fix pr/45972
[official-gcc.git] / gcc / tree-cfg.c
blobd1ee63a31324203f7b57d2c2cabc45d08f2a0469
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "toplev.h"
42 #include "except.h"
43 #include "cfgloop.h"
44 #include "cfglayout.h"
45 #include "tree-ssa-propagate.h"
46 #include "value-prof.h"
47 #include "pointer-set.h"
48 #include "tree-inline.h"
50 /* This file contains functions for building the Control Flow Graph (CFG)
51 for a function tree. */
53 /* Local declarations. */
55 /* Initial capacity for the basic block array. */
56 static const int initial_cfg_capacity = 20;
58 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
59 which use a particular edge. The CASE_LABEL_EXPRs are chained together
60 via their TREE_CHAIN field, which we clear after we're done with the
61 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
63 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
64 update the case vector in response to edge redirections.
66 Right now this table is set up and torn down at key points in the
67 compilation process. It would be nice if we could make the table
68 more persistent. The key is getting notification of changes to
69 the CFG (particularly edge removal, creation and redirection). */
71 static struct pointer_map_t *edge_to_cases;
73 /* If we record edge_to_cases, this bitmap will hold indexes
74 of basic blocks that end in a GIMPLE_SWITCH which we touched
75 due to edge manipulations. */
77 static bitmap touched_switch_bbs;
79 /* CFG statistics. */
80 struct cfg_stats_d
82 long num_merged_labels;
85 static struct cfg_stats_d cfg_stats;
87 /* Nonzero if we found a computed goto while building basic blocks. */
88 static bool found_computed_goto;
90 /* Hash table to store last discriminator assigned for each locus. */
91 struct locus_discrim_map
93 location_t locus;
94 int discriminator;
96 static htab_t discriminator_per_locus;
98 /* Basic blocks and flowgraphs. */
99 static void make_blocks (gimple_seq);
100 static void factor_computed_gotos (void);
102 /* Edges. */
103 static void make_edges (void);
104 static void make_cond_expr_edges (basic_block);
105 static void make_gimple_switch_edges (basic_block);
106 static void make_goto_expr_edges (basic_block);
107 static void make_gimple_asm_edges (basic_block);
108 static unsigned int locus_map_hash (const void *);
109 static int locus_map_eq (const void *, const void *);
110 static void assign_discriminator (location_t, basic_block);
111 static edge gimple_redirect_edge_and_branch (edge, basic_block);
112 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
113 static unsigned int split_critical_edges (void);
115 /* Various helpers. */
116 static inline bool stmt_starts_bb_p (gimple, gimple);
117 static int gimple_verify_flow_info (void);
118 static void gimple_make_forwarder_block (edge);
119 static void gimple_cfg2vcg (FILE *);
120 static gimple first_non_label_stmt (basic_block);
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
164 void
165 init_empty_tree_cfg (void)
167 init_empty_tree_cfg_for_function (cfun);
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
177 static void
178 build_gimple_cfg (gimple_seq seq)
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
185 init_empty_tree_cfg ();
187 found_computed_goto = 0;
188 make_blocks (seq);
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
221 /* Debugging dumps. */
223 /* Write the flowgraph to a VCG file. */
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
235 static unsigned int
236 execute_build_cfg (void)
238 gimple_seq body = gimple_body (current_function_decl);
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
247 return 0;
250 struct gimple_opt_pass pass_build_cfg =
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg
266 | TODO_dump_func /* todo_flags_finish */
271 /* Return true if T is a computed goto. */
273 static bool
274 computed_goto_p (gimple t)
276 return (gimple_code (t) == GIMPLE_GOTO
277 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
281 /* Search the CFG for any computed gotos. If found, factor them to a
282 common computed goto site. Also record the location of that site so
283 that we can un-factor the gotos after we have converted back to
284 normal form. */
286 static void
287 factor_computed_gotos (void)
289 basic_block bb;
290 tree factored_label_decl = NULL;
291 tree var = NULL;
292 gimple factored_computed_goto_label = NULL;
293 gimple factored_computed_goto = NULL;
295 /* We know there are one or more computed gotos in this function.
296 Examine the last statement in each basic block to see if the block
297 ends with a computed goto. */
299 FOR_EACH_BB (bb)
301 gimple_stmt_iterator gsi = gsi_last_bb (bb);
302 gimple last;
304 if (gsi_end_p (gsi))
305 continue;
307 last = gsi_stmt (gsi);
309 /* Ignore the computed goto we create when we factor the original
310 computed gotos. */
311 if (last == factored_computed_goto)
312 continue;
314 /* If the last statement is a computed goto, factor it. */
315 if (computed_goto_p (last))
317 gimple assignment;
319 /* The first time we find a computed goto we need to create
320 the factored goto block and the variable each original
321 computed goto will use for their goto destination. */
322 if (!factored_computed_goto)
324 basic_block new_bb = create_empty_bb (bb);
325 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
327 /* Create the destination of the factored goto. Each original
328 computed goto will put its desired destination into this
329 variable and jump to the label we create immediately
330 below. */
331 var = create_tmp_var (ptr_type_node, "gotovar");
333 /* Build a label for the new block which will contain the
334 factored computed goto. */
335 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
336 factored_computed_goto_label
337 = gimple_build_label (factored_label_decl);
338 gsi_insert_after (&new_gsi, factored_computed_goto_label,
339 GSI_NEW_STMT);
341 /* Build our new computed goto. */
342 factored_computed_goto = gimple_build_goto (var);
343 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
346 /* Copy the original computed goto's destination into VAR. */
347 assignment = gimple_build_assign (var, gimple_goto_dest (last));
348 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
350 /* And re-vector the computed goto to the new destination. */
351 gimple_goto_set_dest (last, factored_label_decl);
357 /* Build a flowgraph for the sequence of stmts SEQ. */
359 static void
360 make_blocks (gimple_seq seq)
362 gimple_stmt_iterator i = gsi_start (seq);
363 gimple stmt = NULL;
364 bool start_new_block = true;
365 bool first_stmt_of_seq = true;
366 basic_block bb = ENTRY_BLOCK_PTR;
368 while (!gsi_end_p (i))
370 gimple prev_stmt;
372 prev_stmt = stmt;
373 stmt = gsi_stmt (i);
375 /* If the statement starts a new basic block or if we have determined
376 in a previous pass that we need to create a new block for STMT, do
377 so now. */
378 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
380 if (!first_stmt_of_seq)
381 seq = gsi_split_seq_before (&i);
382 bb = create_basic_block (seq, NULL, bb);
383 start_new_block = false;
386 /* Now add STMT to BB and create the subgraphs for special statement
387 codes. */
388 gimple_set_bb (stmt, bb);
390 if (computed_goto_p (stmt))
391 found_computed_goto = true;
393 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 next iteration. */
395 if (stmt_ends_bb_p (stmt))
397 /* If the stmt can make abnormal goto use a new temporary
398 for the assignment to the LHS. This makes sure the old value
399 of the LHS is available on the abnormal edge. Otherwise
400 we will end up with overlapping life-ranges for abnormal
401 SSA names. */
402 if (gimple_has_lhs (stmt)
403 && stmt_can_make_abnormal_goto (stmt)
404 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
406 tree lhs = gimple_get_lhs (stmt);
407 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
408 gimple s = gimple_build_assign (lhs, tmp);
409 gimple_set_location (s, gimple_location (stmt));
410 gimple_set_block (s, gimple_block (stmt));
411 gimple_set_lhs (stmt, tmp);
412 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
413 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
414 DECL_GIMPLE_REG_P (tmp) = 1;
415 gsi_insert_after (&i, s, GSI_SAME_STMT);
417 start_new_block = true;
420 gsi_next (&i);
421 first_stmt_of_seq = false;
426 /* Create and return a new empty basic block after bb AFTER. */
428 static basic_block
429 create_bb (void *h, void *e, basic_block after)
431 basic_block bb;
433 gcc_assert (!e);
435 /* Create and initialize a new basic block. Since alloc_block uses
436 GC allocation that clears memory to allocate a basic block, we do
437 not have to clear the newly allocated basic block here. */
438 bb = alloc_block ();
440 bb->index = last_basic_block;
441 bb->flags = BB_NEW;
442 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
443 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
445 /* Add the new block to the linked list of blocks. */
446 link_block (bb, after);
448 /* Grow the basic block array if needed. */
449 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
451 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
452 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
455 /* Add the newly created block to the array. */
456 SET_BASIC_BLOCK (last_basic_block, bb);
458 n_basic_blocks++;
459 last_basic_block++;
461 return bb;
465 /*---------------------------------------------------------------------------
466 Edge creation
467 ---------------------------------------------------------------------------*/
469 /* Fold COND_EXPR_COND of each COND_EXPR. */
471 void
472 fold_cond_expr_cond (void)
474 basic_block bb;
476 FOR_EACH_BB (bb)
478 gimple stmt = last_stmt (bb);
480 if (stmt && gimple_code (stmt) == GIMPLE_COND)
482 location_t loc = gimple_location (stmt);
483 tree cond;
484 bool zerop, onep;
486 fold_defer_overflow_warnings ();
487 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
488 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
489 if (cond)
491 zerop = integer_zerop (cond);
492 onep = integer_onep (cond);
494 else
495 zerop = onep = false;
497 fold_undefer_overflow_warnings (zerop || onep,
498 stmt,
499 WARN_STRICT_OVERFLOW_CONDITIONAL);
500 if (zerop)
501 gimple_cond_make_false (stmt);
502 else if (onep)
503 gimple_cond_make_true (stmt);
508 /* Join all the blocks in the flowgraph. */
510 static void
511 make_edges (void)
513 basic_block bb;
514 struct omp_region *cur_region = NULL;
516 /* Create an edge from entry to the first block with executable
517 statements in it. */
518 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
520 /* Traverse the basic block array placing edges. */
521 FOR_EACH_BB (bb)
523 gimple last = last_stmt (bb);
524 bool fallthru;
526 if (last)
528 enum gimple_code code = gimple_code (last);
529 switch (code)
531 case GIMPLE_GOTO:
532 make_goto_expr_edges (bb);
533 fallthru = false;
534 break;
535 case GIMPLE_RETURN:
536 make_edge (bb, EXIT_BLOCK_PTR, 0);
537 fallthru = false;
538 break;
539 case GIMPLE_COND:
540 make_cond_expr_edges (bb);
541 fallthru = false;
542 break;
543 case GIMPLE_SWITCH:
544 make_gimple_switch_edges (bb);
545 fallthru = false;
546 break;
547 case GIMPLE_RESX:
548 make_eh_edges (last);
549 fallthru = false;
550 break;
551 case GIMPLE_EH_DISPATCH:
552 fallthru = make_eh_dispatch_edges (last);
553 break;
555 case GIMPLE_CALL:
556 /* If this function receives a nonlocal goto, then we need to
557 make edges from this call site to all the nonlocal goto
558 handlers. */
559 if (stmt_can_make_abnormal_goto (last))
560 make_abnormal_goto_edges (bb, true);
562 /* If this statement has reachable exception handlers, then
563 create abnormal edges to them. */
564 make_eh_edges (last);
566 /* BUILTIN_RETURN is really a return statement. */
567 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
568 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
569 /* Some calls are known not to return. */
570 else
571 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
572 break;
574 case GIMPLE_ASSIGN:
575 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 control-altering. */
577 if (is_ctrl_altering_stmt (last))
578 make_eh_edges (last);
579 fallthru = true;
580 break;
582 case GIMPLE_ASM:
583 make_gimple_asm_edges (bb);
584 fallthru = true;
585 break;
587 case GIMPLE_OMP_PARALLEL:
588 case GIMPLE_OMP_TASK:
589 case GIMPLE_OMP_FOR:
590 case GIMPLE_OMP_SINGLE:
591 case GIMPLE_OMP_MASTER:
592 case GIMPLE_OMP_ORDERED:
593 case GIMPLE_OMP_CRITICAL:
594 case GIMPLE_OMP_SECTION:
595 cur_region = new_omp_region (bb, code, cur_region);
596 fallthru = true;
597 break;
599 case GIMPLE_OMP_SECTIONS:
600 cur_region = new_omp_region (bb, code, cur_region);
601 fallthru = true;
602 break;
604 case GIMPLE_OMP_SECTIONS_SWITCH:
605 fallthru = false;
606 break;
608 case GIMPLE_OMP_ATOMIC_LOAD:
609 case GIMPLE_OMP_ATOMIC_STORE:
610 fallthru = true;
611 break;
613 case GIMPLE_OMP_RETURN:
614 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
615 somewhere other than the next block. This will be
616 created later. */
617 cur_region->exit = bb;
618 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
619 cur_region = cur_region->outer;
620 break;
622 case GIMPLE_OMP_CONTINUE:
623 cur_region->cont = bb;
624 switch (cur_region->type)
626 case GIMPLE_OMP_FOR:
627 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
628 succs edges as abnormal to prevent splitting
629 them. */
630 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
631 /* Make the loopback edge. */
632 make_edge (bb, single_succ (cur_region->entry),
