2005-04-29 Jim Tison <jtison@us.ibm.com>
[official-gcc.git] / gcc / basic-block.h
blobbaca9d7e9e88f003d121e584d47f6326ebcdf358
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #ifndef GCC_BASIC_BLOCK_H
23 #define GCC_BASIC_BLOCK_H
25 #include "bitmap.h"
26 #include "sbitmap.h"
27 #include "varray.h"
28 #include "partition.h"
29 #include "hard-reg-set.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "errors.h"
33 #include "function.h"
35 /* Head of register set linked list. */
36 typedef bitmap_head regset_head;
38 /* A pointer to a regset_head. */
39 typedef bitmap regset;
41 /* Allocate a register set with oballoc. */
42 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
44 /* Do any cleanup needed on a regset when it is no longer used. */
45 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
47 /* Initialize a new regset. */
48 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
50 /* Clear a register set by freeing up the linked list. */
51 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
53 /* Copy a register set to another register set. */
54 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
56 /* Compare two register sets. */
57 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
59 /* `and' a register set with a second register set. */
60 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
62 /* `and' the complement of a register set with a register set. */
63 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
65 /* Inclusive or a register set with a second register set. */
66 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
68 /* Exclusive or a register set with a second register set. */
69 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
71 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
72 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
73 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
75 /* Clear a single register in a register set. */
76 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
78 /* Set a single register in a register set. */
79 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
81 /* Return true if a register is set in a register set. */
82 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
84 /* Copy the hard registers in a register set to the hard register set. */
85 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
86 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
87 do { \
88 CLEAR_HARD_REG_SET (TO); \
89 reg_set_to_hard_reg_set (&TO, FROM); \
90 } while (0)
92 typedef bitmap_iterator reg_set_iterator;
94 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
95 register number and executing CODE for all registers that are set. */
96 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
97 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
99 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
100 REGNUM to the register number and executing CODE for all registers that are
101 set in the first regset and not set in the second. */
102 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
103 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
105 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
106 REGNUM to the register number and executing CODE for all registers that are
107 set in both regsets. */
108 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
109 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
111 /* Type we use to hold basic block counters. Should be at least
112 64bit. Although a counter cannot be negative, we use a signed
113 type, because erroneous negative counts can be generated when the
114 flow graph is manipulated by various optimizations. A signed type
115 makes those easy to detect. */
116 typedef HOST_WIDEST_INT gcov_type;
118 /* Control flow edge information. */
119 struct edge_def GTY(())
121 /* The two blocks at the ends of the edge. */
122 struct basic_block_def *src;
123 struct basic_block_def *dest;
125 /* Instructions queued on the edge. */
126 union edge_def_insns {
127 rtx GTY ((tag ("0"))) r;
128 tree GTY ((tag ("1"))) t;
129 } GTY ((desc ("ir_type ()"))) insns;
131 /* Auxiliary info specific to a pass. */
132 PTR GTY ((skip (""))) aux;
134 /* Location of any goto implicit in the edge, during tree-ssa. */
135 source_locus goto_locus;
137 int flags; /* see EDGE_* below */
138 int probability; /* biased by REG_BR_PROB_BASE */
139 gcov_type count; /* Expected number of executions calculated
140 in profile.c */
142 /* The index number corresponding to this edge in the edge vector
143 dest->preds. */
144 unsigned int dest_idx;
147 typedef struct edge_def *edge;
148 DEF_VEC_P(edge);
149 DEF_VEC_ALLOC_P(edge,gc);
151 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
152 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
153 label, or eh */
154 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
155 like an exception, or sibcall */
156 #define EDGE_EH 8 /* Exception throw */
157 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
158 #define EDGE_DFS_BACK 32 /* A backwards edge */
159 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
160 flow. */
161 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
162 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
163 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
164 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
165 predicate is nonzero. */
166 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
167 predicate is zero. */
168 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
169 valid during SSA-CCP. */
170 #define EDGE_CROSSING 8192 /* Edge crosses between hot
171 and cold sections, when we
172 do partitioning. */
173 #define EDGE_ALL_FLAGS 16383
175 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
177 /* Counter summary from the last set of coverage counts read by
178 profile.c. */
179 extern const struct gcov_ctr_summary *profile_info;
181 /* Declared in cfgloop.h. */
182 struct loop;
183 struct loops;
185 /* Declared in tree-flow.h. */
186 struct bb_ann_d;
188 /* A basic block is a sequence of instructions with only entry and
189 only one exit. If any one of the instructions are executed, they
190 will all be executed, and in sequence from first to last.
