 case ERROR_MARK:
10287 return;
10289 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10290 case INTEGER_CST:
10291 if (! host_integerp (bound, 0)
10292 || (bound_attr == DW_AT_lower_bound
10293 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10294 || (is_fortran () && integer_onep (bound)))))
10295 /* Use the default. */
10297 else
10298 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10299 break;
10301 case CONVERT_EXPR:
10302 case NOP_EXPR:
10303 case NON_LVALUE_EXPR:
10304 case VIEW_CONVERT_EXPR:
10305 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10306 break;
10308 case SAVE_EXPR:
10309 break;
10311 case VAR_DECL:
10312 case PARM_DECL:
10313 case RESULT_DECL:
10315 dw_die_ref decl_die = lookup_decl_die (bound);
10317 /* ??? Can this happen, or should the variable have been bound
10318 first? Probably it can, since I imagine that we try to create
10319 the types of parameters in the order in which they exist in
10320 the list, and won't have created a forward reference to a
10321 later parameter. */
10322 if (decl_die != NULL)
10323 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10324 break;
10327 default:
10329 /* Otherwise try to create a stack operation procedure to
10330 evaluate the value of the array bound. */
10332 dw_die_ref ctx, decl_die;
10333 dw_loc_descr_ref loc;
10335 loc = loc_descriptor_from_tree (bound);
10336 if (loc == NULL)
10337 break;
10339 if (current_function_decl == 0)
10340 ctx = comp_unit_die;
10341 else
10342 ctx = lookup_decl_die (current_function_decl);
10344 decl_die = new_die (DW_TAG_variable, ctx, bound);
10345 add_AT_flag (decl_die, DW_AT_artificial, 1);
10346 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10347 add_AT_loc (decl_die, DW_AT_location, loc);
10349 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10350 break;
10355 /* Note that the block of subscript information for an array type also
10356 includes information about the element type of type given array type. */
10358 static void
10359 add_subscript_info (dw_die_ref type_die, tree type)
10361 #ifndef MIPS_DEBUGGING_INFO
10362 unsigned dimension_number;
10363 #endif
10364 tree lower, upper;
10365 dw_die_ref subrange_die;
10367 /* The GNU compilers represent multidimensional array types as sequences of
10368 one dimensional array types whose element types are themselves array
10369 types. Here we squish that down, so that each multidimensional array
10370 type gets only one array_type DIE in the Dwarf debugging info. The draft
10371 Dwarf specification say that we are allowed to do this kind of
10372 compression in C (because there is no difference between an array or
10373 arrays and a multidimensional array in C) but for other source languages
10374 (e.g. Ada) we probably shouldn't do this. */
10376 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10377 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10378 We work around this by disabling this feature. See also
10379 gen_array_type_die. */
10380 #ifndef MIPS_DEBUGGING_INFO
10381 for (dimension_number = 0;
10382 TREE_CODE (type) == ARRAY_TYPE;
10383 type = TREE_TYPE (type), dimension_number++)
10384 #endif
10386 tree domain = TYPE_DOMAIN (type);
10388 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10389 and (in GNU C only) variable bounds. Handle all three forms
10390 here. */
10391 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10392 if (domain)
10394 /* We have an array type with specified bounds. */
10395 lower = TYPE_MIN_VALUE (domain);
10396 upper = TYPE_MAX_VALUE (domain);
10398 /* Define the index type. */
10399 if (TREE_TYPE (domain))
10401 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10402 TREE_TYPE field. We can't emit debug info for this
10403 because it is an unnamed integral type. */
10404 if (TREE_CODE (domain) == INTEGER_TYPE
10405 && TYPE_NAME (domain) == NULL_TREE
10406 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10407 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10409 else
10410 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10411 type_die);
10414 /* ??? If upper is NULL, the array has unspecified length,
10415 but it does have a lower bound. This happens with Fortran
10416 dimension arr(N:*)
10417 Since the debugger is definitely going to need to know N
10418 to produce useful results, go ahead and output the lower
10419 bound solo, and hope the debugger can cope. */
10421 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10422 if (upper)
10423 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10426 /* Otherwise we have an array type with an unspecified length. The
10427 DWARF-2 spec does not say how to handle this; let's just leave out the
10428 bounds. */
10432 static void
10433 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10435 unsigned size;
10437 switch (TREE_CODE (tree_node))
10439 case ERROR_MARK:
10440 size = 0;
10441 break;
10442 case ENUMERAL_TYPE:
10443 case RECORD_TYPE:
10444 case UNION_TYPE:
10445 case QUAL_UNION_TYPE:
10446 size = int_size_in_bytes (tree_node);
10447 break;
10448 case FIELD_DECL:
10449 /* For a data member of a struct or union, the DW_AT_byte_size is
10450 generally given as the number of bytes normally allocated for an
10451 object of the *declared* type of the member itself. This is true
10452 even for bit-fields. */
10453 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10454 break;
10455 default:
10456 gcc_unreachable ();
10459 /* Note that `size' might be -1 when we get to this point. If it is, that
10460 indicates that the byte size of the entity in question is variable. We
10461 have no good way of expressing this fact in Dwarf at the present time,
10462 so just let the -1 pass on through. */
10463 add_AT_unsigned (die, DW_AT_byte_size, size);
10466 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10467 which specifies the distance in bits from the highest order bit of the
10468 "containing object" for the bit-field to the highest order bit of the
10469 bit-field itself.
10471 For any given bit-field, the "containing object" is a hypothetical object
10472 (of some integral or enum type) within which the given bit-field lives. The
10473 type of this hypothetical "containing object" is always the same as the
10474 declared type of the individual bit-field itself. The determination of the
10475 exact location of the "containing object" for a bit-field is rather
10476 complicated. It's handled by the `field_byte_offset' function (above).
10478 Note that it is the size (in bytes) of the hypothetical "containing object"
10479 which will be given in the DW_AT_byte_size attribute for this bit-field.
10480 (See `byte_size_attribute' above). */
10482 static inline void
10483 add_bit_offset_attribute (dw_die_ref die, tree decl)
10485 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10486 tree type = DECL_BIT_FIELD_TYPE (decl);
10487 HOST_WIDE_INT bitpos_int;
10488 HOST_WIDE_INT highest_order_object_bit_offset;
10489 HOST_WIDE_INT highest_order_field_bit_offset;
10490 HOST_WIDE_INT unsigned bit_offset;
10492 /* Must be a field and a bit field. */
10493 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10495 /* We can't yet handle bit-fields whose offsets are variable, so if we
10496 encounter such things, just return without generating any attribute
10497 whatsoever. Likewise for variable or too large size. */
10498 if (! host_integerp (bit_position (decl), 0)
10499 || ! host_integerp (DECL_SIZE (decl), 1))
10500 return;
10502 bitpos_int = int_bit_position (decl);
10504 /* Note that the bit offset is always the distance (in bits) from the
10505 highest-order bit of the "containing object" to the highest-order bit of
10506 the bit-field itself. Since the "high-order end" of any object or field
10507 is different on big-endian and little-endian machines, the computation
10508 below must take account of these differences. */
10509 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10510 highest_order_field_bit_offset = bitpos_int;
10512 if (! BYTES_BIG_ENDIAN)
10514 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10515 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10518 bit_offset
10519 = (! BYTES_BIG_ENDIAN
10520 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10521 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10523 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10526 /* For a FIELD_DECL node which represents a bit field, output an attribute
10527 which specifies the length in bits of the given field. */
10529 static inline void
10530 add_bit_size_attribute (dw_die_ref die, tree decl)
10532 /* Must be a field and a bit field. */
10533 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10534 && DECL_BIT_FIELD_TYPE (decl));
10536 if (host_integerp (DECL_SIZE (decl), 1))
10537 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10540 /* If the compiled language is ANSI C, then add a 'prototyped'
10541 attribute, if arg types are given for the parameters of a function. */
10543 static inline void
10544 add_prototyped_attribute (dw_die_ref die, tree func_type)
10546 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10547 && TYPE_ARG_TYPES (func_type) != NULL)
10548 add_AT_flag (die, DW_AT_prototyped, 1);
10551 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10552 by looking in either the type declaration or object declaration
10553 equate table. */
10555 static inline void
10556 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10558 dw_die_ref origin_die = NULL;
10560 if (TREE_CODE (origin) != FUNCTION_DECL)
10562 /* We may have gotten separated from the block for the inlined
10563 function, if we're in an exception handler or some such; make
10564 sure that the abstract function has been written out.
10566 Doing this for nested functions is wrong, however; functions are
10567 distinct units, and our context might not even be inline. */
10568 tree fn = origin;
10570 if (TYPE_P (fn))
10571 fn = TYPE_STUB_DECL (fn);
10573 fn = decl_function_context (fn);
10574 if (fn)
10575 dwarf2out_abstract_function (fn);
10578 if (DECL_P (origin))
10579 origin_die = lookup_decl_die (origin);
10580 else if (TYPE_P (origin))
10581 origin_die = lookup_type_die (origin);
10583 /* XXX: Functions that are never lowered don't always have correct block
10584 trees (in the case of java, they simply have no block tree, in some other
10585 languages). For these functions, there is nothing we can really do to
10586 output correct debug info for inlined functions in all cases. Rather
10587 than die, we'll just produce deficient debug info now, in that we will
10588 have variables without a proper abstract origin. In the future, when all
10589 functions are lowered, we should re-add a gcc_assert (origin_die)
10590 here. */
10592 if (origin_die)
10593 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10596 /* We do not currently support the pure_virtual attribute. */
10598 static inline void
10599 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10601 if (DECL_VINDEX (func_decl))
10603 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10605 if (host_integerp (DECL_VINDEX (func_decl), 0))
10606 add_AT_loc (die, DW_AT_vtable_elem_location,
10607 new_loc_descr (DW_OP_constu,
10608 tree_low_cst (DECL_VINDEX (func_decl), 0),
10609 0));
10611 /* GNU extension: Record what type this method came from originally. */
10612 if (debug_info_level > DINFO_LEVEL_TERSE)
10613 add_AT_die_ref (die, DW_AT_containing_type,
10614 lookup_type_die (DECL_CONTEXT (func_decl)));
10618 /* Add source coordinate attributes for the given decl. */
10620 static void
10621 add_src_coords_attributes (dw_die_ref die, tree decl)
10623 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10624 unsigned file_index = lookup_filename (s.file);
10626 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10627 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10630 /* Add a DW_AT_name attribute and source coordinate attribute for the
10631 given decl, but only if it actually has a name. */
10633 static void
10634 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10636 tree decl_name;
10638 decl_name = DECL_NAME (decl);
10639 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10641 add_name_attribute (die, dwarf2_name (decl, 0));
10642 if (! DECL_ARTIFICIAL (decl))
10643 add_src_coords_attributes (die, decl);
10645 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10646 && TREE_PUBLIC (decl)
10647 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10648 && !DECL_ABSTRACT (decl))
10649 add_AT_string (die, DW_AT_MIPS_linkage_name,
10650 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10653 #ifdef VMS_DEBUGGING_INFO
10654 /* Get the function's name, as described by its RTL. This may be different
10655 from the DECL_NAME name used in the source file. */
10656 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10658 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10659 XEXP (DECL_RTL (decl), 0));
10660 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10662 #endif
10665 /* Push a new declaration scope. */
10667 static void
10668 push_decl_scope (tree scope)
10670 VARRAY_PUSH_TREE (decl_scope_table, scope);
10673 /* Pop a declaration scope. */
10675 static inline void
10676 pop_decl_scope (void)
10678 gcc_assert (VARRAY_ACTIVE_SIZE (decl_scope_table) > 0);
10680 VARRAY_POP (decl_scope_table);
10683 /* Return the DIE for the scope that immediately contains this type.
