2005-04-29 Jim Tison <jtison@us.ibm.com>
[official-gcc.git] / gcc / convert.c
blobc6c2620ab11a6cf28f7effb202ca592a63148831
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
41 tree
42 convert_to_pointer (tree type, tree expr)
44 if (integer_zerop (expr))
46 expr = build_int_cst (type, 0);
47 return expr;
50 switch (TREE_CODE (TREE_TYPE (expr)))
52 case POINTER_TYPE:
53 case REFERENCE_TYPE:
54 return build1 (NOP_EXPR, type, expr);
56 case INTEGER_TYPE:
57 case ENUMERAL_TYPE:
58 case BOOLEAN_TYPE:
59 case CHAR_TYPE:
60 if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
61 return build1 (CONVERT_EXPR, type, expr);
63 return
64 convert_to_pointer (type,
65 convert (lang_hooks.types.type_for_size
66 (POINTER_SIZE, 0), expr));
68 default:
69 error ("cannot convert to a pointer type");
70 return convert_to_pointer (type, integer_zero_node);
74 /* Avoid any floating point extensions from EXP. */
75 tree
76 strip_float_extensions (tree exp)
78 tree sub, expt, subt;
80 /* For floating point constant look up the narrowest type that can hold
81 it properly and handle it like (type)(narrowest_type)constant.
82 This way we can optimize for instance a=a*2.0 where "a" is float
83 but 2.0 is double constant. */
84 if (TREE_CODE (exp) == REAL_CST)
86 REAL_VALUE_TYPE orig;
87 tree type = NULL;
89 orig = TREE_REAL_CST (exp);
90 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
91 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
92 type = float_type_node;
93 else if (TYPE_PRECISION (TREE_TYPE (exp))
94 > TYPE_PRECISION (double_type_node)
95 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
96 type = double_type_node;
97 if (type)
98 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
101 if (TREE_CODE (exp) != NOP_EXPR
102 && TREE_CODE (exp) != CONVERT_EXPR)
103 return exp;
105 sub = TREE_OPERAND (exp, 0);
106 subt = TREE_TYPE (sub);
107 expt = TREE_TYPE (exp);
109 if (!FLOAT_TYPE_P (subt))
110 return exp;
112 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
113 return exp;
115 return strip_float_extensions (sub);
119 /* Convert EXPR to some floating-point type TYPE.
121 EXPR must be float, integer, or enumeral;
122 in other cases error is called. */
124 tree
125 convert_to_real (tree type, tree expr)
127 enum built_in_function fcode = builtin_mathfn_code (expr);
128 tree itype = TREE_TYPE (expr);
130 /* Disable until we figure out how to decide whether the functions are
131 present in runtime. */
132 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
133 if (optimize
134 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
135 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
137 switch (fcode)
139 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
140 CASE_MATHFN (ACOS)
141 CASE_MATHFN (ACOSH)
142 CASE_MATHFN (ASIN)
143 CASE_MATHFN (ASINH)
144 CASE_MATHFN (ATAN)
145 CASE_MATHFN (ATANH)
146 CASE_MATHFN (CBRT)
147 CASE_MATHFN (COS)
148 CASE_MATHFN (COSH)
149 CASE_MATHFN (ERF)
150 CASE_MATHFN (ERFC)
151 CASE_MATHFN (EXP)
152 CASE_MATHFN (EXP10)
153 CASE_MATHFN (EXP2)
154 CASE_MATHFN (EXPM1)
155 CASE_MATHFN (FABS)
156 CASE_MATHFN (GAMMA)
157 CASE_MATHFN (J0)
158 CASE_MATHFN (J1)
159 CASE_MATHFN (LGAMMA)
160 CASE_MATHFN (LOG)
161 CASE_MATHFN (LOG10)
162 CASE_MATHFN (LOG1P)
163 CASE_MATHFN (LOG2)
164 CASE_MATHFN (LOGB)
165 CASE_MATHFN (POW10)
166 CASE_MATHFN (SIN)
167 CASE_MATHFN (SINH)
168 CASE_MATHFN (SQRT)
169 CASE_MATHFN (TAN)
170 CASE_MATHFN (TANH)
171 CASE_MATHFN (TGAMMA)
172 CASE_MATHFN (Y0)
173 CASE_MATHFN (Y1)
174 #undef CASE_MATHFN
176 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
177 tree newtype = type;
179 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
180 the both as the safe type for operation. */
181 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
182 newtype = TREE_TYPE (arg0);
184 /* Be careful about integer to fp conversions.
