2002-11-21 Phil Edwards <pme@gcc.gnu.org>
[official-gcc.git] / gcc / local-alloc.c
blobc2d6c0c610b49799e6ce6c6939eccdd7f001fe80
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "hard-reg-set.h"
65 #include "rtl.h"
66 #include "tm_p.h"
67 #include "flags.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 #include "except.h"
77 #include "integrate.h"
79 /* Next quantity number available for allocation. */
81 static int next_qty;
83 /* Information we maintain about each quantity. */
84 struct qty
86 /* The number of refs to quantity Q. */
88 int n_refs;
90 /* The frequency of uses of quantity Q. */
92 int freq;
94 /* Insn number (counting from head of basic block)
95 where quantity Q was born. -1 if birth has not been recorded. */
97 int birth;
99 /* Insn number (counting from head of basic block)
100 where given quantity died. Due to the way tying is done,
101 and the fact that we consider in this pass only regs that die but once,
102 a quantity can die only once. Each quantity's life span
103 is a set of consecutive insns. -1 if death has not been recorded. */
105 int death;
107 /* Number of words needed to hold the data in given quantity.
108 This depends on its machine mode. It is used for these purposes:
109 1. It is used in computing the relative importances of qtys,
110 which determines the order in which we look for regs for them.
111 2. It is used in rules that prevent tying several registers of
112 different sizes in a way that is geometrically impossible
113 (see combine_regs). */
115 int size;
117 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
119 int n_calls_crossed;
121 /* The register number of one pseudo register whose reg_qty value is Q.
122 This register should be the head of the chain
123 maintained in reg_next_in_qty. */
125 int first_reg;
127 /* Reg class contained in (smaller than) the preferred classes of all
128 the pseudo regs that are tied in given quantity.
129 This is the preferred class for allocating that quantity. */
131 enum reg_class min_class;
133 /* Register class within which we allocate given qty if we can't get
134 its preferred class. */
136 enum reg_class alternate_class;
138 /* This holds the mode of the registers that are tied to given qty,
139 or VOIDmode if registers with differing modes are tied together. */
141 enum machine_mode mode;
143 /* the hard reg number chosen for given quantity,
144 or -1 if none was found. */
146 short phys_reg;
149 static struct qty *qty;
151 /* These fields are kept separately to speedup their clearing. */
153 /* We maintain two hard register sets that indicate suggested hard registers
154 for each quantity. The first, phys_copy_sugg, contains hard registers
155 that are tied to the quantity by a simple copy. The second contains all
156 hard registers that are tied to the quantity via an arithmetic operation.
158 The former register set is given priority for allocation. This tends to
159 eliminate copy insns. */
161 /* Element Q is a set of hard registers that are suggested for quantity Q by
162 copy insns. */
164 static HARD_REG_SET *qty_phys_copy_sugg;
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 arithmetic insns. */
169 static HARD_REG_SET *qty_phys_sugg;
171 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
173 static short *qty_phys_num_copy_sugg;
175 /* Element Q is the number of suggested registers in qty_phys_sugg. */
177 static short *qty_phys_num_sugg;
179 /* If (REG N) has been assigned a quantity number, is a register number
180 of another register assigned the same quantity number, or -1 for the
181 end of the chain. qty->first_reg point to the head of this chain. */
183 static int *reg_next_in_qty;
185 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
186 if it is >= 0,
187 of -1 if this register cannot be allocated by local-alloc,
188 or -2 if not known yet.
190 Note that if we see a use or death of pseudo register N with
191 reg_qty[N] == -2, register N must be local to the current block. If
192 it were used in more than one block, we would have reg_qty[N] == -1.
193 This relies on the fact that if reg_basic_block[N] is >= 0, register N
194 will not appear in any other block. We save a considerable number of
195 tests by exploiting this.
197 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
198 be referenced. */
200 static int *reg_qty;
202 /* The offset (in words) of register N within its quantity.
203 This can be nonzero if register N is SImode, and has been tied
204 to a subreg of a DImode register. */
206 static char *reg_offset;
208 /* Vector of substitutions of register numbers,
209 used to map pseudo regs into hardware regs.
210 This is set up as a result of register allocation.
211 Element N is the hard reg assigned to pseudo reg N,
212 or is -1 if no hard reg was assigned.
213 If N is a hard reg number, element N is N. */
215 short *reg_renumber;
217 /* Set of hard registers live at the current point in the scan
218 of the instructions in a basic block. */
220 static HARD_REG_SET regs_live;
222 /* Each set of hard registers indicates registers live at a particular
223 point in the basic block. For N even, regs_live_at[N] says which
224 hard registers are needed *after* insn N/2 (i.e., they may not
225 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
227 If an object is to conflict with the inputs of insn J but not the
228 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
229 if it is to conflict with the outputs of insn J but not the inputs of
230 insn J + 1, it is said to die at index J*2 + 1. */
232 static HARD_REG_SET *regs_live_at;
234 /* Communicate local vars `insn_number' and `insn'
235 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
236 static int this_insn_number;
237 static rtx this_insn;
239 struct equivalence
241 /* Set when an attempt should be made to replace a register
242 with the associated src_p entry. */
244 char replace;
246 /* Set when a REG_EQUIV note is found or created. Use to
247 keep track of what memory accesses might be created later,
248 e.g. by reload. */
250 rtx replacement;
252 rtx *src_p;
254 /* Loop depth is used to recognize equivalences which appear
255 to be present within the same loop (or in an inner loop). */
257 int loop_depth;
259 /* The list of each instruction which initializes this register. */
261 rtx init_insns;
264 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
265 structure for that register. */
267 static struct equivalence *reg_equiv;
269 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
270 static int recorded_label_ref;
272 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
273 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
274 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
275 static int equiv_init_varies_p PARAMS ((rtx));
276 static int equiv_init_movable_p PARAMS ((rtx, int));
277 static int contains_replace_regs PARAMS ((rtx));
278 static int memref_referenced_p PARAMS ((rtx, rtx));
279 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
280 static void update_equiv_regs PARAMS ((void));
281 static void no_equiv PARAMS ((rtx, rtx, void *));
282 static void block_alloc PARAMS ((int));
283 static int qty_sugg_compare PARAMS ((int, int));
284 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
285 static int qty_compare PARAMS ((int, int));
286 static int qty_compare_1 PARAMS ((const PTR, const PTR));
287 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
288 static int reg_meets_class_p PARAMS ((int, enum reg_class));
289 static void update_qty_class PARAMS ((int, int));
290 static void reg_is_set PARAMS ((rtx, rtx, void *));
291 static void reg_is_born PARAMS ((rtx, int));
292 static void wipe_dead_reg PARAMS ((rtx, int));
293 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
294 int, int, int, int, int));
295 static void mark_life PARAMS ((int, enum machine_mode, int));
296 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
297 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
298 static int requires_inout PARAMS ((const char *));
300 /* Allocate a new quantity (new within current basic block)
301 for register number REGNO which is born at index BIRTH
302 within the block. MODE and SIZE are info on reg REGNO. */
304 static void
305 alloc_qty (regno, mode, size, birth)
306 int regno;
307 enum machine_mode mode;
308 int size, birth;
310 int qtyno = next_qty++;
312 reg_qty[regno] = qtyno;
313 reg_offset[regno] = 0;
314 reg_next_in_qty[regno] = -1;
316 qty[qtyno].first_reg = regno;
317 qty[qtyno].size = size;
318 qty[qtyno].mode = mode;
319 qty[qtyno].birth = birth;
320 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
321 qty[qtyno].min_class = reg_preferred_class (regno);
322 qty[qtyno].alternate_class = reg_alternate_class (regno);
323 qty[qtyno].n_refs = REG_N_REFS (regno);
324 qty[qtyno].freq = REG_FREQ (regno);
327 /* Main entry point of this file. */
330 local_alloc ()
332 int i;
333 int max_qty;
334 basic_block b;
336 /* We need to keep track of whether or not we recorded a LABEL_REF so
337 that we know if the jump optimizer needs to be rerun. */
338 recorded_label_ref = 0;
340 /* Leaf functions and non-leaf functions have different needs.
341 If defined, let the machine say what kind of ordering we
342 should use. */
343 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
344 ORDER_REGS_FOR_LOCAL_ALLOC;
345 #endif
347 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
348 registers. */
349 if (optimize)
350 update_equiv_regs ();
352 /* This sets the maximum number of quantities we can have. Quantity
353 numbers start at zero and we can have one for each pseudo. */
354 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
356 /* Allocate vectors of temporary data.