10684 Non-named types get global scope. Named types nested in other
10685 types get their containing scope if it's open, or global scope
10686 otherwise. All other types (i.e. function-local named types) get
10687 the current active scope. */
10689 static dw_die_ref
10690 scope_die_for (tree t, dw_die_ref context_die)
10692 dw_die_ref scope_die = NULL;
10693 tree containing_scope;
10694 int i;
10696 /* Non-types always go in the current scope. */
10697 gcc_assert (TYPE_P (t));
10699 containing_scope = TYPE_CONTEXT (t);
10701 /* Use the containing namespace if it was passed in (for a declaration). */
10702 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10704 if (context_die == lookup_decl_die (containing_scope))
10705 /* OK */;
10706 else
10707 containing_scope = NULL_TREE;
10710 /* Ignore function type "scopes" from the C frontend. They mean that
10711 a tagged type is local to a parmlist of a function declarator, but
10712 that isn't useful to DWARF. */
10713 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10714 containing_scope = NULL_TREE;
10716 if (containing_scope == NULL_TREE)
10717 scope_die = comp_unit_die;
10718 else if (TYPE_P (containing_scope))
10720 /* For types, we can just look up the appropriate DIE. But
10721 first we check to see if we're in the middle of emitting it
10722 so we know where the new DIE should go. */
10723 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10724 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10725 break;
10727 if (i < 0)
10729 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10730 || TREE_ASM_WRITTEN (containing_scope));
10732 /* If none of the current dies are suitable, we get file scope. */
10733 scope_die = comp_unit_die;
10735 else
10736 scope_die = lookup_type_die (containing_scope);
10738 else
10739 scope_die = context_die;
10741 return scope_die;
10744 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10746 static inline int
10747 local_scope_p (dw_die_ref context_die)
10749 for (; context_die; context_die = context_die->die_parent)
10750 if (context_die->die_tag == DW_TAG_inlined_subroutine
10751 || context_die->die_tag == DW_TAG_subprogram)
10752 return 1;
10754 return 0;
10757 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10758 whether or not to treat a DIE in this context as a declaration. */
10760 static inline int
10761 class_or_namespace_scope_p (dw_die_ref context_die)
10763 return (context_die
10764 && (context_die->die_tag == DW_TAG_structure_type
10765 || context_die->die_tag == DW_TAG_union_type
10766 || context_die->die_tag == DW_TAG_namespace));
10769 /* Many forms of DIEs require a "type description" attribute. This
10770 routine locates the proper "type descriptor" die for the type given
10771 by 'type', and adds a DW_AT_type attribute below the given die. */
10773 static void
10774 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10775 int decl_volatile, dw_die_ref context_die)
10777 enum tree_code code = TREE_CODE (type);
10778 dw_die_ref type_die = NULL;
10780 /* ??? If this type is an unnamed subrange type of an integral or
10781 floating-point type, use the inner type. This is because we have no
10782 support for unnamed types in base_type_die. This can happen if this is
10783 an Ada subrange type. Correct solution is emit a subrange type die. */
10784 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10785 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10786 type = TREE_TYPE (type), code = TREE_CODE (type);
10788 if (code == ERROR_MARK
10789 /* Handle a special case. For functions whose return type is void, we
10790 generate *no* type attribute. (Note that no object may have type
10791 `void', so this only applies to function return types). */
10792 || code == VOID_TYPE)
10793 return;
10795 type_die = modified_type_die (type,
10796 decl_const || TYPE_READONLY (type),
10797 decl_volatile || TYPE_VOLATILE (type),
10798 context_die);
10800 if (type_die != NULL)
10801 add_AT_die_ref (object_die, DW_AT_type, type_die);
10804 /* Given an object die, add the calling convention attribute for the
10805 function call type. */
10806 static void
10807 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10809 enum dwarf_calling_convention value = DW_CC_normal;
10811 value = targetm.dwarf_calling_convention (type);
10813 /* Only add the attribute if the backend requests it, and
10814 is not DW_CC_normal. */
10815 if (value && (value != DW_CC_normal))
10816 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10819 /* Given a tree pointer to a struct, class, union, or enum type node, return
10820 a pointer to the (string) tag name for the given type, or zero if the type
10821 was declared without a tag. */
10823 static const char *
10824 type_tag (tree type)
10826 const char *name = 0;
10828 if (TYPE_NAME (type) != 0)
10830 tree t = 0;
10832 /* Find the IDENTIFIER_NODE for the type name. */
10833 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10834 t = TYPE_NAME (type);
10836 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10837 a TYPE_DECL node, regardless of whether or not a `typedef' was
10838 involved. */
10839 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10840 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10841 t = DECL_NAME (TYPE_NAME (type));
10843 /* Now get the name as a string, or invent one. */
10844 if (t != 0)
10845 name = IDENTIFIER_POINTER (t);
10848 return (name == 0 || *name == '\0') ? 0 : name;
10851 /* Return the type associated with a data member, make a special check
10852 for bit field types. */
10854 static inline tree
10855 member_declared_type (tree member)
10857 return (DECL_BIT_FIELD_TYPE (member)
10858 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10861 /* Get the decl's label, as described by its RTL. This may be different
10862 from the DECL_NAME name used in the source file. */
10864 #if 0
10865 static const char *
10866 decl_start_label (tree decl)
10868 rtx x;
10869 const char *fnname;
10871 x = DECL_RTL (decl);
10872 gcc_assert (MEM_P (x));
10874 x = XEXP (x, 0);
10875 gcc_assert (GET_CODE (x) == SYMBOL_REF);
10877 fnname = XSTR (x, 0);
10878 return fnname;
10880 #endif
10882 /* These routines generate the internal representation of the DIE's for
10883 the compilation unit. Debugging information is collected by walking
10884 the declaration trees passed in from dwarf2out_decl(). */
10886 static void
10887 gen_array_type_die (tree type, dw_die_ref context_die)
10889 dw_die_ref scope_die = scope_die_for (type, context_die);
10890 dw_die_ref array_die;
10891 tree element_type;
10893 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10894 the inner array type comes before the outer array type. Thus we must
10895 call gen_type_die before we call new_die. See below also. */
10896 #ifdef MIPS_DEBUGGING_INFO
10897 gen_type_die (TREE_TYPE (type), context_die);
10898 #endif
10900 array_die = new_die (DW_TAG_array_type, scope_die, type);
10901 add_name_attribute (array_die, type_tag (type));
10902 equate_type_number_to_die (type, array_die);
10904 if (TREE_CODE (type) == VECTOR_TYPE)
10906 /* The frontend feeds us a representation for the vector as a struct
10907 containing an array. Pull out the array type. */
10908 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10909 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10912 #if 0
10913 /* We default the array ordering. SDB will probably do
10914 the right things even if DW_AT_ordering is not present. It's not even
10915 an issue until we start to get into multidimensional arrays anyway. If
10916 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10917 then we'll have to put the DW_AT_ordering attribute back in. (But if
10918 and when we find out that we need to put these in, we will only do so
10919 for multidimensional arrays. */
10920 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10921 #endif
10923 #ifdef MIPS_DEBUGGING_INFO
10924 /* The SGI compilers handle arrays of unknown bound by setting
10925 AT_declaration and not emitting any subrange DIEs. */
10926 if (! TYPE_DOMAIN (type))
10927 add_AT_flag (array_die, DW_AT_declaration, 1);
10928 else
10929 #endif
10930 add_subscript_info (array_die, type);
10932 /* Add representation of the type of the elements of this array type. */
10933 element_type = TREE_TYPE (type);
10935 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10936 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10937 We work around this by disabling this feature. See also
10938 add_subscript_info. */
10939 #ifndef MIPS_DEBUGGING_INFO
10940 while (TREE_CODE (element_type) == ARRAY_TYPE)
10941 element_type = TREE_TYPE (element_type);
10943 gen_type_die (element_type, context_die);
10944 #endif
10946 add_type_attribute (array_die, element_type, 0, 0, context_die);
10949 #if 0
10950 static void
10951 gen_entry_point_die (tree decl, dw_die_ref context_die)
10953 tree origin = decl_ultimate_origin (decl);
10954 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10956 if (origin != NULL)
10957 add_abstract_origin_attribute (decl_die, origin);
10958 else
10960 add_name_and_src_coords_attributes (decl_die, decl);
10961 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10962 0, 0, context_die);
10965 if (DECL_ABSTRACT (decl))
10966 equate_decl_number_to_die (decl, decl_die);
10967 else
10968 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10970 #endif
10972 /* Walk through the list of incomplete types again, trying once more to
10973 emit full debugging info for them. */
10975 static void
10976 retry_incomplete_types (void)
10978 int i;
10980 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10981 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10984 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10986 static void
10987 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10989 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10991 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10992 be incomplete and such types are not marked. */
10993 add_abstract_origin_attribute (type_die, type);
10996 /* Generate a DIE to represent an inlined instance of a structure type. */
10998 static void
10999 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11001 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11003 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11004 be incomplete and such types are not marked. */
11005 add_abstract_origin_attribute (type_die, type);
11008 /* Generate a DIE to represent an inlined instance of a union type. */
11010 static void
11011 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11013 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11015 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11016 be incomplete and such types are not marked. */
11017 add_abstract_origin_attribute (type_die, type);
11020 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11021 include all of the information about the enumeration values also. Each
11022 enumerated type name/value is listed as a child of the enumerated type
11023 DIE. */
11025 static dw_die_ref
11026 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11028 dw_die_ref type_die = lookup_type_die (type);
11030 if (type_die == NULL)
11032 type_die = new_die (DW_TAG_enumeration_type,
11033 scope_die_for (type, context_die), type);
11034 equate_type_number_to_die (type, type_die);
11035 add_name_attribute (type_die, type_tag (type));
11037 else if (! TYPE_SIZE (type))
11038 return type_die;
11039 else
11040 remove_AT (type_die, DW_AT_declaration);
11042 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11043 given enum type is incomplete, do not generate the DW_AT_byte_size
11044 attribute or the DW_AT_element_list attribute. */
11045 if (TYPE_SIZE (type))
11047 tree link;
11049 TREE_ASM_WRITTEN (type) = 1;
11050 add_byte_size_attribute (type_die, type);
11051 if (TYPE_STUB_DECL (type) != NULL_TREE)
11052 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11054 /* If the first reference to this type was as the return type of an
11055 inline function, then it may not have a parent. Fix this now. */
11056 if (type_die->die_parent == NULL)
11057 add_child_die (scope_die_for (type, context_die), type_die);
11059 for (link = TYPE_VALUES (type);
11060 link != NULL; link = TREE_CHAIN (link))
11062 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11063 tree value = TREE_VALUE (link);
11065 add_name_attribute (enum_die,
11066 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11068 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11069 /* DWARF2 does not provide a way of indicating whether or
11070 not enumeration constants are signed or unsigned. GDB
11071 always assumes the values are signed, so we output all
11072 values as if they were signed. That means that
11073 enumeration constants with very large unsigned values
11074 will appear to have negative values in the debugger. */
11075 add_AT_int (enum_die, DW_AT_const_value,
11076 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11079 else
11080 add_AT_flag (type_die, DW_AT_declaration, 1);
11082 return type_die;
11085 /* Generate a DIE to represent either a real live formal parameter decl or to
11086 represent just the type of some formal parameter position in some function
11087 type.