192 There may be COND_EXEC instructions in the basic block. The
193 COND_EXEC *instructions* will be executed -- but if the condition
194 is false the conditionally executed *expressions* will of course
195 not be executed. We don't consider the conditionally executed
196 expression (which might have side-effects) to be in a separate
197 basic block because the program counter will always be at the same
198 location after the COND_EXEC instruction, regardless of whether the
199 condition is true or not.
201 Basic blocks need not start with a label nor end with a jump insn.
202 For example, a previous basic block may just "conditionally fall"
203 into the succeeding basic block, and the last basic block need not
204 end with a jump insn. Block 0 is a descendant of the entry block.
206 A basic block beginning with two labels cannot have notes between
207 the labels.
209 Data for jump tables are stored in jump_insns that occur in no
210 basic block even though these insns can follow or precede insns in
211 basic blocks. */
213 /* Basic block information indexed by block number. */
214 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
216 /* The first and last insns of the block. */
217 rtx head_;
218 rtx end_;
220 /* Pointers to the first and last trees of the block. */
221 tree stmt_list;
223 /* The edges into and out of the block. */
224 VEC(edge,gc) *preds;
225 VEC(edge,gc) *succs;
227 /* The registers that are live on entry to this block. */
228 bitmap GTY ((skip (""))) global_live_at_start;
230 /* The registers that are live on exit from this block. */
231 bitmap GTY ((skip (""))) global_live_at_end;
233 /* Auxiliary info specific to a pass. */
234 PTR GTY ((skip (""))) aux;
236 /* Innermost loop containing the block. */
237 struct loop * GTY ((skip (""))) loop_father;
239 /* The dominance and postdominance information node. */
240 struct et_node * GTY ((skip (""))) dom[2];
242 /* Previous and next blocks in the chain. */
243 struct basic_block_def *prev_bb;
244 struct basic_block_def *next_bb;
246 /* The data used by basic block copying and reordering functions. */
247 struct reorder_block_def * rbi;
249 /* Annotations used at the tree level. */
250 struct bb_ann_d *tree_annotations;
252 /* Expected number of executions: calculated in profile.c. */
253 gcov_type count;
255 /* The index of this block. */
256 int index;
258 /* The loop depth of this block. */
259 int loop_depth;
261 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
262 int frequency;
264 /* Various flags. See BB_* below. */
265 int flags;
267 /* Which section block belongs in, when partitioning basic blocks. */
268 int partition;
271 typedef struct basic_block_def *basic_block;
273 /* Structure to hold information about the blocks during reordering and
274 copying. Needs to be put on a diet. */
276 struct reorder_block_def GTY(())
278 rtx header;
279 rtx footer;
281 basic_block next;
283 /* These pointers may be unreliable as the first is only used for
284 debugging (and should probably be removed, and the second is only
285 used by copying. The basic blocks pointed to may be removed and
286 that leaves these pointers pointing to garbage. */
287 basic_block GTY ((skip (""))) original;
288 basic_block GTY ((skip (""))) copy;
290 int duplicated;
291 int copy_number;
293 /* This field is used by the bb-reorder and tracer passes. */
294 int visited;
297 typedef struct reorder_block_def *reorder_block_def;
299 #define BB_FREQ_MAX 10000
301 /* Masks for basic_block.flags.