185 These may overflow still. */
186 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
187 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
188 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
189 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
191 tree arglist;
192 tree fn = mathfn_built_in (newtype, fcode);
194 if (fn)
196 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
197 expr = build_function_call_expr (fn, arglist);
198 if (newtype == type)
199 return expr;
203 default:
204 break;
207 if (optimize
208 && (((fcode == BUILT_IN_FLOORL
209 || fcode == BUILT_IN_CEILL
210 || fcode == BUILT_IN_ROUNDL
211 || fcode == BUILT_IN_RINTL
212 || fcode == BUILT_IN_TRUNCL
213 || fcode == BUILT_IN_NEARBYINTL)
214 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
215 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
216 || ((fcode == BUILT_IN_FLOOR
217 || fcode == BUILT_IN_CEIL
218 || fcode == BUILT_IN_ROUND
219 || fcode == BUILT_IN_RINT
220 || fcode == BUILT_IN_TRUNC
221 || fcode == BUILT_IN_NEARBYINT)
222 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
224 tree fn = mathfn_built_in (type, fcode);
226 if (fn)
228 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
229 1)));
230 tree arglist = build_tree_list (NULL_TREE,
231 fold (convert_to_real (type, arg0)));
233 return build_function_call_expr (fn, arglist);
237 /* Propagate the cast into the operation. */
238 if (itype != type && FLOAT_TYPE_P (type))
239 switch (TREE_CODE (expr))
241 /* Convert (float)-x into -(float)x. This is always safe. */
242 case ABS_EXPR:
243 case NEGATE_EXPR:
244 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
245 return build1 (TREE_CODE (expr), type,
246 fold (convert_to_real (type,
247 TREE_OPERAND (expr, 0))));
248 break;
249 /* Convert (outertype)((innertype0)a+(innertype1)b)
250 into ((newtype)a+(newtype)b) where newtype
251 is the widest mode from all of these. */
252 case PLUS_EXPR:
253 case MINUS_EXPR:
254 case MULT_EXPR:
255 case RDIV_EXPR:
257 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
258 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
260 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
261 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
263 tree newtype = type;
264 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
265 newtype = TREE_TYPE (arg0);
266 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
267 newtype = TREE_TYPE (arg1);
268 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
270 expr = build2 (TREE_CODE (expr), newtype,
271 fold (convert_to_real (newtype, arg0)),
272 fold (convert_to_real (newtype, arg1)));
273 if (newtype == type)
274 return expr;
278 break;
279 default:
280 break;
283 switch (TREE_CODE (TREE_TYPE (expr)))
285 case REAL_TYPE:
286 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
287 type, expr);
289 case INTEGER_TYPE:
290 case ENUMERAL_TYPE:
291 case BOOLEAN_TYPE:
292 case CHAR_TYPE:
293 return build1 (FLOAT_EXPR, type, expr);
295 case COMPLEX_TYPE:
296 return convert (type,
297 fold (build1 (REALPART_EXPR,
298 TREE_TYPE (TREE_TYPE (expr)), expr)));
300 case POINTER_TYPE:
301 case REFERENCE_TYPE:
302 error ("pointer value used where a floating point value was expected");
303 return convert_to_real (type, integer_zero_node);
305 default:
306 error ("aggregate value used where a float was expected");
307 return convert_to_real (type, integer_zero_node);
311 /* Convert EXPR to some integer (or enum) type TYPE.
313 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
314 vector; in other cases error is called.
316 The result of this is always supposed to be a newly created tree node
317 not in use in any existing structure. */
319 tree
320 convert_to_integer (tree type, tree expr)
322 enum tree_code ex_form = TREE_CODE (expr);
323 tree intype = TREE_TYPE (expr);
324 unsigned int inprec = TYPE_PRECISION (intype);
325 unsigned int outprec = TYPE_PRECISION (type);
327 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
328 be. Consider `enum E = { a, b = (enum E) 3 };'. */
329 if (!COMPLETE_TYPE_P (type))
331 error ("conversion to incomplete type");
332 return error_mark_node;
335 /* Convert e.g. (long)round(d) -> lround(d). */
336 /* If we're converting to char, we may encounter differing behavior
337 between converting from double->char vs double->long->char.