633 EDGE_ABNORMAL);
635 /* Create an edge from GIMPLE_OMP_FOR to exit, which
636 corresponds to the case that the body of the loop
637 is not executed at all. */
638 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
639 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
640 fallthru = false;
641 break;
643 case GIMPLE_OMP_SECTIONS:
644 /* Wire up the edges into and out of the nested sections. */
646 basic_block switch_bb = single_succ (cur_region->entry);
648 struct omp_region *i;
649 for (i = cur_region->inner; i ; i = i->next)
651 gcc_assert (i->type == GIMPLE_OMP_SECTION);
652 make_edge (switch_bb, i->entry, 0);
653 make_edge (i->exit, bb, EDGE_FALLTHRU);
656 /* Make the loopback edge to the block with
657 GIMPLE_OMP_SECTIONS_SWITCH. */
658 make_edge (bb, switch_bb, 0);
660 /* Make the edge from the switch to exit. */
661 make_edge (switch_bb, bb->next_bb, 0);
662 fallthru = false;
664 break;
666 default:
667 gcc_unreachable ();
669 break;
671 default:
672 gcc_assert (!stmt_ends_bb_p (last));
673 fallthru = true;
676 else
677 fallthru = true;
679 if (fallthru)
681 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
682 if (last)
683 assign_discriminator (gimple_location (last), bb->next_bb);
687 if (root_omp_region)
688 free_omp_regions ();
690 /* Fold COND_EXPR_COND of each COND_EXPR. */
691 fold_cond_expr_cond ();
694 /* Trivial hash function for a location_t. ITEM is a pointer to
695 a hash table entry that maps a location_t to a discriminator. */
697 static unsigned int
698 locus_map_hash (const void *item)
700 return ((const struct locus_discrim_map *) item)->locus;
703 /* Equality function for the locus-to-discriminator map. VA and VB
704 point to the two hash table entries to compare. */
706 static int
707 locus_map_eq (const void *va, const void *vb)
709 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
710 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
711 return a->locus == b->locus;
714 /* Find the next available discriminator value for LOCUS. The
715 discriminator distinguishes among several basic blocks that
716 share a common locus, allowing for more accurate sample-based
717 profiling. */
719 static int
720 next_discriminator_for_locus (location_t locus)
722 struct locus_discrim_map item;
723 struct locus_discrim_map **slot;
725 item.locus = locus;
726 item.discriminator = 0;
727 slot = (struct locus_discrim_map **)
728 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
729 (hashval_t) locus, INSERT);
730 gcc_assert (slot);
731 if (*slot == HTAB_EMPTY_ENTRY)
733 *slot = XNEW (struct locus_discrim_map);
734 gcc_assert (*slot);
735 (*slot)->locus = locus;
736 (*slot)->discriminator = 0;
738 (*slot)->discriminator++;
739 return (*slot)->discriminator;
742 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
744 static bool
745 same_line_p (location_t locus1, location_t locus2)
747 expanded_location from, to;
749 if (locus1 == locus2)
750 return true;
752 from = expand_location (locus1);
753 to = expand_location (locus2);
755 if (from.line != to.line)
756 return false;
757 if (from.file == to.file)
758 return true;
759 return (from.file != NULL
760 && to.file != NULL
761 && strcmp (from.file, to.file) == 0);
764 /* Assign a unique discriminator value to block BB if it begins at the same
765 LOCUS as its predecessor block. */
767 static void
768 assign_discriminator (location_t locus, basic_block bb)
770 gimple first_in_to_bb, last_in_to_bb;
772 if (locus == 0 || bb->discriminator != 0)
773 return;
775 first_in_to_bb = first_non_label_stmt (bb);
776 last_in_to_bb = last_stmt (bb);
777 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
778 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
779 bb->discriminator = next_discriminator_for_locus (locus);
782 /* Create the edges for a GIMPLE_COND starting at block BB. */
784 static void
785 make_cond_expr_edges (basic_block bb)
787 gimple entry = last_stmt (bb);
788 gimple then_stmt, else_stmt;
789 basic_block then_bb, else_bb;
790 tree then_label, else_label;
791 edge e;
792 location_t entry_locus;
794 gcc_assert (entry);
795 gcc_assert (gimple_code (entry) == GIMPLE_COND);
797 entry_locus = gimple_location (entry);
799 /* Entry basic blocks for each component. */
800 then_label = gimple_cond_true_label (entry);
801 else_label = gimple_cond_false_label (entry);
802 then_bb = label_to_block (then_label);
803 else_bb = label_to_block (else_label);
804 then_stmt = first_stmt (then_bb);
805 else_stmt = first_stmt (else_bb);
807 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
808 assign_discriminator (entry_locus, then_bb);
809 e->goto_locus = gimple_location (then_stmt);
810 if (e->goto_locus)
811 e->goto_block = gimple_block (then_stmt);
812 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
813 if (e)
815 assign_discriminator (entry_locus, else_bb);
816 e->goto_locus = gimple_location (else_stmt);
817 if (e->goto_locus)
818 e->goto_block = gimple_block (else_stmt);
821 /* We do not need the labels anymore. */
822 gimple_cond_set_true_label (entry, NULL_TREE);
823 gimple_cond_set_false_label (entry, NULL_TREE);
827 /* Called for each element in the hash table (P) as we delete the
828 edge to cases hash table.
830 Clear all the TREE_CHAINs to prevent problems with copying of
831 SWITCH_EXPRs and structure sharing rules, then free the hash table
832 element. */
834 static bool
835 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
836 void *data ATTRIBUTE_UNUSED)
838 tree t, next;
840 for (t = (tree) *value; t; t = next)
842 next = TREE_CHAIN (t);
843 TREE_CHAIN (t) = NULL;
846 *value = NULL;
847 return false;
850 /* Start recording information mapping edges to case labels. */
852 void
853 start_recording_case_labels (void)
855 gcc_assert (edge_to_cases == NULL);
856 edge_to_cases = pointer_map_create ();
857 touched_switch_bbs = BITMAP_ALLOC (NULL);
860 /* Return nonzero if we are recording information for case labels. */
862 static bool
863 recording_case_labels_p (void)
865 return (edge_to_cases != NULL);
868 /* Stop recording information mapping edges to case labels and
869 remove any information we have recorded. */
870 void
871 end_recording_case_labels (void)
873 bitmap_iterator bi;
874 unsigned i;
875 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
876 pointer_map_destroy (edge_to_cases);
877 edge_to_cases = NULL;
878 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
880 basic_block bb = BASIC_BLOCK (i);
881 if (bb)
883 gimple stmt = last_stmt (bb);
884 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
885 group_case_labels_stmt (stmt);
888 BITMAP_FREE (touched_switch_bbs);
891 /* If we are inside a {start,end}_recording_cases block, then return
892 a chain of CASE_LABEL_EXPRs from T which reference E.
894 Otherwise return NULL. */
896 static tree
897 get_cases_for_edge (edge e, gimple t)
899 void **slot;
900 size_t i, n;
902 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
903 chains available. Return NULL so the caller can detect this case. */
904 if (!recording_case_labels_p ())
905 return NULL;
907 slot = pointer_map_contains (edge_to_cases, e);
908 if (slot)
909 return (tree) *slot;
911 /* If we did not find E in the hash table, then this must be the first
912 time we have been queried for information about E & T. Add all the
913 elements from T to the hash table then perform the query again. */
915 n = gimple_switch_num_labels (t);
916 for (i = 0; i < n; i++)
918 tree elt = gimple_switch_label (t, i);
919 tree lab = CASE_LABEL (elt);
920 basic_block label_bb = label_to_block (lab);
921 edge this_edge = find_edge (e->src, label_bb);
923 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
924 a new chain. */
925 slot = pointer_map_insert (edge_to_cases, this_edge);
926 TREE_CHAIN (elt) = (tree) *slot;
927 *slot = elt;
930 return (tree) *pointer_map_contains (edge_to_cases, e);
933 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
935 static void
936 make_gimple_switch_edges (basic_block bb)
938 gimple entry = last_stmt (bb);
939 location_t entry_locus;
940 size_t i, n;
942 entry_locus = gimple_location (entry);
944 n = gimple_switch_num_labels (entry);
946 for (i = 0; i < n; ++i)
948 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
949 basic_block label_bb = label_to_block (lab);
950 make_edge (bb, label_bb, 0);
951 assign_discriminator (entry_locus, label_bb);
956 /* Return the basic block holding label DEST. */
958 basic_block
959 label_to_block_fn (struct function *ifun, tree dest)
961 int uid = LABEL_DECL_UID (dest);
963 /* We would die hard when faced by an undefined label. Emit a label to
964 the very first basic block. This will hopefully make even the dataflow
965 and undefined variable warnings quite right. */
966 if (seen_error () && uid < 0)
968 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
969 gimple stmt;
971 stmt = gimple_build_label (dest);
972 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
973 uid = LABEL_DECL_UID (dest);
975 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
976 <= (unsigned int) uid)
977 return NULL;
978 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
981 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
982 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
984 void
985 make_abnormal_goto_edges (basic_block bb, bool for_call)
987 basic_block target_bb;
988 gimple_stmt_iterator gsi;
990 FOR_EACH_BB (target_bb)
991 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
993 gimple label_stmt = gsi_stmt (gsi);
994 tree target;
996 if (gimple_code (label_stmt) != GIMPLE_LABEL)
997 break;
999 target = gimple_label_label (label_stmt);
1001 /* Make an edge to every label block that has been marked as a
1002 potential target for a computed goto or a non-local goto. */
1003 if ((FORCED_LABEL (target) && !for_call)
1004 || (DECL_NONLOCAL (target) && for_call))
1006 make_edge (bb, target_bb, EDGE_ABNORMAL);
1007 break;
1012 /* Create edges for a goto statement at block BB. */
1014 static void
1015 make_goto_expr_edges (basic_block bb)
1017 gimple_stmt_iterator last = gsi_last_bb (bb);
1018 gimple goto_t = gsi_stmt (last);
1020 /* A simple GOTO creates normal edges. */
1021 if (simple_goto_p (goto_t))
1023 tree dest = gimple_goto_dest (goto_t);
1024 basic_block label_bb = label_to_block (dest);
1025 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1026 e->goto_locus = gimple_location (goto_t);
1027 assign_discriminator (e->goto_locus, label_bb);
1028 if (e->goto_locus)
1029 e->goto_block = gimple_block (goto_t);
1030 gsi_remove (&last, true);
1031 return;
1034 /* A computed GOTO creates abnormal edges. */
1035 make_abnormal_goto_edges (bb, false);
1038 /* Create edges for an asm statement with labels at block BB. */
1040 static void
1041 make_gimple_asm_edges (basic_block bb)
1043 gimple stmt = last_stmt (bb);
1044 location_t stmt_loc = gimple_location (stmt);
1045 int i, n = gimple_asm_nlabels (stmt);
1047 for (i = 0; i < n; ++i)
1049 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1050 basic_block label_bb = label_to_block (label);
1051 make_edge (bb, label_bb, 0);
1052 assign_discriminator (stmt_loc, label_bb);
1056 /*---------------------------------------------------------------------------
1057 Flowgraph analysis
1058 ---------------------------------------------------------------------------*/
1060 /* Cleanup useless labels in basic blocks. This is something we wish
1061 to do early because it allows us to group case labels before creating
1062 the edges for the CFG, and it speeds up block statement iterators in
1063 all passes later on.
1064 We rerun this pass after CFG is created, to get rid of the labels that
1065 are no longer referenced. After then we do not run it any more, since
1066 (almost) no new labels should be created. */
1068 /* A map from basic block index to the leading label of that block. */
1069 static struct label_record
1071 /* The label. */
1072 tree label;
1074 /* True if the label is referenced from somewhere. */
1075 bool used;
1076 } *label_for_bb;
1078 /* Given LABEL return the first label in the same basic block. */
1080 static tree
1081 main_block_label (tree label)
1083 basic_block bb = label_to_block (label);
1084 tree main_label = label_for_bb[bb->index].label;
1086 /* label_to_block possibly inserted undefined label into the chain. */
1087 if (!main_label)
1089 label_for_bb[bb->index].label = label;
1090 main_label = label;
1093 label_for_bb[bb->index].used = true;
1094 return main_label;
1097 /* Clean up redundant labels within the exception tree. */
1099 static void
1100 cleanup_dead_labels_eh (void)
1102 eh_landing_pad lp;
1103 eh_region r;
1104 tree lab;
1105 int i;
1107 if (cfun->eh == NULL)
1108 return;
1110 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1111 if (lp && lp->post_landing_pad)
1113 lab = main_block_label (lp->post_landing_pad);
1114 if (lab != lp->post_landing_pad)
1116 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1117 EH_LANDING_PAD_NR (lab) = lp->index;
1121 FOR_ALL_EH_REGION (r)
1122 switch (r->type)
1124 case ERT_CLEANUP:
1125 case ERT_MUST_NOT_THROW:
1126 break;
1128 case ERT_TRY:
1130 eh_catch c;
1131 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1133 lab = c->label;
1134 if (lab)
1135 c->label = main_block_label (lab);
1138 break;
1140 case ERT_ALLOWED_EXCEPTIONS:
1141 lab = r->u.allowed.label;
1142 if (lab)
1143 r->u.allowed.label = main_block_label (lab);
1144 break;
1149 /* Cleanup redundant labels. This is a three-step process:
1150 1) Find the leading label for each block.
1151 2) Redirect all references to labels to the leading labels.