303 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
304 the compilation, so they are never cleared.
306 All other flags may be cleared by clear_bb_flags(). It is generally
307 a bad idea to rely on any flags being up-to-date. */
309 enum
312 /* Set if insns in BB have are modified. Used for updating liveness info. */
313 BB_DIRTY = 1,
315 /* Only set on blocks that have just been created by create_bb. */
316 BB_NEW = 2,
318 /* Set by find_unreachable_blocks. Do not rely on this being set in any
319 pass. */
320 BB_REACHABLE = 4,
322 /* Set for blocks in an irreducible loop by loop analysis. */
323 BB_IRREDUCIBLE_LOOP = 8,
325 /* Set on blocks that may actually not be single-entry single-exit block. */
326 BB_SUPERBLOCK = 16,
328 /* Set on basic blocks that the scheduler should not touch. This is used
329 by SMS to prevent other schedulers from messing with the loop schedule. */
330 BB_DISABLE_SCHEDULE = 32,
332 /* Set on blocks that should be put in a hot section. */
333 BB_HOT_PARTITION = 64,
335 /* Set on blocks that should be put in a cold section. */
336 BB_COLD_PARTITION = 128
339 /* Dummy flag for convenience in the hot/cold partitioning code. */
340 #define BB_UNPARTITIONED 0
342 /* Partitions, to be used when partitioning hot and cold basic blocks into
343 separate sections. */
344 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
345 #define BB_SET_PARTITION(bb, part) do { \
346 basic_block bb_ = (bb); \
347 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
348 | (part)); \
349 } while (0)
351 #define BB_COPY_PARTITION(dstbb, srcbb) \
352 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
354 /* A structure to group all the per-function control flow graph data.
355 The x_* prefixing is necessary because otherwise references to the
356 fields of this struct are interpreted as the defines for backward
357 source compatibility following the definition of this struct. */
358 struct control_flow_graph GTY(())
360 /* Block pointers for the exit and entry of a function.
361 These are always the head and tail of the basic block list. */
362 basic_block x_entry_block_ptr;
363 basic_block x_exit_block_ptr;
365 /* Index by basic block number, get basic block struct info. */
366 varray_type x_basic_block_info;
368 /* Number of basic blocks in this flow graph. */
369 int x_n_basic_blocks;
371 /* Number of edges in this flow graph. */
372 int x_n_edges;
374 /* The first free basic block number. */
375 int x_last_basic_block;
377 /* Mapping of labels to their associated blocks. At present
378 only used for the tree CFG. */
379 varray_type x_label_to_block_map;
381 enum profile_status {
382 PROFILE_ABSENT,
383 PROFILE_GUESSED,
384 PROFILE_READ
385 } x_profile_status;
388 /* Defines for accessing the fields of the CFG structure for function FN. */
389 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
390 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
391 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
392 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
393 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
394 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
395 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
397 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
398 (VARRAY_BB (basic_block_info_for_function(FN), (N)))
400 /* Defines for textual backward source compatibility. */
401 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
402 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
403 #define basic_block_info (cfun->cfg->x_basic_block_info)
404 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
405 #define n_edges (cfun->cfg->x_n_edges)
406 #define last_basic_block (cfun->cfg->x_last_basic_block)
407 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
408 #define profile_status (cfun->cfg->x_profile_status)
410 #define BASIC_BLOCK(N) (VARRAY_BB (basic_block_info, (N)))
412 /* TRUE if we should re-run loop discovery after threading jumps, FALSE
413 otherwise. */
414 extern bool rediscover_loops_after_threading;
416 /* For iterating over basic blocks. */
417 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
418 for (BB = FROM; BB != TO; BB = BB->DIR)
420 #define FOR_EACH_BB_FN(BB, FN) \
421 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
423 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
425 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
426 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
428 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
430 /* For iterating over insns in basic block. */
431 #define FOR_BB_INSNS(BB, INSN) \
432 for ((INSN) = BB_HEAD (BB); \
433 (INSN) != NEXT_INSN (BB_END (BB)); \
434 (INSN) = NEXT_INSN (INSN))
436 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
437 for ((INSN) = BB_END (BB); \
438 (INSN) != PREV_INSN (BB_HEAD (BB)); \
439 (INSN) = PREV_INSN (INSN))
441 /* Cycles through _all_ basic blocks, even the fake ones (entry and
442 exit block). */
444 #define FOR_ALL_BB(BB) \
445 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
447 /* Special labels found during CFG build. */
449 extern GTY(()) rtx label_value_list;
451 extern bitmap_obstack reg_obstack;
453 /* Indexed by n, gives number of basic block that (REG n) is used in.