357 See the declarations of these variables, above,
358 for what they mean. */
360 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
361 qty_phys_copy_sugg
362 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
363 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
364 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
365 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
367 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
368 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
369 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
371 /* Determine which pseudo-registers can be allocated by local-alloc.
372 In general, these are the registers used only in a single block and
373 which only die once.
375 We need not be concerned with which block actually uses the register
376 since we will never see it outside that block. */
378 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
380 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
381 reg_qty[i] = -2;
382 else
383 reg_qty[i] = -1;
386 /* Force loop below to initialize entire quantity array. */
387 next_qty = max_qty;
389 /* Allocate each block's local registers, block by block. */
391 FOR_EACH_BB (b)
393 /* NEXT_QTY indicates which elements of the `qty_...'
394 vectors might need to be initialized because they were used
395 for the previous block; it is set to the entire array before
396 block 0. Initialize those, with explicit loop if there are few,
397 else with bzero and bcopy. Do not initialize vectors that are
398 explicit set by `alloc_qty'. */
400 if (next_qty < 6)
402 for (i = 0; i < next_qty; i++)
404 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
405 qty_phys_num_copy_sugg[i] = 0;
406 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
407 qty_phys_num_sugg[i] = 0;
410 else
412 #define CLEAR(vector) \
413 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
415 CLEAR (qty_phys_copy_sugg);
416 CLEAR (qty_phys_num_copy_sugg);
417 CLEAR (qty_phys_sugg);
418 CLEAR (qty_phys_num_sugg);
421 next_qty = 0;
423 block_alloc (b->index);
426 free (qty);
427 free (qty_phys_copy_sugg);
428 free (qty_phys_num_copy_sugg);
429 free (qty_phys_sugg);
430 free (qty_phys_num_sugg);
432 free (reg_qty);
433 free (reg_offset);
434 free (reg_next_in_qty);
436 return recorded_label_ref;
439 /* Used for communication between the following two functions: contains
440 a MEM that we wish to ensure remains unchanged. */
441 static rtx equiv_mem;
443 /* Set nonzero if EQUIV_MEM is modified. */
444 static int equiv_mem_modified;
446 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
447 Called via note_stores. */
449 static void
450 validate_equiv_mem_from_store (dest, set, data)
451 rtx dest;
452 rtx set ATTRIBUTE_UNUSED;
453 void *data ATTRIBUTE_UNUSED;
455 if ((GET_CODE (dest) == REG
456 && reg_overlap_mentioned_p (dest, equiv_mem))
457 || (GET_CODE (dest) == MEM
458 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
459 equiv_mem_modified = 1;
462 /* Verify that no store between START and the death of REG invalidates
463 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
464 by storing into an overlapping memory location, or with a non-const
465 CALL_INSN.
467 Return 1 if MEMREF remains valid. */
469 static int
470 validate_equiv_mem (start, reg, memref)
471 rtx start;
472 rtx reg;
473 rtx memref;
475 rtx insn;
476 rtx note;
478 equiv_mem = memref;
479 equiv_mem_modified = 0;
481 /* If the memory reference has side effects or is volatile, it isn't a
482 valid equivalence. */
483 if (side_effects_p (memref))
484 return 0;
486 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
488 if (! INSN_P (insn))
489 continue;
491 if (find_reg_note (insn, REG_DEAD, reg))
492 return 1;
494 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
495 && ! CONST_OR_PURE_CALL_P (insn))
496 return 0;
498 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
500 /* If a register mentioned in MEMREF is modified via an
501 auto-increment, we lose the equivalence. Do the same if one
502 dies; although we could extend the life, it doesn't seem worth
503 the trouble. */
505 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
506 if ((REG_NOTE_KIND (note) == REG_INC
507 || REG_NOTE_KIND (note) == REG_DEAD)
508 && GET_CODE (XEXP (note, 0)) == REG
509 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
510 return 0;
513 return 0;
516 /* Returns zero if X is known to be invariant. */
518 static int
519 equiv_init_varies_p (x)
520 rtx x;
522 RTX_CODE code = GET_CODE (x);
523 int i;
524 const char *fmt;
526 switch (code)
528 case MEM:
529 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
531 case QUEUED:
532 return 1;
534 case CONST:
535 case CONST_INT:
536 case CONST_DOUBLE:
537 case CONST_VECTOR:
538 case SYMBOL_REF:
539 case LABEL_REF:
540 return 0;
542 case REG:
543 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
545 case ASM_OPERANDS:
546 if (MEM_VOLATILE_P (x))
547 return 1;
549 /* FALLTHROUGH */
551 default:
552 break;
555 fmt = GET_RTX_FORMAT (code);
556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
557 if (fmt[i] == 'e')
559 if (equiv_init_varies_p (XEXP (x, i)))
560 return 1;
562 else if (fmt[i] == 'E')
564 int j;
565 for (j = 0; j < XVECLEN (x, i); j++)
566 if (equiv_init_varies_p (XVECEXP (x, i, j)))
567 return 1;
570 return 0;
573 /* Returns nonzero if X (used to initialize register REGNO) is movable.
574 X is only movable if the registers it uses have equivalent initializations
575 which appear to be within the same loop (or in an inner loop) and movable
576 or if they are not candidates for local_alloc and don't vary. */
578 static int
579 equiv_init_movable_p (x, regno)
580 rtx x;
581 int regno;
583 int i, j;
584 const char *fmt;
585 enum rtx_code code = GET_CODE (x);
587 switch (code)
589 case SET:
590 return equiv_init_movable_p (SET_SRC (x), regno);
592 case CC0:
593 case CLOBBER:
594 return 0;
596 case PRE_INC:
597 case PRE_DEC:
598 case POST_INC:
599 case POST_DEC:
600 case PRE_MODIFY:
601 case POST_MODIFY:
602 return 0;
604 case REG:
605 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
606 && reg_equiv[REGNO (x)].replace)
607 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
609 case UNSPEC_VOLATILE:
610 return 0;
612 case ASM_OPERANDS:
613 if (MEM_VOLATILE_P (x))
614 return 0;
616 /* FALLTHROUGH */
618 default:
619 break;
622 fmt = GET_RTX_FORMAT (code);
623 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
624 switch (fmt[i])
626 case 'e':
627 if (! equiv_init_movable_p (XEXP (x, i), regno))
628 return 0;
629 break;
630 case 'E':
631 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
632 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
633 return 0;
634 break;
637 return 1;
640 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
642 static int
643 contains_replace_regs (x)
644 rtx x;
646 int i, j;
647 const char *fmt;
648 enum rtx_code code = GET_CODE (x);
650 switch (code)
652 case CONST_INT:
653 case CONST:
654 case LABEL_REF:
655 case SYMBOL_REF:
656 case CONST_DOUBLE:
657 case CONST_VECTOR:
658 case PC:
659 case CC0:
660 case HIGH:
661 return 0;
663 case REG:
664 return reg_equiv[REGNO (x)].replace;
666 default:
667 break;
670 fmt = GET_RTX_FORMAT (code);
671 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
672 switch (fmt[i])
674 case 'e':
675 if (contains_replace_regs (XEXP (x, i)))
676 return 1;
677 break;
678 case 'E':
679 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
680 if (contains_replace_regs (XVECEXP (x, i, j)))
681 return 1;
682 break;
685 return 0;
688 /* TRUE if X references a memory location that would be affected by a store
689 to MEMREF. */
691 static int
692 memref_referenced_p (memref, x)
693 rtx x;
694 rtx memref;
696 int i, j;
697 const char *fmt;
698 enum rtx_code code = GET_CODE (x);
700 switch (code)
702 case CONST_INT:
703 case CONST:
704 case LABEL_REF:
705 case SYMBOL_REF:
706 case CONST_DOUBLE:
707 case CONST_VECTOR:
708 case PC:
709 case CC0:
710 case HIGH:
711 case LO_SUM:
712 return 0;
714 case REG:
715 return (reg_equiv[REGNO (x)].replacement
716 && memref_referenced_p (memref,
717 reg_equiv[REGNO (x)].replacement));
719 case MEM:
720 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
721 return 1;
722 break;
724 case SET:
725 /* If we are setting a MEM, it doesn't count (its address does), but any
726 other SET_DEST that has a MEM in it is referencing the MEM. */
727 if (GET_CODE (SET_DEST (x)) == MEM)
729 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
730 return 1;
732 else if (memref_referenced_p (memref, SET_DEST (x)))
733 return 1;
735 return memref_referenced_p (memref, SET_SRC (x));
737 default:
738 break;
741 fmt = GET_RTX_FORMAT (code);
742 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
743 switch (fmt[i])
745 case 'e':
746 if (memref_referenced_p (memref, XEXP (x, i)))
747 return 1;
748 break;
749 case 'E':
750 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
751 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
752 return 1;
753 break;
756 return 0;
759 /* TRUE if some insn in the range (START, END] references a memory location
760 that would be affected by a store to MEMREF. */
762 static int
763 memref_used_between_p (memref, start, end)
764 rtx memref;
765 rtx start;
766 rtx end;
768 rtx insn;
770 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
771 insn = NEXT_INSN (insn))
772 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
773 return 1;
775 return 0;
778 /* Return nonzero if the rtx X is invariant over the current function. */
779 /* ??? Actually, the places this is used in reload expect exactly what
780 is tested here, and not everything that is function invariant. In
781 particular, the frame pointer and arg pointer are special cased;
782 pic_offset_table_rtx is not, and this will cause aborts when we
783 go to spill these things to memory. */
786 function_invariant_p (x)
787 rtx x;
789 if (CONSTANT_P (x))
790 return 1;
791 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
792 return 1;
793 if (GET_CODE (x) == PLUS
794 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
795 && CONSTANT_P (XEXP (x, 1)))
796 return 1;
797 return 0;
800 /* Find registers that are equivalent to a single value throughout the
801 compilation (either because they can be referenced in memory or are set once
802 from a single constant). Lower their priority for a register.