338 We're in "undefined" territory but we prefer to be conservative,
339 so only proceed in "unsafe" math mode. */
340 if (optimize
341 && (flag_unsafe_math_optimizations
342 || (long_integer_type_node
343 && outprec >= TYPE_PRECISION (long_integer_type_node))))
345 tree s_expr = strip_float_extensions (expr);
346 tree s_intype = TREE_TYPE (s_expr);
347 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
348 tree fn = 0;
350 switch (fcode)
352 case BUILT_IN_CEILF:
353 case BUILT_IN_CEILL:
354 /* Only convert in ISO C99 mode. */
355 if (!TARGET_C99_FUNCTIONS)
356 break;
357 /* ... Fall through ... */
358 case BUILT_IN_CEIL:
359 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
360 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
361 else
362 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
363 break;
365 case BUILT_IN_FLOORF:
366 case BUILT_IN_FLOORL:
367 /* Only convert in ISO C99 mode. */
368 if (!TARGET_C99_FUNCTIONS)
369 break;
370 /* ... Fall through ... */
371 case BUILT_IN_FLOOR:
372 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
373 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
374 else
375 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
376 break;
378 case BUILT_IN_ROUND: case BUILT_IN_ROUNDF: case BUILT_IN_ROUNDL:
379 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
380 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
381 else
382 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
383 break;
385 case BUILT_IN_RINT: case BUILT_IN_RINTF: case BUILT_IN_RINTL:
386 /* Only convert rint* if we can ignore math exceptions. */
387 if (flag_trapping_math)
388 break;
389 /* ... Fall through ... */
390 case BUILT_IN_NEARBYINT: case BUILT_IN_NEARBYINTF: case BUILT_IN_NEARBYINTL:
391 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
392 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
393 else
394 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
395 break;
397 case BUILT_IN_TRUNC: case BUILT_IN_TRUNCF: case BUILT_IN_TRUNCL:
399 tree arglist = TREE_OPERAND (s_expr, 1);
400 return convert_to_integer (type, TREE_VALUE (arglist));
403 default:
404 break;
407 if (fn)
409 tree arglist = TREE_OPERAND (s_expr, 1);
410 tree newexpr = build_function_call_expr (fn, arglist);
411 return convert_to_integer (type, newexpr);
415 switch (TREE_CODE (intype))
417 case POINTER_TYPE:
418 case REFERENCE_TYPE:
419 if (integer_zerop (expr))
420 expr = integer_zero_node;
421 else
422 expr = fold (build1 (CONVERT_EXPR,
423 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
424 expr));
426 return convert_to_integer (type, expr);
428 case INTEGER_TYPE:
429 case ENUMERAL_TYPE:
430 case BOOLEAN_TYPE:
431 case CHAR_TYPE:
432 /* If this is a logical operation, which just returns 0 or 1, we can
433 change the type of the expression. */
435 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
437 expr = copy_node (expr);
438 TREE_TYPE (expr) = type;
439 return expr;
442 /* If we are widening the type, put in an explicit conversion.
443 Similarly if we are not changing the width. After this, we know
444 we are truncating EXPR. */
446 else if (outprec >= inprec)
448 enum tree_code code;
450 /* If the precision of the EXPR's type is K bits and the
451 destination mode has more bits, and the sign is changing,
452 it is not safe to use a NOP_EXPR. For example, suppose
453 that EXPR's type is a 3-bit unsigned integer type, the
454 TYPE is a 3-bit signed integer type, and the machine mode
455 for the types is 8-bit QImode. In that case, the
456 conversion necessitates an explicit sign-extension. In
457 the signed-to-unsigned case the high-order bits have to
458 be cleared. */
459 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
460 && (TYPE_PRECISION (TREE_TYPE (expr))
461 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
462 code = CONVERT_EXPR;
463 else
464 code = NOP_EXPR;
466 return build1 (code, type, expr);
469 /* If TYPE is an enumeral type or a type with a precision less
470 than the number of bits in its mode, do the conversion to the
471 type corresponding to its mode, then do a nop conversion
472 to TYPE. */
473 else if (TREE_CODE (type) == ENUMERAL_TYPE
474 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
475 return build1 (NOP_EXPR, type,
476 convert (lang_hooks.types.type_for_mode
477 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
478 expr));
480 /* Here detect when we can distribute the truncation down past some
481 arithmetic. For example, if adding two longs and converting to an
482 int, we can equally well convert both to ints and then add.