454 If the value is REG_BLOCK_GLOBAL (-2),
455 it means (REG n) is used in more than one basic block.
456 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
457 This information remains valid for the rest of the compilation
458 of the current function; it is used to control register allocation. */
460 #define REG_BLOCK_UNKNOWN -1
461 #define REG_BLOCK_GLOBAL -2
463 #define REG_BASIC_BLOCK(N) (VARRAY_REG (reg_n_info, N)->basic_block)
465 /* Stuff for recording basic block info. */
467 #define BB_HEAD(B) (B)->head_
468 #define BB_END(B) (B)->end_
470 /* Special block numbers [markers] for entry and exit. */
471 #define ENTRY_BLOCK (-1)
472 #define EXIT_BLOCK (-2)
474 /* Special block number not valid for any block. */
475 #define INVALID_BLOCK (-3)
477 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
478 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
480 extern void compute_bb_for_insn (void);
481 extern void free_bb_for_insn (void);
482 extern void update_bb_for_insn (basic_block);
484 extern void free_basic_block_vars (void);
486 extern void insert_insn_on_edge (rtx, edge);
487 bool safe_insert_insn_on_edge (rtx, edge);
489 extern void commit_edge_insertions (void);
490 extern void commit_edge_insertions_watch_calls (void);
492 extern void remove_fake_edges (void);
493 extern void remove_fake_exit_edges (void);
494 extern void add_noreturn_fake_exit_edges (void);
495 extern void connect_infinite_loops_to_exit (void);
496 extern edge unchecked_make_edge (basic_block, basic_block, int);
497 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
498 extern edge make_edge (basic_block, basic_block, int);
499 extern edge make_single_succ_edge (basic_block, basic_block, int);
500 extern void remove_edge (edge);
501 extern void redirect_edge_succ (edge, basic_block);
502 extern edge redirect_edge_succ_nodup (edge, basic_block);
503 extern void redirect_edge_pred (edge, basic_block);
504 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
505 extern void clear_bb_flags (void);
506 extern void flow_reverse_top_sort_order_compute (int *);
507 extern int flow_depth_first_order_compute (int *, int *);
508 extern int dfs_enumerate_from (basic_block, int,
509 bool (*)(basic_block, void *),
510 basic_block *, int, void *);
511 extern void compute_dominance_frontiers (bitmap *);
512 extern void dump_edge_info (FILE *, edge, int);
513 extern void brief_dump_cfg (FILE *);
514 extern void clear_edges (void);
515 extern rtx first_insn_after_basic_block_note (basic_block);
516 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
517 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
518 gcov_type);
520 /* Structure to group all of the information to process IF-THEN and
521 IF-THEN-ELSE blocks for the conditional execution support. This
522 needs to be in a public file in case the IFCVT macros call
523 functions passing the ce_if_block data structure. */
525 typedef struct ce_if_block
527 basic_block test_bb; /* First test block. */
528 basic_block then_bb; /* THEN block. */
529 basic_block else_bb; /* ELSE block or NULL. */
530 basic_block join_bb; /* Join THEN/ELSE blocks. */
531 basic_block last_test_bb; /* Last bb to hold && or || tests. */
532 int num_multiple_test_blocks; /* # of && and || basic blocks. */
533 int num_and_and_blocks; /* # of && blocks. */
534 int num_or_or_blocks; /* # of || blocks. */
535 int num_multiple_test_insns; /* # of insns in && and || blocks. */
536 int and_and_p; /* Complex test is &&. */
537 int num_then_insns; /* # of insns in THEN block. */
538 int num_else_insns; /* # of insns in ELSE block. */
539 int pass; /* Pass number. */
541 #ifdef IFCVT_EXTRA_FIELDS