1152 3) Cleanup all useless labels. */
1154 void
1155 cleanup_dead_labels (void)
1157 basic_block bb;
1158 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1160 /* Find a suitable label for each block. We use the first user-defined
1161 label if there is one, or otherwise just the first label we see. */
1162 FOR_EACH_BB (bb)
1164 gimple_stmt_iterator i;
1166 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1168 tree label;
1169 gimple stmt = gsi_stmt (i);
1171 if (gimple_code (stmt) != GIMPLE_LABEL)
1172 break;
1174 label = gimple_label_label (stmt);
1176 /* If we have not yet seen a label for the current block,
1177 remember this one and see if there are more labels. */
1178 if (!label_for_bb[bb->index].label)
1180 label_for_bb[bb->index].label = label;
1181 continue;
1184 /* If we did see a label for the current block already, but it
1185 is an artificially created label, replace it if the current
1186 label is a user defined label. */
1187 if (!DECL_ARTIFICIAL (label)
1188 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1190 label_for_bb[bb->index].label = label;
1191 break;
1196 /* Now redirect all jumps/branches to the selected label.
1197 First do so for each block ending in a control statement. */
1198 FOR_EACH_BB (bb)
1200 gimple stmt = last_stmt (bb);
1201 if (!stmt)
1202 continue;
1204 switch (gimple_code (stmt))
1206 case GIMPLE_COND:
1208 tree true_label = gimple_cond_true_label (stmt);
1209 tree false_label = gimple_cond_false_label (stmt);
1211 if (true_label)
1212 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1213 if (false_label)
1214 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1215 break;
1218 case GIMPLE_SWITCH:
1220 size_t i, n = gimple_switch_num_labels (stmt);
1222 /* Replace all destination labels. */
1223 for (i = 0; i < n; ++i)
1225 tree case_label = gimple_switch_label (stmt, i);
1226 tree label = main_block_label (CASE_LABEL (case_label));
1227 CASE_LABEL (case_label) = label;
1229 break;
1232 case GIMPLE_ASM:
1234 int i, n = gimple_asm_nlabels (stmt);
1236 for (i = 0; i < n; ++i)
1238 tree cons = gimple_asm_label_op (stmt, i);
1239 tree label = main_block_label (TREE_VALUE (cons));
1240 TREE_VALUE (cons) = label;
1242 break;
1245 /* We have to handle gotos until they're removed, and we don't
1246 remove them until after we've created the CFG edges. */
1247 case GIMPLE_GOTO:
1248 if (!computed_goto_p (stmt))
1250 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1251 gimple_goto_set_dest (stmt, new_dest);
1253 break;
1255 default:
1256 break;
1260 /* Do the same for the exception region tree labels. */
1261 cleanup_dead_labels_eh ();
1263 /* Finally, purge dead labels. All user-defined labels and labels that
1264 can be the target of non-local gotos and labels which have their
1265 address taken are preserved. */
1266 FOR_EACH_BB (bb)
1268 gimple_stmt_iterator i;
1269 tree label_for_this_bb = label_for_bb[bb->index].label;
1271 if (!label_for_this_bb)
1272 continue;
1274 /* If the main label of the block is unused, we may still remove it. */
1275 if (!label_for_bb[bb->index].used)
1276 label_for_this_bb = NULL;
1278 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1280 tree label;
1281 gimple stmt = gsi_stmt (i);
1283 if (gimple_code (stmt) != GIMPLE_LABEL)
1284 break;
1286 label = gimple_label_label (stmt);
1288 if (label == label_for_this_bb
1289 || !DECL_ARTIFICIAL (label)
1290 || DECL_NONLOCAL (label)
1291 || FORCED_LABEL (label))
1292 gsi_next (&i);
1293 else
1294 gsi_remove (&i, true);
1298 free (label_for_bb);
1301 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1302 the ones jumping to the same label.
1303 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1305 static void
1306 group_case_labels_stmt (gimple stmt)
1308 int old_size = gimple_switch_num_labels (stmt);
1309 int i, j, new_size = old_size;
1310 tree default_case = NULL_TREE;
1311 tree default_label = NULL_TREE;
1312 bool has_default;
1314 /* The default label is always the first case in a switch
1315 statement after gimplification if it was not optimized
1316 away */
1317 if (!CASE_LOW (gimple_switch_default_label (stmt))
1318 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1320 default_case = gimple_switch_default_label (stmt);
1321 default_label = CASE_LABEL (default_case);
1322 has_default = true;
1324 else
1325 has_default = false;
1327 /* Look for possible opportunities to merge cases. */
1328 if (has_default)
1329 i = 1;
1330 else
1331 i = 0;
1332 while (i < old_size)
1334 tree base_case, base_label, base_high;
1335 base_case = gimple_switch_label (stmt, i);
1337 gcc_assert (base_case);
1338 base_label = CASE_LABEL (base_case);
1340 /* Discard cases that have the same destination as the
1341 default case. */
1342 if (base_label == default_label)
1344 gimple_switch_set_label (stmt, i, NULL_TREE);
1345 i++;
1346 new_size--;
1347 continue;
1350 base_high = CASE_HIGH (base_case)
1351 ? CASE_HIGH (base_case)
1352 : CASE_LOW (base_case);
1353 i++;
1355 /* Try to merge case labels. Break out when we reach the end
1356 of the label vector or when we cannot merge the next case
1357 label with the current one. */
1358 while (i < old_size)
1360 tree merge_case = gimple_switch_label (stmt, i);
1361 tree merge_label = CASE_LABEL (merge_case);
1362 tree t = int_const_binop (PLUS_EXPR, base_high,
1363 integer_one_node, 1);
1365 /* Merge the cases if they jump to the same place,
1366 and their ranges are consecutive. */
1367 if (merge_label == base_label
1368 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1370 base_high = CASE_HIGH (merge_case) ?
1371 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1372 CASE_HIGH (base_case) = base_high;
1373 gimple_switch_set_label (stmt, i, NULL_TREE);
1374 new_size--;
1375 i++;
1377 else
1378 break;
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i = 0, j = 0; i < new_size; i++)
1386 while (! gimple_switch_label (stmt, j))
1387 j++;
1388 gimple_switch_set_label (stmt, i,
1389 gimple_switch_label (stmt, j++));
1392 gcc_assert (new_size <= old_size);
1393 gimple_switch_set_num_labels (stmt, new_size);
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1398 same label. */
1400 void
1401 group_case_labels (void)
1403 basic_block bb;
1405 FOR_EACH_BB (bb)
1407 gimple stmt = last_stmt (bb);
1408 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1409 group_case_labels_stmt (stmt);
1413 /* Checks whether we can merge block B into block A. */
1415 static bool
1416 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1418 gimple stmt;
1419 gimple_stmt_iterator gsi;
1420 gimple_seq phis;
1422 if (!single_succ_p (a))
1423 return false;
1425 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1426 return false;
1428 if (single_succ (a) != b)
1429 return false;
1431 if (!single_pred_p (b))
1432 return false;
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab))
1460 return false;
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis = phi_nodes (b);
1471 if (!gimple_seq_empty_p (phis)
1472 && name_mappings_registered_p ())
1473 return false;
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 if (!optimize
1477 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1479 location_t goto_locus = single_succ_edge (a)->goto_locus;
1480 gimple_stmt_iterator prev, next;
1481 prev = gsi_last_nondebug_bb (a);
1482 next = gsi_after_labels (b);
1483 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1484 gsi_next_nondebug (&next);
1485 if ((gsi_end_p (prev)
1486 || gimple_location (gsi_stmt (prev)) != goto_locus)
1487 && (gsi_end_p (next)
1488 || gimple_location (gsi_stmt (next)) != goto_locus))
1489 return false;
1492 return true;
1495 /* Return true if the var whose chain of uses starts at PTR has no
1496 nondebug uses. */
1497 bool
1498 has_zero_uses_1 (const ssa_use_operand_t *head)
1500 const ssa_use_operand_t *ptr;
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1504 return false;
1506 return true;
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1512 bool
1513 single_imm_use_1 (const ssa_use_operand_t *head,
1514 use_operand_p *use_p, gimple *stmt)
1516 ssa_use_operand_t *ptr, *single_use = 0;
1518 for (ptr = head->next; ptr != head; ptr = ptr->next)
1519 if (!is_gimple_debug (USE_STMT (ptr)))
1521 if (single_use)
1523 single_use = NULL;
1524 break;
1526 single_use = ptr;
1529 if (use_p)
1530 *use_p = single_use;
1532 if (stmt)
1533 *stmt = single_use ? single_use->loc.stmt : NULL;
1535 return !!single_use;
1538 /* Replaces all uses of NAME by VAL. */
1540 void
1541 replace_uses_by (tree name, tree val)
1543 imm_use_iterator imm_iter;
1544 use_operand_p use;
1545 gimple stmt;
1546 edge e;
1548 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1550 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1552 replace_exp (use, val);
1554 if (gimple_code (stmt) == GIMPLE_PHI)
1556 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1557 if (e->flags & EDGE_ABNORMAL)
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1568 if (gimple_code (stmt) != GIMPLE_PHI)
1570 size_t i;
1572 fold_stmt_inplace (stmt);
1573 if (cfgcleanup_altered_bbs)
1574 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1576 /* FIXME. This should go in update_stmt. */
1577 for (i = 0; i < gimple_num_ops (stmt); i++)
1579 tree op = gimple_op (stmt, i);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op && TREE_CODE (op) == ADDR_EXPR)
1584 recompute_tree_invariant_for_addr_expr (op);
1587 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1588 update_stmt (stmt);
1592 gcc_assert (has_zero_uses (name));
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1597 struct loop *loop;
1598 loop_iterator li;
1600 FOR_EACH_LOOP (li, loop, 0)
1602 substitute_in_loop_info (loop, name, val);
1607 /* Merge block B into block A. */
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1612 gimple_stmt_iterator last, gsi, psi;
1613 gimple_seq phis = phi_nodes (b);
1615 if (dump_file)
1616 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi = gsi_last_bb (a);
1621 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1623 gimple phi = gsi_stmt (psi);
1624 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 gimple copy;
1626 bool may_replace_uses = !is_gimple_reg (def)
1627 || may_propagate_copy (def, use);
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1631 if (current_loops
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1633 && is_gimple_reg (def)
1634 && TREE_CODE (use) == SSA_NAME
1635 && a->loop_father != b->loop_father)
1636 may_replace_uses = false;
1638 if (!may_replace_uses)
1640 gcc_assert (is_gimple_reg (def));
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy = gimple_build_assign (def, use);
1647 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1648 remove_phi_node (&psi, false);
1650 else
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1654 the stmt. */
1655 if (!is_gimple_reg (def))
1657 imm_use_iterator iter;
1658 use_operand_p use_p;
1659 gimple stmt;
1661 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1663 SET_USE (use_p, use);
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1668 else
1669 replace_uses_by (def, use);
1671 remove_phi_node (&psi, true);
1675 /* Ensure that B follows A. */
1676 move_block_after (b, a);
1678 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1679 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1684 gimple stmt = gsi_stmt (gsi);
1685 if (gimple_code (stmt) == GIMPLE_LABEL)
1687 tree label = gimple_label_label (stmt);
1688 int lp_nr;
1690 gsi_remove (&gsi, false);
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label))
1700 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1701 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1704 lp_nr = EH_LANDING_PAD_NR (label);
1705 if (lp_nr)
1707 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1708 lp->post_landing_pad = NULL;
1711 else
1713 gimple_set_bb (stmt, a);
1714 gsi_next (&gsi);
1718 /* Merge the sequences. */
1719 last = gsi_last_bb (a);
1720 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1721 set_bb_seq (b, NULL);
1723 if (cfgcleanup_altered_bbs)
1724 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1733 basic_block
1734 single_noncomplex_succ (basic_block bb)
1736 edge e0, e1;
1737 if (EDGE_COUNT (bb->succs) != 2)
1738 return bb;
1740 e0 = EDGE_SUCC (bb, 0);
1741 e1 = EDGE_SUCC (bb, 1);
1742 if (e0->flags & EDGE_COMPLEX)
1743 return e1->dest;
1744 if (e1->flags & EDGE_COMPLEX)
1745 return e0->dest;
1747 return bb;
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1752 void
1753 notice_special_calls (gimple call)
1755 int flags = gimple_call_flags (call);
1757 if (flags & ECF_MAY_BE_ALLOCA)
1758 cfun->calls_alloca = true;
1759 if (flags & ECF_RETURNS_TWICE)
1760 cfun->calls_setjmp = true;
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1767 void
1768 clear_special_calls (void)
1770 cfun->calls_alloca = false;
1771 cfun->calls_setjmp = false;
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1776 static void
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb);
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb->succs) > 0)
1785 remove_edge (EDGE_SUCC (bb, 0));
1789 /* Remove statements of basic block BB. */
1791 static void
1792 remove_bb (basic_block bb)
1794 gimple_stmt_iterator i;
1796 if (dump_file)
1798 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1799 if (dump_flags & TDF_DETAILS)
1801 dump_bb (bb, dump_file, 0);
1802 fprintf (dump_file, "\n");
1806 if (current_loops)
1808 struct loop *loop = bb->loop_father;
1810 /* If a loop gets removed, clean up the information associated
1811 with it. */
1812 if (loop->latch == bb
1813 || loop->header == bb)
1814 free_numbers_of_iterations_estimates_loop (loop);
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb) != NULL)
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 details. */
1824 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1826 gimple stmt = gsi_stmt (i);
1827 if (gimple_code (stmt) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt))
1829 || DECL_NONLOCAL (gimple_label_label (stmt))))
1831 basic_block new_bb;
1832 gimple_stmt_iterator new_gsi;
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1836 non-locality. */
1837 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1839 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1843 new_bb = bb->prev_bb;
1844 new_gsi = gsi_start_bb (new_bb);
1845 gsi_remove (&i, false);
1846 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1848 else
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun))
1855 release_defs (stmt);
1857 gsi_remove (&i, true);
1860 if (gsi_end_p (i))
1861 i = gsi_last_bb (bb);
1862 else
1863 gsi_prev (&i);
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1868 bb->il.gimple = NULL;
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1876 edge
1877 find_taken_edge (basic_block bb, tree val)
1879 gimple stmt;
1881 stmt = last_stmt (bb);
1883 gcc_assert (stmt);
1884 gcc_assert (is_ctrl_stmt (stmt));
1886 if (val == NULL)
1887 return NULL;
1889 if (!is_gimple_min_invariant (val))
1890 return NULL;
1892 if (gimple_code (stmt) == GIMPLE_COND)
1893 return find_taken_edge_cond_expr (bb, val);
1895 if (gimple_code (stmt) == GIMPLE_SWITCH)
1896 return find_taken_edge_switch_expr (bb, val);
1898 if (computed_goto_p (stmt))
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1907 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1908 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1909 return NULL;
1912 gcc_unreachable ();
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1919 static edge
1920 find_taken_edge_computed_goto (basic_block bb, tree val)
1922 basic_block dest;
1923 edge e = NULL;
1925 dest = label_to_block (val);
1926 if (dest)
1928 e = find_edge (bb, dest);
1929 gcc_assert (e != NULL);
1932 return e;
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1939 static edge
1940 find_taken_edge_cond_expr (basic_block bb, tree val)
1942 edge true_edge, false_edge;
1944 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1946 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1947 return (integer_zerop (val) ? false_edge : true_edge);
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1954 static edge
1955 find_taken_edge_switch_expr (basic_block bb, tree val)
1957 basic_block dest_bb;
1958 edge e;
1959 gimple switch_stmt;
1960 tree taken_case;
1962 switch_stmt = last_stmt (bb);
1963 taken_case = find_case_label_for_value (switch_stmt, val);
1964 dest_bb = label_to_block (CASE_LABEL (taken_case));
1966 e = find_edge (bb, dest_bb);
1967 gcc_assert (e);
1968 return e;
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1976 static tree
1977 find_case_label_for_value (gimple switch_stmt, tree val)
1979 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1980 tree default_case = gimple_switch_default_label (switch_stmt);
1982 for (low = 0, high = n; high - low > 1; )
1984 size_t i = (high + low) / 2;
1985 tree t = gimple_switch_label (switch_stmt, i);
1986 int cmp;
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1991 if (cmp > 0)
1992 high = i;
1993 else
1994 low = i;
1996 if (CASE_HIGH (t) == NULL)
1998 /* A singe-valued case label. */
1999 if (cmp == 0)
2000 return t;
2002 else
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2006 return t;
2010 return default_case;
2014 /* Dump a basic block on stderr. */
2016 void
2017 gimple_debug_bb (basic_block bb)
2019 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2023 /* Dump basic block with index N on stderr. */
2025 basic_block
2026 gimple_debug_bb_n (int n)
2028 gimple_debug_bb (BASIC_BLOCK (n));
2029 return BASIC_BLOCK (n);
2033 /* Dump the CFG on stderr.
