2005-04-29 Jim Tison <jtison@us.ibm.com>
[official-gcc.git] / gcc / cselib.c
blobb7a8963da7793db0e4bb98fed9aaa83c804d6ef5
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "emit-rtl.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
45 static bool cselib_record_memory;
46 static int entry_and_rtx_equal_p (const void *, const void *);
47 static hashval_t get_value_hash (const void *);
48 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
49 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
50 static void unchain_one_value (cselib_val *);
51 static void unchain_one_elt_list (struct elt_list **);
52 static void unchain_one_elt_loc_list (struct elt_loc_list **);
53 static int discard_useless_locs (void **, void *);
54 static int discard_useless_values (void **, void *);
55 static void remove_useless_values (void);
56 static rtx wrap_constant (enum machine_mode, rtx);
57 static unsigned int cselib_hash_rtx (rtx, enum machine_mode, int);
58 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
59 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
60 static cselib_val *cselib_lookup_mem (rtx, int);
61 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
62 static void cselib_invalidate_mem (rtx);
63 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
64 static void cselib_record_sets (rtx);
66 /* There are three ways in which cselib can look up an rtx:
67 - for a REG, the reg_values table (which is indexed by regno) is used
68 - for a MEM, we recursively look up its address and then follow the
69 addr_list of that value
70 - for everything else, we compute a hash value and go through the hash
71 table. Since different rtx's can still have the same hash value,
72 this involves walking the table entries for a given value and comparing
73 the locations of the entries with the rtx we are looking up. */
75 /* A table that enables us to look up elts by their value. */
76 static htab_t hash_table;
78 /* This is a global so we don't have to pass this through every function.
79 It is used in new_elt_loc_list to set SETTING_INSN. */
80 static rtx cselib_current_insn;
81 static bool cselib_current_insn_in_libcall;
83 /* Every new unknown value gets a unique number. */
84 static unsigned int next_unknown_value;
86 /* The number of registers we had when the varrays were last resized. */
87 static unsigned int cselib_nregs;
89 /* Count values without known locations. Whenever this grows too big, we
90 remove these useless values from the table. */
91 static int n_useless_values;
93 /* Number of useless values before we remove them from the hash table. */
94 #define MAX_USELESS_VALUES 32
96 /* This table maps from register number to values. It does not
97 contain pointers to cselib_val structures, but rather elt_lists.
98 The purpose is to be able to refer to the same register in
99 different modes. The first element of the list defines the mode in
100 which the register was set; if the mode is unknown or the value is
101 no longer valid in that mode, ELT will be NULL for the first
102 element. */
103 static struct elt_list **reg_values;
104 static unsigned int reg_values_size;
105 #define REG_VALUES(i) reg_values[i]
107 /* The largest number of hard regs used by any entry added to the
108 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
109 static unsigned int max_value_regs;
111 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
112 in cselib_clear_table() for fast emptying. */
113 static unsigned int *used_regs;
114 static unsigned int n_used_regs;
116 /* We pass this to cselib_invalidate_mem to invalidate all of
117 memory for a non-const call instruction. */
118 static GTY(()) rtx callmem;
120 /* Set by discard_useless_locs if it deleted the last location of any
121 value. */
122 static int values_became_useless;
124 /* Used as stop element of the containing_mem list so we can check
125 presence in the list by checking the next pointer. */
126 static cselib_val dummy_val;
128 /* Used to list all values that contain memory reference.