542 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
543 #endif
545 } ce_if_block_t;
547 /* This structure maintains an edge list vector. */
548 struct edge_list
550 int num_blocks;
551 int num_edges;
552 edge *index_to_edge;
555 /* This is the value which indicates no edge is present. */
556 #define EDGE_INDEX_NO_EDGE -1
558 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
559 if there is no edge between the 2 basic blocks. */
560 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
562 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
563 block which is either the pred or succ end of the indexed edge. */
564 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
565 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
567 /* INDEX_EDGE returns a pointer to the edge. */
568 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
570 /* Number of edges in the compressed edge list. */
571 #define NUM_EDGES(el) ((el)->num_edges)
573 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
574 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
575 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
577 /* BB is assumed to contain conditional jump. Return the branch edge. */
578 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
579 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
581 /* Return expected execution frequency of the edge E. */
582 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
583 * (e)->probability \
584 + REG_BR_PROB_BASE / 2) \
585 / REG_BR_PROB_BASE)
587 /* Return nonzero if edge is critical. */
588 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
589 && EDGE_COUNT ((e)->dest->preds) >= 2)
591 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
592 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
593 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
594 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
596 /* Returns true if BB has precisely one successor. */
598 static inline bool
599 single_succ_p (basic_block bb)
601 return EDGE_COUNT (bb->succs) == 1;
604 /* Returns true if BB has precisely one predecessor. */
606 static inline bool
607 single_pred_p (basic_block bb)
609 return EDGE_COUNT (bb->preds) == 1;
612 /* Returns the single successor edge of basic block BB. Aborts if
613 BB does not have exactly one successor. */
615 static inline edge
616 single_succ_edge (basic_block bb)
618 gcc_assert (single_succ_p (bb));
619 return EDGE_SUCC (bb, 0);
622 /* Returns the single predecessor edge of basic block BB. Aborts
623 if BB does not have exactly one predecessor. */
625 static inline edge
626 single_pred_edge (basic_block bb)
628 gcc_assert (single_pred_p (bb));
629 return EDGE_PRED (bb, 0);
632 /* Returns the single successor block of basic block BB. Aborts
633 if BB does not have exactly one successor. */
635 static inline basic_block
636 single_succ (basic_block bb)
638 return single_succ_edge (bb)->dest;
641 /* Returns the single predecessor block of basic block BB. Aborts
642 if BB does not have exactly one predecessor.*/
644 static inline basic_block
645 single_pred (basic_block bb)
647 return single_pred_edge (bb)->src;
650 /* Iterator object for edges. */
652 typedef struct {
653 unsigned index;
654 VEC(edge,gc) **container;
655 } edge_iterator;
657 static inline VEC(edge,gc) *
658 ei_container (edge_iterator i)
660 gcc_assert (i.container);
661 return *i.container;
664 #define ei_start(iter) ei_start_1 (&(iter))
665 #define ei_last(iter) ei_last_1 (&(iter))
667 /* Return an iterator pointing to the start of an edge vector. */
668 static inline edge_iterator
669 ei_start_1 (VEC(edge,gc) **ev)
671 edge_iterator i;
673 i.index = 0;
674 i.container = ev;
676 return i;