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2038 void
2039 gimple_debug_cfg (int flags)
2041 gimple_dump_cfg (stderr, flags);
2045 /* Dump the program showing basic block boundaries on the given FILE.
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2048 tree.h). */
2050 void
2051 gimple_dump_cfg (FILE *file, int flags)
2053 if (flags & TDF_DETAILS)
2055 const char *funcname
2056 = lang_hooks.decl_printable_name (current_function_decl, 2);
2058 fputc ('\n', file);
2059 fprintf (file, ";; Function %s\n\n", funcname);
2060 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2061 n_basic_blocks, n_edges, last_basic_block);
2063 brief_dump_cfg (file);
2064 fprintf (file, "\n");
2067 if (flags & TDF_STATS)
2068 dump_cfg_stats (file);
2070 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2074 /* Dump CFG statistics on FILE. */
2076 void
2077 dump_cfg_stats (FILE *file)
2079 static long max_num_merged_labels = 0;
2080 unsigned long size, total = 0;
2081 long num_edges;
2082 basic_block bb;
2083 const char * const fmt_str = "%-30s%-13s%12s\n";
2084 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2085 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2086 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2087 const char *funcname
2088 = lang_hooks.decl_printable_name (current_function_decl, 2);
2091 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2093 fprintf (file, "---------------------------------------------------------\n");
2094 fprintf (file, fmt_str, "", " Number of ", "Memory");
2095 fprintf (file, fmt_str, "", " instances ", "used ");
2096 fprintf (file, "---------------------------------------------------------\n");
2098 size = n_basic_blocks * sizeof (struct basic_block_def);
2099 total += size;
2100 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2101 SCALE (size), LABEL (size));
2103 num_edges = 0;
2104 FOR_EACH_BB (bb)
2105 num_edges += EDGE_COUNT (bb->succs);
2106 size = num_edges * sizeof (struct edge_def);
2107 total += size;
2108 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2112 LABEL (total));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, "\n");
2116 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2117 max_num_merged_labels = cfg_stats.num_merged_labels;
2119 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2120 cfg_stats.num_merged_labels, max_num_merged_labels);
2122 fprintf (file, "\n");
2126 /* Dump CFG statistics on stderr. Keep extern so that it's always
2127 linked in the final executable. */
2129 DEBUG_FUNCTION void
2130 debug_cfg_stats (void)
2132 dump_cfg_stats (stderr);
2136 /* Dump the flowgraph to a .vcg FILE. */
2138 static void
2139 gimple_cfg2vcg (FILE *file)
2141 edge e;
2142 edge_iterator ei;
2143 basic_block bb;
2144 const char *funcname
2145 = lang_hooks.decl_printable_name (current_function_decl, 2);
2147 /* Write the file header. */
2148 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2149 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2150 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2152 /* Write blocks and edges. */
2153 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2155 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2156 e->dest->index);
2158 if (e->flags & EDGE_FAKE)
2159 fprintf (file, " linestyle: dotted priority: 10");
2160 else
2161 fprintf (file, " linestyle: solid priority: 100");
2163 fprintf (file, " }\n");
2165 fputc ('\n', file);
2167 FOR_EACH_BB (bb)
2169 enum gimple_code head_code, end_code;
2170 const char *head_name, *end_name;
2171 int head_line = 0;
2172 int end_line = 0;
2173 gimple first = first_stmt (bb);
2174 gimple last = last_stmt (bb);
2176 if (first)
2178 head_code = gimple_code (first);
2179 head_name = gimple_code_name[head_code];
2180 head_line = get_lineno (first);
2182 else
2183 head_name = "no-statement";
2185 if (last)
2187 end_code = gimple_code (last);
2188 end_name = gimple_code_name[end_code];
2189 end_line = get_lineno (last);
2191 else
2192 end_name = "no-statement";
2194 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2195 bb->index, bb->index, head_name, head_line, end_name,
2196 end_line);
2198 FOR_EACH_EDGE (e, ei, bb->succs)
2200 if (e->dest == EXIT_BLOCK_PTR)
2201 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2202 else
2203 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2205 if (e->flags & EDGE_FAKE)
2206 fprintf (file, " priority: 10 linestyle: dotted");
2207 else
2208 fprintf (file, " priority: 100 linestyle: solid");
2210 fprintf (file, " }\n");
2213 if (bb->next_bb != EXIT_BLOCK_PTR)
2214 fputc ('\n', file);
2217 fputs ("}\n\n", file);
2222 /*---------------------------------------------------------------------------
2223 Miscellaneous helpers
2224 ---------------------------------------------------------------------------*/
2226 /* Return true if T represents a stmt that always transfers control. */
2228 bool
2229 is_ctrl_stmt (gimple t)
2231 switch (gimple_code (t))
2233 case GIMPLE_COND:
2234 case GIMPLE_SWITCH:
2235 case GIMPLE_GOTO:
2236 case GIMPLE_RETURN:
2237 case GIMPLE_RESX:
2238 return true;
2239 default:
2240 return false;
2245 /* Return true if T is a statement that may alter the flow of control
2246 (e.g., a call to a non-returning function). */
2248 bool
2249 is_ctrl_altering_stmt (gimple t)
2251 gcc_assert (t);
2253 switch (gimple_code (t))
2255 case GIMPLE_CALL:
2257 int flags = gimple_call_flags (t);
2259 /* A non-pure/const call alters flow control if the current
2260 function has nonlocal labels. */
2261 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2262 && cfun->has_nonlocal_label)
2263 return true;
2265 /* A call also alters control flow if it does not return. */
2266 if (flags & ECF_NORETURN)
2267 return true;
2269 /* BUILT_IN_RETURN call is same as return statement. */
2270 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2271 return true;
2273 break;
2275 case GIMPLE_EH_DISPATCH:
2276 /* EH_DISPATCH branches to the individual catch handlers at
2277 this level of a try or allowed-exceptions region. It can
2278 fallthru to the next statement as well. */
2279 return true;
2281 case GIMPLE_ASM:
2282 if (gimple_asm_nlabels (t) > 0)
2283 return true;
2284 break;
2286 CASE_GIMPLE_OMP:
2287 /* OpenMP directives alter control flow. */
2288 return true;
2290 default:
2291 break;
2294 /* If a statement can throw, it alters control flow. */
2295 return stmt_can_throw_internal (t);
2299 /* Return true if T is a simple local goto. */
2301 bool
2302 simple_goto_p (gimple t)
2304 return (gimple_code (t) == GIMPLE_GOTO
2305 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2309 /* Return true if T can make an abnormal transfer of control flow.
2310 Transfers of control flow associated with EH are excluded. */
2312 bool
2313 stmt_can_make_abnormal_goto (gimple t)
2315 if (computed_goto_p (t))
2316 return true;
2317 if (is_gimple_call (t))
2318 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2319 && !(gimple_call_flags (t) & ECF_LEAF));
2320 return false;
2324 /* Return true if STMT should start a new basic block. PREV_STMT is
2325 the statement preceding STMT. It is used when STMT is a label or a
2326 case label. Labels should only start a new basic block if their
2327 previous statement wasn't a label. Otherwise, sequence of labels
2328 would generate unnecessary basic blocks that only contain a single
2329 label. */
2331 static inline bool
2332 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2334 if (stmt == NULL)
2335 return false;
2337 /* Labels start a new basic block only if the preceding statement
2338 wasn't a label of the same type. This prevents the creation of
2339 consecutive blocks that have nothing but a single label. */
2340 if (gimple_code (stmt) == GIMPLE_LABEL)
2342 /* Nonlocal and computed GOTO targets always start a new block. */
2343 if (DECL_NONLOCAL (gimple_label_label (stmt))
2344 || FORCED_LABEL (gimple_label_label (stmt)))
2345 return true;
2347 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2349 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2350 return true;
2352 cfg_stats.num_merged_labels++;
2353 return false;
2355 else
2356 return true;
2359 return false;
2363 /* Return true if T should end a basic block. */
2365 bool
2366 stmt_ends_bb_p (gimple t)
2368 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2371 /* Remove block annotations and other data structures. */
2373 void
2374 delete_tree_cfg_annotations (void)
2376 label_to_block_map = NULL;
2380 /* Return the first statement in basic block BB. */
2382 gimple
2383 first_stmt (basic_block bb)
2385 gimple_stmt_iterator i = gsi_start_bb (bb);
2386 gimple stmt = NULL;
2388 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2390 gsi_next (&i);
2391 stmt = NULL;
2393 return stmt;
2396 /* Return the first non-label statement in basic block BB. */
2398 static gimple
2399 first_non_label_stmt (basic_block bb)
2401 gimple_stmt_iterator i = gsi_start_bb (bb);
2402 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2403 gsi_next (&i);
2404 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2407 /* Return the last statement in basic block BB. */
2409 gimple
2410 last_stmt (basic_block bb)
2412 gimple_stmt_iterator i = gsi_last_bb (bb);
2413 gimple stmt = NULL;
2415 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2417 gsi_prev (&i);
2418 stmt = NULL;
2420 return stmt;
2423 /* Return the last statement of an otherwise empty block. Return NULL
2424 if the block is totally empty, or if it contains more than one
2425 statement. */
2427 gimple
2428 last_and_only_stmt (basic_block bb)
2430 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2431 gimple last, prev;
2433 if (gsi_end_p (i))
2434 return NULL;
2436 last = gsi_stmt (i);
2437 gsi_prev_nondebug (&i);
2438 if (gsi_end_p (i))
2439 return last;
2441 /* Empty statements should no longer appear in the instruction stream.
2442 Everything that might have appeared before should be deleted by
2443 remove_useless_stmts, and the optimizers should just gsi_remove
2444 instead of smashing with build_empty_stmt.