11089 Note that this routine is a bit unusual because its argument may be a
11090 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11091 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11092 node. If it's the former then this function is being called to output a
11093 DIE to represent a formal parameter object (or some inlining thereof). If
11094 it's the latter, then this function is only being called to output a
11095 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11096 argument type of some subprogram type. */
11098 static dw_die_ref
11099 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11101 dw_die_ref parm_die
11102 = new_die (DW_TAG_formal_parameter, context_die, node);
11103 tree origin;
11105 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11107 case tcc_declaration:
11108 origin = decl_ultimate_origin (node);
11109 if (origin != NULL)
11110 add_abstract_origin_attribute (parm_die, origin);
11111 else
11113 add_name_and_src_coords_attributes (parm_die, node);
11114 add_type_attribute (parm_die, TREE_TYPE (node),
11115 TREE_READONLY (node),
11116 TREE_THIS_VOLATILE (node),
11117 context_die);
11118 if (DECL_ARTIFICIAL (node))
11119 add_AT_flag (parm_die, DW_AT_artificial, 1);
11122 equate_decl_number_to_die (node, parm_die);
11123 if (! DECL_ABSTRACT (node))
11124 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11126 break;
11128 case tcc_type:
11129 /* We were called with some kind of a ..._TYPE node. */
11130 add_type_attribute (parm_die, node, 0, 0, context_die);
11131 break;
11133 default:
11134 gcc_unreachable ();
11137 return parm_die;
11140 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11141 at the end of an (ANSI prototyped) formal parameters list. */
11143 static void
11144 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11146 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11149 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11150 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11151 parameters as specified in some function type specification (except for
11152 those which appear as part of a function *definition*). */
11154 static void
11155 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11157 tree link;
11158 tree formal_type = NULL;
11159 tree first_parm_type;
11160 tree arg;
11162 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11164 arg = DECL_ARGUMENTS (function_or_method_type);
11165 function_or_method_type = TREE_TYPE (function_or_method_type);
11167 else
11168 arg = NULL_TREE;
11170 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11172 /* Make our first pass over the list of formal parameter types and output a
11173 DW_TAG_formal_parameter DIE for each one. */
11174 for (link = first_parm_type; link; )
11176 dw_die_ref parm_die;
11178 formal_type = TREE_VALUE (link);
11179 if (formal_type == void_type_node)
11180 break;
11182 /* Output a (nameless) DIE to represent the formal parameter itself. */
11183 parm_die = gen_formal_parameter_die (formal_type, context_die);
11184 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11185 && link == first_parm_type)
11186 || (arg && DECL_ARTIFICIAL (arg)))
11187 add_AT_flag (parm_die, DW_AT_artificial, 1);
11189 link = TREE_CHAIN (link);
11190 if (arg)
11191 arg = TREE_CHAIN (arg);
11194 /* If this function type has an ellipsis, add a
11195 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11196 if (formal_type != void_type_node)
11197 gen_unspecified_parameters_die (function_or_method_type, context_die);
11199 /* Make our second (and final) pass over the list of formal parameter types
11200 and output DIEs to represent those types (as necessary). */
11201 for (link = TYPE_ARG_TYPES (function_or_method_type);
11202 link && TREE_VALUE (link);
11203 link = TREE_CHAIN (link))
11204 gen_type_die (TREE_VALUE (link), context_die);
11207 /* We want to generate the DIE for TYPE so that we can generate the
11208 die for MEMBER, which has been defined; we will need to refer back
11209 to the member declaration nested within TYPE. If we're trying to
11210 generate minimal debug info for TYPE, processing TYPE won't do the
11211 trick; we need to attach the member declaration by hand. */
11213 static void
11214 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11216 gen_type_die (type, context_die);
11218 /* If we're trying to avoid duplicate debug info, we may not have
11219 emitted the member decl for this function. Emit it now. */
11220 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11221 && ! lookup_decl_die (member))
11223 dw_die_ref type_die;
11224 gcc_assert (!decl_ultimate_origin (member));
11226 push_decl_scope (type);
11227 type_die = lookup_type_die (type);
11228 if (TREE_CODE (member) == FUNCTION_DECL)
11229 gen_subprogram_die (member, type_die);
11230 else if (TREE_CODE (member) == FIELD_DECL)
11232 /* Ignore the nameless fields that are used to skip bits but handle
11233 C++ anonymous unions and structs. */
11234 if (DECL_NAME (member) != NULL_TREE
11235 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11236 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11238 gen_type_die (member_declared_type (member), type_die);
11239 gen_field_die (member, type_die);
11242 else
11243 gen_variable_die (member, type_die);
11245 pop_decl_scope ();
11249 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11250 may later generate inlined and/or out-of-line instances of. */
11252 static void
11253 dwarf2out_abstract_function (tree decl)
11255 dw_die_ref old_die;
11256 tree save_fn;
11257 tree context;
11258 int was_abstract = DECL_ABSTRACT (decl);
11260 /* Make sure we have the actual abstract inline, not a clone. */
11261 decl = DECL_ORIGIN (decl);
11263 old_die = lookup_decl_die (decl);
11264 if (old_die && get_AT (old_die, DW_AT_inline))
11265 /* We've already generated the abstract instance. */
11266 return;
11268 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11269 we don't get confused by DECL_ABSTRACT. */
11270 if (debug_info_level > DINFO_LEVEL_TERSE)
11272 context = decl_class_context (decl);
11273 if (context)
11274 gen_type_die_for_member
11275 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11278 /* Pretend we've just finished compiling this function. */
11279 save_fn = current_function_decl;
11280 current_function_decl = decl;
11282 set_decl_abstract_flags (decl, 1);
11283 dwarf2out_decl (decl);
11284 if (! was_abstract)
11285 set_decl_abstract_flags (decl, 0);
11287 current_function_decl = save_fn;
11290 /* Generate a DIE to represent a declared function (either file-scope or
11291 block-local). */
11293 static void
11294 gen_subprogram_die (tree decl, dw_die_ref context_die)
11296 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11297 tree origin = decl_ultimate_origin (decl);
11298 dw_die_ref subr_die;
11299 rtx fp_reg;
11300 tree fn_arg_types;
11301 tree outer_scope;
11302 dw_die_ref old_die = lookup_decl_die (decl);
11303 int declaration = (current_function_decl != decl
11304 || class_or_namespace_scope_p (context_die));
11306 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11307 started to generate the abstract instance of an inline, decided to output
11308 its containing class, and proceeded to emit the declaration of the inline
11309 from the member list for the class. If so, DECLARATION takes priority;
11310 we'll get back to the abstract instance when done with the class. */
11312 /* The class-scope declaration DIE must be the primary DIE. */
11313 if (origin && declaration && class_or_namespace_scope_p (context_die))
11315 origin = NULL;
11316 gcc_assert (!old_die);
11319 if (origin != NULL)
11321 gcc_assert (!declaration || local_scope_p (context_die));
11323 /* Fixup die_parent for the abstract instance of a nested
11324 inline function. */
11325 if (old_die && old_die->die_parent == NULL)
11326 add_child_die (context_die, old_die);
11328 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11329 add_abstract_origin_attribute (subr_die, origin);
11331 else if (old_die)
11333 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11334 unsigned file_index = lookup_filename (s.file);
11336 if (!get_AT_flag (old_die, DW_AT_declaration)
11337 /* We can have a normal definition following an inline one in the
11338 case of redefinition of GNU C extern inlines.
11339 It seems reasonable to use AT_specification in this case. */
11340 && !get_AT (old_die, DW_AT_inline))
11342 /* Detect and ignore this case, where we are trying to output
11343 something we have already output. */
11344 return;
11347 /* If the definition comes from the same place as the declaration,
11348 maybe use the old DIE. We always want the DIE for this function
11349 that has the *_pc attributes to be under comp_unit_die so the
11350 debugger can find it. We also need to do this for abstract
11351 instances of inlines, since the spec requires the out-of-line copy
11352 to have the same parent. For local class methods, this doesn't
11353 apply; we just use the old DIE. */
11354 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11355 && (DECL_ARTIFICIAL (decl)
11356 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11357 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11358 == (unsigned) s.line))))
11360 subr_die = old_die;
11362 /* Clear out the declaration attribute and the formal parameters.
11363 Do not remove all children, because it is possible that this
11364 declaration die was forced using force_decl_die(). In such
11365 cases die that forced declaration die (e.g. TAG_imported_module)
11366 is one of the children that we do not want to remove. */
11367 remove_AT (subr_die, DW_AT_declaration);
11368 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11370 else
11372 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11373 add_AT_specification (subr_die, old_die);
11374 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11375 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11376 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11377 != (unsigned) s.line)
11378 add_AT_unsigned
11379 (subr_die, DW_AT_decl_line, s.line);
11382 else
11384 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11386 if (TREE_PUBLIC (decl))
11387 add_AT_flag (subr_die, DW_AT_external, 1);
11389 add_name_and_src_coords_attributes (subr_die, decl);
11390 if (debug_info_level > DINFO_LEVEL_TERSE)
11392 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11393 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11394 0, 0, context_die);
11397 add_pure_or_virtual_attribute (subr_die, decl);
11398 if (DECL_ARTIFICIAL (decl))
11399 add_AT_flag (subr_die, DW_AT_artificial, 1);
11401 if (TREE_PROTECTED (decl))
11402 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11403 else if (TREE_PRIVATE (decl))
11404 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11407 if (declaration)
11409 if (!old_die || !get_AT (old_die, DW_AT_inline))
11411 add_AT_flag (subr_die, DW_AT_declaration, 1);
11413 /* The first time we see a member function, it is in the context of
11414 the class to which it belongs. We make sure of this by emitting
11415 the class first. The next time is the definition, which is
11416 handled above. The two may come from the same source text.
11418 Note that force_decl_die() forces function declaration die. It is
11419 later reused to represent definition. */
11420 equate_decl_number_to_die (decl, subr_die);
11423 else if (DECL_ABSTRACT (decl))
11425 if (DECL_DECLARED_INLINE_P (decl))
11427 if (cgraph_function_possibly_inlined_p (decl))
11428 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11429 else
11430 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11432 else
11434 if (cgraph_function_possibly_inlined_p (decl))
11435 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11436 else
11437 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11440 equate_decl_number_to_die (decl, subr_die);
11442 else if (!DECL_EXTERNAL (decl))
11444 if (!old_die || !get_AT (old_die, DW_AT_inline))
11445 equate_decl_number_to_die (decl, subr_die);
11447 if (!flag_reorder_blocks_and_partition)
11449 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11450 current_function_funcdef_no);
11451 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11452 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11453 current_function_funcdef_no);
11454 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11456 add_pubname (decl, subr_die);
11457 add_arange (decl, subr_die);
11459 else
11460 { /* Do nothing for now; maybe need to duplicate die, one for
11461 hot section and ond for cold section, then use the hot/cold
11462 section begin/end labels to generate the aranges... */
11464 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11465 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11466 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11467 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11469 add_pubname (decl, subr_die);
11470 add_arange (decl, subr_die);
11471 add_arange (decl, subr_die);
11475 #ifdef MIPS_DEBUGGING_INFO
11476 /* Add a reference to the FDE for this routine. */
11477 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11478 #endif
11480 /* Define the "frame base" location for this routine. We use the
11481 frame pointer or stack pointer registers, since the RTL for local
11482 variables is relative to one of them. */
11483 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11485 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11486 DW_AT_frame_base);
11488 else
11490 fp_reg
11491 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11492 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11495 if (cfun->static_chain_decl)
11496 add_AT_location_description (subr_die, DW_AT_static_link,
11497 loc_descriptor_from_tree (cfun->static_chain_decl));
11500 /* Now output descriptions of the arguments for this function. This gets
11501 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11502 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11503 `...' at the end of the formal parameter list. In order to find out if
11504 there was a trailing ellipsis or not, we must instead look at the type
11505 associated with the FUNCTION_DECL. This will be a node of type
11506 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11507 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11508 an ellipsis at the end. */
11510 /* In the case where we are describing a mere function declaration, all we
11511 need to do here (and all we *can* do here) is to describe the *types* of
11512 its formal parameters. */
11513 if (debug_info_level <= DINFO_LEVEL_TERSE)
11515 else if (declaration)
11516 gen_formal_types_die (decl, subr_die);
11517 else
11519 /* Generate DIEs to represent all known formal parameters. */
11520 tree arg_decls = DECL_ARGUMENTS (decl);
11521 tree parm;
11523 /* When generating DIEs, generate the unspecified_parameters DIE
11524 instead if we come across the arg "__builtin_va_alist" */
11525 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11526 if (TREE_CODE (parm) == PARM_DECL)
11528 if (DECL_NAME (parm)
11529 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11530 "__builtin_va_alist"))
11531 gen_unspecified_parameters_die (parm, subr_die);
11532 else
11533 gen_decl_die (parm, subr_die);
11536 /* Decide whether we need an unspecified_parameters DIE at the end.
11537 There are 2 more cases to do this for: 1) the ansi ... declaration -
11538 this is detectable when the end of the arg list is not a
11539 void_type_node 2) an unprototyped function declaration (not a
11540 definition). This just means that we have no info about the
11541 parameters at all. */
11542 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11543 if (fn_arg_types != NULL)
11545 /* This is the prototyped case, check for.... */
11546 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11547 gen_unspecified_parameters_die (decl, subr_die);
11549 else if (DECL_INITIAL (decl) == NULL_TREE)
11550 gen_unspecified_parameters_die (decl, subr_die);
11553 /* Output Dwarf info for all of the stuff within the body of the function
11554 (if it has one - it may be just a declaration). */
11555 outer_scope = DECL_INITIAL (decl);
11557 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11558 a function. This BLOCK actually represents the outermost binding contour
11559 for the function, i.e. the contour in which the function's formal
11560 parameters and labels get declared. Curiously, it appears that the front
11561 end doesn't actually put the PARM_DECL nodes for the current function onto
11562 the BLOCK_VARS list for this outer scope, but are strung off of the
11563 DECL_ARGUMENTS list for the function instead.
11565 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11566 the LABEL_DECL nodes for the function however, and we output DWARF info
11567 for those in decls_for_scope. Just within the `outer_scope' there will be
11568 a BLOCK node representing the function's outermost pair of curly braces,
11569 and any blocks used for the base and member initializers of a C++
11570 constructor function. */
11571 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11573 /* Emit a DW_TAG_variable DIE for a named return value. */
11574 if (DECL_NAME (DECL_RESULT (decl)))
11575 gen_decl_die (DECL_RESULT (decl), subr_die);
11577 current_function_has_inlines = 0;
11578 decls_for_scope (outer_scope, subr_die, 0);
11580 #if 0 && defined (MIPS_DEBUGGING_INFO)
11581 if (current_function_has_inlines)
11583 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11584 if (! comp_unit_has_inlines)
11586 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11587 comp_unit_has_inlines = 1;
11590 #endif
11592 /* Add the calling convention attribute if requested. */
11593 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11597 /* Generate a DIE to represent a declared data object. */
11599 static void
11600 gen_variable_die (tree decl, dw_die_ref context_die)
11602 tree origin = decl_ultimate_origin (decl);
11603 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11605 dw_die_ref old_die = lookup_decl_die (decl);
11606 int declaration = (DECL_EXTERNAL (decl)
11607 || class_or_namespace_scope_p (context_die));
11609 if (origin != NULL)
11610 add_abstract_origin_attribute (var_die, origin);
11612 /* Loop unrolling can create multiple blocks that refer to the same
11613 static variable, so we must test for the DW_AT_declaration flag.
11615 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11616 copy decls and set the DECL_ABSTRACT flag on them instead of
11617 sharing them.