679 /* Return an iterator pointing to the last element of an edge
680 vector. */
681 static inline edge_iterator
682 ei_last_1 (VEC(edge,gc) **ev)
684 edge_iterator i;
686 i.index = EDGE_COUNT (*ev) - 1;
687 i.container = ev;
689 return i;
692 /* Is the iterator `i' at the end of the sequence? */
693 static inline bool
694 ei_end_p (edge_iterator i)
696 return (i.index == EDGE_COUNT (ei_container (i)));
699 /* Is the iterator `i' at one position before the end of the
700 sequence? */
701 static inline bool
702 ei_one_before_end_p (edge_iterator i)
704 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
707 /* Advance the iterator to the next element. */
708 static inline void
709 ei_next (edge_iterator *i)
711 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
712 i->index++;
715 /* Move the iterator to the previous element. */
716 static inline void
717 ei_prev (edge_iterator *i)
719 gcc_assert (i->index > 0);
720 i->index--;
723 /* Return the edge pointed to by the iterator `i'. */
724 static inline edge
725 ei_edge (edge_iterator i)
727 return EDGE_I (ei_container (i), i.index);
730 /* Return an edge pointed to by the iterator. Do it safely so that
731 NULL is returned when the iterator is pointing at the end of the
732 sequence. */
733 static inline edge
734 ei_safe_edge (edge_iterator i)
736 return !ei_end_p (i) ? ei_edge (i) : NULL;
739 /* Return 1 if we should continue to iterate. Return 0 otherwise.
740 *Edge P is set to the next edge if we are to continue to iterate
741 and NULL otherwise. */
743 static inline bool
744 ei_cond (edge_iterator ei, edge *p)
746 if (!ei_end_p (ei))
748 *p = ei_edge (ei);
749 return 1;
751 else
753 *p = NULL;
754 return 0;
758 /* This macro serves as a convenient way to iterate each edge in a
759 vector of predecessor or successor edges. It must not be used when
760 an element might be removed during the traversal, otherwise
761 elements will be missed. Instead, use a for-loop like that shown
762 in the following pseudo-code:
764 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
766 IF (e != taken_edge)
767 remove_edge (e);
768 ELSE
769 ei_next (&ei);
773 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
774 for ((ITER) = ei_start ((EDGE_VEC)); \
775 ei_cond ((ITER), &(EDGE)); \
776 ei_next (&(ITER)))
778 struct edge_list * create_edge_list (void);
779 void free_edge_list (struct edge_list *);
780 void print_edge_list (FILE *, struct edge_list *);
781 void verify_edge_list (FILE *, struct edge_list *);
782 int find_edge_index (struct edge_list *, basic_block, basic_block);
783 edge find_edge (basic_block, basic_block);
786 enum update_life_extent
788 UPDATE_LIFE_LOCAL = 0,
789 UPDATE_LIFE_GLOBAL = 1,
790 UPDATE_LIFE_GLOBAL_RM_NOTES = 2
793 /* Flags for life_analysis and update_life_info. */
795 #define PROP_DEATH_NOTES 1 /* Create DEAD and UNUSED notes. */
796 #define PROP_LOG_LINKS 2 /* Create LOG_LINKS. */
797 #define PROP_REG_INFO 4 /* Update regs_ever_live et al. */
798 #define PROP_KILL_DEAD_CODE 8 /* Remove dead code. */
799 #define PROP_SCAN_DEAD_CODE 16 /* Scan for dead code. */
800 #define PROP_ALLOW_CFG_CHANGES 32 /* Allow the CFG to be changed
801 by dead code removal. */
802 #define PROP_AUTOINC 64 /* Create autoinc mem references. */
803 #define PROP_SCAN_DEAD_STORES 128 /* Scan for dead code. */
804 #define PROP_ASM_SCAN 256 /* Internal flag used within flow.c
805 to flag analysis of asms. */
806 #define PROP_FINAL (PROP_DEATH_NOTES | PROP_LOG_LINKS \
807 | PROP_REG_INFO | PROP_KILL_DEAD_CODE \
808 | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
809 | PROP_ALLOW_CFG_CHANGES \
810 | PROP_SCAN_DEAD_STORES)
811 #define PROP_POSTRELOAD (PROP_DEATH_NOTES \