804 If such a register is only referenced once, try substituting its value
805 into the using insn. If it succeeds, we can eliminate the register
806 completely. */
808 static void
809 update_equiv_regs ()
811 rtx insn;
812 basic_block bb;
813 int loop_depth;
814 regset_head cleared_regs;
815 int clear_regnos = 0;
817 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
818 INIT_REG_SET (&cleared_regs);
820 init_alias_analysis ();
822 /* Scan the insns and find which registers have equivalences. Do this
823 in a separate scan of the insns because (due to -fcse-follow-jumps)
824 a register can be set below its use. */
825 FOR_EACH_BB (bb)
827 loop_depth = bb->loop_depth;
829 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = NEXT_INSN (insn))
831 rtx note;
832 rtx set;
833 rtx dest, src;
834 int regno;
836 if (! INSN_P (insn))
837 continue;
839 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
840 if (REG_NOTE_KIND (note) == REG_INC)
841 no_equiv (XEXP (note, 0), note, NULL);
843 set = single_set (insn);
845 /* If this insn contains more (or less) than a single SET,
846 only mark all destinations as having no known equivalence. */
847 if (set == 0)
849 note_stores (PATTERN (insn), no_equiv, NULL);
850 continue;
852 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
854 int i;
856 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
858 rtx part = XVECEXP (PATTERN (insn), 0, i);
859 if (part != set)
860 note_stores (part, no_equiv, NULL);
864 dest = SET_DEST (set);
865 src = SET_SRC (set);
867 /* If this sets a MEM to the contents of a REG that is only used
868 in a single basic block, see if the register is always equivalent
869 to that memory location and if moving the store from INSN to the
870 insn that set REG is safe. If so, put a REG_EQUIV note on the
871 initializing insn.
873 Don't add a REG_EQUIV note if the insn already has one. The existing
874 REG_EQUIV is likely more useful than the one we are adding.
876 If one of the regs in the address has reg_equiv[REGNO].replace set,
877 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
878 optimization may move the set of this register immediately before
879 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
880 the mention in the REG_EQUIV note would be to an uninitialized
881 pseudo. */
882 /* ????? This test isn't good enough; we might see a MEM with a use of
883 a pseudo register before we see its setting insn that will cause
884 reg_equiv[].replace for that pseudo to be set.
885 Equivalences to MEMs should be made in another pass, after the
886 reg_equiv[].replace information has been gathered. */
888 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
889 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
890 && REG_BASIC_BLOCK (regno) >= 0
891 && REG_N_SETS (regno) == 1
892 && reg_equiv[regno].init_insns != 0
893 && reg_equiv[regno].init_insns != const0_rtx
894 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
895 REG_EQUIV, NULL_RTX)
896 && ! contains_replace_regs (XEXP (dest, 0)))
898 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
899 if (validate_equiv_mem (init_insn, src, dest)
900 && ! memref_used_between_p (dest, init_insn, insn))
901 REG_NOTES (init_insn)
902 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
905 /* We only handle the case of a pseudo register being set
906 once, or always to the same value. */
907 /* ??? The mn10200 port breaks if we add equivalences for
908 values that need an ADDRESS_REGS register and set them equivalent
909 to a MEM of a pseudo. The actual problem is in the over-conservative
910 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
911 calculate_needs, but we traditionally work around this problem
912 here by rejecting equivalences when the destination is in a register
913 that's likely spilled. This is fragile, of course, since the
914 preferred class of a pseudo depends on all instructions that set
915 or use it. */
917 if (GET_CODE (dest) != REG
918 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
919 || reg_equiv[regno].init_insns == const0_rtx
920 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
921 && GET_CODE (src) == MEM))
923 /* This might be seting a SUBREG of a pseudo, a pseudo that is
924 also set somewhere else to a constant. */
925 note_stores (set, no_equiv, NULL);
926 continue;
929 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
931 /* cse sometimes generates function invariants, but doesn't put a
932 REG_EQUAL note on the insn. Since this note would be redundant,
933 there's no point creating it earlier than here. */
934 if (! note && ! rtx_varies_p (src, 0))
935 note = set_unique_reg_note (insn, REG_EQUAL, src);
937 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
938 since it represents a function call */
939 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
940 note = NULL_RTX;
942 if (REG_N_SETS (regno) != 1
943 && (! note
944 || rtx_varies_p (XEXP (note, 0), 0)
945 || (reg_equiv[regno].replacement
946 && ! rtx_equal_p (XEXP (note, 0),
947 reg_equiv[regno].replacement))))
949 no_equiv (dest, set, NULL);
950 continue;
952 /* Record this insn as initializing this register. */
953 reg_equiv[regno].init_insns
954 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
956 /* If this register is known to be equal to a constant, record that
957 it is always equivalent to the constant. */
958 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
959 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
961 /* If this insn introduces a "constant" register, decrease the priority
962 of that register. Record this insn if the register is only used once
963 more and the equivalence value is the same as our source.
965 The latter condition is checked for two reasons: First, it is an
966 indication that it may be more efficient to actually emit the insn
967 as written (if no registers are available, reload will substitute
968 the equivalence). Secondly, it avoids problems with any registers
969 dying in this insn whose death notes would be missed.