129 May or may not contain the useless values - the list is compacted
130 each time memory is invalidated. */
131 static cselib_val *first_containing_mem = &dummy_val;
132 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
135 /* Allocate a struct elt_list and fill in its two elements with the
136 arguments. */
138 static inline struct elt_list *
139 new_elt_list (struct elt_list *next, cselib_val *elt)
141 struct elt_list *el;
142 el = pool_alloc (elt_list_pool);
143 el->next = next;
144 el->elt = elt;
145 return el;
148 /* Allocate a struct elt_loc_list and fill in its two elements with the
149 arguments. */
151 static inline struct elt_loc_list *
152 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
154 struct elt_loc_list *el;
155 el = pool_alloc (elt_loc_list_pool);
156 el->next = next;
157 el->loc = loc;
158 el->setting_insn = cselib_current_insn;
159 el->in_libcall = cselib_current_insn_in_libcall;
160 return el;
163 /* The elt_list at *PL is no longer needed. Unchain it and free its
164 storage. */
166 static inline void
167 unchain_one_elt_list (struct elt_list **pl)
169 struct elt_list *l = *pl;
171 *pl = l->next;
172 pool_free (elt_list_pool, l);
175 /* Likewise for elt_loc_lists. */
177 static void
178 unchain_one_elt_loc_list (struct elt_loc_list **pl)
180 struct elt_loc_list *l = *pl;
182 *pl = l->next;
183 pool_free (elt_loc_list_pool, l);
186 /* Likewise for cselib_vals. This also frees the addr_list associated with
187 V. */
189 static void
190 unchain_one_value (cselib_val *v)
192 while (v->addr_list)
193 unchain_one_elt_list (&v->addr_list);
195 pool_free (cselib_val_pool, v);
198 /* Remove all entries from the hash table. Also used during
199 initialization. If CLEAR_ALL isn't set, then only clear the entries
200 which are known to have been used. */
202 void
203 cselib_clear_table (void)
205 unsigned int i;
207 for (i = 0; i < n_used_regs; i++)
208 REG_VALUES (used_regs[i]) = 0;
210 max_value_regs = 0;
212 n_used_regs = 0;
214 htab_empty (hash_table);
216 n_useless_values = 0;
218 next_unknown_value = 0;
220 first_containing_mem = &dummy_val;
223 /* The equality test for our hash table. The first argument ENTRY is a table
224 element (i.e. a cselib_val), while the second arg X is an rtx. We know
225 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
226 CONST of an appropriate mode. */
228 static int
229 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
231 struct elt_loc_list *l;
232 const cselib_val *v = (const cselib_val *) entry;
233 rtx x = (rtx) x_arg;
234 enum machine_mode mode = GET_MODE (x);
236 gcc_assert (GET_CODE (x) != CONST_INT
237 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
239 if (mode != GET_MODE (v->u.val_rtx))
240 return 0;
242 /* Unwrap X if necessary. */
243 if (GET_CODE (x) == CONST
244 && (GET_CODE (XEXP (x, 0)) == CONST_INT
245 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
246 x = XEXP (x, 0);
248 /* We don't guarantee that distinct rtx's have different hash values,
249 so we need to do a comparison. */
250 for (l = v->locs; l; l = l->next)
251 if (rtx_equal_for_cselib_p (l->loc, x))
252 return 1;
254 return 0;
257 /* The hash function for our hash table. The value is always computed with
258 cselib_hash_rtx when adding an element; this function just extracts the
259 hash value from a cselib_val structure. */
261 static hashval_t
262 get_value_hash (const void *entry)
264 const cselib_val *v = (const cselib_val *) entry;
265 return v->value;
268 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
269 only return true for values which point to a cselib_val whose value
270 element has been set to zero, which implies the cselib_val will be
271 removed. */
274 references_value_p (rtx x, int only_useless)
276 enum rtx_code code = GET_CODE (x);
277 const char *fmt = GET_RTX_FORMAT (code);
278 int i, j;
280 if (GET_CODE (x) == VALUE
281 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
282 return 1;
284 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
286 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
287 return 1;
288 else if (fmt[i] == 'E')
289 for (j = 0; j < XVECLEN (x, i); j++)
290 if (references_value_p (XVECEXP (x, i, j), only_useless))
291 return 1;
294 return 0;
297 /* For all locations found in X, delete locations that reference useless
298 values (i.e. values without any location). Called through
299 htab_traverse. */
301 static int
302 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
304 cselib_val *v = (cselib_val *)*x;
305 struct elt_loc_list **p = &v->locs;
306 int had_locs = v->locs != 0;
308 while (*p)
310 if (references_value_p ((*p)->loc, 1))
311 unchain_one_elt_loc_list (p);
312 else
313 p = &(*p)->next;
316 if (had_locs && v->locs == 0)
318 n_useless_values++;
319 values_became_useless = 1;