11619 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11621 ??? The declare_in_namespace support causes us to get two DIEs for one
11622 variable, both of which are declarations. We want to avoid considering
11623 one to be a specification, so we must test that this DIE is not a
11624 declaration. */
11625 else if (old_die && TREE_STATIC (decl) && ! declaration
11626 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11628 /* This is a definition of a C++ class level static. */
11629 add_AT_specification (var_die, old_die);
11630 if (DECL_NAME (decl))
11632 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11633 unsigned file_index = lookup_filename (s.file);
11635 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11636 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11638 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11639 != (unsigned) s.line)
11641 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11644 else
11646 add_name_and_src_coords_attributes (var_die, decl);
11647 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11648 TREE_THIS_VOLATILE (decl), context_die);
11650 if (TREE_PUBLIC (decl))
11651 add_AT_flag (var_die, DW_AT_external, 1);
11653 if (DECL_ARTIFICIAL (decl))
11654 add_AT_flag (var_die, DW_AT_artificial, 1);
11656 if (TREE_PROTECTED (decl))
11657 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11658 else if (TREE_PRIVATE (decl))
11659 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11662 if (declaration)
11663 add_AT_flag (var_die, DW_AT_declaration, 1);
11665 if (DECL_ABSTRACT (decl) || declaration)
11666 equate_decl_number_to_die (decl, var_die);
11668 if (! declaration && ! DECL_ABSTRACT (decl))
11670 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11671 add_pubname (decl, var_die);
11673 else
11674 tree_add_const_value_attribute (var_die, decl);
11677 /* Generate a DIE to represent a label identifier. */
11679 static void
11680 gen_label_die (tree decl, dw_die_ref context_die)
11682 tree origin = decl_ultimate_origin (decl);
11683 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11684 rtx insn;
11685 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11687 if (origin != NULL)
11688 add_abstract_origin_attribute (lbl_die, origin);
11689 else
11690 add_name_and_src_coords_attributes (lbl_die, decl);
11692 if (DECL_ABSTRACT (decl))
11693 equate_decl_number_to_die (decl, lbl_die);
11694 else
11696 insn = DECL_RTL_IF_SET (decl);
11698 /* Deleted labels are programmer specified labels which have been
11699 eliminated because of various optimizations. We still emit them
11700 here so that it is possible to put breakpoints on them. */
11701 if (insn
11702 && (LABEL_P (insn)
11703 || ((NOTE_P (insn)
11704 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11706 /* When optimization is enabled (via -O) some parts of the compiler
11707 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11708 represent source-level labels which were explicitly declared by
11709 the user. This really shouldn't be happening though, so catch
11710 it if it ever does happen. */
11711 gcc_assert (!INSN_DELETED_P (insn));
11713 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11714 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11719 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
11720 Add low_pc and high_pc attributes to the DIE for a block STMT. */
11722 static inline void
11723 add_high_low_attributes (tree stmt, dw_die_ref die)
11725 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11727 if (BLOCK_FRAGMENT_CHAIN (stmt))
11729 tree chain;
11731 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
11733 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11736 add_ranges (chain);
11737 chain = BLOCK_FRAGMENT_CHAIN (chain);
11739 while (chain);
11740 add_ranges (NULL);
11742 else
11744 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11745 BLOCK_NUMBER (stmt));
11746 add_AT_lbl_id (die, DW_AT_low_pc, label);
11747 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11748 BLOCK_NUMBER (stmt));
11749 add_AT_lbl_id (die, DW_AT_high_pc, label);
11753 /* Generate a DIE for a lexical block. */
11755 static void
11756 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11758 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11760 if (! BLOCK_ABSTRACT (stmt))
11761 add_high_low_attributes (stmt, stmt_die);
11763 decls_for_scope (stmt, stmt_die, depth);
11766 /* Generate a DIE for an inlined subprogram. */
11768 static void
11769 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11771 tree decl = block_ultimate_origin (stmt);
11773 /* Emit info for the abstract instance first, if we haven't yet. We
11774 must emit this even if the block is abstract, otherwise when we
11775 emit the block below (or elsewhere), we may end up trying to emit
11776 a die whose origin die hasn't been emitted, and crashing. */
11777 dwarf2out_abstract_function (decl);
11779 if (! BLOCK_ABSTRACT (stmt))
11781 dw_die_ref subr_die
11782 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11784 add_abstract_origin_attribute (subr_die, decl);
11785 add_high_low_attributes (stmt, subr_die);
11787 decls_for_scope (stmt, subr_die, depth);
11788 current_function_has_inlines = 1;
11790 else
11791 /* We may get here if we're the outer block of function A that was
11792 inlined into function B that was inlined into function C. When
11793 generating debugging info for C, dwarf2out_abstract_function(B)
11794 would mark all inlined blocks as abstract, including this one.
11795 So, we wouldn't (and shouldn't) expect labels to be generated
11796 for this one. Instead, just emit debugging info for
11797 declarations within the block. This is particularly important
11798 in the case of initializers of arguments passed from B to us:
11799 if they're statement expressions containing declarations, we
11800 wouldn't generate dies for their abstract variables, and then,
11801 when generating dies for the real variables, we'd die (pun
11802 intended :-) */
11803 gen_lexical_block_die (stmt, context_die, depth);
11806 /* Generate a DIE for a field in a record, or structure. */
11808 static void
11809 gen_field_die (tree decl, dw_die_ref context_die)
11811 dw_die_ref decl_die;
11813 if (TREE_TYPE (decl) == error_mark_node)
11814 return;
11816 decl_die = new_die (DW_TAG_member, context_die, decl);
11817 add_name_and_src_coords_attributes (decl_die, decl);
11818 add_type_attribute (decl_die, member_declared_type (decl),
11819 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11820 context_die);
11822 if (DECL_BIT_FIELD_TYPE (decl))
11824 add_byte_size_attribute (decl_die, decl);
11825 add_bit_size_attribute (decl_die, decl);
11826 add_bit_offset_attribute (decl_die, decl);
11829 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11830 add_data_member_location_attribute (decl_die, decl);
11832 if (DECL_ARTIFICIAL (decl))
11833 add_AT_flag (decl_die, DW_AT_artificial, 1);
11835 if (TREE_PROTECTED (decl))
11836 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11837 else if (TREE_PRIVATE (decl))
11838 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11840 /* Equate decl number to die, so that we can look up this decl later on. */
11841 equate_decl_number_to_die (decl, decl_die);
11844 #if 0
11845 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11846 Use modified_type_die instead.
11847 We keep this code here just in case these types of DIEs may be needed to
11848 represent certain things in other languages (e.g. Pascal) someday. */
11850 static void
11851 gen_pointer_type_die (tree type, dw_die_ref context_die)
11853 dw_die_ref ptr_die
11854 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11856 equate_type_number_to_die (type, ptr_die);
11857 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11858 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11861 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11862 Use modified_type_die instead.
11863 We keep this code here just in case these types of DIEs may be needed to
11864 represent certain things in other languages (e.g. Pascal) someday. */
11866 static void
11867 gen_reference_type_die (tree type, dw_die_ref context_die)
11869 dw_die_ref ref_die
11870 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11872 equate_type_number_to_die (type, ref_die);
11873 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11874 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11876 #endif
11878 /* Generate a DIE for a pointer to a member type. */
11880 static void
11881 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11883 dw_die_ref ptr_die
11884 = new_die (DW_TAG_ptr_to_member_type,
11885 scope_die_for (type, context_die), type);
11887 equate_type_number_to_die (type, ptr_die);
11888 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11889 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11890 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11893 /* Generate the DIE for the compilation unit. */
11895 static dw_die_ref
11896 gen_compile_unit_die (const char *filename)
11898 dw_die_ref die;
11899 char producer[250];
11900 const char *language_string = lang_hooks.name;
11901 int language;
11903 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11905 if (filename)
11907 add_name_attribute (die, filename);
11908 /* Don't add cwd for <built-in>. */
11909 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11910 add_comp_dir_attribute (die);
11913 sprintf (producer, "%s %s", language_string, version_string);
11915 #ifdef MIPS_DEBUGGING_INFO
11916 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11917 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11918 not appear in the producer string, the debugger reaches the conclusion
11919 that the object file is stripped and has no debugging information.
11920 To get the MIPS/SGI debugger to believe that there is debugging
11921 information in the object file, we add a -g to the producer string. */
11922 if (debug_info_level > DINFO_LEVEL_TERSE)
11923 strcat (producer, " -g");
11924 #endif
11926 add_AT_string (die, DW_AT_producer, producer);
11928 if (strcmp (language_string, "GNU C++") == 0)
11929 language = DW_LANG_C_plus_plus;
11930 else if (strcmp (language_string, "GNU Ada") == 0)
11931 language = DW_LANG_Ada95;
11932 else if (strcmp (language_string, "GNU F77") == 0)
11933 language = DW_LANG_Fortran77;
11934 else if (strcmp (language_string, "GNU F95") == 0)
11935 language = DW_LANG_Fortran95;
11936 else if (strcmp (language_string, "GNU Pascal") == 0)
11937 language = DW_LANG_Pascal83;
11938 else if (strcmp (language_string, "GNU Java") == 0)
11939 language = DW_LANG_Java;
11940 else
11941 language = DW_LANG_C89;
11943 add_AT_unsigned (die, DW_AT_language, language);
11944 return die;
11947 /* Generate a DIE for a string type. */
11949 static void
11950 gen_string_type_die (tree type, dw_die_ref context_die)
11952 dw_die_ref type_die
11953 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11955 equate_type_number_to_die (type, type_die);
11957 /* ??? Fudge the string length attribute for now.
11958 TODO: add string length info. */
11959 #if 0
11960 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11961 bound_representation (upper_bound, 0, 'u');
11962 #endif
11965 /* Generate the DIE for a base class. */
11967 static void
11968 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11970 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11972 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11973 add_data_member_location_attribute (die, binfo);
11975 if (BINFO_VIRTUAL_P (binfo))
11976 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11978 if (access == access_public_node)
11979 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11980 else if (access == access_protected_node)
11981 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11984 /* Generate a DIE for a class member. */
11986 static void
11987 gen_member_die (tree type, dw_die_ref context_die)
11989 tree member;
11990 tree binfo = TYPE_BINFO (type);
11991 dw_die_ref child;
11993 /* If this is not an incomplete type, output descriptions of each of its
11994 members. Note that as we output the DIEs necessary to represent the
11995 members of this record or union type, we will also be trying to output
11996 DIEs to represent the *types* of those members. However the `type'
11997 function (above) will specifically avoid generating type DIEs for member
11998 types *within* the list of member DIEs for this (containing) type except
11999 for those types (of members) which are explicitly marked as also being
12000 members of this (containing) type themselves. The g++ front- end can
12001 force any given type to be treated as a member of some other (containing)
12002 type by setting the TYPE_CONTEXT of the given (member) type to point to
12003 the TREE node representing the appropriate (containing) type. */
12005 /* First output info about the base classes. */
12006 if (binfo)
12008 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12009 int i;
12010 tree base;
12012 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12013 gen_inheritance_die (base,
12014 (accesses ? VEC_index (tree, accesses, i)
12015 : access_public_node), context_die);
12018 /* Now output info about the data members and type members. */
12019 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12021 /* If we thought we were generating minimal debug info for TYPE
12022 and then changed our minds, some of the member declarations
12023 may have already been defined. Don't define them again, but
12024 do put them in the right order. */
12026 child = lookup_decl_die (member);
12027 if (child)
12028 splice_child_die (context_die, child);
12029 else
12030 gen_decl_die (member, context_die);
12033 /* Now output info about the function members (if any). */
12034 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12036 /* Don't include clones in the member list. */
12037 if (DECL_ABSTRACT_ORIGIN (member))
12038 continue;
12040 child = lookup_decl_die (member);
12041 if (child)
12042 splice_child_die (context_die, child);
12043 else
12044 gen_decl_die (member, context_die);
12048 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12049 is set, we pretend that the type was never defined, so we only get the
12050 member DIEs needed by later specification DIEs. */
12052 static void
12053 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12055 dw_die_ref type_die = lookup_type_die (type);
12056 dw_die_ref scope_die = 0;
12057 int nested = 0;
12058 int complete = (TYPE_SIZE (type)
12059 && (! TYPE_STUB_DECL (type)
12060 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12061 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12063 if (type_die && ! complete)
12064 return;
12066 if (TYPE_CONTEXT (type) != NULL_TREE
12067 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12068 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12069 nested = 1;
12071 scope_die = scope_die_for (type, context_die);
12073 if (! type_die || (nested && scope_die == comp_unit_die))
12074 /* First occurrence of type or toplevel definition of nested class. */
12076 dw_die_ref old_die = type_die;
12078 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12079 ? DW_TAG_structure_type : DW_TAG_union_type,
12080 scope_die, type);
12081 equate_type_number_to_die (type, type_die);
12082 if (old_die)
12083 add_AT_specification (type_die, old_die);
12084 else
12085 add_name_attribute (type_die, type_tag (type));
12087 else
12088 remove_AT (type_die, DW_AT_declaration);
12090 /* If this type has been completed, then give it a byte_size attribute and
12091 then give a list of members. */
12092 if (complete && !ns_decl)
12094 /* Prevent infinite recursion in cases where the type of some member of
12095 this type is expressed in terms of this type itself. */
12096 TREE_ASM_WRITTEN (type) = 1;
12097 add_byte_size_attribute (type_die, type);
12098 if (TYPE_STUB_DECL (type) != NULL_TREE)
12099 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12101 /* If the first reference to this type was as the return type of an
12102 inline function, then it may not have a parent. Fix this now. */
12103 if (type_die->die_parent == NULL)
12104 add_child_die (scope_die, type_die);