971 If we don't have a REG_EQUIV note, see if this insn is loading
972 a register used only in one basic block from a MEM. If so, and the
973 MEM remains unchanged for the life of the register, add a REG_EQUIV
974 note. */
976 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
978 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
979 && GET_CODE (SET_SRC (set)) == MEM
980 && validate_equiv_mem (insn, dest, SET_SRC (set)))
981 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
982 REG_NOTES (insn));
984 if (note)
986 int regno = REGNO (dest);
988 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
989 We might end up substituting the LABEL_REF for uses of the
990 pseudo here or later. That kind of transformation may turn an
991 indirect jump into a direct jump, in which case we must rerun the
992 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
993 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
994 || (GET_CODE (XEXP (note, 0)) == CONST
995 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
996 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
997 == LABEL_REF)))
998 recorded_label_ref = 1;
1000 reg_equiv[regno].replacement = XEXP (note, 0);
1001 reg_equiv[regno].src_p = &SET_SRC (set);
1002 reg_equiv[regno].loop_depth = loop_depth;
1004 /* Don't mess with things live during setjmp. */
1005 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1007 /* Note that the statement below does not affect the priority
1008 in local-alloc! */
1009 REG_LIVE_LENGTH (regno) *= 2;
1012 /* If the register is referenced exactly twice, meaning it is
1013 set once and used once, indicate that the reference may be
1014 replaced by the equivalence we computed above. Do this
1015 even if the register is only used in one block so that
1016 dependencies can be handled where the last register is
1017 used in a different block (i.e. HIGH / LO_SUM sequences)
1018 and to reduce the number of registers alive across
1019 calls. */
1021 if (REG_N_REFS (regno) == 2
1022 && (rtx_equal_p (XEXP (note, 0), src)
1023 || ! equiv_init_varies_p (src))
1024 && GET_CODE (insn) == INSN
1025 && equiv_init_movable_p (PATTERN (insn), regno))
1026 reg_equiv[regno].replace = 1;
1032 /* Now scan all regs killed in an insn to see if any of them are
1033 registers only used that once. If so, see if we can replace the
1034 reference with the equivalent from. If we can, delete the
1035 initializing reference and this register will go away. If we
1036 can't replace the reference, and the initialzing reference is
1037 within the same loop (or in an inner loop), then move the register
1038 initialization just before the use, so that they are in the same
1039 basic block. */
1040 FOR_EACH_BB_REVERSE (bb)
1042 loop_depth = bb->loop_depth;
1043 for (insn = bb->end; insn != PREV_INSN (bb->head); insn = PREV_INSN (insn))
1045 rtx link;
1047 if (! INSN_P (insn))
1048 continue;
1050 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1052 if (REG_NOTE_KIND (link) == REG_DEAD
1053 /* Make sure this insn still refers to the register. */
1054 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1056 int regno = REGNO (XEXP (link, 0));
1057 rtx equiv_insn;
1059 if (! reg_equiv[regno].replace
1060 || reg_equiv[regno].loop_depth < loop_depth)
1061 continue;
1063 /* reg_equiv[REGNO].replace gets set only when
1064 REG_N_REFS[REGNO] is 2, i.e. the register is set
1065 once and used once. (If it were only set, but not used,
1066 flow would have deleted the setting insns.) Hence
1067 there can only be one insn in reg_equiv[REGNO].init_insns. */
1068 if (reg_equiv[regno].init_insns == NULL_RTX
1069 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1070 abort ();
1071 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1073 /* We may not move instructions that can throw, since
1074 that changes basic block boundaries and we are not
1075 prepared to adjust the CFG to match. */
1076 if (can_throw_internal (equiv_insn))
1077 continue;
1079 if (asm_noperands (PATTERN (equiv_insn)) < 0
1080 && validate_replace_rtx (regno_reg_rtx[regno],
1081 *(reg_equiv[regno].src_p), insn))
1083 rtx equiv_link;
1084 rtx last_link;
1085 rtx note;
1087 /* Find the last note. */
1088 for (last_link = link; XEXP (last_link, 1);
1089 last_link = XEXP (last_link, 1))
1092 /* Append the REG_DEAD notes from equiv_insn. */
1093 equiv_link = REG_NOTES (equiv_insn);
1094 while (equiv_link)
1096 note = equiv_link;
1097 equiv_link = XEXP (equiv_link, 1);
1098 if (REG_NOTE_KIND (note) == REG_DEAD)
1100 remove_note (equiv_insn, note);
1101 XEXP (last_link, 1) = note;
1102 XEXP (note, 1) = NULL_RTX;
1103 last_link = note;
1107 remove_death (regno, insn);
1108 REG_N_REFS (regno) = 0;
1109 REG_FREQ (regno) = 0;
1110 delete_insn (equiv_insn);
1112 reg_equiv[regno].init_insns
1113 = XEXP (reg_equiv[regno].init_insns, 1);
1115 /* Move the initialization of the register to just before
1116 INSN. Update the flow information. */
1117 else if (PREV_INSN (insn) != equiv_insn)
1119 rtx new_insn;
1121 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1122 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1123 REG_NOTES (equiv_insn) = 0;
1125 /* Make sure this insn is recognized before reload begins,
1126 otherwise eliminate_regs_in_insn will abort. */
1127 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1129 delete_insn (equiv_insn);
1131 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1133 REG_BASIC_BLOCK (regno) = bb->index;
1134 REG_N_CALLS_CROSSED (regno) = 0;
1135 REG_LIVE_LENGTH (regno) = 2;
1137 if (insn == bb->head)
1138 bb->head = PREV_INSN (insn);
1140 /* Remember to clear REGNO from all basic block's live
1141 info. */
1142 SET_REGNO_REG_SET (&cleared_regs, regno);
1143 clear_regnos++;
1150 /* Clear all dead REGNOs from all basic block's live info. */
1151 if (clear_regnos)
1153 int j;
1154 if (clear_regnos > 8)
1156 FOR_EACH_BB (bb)
1158 AND_COMPL_REG_SET (bb->global_live_at_start, &cleared_regs);
1159 AND_COMPL_REG_SET (bb->global_live_at_end, &cleared_regs);
1162 else
1163 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1165 FOR_EACH_BB (bb)
1167 CLEAR_REGNO_REG_SET (bb->global_live_at_start, j);
1168 CLEAR_REGNO_REG_SET (bb->global_live_at_end, j);
1173 /* Clean up. */
1174 end_alias_analysis ();
1175 CLEAR_REG_SET (&cleared_regs);
1176 free (reg_equiv);
1179 /* Mark REG as having no known equivalence.
1180 Some instructions might have been proceessed before and furnished
1181 with REG_EQUIV notes for this register; these notes will have to be
1182 removed.
1183 STORE is the piece of RTL that does the non-constant / conflicting
1184 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1185 but needs to be there because this function is called from note_stores. */
1186 static void
1187 no_equiv (reg, store, data)
1188 rtx reg, store ATTRIBUTE_UNUSED;
1189 void *data ATTRIBUTE_UNUSED;
1191 int regno;
1192 rtx list;
1194 if (GET_CODE (reg) != REG)
1195 return;
1196 regno = REGNO (reg);
1197 list = reg_equiv[regno].init_insns;
1198 if (list == const0_rtx)
1199 return;
1200 for (; list; list = XEXP (list, 1))
1202 rtx insn = XEXP (list, 0);
1203 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1205 reg_equiv[regno].init_insns = const0_rtx;
1206 reg_equiv[regno].replacement = NULL_RTX;
1209 /* Allocate hard regs to the pseudo regs used only within block number B.
1210 Only the pseudos that die but once can be handled. */
1212 static void
1213 block_alloc (b)
1214 int b;
1216 int i, q;
1217 rtx insn;
1218 rtx note, hard_reg;
1219 int insn_number = 0;
1220 int insn_count = 0;
1221 int max_uid = get_max_uid ();
1222 int *qty_order;
1223 int no_conflict_combined_regno = -1;
1225 /* Count the instructions in the basic block. */
1227 insn = BLOCK_END (b);
1228 while (1)
1230 if (GET_CODE (insn) != NOTE)
1231 if (++insn_count > max_uid)
1232 abort ();
1233 if (insn == BLOCK_HEAD (b))
1234 break;
1235 insn = PREV_INSN (insn);
1238 /* +2 to leave room for a post_mark_life at the last insn and for
1239 the birth of a CLOBBER in the first insn. */
1240 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1241 sizeof (HARD_REG_SET));
1243 /* Initialize table of hardware registers currently live. */
1245 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1247 /* This loop scans the instructions of the basic block
1248 and assigns quantities to registers.
1249 It computes which registers to tie. */
1251 insn = BLOCK_HEAD (b);
1252 while (1)
1254 if (GET_CODE (insn) != NOTE)
1255 insn_number++;
1257 if (INSN_P (insn))
1259 rtx link, set;
1260 int win = 0;
1261 rtx r0, r1 = NULL_RTX;
1262 int combined_regno = -1;
1263 int i;
1265 this_insn_number = insn_number;
1266 this_insn = insn;
1268 extract_insn (insn);
1269 which_alternative = -1;
1271 /* Is this insn suitable for tying two registers?
1272 If so, try doing that.
1273 Suitable insns are those with at least two operands and where
1274 operand 0 is an output that is a register that is not
1275 earlyclobber.
1277 We can tie operand 0 with some operand that dies in this insn.
1278 First look for operands that are required to be in the same
1279 register as operand 0. If we find such, only try tying that
1280 operand or one that can be put into that operand if the
1281 operation is commutative. If we don't find an operand
1282 that is required to be in the same register as operand 0,
1283 we can tie with any operand.