321 return 1;
324 /* If X is a value with no locations, remove it from the hashtable. */
326 static int
327 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
329 cselib_val *v = (cselib_val *)*x;
331 if (v->locs == 0)
333 CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
334 htab_clear_slot (hash_table, x);
335 unchain_one_value (v);
336 n_useless_values--;
339 return 1;
342 /* Clean out useless values (i.e. those which no longer have locations
343 associated with them) from the hash table. */
345 static void
346 remove_useless_values (void)
348 cselib_val **p, *v;
349 /* First pass: eliminate locations that reference the value. That in
350 turn can make more values useless. */
353 values_became_useless = 0;
354 htab_traverse (hash_table, discard_useless_locs, 0);
356 while (values_became_useless);
358 /* Second pass: actually remove the values. */
360 p = &first_containing_mem;
361 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
362 if (v->locs)
364 *p = v;
365 p = &(*p)->next_containing_mem;
367 *p = &dummy_val;
369 htab_traverse (hash_table, discard_useless_values, 0);
371 gcc_assert (!n_useless_values);
374 /* Return the mode in which a register was last set. If X is not a
375 register, return its mode. If the mode in which the register was
376 set is not known, or the value was already clobbered, return
377 VOIDmode. */
379 enum machine_mode
380 cselib_reg_set_mode (rtx x)
382 if (!REG_P (x))
383 return GET_MODE (x);
385 if (REG_VALUES (REGNO (x)) == NULL
386 || REG_VALUES (REGNO (x))->elt == NULL)
387 return VOIDmode;
389 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
392 /* Return nonzero if we can prove that X and Y contain the same value, taking
393 our gathered information into account. */
396 rtx_equal_for_cselib_p (rtx x, rtx y)
398 enum rtx_code code;
399 const char *fmt;
400 int i;
402 if (REG_P (x) || MEM_P (x))
404 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
406 if (e)
407 x = e->u.val_rtx;
410 if (REG_P (y) || MEM_P (y))
412 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
414 if (e)
415 y = e->u.val_rtx;
418 if (x == y)
419 return 1;
421 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
422 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
424 if (GET_CODE (x) == VALUE)
426 cselib_val *e = CSELIB_VAL_PTR (x);
427 struct elt_loc_list *l;
429 for (l = e->locs; l; l = l->next)
431 rtx t = l->loc;
433 /* Avoid infinite recursion. */
434 if (REG_P (t) || MEM_P (t))
435 continue;
436 else if (rtx_equal_for_cselib_p (t, y))
437 return 1;
440 return 0;
443 if (GET_CODE (y) == VALUE)
445 cselib_val *e = CSELIB_VAL_PTR (y);
446 struct elt_loc_list *l;
448 for (l = e->locs; l; l = l->next)
450 rtx t = l->loc;
452 if (REG_P (t) || MEM_P (t))
453 continue;
454 else if (rtx_equal_for_cselib_p (x, t))
455 return 1;
458 return 0;
461 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
462 return 0;
464 /* This won't be handled correctly by the code below. */
465 if (GET_CODE (x) == LABEL_REF)
466 return XEXP (x, 0) == XEXP (y, 0);
468 code = GET_CODE (x);
469 fmt = GET_RTX_FORMAT (code);
471 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
473 int j;
475 switch (fmt[i])
477 case 'w':
478 if (XWINT (x, i) != XWINT (y, i))
479 return 0;
480 break;
482 case 'n':
483 case 'i':
484 if (XINT (x, i) != XINT (y, i))
485 return 0;
486 break;
488 case 'V':
489 case 'E':
490 /* Two vectors must have the same length. */
491 if (XVECLEN (x, i) != XVECLEN (y, i))
492 return 0;
494 /* And the corresponding elements must match. */
495 for (j = 0; j < XVECLEN (x, i); j++)
496 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
497 XVECEXP (y, i, j)))
498 return 0;
499 break;
501 case 'e':
502 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
503 return 0;
504 break;
506 case 'S':
507 case 's':
508 if (strcmp (XSTR (x, i), XSTR (y, i)))
509 return 0;
510 break;
512 case 'u':
513 /* These are just backpointers, so they don't matter. */
514 break;
516 case '0':
517 case 't':
518 break;
520 /* It is believed that rtx's at this level will never
521 contain anything but integers and other rtx's,
522 except for within LABEL_REFs and SYMBOL_REFs. */
523 default:
524 gcc_unreachable ();
527 return 1;
530 /* We need to pass down the mode of constants through the hash table
531 functions. For that purpose, wrap them in a CONST of the appropriate
532 mode. */
533 static rtx
534 wrap_constant (enum machine_mode mode, rtx x)
536 if (GET_CODE (x) != CONST_INT
537 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
538 return x;
539 gcc_assert (mode != VOIDmode);
540 return gen_rtx_CONST (mode, x);
543 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
544 For registers and memory locations, we look up their cselib_val structure
545 and return its VALUE element.