12106 push_decl_scope (type);
12107 gen_member_die (type, type_die);
12108 pop_decl_scope ();
12110 /* GNU extension: Record what type our vtable lives in. */
12111 if (TYPE_VFIELD (type))
12113 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12115 gen_type_die (vtype, context_die);
12116 add_AT_die_ref (type_die, DW_AT_containing_type,
12117 lookup_type_die (vtype));
12120 else
12122 add_AT_flag (type_die, DW_AT_declaration, 1);
12124 /* We don't need to do this for function-local types. */
12125 if (TYPE_STUB_DECL (type)
12126 && ! decl_function_context (TYPE_STUB_DECL (type)))
12127 VARRAY_PUSH_TREE (incomplete_types, type);
12131 /* Generate a DIE for a subroutine _type_. */
12133 static void
12134 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12136 tree return_type = TREE_TYPE (type);
12137 dw_die_ref subr_die
12138 = new_die (DW_TAG_subroutine_type,
12139 scope_die_for (type, context_die), type);
12141 equate_type_number_to_die (type, subr_die);
12142 add_prototyped_attribute (subr_die, type);
12143 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12144 gen_formal_types_die (type, subr_die);
12147 /* Generate a DIE for a type definition. */
12149 static void
12150 gen_typedef_die (tree decl, dw_die_ref context_die)
12152 dw_die_ref type_die;
12153 tree origin;
12155 if (TREE_ASM_WRITTEN (decl))
12156 return;
12158 TREE_ASM_WRITTEN (decl) = 1;
12159 type_die = new_die (DW_TAG_typedef, context_die, decl);
12160 origin = decl_ultimate_origin (decl);
12161 if (origin != NULL)
12162 add_abstract_origin_attribute (type_die, origin);
12163 else
12165 tree type;
12167 add_name_and_src_coords_attributes (type_die, decl);
12168 if (DECL_ORIGINAL_TYPE (decl))
12170 type = DECL_ORIGINAL_TYPE (decl);
12172 gcc_assert (type != TREE_TYPE (decl));
12173 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12175 else
12176 type = TREE_TYPE (decl);
12178 add_type_attribute (type_die, type, TREE_READONLY (decl),
12179 TREE_THIS_VOLATILE (decl), context_die);
12182 if (DECL_ABSTRACT (decl))
12183 equate_decl_number_to_die (decl, type_die);
12186 /* Generate a type description DIE. */
12188 static void
12189 gen_type_die (tree type, dw_die_ref context_die)
12191 int need_pop;
12193 if (type == NULL_TREE || type == error_mark_node)
12194 return;
12196 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12197 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12199 if (TREE_ASM_WRITTEN (type))
12200 return;
12202 /* Prevent broken recursion; we can't hand off to the same type. */
12203 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12205 TREE_ASM_WRITTEN (type) = 1;
12206 gen_decl_die (TYPE_NAME (type), context_die);
12207 return;
12210 /* We are going to output a DIE to represent the unqualified version
12211 of this type (i.e. without any const or volatile qualifiers) so
12212 get the main variant (i.e. the unqualified version) of this type
12213 now. (Vectors are special because the debugging info is in the
12214 cloned type itself). */
12215 if (TREE_CODE (type) != VECTOR_TYPE)
12216 type = type_main_variant (type);
12218 if (TREE_ASM_WRITTEN (type))
12219 return;
12221 switch (TREE_CODE (type))
12223 case ERROR_MARK:
12224 break;
12226 case POINTER_TYPE:
12227 case REFERENCE_TYPE:
12228 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12229 ensures that the gen_type_die recursion will terminate even if the
12230 type is recursive. Recursive types are possible in Ada. */
12231 /* ??? We could perhaps do this for all types before the switch
12232 statement. */
12233 TREE_ASM_WRITTEN (type) = 1;
12235 /* For these types, all that is required is that we output a DIE (or a
12236 set of DIEs) to represent the "basis" type. */
12237 gen_type_die (TREE_TYPE (type), context_die);
12238 break;
12240 case OFFSET_TYPE:
12241 /* This code is used for C++ pointer-to-data-member types.
12242 Output a description of the relevant class type. */
12243 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12245 /* Output a description of the type of the object pointed to. */
12246 gen_type_die (TREE_TYPE (type), context_die);
12248 /* Now output a DIE to represent this pointer-to-data-member type
12249 itself. */
12250 gen_ptr_to_mbr_type_die (type, context_die);
12251 break;
12253 case FUNCTION_TYPE:
12254 /* Force out return type (in case it wasn't forced out already). */
12255 gen_type_die (TREE_TYPE (type), context_die);
12256 gen_subroutine_type_die (type, context_die);
12257 break;
12259 case METHOD_TYPE:
12260 /* Force out return type (in case it wasn't forced out already). */
12261 gen_type_die (TREE_TYPE (type), context_die);
12262 gen_subroutine_type_die (type, context_die);
12263 break;
12265 case ARRAY_TYPE:
12266 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12268 gen_type_die (TREE_TYPE (type), context_die);
12269 gen_string_type_die (type, context_die);
12271 else
12272 gen_array_type_die (type, context_die);
12273 break;
12275 case VECTOR_TYPE:
12276 gen_array_type_die (type, context_die);
12277 break;
12279 case ENUMERAL_TYPE:
12280 case RECORD_TYPE:
12281 case UNION_TYPE:
12282 case QUAL_UNION_TYPE:
12283 /* If this is a nested type whose containing class hasn't been written
12284 out yet, writing it out will cover this one, too. This does not apply
12285 to instantiations of member class templates; they need to be added to
12286 the containing class as they are generated. FIXME: This hurts the
12287 idea of combining type decls from multiple TUs, since we can't predict
12288 what set of template instantiations we'll get. */
12289 if (TYPE_CONTEXT (type)
12290 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12291 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12293 gen_type_die (TYPE_CONTEXT (type), context_die);
12295 if (TREE_ASM_WRITTEN (type))
12296 return;
12298 /* If that failed, attach ourselves to the stub. */
12299 push_decl_scope (TYPE_CONTEXT (type));
12300 context_die = lookup_type_die (TYPE_CONTEXT (type));
12301 need_pop = 1;
12303 else
12305 declare_in_namespace (type, context_die);
12306 need_pop = 0;
12309 if (TREE_CODE (type) == ENUMERAL_TYPE)
12310 gen_enumeration_type_die (type, context_die);
12311 else
12312 gen_struct_or_union_type_die (type, context_die);
12314 if (need_pop)
12315 pop_decl_scope ();
12317 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12318 it up if it is ever completed. gen_*_type_die will set it for us
12319 when appropriate. */
12320 return;
12322 case VOID_TYPE:
12323 case INTEGER_TYPE:
12324 case REAL_TYPE:
12325 case COMPLEX_TYPE:
12326 case BOOLEAN_TYPE:
12327 case CHAR_TYPE:
12328 /* No DIEs needed for fundamental types. */
12329 break;
12331 case LANG_TYPE:
12332 /* No Dwarf representation currently defined. */
12333 break;
12335 default:
12336 gcc_unreachable ();
12339 TREE_ASM_WRITTEN (type) = 1;
12342 /* Generate a DIE for a tagged type instantiation. */
12344 static void
12345 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12347 if (type == NULL_TREE || type == error_mark_node)
12348 return;
12350 /* We are going to output a DIE to represent the unqualified version of
12351 this type (i.e. without any const or volatile qualifiers) so make sure
12352 that we have the main variant (i.e. the unqualified version) of this
12353 type now. */
12354 gcc_assert (type == type_main_variant (type));
12356 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12357 an instance of an unresolved type. */
12359 switch (TREE_CODE (type))
12361 case ERROR_MARK:
12362 break;
12364 case ENUMERAL_TYPE:
12365 gen_inlined_enumeration_type_die (type, context_die);
12366 break;
12368 case RECORD_TYPE:
12369 gen_inlined_structure_type_die (type, context_die);
12370 break;
12372 case UNION_TYPE:
12373 case QUAL_UNION_TYPE:
12374 gen_inlined_union_type_die (type, context_die);
12375 break;
12377 default:
12378 gcc_unreachable ();
12382 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12383 things which are local to the given block. */
12385 static void
12386 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12388 int must_output_die = 0;
12389 tree origin;
12390 tree decl;
12391 enum tree_code origin_code;
12393 /* Ignore blocks that are NULL. */
12394 if (stmt == NULL_TREE)
12395 return;
12397 /* If the block is one fragment of a non-contiguous block, do not
12398 process the variables, since they will have been done by the
12399 origin block. Do process subblocks. */
12400 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12402 tree sub;
12404 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12405 gen_block_die (sub, context_die, depth + 1);
12407 return;
12410 /* Determine the "ultimate origin" of this block. This block may be an
12411 inlined instance of an inlined instance of inline function, so we have
12412 to trace all of the way back through the origin chain to find out what
12413 sort of node actually served as the original seed for the creation of
12414 the current block. */
12415 origin = block_ultimate_origin (stmt);
12416 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12418 /* Determine if we need to output any Dwarf DIEs at all to represent this
12419 block. */
12420 if (origin_code == FUNCTION_DECL)
12421 /* The outer scopes for inlinings *must* always be represented. We
12422 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12423 must_output_die = 1;
12424 else
12426 /* In the case where the current block represents an inlining of the
12427 "body block" of an inline function, we must *NOT* output any DIE for
12428 this block because we have already output a DIE to represent the whole
12429 inlined function scope and the "body block" of any function doesn't
12430 really represent a different scope according to ANSI C rules. So we
12431 check here to make sure that this block does not represent a "body
12432 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12433 if (! is_body_block (origin ? origin : stmt))
12435 /* Determine if this block directly contains any "significant"
12436 local declarations which we will need to output DIEs for. */
12437 if (debug_info_level > DINFO_LEVEL_TERSE)
12438 /* We are not in terse mode so *any* local declaration counts
12439 as being a "significant" one. */
12440 must_output_die = (BLOCK_VARS (stmt) != NULL
12441 && (TREE_USED (stmt)
12442 || TREE_ASM_WRITTEN (stmt)
12443 || BLOCK_ABSTRACT (stmt)));
12444 else
12445 /* We are in terse mode, so only local (nested) function
12446 definitions count as "significant" local declarations. */
12447 for (decl = BLOCK_VARS (stmt);
12448 decl != NULL; decl = TREE_CHAIN (decl))
12449 if (TREE_CODE (decl) == FUNCTION_DECL
12450 && DECL_INITIAL (decl))
12452 must_output_die = 1;
12453 break;
12458 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12459 DIE for any block which contains no significant local declarations at
12460 all. Rather, in such cases we just call `decls_for_scope' so that any
12461 needed Dwarf info for any sub-blocks will get properly generated. Note
12462 that in terse mode, our definition of what constitutes a "significant"
12463 local declaration gets restricted to include only inlined function
12464 instances and local (nested) function definitions. */
12465 if (must_output_die)
12467 if (origin_code == FUNCTION_DECL)
12468 gen_inlined_subroutine_die (stmt, context_die, depth);
12469 else
12470 gen_lexical_block_die (stmt, context_die, depth);
12472 else
12473 decls_for_scope (stmt, context_die, depth);
12476 /* Generate all of the decls declared within a given scope and (recursively)
12477 all of its sub-blocks. */
12479 static void
12480 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12482 tree decl;
12483 tree subblocks;
12485 /* Ignore NULL blocks. */
12486 if (stmt == NULL_TREE)
12487 return;
12489 if (TREE_USED (stmt))
12491 /* Output the DIEs to represent all of the data objects and typedefs
12492 declared directly within this block but not within any nested
12493 sub-blocks. Also, nested function and tag DIEs have been
12494 generated with a parent of NULL; fix that up now. */
12495 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12497 dw_die_ref die;
12499 if (TREE_CODE (decl) == FUNCTION_DECL)
12500 die = lookup_decl_die (decl);
12501 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12502 die = lookup_type_die (TREE_TYPE (decl));
12503 else
12504 die = NULL;
12506 if (die != NULL && die->die_parent == NULL)
12507 add_child_die (context_die, die);
12508 else
12509 gen_decl_die (decl, context_die);
12513 /* If we're at -g1, we're not interested in subblocks. */
12514 if (debug_info_level <= DINFO_LEVEL_TERSE)
12515 return;
12517 /* Output the DIEs to represent all sub-blocks (and the items declared
12518 therein) of this block. */
12519 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12520 subblocks != NULL;
12521 subblocks = BLOCK_CHAIN (subblocks))
12522 gen_block_die (subblocks, context_die, depth + 1);
12525 /* Is this a typedef we can avoid emitting? */
12527 static inline int
12528 is_redundant_typedef (tree decl)
12530 if (TYPE_DECL_IS_STUB (decl))
12531 return 1;
12533 if (DECL_ARTIFICIAL (decl)
12534 && DECL_CONTEXT (decl)
12535 && is_tagged_type (DECL_CONTEXT (decl))
12536 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12537 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12538 /* Also ignore the artificial member typedef for the class name. */
12539 return 1;
12541 return 0;
12544 /* Returns the DIE for decl. A DIE will always be returned. */
12546 static dw_die_ref
12547 force_decl_die (tree decl)
12549 dw_die_ref decl_die;
12550 unsigned saved_external_flag;
12551 tree save_fn = NULL_TREE;
12552 decl_die = lookup_decl_die (decl);
12553 if (!decl_die)
12555 dw_die_ref context_die;
12556 tree decl_context = DECL_CONTEXT (decl);
12557 if (decl_context)
12559 /* Find die that represents this context. */
12560 if (TYPE_P (decl_context))
12561 context_die = force_type_die (decl_context);
12562 else
12563 context_die = force_decl_die (decl_context);
12565 else
12566 context_die = comp_unit_die;
12568 switch (TREE_CODE (decl))
12570 case FUNCTION_DECL:
12571 /* Clear current_function_decl, so that gen_subprogram_die thinks
12572 that this is a declaration. At this point, we just want to force
12573 declaration die. */
12574 save_fn = current_function_decl;
12575 current_function_decl = NULL_TREE;
12576 gen_subprogram_die (decl, context_die);
12577 current_function_decl = save_fn;
12578 break;
12580 case VAR_DECL:
12581 /* Set external flag to force declaration die. Restore it after
12582 gen_decl_die() call. */
12583 saved_external_flag = DECL_EXTERNAL (decl);
12584 DECL_EXTERNAL (decl) = 1;
12585 gen_decl_die (decl, context_die);
12586 DECL_EXTERNAL (decl) = saved_external_flag;
12587 break;
12589 case NAMESPACE_DECL:
12590 dwarf2out_decl (decl);
12591 break;
12593 default:
12594 gcc_unreachable ();
12597 /* We should be able to find the DIE now. */
12598 if (!decl_die)
12599 decl_die = lookup_decl_die (decl);
12600 gcc_assert (decl_die);
12603 return decl_die;
12606 /* Returns the DIE for TYPE. A DIE is always returned. */
12608 static dw_die_ref
12609 force_type_die (tree type)
12611 dw_die_ref type_die;
12613 type_die = lookup_type_die (type);
12614 if (!type_die)
12616 dw_die_ref context_die;
12617 if (TYPE_CONTEXT (type))
12618 if (TYPE_P (TYPE_CONTEXT (type)))
12619 context_die = force_type_die (TYPE_CONTEXT (type));
12620 else
12621 context_die = force_decl_die (TYPE_CONTEXT (type));
12622 else
12623 context_die = comp_unit_die;
12625 gen_type_die (type, context_die);
12626 type_die = lookup_type_die (type);
12627 gcc_assert (type_die);
12629 return type_die;
12632 /* Force out any required namespaces to be able to output DECL,
12633 and return the new context_die for it, if it's changed. */
12635 static dw_die_ref
12636 setup_namespace_context (tree thing, dw_die_ref context_die)
12638 tree context = (DECL_P (thing)
12639 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12640 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12641 /* Force out the namespace. */
12642 context_die = force_decl_die (context);
12644 return context_die;
12647 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12648 type) within its namespace, if appropriate.