1285 Subregs in place of regs are also ok.
1287 If tying is done, WIN is set nonzero. */
1289 if (optimize
1290 && recog_data.n_operands > 1
1291 && recog_data.constraints[0][0] == '='
1292 && recog_data.constraints[0][1] != '&')
1294 /* If non-negative, is an operand that must match operand 0. */
1295 int must_match_0 = -1;
1296 /* Counts number of alternatives that require a match with
1297 operand 0. */
1298 int n_matching_alts = 0;
1300 for (i = 1; i < recog_data.n_operands; i++)
1302 const char *p = recog_data.constraints[i];
1303 int this_match = requires_inout (p);
1305 n_matching_alts += this_match;
1306 if (this_match == recog_data.n_alternatives)
1307 must_match_0 = i;
1310 r0 = recog_data.operand[0];
1311 for (i = 1; i < recog_data.n_operands; i++)
1313 /* Skip this operand if we found an operand that
1314 must match operand 0 and this operand isn't it
1315 and can't be made to be it by commutativity. */
1317 if (must_match_0 >= 0 && i != must_match_0
1318 && ! (i == must_match_0 + 1
1319 && recog_data.constraints[i-1][0] == '%')
1320 && ! (i == must_match_0 - 1
1321 && recog_data.constraints[i][0] == '%'))
1322 continue;
1324 /* Likewise if each alternative has some operand that
1325 must match operand zero. In that case, skip any
1326 operand that doesn't list operand 0 since we know that
1327 the operand always conflicts with operand 0. We
1328 ignore commutatity in this case to keep things simple. */
1329 if (n_matching_alts == recog_data.n_alternatives
1330 && 0 == requires_inout (recog_data.constraints[i]))
1331 continue;
1333 r1 = recog_data.operand[i];
1335 /* If the operand is an address, find a register in it.
1336 There may be more than one register, but we only try one
1337 of them. */
1338 if (recog_data.constraints[i][0] == 'p'
1339 || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0]))
1340 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1341 r1 = XEXP (r1, 0);
1343 /* Avoid making a call-saved register unnecessarily
1344 clobbered. */
1345 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1346 if (hard_reg != NULL_RTX)
1348 if (GET_CODE (hard_reg) == REG
1349 && IN_RANGE (REGNO (hard_reg),
1350 0, FIRST_PSEUDO_REGISTER - 1)
1351 && ! call_used_regs[REGNO (hard_reg)])
1352 continue;
1355 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1357 /* We have two priorities for hard register preferences.
1358 If we have a move insn or an insn whose first input
1359 can only be in the same register as the output, give
1360 priority to an equivalence found from that insn. */
1361 int may_save_copy
1362 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1364 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1365 win = combine_regs (r1, r0, may_save_copy,
1366 insn_number, insn, 0);
1368 if (win)
1369 break;
1373 /* Recognize an insn sequence with an ultimate result
1374 which can safely overlap one of the inputs.
1375 The sequence begins with a CLOBBER of its result,
1376 and ends with an insn that copies the result to itself
1377 and has a REG_EQUAL note for an equivalent formula.
1378 That note indicates what the inputs are.
1379 The result and the input can overlap if each insn in
1380 the sequence either doesn't mention the input
1381 or has a REG_NO_CONFLICT note to inhibit the conflict.
1383 We do the combining test at the CLOBBER so that the
1384 destination register won't have had a quantity number
1385 assigned, since that would prevent combining. */
1387 if (optimize
1388 && GET_CODE (PATTERN (insn)) == CLOBBER
1389 && (r0 = XEXP (PATTERN (insn), 0),
1390 GET_CODE (r0) == REG)
1391 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1392 && XEXP (link, 0) != 0
1393 && GET_CODE (XEXP (link, 0)) == INSN
1394 && (set = single_set (XEXP (link, 0))) != 0
1395 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1396 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1397 NULL_RTX)) != 0)
1399 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1400 /* Check that we have such a sequence. */
1401 && no_conflict_p (insn, r0, r1))
1402 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1403 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1404 && (r1 = XEXP (XEXP (note, 0), 0),
1405 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1406 && no_conflict_p (insn, r0, r1))
1407 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1409 /* Here we care if the operation to be computed is
1410 commutative. */
1411 else if ((GET_CODE (XEXP (note, 0)) == EQ
1412 || GET_CODE (XEXP (note, 0)) == NE
1413 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1414 && (r1 = XEXP (XEXP (note, 0), 1),
1415 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1416 && no_conflict_p (insn, r0, r1))
1417 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1419 /* If we did combine something, show the register number
1420 in question so that we know to ignore its death. */
1421 if (win)
1422 no_conflict_combined_regno = REGNO (r1);
1425 /* If registers were just tied, set COMBINED_REGNO
1426 to the number of the register used in this insn
1427 that was tied to the register set in this insn.
1428 This register's qty should not be "killed". */
1430 if (win)
1432 while (GET_CODE (r1) == SUBREG)
1433 r1 = SUBREG_REG (r1);
1434 combined_regno = REGNO (r1);
1437 /* Mark the death of everything that dies in this instruction,
1438 except for anything that was just combined. */
1440 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1441 if (REG_NOTE_KIND (link) == REG_DEAD
1442 && GET_CODE (XEXP (link, 0)) == REG
1443 && combined_regno != (int) REGNO (XEXP (link, 0))
1444 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1445 || ! find_reg_note (insn, REG_NO_CONFLICT,
1446 XEXP (link, 0))))
1447 wipe_dead_reg (XEXP (link, 0), 0);
1449 /* Allocate qty numbers for all registers local to this block
1450 that are born (set) in this instruction.
1451 A pseudo that already has a qty is not changed. */
1453 note_stores (PATTERN (insn), reg_is_set, NULL);
1455 /* If anything is set in this insn and then unused, mark it as dying
1456 after this insn, so it will conflict with our outputs. This
1457 can't match with something that combined, and it doesn't matter
1458 if it did. Do this after the calls to reg_is_set since these
1459 die after, not during, the current insn. */
1461 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1462 if (REG_NOTE_KIND (link) == REG_UNUSED
1463 && GET_CODE (XEXP (link, 0)) == REG)
1464 wipe_dead_reg (XEXP (link, 0), 1);
1466 /* If this is an insn that has a REG_RETVAL note pointing at a
1467 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1468 block, so clear any register number that combined within it. */
1469 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1470 && GET_CODE (XEXP (note, 0)) == INSN
1471 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1472 no_conflict_combined_regno = -1;
1475 /* Set the registers live after INSN_NUMBER. Note that we never
1476 record the registers live before the block's first insn, since no
1477 pseudos we care about are live before that insn. */
1479 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1480 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1482 if (insn == BLOCK_END (b))
1483 break;
1485 insn = NEXT_INSN (insn);
1488 /* Now every register that is local to this basic block
1489 should have been given a quantity, or else -1 meaning ignore it.
1490 Every quantity should have a known birth and death.
1492 Order the qtys so we assign them registers in order of the
1493 number of suggested registers they need so we allocate those with
1494 the most restrictive needs first. */
1496 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1497 for (i = 0; i < next_qty; i++)
1498 qty_order[i] = i;
1500 #define EXCHANGE(I1, I2) \
1501 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1503 switch (next_qty)
1505 case 3:
1506 /* Make qty_order[2] be the one to allocate last. */
1507 if (qty_sugg_compare (0, 1) > 0)
1508 EXCHANGE (0, 1);
1509 if (qty_sugg_compare (1, 2) > 0)
1510 EXCHANGE (2, 1);
1512 /* ... Fall through ... */
1513 case 2:
1514 /* Put the best one to allocate in qty_order[0]. */
1515 if (qty_sugg_compare (0, 1) > 0)
1516 EXCHANGE (0, 1);
1518 /* ... Fall through ... */
1520 case 1:
1521 case 0:
1522 /* Nothing to do here. */
1523 break;
1525 default:
1526 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1529 /* Try to put each quantity in a suggested physical register, if it has one.
1530 This may cause registers to be allocated that otherwise wouldn't be, but
1531 this seems acceptable in local allocation (unlike global allocation). */
1532 for (i = 0; i < next_qty; i++)
1534 q = qty_order[i];
1535 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1536 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1537 0, 1, qty[q].birth, qty[q].death);
1538 else
1539 qty[q].phys_reg = -1;
1542 /* Order the qtys so we assign them registers in order of
1543 decreasing length of life. Normally call qsort, but if we
1544 have only a very small number of quantities, sort them ourselves. */
1546 for (i = 0; i < next_qty; i++)
1547 qty_order[i] = i;
1549 #define EXCHANGE(I1, I2) \
1550 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1552 switch (next_qty)
1554 case 3:
1555 /* Make qty_order[2] be the one to allocate last. */
1556 if (qty_compare (0, 1) > 0)
1557 EXCHANGE (0, 1);
1558 if (qty_compare (1, 2) > 0)
1559 EXCHANGE (2, 1);
1561 /* ... Fall through ... */
1562 case 2:
1563 /* Put the best one to allocate in qty_order[0]. */
1564 if (qty_compare (0, 1) > 0)
1565 EXCHANGE (0, 1);
1567 /* ... Fall through ... */
1569 case 1:
1570 case 0:
1571 /* Nothing to do here. */
1572 break;
1574 default:
1575 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1578 /* Now for each qty that is not a hardware register,
1579 look for a hardware register to put it in.