483 For the operations handled here, such truncation distribution
484 is always safe.
485 It is desirable in these cases:
486 1) when truncating down to full-word from a larger size
487 2) when truncating takes no work.
488 3) when at least one operand of the arithmetic has been extended
489 (as by C's default conversions). In this case we need two conversions
490 if we do the arithmetic as already requested, so we might as well
491 truncate both and then combine. Perhaps that way we need only one.
493 Note that in general we cannot do the arithmetic in a type
494 shorter than the desired result of conversion, even if the operands
495 are both extended from a shorter type, because they might overflow
496 if combined in that type. The exceptions to this--the times when
497 two narrow values can be combined in their narrow type even to
498 make a wider result--are handled by "shorten" in build_binary_op. */
500 switch (ex_form)
502 case RSHIFT_EXPR:
503 /* We can pass truncation down through right shifting
504 when the shift count is a nonpositive constant. */
505 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
506 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
507 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
508 integer_one_node)))
509 goto trunc1;
510 break;
512 case LSHIFT_EXPR:
513 /* We can pass truncation down through left shifting
514 when the shift count is a nonnegative constant and
515 the target type is unsigned. */
516 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
517 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
518 && TYPE_UNSIGNED (type)
519 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
521 /* If shift count is less than the width of the truncated type,
522 really shift. */
523 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
524 /* In this case, shifting is like multiplication. */
525 goto trunc1;
526 else
528 /* If it is >= that width, result is zero.
529 Handling this with trunc1 would give the wrong result:
530 (int) ((long long) a << 32) is well defined (as 0)
531 but (int) a << 32 is undefined and would get a
532 warning. */
534 tree t = convert_to_integer (type, integer_zero_node);
536 /* If the original expression had side-effects, we must
537 preserve it. */
538 if (TREE_SIDE_EFFECTS (expr))
539 return build2 (COMPOUND_EXPR, type, expr, t);
540 else
541 return t;
544 break;
546 case MAX_EXPR:
547 case MIN_EXPR:
548 case MULT_EXPR:
550 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
551 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
553 /* Don't distribute unless the output precision is at least as big
554 as the actual inputs. Otherwise, the comparison of the
555 truncated values will be wrong. */
556 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
557 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
558 /* If signedness of arg0 and arg1 don't match,
559 we can't necessarily find a type to compare them in. */
560 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
561 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
562 goto trunc1;
563 break;
566 case PLUS_EXPR:
567 case MINUS_EXPR:
568 case BIT_AND_EXPR:
569 case BIT_IOR_EXPR:
570 case BIT_XOR_EXPR:
571 trunc1:
573 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
574 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
576 if (outprec >= BITS_PER_WORD
577 || TRULY_NOOP_TRUNCATION (outprec, inprec)
578 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
579 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
581 /* Do the arithmetic in type TYPEX,
582 then convert result to TYPE. */
583 tree typex = type;
585 /* Can't do arithmetic in enumeral types
586 so use an integer type that will hold the values. */
587 if (TREE_CODE (typex) == ENUMERAL_TYPE)
588 typex = lang_hooks.types.type_for_size
589 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
591 /* But now perhaps TYPEX is as wide as INPREC.
592 In that case, do nothing special here.
593 (Otherwise would recurse infinitely in convert. */
594 if (TYPE_PRECISION (typex) != inprec)
596 /* Don't do unsigned arithmetic where signed was wanted,
597 or vice versa.
598 Exception: if both of the original operands were
599 unsigned then we can safely do the work as unsigned.
600 Exception: shift operations take their type solely
601 from the first argument.
602 Exception: the LSHIFT_EXPR case above requires that
603 we perform this operation unsigned lest we produce
604 signed-overflow undefinedness.
605 And we may need to do it as unsigned
606 if we truncate to the original size. */
607 if (TYPE_UNSIGNED (TREE_TYPE (expr))
608 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
609 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
610 || ex_form == LSHIFT_EXPR
611 || ex_form == RSHIFT_EXPR
612 || ex_form == LROTATE_EXPR
613 || ex_form == RROTATE_EXPR))
614 || ex_form == LSHIFT_EXPR)
615 typex = lang_hooks.types.unsigned_type (typex);
616 else
617 typex = lang_hooks.types.signed_type (typex);
618 return convert (type,
619 fold (build2 (ex_form, typex,
620 convert (typex, arg0),
621 convert (typex, arg1))));
625 break;
627 case NEGATE_EXPR:
628 case BIT_NOT_EXPR:
629 /* This is not correct for ABS_EXPR,
630 since we must test the sign before truncation. */
632 tree typex = type;
634 /* Can't do arithmetic in enumeral types
635 so use an integer type that will hold the values. */
636 if (TREE_CODE (typex) == ENUMERAL_TYPE)
637 typex = lang_hooks.types.type_for_size
638 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
640 /* But now perhaps TYPEX is as wide as INPREC.