2446 Thus the only thing that should appear here in a block containing
2447 one executable statement is a label. */
2448 prev = gsi_stmt (i);
2449 if (gimple_code (prev) == GIMPLE_LABEL)
2450 return last;
2451 else
2452 return NULL;
2455 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2457 static void
2458 reinstall_phi_args (edge new_edge, edge old_edge)
2460 edge_var_map_vector v;
2461 edge_var_map *vm;
2462 int i;
2463 gimple_stmt_iterator phis;
2465 v = redirect_edge_var_map_vector (old_edge);
2466 if (!v)
2467 return;
2469 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2470 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2471 i++, gsi_next (&phis))
2473 gimple phi = gsi_stmt (phis);
2474 tree result = redirect_edge_var_map_result (vm);
2475 tree arg = redirect_edge_var_map_def (vm);
2477 gcc_assert (result == gimple_phi_result (phi));
2479 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2482 redirect_edge_var_map_clear (old_edge);
2485 /* Returns the basic block after which the new basic block created
2486 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2487 near its "logical" location. This is of most help to humans looking
2488 at debugging dumps. */
2490 static basic_block
2491 split_edge_bb_loc (edge edge_in)
2493 basic_block dest = edge_in->dest;
2494 basic_block dest_prev = dest->prev_bb;
2496 if (dest_prev)
2498 edge e = find_edge (dest_prev, dest);
2499 if (e && !(e->flags & EDGE_COMPLEX))
2500 return edge_in->src;
2502 return dest_prev;
2505 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2506 Abort on abnormal edges. */
2508 static basic_block
2509 gimple_split_edge (edge edge_in)
2511 basic_block new_bb, after_bb, dest;
2512 edge new_edge, e;
2514 /* Abnormal edges cannot be split. */
2515 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2517 dest = edge_in->dest;
2519 after_bb = split_edge_bb_loc (edge_in);
2521 new_bb = create_empty_bb (after_bb);
2522 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2523 new_bb->count = edge_in->count;
2524 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2525 new_edge->probability = REG_BR_PROB_BASE;
2526 new_edge->count = edge_in->count;
2528 e = redirect_edge_and_branch (edge_in, new_bb);
2529 gcc_assert (e == edge_in);
2530 reinstall_phi_args (new_edge, e);
2532 return new_bb;
2536 /* Verify properties of the address expression T with base object BASE. */
2538 static tree
2539 verify_address (tree t, tree base)
2541 bool old_constant;
2542 bool old_side_effects;
2543 bool new_constant;
2544 bool new_side_effects;
2546 old_constant = TREE_CONSTANT (t);
2547 old_side_effects = TREE_SIDE_EFFECTS (t);
2549 recompute_tree_invariant_for_addr_expr (t);
2550 new_side_effects = TREE_SIDE_EFFECTS (t);
2551 new_constant = TREE_CONSTANT (t);
2553 if (old_constant != new_constant)
2555 error ("constant not recomputed when ADDR_EXPR changed");
2556 return t;
2558 if (old_side_effects != new_side_effects)
2560 error ("side effects not recomputed when ADDR_EXPR changed");
2561 return t;
2564 if (!(TREE_CODE (base) == VAR_DECL
2565 || TREE_CODE (base) == PARM_DECL
2566 || TREE_CODE (base) == RESULT_DECL))
2567 return NULL_TREE;
2569 if (DECL_GIMPLE_REG_P (base))
2571 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2572 return base;
2575 return NULL_TREE;
2578 /* Callback for walk_tree, check that all elements with address taken are
2579 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2580 inside a PHI node. */
2582 static tree
2583 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2585 tree t = *tp, x;
2587 if (TYPE_P (t))
2588 *walk_subtrees = 0;
2590 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2591 #define CHECK_OP(N, MSG) \
2592 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2593 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2595 switch (TREE_CODE (t))
2597 case SSA_NAME:
2598 if (SSA_NAME_IN_FREE_LIST (t))
2600 error ("SSA name in freelist but still referenced");
2601 return *tp;
2603 break;
2605 case INDIRECT_REF:
2606 error ("INDIRECT_REF in gimple IL");
2607 return t;
2609 case MEM_REF:
2610 x = TREE_OPERAND (t, 0);
2611 if (!POINTER_TYPE_P (TREE_TYPE (x))
2612 || !is_gimple_mem_ref_addr (x))
2614 error ("Invalid first operand of MEM_REF.");
2615 return x;
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2620 error ("Invalid offset operand of MEM_REF.");
2621 return TREE_OPERAND (t, 1);
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2636 break;
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples.");
2640 return *tp;
2642 case ADDR_EXPR:
2644 tree tem;
2646 gcc_assert (is_gimple_address (t));
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2664 if (!TREE_ADDRESSABLE (x))
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2670 break;
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2677 error ("non-integral used in condition");
2678 return x;
2680 if (!is_gimple_condexpr (x))
2682 error ("invalid conditional operand");
2683 return x;
2685 break;
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2750 t = TREE_OPERAND (t, 0);
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2755 error ("invalid reference prefix");
2756 return t;
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype.");
2787 return t;
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2833 default:
2834 break;
2836 return NULL;
2838 #undef CHECK_OP
2842 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2843 Returns true if there is an error, otherwise false. */
2845 static bool
2846 verify_types_in_gimple_min_lval (tree expr)
2848 tree op;
2850 if (is_gimple_id (expr))
2851 return false;
2853 if (TREE_CODE (expr) != TARGET_MEM_REF
2854 && TREE_CODE (expr) != MEM_REF)
2856 error ("invalid expression for min lvalue");
2857 return true;
2860 /* TARGET_MEM_REFs are strange beasts. */
2861 if (TREE_CODE (expr) == TARGET_MEM_REF)
2862 return false;
2864 op = TREE_OPERAND (expr, 0);
2865 if (!is_gimple_val (op))
2867 error ("invalid operand in indirect reference");
2868 debug_generic_stmt (op);
2869 return true;
2871 /* Memory references now generally can involve a value conversion. */
2873 return false;
2876 /* Verify if EXPR is a valid GIMPLE reference expression. If
2877 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2878 if there is an error, otherwise false. */
2880 static bool
2881 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2883 while (handled_component_p (expr))
2885 tree op = TREE_OPERAND (expr, 0);
2887 if (TREE_CODE (expr) == ARRAY_REF
2888 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2890 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2891 || (TREE_OPERAND (expr, 2)
2892 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2893 || (TREE_OPERAND (expr, 3)
2894 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2896 error ("invalid operands to array reference");
2897 debug_generic_stmt (expr);
2898 return true;
2902 /* Verify if the reference array element types are compatible. */
2903 if (TREE_CODE (expr) == ARRAY_REF
2904 && !useless_type_conversion_p (TREE_TYPE (expr),
2905 TREE_TYPE (TREE_TYPE (op))))
2907 error ("type mismatch in array reference");
2908 debug_generic_stmt (TREE_TYPE (expr));
2909 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2910 return true;
2912 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2913 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2914 TREE_TYPE (TREE_TYPE (op))))
2916 error ("type mismatch in array range reference");
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2918 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2919 return true;
2922 if ((TREE_CODE (expr) == REALPART_EXPR
2923 || TREE_CODE (expr) == IMAGPART_EXPR)
2924 && !useless_type_conversion_p (TREE_TYPE (expr),
2925 TREE_TYPE (TREE_TYPE (op))))
2927 error ("type mismatch in real/imagpart reference");
2928 debug_generic_stmt (TREE_TYPE (expr));
2929 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2930 return true;
2933 if (TREE_CODE (expr) == COMPONENT_REF
2934 && !useless_type_conversion_p (TREE_TYPE (expr),
2935 TREE_TYPE (TREE_OPERAND (expr, 1))))
2937 error ("type mismatch in component reference");
2938 debug_generic_stmt (TREE_TYPE (expr));
2939 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2940 return true;
2943 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2945 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2946 that their operand is not an SSA name or an invariant when
2947 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2948 bug). Otherwise there is nothing to verify, gross mismatches at
2949 most invoke undefined behavior. */
2950 if (require_lvalue
2951 && (TREE_CODE (op) == SSA_NAME
2952 || is_gimple_min_invariant (op)))
2954 error ("Conversion of an SSA_NAME on the left hand side.");
2955 debug_generic_stmt (expr);
2956 return true;
2958 else if (TREE_CODE (op) == SSA_NAME
2959 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2961 error ("Conversion of register to a different size.");
2962 debug_generic_stmt (expr);
2963 return true;
2965 else if (!handled_component_p (op))
2966 return false;
2969 expr = op;
2972 if (TREE_CODE (expr) == MEM_REF)
2974 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2976 error ("Invalid address operand in MEM_REF.");
2977 debug_generic_stmt (expr);
2978 return true;
2980 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2981 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2983 error ("Invalid offset operand in MEM_REF.");
2984 debug_generic_stmt (expr);
2985 return true;
2988 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2990 if (!TMR_BASE (expr)
2991 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2993 error ("Invalid address operand in in TARGET_MEM_REF.");
2994 return true;
2996 if (!TMR_OFFSET (expr)
2997 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2998 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3000 error ("Invalid offset operand in TARGET_MEM_REF.");
3001 debug_generic_stmt (expr);
3002 return true;
3006 return ((require_lvalue || !is_gimple_min_invariant (expr))
3007 && verify_types_in_gimple_min_lval (expr));
3010 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3011 list of pointer-to types that is trivially convertible to DEST. */
3013 static bool
3014 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3016 tree src;
3018 if (!TYPE_POINTER_TO (src_obj))
3019 return true;
3021 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3022 if (useless_type_conversion_p (dest, src))
3023 return true;
3025 return false;
3028 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3029 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3031 static bool
3032 valid_fixed_convert_types_p (tree type1, tree type2)
3034 return (FIXED_POINT_TYPE_P (type1)
3035 && (INTEGRAL_TYPE_P (type2)
3036 || SCALAR_FLOAT_TYPE_P (type2)
3037 || FIXED_POINT_TYPE_P (type2)));
3040 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3041 is a problem, otherwise false. */
3043 static bool
3044 verify_gimple_call (gimple stmt)
3046 tree fn = gimple_call_fn (stmt);
3047 tree fntype;
3048 unsigned i;
3050 if (TREE_CODE (fn) != OBJ_TYPE_REF
3051 && !is_gimple_val (fn))
3053 error ("invalid function in gimple call");
3054 debug_generic_stmt (fn);
3055 return true;
3058 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3059 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3060 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3062 error ("non-function in gimple call");
3063 return true;
3066 if (gimple_call_lhs (stmt)
3067 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3068 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3070 error ("invalid LHS in gimple call");
3071 return true;
3074 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3076 error ("LHS in noreturn call");
3077 return true;
3080 fntype = TREE_TYPE (TREE_TYPE (fn));
3081 if (gimple_call_lhs (stmt)
3082 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3083 TREE_TYPE (fntype))
3084 /* ??? At least C++ misses conversions at assignments from
3085 void * call results.
3086 ??? Java is completely off. Especially with functions
3087 returning java.lang.Object.
3088 For now simply allow arbitrary pointer type conversions. */
3089 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3090 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3092 error ("invalid conversion in gimple call");
3093 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3094 debug_generic_stmt (TREE_TYPE (fntype));
3095 return true;
3098 if (gimple_call_chain (stmt)
3099 && !is_gimple_val (gimple_call_chain (stmt)))
3101 error ("invalid static chain in gimple call");
3102 debug_generic_stmt (gimple_call_chain (stmt));
3103 return true;
3106 /* If there is a static chain argument, this should not be an indirect
3107 call, and the decl should have DECL_STATIC_CHAIN set. */
3108 if (gimple_call_chain (stmt))
3110 if (TREE_CODE (fn) != ADDR_EXPR
3111 || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL)
3113 error ("static chain in indirect gimple call");
3114 return true;
3116 fn = TREE_OPERAND (fn, 0);
3118 if (!DECL_STATIC_CHAIN (fn))
3120 error ("static chain with function that doesn't use one");
3121 return true;
3125 /* ??? The C frontend passes unpromoted arguments in case it
3126 didn't see a function declaration before the call. So for now
3127 leave the call arguments mostly unverified. Once we gimplify
3128 unit-at-a-time we have a chance to fix this. */
3130 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3132 tree arg = gimple_call_arg (stmt, i);
3133 if ((is_gimple_reg_type (TREE_TYPE (arg))
3134 && !is_gimple_val (arg))
3135 || (!is_gimple_reg_type (TREE_TYPE (arg))
3136 && !is_gimple_lvalue (arg)))
3138 error ("invalid argument to gimple call");
3139 debug_generic_expr (arg);
3143 return false;
3146 /* Verifies the gimple comparison with the result type TYPE and
3147 the operands OP0 and OP1. */
3149 static bool
3150 verify_gimple_comparison (tree type, tree op0, tree op1)
3152 tree op0_type = TREE_TYPE (op0);
3153 tree op1_type = TREE_TYPE (op1);
3155 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3157 error ("invalid operands in gimple comparison");
3158 return true;
3161 /* For comparisons we do not have the operations type as the
3162 effective type the comparison is carried out in. Instead
3163 we require that either the first operand is trivially
3164 convertible into the second, or the other way around.
3165 The resulting type of a comparison may be any integral type.
3166 Because we special-case pointers to void we allow
3167 comparisons of pointers with the same mode as well. */
3168 if ((!useless_type_conversion_p (op0_type, op1_type)
3169 && !useless_type_conversion_p (op1_type, op0_type)
3170 && (!POINTER_TYPE_P (op0_type)
3171 || !POINTER_TYPE_P (op1_type)
3172 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3173 || !INTEGRAL_TYPE_P (type))
3175 error ("type mismatch in comparison expression");
3176 debug_generic_expr (type);
3177 debug_generic_expr (op0_type);
3178 debug_generic_expr (op1_type);
3179 return true;
3182 return false;
3185 /* Verify a gimple assignment statement STMT with an unary rhs.