1580 First try the register class that is cheapest for this qty,
1581 if there is more than one class. */
1583 for (i = 0; i < next_qty; i++)
1585 q = qty_order[i];
1586 if (qty[q].phys_reg < 0)
1588 #ifdef INSN_SCHEDULING
1589 /* These values represent the adjusted lifetime of a qty so
1590 that it conflicts with qtys which appear near the start/end
1591 of this qty's lifetime.
1593 The purpose behind extending the lifetime of this qty is to
1594 discourage the register allocator from creating false
1595 dependencies.
1597 The adjustment value is chosen to indicate that this qty
1598 conflicts with all the qtys in the instructions immediately
1599 before and after the lifetime of this qty.
1601 Experiments have shown that higher values tend to hurt
1602 overall code performance.
1604 If allocation using the extended lifetime fails we will try
1605 again with the qty's unadjusted lifetime. */
1606 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1607 int fake_death = MIN (insn_number * 2 + 1,
1608 qty[q].death + 2 - qty[q].death % 2);
1609 #endif
1611 if (N_REG_CLASSES > 1)
1613 #ifdef INSN_SCHEDULING
1614 /* We try to avoid using hard registers allocated to qtys which
1615 are born immediately after this qty or die immediately before
1616 this qty.
1618 This optimization is only appropriate when we will run
1619 a scheduling pass after reload and we are not optimizing
1620 for code size. */
1621 if (flag_schedule_insns_after_reload
1622 && !optimize_size
1623 && !SMALL_REGISTER_CLASSES)
1625 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1626 qty[q].mode, q, 0, 0,
1627 fake_birth, fake_death);
1628 if (qty[q].phys_reg >= 0)
1629 continue;
1631 #endif
1632 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1633 qty[q].mode, q, 0, 0,
1634 qty[q].birth, qty[q].death);
1635 if (qty[q].phys_reg >= 0)
1636 continue;
1639 #ifdef INSN_SCHEDULING
1640 /* Similarly, avoid false dependencies. */
1641 if (flag_schedule_insns_after_reload
1642 && !optimize_size
1643 && !SMALL_REGISTER_CLASSES
1644 && qty[q].alternate_class != NO_REGS)
1645 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1646 qty[q].mode, q, 0, 0,
1647 fake_birth, fake_death);
1648 #endif
1649 if (qty[q].alternate_class != NO_REGS)
1650 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1651 qty[q].mode, q, 0, 0,
1652 qty[q].birth, qty[q].death);
1656 /* Now propagate the register assignments
1657 to the pseudo regs belonging to the qtys. */
1659 for (q = 0; q < next_qty; q++)
1660 if (qty[q].phys_reg >= 0)
1662 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1663 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1666 /* Clean up. */
1667 free (regs_live_at);
1668 free (qty_order);
1671 /* Compare two quantities' priority for getting real registers.
1672 We give shorter-lived quantities higher priority.
1673 Quantities with more references are also preferred, as are quantities that
1674 require multiple registers. This is the identical prioritization as
1675 done by global-alloc.
1677 We used to give preference to registers with *longer* lives, but using
1678 the same algorithm in both local- and global-alloc can speed up execution
1679 of some programs by as much as a factor of three! */
1681 /* Note that the quotient will never be bigger than
1682 the value of floor_log2 times the maximum number of
1683 times a register can occur in one insn (surely less than 100)
1684 weighted by frequency (max REG_FREQ_MAX).
1685 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1686 QTY_CMP_PRI is also used by qty_sugg_compare. */
1688 #define QTY_CMP_PRI(q) \
1689 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1690 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1692 static int
1693 qty_compare (q1, q2)
1694 int q1, q2;
1696 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1699 static int
1700 qty_compare_1 (q1p, q2p)
1701 const PTR q1p;
1702 const PTR q2p;
1704 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1705 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1707 if (tem != 0)
1708 return tem;
1710 /* If qtys are equally good, sort by qty number,
1711 so that the results of qsort leave nothing to chance. */
1712 return q1 - q2;
1715 /* Compare two quantities' priority for getting real registers. This version
1716 is called for quantities that have suggested hard registers. First priority
1717 goes to quantities that have copy preferences, then to those that have
1718 normal preferences. Within those groups, quantities with the lower
1719 number of preferences have the highest priority. Of those, we use the same
1720 algorithm as above. */
1722 #define QTY_CMP_SUGG(q) \
1723 (qty_phys_num_copy_sugg[q] \
1724 ? qty_phys_num_copy_sugg[q] \
1725 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1727 static int
1728 qty_sugg_compare (q1, q2)
1729 int q1, q2;
1731 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1733 if (tem != 0)
1734 return tem;
1736 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1739 static int
1740 qty_sugg_compare_1 (q1p, q2p)
1741 const PTR q1p;
1742 const PTR q2p;
1744 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1745 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1747 if (tem != 0)
1748 return tem;
1750 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1751 if (tem != 0)
1752 return tem;
1754 /* If qtys are equally good, sort by qty number,
1755 so that the results of qsort leave nothing to chance. */
1756 return q1 - q2;
1759 #undef QTY_CMP_SUGG
1760 #undef QTY_CMP_PRI
1762 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1763 Returns 1 if have done so, or 0 if cannot.
1765 Combining registers means marking them as having the same quantity
1766 and adjusting the offsets within the quantity if either of
1767 them is a SUBREG).
1769 We don't actually combine a hard reg with a pseudo; instead
1770 we just record the hard reg as the suggestion for the pseudo's quantity.
1771 If we really combined them, we could lose if the pseudo lives
1772 across an insn that clobbers the hard reg (eg, movstr).
1774 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1775 there is no REG_DEAD note on INSN. This occurs during the processing
1776 of REG_NO_CONFLICT blocks.
1778 MAY_SAVE_COPYCOPY is nonzero if this insn is simply copying USEDREG to
1779 SETREG or if the input and output must share a register.
1780 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1782 There are elaborate checks for the validity of combining. */
1784 static int
1785 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1786 rtx usedreg, setreg;
1787 int may_save_copy;
1788 int insn_number;
1789 rtx insn;
1790 int already_dead;
1792 int ureg, sreg;
1793 int offset = 0;
1794 int usize, ssize;
1795 int sqty;
1797 /* Determine the numbers and sizes of registers being used. If a subreg
1798 is present that does not change the entire register, don't consider
1799 this a copy insn. */
1801 while (GET_CODE (usedreg) == SUBREG)
1803 rtx subreg = SUBREG_REG (usedreg);
1805 if (GET_CODE (subreg) == REG)
1807 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1808 may_save_copy = 0;
1810 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1811 offset += subreg_regno_offset (REGNO (subreg),
1812 GET_MODE (subreg),
1813 SUBREG_BYTE (usedreg),
1814 GET_MODE (usedreg));
1815 else
1816 offset += (SUBREG_BYTE (usedreg)
1817 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1820 usedreg = subreg;
1823 if (GET_CODE (usedreg) != REG)
1824 return 0;
1826 ureg = REGNO (usedreg);
1827 if (ureg < FIRST_PSEUDO_REGISTER)
1828 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1829 else
1830 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1831 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1832 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1834 while (GET_CODE (setreg) == SUBREG)
1836 rtx subreg = SUBREG_REG (setreg);
1838 if (GET_CODE (subreg) == REG)
1840 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1841 may_save_copy = 0;
1843 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1844 offset -= subreg_regno_offset (REGNO (subreg),
1845 GET_MODE (subreg),
1846 SUBREG_BYTE (setreg),
1847 GET_MODE (setreg));
1848 else
1849 offset -= (SUBREG_BYTE (setreg)
1850 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1853 setreg = subreg;
1856 if (GET_CODE (setreg) != REG)
1857 return 0;
1859 sreg = REGNO (setreg);
1860 if (sreg < FIRST_PSEUDO_REGISTER)
1861 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1862 else
1863 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1864 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1865 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1867 /* If UREG is a pseudo-register that hasn't already been assigned a
1868 quantity number, it means that it is not local to this block or dies
1869 more than once. In either event, we can't do anything with it. */
1870 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1871 /* Do not combine registers unless one fits within the other. */
1872 || (offset > 0 && usize + offset > ssize)
1873 || (offset < 0 && usize + offset < ssize)
1874 /* Do not combine with a smaller already-assigned object
1875 if that smaller object is already combined with something bigger. */
1876 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1877 && usize < qty[reg_qty[ureg]].size)
1878 /* Can't combine if SREG is not a register we can allocate. */
1879 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1880 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1881 These have already been taken care of. This probably wouldn't
1882 combine anyway, but don't take any chances. */
1883 || (ureg >= FIRST_PSEUDO_REGISTER
1884 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1885 /* Don't tie something to itself. In most cases it would make no
1886 difference, but it would screw up if the reg being tied to itself
1887 also dies in this insn. */
1888 || ureg == sreg
1889 /* Don't try to connect two different hardware registers. */
1890 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1891 /* Don't connect two different machine modes if they have different
1892 implications as to which registers may be used. */
1893 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1894 return 0;
1896 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1897 qty_phys_sugg for the pseudo instead of tying them.