12650 For compatibility with older debuggers, namespace DIEs only contain
12651 declarations; all definitions are emitted at CU scope. */
12653 static void
12654 declare_in_namespace (tree thing, dw_die_ref context_die)
12656 dw_die_ref ns_context;
12658 if (debug_info_level <= DINFO_LEVEL_TERSE)
12659 return;
12661 /* If this decl is from an inlined function, then don't try to emit it in its
12662 namespace, as we will get confused. It would have already been emitted
12663 when the abstract instance of the inline function was emitted anyways. */
12664 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12665 return;
12667 ns_context = setup_namespace_context (thing, context_die);
12669 if (ns_context != context_die)
12671 if (DECL_P (thing))
12672 gen_decl_die (thing, ns_context);
12673 else
12674 gen_type_die (thing, ns_context);
12678 /* Generate a DIE for a namespace or namespace alias. */
12680 static void
12681 gen_namespace_die (tree decl)
12683 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12685 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12686 they are an alias of. */
12687 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12689 /* Output a real namespace. */
12690 dw_die_ref namespace_die
12691 = new_die (DW_TAG_namespace, context_die, decl);
12692 add_name_and_src_coords_attributes (namespace_die, decl);
12693 equate_decl_number_to_die (decl, namespace_die);
12695 else
12697 /* Output a namespace alias. */
12699 /* Force out the namespace we are an alias of, if necessary. */
12700 dw_die_ref origin_die
12701 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12703 /* Now create the namespace alias DIE. */
12704 dw_die_ref namespace_die
12705 = new_die (DW_TAG_imported_declaration, context_die, decl);
12706 add_name_and_src_coords_attributes (namespace_die, decl);
12707 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12708 equate_decl_number_to_die (decl, namespace_die);
12712 /* Generate Dwarf debug information for a decl described by DECL. */
12714 static void
12715 gen_decl_die (tree decl, dw_die_ref context_die)
12717 tree origin;
12719 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12720 return;
12722 switch (TREE_CODE (decl))
12724 case ERROR_MARK:
12725 break;
12727 case CONST_DECL:
12728 /* The individual enumerators of an enum type get output when we output
12729 the Dwarf representation of the relevant enum type itself. */
12730 break;
12732 case FUNCTION_DECL:
12733 /* Don't output any DIEs to represent mere function declarations,
12734 unless they are class members or explicit block externs. */
12735 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12736 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12737 break;
12739 #if 0
12740 /* FIXME */
12741 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12742 on local redeclarations of global functions. That seems broken. */
12743 if (current_function_decl != decl)
12744 /* This is only a declaration. */;
12745 #endif
12747 /* If we're emitting a clone, emit info for the abstract instance. */
12748 if (DECL_ORIGIN (decl) != decl)
12749 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12751 /* If we're emitting an out-of-line copy of an inline function,
12752 emit info for the abstract instance and set up to refer to it. */
12753 else if (cgraph_function_possibly_inlined_p (decl)
12754 && ! DECL_ABSTRACT (decl)
12755 && ! class_or_namespace_scope_p (context_die)
12756 /* dwarf2out_abstract_function won't emit a die if this is just
12757 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12758 that case, because that works only if we have a die. */
12759 && DECL_INITIAL (decl) != NULL_TREE)
12761 dwarf2out_abstract_function (decl);
12762 set_decl_origin_self (decl);
12765 /* Otherwise we're emitting the primary DIE for this decl. */
12766 else if (debug_info_level > DINFO_LEVEL_TERSE)
12768 /* Before we describe the FUNCTION_DECL itself, make sure that we
12769 have described its return type. */
12770 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12772 /* And its virtual context. */
12773 if (DECL_VINDEX (decl) != NULL_TREE)
12774 gen_type_die (DECL_CONTEXT (decl), context_die);
12776 /* And its containing type. */
12777 origin = decl_class_context (decl);
12778 if (origin != NULL_TREE)
12779 gen_type_die_for_member (origin, decl, context_die);
12781 /* And its containing namespace. */
12782 declare_in_namespace (decl, context_die);
12785 /* Now output a DIE to represent the function itself. */
12786 gen_subprogram_die (decl, context_die);
12787 break;
12789 case TYPE_DECL:
12790 /* If we are in terse mode, don't generate any DIEs to represent any
12791 actual typedefs. */
12792 if (debug_info_level <= DINFO_LEVEL_TERSE)
12793 break;
12795 /* In the special case of a TYPE_DECL node representing the declaration
12796 of some type tag, if the given TYPE_DECL is marked as having been
12797 instantiated from some other (original) TYPE_DECL node (e.g. one which
12798 was generated within the original definition of an inline function) we
12799 have to generate a special (abbreviated) DW_TAG_structure_type,
12800 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12801 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12803 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12804 break;
12807 if (is_redundant_typedef (decl))
12808 gen_type_die (TREE_TYPE (decl), context_die);
12809 else
12810 /* Output a DIE to represent the typedef itself. */
12811 gen_typedef_die (decl, context_die);
12812 break;
12814 case LABEL_DECL:
12815 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12816 gen_label_die (decl, context_die);
12817 break;
12819 case VAR_DECL:
12820 case RESULT_DECL:
12821 /* If we are in terse mode, don't generate any DIEs to represent any
12822 variable declarations or definitions. */
12823 if (debug_info_level <= DINFO_LEVEL_TERSE)
12824 break;
12826 /* Output any DIEs that are needed to specify the type of this data
12827 object. */
12828 gen_type_die (TREE_TYPE (decl), context_die);
12830 /* And its containing type. */
12831 origin = decl_class_context (decl);
12832 if (origin != NULL_TREE)
12833 gen_type_die_for_member (origin, decl, context_die);
12835 /* And its containing namespace. */
12836 declare_in_namespace (decl, context_die);
12838 /* Now output the DIE to represent the data object itself. This gets
12839 complicated because of the possibility that the VAR_DECL really
12840 represents an inlined instance of a formal parameter for an inline
12841 function. */
12842 origin = decl_ultimate_origin (decl);
12843 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12844 gen_formal_parameter_die (decl, context_die);
12845 else
12846 gen_variable_die (decl, context_die);
12847 break;
12849 case FIELD_DECL:
12850 /* Ignore the nameless fields that are used to skip bits but handle C++
12851 anonymous unions and structs. */
12852 if (DECL_NAME (decl) != NULL_TREE
12853 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12854 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12856 gen_type_die (member_declared_type (decl), context_die);
12857 gen_field_die (decl, context_die);
12859 break;
12861 case PARM_DECL:
12862 gen_type_die (TREE_TYPE (decl), context_die);
12863 gen_formal_parameter_die (decl, context_die);
12864 break;
12866 case NAMESPACE_DECL:
12867 gen_namespace_die (decl);
12868 break;
12870 default:
12871 /* Probably some frontend-internal decl. Assume we don't care. */
12872 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
12873 break;
12877 /* Add Ada "use" clause information for SGI Workshop debugger. */
12879 void
12880 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12882 unsigned int file_index;
12884 if (filename != NULL)
12886 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12887 tree context_list_decl
12888 = build_decl (LABEL_DECL, get_identifier (context_list),
12889 void_type_node);
12891 TREE_PUBLIC (context_list_decl) = TRUE;
12892 add_name_attribute (unit_die, context_list);
12893 file_index = lookup_filename (filename);
12894 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12895 add_pubname (context_list_decl, unit_die);
12899 /* Output debug information for global decl DECL. Called from toplev.c after
12900 compilation proper has finished. */
12902 static void
12903 dwarf2out_global_decl (tree decl)
12905 /* Output DWARF2 information for file-scope tentative data object
12906 declarations, file-scope (extern) function declarations (which had no
12907 corresponding body) and file-scope tagged type declarations and
12908 definitions which have not yet been forced out. */
12909 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12910 dwarf2out_decl (decl);
12913 /* Output debug information for type decl DECL. Called from toplev.c
12914 and from language front ends (to record built-in types). */
12915 static void
12916 dwarf2out_type_decl (tree decl, int local)
12918 if (!local)
12919 dwarf2out_decl (decl);
12922 /* Output debug information for imported module or decl. */
12924 static void
12925 dwarf2out_imported_module_or_decl (tree decl, tree context)
12927 dw_die_ref imported_die, at_import_die;
12928 dw_die_ref scope_die;
12929 unsigned file_index;
12930 expanded_location xloc;
12932 if (debug_info_level <= DINFO_LEVEL_TERSE)
12933 return;
12935 gcc_assert (decl);
12937 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12938 We need decl DIE for reference and scope die. First, get DIE for the decl
12939 itself. */
12941 /* Get the scope die for decl context. Use comp_unit_die for global module
12942 or decl. If die is not found for non globals, force new die. */
12943 if (!context)
12944 scope_die = comp_unit_die;
12945 else if (TYPE_P (context))
12946 scope_die = force_type_die (context);
12947 else
12948 scope_die = force_decl_die (context);
12950 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12951 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12952 at_import_die = force_type_die (TREE_TYPE (decl));
12953 else
12955 at_import_die = lookup_decl_die (decl);
12956 if (!at_import_die)
12958 /* If we're trying to avoid duplicate debug info, we may not have
12959 emitted the member decl for this field. Emit it now. */
12960 if (TREE_CODE (decl) == FIELD_DECL)
12962 tree type = DECL_CONTEXT (decl);
12963 dw_die_ref type_context_die;
12965 if (TYPE_CONTEXT (type))
12966 if (TYPE_P (TYPE_CONTEXT (type)))
12967 type_context_die = force_type_die (TYPE_CONTEXT (type));
12968 else
12969 type_context_die = force_decl_die (TYPE_CONTEXT (type));
12970 else
12971 type_context_die = comp_unit_die;
12972 gen_type_die_for_member (type, decl, type_context_die);
12974 at_import_die = force_decl_die (decl);
12978 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12979 if (TREE_CODE (decl) == NAMESPACE_DECL)
12980 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12981 else
12982 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12984 xloc = expand_location (input_location);
12985 file_index = lookup_filename (xloc.file);
12986 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12987 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
12988 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12991 /* Write the debugging output for DECL. */
12993 void
12994 dwarf2out_decl (tree decl)
12996 dw_die_ref context_die = comp_unit_die;
12998 switch (TREE_CODE (decl))
13000 case ERROR_MARK:
13001 return;
13003 case FUNCTION_DECL:
13004 /* What we would really like to do here is to filter out all mere
13005 file-scope declarations of file-scope functions which are never
13006 referenced later within this translation unit (and keep all of ones
13007 that *are* referenced later on) but we aren't clairvoyant, so we have
13008 no idea which functions will be referenced in the future (i.e. later
13009 on within the current translation unit). So here we just ignore all
13010 file-scope function declarations which are not also definitions. If
13011 and when the debugger needs to know something about these functions,
13012 it will have to hunt around and find the DWARF information associated
13013 with the definition of the function.