3186 Returns true if anything is wrong. */
3188 static bool
3189 verify_gimple_assign_unary (gimple stmt)
3191 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3192 tree lhs = gimple_assign_lhs (stmt);
3193 tree lhs_type = TREE_TYPE (lhs);
3194 tree rhs1 = gimple_assign_rhs1 (stmt);
3195 tree rhs1_type = TREE_TYPE (rhs1);
3197 if (!is_gimple_reg (lhs)
3198 && !(optimize == 0
3199 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3201 error ("non-register as LHS of unary operation");
3202 return true;
3205 if (!is_gimple_val (rhs1))
3207 error ("invalid operand in unary operation");
3208 return true;
3211 /* First handle conversions. */
3212 switch (rhs_code)
3214 CASE_CONVERT:
3216 /* Allow conversions between integral types and pointers only if
3217 there is no sign or zero extension involved.
3218 For targets were the precision of sizetype doesn't match that
3219 of pointers we need to allow arbitrary conversions from and
3220 to sizetype. */
3221 if ((POINTER_TYPE_P (lhs_type)
3222 && INTEGRAL_TYPE_P (rhs1_type)
3223 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3224 || rhs1_type == sizetype))
3225 || (POINTER_TYPE_P (rhs1_type)
3226 && INTEGRAL_TYPE_P (lhs_type)
3227 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3228 || lhs_type == sizetype)))
3229 return false;
3231 /* Allow conversion from integer to offset type and vice versa. */
3232 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3233 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3234 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3235 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3236 return false;
3238 /* Otherwise assert we are converting between types of the
3239 same kind. */
3240 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3242 error ("invalid types in nop conversion");
3243 debug_generic_expr (lhs_type);
3244 debug_generic_expr (rhs1_type);
3245 return true;
3248 return false;
3251 case ADDR_SPACE_CONVERT_EXPR:
3253 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3254 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3255 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3257 error ("invalid types in address space conversion");
3258 debug_generic_expr (lhs_type);
3259 debug_generic_expr (rhs1_type);
3260 return true;
3263 return false;
3266 case FIXED_CONVERT_EXPR:
3268 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3269 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3271 error ("invalid types in fixed-point conversion");
3272 debug_generic_expr (lhs_type);
3273 debug_generic_expr (rhs1_type);
3274 return true;
3277 return false;
3280 case FLOAT_EXPR:
3282 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3284 error ("invalid types in conversion to floating point");
3285 debug_generic_expr (lhs_type);
3286 debug_generic_expr (rhs1_type);
3287 return true;
3290 return false;
3293 case FIX_TRUNC_EXPR:
3295 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3297 error ("invalid types in conversion to integer");
3298 debug_generic_expr (lhs_type);
3299 debug_generic_expr (rhs1_type);
3300 return true;
3303 return false;
3306 case VEC_UNPACK_HI_EXPR:
3307 case VEC_UNPACK_LO_EXPR:
3308 case REDUC_MAX_EXPR:
3309 case REDUC_MIN_EXPR:
3310 case REDUC_PLUS_EXPR:
3311 case VEC_UNPACK_FLOAT_HI_EXPR:
3312 case VEC_UNPACK_FLOAT_LO_EXPR:
3313 /* FIXME. */
3314 return false;
3316 case TRUTH_NOT_EXPR:
3317 case NEGATE_EXPR:
3318 case ABS_EXPR:
3319 case BIT_NOT_EXPR:
3320 case PAREN_EXPR:
3321 case NON_LVALUE_EXPR:
3322 case CONJ_EXPR:
3323 break;
3325 default:
3326 gcc_unreachable ();
3329 /* For the remaining codes assert there is no conversion involved. */
3330 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3332 error ("non-trivial conversion in unary operation");
3333 debug_generic_expr (lhs_type);
3334 debug_generic_expr (rhs1_type);
3335 return true;
3338 return false;
3341 /* Verify a gimple assignment statement STMT with a binary rhs.
3342 Returns true if anything is wrong. */
3344 static bool
3345 verify_gimple_assign_binary (gimple stmt)
3347 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3348 tree lhs = gimple_assign_lhs (stmt);
3349 tree lhs_type = TREE_TYPE (lhs);
3350 tree rhs1 = gimple_assign_rhs1 (stmt);
3351 tree rhs1_type = TREE_TYPE (rhs1);
3352 tree rhs2 = gimple_assign_rhs2 (stmt);
3353 tree rhs2_type = TREE_TYPE (rhs2);
3355 if (!is_gimple_reg (lhs)
3356 && !(optimize == 0
3357 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3359 error ("non-register as LHS of binary operation");
3360 return true;
3363 if (!is_gimple_val (rhs1)
3364 || !is_gimple_val (rhs2))
3366 error ("invalid operands in binary operation");
3367 return true;
3370 /* First handle operations that involve different types. */
3371 switch (rhs_code)
3373 case COMPLEX_EXPR:
3375 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3376 || !(INTEGRAL_TYPE_P (rhs1_type)
3377 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3378 || !(INTEGRAL_TYPE_P (rhs2_type)
3379 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3381 error ("type mismatch in complex expression");
3382 debug_generic_expr (lhs_type);
3383 debug_generic_expr (rhs1_type);
3384 debug_generic_expr (rhs2_type);
3385 return true;
3388 return false;
3391 case LSHIFT_EXPR:
3392 case RSHIFT_EXPR:
3393 case LROTATE_EXPR:
3394 case RROTATE_EXPR:
3396 /* Shifts and rotates are ok on integral types, fixed point
3397 types and integer vector types. */
3398 if ((!INTEGRAL_TYPE_P (rhs1_type)
3399 && !FIXED_POINT_TYPE_P (rhs1_type)
3400 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3401 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3402 || (!INTEGRAL_TYPE_P (rhs2_type)
3403 /* Vector shifts of vectors are also ok. */
3404 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3405 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3406 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3407 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3408 || !useless_type_conversion_p (lhs_type, rhs1_type))
3410 error ("type mismatch in shift expression");
3411 debug_generic_expr (lhs_type);
3412 debug_generic_expr (rhs1_type);
3413 debug_generic_expr (rhs2_type);
3414 return true;
3417 return false;
3420 case VEC_LSHIFT_EXPR:
3421 case VEC_RSHIFT_EXPR:
3423 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3424 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3425 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3426 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3427 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3428 || (!INTEGRAL_TYPE_P (rhs2_type)
3429 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3430 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3431 || !useless_type_conversion_p (lhs_type, rhs1_type))
3433 error ("type mismatch in vector shift expression");
3434 debug_generic_expr (lhs_type);
3435 debug_generic_expr (rhs1_type);
3436 debug_generic_expr (rhs2_type);
3437 return true;
3439 /* For shifting a vector of non-integral components we
3440 only allow shifting by a constant multiple of the element size. */
3441 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3442 && (TREE_CODE (rhs2) != INTEGER_CST
3443 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3444 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3446 error ("non-element sized vector shift of floating point vector");
3447 return true;
3450 return false;
3453 case PLUS_EXPR:
3454 case MINUS_EXPR:
3456 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3457 ??? This just makes the checker happy and may not be what is
3458 intended. */
3459 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3460 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3462 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3463 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3465 error ("invalid non-vector operands to vector valued plus");
3466 return true;
3468 lhs_type = TREE_TYPE (lhs_type);
3469 rhs1_type = TREE_TYPE (rhs1_type);
3470 rhs2_type = TREE_TYPE (rhs2_type);
3471 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3472 the pointer to 2nd place. */
3473 if (POINTER_TYPE_P (rhs2_type))
3475 tree tem = rhs1_type;
3476 rhs1_type = rhs2_type;
3477 rhs2_type = tem;
3479 goto do_pointer_plus_expr_check;
3481 if (POINTER_TYPE_P (lhs_type)
3482 || POINTER_TYPE_P (rhs1_type)
3483 || POINTER_TYPE_P (rhs2_type))
3485 error ("invalid (pointer) operands to plus/minus");
3486 return true;
3489 /* Continue with generic binary expression handling. */
3490 break;
3493 case POINTER_PLUS_EXPR:
3495 do_pointer_plus_expr_check:
3496 if (!POINTER_TYPE_P (rhs1_type)
3497 || !useless_type_conversion_p (lhs_type, rhs1_type)
3498 || !useless_type_conversion_p (sizetype, rhs2_type))
3500 error ("type mismatch in pointer plus expression");
3501 debug_generic_stmt (lhs_type);
3502 debug_generic_stmt (rhs1_type);
3503 debug_generic_stmt (rhs2_type);
3504 return true;
3507 return false;
3510 case TRUTH_ANDIF_EXPR:
3511 case TRUTH_ORIF_EXPR:
3512 gcc_unreachable ();
3514 case TRUTH_AND_EXPR:
3515 case TRUTH_OR_EXPR:
3516 case TRUTH_XOR_EXPR:
3518 /* We allow any kind of integral typed argument and result. */
3519 if (!INTEGRAL_TYPE_P (rhs1_type)
3520 || !INTEGRAL_TYPE_P (rhs2_type)
3521 || !INTEGRAL_TYPE_P (lhs_type))
3523 error ("type mismatch in binary truth expression");
3524 debug_generic_expr (lhs_type);
3525 debug_generic_expr (rhs1_type);
3526 debug_generic_expr (rhs2_type);
3527 return true;
3530 return false;
3533 case LT_EXPR:
3534 case LE_EXPR:
3535 case GT_EXPR:
3536 case GE_EXPR:
3537 case EQ_EXPR:
3538 case NE_EXPR:
3539 case UNORDERED_EXPR:
3540 case ORDERED_EXPR:
3541 case UNLT_EXPR:
3542 case UNLE_EXPR:
3543 case UNGT_EXPR:
3544 case UNGE_EXPR:
3545 case UNEQ_EXPR:
3546 case LTGT_EXPR:
3547 /* Comparisons are also binary, but the result type is not
3548 connected to the operand types. */
3549 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3551 case WIDEN_MULT_EXPR:
3552 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3553 return true;
3554 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3555 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3557 case WIDEN_SUM_EXPR:
3558 case VEC_WIDEN_MULT_HI_EXPR:
3559 case VEC_WIDEN_MULT_LO_EXPR:
3560 case VEC_PACK_TRUNC_EXPR:
3561 case VEC_PACK_SAT_EXPR:
3562 case VEC_PACK_FIX_TRUNC_EXPR:
3563 case VEC_EXTRACT_EVEN_EXPR:
3564 case VEC_EXTRACT_ODD_EXPR:
3565 case VEC_INTERLEAVE_HIGH_EXPR:
3566 case VEC_INTERLEAVE_LOW_EXPR:
3567 /* FIXME. */
3568 return false;
3570 case MULT_EXPR:
3571 case TRUNC_DIV_EXPR:
3572 case CEIL_DIV_EXPR:
3573 case FLOOR_DIV_EXPR:
3574 case ROUND_DIV_EXPR:
3575 case TRUNC_MOD_EXPR:
3576 case CEIL_MOD_EXPR:
3577 case FLOOR_MOD_EXPR:
3578 case ROUND_MOD_EXPR:
3579 case RDIV_EXPR:
3580 case EXACT_DIV_EXPR:
3581 case MIN_EXPR:
3582 case MAX_EXPR:
3583 case BIT_IOR_EXPR:
3584 case BIT_XOR_EXPR:
3585 case BIT_AND_EXPR:
3586 /* Continue with generic binary expression handling. */
3587 break;
3589 default:
3590 gcc_unreachable ();
3593 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3594 || !useless_type_conversion_p (lhs_type, rhs2_type))
3596 error ("type mismatch in binary expression");
3597 debug_generic_stmt (lhs_type);
3598 debug_generic_stmt (rhs1_type);
3599 debug_generic_stmt (rhs2_type);
3600 return true;
3603 return false;
3606 /* Verify a gimple assignment statement STMT with a ternary rhs.
3607 Returns true if anything is wrong. */
3609 static bool
3610 verify_gimple_assign_ternary (gimple stmt)
3612 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3613 tree lhs = gimple_assign_lhs (stmt);
3614 tree lhs_type = TREE_TYPE (lhs);
3615 tree rhs1 = gimple_assign_rhs1 (stmt);
3616 tree rhs1_type = TREE_TYPE (rhs1);
3617 tree rhs2 = gimple_assign_rhs2 (stmt);
3618 tree rhs2_type = TREE_TYPE (rhs2);
3619 tree rhs3 = gimple_assign_rhs3 (stmt);
3620 tree rhs3_type = TREE_TYPE (rhs3);
3622 if (!is_gimple_reg (lhs)
3623 && !(optimize == 0
3624 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3626 error ("non-register as LHS of ternary operation");
3627 return true;
3630 if (!is_gimple_val (rhs1)
3631 || !is_gimple_val (rhs2)
3632 || !is_gimple_val (rhs3))
3634 error ("invalid operands in ternary operation");
3635 return true;
3638 /* First handle operations that involve different types. */
3639 switch (rhs_code)
3641 case WIDEN_MULT_PLUS_EXPR:
3642 case WIDEN_MULT_MINUS_EXPR:
3643 if ((!INTEGRAL_TYPE_P (rhs1_type)
3644 && !FIXED_POINT_TYPE_P (rhs1_type))
3645 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3646 || !useless_type_conversion_p (lhs_type, rhs3_type)
3647 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3648 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3650 error ("type mismatch in widening multiply-accumulate expression");
3651 debug_generic_expr (lhs_type);
3652 debug_generic_expr (rhs1_type);
3653 debug_generic_expr (rhs2_type);
3654 debug_generic_expr (rhs3_type);
3655 return true;
3657 break;
3659 default:
3660 gcc_unreachable ();
3662 return false;
3665 /* Verify a gimple assignment statement STMT with a single rhs.