546 Possible reasons for return 0 are: the object is volatile, or we couldn't
547 find a register or memory location in the table and CREATE is zero. If
548 CREATE is nonzero, table elts are created for regs and mem.
549 MODE is used in hashing for CONST_INTs only;
550 otherwise the mode of X is used. */
552 static unsigned int
553 cselib_hash_rtx (rtx x, enum machine_mode mode, int create)
555 cselib_val *e;
556 int i, j;
557 enum rtx_code code;
558 const char *fmt;
559 unsigned int hash = 0;
561 code = GET_CODE (x);
562 hash += (unsigned) code + (unsigned) GET_MODE (x);
564 switch (code)
566 case MEM:
567 case REG:
568 e = cselib_lookup (x, GET_MODE (x), create);
569 if (! e)
570 return 0;
572 return e->value;
574 case CONST_INT:
575 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + INTVAL (x);
576 return hash ? hash : (unsigned int) CONST_INT;
578 case CONST_DOUBLE:
579 /* This is like the general case, except that it only counts
580 the integers representing the constant. */
581 hash += (unsigned) code + (unsigned) GET_MODE (x);
582 if (GET_MODE (x) != VOIDmode)
583 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
584 else
585 hash += ((unsigned) CONST_DOUBLE_LOW (x)
586 + (unsigned) CONST_DOUBLE_HIGH (x));
587 return hash ? hash : (unsigned int) CONST_DOUBLE;
589 case CONST_VECTOR:
591 int units;
592 rtx elt;
594 units = CONST_VECTOR_NUNITS (x);
596 for (i = 0; i < units; ++i)
598 elt = CONST_VECTOR_ELT (x, i);
599 hash += cselib_hash_rtx (elt, GET_MODE (elt), 0);
602 return hash;
605 /* Assume there is only one rtx object for any given label. */
606 case LABEL_REF:
607 hash
608 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
609 return hash ? hash : (unsigned int) LABEL_REF;
611 case SYMBOL_REF:
612 hash
613 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
614 return hash ? hash : (unsigned int) SYMBOL_REF;
616 case PRE_DEC:
617 case PRE_INC:
618 case POST_DEC:
619 case POST_INC:
620 case POST_MODIFY:
621 case PRE_MODIFY:
622 case PC:
623 case CC0:
624 case CALL:
625 case UNSPEC_VOLATILE:
626 return 0;
628 case ASM_OPERANDS:
629 if (MEM_VOLATILE_P (x))
630 return 0;
632 break;
634 default:
635 break;
638 i = GET_RTX_LENGTH (code) - 1;
639 fmt = GET_RTX_FORMAT (code);
640 for (; i >= 0; i--)
642 switch (fmt[i])
644 case 'e':
646 rtx tem = XEXP (x, i);
647 unsigned int tem_hash = cselib_hash_rtx (tem, 0, create);
649 if (tem_hash == 0)
650 return 0;
652 hash += tem_hash;
654 break;
655 case 'E':
656 for (j = 0; j < XVECLEN (x, i); j++)
658 unsigned int tem_hash
659 = cselib_hash_rtx (XVECEXP (x, i, j), 0, create);
661 if (tem_hash == 0)
662 return 0;
664 hash += tem_hash;
666 break;
668 case 's':
670 const unsigned char *p = (const unsigned char *) XSTR (x, i);
672 if (p)
673 while (*p)
674 hash += *p++;
675 break;
678 case 'i':
679 hash += XINT (x, i);
680 break;
682 case '0':
683 case 't':
684 /* unused */
685 break;
687 default:
688 gcc_unreachable ();
692 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
695 /* Create a new value structure for VALUE and initialize it. The mode of the
696 value is MODE. */
698 static inline cselib_val *
699 new_cselib_val (unsigned int value, enum machine_mode mode)
701 cselib_val *e = pool_alloc (cselib_val_pool);
703 gcc_assert (value);
705 e->value = value;
706 /* We use an alloc pool to allocate this RTL construct because it
707 accounts for about 8% of the overall memory usage. We know
708 precisely when we can have VALUE RTXen (when cselib is active)
709 so we don't need to put them in garbage collected memory.
710 ??? Why should a VALUE be an RTX in the first place? */
711 e->u.val_rtx = pool_alloc (value_pool);
712 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
713 PUT_CODE (e->u.val_rtx, VALUE);
714 PUT_MODE (e->u.val_rtx, mode);
715 CSELIB_VAL_PTR (e->u.val_rtx) = e;
716 e->addr_list = 0;
717 e->locs = 0;
718 e->next_containing_mem = 0;
719 return e;
722 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
723 contains the data at this address. X is a MEM that represents the
724 value. Update the two value structures to represent this situation. */
726 static void
727 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
729 struct elt_loc_list *l;
731 /* Avoid duplicates. */
732 for (l = mem_elt->locs; l; l = l->next)
733 if (MEM_P (l->loc)
734 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
735 return;
737 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
738 mem_elt->locs
739 = new_elt_loc_list (mem_elt->locs,
740 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
741 if (mem_elt->next_containing_mem == NULL)
743 mem_elt->next_containing_mem = first_containing_mem;
744 first_containing_mem = mem_elt;
748 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
749 If CREATE, make a new one if we haven't seen it before. */
751 static cselib_val *
752 cselib_lookup_mem (rtx x, int create)
754 enum machine_mode mode = GET_MODE (x);
755 void **slot;
756 cselib_val *addr;
757 cselib_val *mem_elt;
758 struct elt_list *l;
760 if (MEM_VOLATILE_P (x) || mode == BLKmode
761 || !cselib_record_memory
762 || (FLOAT_MODE_P (mode) && flag_float_store))
763 return 0;
765 /* Look up the value for the address. */
766 addr = cselib_lookup (XEXP (x, 0), mode, create);
767 if (! addr)
768 return 0;
770 /* Find a value that describes a value of our mode at that address. */
771 for (l = addr->addr_list; l; l = l->next)
772 if (GET_MODE (l->elt->u.val_rtx) == mode)
773 return l->elt;
775 if (! create)
776 return 0;
778 mem_elt = new_cselib_val (++next_unknown_value, mode);
779 add_mem_for_addr (addr, mem_elt, x);
780 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
781 mem_elt->value, INSERT);
782 *slot = mem_elt;
783 return mem_elt;
786 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
787 with VALUE expressions. This way, it becomes independent of changes
788 to registers and memory.