812 | PROP_KILL_DEAD_CODE \
813 | PROP_SCAN_DEAD_CODE \
814 | PROP_SCAN_DEAD_STORES)
816 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
817 except for edge forwarding */
818 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
819 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
820 to care REG_DEAD notes. */
821 #define CLEANUP_PRE_LOOP 8 /* Take care to preserve syntactic loop
822 notes. */
823 #define CLEANUP_UPDATE_LIFE 16 /* Keep life information up to date. */
824 #define CLEANUP_THREADING 32 /* Do jump threading. */
825 #define CLEANUP_NO_INSN_DEL 64 /* Do not try to delete trivially dead
826 insns. */
827 #define CLEANUP_CFGLAYOUT 128 /* Do cleanup in cfglayout mode. */
828 #define CLEANUP_LOG_LINKS 256 /* Update log links. */
830 extern void life_analysis (FILE *, int);
831 extern int update_life_info (sbitmap, enum update_life_extent, int);
832 extern int update_life_info_in_dirty_blocks (enum update_life_extent, int);
833 extern int count_or_remove_death_notes (sbitmap, int);
834 extern int propagate_block (basic_block, regset, regset, regset, int);
836 struct propagate_block_info;
837 extern rtx propagate_one_insn (struct propagate_block_info *, rtx);
838 extern struct propagate_block_info *init_propagate_block_info
839 (basic_block, regset, regset, regset, int);
840 extern void free_propagate_block_info (struct propagate_block_info *);
842 /* In lcm.c */
843 extern struct edge_list *pre_edge_lcm (FILE *, int, sbitmap *, sbitmap *,
844 sbitmap *, sbitmap *, sbitmap **,
845 sbitmap **);
846 extern struct edge_list *pre_edge_rev_lcm (FILE *, int, sbitmap *,
847 sbitmap *, sbitmap *,
848 sbitmap *, sbitmap **,
849 sbitmap **);
850 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
851 extern int optimize_mode_switching (FILE *);
853 /* In predict.c */
854 extern void estimate_probability (struct loops *);
855 extern void expected_value_to_br_prob (void);
856 extern bool maybe_hot_bb_p (basic_block);
857 extern bool probably_cold_bb_p (basic_block);
858 extern bool probably_never_executed_bb_p (basic_block);
859 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
860 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
861 extern void tree_predict_edge (edge, enum br_predictor, int);
862 extern void rtl_predict_edge (edge, enum br_predictor, int);
863 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
864 extern void guess_outgoing_edge_probabilities (basic_block);
866 /* In flow.c */
867 extern void init_flow (void);
868 extern void debug_bb (basic_block);
869 extern basic_block debug_bb_n (int);
870 extern void dump_regset (regset, FILE *);
871 extern void debug_regset (regset);
872 extern void allocate_reg_life_data (void);
873 extern void expunge_block (basic_block);
874 extern void link_block (basic_block, basic_block);
875 extern void unlink_block (basic_block);
876 extern void compact_blocks (void);
877 extern basic_block alloc_block (void);
878 extern void find_unreachable_blocks (void);
879 extern int delete_noop_moves (void);
880 extern basic_block force_nonfallthru (edge);
881 extern rtx block_label (basic_block);
882 extern bool forwarder_block_p (basic_block);
883 extern bool purge_all_dead_edges (void);
884 extern bool purge_dead_edges (basic_block);
885 extern void find_many_sub_basic_blocks (sbitmap);
886 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
887 extern bool can_fallthru (basic_block, basic_block);
888 extern bool could_fall_through (basic_block, basic_block);
889 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
890 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
891 extern void alloc_aux_for_block (basic_block, int);
892 extern void alloc_aux_for_blocks (int);