3666 Returns true if anything is wrong. */
3668 static bool
3669 verify_gimple_assign_single (gimple stmt)
3671 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3672 tree lhs = gimple_assign_lhs (stmt);
3673 tree lhs_type = TREE_TYPE (lhs);
3674 tree rhs1 = gimple_assign_rhs1 (stmt);
3675 tree rhs1_type = TREE_TYPE (rhs1);
3676 bool res = false;
3678 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3680 error ("non-trivial conversion at assignment");
3681 debug_generic_expr (lhs_type);
3682 debug_generic_expr (rhs1_type);
3683 return true;
3686 if (handled_component_p (lhs))
3687 res |= verify_types_in_gimple_reference (lhs, true);
3689 /* Special codes we cannot handle via their class. */
3690 switch (rhs_code)
3692 case ADDR_EXPR:
3694 tree op = TREE_OPERAND (rhs1, 0);
3695 if (!is_gimple_addressable (op))
3697 error ("invalid operand in unary expression");
3698 return true;
3701 if (!types_compatible_p (TREE_TYPE (op), TREE_TYPE (TREE_TYPE (rhs1)))
3702 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3703 TREE_TYPE (op)))
3705 error ("type mismatch in address expression");
3706 debug_generic_stmt (TREE_TYPE (rhs1));
3707 debug_generic_stmt (TREE_TYPE (op));
3708 return true;
3711 return verify_types_in_gimple_reference (op, true);
3714 /* tcc_reference */
3715 case INDIRECT_REF:
3716 error ("INDIRECT_REF in gimple IL");
3717 return true;
3719 case COMPONENT_REF:
3720 case BIT_FIELD_REF:
3721 case ARRAY_REF:
3722 case ARRAY_RANGE_REF:
3723 case VIEW_CONVERT_EXPR:
3724 case REALPART_EXPR:
3725 case IMAGPART_EXPR:
3726 case TARGET_MEM_REF:
3727 case MEM_REF:
3728 if (!is_gimple_reg (lhs)
3729 && is_gimple_reg_type (TREE_TYPE (lhs)))
3731 error ("invalid rhs for gimple memory store");
3732 debug_generic_stmt (lhs);
3733 debug_generic_stmt (rhs1);
3734 return true;
3736 return res || verify_types_in_gimple_reference (rhs1, false);
3738 /* tcc_constant */
3739 case SSA_NAME:
3740 case INTEGER_CST:
3741 case REAL_CST:
3742 case FIXED_CST:
3743 case COMPLEX_CST:
3744 case VECTOR_CST:
3745 case STRING_CST:
3746 return res;
3748 /* tcc_declaration */
3749 case CONST_DECL:
3750 return res;
3751 case VAR_DECL:
3752 case PARM_DECL:
3753 if (!is_gimple_reg (lhs)
3754 && !is_gimple_reg (rhs1)
3755 && is_gimple_reg_type (TREE_TYPE (lhs)))
3757 error ("invalid rhs for gimple memory store");
3758 debug_generic_stmt (lhs);
3759 debug_generic_stmt (rhs1);
3760 return true;
3762 return res;
3764 case COND_EXPR:
3765 if (!is_gimple_reg (lhs)
3766 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3767 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3768 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3769 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3770 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3771 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3773 error ("invalid COND_EXPR in gimple assignment");
3774 debug_generic_stmt (rhs1);
3775 return true;
3777 return res;
3779 case CONSTRUCTOR:
3780 case OBJ_TYPE_REF:
3781 case ASSERT_EXPR:
3782 case WITH_SIZE_EXPR:
3783 case POLYNOMIAL_CHREC:
3784 case DOT_PROD_EXPR:
3785 case VEC_COND_EXPR:
3786 case REALIGN_LOAD_EXPR:
3787 /* FIXME. */
3788 return res;
3790 default:;
3793 return res;
3796 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3797 is a problem, otherwise false. */
3799 static bool
3800 verify_gimple_assign (gimple stmt)
3802 switch (gimple_assign_rhs_class (stmt))
3804 case GIMPLE_SINGLE_RHS:
3805 return verify_gimple_assign_single (stmt);
3807 case GIMPLE_UNARY_RHS:
3808 return verify_gimple_assign_unary (stmt);
3810 case GIMPLE_BINARY_RHS:
3811 return verify_gimple_assign_binary (stmt);
3813 case GIMPLE_TERNARY_RHS:
3814 return verify_gimple_assign_ternary (stmt);
3816 default:
3817 gcc_unreachable ();
3821 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3822 is a problem, otherwise false. */
3824 static bool
3825 verify_gimple_return (gimple stmt)
3827 tree op = gimple_return_retval (stmt);
3828 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3830 /* We cannot test for present return values as we do not fix up missing
3831 return values from the original source. */
3832 if (op == NULL)
3833 return false;
3835 if (!is_gimple_val (op)
3836 && TREE_CODE (op) != RESULT_DECL)
3838 error ("invalid operand in return statement");
3839 debug_generic_stmt (op);
3840 return true;
3843 if ((TREE_CODE (op) == RESULT_DECL
3844 && DECL_BY_REFERENCE (op))
3845 || (TREE_CODE (op) == SSA_NAME
3846 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3847 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3848 op = TREE_TYPE (op);
3850 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3852 error ("invalid conversion in return statement");
3853 debug_generic_stmt (restype);
3854 debug_generic_stmt (TREE_TYPE (op));
3855 return true;
3858 return false;
3862 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3863 is a problem, otherwise false. */
3865 static bool
3866 verify_gimple_goto (gimple stmt)
3868 tree dest = gimple_goto_dest (stmt);
3870 /* ??? We have two canonical forms of direct goto destinations, a
3871 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3872 if (TREE_CODE (dest) != LABEL_DECL
3873 && (!is_gimple_val (dest)
3874 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3876 error ("goto destination is neither a label nor a pointer");
3877 return true;
3880 return false;
3883 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3884 is a problem, otherwise false. */
3886 static bool
3887 verify_gimple_switch (gimple stmt)
3889 if (!is_gimple_val (gimple_switch_index (stmt)))
3891 error ("invalid operand to switch statement");
3892 debug_generic_stmt (gimple_switch_index (stmt));
3893 return true;
3896 return false;
3900 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3901 and false otherwise. */
3903 static bool
3904 verify_gimple_phi (gimple stmt)
3906 tree type = TREE_TYPE (gimple_phi_result (stmt));
3907 unsigned i;
3909 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3911 error ("Invalid PHI result");
3912 return true;
3915 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3917 tree arg = gimple_phi_arg_def (stmt, i);
3918 if ((is_gimple_reg (gimple_phi_result (stmt))
3919 && !is_gimple_val (arg))
3920 || (!is_gimple_reg (gimple_phi_result (stmt))
3921 && !is_gimple_addressable (arg)))
3923 error ("Invalid PHI argument");
3924 debug_generic_stmt (arg);
3925 return true;
3927 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3929 error ("Incompatible types in PHI argument %u", i);
3930 debug_generic_stmt (type);
3931 debug_generic_stmt (TREE_TYPE (arg));
3932 return true;
3936 return false;
3940 /* Verify a gimple debug statement STMT.
3941 Returns true if anything is wrong. */
3943 static bool
3944 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3946 /* There isn't much that could be wrong in a gimple debug stmt. A
3947 gimple debug bind stmt, for example, maps a tree, that's usually
3948 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3949 component or member of an aggregate type, to another tree, that
3950 can be an arbitrary expression. These stmts expand into debug
3951 insns, and are converted to debug notes by var-tracking.c. */
3952 return false;
3956 /* Verify the GIMPLE statement STMT. Returns true if there is an
3957 error, otherwise false. */
3959 static bool
3960 verify_types_in_gimple_stmt (gimple stmt)
3962 switch (gimple_code (stmt))
3964 case GIMPLE_ASSIGN:
3965 return verify_gimple_assign (stmt);
3967 case GIMPLE_LABEL:
3968 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3970 case GIMPLE_CALL:
3971 return verify_gimple_call (stmt);
3973 case GIMPLE_COND:
3974 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3976 error ("invalid comparison code in gimple cond");
3977 return true;
3979 if (!(!gimple_cond_true_label (stmt)
3980 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
3981 || !(!gimple_cond_false_label (stmt)
3982 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
3984 error ("invalid labels in gimple cond");
3985 return true;
3988 return verify_gimple_comparison (boolean_type_node,
3989 gimple_cond_lhs (stmt),
3990 gimple_cond_rhs (stmt));
3992 case GIMPLE_GOTO:
3993 return verify_gimple_goto (stmt);
3995 case GIMPLE_SWITCH:
3996 return verify_gimple_switch (stmt);
3998 case GIMPLE_RETURN:
3999 return verify_gimple_return (stmt);
4001 case GIMPLE_ASM:
4002 return false;
4004 case GIMPLE_PHI:
4005 return verify_gimple_phi (stmt);
4007 /* Tuples that do not have tree operands. */
4008 case GIMPLE_NOP:
4009 case GIMPLE_PREDICT:
4010 case GIMPLE_RESX:
4011 case GIMPLE_EH_DISPATCH:
4012 case GIMPLE_EH_MUST_NOT_THROW:
4013 return false;
4015 CASE_GIMPLE_OMP:
4016 /* OpenMP directives are validated by the FE and never operated
4017 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4018 non-gimple expressions when the main index variable has had
4019 its address taken. This does not affect the loop itself
4020 because the header of an GIMPLE_OMP_FOR is merely used to determine
4021 how to setup the parallel iteration. */
4022 return false;
4024 case GIMPLE_DEBUG:
4025 return verify_gimple_debug (stmt);
4027 default:
4028 gcc_unreachable ();
4032 /* Verify the GIMPLE statements inside the sequence STMTS. */
4034 static bool
4035 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4037 gimple_stmt_iterator ittr;
4038 bool err = false;
4040 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4042 gimple stmt = gsi_stmt (ittr);
4044 switch (gimple_code (stmt))
4046 case GIMPLE_BIND:
4047 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4048 break;
4050 case GIMPLE_TRY:
4051 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4052 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4053 break;
4055 case GIMPLE_EH_FILTER:
4056 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4057 break;
4059 case GIMPLE_CATCH:
4060 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4061 break;
4063 default:
4065 bool err2 = verify_types_in_gimple_stmt (stmt);
4066 if (err2)
4067 debug_gimple_stmt (stmt);
4068 err |= err2;
4073 return err;
4077 /* Verify the GIMPLE statements inside the statement list STMTS. */
4079 void
4080 verify_types_in_gimple_seq (gimple_seq stmts)
4082 if (verify_types_in_gimple_seq_2 (stmts))
4083 internal_error ("verify_gimple failed");
4087 /* Verify STMT, return true if STMT is not in GIMPLE form.