789 X isn't actually modified; if modifications are needed, new rtl is
790 allocated. However, the return value can share rtl with X. */
793 cselib_subst_to_values (rtx x)
795 enum rtx_code code = GET_CODE (x);
796 const char *fmt = GET_RTX_FORMAT (code);
797 cselib_val *e;
798 struct elt_list *l;
799 rtx copy = x;
800 int i;
802 switch (code)
804 case REG:
805 l = REG_VALUES (REGNO (x));
806 if (l && l->elt == NULL)
807 l = l->next;
808 for (; l; l = l->next)
809 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
810 return l->elt->u.val_rtx;
812 gcc_unreachable ();
814 case MEM:
815 e = cselib_lookup_mem (x, 0);
816 if (! e)
818 /* This happens for autoincrements. Assign a value that doesn't
819 match any other. */
820 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
822 return e->u.val_rtx;
824 case CONST_DOUBLE:
825 case CONST_VECTOR:
826 case CONST_INT:
827 return x;
829 case POST_INC:
830 case PRE_INC:
831 case POST_DEC:
832 case PRE_DEC:
833 case POST_MODIFY:
834 case PRE_MODIFY:
835 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
836 return e->u.val_rtx;
838 default:
839 break;
842 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
844 if (fmt[i] == 'e')
846 rtx t = cselib_subst_to_values (XEXP (x, i));
848 if (t != XEXP (x, i) && x == copy)
849 copy = shallow_copy_rtx (x);
851 XEXP (copy, i) = t;
853 else if (fmt[i] == 'E')
855 int j, k;
857 for (j = 0; j < XVECLEN (x, i); j++)
859 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
861 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
863 if (x == copy)
864 copy = shallow_copy_rtx (x);
866 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
867 for (k = 0; k < j; k++)
868 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
871 XVECEXP (copy, i, j) = t;
876 return copy;
879 /* Look up the rtl expression X in our tables and return the value it has.
880 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
881 we create a new one if possible, using mode MODE if X doesn't have a mode
882 (i.e. because it's a constant). */
884 cselib_val *
885 cselib_lookup (rtx x, enum machine_mode mode, int create)
887 void **slot;
888 cselib_val *e;
889 unsigned int hashval;
891 if (GET_MODE (x) != VOIDmode)
892 mode = GET_MODE (x);
894 if (GET_CODE (x) == VALUE)
895 return CSELIB_VAL_PTR (x);
897 if (REG_P (x))
899 struct elt_list *l;
900 unsigned int i = REGNO (x);
902 l = REG_VALUES (i);
903 if (l && l->elt == NULL)
904 l = l->next;
905 for (; l; l = l->next)
906 if (mode == GET_MODE (l->elt->u.val_rtx))
907 return l->elt;
909 if (! create)
910 return 0;
912 if (i < FIRST_PSEUDO_REGISTER)
914 unsigned int n = hard_regno_nregs[i][mode];
916 if (n > max_value_regs)
917 max_value_regs = n;
920 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
921 e->locs = new_elt_loc_list (e->locs, x);
922 if (REG_VALUES (i) == 0)
924 /* Maintain the invariant that the first entry of
925 REG_VALUES, if present, must be the value used to set the
926 register, or NULL. */
927 used_regs[n_used_regs++] = i;
928 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
930 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
931 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
932 *slot = e;
933 return e;
936 if (MEM_P (x))
937 return cselib_lookup_mem (x, create);
939 hashval = cselib_hash_rtx (x, mode, create);
940 /* Can't even create if hashing is not possible. */
941 if (! hashval)
942 return 0;
944 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
945 hashval, create ? INSERT : NO_INSERT);
946 if (slot == 0)
947 return 0;
949 e = (cselib_val *) *slot;
950 if (e)
951 return e;
953 e = new_cselib_val (hashval, mode);
955 /* We have to fill the slot before calling cselib_subst_to_values:
956 the hash table is inconsistent until we do so, and
957 cselib_subst_to_values will need to do lookups. */
958 *slot = (void *) e;
959 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
960 return e;
963 /* Invalidate any entries in reg_values that overlap REGNO. This is called
964 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
965 is used to determine how many hard registers are being changed. If MODE
966 is VOIDmode, then only REGNO is being changed; this is used when
967 invalidating call clobbered registers across a call. */
969 static void
970 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
972 unsigned int endregno;
973 unsigned int i;
975 /* If we see pseudos after reload, something is _wrong_. */