13015 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13016 nodes represent definitions and which ones represent mere
13017 declarations. We have to check DECL_INITIAL instead. That's because
13018 the C front-end supports some weird semantics for "extern inline"
13019 function definitions. These can get inlined within the current
13020 translation unit (an thus, we need to generate Dwarf info for their
13021 abstract instances so that the Dwarf info for the concrete inlined
13022 instances can have something to refer to) but the compiler never
13023 generates any out-of-lines instances of such things (despite the fact
13024 that they *are* definitions).
13026 The important point is that the C front-end marks these "extern
13027 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13028 them anyway. Note that the C++ front-end also plays some similar games
13029 for inline function definitions appearing within include files which
13030 also contain `#pragma interface' pragmas. */
13031 if (DECL_INITIAL (decl) == NULL_TREE)
13032 return;
13034 /* If we're a nested function, initially use a parent of NULL; if we're
13035 a plain function, this will be fixed up in decls_for_scope. If
13036 we're a method, it will be ignored, since we already have a DIE. */
13037 if (decl_function_context (decl)
13038 /* But if we're in terse mode, we don't care about scope. */
13039 && debug_info_level > DINFO_LEVEL_TERSE)
13040 context_die = NULL;
13041 break;
13043 case VAR_DECL:
13044 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13045 declaration and if the declaration was never even referenced from
13046 within this entire compilation unit. We suppress these DIEs in
13047 order to save space in the .debug section (by eliminating entries
13048 which are probably useless). Note that we must not suppress
13049 block-local extern declarations (whether used or not) because that
13050 would screw-up the debugger's name lookup mechanism and cause it to
13051 miss things which really ought to be in scope at a given point. */
13052 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13053 return;
13055 /* If we are in terse mode, don't generate any DIEs to represent any
13056 variable declarations or definitions. */
13057 if (debug_info_level <= DINFO_LEVEL_TERSE)
13058 return;
13059 break;
13061 case NAMESPACE_DECL:
13062 if (debug_info_level <= DINFO_LEVEL_TERSE)
13063 return;
13064 if (lookup_decl_die (decl) != NULL)
13065 return;
13066 break;
13068 case TYPE_DECL:
13069 /* Don't emit stubs for types unless they are needed by other DIEs. */
13070 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13071 return;
13073 /* Don't bother trying to generate any DIEs to represent any of the
13074 normal built-in types for the language we are compiling. */
13075 if (DECL_IS_BUILTIN (decl))
13077 /* OK, we need to generate one for `bool' so GDB knows what type
13078 comparisons have. */
13079 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
13080 == DW_LANG_C_plus_plus)
13081 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13082 && ! DECL_IGNORED_P (decl))
13083 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13085 return;
13088 /* If we are in terse mode, don't generate any DIEs for types. */
13089 if (debug_info_level <= DINFO_LEVEL_TERSE)
13090 return;
13092 /* If we're a function-scope tag, initially use a parent of NULL;
13093 this will be fixed up in decls_for_scope. */
13094 if (decl_function_context (decl))
13095 context_die = NULL;
13097 break;
13099 default:
13100 return;
13103 gen_decl_die (decl, context_die);
13106 /* Output a marker (i.e. a label) for the beginning of the generated code for
13107 a lexical block. */
13109 static void
13110 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13111 unsigned int blocknum)
13113 current_function_section (current_function_decl);
13114 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13117 /* Output a marker (i.e. a label) for the end of the generated code for a
13118 lexical block. */
13120 static void
13121 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13123 current_function_section (current_function_decl);
13124 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13127 /* Returns nonzero if it is appropriate not to emit any debugging
13128 information for BLOCK, because it doesn't contain any instructions.
13130 Don't allow this for blocks with nested functions or local classes
13131 as we would end up with orphans, and in the presence of scheduling
13132 we may end up calling them anyway. */
13134 static bool
13135 dwarf2out_ignore_block (tree block)
13137 tree decl;
13139 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13140 if (TREE_CODE (decl) == FUNCTION_DECL
13141 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13142 return 0;
13144 return 1;
13147 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13148 dwarf2out.c) and return its "index". The index of each (known) filename is
13149 just a unique number which is associated with only that one filename. We
13150 need such numbers for the sake of generating labels (in the .debug_sfnames
13151 section) and references to those files numbers (in the .debug_srcinfo
13152 and.debug_macinfo sections). If the filename given as an argument is not
13153 found in our current list, add it to the list and assign it the next
13154 available unique index number. In order to speed up searches, we remember
13155 the index of the filename was looked up last. This handles the majority of
13156 all searches. */
13158 static unsigned
13159 lookup_filename (const char *file_name)
13161 size_t i, n;
13162 char *save_file_name;
13164 /* Check to see if the file name that was searched on the previous
13165 call matches this file name. If so, return the index. */
13166 if (file_table_last_lookup_index != 0)
13168 const char *last
13169 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13170 if (strcmp (file_name, last) == 0)
13171 return file_table_last_lookup_index;
13174 /* Didn't match the previous lookup, search the table. */
13175 n = VARRAY_ACTIVE_SIZE (file_table);
13176 for (i = 1; i < n; i++)
13177 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13179 file_table_last_lookup_index = i;
13180 return i;
13183 /* Add the new entry to the end of the filename table. */
13184 file_table_last_lookup_index = n;
13185 save_file_name = (char *) ggc_strdup (file_name);
13186 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13187 VARRAY_PUSH_UINT (file_table_emitted, 0);
13189 return i;
13192 static int
13193 maybe_emit_file (int fileno)
13195 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13197 if (!VARRAY_UINT (file_table_emitted, fileno))
13199 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13200 fprintf (asm_out_file, "\t.file %u ",
13201 VARRAY_UINT (file_table_emitted, fileno));
13202 output_quoted_string (asm_out_file,
13203 VARRAY_CHAR_PTR (file_table, fileno));
13204 fputc ('\n', asm_out_file);
13206 return VARRAY_UINT (file_table_emitted, fileno);
13208 else
13209 return fileno;
13212 static void
13213 init_file_table (void)
13215 /* Allocate the initial hunk of the file_table. */
13216 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13217 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13219 /* Skip the first entry - file numbers begin at 1. */
13220 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13221 VARRAY_PUSH_UINT (file_table_emitted, 0);
13222 file_table_last_lookup_index = 0;
13225 /* Called by the final INSN scan whenever we see a var location. We
13226 use it to drop labels in the right places, and throw the location in
13227 our lookup table. */
13229 static void
13230 dwarf2out_var_location (rtx loc_note)
13232 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13233 struct var_loc_node *newloc;
13234 rtx prev_insn;
13235 static rtx last_insn;
13236 static const char *last_label;
13237 tree decl;
13239 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13240 return;
13241 prev_insn = PREV_INSN (loc_note);
13243 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13244 /* If the insn we processed last time is the previous insn
13245 and it is also a var location note, use the label we emitted
13246 last time. */
13247 if (last_insn != NULL_RTX
13248 && last_insn == prev_insn
13249 && NOTE_P (prev_insn)
13250 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13252 newloc->label = last_label;
13254 else
13256 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13257 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13258 loclabel_num++;
13259 newloc->label = ggc_strdup (loclabel);
13261 newloc->var_loc_note = loc_note;
13262 newloc->next = NULL;
13264 if (cfun
13265 && (last_text_section == in_unlikely_executed_text
13266 || (last_text_section == in_named
13267 && last_text_section_name == cfun->unlikely_text_section_name)))
13268 newloc->section_label = cfun->cold_section_label;
13269 else
13270 newloc->section_label = text_section_label;
13272 last_insn = loc_note;
13273 last_label = newloc->label;
13274 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13275 if (DECL_DEBUG_EXPR (decl) && DECL_DEBUG_EXPR_IS_FROM (decl)
13276 && DECL_P (DECL_DEBUG_EXPR (decl)))
13277 decl = DECL_DEBUG_EXPR (decl);
13278 add_var_loc_to_decl (decl, newloc);
13281 /* We need to reset the locations at the beginning of each
13282 function. We can't do this in the end_function hook, because the
13283 declarations that use the locations won't have been outputted when
13284 that hook is called. */
13286 static void
13287 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13289 htab_empty (decl_loc_table);
13292 /* Output a label to mark the beginning of a source code line entry
13293 and record information relating to this source line, in
13294 'line_info_table' for later output of the .debug_line section. */
13296 static void
13297 dwarf2out_source_line (unsigned int line, const char *filename)
13299 if (debug_info_level >= DINFO_LEVEL_NORMAL
13300 && line != 0)
13302 current_function_section (current_function_decl);
13304 /* If requested, emit something human-readable. */
13305 if (flag_debug_asm)
13306 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13307 filename, line);
13309 if (DWARF2_ASM_LINE_DEBUG_INFO)
13311 unsigned file_num = lookup_filename (filename);
13313 file_num = maybe_emit_file (file_num);
13315 /* Emit the .loc directive understood by GNU as. */
13316 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13318 /* Indicate that line number info exists. */
13319 line_info_table_in_use++;
13321 /* Indicate that multiple line number tables exist. */
13322 if (DECL_SECTION_NAME (current_function_decl))
13323 separate_line_info_table_in_use++;
13325 else if (DECL_SECTION_NAME (current_function_decl))
13327 dw_separate_line_info_ref line_info;
13328 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13329 separate_line_info_table_in_use);
13331 /* Expand the line info table if necessary. */
13332 if (separate_line_info_table_in_use
13333 == separate_line_info_table_allocated)
13335 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13336 separate_line_info_table
13337 = ggc_realloc (separate_line_info_table,
13338 separate_line_info_table_allocated
13339 * sizeof (dw_separate_line_info_entry));
13340 memset (separate_line_info_table
13341 + separate_line_info_table_in_use,
13343 (LINE_INFO_TABLE_INCREMENT
13344 * sizeof (dw_separate_line_info_entry)));
13347 /* Add the new entry at the end of the line_info_table. */
13348 line_info
13349 = &separate_line_info_table[separate_line_info_table_in_use++];
13350 line_info->dw_file_num = lookup_filename (filename);
13351 line_info->dw_line_num = line;
13352 line_info->function = current_function_funcdef_no;
13354 else
13356 dw_line_info_ref line_info;
13358 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13359 line_info_table_in_use);
13361 /* Expand the line info table if necessary. */
13362 if (line_info_table_in_use == line_info_table_allocated)
13364 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13365 line_info_table
13366 = ggc_realloc (line_info_table,
13367 (line_info_table_allocated
13368 * sizeof (dw_line_info_entry)));
13369 memset (line_info_table + line_info_table_in_use, 0,
13370 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13373 /* Add the new entry at the end of the line_info_table. */
13374 line_info = &line_info_table[line_info_table_in_use++];
13375 line_info->dw_file_num = lookup_filename (filename);
13376 line_info->dw_line_num = line;
13381 /* Record the beginning of a new source file. */
13383 static void
13384 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13386 if (flag_eliminate_dwarf2_dups)
13388 /* Record the beginning of the file for break_out_includes. */
13389 dw_die_ref bincl_die;
13391 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13392 add_AT_string (bincl_die, DW_AT_name, filename);
13395 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13397 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13398 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13399 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13400 lineno);
13401 maybe_emit_file (lookup_filename (filename));
13402 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13403 "Filename we just started");
13407 /* Record the end of a source file. */
13409 static void
13410 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13412 if (flag_eliminate_dwarf2_dups)
13413 /* Record the end of the file for break_out_includes. */
13414 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13416 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13418 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13419 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13423 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13424 the tail part of the directive line, i.e. the part which is past the
13425 initial whitespace, #, whitespace, directive-name, whitespace part. */
13427 static void
13428 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13429 const char *buffer ATTRIBUTE_UNUSED)
13431 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13433 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13434 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13435 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13436 dw2_asm_output_nstring (buffer, -1, "The macro");
13440 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13441 the tail part of the directive line, i.e. the part which is past the
13442 initial whitespace, #, whitespace, directive-name, whitespace part. */
13444 static void
13445 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13446 const char *buffer ATTRIBUTE_UNUSED)
13448 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13450 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13451 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13452 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13453 dw2_asm_output_nstring (buffer, -1, "The macro");
13457 /* Set up for Dwarf output at the start of compilation. */
13459 static void
13460 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13462 init_file_table ();
13464 /* Allocate the decl_die_table. */
13465 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13466 decl_die_table_eq, NULL);
13468 /* Allocate the decl_loc_table. */
13469 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13470 decl_loc_table_eq, NULL);
13472 /* Allocate the initial hunk of the decl_scope_table. */
13473 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13475 /* Allocate the initial hunk of the abbrev_die_table. */
13476 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13477 * sizeof (dw_die_ref));
13478 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13479 /* Zero-th entry is allocated, but unused. */
13480 abbrev_die_table_in_use = 1;
13482 /* Allocate the initial hunk of the line_info_table. */
13483 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13484 * sizeof (dw_line_info_entry));
13485 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13487 /* Zero-th entry is allocated, but unused. */
13488 line_info_table_in_use = 1;
13490 /* Generate the initial DIE for the .debug section. Note that the (string)
13491 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13492 will (typically) be a relative pathname and that this pathname should be
13493 taken as being relative to the directory from which the compiler was
13494 invoked when the given (base) source file was compiled. We will fill
13495 in this value in dwarf2out_finish. */
13496 comp_unit_die = gen_compile_unit_die (NULL);
13498 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13500 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13502 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13503 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13504 DEBUG_ABBREV_SECTION_LABEL, 0);
13505 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13506 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13507 COLD_TEXT_SECTION_LABEL, 0);
13508 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13510 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13511 DEBUG_INFO_SECTION_LABEL, 0);
13512 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13513 DEBUG_LINE_SECTION_LABEL, 0);
13514 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13515 DEBUG_RANGES_SECTION_LABEL, 0);
13516 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13517 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13518 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13519 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13520 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13521 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13523 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13525 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13526 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13527 DEBUG_MACINFO_SECTION_LABEL, 0);
13528 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13531 text_section ();
13532 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13533 if (flag_reorder_blocks_and_partition)
13535 unlikely_text_section ();
13536 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13540 /* A helper function for dwarf2out_finish called through
13541 ht_forall. Emit one queued .debug_str string. */
13543 static int
13544 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13546 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13548 if (node->form == DW_FORM_strp)
13550 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13551 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13552 assemble_string (node->str, strlen (node->str) + 1);
13555 return 1;
13560 /* Clear the marks for a die and its children.