1899 Return "failure" so that the lifespan of UREG is terminated here;
1900 that way the two lifespans will be disjoint and nothing will prevent
1901 the pseudo reg from being given this hard reg. */
1903 if (ureg < FIRST_PSEUDO_REGISTER)
1905 /* Allocate a quantity number so we have a place to put our
1906 suggestions. */
1907 if (reg_qty[sreg] == -2)
1908 reg_is_born (setreg, 2 * insn_number);
1910 if (reg_qty[sreg] >= 0)
1912 if (may_save_copy
1913 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1915 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1916 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1918 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1920 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1921 qty_phys_num_sugg[reg_qty[sreg]]++;
1924 return 0;
1927 /* Similarly for SREG a hard register and UREG a pseudo register. */
1929 if (sreg < FIRST_PSEUDO_REGISTER)
1931 if (may_save_copy
1932 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1934 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1935 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1937 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1939 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1940 qty_phys_num_sugg[reg_qty[ureg]]++;
1942 return 0;
1945 /* At this point we know that SREG and UREG are both pseudos.
1946 Do nothing if SREG already has a quantity or is a register that we
1947 don't allocate. */
1948 if (reg_qty[sreg] >= -1
1949 /* If we are not going to let any regs live across calls,
1950 don't tie a call-crossing reg to a non-call-crossing reg. */
1951 || (current_function_has_nonlocal_label
1952 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1953 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1954 return 0;
1956 /* We don't already know about SREG, so tie it to UREG
1957 if this is the last use of UREG, provided the classes they want
1958 are compatible. */
1960 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1961 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1963 /* Add SREG to UREG's quantity. */
1964 sqty = reg_qty[ureg];
1965 reg_qty[sreg] = sqty;
1966 reg_offset[sreg] = reg_offset[ureg] + offset;
1967 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1968 qty[sqty].first_reg = sreg;
1970 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1971 update_qty_class (sqty, sreg);
1973 /* Update info about quantity SQTY. */
1974 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1975 qty[sqty].n_refs += REG_N_REFS (sreg);
1976 qty[sqty].freq += REG_FREQ (sreg);
1977 if (usize < ssize)
1979 int i;
1981 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1982 reg_offset[i] -= offset;
1984 qty[sqty].size = ssize;
1985 qty[sqty].mode = GET_MODE (setreg);
1988 else
1989 return 0;
1991 return 1;
1994 /* Return 1 if the preferred class of REG allows it to be tied
1995 to a quantity or register whose class is CLASS.
1996 True if REG's reg class either contains or is contained in CLASS. */
1998 static int
1999 reg_meets_class_p (reg, class)
2000 int reg;
2001 enum reg_class class;
2003 enum reg_class rclass = reg_preferred_class (reg);
2004 return (reg_class_subset_p (rclass, class)
2005 || reg_class_subset_p (class, rclass));
2008 /* Update the class of QTYNO assuming that REG is being tied to it. */
2010 static void
2011 update_qty_class (qtyno, reg)
2012 int qtyno;
2013 int reg;
2015 enum reg_class rclass = reg_preferred_class (reg);
2016 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2017 qty[qtyno].min_class = rclass;
2019 rclass = reg_alternate_class (reg);
2020 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2021 qty[qtyno].alternate_class = rclass;
2024 /* Handle something which alters the value of an rtx REG.
2026 REG is whatever is set or clobbered. SETTER is the rtx that
2027 is modifying the register.
2029 If it is not really a register, we do nothing.
2030 The file-global variables `this_insn' and `this_insn_number'
2031 carry info from `block_alloc'. */
2033 static void
2034 reg_is_set (reg, setter, data)
2035 rtx reg;
2036 rtx setter;
2037 void *data ATTRIBUTE_UNUSED;
2039 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2040 a hard register. These may actually not exist any more. */
2042 if (GET_CODE (reg) != SUBREG
2043 && GET_CODE (reg) != REG)
2044 return;
2046 /* Mark this register as being born. If it is used in a CLOBBER, mark
2047 it as being born halfway between the previous insn and this insn so that
2048 it conflicts with our inputs but not the outputs of the previous insn. */
2050 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2053 /* Handle beginning of the life of register REG.
2054 BIRTH is the index at which this is happening. */
2056 static void
2057 reg_is_born (reg, birth)
2058 rtx reg;
2059 int birth;
2061 int regno;
2063 if (GET_CODE (reg) == SUBREG)
2065 regno = REGNO (SUBREG_REG (reg));
2066 if (regno < FIRST_PSEUDO_REGISTER)
2067 regno = subreg_hard_regno (reg, 1);
2069 else
2070 regno = REGNO (reg);
2072 if (regno < FIRST_PSEUDO_REGISTER)
2074 mark_life (regno, GET_MODE (reg), 1);
2076 /* If the register was to have been born earlier that the present
2077 insn, mark it as live where it is actually born. */
2078 if (birth < 2 * this_insn_number)
2079 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2081 else
2083 if (reg_qty[regno] == -2)
2084 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2086 /* If this register has a quantity number, show that it isn't dead. */
2087 if (reg_qty[regno] >= 0)
2088 qty[reg_qty[regno]].death = -1;
2092 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2093 REG is an output that is dying (i.e., it is never used), otherwise it
2094 is an input (the normal case).
2095 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2097 static void
2098 wipe_dead_reg (reg, output_p)
2099 rtx reg;
2100 int output_p;
2102 int regno = REGNO (reg);
2104 /* If this insn has multiple results,
2105 and the dead reg is used in one of the results,
2106 extend its life to after this insn,
2107 so it won't get allocated together with any other result of this insn.
2109 It is unsafe to use !single_set here since it will ignore an unused
2110 output. Just because an output is unused does not mean the compiler
2111 can assume the side effect will not occur. Consider if REG appears
2112 in the address of an output and we reload the output. If we allocate
2113 REG to the same hard register as an unused output we could set the hard
2114 register before the output reload insn. */
2115 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2116 && multiple_sets (this_insn))
2118 int i;
2119 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2121 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2122 if (GET_CODE (set) == SET
2123 && GET_CODE (SET_DEST (set)) != REG
2124 && !rtx_equal_p (reg, SET_DEST (set))
2125 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2126 output_p = 1;
2130 /* If this register is used in an auto-increment address, then extend its
2131 life to after this insn, so that it won't get allocated together with
2132 the result of this insn. */
2133 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2134 output_p = 1;
2136 if (regno < FIRST_PSEUDO_REGISTER)
2138 mark_life (regno, GET_MODE (reg), 0);
2140 /* If a hard register is dying as an output, mark it as in use at
2141 the beginning of this insn (the above statement would cause this
2142 not to happen). */
2143 if (output_p)
2144 post_mark_life (regno, GET_MODE (reg), 1,
2145 2 * this_insn_number, 2 * this_insn_number + 1);
2148 else if (reg_qty[regno] >= 0)
2149 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2152 /* Find a block of SIZE words of hard regs in reg_class CLASS
2153 that can hold something of machine-mode MODE
2154 (but actually we test only the first of the block for holding MODE)
2155 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2156 and return the number of the first of them.
2157 Return -1 if such a block cannot be found.
2158 If QTYNO crosses calls, insist on a register preserved by calls,
2159 unless ACCEPT_CALL_CLOBBERED is nonzero.