641 In that case, do nothing special here.
642 (Otherwise would recurse infinitely in convert. */
643 if (TYPE_PRECISION (typex) != inprec)
645 /* Don't do unsigned arithmetic where signed was wanted,
646 or vice versa. */
647 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
648 typex = lang_hooks.types.unsigned_type (typex);
649 else
650 typex = lang_hooks.types.signed_type (typex);
651 return convert (type,
652 fold (build1 (ex_form, typex,
653 convert (typex,
654 TREE_OPERAND (expr, 0)))));
658 case NOP_EXPR:
659 /* Don't introduce a
660 "can't convert between vector values of different size" error. */
661 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
662 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
663 != GET_MODE_SIZE (TYPE_MODE (type))))
664 break;
665 /* If truncating after truncating, might as well do all at once.
666 If truncating after extending, we may get rid of wasted work. */
667 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
669 case COND_EXPR:
670 /* It is sometimes worthwhile to push the narrowing down through
671 the conditional and never loses. */
672 return fold (build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
673 convert (type, TREE_OPERAND (expr, 1)),
674 convert (type, TREE_OPERAND (expr, 2))));
676 default:
677 break;
680 return build1 (CONVERT_EXPR, type, expr);
682 case REAL_TYPE:
683 return build1 (FIX_TRUNC_EXPR, type, expr);
685 case COMPLEX_TYPE:
686 return convert (type,
687 fold (build1 (REALPART_EXPR,
688 TREE_TYPE (TREE_TYPE (expr)), expr)));
690 case VECTOR_TYPE:
691 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
693 error ("can't convert between vector values of different size");
694 return error_mark_node;
696 return build1 (NOP_EXPR, type, expr);
698 default:
699 error ("aggregate value used where an integer was expected");
700 return convert (type, integer_zero_node);
704 /* Convert EXPR to the complex type TYPE in the usual ways. */
706 tree
707 convert_to_complex (tree type, tree expr)
709 tree subtype = TREE_TYPE (type);
711 switch (TREE_CODE (TREE_TYPE (expr)))
713 case REAL_TYPE:
714 case INTEGER_TYPE:
715 case ENUMERAL_TYPE:
716 case BOOLEAN_TYPE:
717 case CHAR_TYPE:
718 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
719 convert (subtype, integer_zero_node));
721 case COMPLEX_TYPE:
723 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
725 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
726 return expr;
727 else if (TREE_CODE (expr) == COMPLEX_EXPR)
728 return fold (build2 (COMPLEX_EXPR, type,
729 convert (subtype, TREE_OPERAND (expr, 0)),
730 convert (subtype, TREE_OPERAND (expr, 1))));
731 else
733 expr = save_expr (expr);
734 return
735 fold (build2 (COMPLEX_EXPR, type,
736 convert (subtype,
737 fold (build1 (REALPART_EXPR,
738 TREE_TYPE (TREE_TYPE (expr)),
739 expr))),
740 convert (subtype,
741 fold (build1 (IMAGPART_EXPR,
742 TREE_TYPE (TREE_TYPE (expr)),
743 expr)))));
747 case POINTER_TYPE:
748 case REFERENCE_TYPE:
749 error ("pointer value used where a complex was expected");
750 return convert_to_complex (type, integer_zero_node);
752 default:
753 error ("aggregate value used where a complex was expected");
754 return convert_to_complex (type, integer_zero_node);
758 /* Convert EXPR to the vector type TYPE in the usual ways. */
760 tree
761 convert_to_vector (tree type, tree expr)
763 switch (TREE_CODE (TREE_TYPE (expr)))
765 case INTEGER_TYPE:
766 case VECTOR_TYPE:
767 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
769 error ("can't convert between vector values of different size");
770 return error_mark_node;
772 return build1 (NOP_EXPR, type, expr);
774 default:
775 error ("can't convert value to a vector");
776 return error_mark_node;