13561 Be cool if the mark isn't set. */
13563 static void
13564 prune_unmark_dies (dw_die_ref die)
13566 dw_die_ref c;
13567 die->die_mark = 0;
13568 for (c = die->die_child; c; c = c->die_sib)
13569 prune_unmark_dies (c);
13573 /* Given DIE that we're marking as used, find any other dies
13574 it references as attributes and mark them as used. */
13576 static void
13577 prune_unused_types_walk_attribs (dw_die_ref die)
13579 dw_attr_ref a;
13581 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13583 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13585 /* A reference to another DIE.
13586 Make sure that it will get emitted. */
13587 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13589 else if (a->dw_attr == DW_AT_decl_file)
13591 /* A reference to a file. Make sure the file name is emitted. */
13592 a->dw_attr_val.v.val_unsigned =
13593 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13599 /* Mark DIE as being used. If DOKIDS is true, then walk down
13600 to DIE's children. */
13602 static void
13603 prune_unused_types_mark (dw_die_ref die, int dokids)
13605 dw_die_ref c;
13607 if (die->die_mark == 0)
13609 /* We haven't done this node yet. Mark it as used. */
13610 die->die_mark = 1;
13612 /* We also have to mark its parents as used.
13613 (But we don't want to mark our parents' kids due to this.) */
13614 if (die->die_parent)
13615 prune_unused_types_mark (die->die_parent, 0);
13617 /* Mark any referenced nodes. */
13618 prune_unused_types_walk_attribs (die);
13620 /* If this node is a specification,
13621 also mark the definition, if it exists. */
13622 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13623 prune_unused_types_mark (die->die_definition, 1);
13626 if (dokids && die->die_mark != 2)
13628 /* We need to walk the children, but haven't done so yet.
13629 Remember that we've walked the kids. */
13630 die->die_mark = 2;
13632 /* Walk them. */
13633 for (c = die->die_child; c; c = c->die_sib)
13635 /* If this is an array type, we need to make sure our
13636 kids get marked, even if they're types. */
13637 if (die->die_tag == DW_TAG_array_type)
13638 prune_unused_types_mark (c, 1);
13639 else
13640 prune_unused_types_walk (c);
13646 /* Walk the tree DIE and mark types that we actually use. */
13648 static void
13649 prune_unused_types_walk (dw_die_ref die)
13651 dw_die_ref c;
13653 /* Don't do anything if this node is already marked. */
13654 if (die->die_mark)
13655 return;
13657 switch (die->die_tag) {
13658 case DW_TAG_const_type:
13659 case DW_TAG_packed_type:
13660 case DW_TAG_pointer_type:
13661 case DW_TAG_reference_type:
13662 case DW_TAG_volatile_type:
13663 case DW_TAG_typedef:
13664 case DW_TAG_array_type:
13665 case DW_TAG_structure_type:
13666 case DW_TAG_union_type:
13667 case DW_TAG_class_type:
13668 case DW_TAG_friend:
13669 case DW_TAG_variant_part:
13670 case DW_TAG_enumeration_type:
13671 case DW_TAG_subroutine_type:
13672 case DW_TAG_string_type:
13673 case DW_TAG_set_type:
13674 case DW_TAG_subrange_type:
13675 case DW_TAG_ptr_to_member_type:
13676 case DW_TAG_file_type:
13677 /* It's a type node --- don't mark it. */
13678 return;
13680 default:
13681 /* Mark everything else. */
13682 break;
13685 die->die_mark = 1;
13687 /* Now, mark any dies referenced from here. */
13688 prune_unused_types_walk_attribs (die);
13690 /* Mark children. */
13691 for (c = die->die_child; c; c = c->die_sib)
13692 prune_unused_types_walk (c);
13696 /* Remove from the tree DIE any dies that aren't marked. */
13698 static void
13699 prune_unused_types_prune (dw_die_ref die)
13701 dw_die_ref c, p, n;
13703 gcc_assert (die->die_mark);
13705 p = NULL;
13706 for (c = die->die_child; c; c = n)
13708 n = c->die_sib;
13709 if (c->die_mark)
13711 prune_unused_types_prune (c);
13712 p = c;
13714 else
13716 if (p)
13717 p->die_sib = n;
13718 else
13719 die->die_child = n;
13720 free_die (c);
13726 /* Remove dies representing declarations that we never use. */
13728 static void
13729 prune_unused_types (void)
13731 unsigned int i;
13732 limbo_die_node *node;
13734 /* Clear all the marks. */
13735 prune_unmark_dies (comp_unit_die);
13736 for (node = limbo_die_list; node; node = node->next)
13737 prune_unmark_dies (node->die);
13739 /* Set the mark on nodes that are actually used. */
13740 prune_unused_types_walk (comp_unit_die);
13741 for (node = limbo_die_list; node; node = node->next)
13742 prune_unused_types_walk (node->die);
13744 /* Also set the mark on nodes referenced from the
13745 pubname_table or arange_table. */
13746 for (i = 0; i < pubname_table_in_use; i++)
13747 prune_unused_types_mark (pubname_table[i].die, 1);
13748 for (i = 0; i < arange_table_in_use; i++)
13749 prune_unused_types_mark (arange_table[i], 1);
13751 /* Get rid of nodes that aren't marked. */
13752 prune_unused_types_prune (comp_unit_die);
13753 for (node = limbo_die_list; node; node = node->next)
13754 prune_unused_types_prune (node->die);
13756 /* Leave the marks clear. */
13757 prune_unmark_dies (comp_unit_die);
13758 for (node = limbo_die_list; node; node = node->next)
13759 prune_unmark_dies (node->die);
13762 /* Output stuff that dwarf requires at the end of every file,
13763 and generate the DWARF-2 debugging info. */
13765 static void
13766 dwarf2out_finish (const char *filename)
13768 limbo_die_node *node, *next_node;
13769 dw_die_ref die = 0;
13771 /* Add the name for the main input file now. We delayed this from
13772 dwarf2out_init to avoid complications with PCH. */
13773 add_name_attribute (comp_unit_die, filename);
13774 if (filename[0] != DIR_SEPARATOR)
13775 add_comp_dir_attribute (comp_unit_die);
13776 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13778 size_t i;
13779 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13780 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13781 /* Don't add cwd for <built-in>. */
13782 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13784 add_comp_dir_attribute (comp_unit_die);
13785 break;
13789 /* Traverse the limbo die list, and add parent/child links. The only
13790 dies without parents that should be here are concrete instances of
13791 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13792 For concrete instances, we can get the parent die from the abstract
13793 instance. */
13794 for (node = limbo_die_list; node; node = next_node)
13796 next_node = node->next;
13797 die = node->die;
13799 if (die->die_parent == NULL)
13801 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13803 if (origin)
13804 add_child_die (origin->die_parent, die);
13805 else if (die == comp_unit_die)
13807 else if (errorcount > 0 || sorrycount > 0)
13808 /* It's OK to be confused by errors in the input. */
13809 add_child_die (comp_unit_die, die);
13810 else
13812 /* In certain situations, the lexical block containing a
13813 nested function can be optimized away, which results
13814 in the nested function die being orphaned. Likewise
13815 with the return type of that nested function. Force
13816 this to be a child of the containing function.
13818 It may happen that even the containing function got fully
13819 inlined and optimized out. In that case we are lost and
13820 assign the empty child. This should not be big issue as
13821 the function is likely unreachable too. */
13822 tree context = NULL_TREE;
13824 gcc_assert (node->created_for);
13826 if (DECL_P (node->created_for))
13827 context = DECL_CONTEXT (node->created_for);
13828 else if (TYPE_P (node->created_for))
13829 context = TYPE_CONTEXT (node->created_for);
13831 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
13833 origin = lookup_decl_die (context);
13834 if (origin)
13835 add_child_die (origin, die);
13836 else
13837 add_child_die (comp_unit_die, die);
13842 limbo_die_list = NULL;
13844 /* Walk through the list of incomplete types again, trying once more to
13845 emit full debugging info for them. */
13846 retry_incomplete_types ();
13848 /* We need to reverse all the dies before break_out_includes, or
13849 we'll see the end of an include file before the beginning. */
13850 reverse_all_dies (comp_unit_die);
13852 if (flag_eliminate_unused_debug_types)
13853 prune_unused_types ();
13855 /* Generate separate CUs for each of the include files we've seen.
13856 They will go into limbo_die_list. */
13857 if (flag_eliminate_dwarf2_dups)
13858 break_out_includes (comp_unit_die);
13860 /* Traverse the DIE's and add add sibling attributes to those DIE's
13861 that have children. */
13862 add_sibling_attributes (comp_unit_die);
13863 for (node = limbo_die_list; node; node = node->next)
13864 add_sibling_attributes (node->die);
13866 /* Output a terminator label for the .text section. */
13867 text_section ();
13868 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13869 if (flag_reorder_blocks_and_partition)
13871 unlikely_text_section ();
13872 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
13875 /* Output the source line correspondence table. We must do this
13876 even if there is no line information. Otherwise, on an empty
13877 translation unit, we will generate a present, but empty,
13878 .debug_info section. IRIX 6.5 `nm' will then complain when
13879 examining the file. */
13880 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13882 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13883 output_line_info ();
13886 /* Output location list section if necessary. */
13887 if (have_location_lists)
13889 /* Output the location lists info. */
13890 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13891 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13892 DEBUG_LOC_SECTION_LABEL, 0);
13893 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13894 output_location_lists (die);
13895 have_location_lists = 0;
13898 /* We can only use the low/high_pc attributes if all of the code was
13899 in .text. */
13900 if (separate_line_info_table_in_use == 0)
13902 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13903 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13906 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13907 "base address". Use zero so that these addresses become absolute. */
13908 else if (have_location_lists || ranges_table_in_use)
13909 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13911 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13912 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13913 debug_line_section_label);
13915 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13916 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13918 /* Output all of the compilation units. We put the main one last so that
13919 the offsets are available to output_pubnames. */
13920 for (node = limbo_die_list; node; node = node->next)
13921 output_comp_unit (node->die, 0);
13923 output_comp_unit (comp_unit_die, 0);
13925 /* Output the abbreviation table. */
13926 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13927 output_abbrev_section ();
13929 /* Output public names table if necessary. */
13930 if (pubname_table_in_use)
13932 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13933 output_pubnames ();
13936 /* Output the address range information. We only put functions in the arange
13937 table, so don't write it out if we don't have any. */
13938 if (fde_table_in_use)
13940 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13941 output_aranges ();
13944 /* Output ranges section if necessary. */
13945 if (ranges_table_in_use)
13947 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13948 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13949 output_ranges ();
13952 /* Have to end the macro section. */
13953 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13955 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13956 dw2_asm_output_data (1, 0, "End compilation unit");
13959 /* If we emitted any DW_FORM_strp form attribute, output the string
13960 table too. */
13961 if (debug_str_hash)
13962 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13964 #else
13966 /* This should never be used, but its address is needed for comparisons. */
13967 const struct gcc_debug_hooks dwarf2_debug_hooks;
13969 #endif /* DWARF2_DEBUGGING_INFO */
13971 #include "gt-dwarf2out.h"