893 extern void clear_aux_for_blocks (void);
894 extern void free_aux_for_blocks (void);
895 extern void alloc_aux_for_edge (edge, int);
896 extern void alloc_aux_for_edges (int);
897 extern void clear_aux_for_edges (void);
898 extern void free_aux_for_edges (void);
899 extern void find_basic_blocks (rtx);
900 extern bool cleanup_cfg (int);
901 extern bool delete_unreachable_blocks (void);
902 extern bool merge_seq_blocks (void);
904 typedef struct conflict_graph_def *conflict_graph;
906 /* Callback function when enumerating conflicts. The arguments are
907 the smaller and larger regno in the conflict. Returns zero if
908 enumeration is to continue, nonzero to halt enumeration. */
909 typedef int (*conflict_graph_enum_fn) (int, int, void *);
912 /* Prototypes of operations on conflict graphs. */
914 extern conflict_graph conflict_graph_new
915 (int);
916 extern void conflict_graph_delete (conflict_graph);
917 extern int conflict_graph_add (conflict_graph, int, int);
918 extern int conflict_graph_conflict_p (conflict_graph, int, int);
919 extern void conflict_graph_enum (conflict_graph, int, conflict_graph_enum_fn,
920 void *);
921 extern void conflict_graph_merge_regs (conflict_graph, int, int);
922 extern void conflict_graph_print (conflict_graph, FILE*);
923 extern bool mark_dfs_back_edges (void);
924 extern void set_edge_can_fallthru_flag (void);
925 extern void update_br_prob_note (basic_block);
926 extern void fixup_abnormal_edges (void);
927 extern bool inside_basic_block_p (rtx);
928 extern bool control_flow_insn_p (rtx);
930 /* In bb-reorder.c */
931 extern void reorder_basic_blocks (unsigned int);
932 extern void duplicate_computed_gotos (void);
933 extern void partition_hot_cold_basic_blocks (void);
935 /* In cfg.c */
936 extern void initialize_bb_rbi (basic_block bb);
938 /* In dominance.c */
940 enum cdi_direction
942 CDI_DOMINATORS,
943 CDI_POST_DOMINATORS
946 enum dom_state
948 DOM_NONE, /* Not computed at all. */
949 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
950 DOM_OK /* Everything is ok. */
953 extern enum dom_state dom_computed[2];
955 extern bool dom_info_available_p (enum cdi_direction);
956 extern void calculate_dominance_info (enum cdi_direction);
957 extern void free_dominance_info (enum cdi_direction);
958 extern basic_block nearest_common_dominator (enum cdi_direction,
959 basic_block, basic_block);
960 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
961 bitmap);
962 extern void set_immediate_dominator (enum cdi_direction, basic_block,
963 basic_block);
964 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
965 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
966 extern int get_dominated_by (enum cdi_direction, basic_block, basic_block **);
967 extern unsigned get_dominated_by_region (enum cdi_direction, basic_block *,
968 unsigned, basic_block *);
969 extern void add_to_dominance_info (enum cdi_direction, basic_block);
970 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
971 basic_block recount_dominator (enum cdi_direction, basic_block);
972 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
973 basic_block);
974 extern void iterate_fix_dominators (enum cdi_direction, basic_block *, int);
975 extern void verify_dominators (enum cdi_direction);
976 extern basic_block first_dom_son (enum cdi_direction, basic_block);
977 extern basic_block next_dom_son (enum cdi_direction, basic_block);
978 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
979 extern void break_superblocks (void);
980 extern void check_bb_profile (basic_block, FILE *);
981 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
983 #include "cfghooks.h"
985 #endif /* GCC_BASIC_BLOCK_H */