976 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
977 || reg_renumber[regno] < 0);
979 /* Determine the range of registers that must be invalidated. For
980 pseudos, only REGNO is affected. For hard regs, we must take MODE
981 into account, and we must also invalidate lower register numbers
982 if they contain values that overlap REGNO. */
983 if (regno < FIRST_PSEUDO_REGISTER)
985 gcc_assert (mode != VOIDmode);
987 if (regno < max_value_regs)
988 i = 0;
989 else
990 i = regno - max_value_regs;
992 endregno = regno + hard_regno_nregs[regno][mode];
994 else
996 i = regno;
997 endregno = regno + 1;
1000 for (; i < endregno; i++)
1002 struct elt_list **l = &REG_VALUES (i);
1004 /* Go through all known values for this reg; if it overlaps the range
1005 we're invalidating, remove the value. */
1006 while (*l)
1008 cselib_val *v = (*l)->elt;
1009 struct elt_loc_list **p;
1010 unsigned int this_last = i;
1012 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1013 this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
1015 if (this_last < regno || v == NULL)
1017 l = &(*l)->next;
1018 continue;
1021 /* We have an overlap. */
1022 if (*l == REG_VALUES (i))
1024 /* Maintain the invariant that the first entry of
1025 REG_VALUES, if present, must be the value used to set
1026 the register, or NULL. This is also nice because
1027 then we won't push the same regno onto user_regs
1028 multiple times. */
1029 (*l)->elt = NULL;
1030 l = &(*l)->next;
1032 else
1033 unchain_one_elt_list (l);
1035 /* Now, we clear the mapping from value to reg. It must exist, so
1036 this code will crash intentionally if it doesn't. */
1037 for (p = &v->locs; ; p = &(*p)->next)
1039 rtx x = (*p)->loc;
1041 if (REG_P (x) && REGNO (x) == i)
1043 unchain_one_elt_loc_list (p);
1044 break;
1047 if (v->locs == 0)
1048 n_useless_values++;
1053 /* Return 1 if X has a value that can vary even between two
1054 executions of the program. 0 means X can be compared reliably
1055 against certain constants or near-constants. */
1057 static int
1058 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1060 /* We actually don't need to verify very hard. This is because
1061 if X has actually changed, we invalidate the memory anyway,
1062 so assume that all common memory addresses are
1063 invariant. */
1064 return 0;
1067 /* Invalidate any locations in the table which are changed because of a
1068 store to MEM_RTX. If this is called because of a non-const call
1069 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1071 static void
1072 cselib_invalidate_mem (rtx mem_rtx)
1074 cselib_val **vp, *v, *next;
1075 int num_mems = 0;
1076 rtx mem_addr;
1078 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1079 mem_rtx = canon_rtx (mem_rtx);
1081 vp = &first_containing_mem;
1082 for (v = *vp; v != &dummy_val; v = next)
1084 bool has_mem = false;
1085 struct elt_loc_list **p = &v->locs;
1086 int had_locs = v->locs != 0;
1088 while (*p)
1090 rtx x = (*p)->loc;
1091 cselib_val *addr;
1092 struct elt_list **mem_chain;
1094 /* MEMs may occur in locations only at the top level; below
1095 that every MEM or REG is substituted by its VALUE. */
1096 if (!MEM_P (x))
1098 p = &(*p)->next;
1099 continue;
1101 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1102 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1103 x, cselib_rtx_varies_p))
1105 has_mem = true;
1106 num_mems++;
1107 p = &(*p)->next;
1108 continue;
1111 /* This one overlaps. */
1112 /* We must have a mapping from this MEM's address to the
1113 value (E). Remove that, too. */
1114 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1115 mem_chain = &addr->addr_list;
1116 for (;;)
1118 if ((*mem_chain)->elt == v)
1120 unchain_one_elt_list (mem_chain);
1121 break;
1124 mem_chain = &(*mem_chain)->next;
1127 unchain_one_elt_loc_list (p);
1130 if (had_locs && v->locs == 0)
1131 n_useless_values++;
1133 next = v->next_containing_mem;
1134 if (has_mem)
1136 *vp = v;
1137 vp = &(*vp)->next_containing_mem;
1139 else
1140 v->next_containing_mem = NULL;
1142 *vp = &dummy_val;
1145 /* Invalidate DEST, which is being assigned to or clobbered. */
1147 void
1148 cselib_invalidate_rtx (rtx dest)
1150 while (GET_CODE (dest) == SUBREG
1151 || GET_CODE (dest) == ZERO_EXTRACT
1152 || GET_CODE (dest) == STRICT_LOW_PART)
1153 dest = XEXP (dest, 0);
1155 if (REG_P (dest))
1156 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1157 else if (MEM_P (dest))
1158 cselib_invalidate_mem (dest);