2161 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2162 register is available. If not, return -1. */
2164 static int
2165 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2166 born_index, dead_index)
2167 enum reg_class class;
2168 enum machine_mode mode;
2169 int qtyno;
2170 int accept_call_clobbered;
2171 int just_try_suggested;
2172 int born_index, dead_index;
2174 int i, ins;
2175 HARD_REG_SET first_used, used;
2176 #ifdef ELIMINABLE_REGS
2177 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2178 #endif
2180 /* Validate our parameters. */
2181 if (born_index < 0 || born_index > dead_index)
2182 abort ();
2184 /* Don't let a pseudo live in a reg across a function call
2185 if we might get a nonlocal goto. */
2186 if (current_function_has_nonlocal_label
2187 && qty[qtyno].n_calls_crossed > 0)
2188 return -1;
2190 if (accept_call_clobbered)
2191 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2192 else if (qty[qtyno].n_calls_crossed == 0)
2193 COPY_HARD_REG_SET (used, fixed_reg_set);
2194 else
2195 COPY_HARD_REG_SET (used, call_used_reg_set);
2197 if (accept_call_clobbered)
2198 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2200 for (ins = born_index; ins < dead_index; ins++)
2201 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2203 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2205 /* Don't use the frame pointer reg in local-alloc even if
2206 we may omit the frame pointer, because if we do that and then we
2207 need a frame pointer, reload won't know how to move the pseudo
2208 to another hard reg. It can move only regs made by global-alloc.
2210 This is true of any register that can be eliminated. */
2211 #ifdef ELIMINABLE_REGS
2212 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2213 SET_HARD_REG_BIT (used, eliminables[i].from);
2214 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2215 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2216 that it might be eliminated into. */
2217 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2218 #endif
2219 #else
2220 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2221 #endif
2223 #ifdef CANNOT_CHANGE_MODE_CLASS
2224 cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2225 #endif
2227 /* Normally, the registers that can be used for the first register in
2228 a multi-register quantity are the same as those that can be used for
2229 subsequent registers. However, if just trying suggested registers,
2230 restrict our consideration to them. If there are copy-suggested
2231 register, try them. Otherwise, try the arithmetic-suggested
2232 registers. */
2233 COPY_HARD_REG_SET (first_used, used);
2235 if (just_try_suggested)
2237 if (qty_phys_num_copy_sugg[qtyno] != 0)
2238 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2239 else
2240 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2243 /* If all registers are excluded, we can't do anything. */
2244 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2246 /* If at least one would be suitable, test each hard reg. */
2248 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2250 #ifdef REG_ALLOC_ORDER
2251 int regno = reg_alloc_order[i];
2252 #else
2253 int regno = i;
2254 #endif
2255 if (! TEST_HARD_REG_BIT (first_used, regno)
2256 && HARD_REGNO_MODE_OK (regno, mode)
2257 && (qty[qtyno].n_calls_crossed == 0
2258 || accept_call_clobbered
2259 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2261 int j;
2262 int size1 = HARD_REGNO_NREGS (regno, mode);
2263 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2264 if (j == size1)
2266 /* Mark that this register is in use between its birth and death
2267 insns. */
2268 post_mark_life (regno, mode, 1, born_index, dead_index);
2269 return regno;
2271 #ifndef REG_ALLOC_ORDER
2272 /* Skip starting points we know will lose. */
2273 i += j;
2274 #endif
2278 fail:
2279 /* If we are just trying suggested register, we have just tried copy-
2280 suggested registers, and there are arithmetic-suggested registers,
2281 try them. */
2283 /* If it would be profitable to allocate a call-clobbered register
2284 and save and restore it around calls, do that. */
2285 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2286 && qty_phys_num_sugg[qtyno] != 0)
2288 /* Don't try the copy-suggested regs again. */
2289 qty_phys_num_copy_sugg[qtyno] = 0;
2290 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2291 born_index, dead_index);
2294 /* We need not check to see if the current function has nonlocal
2295 labels because we don't put any pseudos that are live over calls in
2296 registers in that case. */
2298 if (! accept_call_clobbered
2299 && flag_caller_saves
2300 && ! just_try_suggested
2301 && qty[qtyno].n_calls_crossed != 0
2302 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2303 qty[qtyno].n_calls_crossed))
2305 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2306 if (i >= 0)
2307 caller_save_needed = 1;
2308 return i;
2310 return -1;
2313 /* Mark that REGNO with machine-mode MODE is live starting from the current
2314 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2315 is zero). */
2317 static void
2318 mark_life (regno, mode, life)
2319 int regno;
2320 enum machine_mode mode;
2321 int life;
2323 int j = HARD_REGNO_NREGS (regno, mode);
2324 if (life)
2325 while (--j >= 0)
2326 SET_HARD_REG_BIT (regs_live, regno + j);
2327 else
2328 while (--j >= 0)
2329 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2332 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2333 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2334 to insn number DEATH (exclusive). */
2336 static void
2337 post_mark_life (regno, mode, life, birth, death)
2338 int regno;
2339 enum machine_mode mode;
2340 int life, birth, death;
2342 int j = HARD_REGNO_NREGS (regno, mode);
2343 #ifdef HARD_REG_SET
2344 /* Declare it register if it's a scalar. */
2345 register
2346 #endif
2347 HARD_REG_SET this_reg;
2349 CLEAR_HARD_REG_SET (this_reg);
2350 while (--j >= 0)
2351 SET_HARD_REG_BIT (this_reg, regno + j);
2353 if (life)
2354 while (birth < death)
2356 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2357 birth++;
2359 else
2360 while (birth < death)
2362 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2363 birth++;
2367 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2368 is the register being clobbered, and R1 is a register being used in
2369 the equivalent expression.
2371 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2372 in which it is used, return 1.
2374 Otherwise, return 0. */
2376 static int
2377 no_conflict_p (insn, r0, r1)
2378 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2380 int ok = 0;
2381 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2382 rtx p, last;
2384 /* If R1 is a hard register, return 0 since we handle this case
2385 when we scan the insns that actually use it. */
2387 if (note == 0
2388 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2389 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2390 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2391 return 0;
2393 last = XEXP (note, 0);
2395 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2396 if (INSN_P (p))
2398 if (find_reg_note (p, REG_DEAD, r1))
2399 ok = 1;
2401 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2402 some earlier optimization pass has inserted instructions into
2403 the sequence, and it is not safe to perform this optimization.
2404 Note that emit_no_conflict_block always ensures that this is
2405 true when these sequences are created. */
2406 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2407 return 0;
2410 return ok;
2413 /* Return the number of alternatives for which the constraint string P
2414 indicates that the operand must be equal to operand 0 and that no register
2415 is acceptable. */
2417 static int
2418 requires_inout (p)
2419 const char *p;
2421 char c;
2422 int found_zero = 0;
2423 int reg_allowed = 0;
2424 int num_matching_alts = 0;
2426 while ((c = *p++))
2427 switch (c)
2429 case '=': case '+': case '?':
2430 case '#': case '&': case '!':
2431 case '*': case '%':
2432 case 'm': case '<': case '>': case 'V': case 'o':
2433 case 'E': case 'F': case 'G': case 'H':
2434 case 's': case 'i': case 'n':
2435 case 'I': case 'J': case 'K': case 'L':
2436 case 'M': case 'N': case 'O': case 'P':
2437 case 'X':
2438 /* These don't say anything we care about. */
2439 break;
2441 case ',':
2442 if (found_zero && ! reg_allowed)
2443 num_matching_alts++;
2445 found_zero = reg_allowed = 0;
2446 break;
2448 case '0':
2449 found_zero = 1;
2450 break;
2452 case '1': case '2': case '3': case '4': case '5':
2453 case '6': case '7': case '8': case '9':
2454 /* Skip the balance of the matching constraint. */
2455 while (ISDIGIT (*p))
2456 p++;
2457 break;
2459 default:
2460 if (REG_CLASS_FROM_LETTER (c) == NO_REGS
2461 && !EXTRA_ADDRESS_CONSTRAINT (c))
2462 break;
2463 /* FALLTHRU */
2464 case 'p':
2465 case 'g': case 'r':
2466 reg_allowed = 1;
2467 break;
2470 if (found_zero && ! reg_allowed)
2471 num_matching_alts++;
2473 return num_matching_alts;
2476 void
2477 dump_local_alloc (file)
2478 FILE *file;
2480 int i;
2481 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2482 if (reg_renumber[i] != -1)
2483 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);