1160 /* Some machines don't define AUTO_INC_DEC, but they still use push
1161 instructions. We need to catch that case here in order to
1162 invalidate the stack pointer correctly. Note that invalidating
1163 the stack pointer is different from invalidating DEST. */
1164 if (push_operand (dest, GET_MODE (dest)))
1165 cselib_invalidate_rtx (stack_pointer_rtx);
1168 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1170 static void
1171 cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1172 void *data ATTRIBUTE_UNUSED)
1174 cselib_invalidate_rtx (dest);
1177 /* Record the result of a SET instruction. DEST is being set; the source
1178 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1179 describes its address. */
1181 static void
1182 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1184 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1186 if (src_elt == 0 || side_effects_p (dest))
1187 return;
1189 if (dreg >= 0)
1191 if (dreg < FIRST_PSEUDO_REGISTER)
1193 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1195 if (n > max_value_regs)
1196 max_value_regs = n;
1199 if (REG_VALUES (dreg) == 0)
1201 used_regs[n_used_regs++] = dreg;
1202 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1204 else
1206 /* The register should have been invalidated. */
1207 gcc_assert (REG_VALUES (dreg)->elt == 0);
1208 REG_VALUES (dreg)->elt = src_elt;
1211 if (src_elt->locs == 0)
1212 n_useless_values--;
1213 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1215 else if (MEM_P (dest) && dest_addr_elt != 0
1216 && cselib_record_memory)
1218 if (src_elt->locs == 0)
1219 n_useless_values--;
1220 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1224 /* Describe a single set that is part of an insn. */
1225 struct set
1227 rtx src;
1228 rtx dest;
1229 cselib_val *src_elt;
1230 cselib_val *dest_addr_elt;
1233 /* There is no good way to determine how many elements there can be
1234 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1235 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1237 /* Record the effects of any sets in INSN. */
1238 static void
1239 cselib_record_sets (rtx insn)
1241 int n_sets = 0;
1242 int i;
1243 struct set sets[MAX_SETS];
1244 rtx body = PATTERN (insn);
1245 rtx cond = 0;
1247 body = PATTERN (insn);
1248 if (GET_CODE (body) == COND_EXEC)
1250 cond = COND_EXEC_TEST (body);
1251 body = COND_EXEC_CODE (body);
1254 /* Find all sets. */
1255 if (GET_CODE (body) == SET)
1257 sets[0].src = SET_SRC (body);
1258 sets[0].dest = SET_DEST (body);
1259 n_sets = 1;
1261 else if (GET_CODE (body) == PARALLEL)
1263 /* Look through the PARALLEL and record the values being
1264 set, if possible. Also handle any CLOBBERs. */
1265 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1267 rtx x = XVECEXP (body, 0, i);
1269 if (GET_CODE (x) == SET)
1271 sets[n_sets].src = SET_SRC (x);
1272 sets[n_sets].dest = SET_DEST (x);
1273 n_sets++;
1278 /* Look up the values that are read. Do this before invalidating the
1279 locations that are written. */
1280 for (i = 0; i < n_sets; i++)
1282 rtx dest = sets[i].dest;
1284 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1285 the low part after invalidating any knowledge about larger modes. */
1286 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1287 sets[i].dest = dest = XEXP (dest, 0);
1289 /* We don't know how to record anything but REG or MEM. */
1290 if (REG_P (dest)
1291 || (MEM_P (dest) && cselib_record_memory))
1293 rtx src = sets[i].src;
1294 if (cond)
1295 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
1296 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1297 if (MEM_P (dest))
1298 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1299 else
1300 sets[i].dest_addr_elt = 0;
1304 /* Invalidate all locations written by this insn. Note that the elts we
1305 looked up in the previous loop aren't affected, just some of their
1306 locations may go away. */
1307 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1309 /* If this is an asm, look for duplicate sets. This can happen when the
1310 user uses the same value as an output multiple times. This is valid
1311 if the outputs are not actually used thereafter. Treat this case as
1312 if the value isn't actually set. We do this by smashing the destination
1313 to pc_rtx, so that we won't record the value later. */
1314 if (n_sets >= 2 && asm_noperands (body) >= 0)
1316 for (i = 0; i < n_sets; i++)
1318 rtx dest = sets[i].dest;
1319 if (REG_P (dest) || MEM_P (dest))
1321 int j;
1322 for (j = i + 1; j < n_sets; j++)
1323 if (rtx_equal_p (dest, sets[j].dest))
1325 sets[i].dest = pc_rtx;
1326 sets[j].dest = pc_rtx;
1332 /* Now enter the equivalences in our tables. */
1333 for (i = 0; i < n_sets; i++)
1335 rtx dest = sets[i].dest;
1336 if (REG_P (dest)
1337 || (MEM_P (dest) && cselib_record_memory))
1338 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1342 /* Record the effects of INSN. */
1344 void
1345 cselib_process_insn (rtx insn)
1347 int i;
1348 rtx x;
1350 if (find_reg_note (insn, REG_LIBCALL, NULL))
1351 cselib_current_insn_in_libcall = true;
1352 cselib_current_insn = insn;
1354 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1355 if (LABEL_P (insn)
1356 || (CALL_P (insn)
1357 && find_reg_note (insn, REG_SETJMP, NULL))
1358 || (NONJUMP_INSN_P (insn)
1359 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1360 && MEM_VOLATILE_P (PATTERN (insn))))
1362 if (find_reg_note (insn, REG_RETVAL, NULL))
1363 cselib_current_insn_in_libcall = false;
1364 cselib_clear_table ();
1365 return;
1368 if (! INSN_P (insn))
1370 if (find_reg_note (insn, REG_RETVAL, NULL))
1371 cselib_current_insn_in_libcall = false;
1372 cselib_current_insn = 0;
1373 return;
1376 /* If this is a call instruction, forget anything stored in a
1377 call clobbered register, or, if this is not a const call, in
1378 memory. */
1379 if (CALL_P (insn))
1381 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1382 if (call_used_regs[i]
1383 || (REG_VALUES (i) && REG_VALUES (i)->elt
1384 && HARD_REGNO_CALL_PART_CLOBBERED (i,
1385 GET_MODE (REG_VALUES (i)->elt->u.val_rtx))))
1386 cselib_invalidate_regno (i, reg_raw_mode[i]);
1388 if (! CONST_OR_PURE_CALL_P (insn))
1389 cselib_invalidate_mem (callmem);
1392 cselib_record_sets (insn);
1394 #ifdef AUTO_INC_DEC
1395 /* Clobber any registers which appear in REG_INC notes. We
1396 could keep track of the changes to their values, but it is
1397 unlikely to help. */
1398 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1399 if (REG_NOTE_KIND (x) == REG_INC)
1400 cselib_invalidate_rtx (XEXP (x, 0));
1401 #endif
1403 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1404 after we have processed the insn. */
1405 if (CALL_P (insn))
1406 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1407 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1408 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1410 if (find_reg_note (insn, REG_RETVAL, NULL))
1411 cselib_current_insn_in_libcall = false;
1412 cselib_current_insn = 0;
1414 if (n_useless_values > MAX_USELESS_VALUES)
1415 remove_useless_values ();
1418 /* Initialize cselib for one pass. The caller must also call
1419 init_alias_analysis. */
1421 void
1422 cselib_init (bool record_memory)
1424 elt_list_pool = create_alloc_pool ("elt_list",
1425 sizeof (struct elt_list), 10);
1426 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1427 sizeof (struct elt_loc_list), 10);
1428 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1429 sizeof (cselib_val), 10);
1430 value_pool = create_alloc_pool ("value",
1431 RTX_SIZE (VALUE), 100);
1432 cselib_record_memory = record_memory;
1433 /* This is only created once. */
1434 if (! callmem)
1435 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1437 cselib_nregs = max_reg_num ();
1439 /* We preserve reg_values to allow expensive clearing of the whole thing.
1440 Reallocate it however if it happens to be too large. */
1441 if (!reg_values || reg_values_size < cselib_nregs
1442 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1444 if (reg_values)
1445 free (reg_values);
1446 /* Some space for newly emit instructions so we don't end up
1447 reallocating in between passes. */
1448 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1449 reg_values = xcalloc (reg_values_size, sizeof (reg_values));
1451 used_regs = xmalloc (sizeof (*used_regs) * cselib_nregs);
1452 n_used_regs = 0;
1453 hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL);
1454 cselib_current_insn_in_libcall = false;
1457 /* Called when the current user is done with cselib. */
1459 void
1460 cselib_finish (void)
1462 free_alloc_pool (elt_list_pool);
1463 free_alloc_pool (elt_loc_list_pool);
1464 free_alloc_pool (cselib_val_pool);
1465 free_alloc_pool (value_pool);
1466 cselib_clear_table ();
1467 htab_delete (hash_table);
1468 free (used_regs);
1469 used_regs = 0;
1470 hash_table = 0;
1471 n_useless_values = 0;
1472 next_unknown_value = 0;
1475 #include "gt-cselib.h"