4088 TODO: Implement type checking. */
4090 static bool
4091 verify_stmt (gimple_stmt_iterator *gsi)
4093 tree addr;
4094 struct walk_stmt_info wi;
4095 bool last_in_block = gsi_one_before_end_p (*gsi);
4096 gimple stmt = gsi_stmt (*gsi);
4097 int lp_nr;
4099 if (is_gimple_omp (stmt))
4101 /* OpenMP directives are validated by the FE and never operated
4102 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4103 non-gimple expressions when the main index variable has had
4104 its address taken. This does not affect the loop itself
4105 because the header of an GIMPLE_OMP_FOR is merely used to determine
4106 how to setup the parallel iteration. */
4107 return false;
4110 /* FIXME. The C frontend passes unpromoted arguments in case it
4111 didn't see a function declaration before the call. */
4112 if (is_gimple_call (stmt))
4114 tree decl;
4116 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4118 error ("invalid function in call statement");
4119 return true;
4122 decl = gimple_call_fndecl (stmt);
4123 if (decl
4124 && TREE_CODE (decl) == FUNCTION_DECL
4125 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4126 && (!DECL_PURE_P (decl))
4127 && (!TREE_READONLY (decl)))
4129 error ("invalid pure const state for function");
4130 return true;
4134 if (is_gimple_debug (stmt))
4135 return false;
4137 memset (&wi, 0, sizeof (wi));
4138 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4139 if (addr)
4141 debug_generic_expr (addr);
4142 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4143 debug_gimple_stmt (stmt);
4144 return true;
4147 /* If the statement is marked as part of an EH region, then it is
4148 expected that the statement could throw. Verify that when we
4149 have optimizations that simplify statements such that we prove
4150 that they cannot throw, that we update other data structures
4151 to match. */
4152 lp_nr = lookup_stmt_eh_lp (stmt);
4153 if (lp_nr != 0)
4155 if (!stmt_could_throw_p (stmt))
4157 error ("statement marked for throw, but doesn%'t");
4158 goto fail;
4160 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
4162 error ("statement marked for throw in middle of block");
4163 goto fail;
4167 return false;
4169 fail:
4170 debug_gimple_stmt (stmt);
4171 return true;
4175 /* Return true when the T can be shared. */
4177 bool
4178 tree_node_can_be_shared (tree t)
4180 if (IS_TYPE_OR_DECL_P (t)
4181 || is_gimple_min_invariant (t)
4182 || TREE_CODE (t) == SSA_NAME
4183 || t == error_mark_node
4184 || TREE_CODE (t) == IDENTIFIER_NODE)
4185 return true;
4187 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4188 return true;
4190 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4191 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4192 || TREE_CODE (t) == COMPONENT_REF
4193 || TREE_CODE (t) == REALPART_EXPR
4194 || TREE_CODE (t) == IMAGPART_EXPR)
4195 t = TREE_OPERAND (t, 0);
4197 if (DECL_P (t))
4198 return true;
4200 return false;
4204 /* Called via walk_gimple_stmt. Verify tree sharing. */
4206 static tree
4207 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4209 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4210 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4212 if (tree_node_can_be_shared (*tp))
4214 *walk_subtrees = false;
4215 return NULL;
4218 if (pointer_set_insert (visited, *tp))
4219 return *tp;
4221 return NULL;
4225 static bool eh_error_found;
4226 static int
4227 verify_eh_throw_stmt_node (void **slot, void *data)
4229 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4230 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4232 if (!pointer_set_contains (visited, node->stmt))
4234 error ("Dead STMT in EH table");
4235 debug_gimple_stmt (node->stmt);
4236 eh_error_found = true;
4238 return 1;
4242 /* Verify the GIMPLE statements in every basic block. */
4244 DEBUG_FUNCTION void
4245 verify_stmts (void)
4247 basic_block bb;
4248 gimple_stmt_iterator gsi;
4249 bool err = false;
4250 struct pointer_set_t *visited, *visited_stmts;
4251 tree addr;
4252 struct walk_stmt_info wi;
4254 timevar_push (TV_TREE_STMT_VERIFY);
4255 visited = pointer_set_create ();
4256 visited_stmts = pointer_set_create ();
4258 memset (&wi, 0, sizeof (wi));
4259 wi.info = (void *) visited;
4261 FOR_EACH_BB (bb)
4263 gimple phi;
4264 size_t i;
4266 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4268 phi = gsi_stmt (gsi);
4269 pointer_set_insert (visited_stmts, phi);
4270 if (gimple_bb (phi) != bb)
4272 error ("gimple_bb (phi) is set to a wrong basic block");
4273 err |= true;
4276 for (i = 0; i < gimple_phi_num_args (phi); i++)
4278 tree t = gimple_phi_arg_def (phi, i);
4279 tree addr;
4281 if (!t)
4283 error ("missing PHI def");
4284 debug_gimple_stmt (phi);
4285 err |= true;
4286 continue;
4288 /* Addressable variables do have SSA_NAMEs but they
4289 are not considered gimple values. */
4290 else if (TREE_CODE (t) != SSA_NAME
4291 && TREE_CODE (t) != FUNCTION_DECL
4292 && !is_gimple_min_invariant (t))
4294 error ("PHI argument is not a GIMPLE value");
4295 debug_gimple_stmt (phi);
4296 debug_generic_expr (t);
4297 err |= true;
4300 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4301 if (addr)
4303 error ("incorrect sharing of tree nodes");
4304 debug_gimple_stmt (phi);
4305 debug_generic_expr (addr);
4306 err |= true;
4310 #ifdef ENABLE_TYPES_CHECKING
4311 if (verify_gimple_phi (phi))
4313 debug_gimple_stmt (phi);
4314 err |= true;
4316 #endif
4319 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4321 gimple stmt = gsi_stmt (gsi);
4323 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4324 || gimple_code (stmt) == GIMPLE_BIND)
4326 error ("invalid GIMPLE statement");
4327 debug_gimple_stmt (stmt);
4328 err |= true;
4331 pointer_set_insert (visited_stmts, stmt);
4333 if (gimple_bb (stmt) != bb)
4335 error ("gimple_bb (stmt) is set to a wrong basic block");
4336 debug_gimple_stmt (stmt);
4337 err |= true;
4340 if (gimple_code (stmt) == GIMPLE_LABEL)
4342 tree decl = gimple_label_label (stmt);
4343 int uid = LABEL_DECL_UID (decl);
4345 if (uid == -1
4346 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4348 error ("incorrect entry in label_to_block_map");
4349 err |= true;
4352 uid = EH_LANDING_PAD_NR (decl);
4353 if (uid)
4355 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4356 if (decl != lp->post_landing_pad)
4358 error ("incorrect setting of landing pad number");
4359 err |= true;
4364 err |= verify_stmt (&gsi);
4366 #ifdef ENABLE_TYPES_CHECKING
4367 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4369 debug_gimple_stmt (stmt);
4370 err |= true;
4372 #endif
4373 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4374 if (addr)
4376 error ("incorrect sharing of tree nodes");
4377 debug_gimple_stmt (stmt);
4378 debug_generic_expr (addr);
4379 err |= true;
4381 gsi_next (&gsi);
4385 eh_error_found = false;
4386 if (get_eh_throw_stmt_table (cfun))
4387 htab_traverse (get_eh_throw_stmt_table (cfun),
4388 verify_eh_throw_stmt_node,
4389 visited_stmts);
4391 if (err | eh_error_found)
4392 internal_error ("verify_stmts failed");
4394 pointer_set_destroy (visited);
4395 pointer_set_destroy (visited_stmts);
4396 verify_histograms ();
4397 timevar_pop (TV_TREE_STMT_VERIFY);
4401 /* Verifies that the flow information is OK. */
4403 static int
4404 gimple_verify_flow_info (void)
4406 int err = 0;
4407 basic_block bb;
4408 gimple_stmt_iterator gsi;
4409 gimple stmt;
4410 edge e;
4411 edge_iterator ei;
4413 if (ENTRY_BLOCK_PTR->il.gimple)
4415 error ("ENTRY_BLOCK has IL associated with it");
4416 err = 1;
4419 if (EXIT_BLOCK_PTR->il.gimple)
4421 error ("EXIT_BLOCK has IL associated with it");
4422 err = 1;
4425 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4426 if (e->flags & EDGE_FALLTHRU)
4428 error ("fallthru to exit from bb %d", e->src->index);
4429 err = 1;
4432 FOR_EACH_BB (bb)
4434 bool found_ctrl_stmt = false;
4436 stmt = NULL;
4438 /* Skip labels on the start of basic block. */
4439 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4441 tree label;
4442 gimple prev_stmt = stmt;
4444 stmt = gsi_stmt (gsi);
4446 if (gimple_code (stmt) != GIMPLE_LABEL)
4447 break;
4449 label = gimple_label_label (stmt);
4450 if (prev_stmt && DECL_NONLOCAL (label))
4452 error ("nonlocal label ");
4453 print_generic_expr (stderr, label, 0);
4454 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4455 bb->index);
4456 err = 1;
4459 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4461 error ("EH landing pad label ");
4462 print_generic_expr (stderr, label, 0);
4463 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4464 bb->index);
4465 err = 1;
4468 if (label_to_block (label) != bb)
4470 error ("label ");
4471 print_generic_expr (stderr, label, 0);
4472 fprintf (stderr, " to block does not match in bb %d",
4473 bb->index);
4474 err = 1;
4477 if (decl_function_context (label) != current_function_decl)
4479 error ("label ");
4480 print_generic_expr (stderr, label, 0);
4481 fprintf (stderr, " has incorrect context in bb %d",
4482 bb->index);
4483 err = 1;
4487 /* Verify that body of basic block BB is free of control flow. */
4488 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4490 gimple stmt = gsi_stmt (gsi);
4492 if (found_ctrl_stmt)
4494 error ("control flow in the middle of basic block %d",
4495 bb->index);
4496 err = 1;
4499 if (stmt_ends_bb_p (stmt))
4500 found_ctrl_stmt = true;
4502 if (gimple_code (stmt) == GIMPLE_LABEL)
4504 error ("label ");
4505 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4506 fprintf (stderr, " in the middle of basic block %d", bb->index);
4507 err = 1;
4511 gsi = gsi_last_bb (bb);
4512 if (gsi_end_p (gsi))
4513 continue;
4515 stmt = gsi_stmt (gsi);
4517 if (gimple_code (stmt) == GIMPLE_LABEL)
4518 continue;
4520 err |= verify_eh_edges (stmt);
4522 if (is_ctrl_stmt (stmt))
4524 FOR_EACH_EDGE (e, ei, bb->succs)
4525 if (e->flags & EDGE_FALLTHRU)
4527 error ("fallthru edge after a control statement in bb %d",
4528 bb->index);
4529 err = 1;
4533 if (gimple_code (stmt) != GIMPLE_COND)
4535 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4536 after anything else but if statement. */
4537 FOR_EACH_EDGE (e, ei, bb->succs)
4538 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4540 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4541 bb->index);
4542 err = 1;
4546 switch (gimple_code (stmt))
4548 case GIMPLE_COND:
4550 edge true_edge;
4551 edge false_edge;
4553 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4555 if (!true_edge
4556 || !false_edge
4557 || !(true_edge->flags & EDGE_TRUE_VALUE)
4558 || !(false_edge->flags & EDGE_FALSE_VALUE)
4559 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4560 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4561 || EDGE_COUNT (bb->succs) >= 3)
4563 error ("wrong outgoing edge flags at end of bb %d",
4564 bb->index);
4565 err = 1;
4568 break;
4570 case GIMPLE_GOTO:
4571 if (simple_goto_p (stmt))
4573 error ("explicit goto at end of bb %d", bb->index);
4574 err = 1;
4576 else
4578 /* FIXME. We should double check that the labels in the
4579 destination blocks have their address taken. */
4580 FOR_EACH_EDGE (e, ei, bb->succs)
4581 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4582 | EDGE_FALSE_VALUE))
4583 || !(e->flags & EDGE_ABNORMAL))
4585 error ("wrong outgoing edge flags at end of bb %d",
4586 bb->index);
4587 err = 1;
4590 break;
4592 case GIMPLE_CALL:
4593 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4594 break;
4595 /* ... fallthru ... */
4596 case GIMPLE_RETURN:
4597 if (!single_succ_p (bb)
4598 || (single_succ_edge (bb)->flags
4599 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4600 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4602 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4603 err = 1;
4605 if (single_succ (bb) != EXIT_BLOCK_PTR)
4607 error ("return edge does not point to exit in bb %d",
4608 bb->index);
4609 err = 1;
4611 break;
4613 case GIMPLE_SWITCH:
4615 tree prev;
4616 edge e;
4617 size_t i, n;
4619 n = gimple_switch_num_labels (stmt);
4621 /* Mark all the destination basic blocks. */
4622 for (i = 0; i < n; ++i)
4624 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4625 basic_block label_bb = label_to_block (lab);
4626 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4627 label_bb->aux = (void *)1;
4630 /* Verify that the case labels are sorted. */
4631 prev = gimple_switch_label (stmt, 0);
4632 for (i = 1; i < n; ++i)
4634 tree c = gimple_switch_label (stmt, i);
4635 if (!CASE_LOW (c))
4637 error ("found default case not at the start of "
4638 "case vector");
4639 err = 1;
4640 continue;
4642 if (CASE_LOW (prev)
4643 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4645 error ("case labels not sorted: ");
4646 print_generic_expr (stderr, prev, 0);
4647 fprintf (stderr," is greater than ");
4648 print_generic_expr (stderr, c, 0);
4649 fprintf (stderr," but comes before it.\n");
4650 err = 1;
4652 prev = c;
4654 /* VRP will remove the default case if it can prove it will
4655 never be executed. So do not verify there always exists
4656 a default case here. */
4658 FOR_EACH_EDGE (e, ei, bb->succs)
4660 if (!e->dest->aux)
4662 error ("extra outgoing edge %d->%d",
4663 bb->index, e->dest->index);
4664 err = 1;
4667 e->dest->aux = (void *)2;
4668 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4669 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4671 error ("wrong outgoing edge flags at end of bb %d",
4672 bb->index);
4673 err = 1;
4677 /* Check that we have all of them. */
4678 for (i = 0; i < n; ++i)
4680 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4681 basic_block label_bb = label_to_block (lab);
4683 if (label_bb->aux != (void *)2)
4685 error ("missing edge %i->%i", bb->index, label_bb->index);
4686 err = 1;
4690 FOR_EACH_EDGE (e, ei, bb->succs)
4691 e->dest->aux = (void *)0;
4693 break;
4695 case GIMPLE_EH_DISPATCH:
4696 err |= verify_eh_dispatch_edge (stmt);
4697 break;
4699 default:
4700 break;
4704 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4705 verify_dominators (CDI_DOMINATORS);
4707 return err;
4711 /* Updates phi nodes after creating a forwarder block joined
4712 by edge FALLTHRU. */
4714 static void
4715 gimple_make_forwarder_block (edge fallthru)
4717 edge e;
4718 edge_iterator ei;
4719 basic_block dummy, bb;
4720 tree var;
4721 gimple_stmt_iterator gsi;
4723 dummy = fallthru->src;
4724 bb = fallthru->dest;
4726 if (single_pred_p (bb))
4727 return;
4729 /* If we redirected a branch we must create new PHI nodes at the
4730 start of BB. */
4731 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4733 gimple phi, new_phi;
4735 phi = gsi_stmt (gsi);
4736 var = gimple_phi_result (phi);
4737 new_phi = create_phi_node (var, bb);
4738 SSA_NAME_DEF_STMT (var) = new_phi;
4739 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4740 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4741 UNKNOWN_LOCATION);
4744 /* Add the arguments we have stored on edges. */
4745 FOR_EACH_EDGE (e, ei, bb->preds)
4747 if (e == fallthru)
4748 continue;
4750 flush_pending_stmts (e);
4755 /* Return a non-special label in the head of basic block BLOCK.
4756 Create one if it doesn't exist. */
4758 tree
4759 gimple_block_label (basic_block bb)
4761 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4762 bool first = true;
4763 tree label;
4764 gimple stmt;
4766 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4768 stmt = gsi_stmt (i);
4769 if (gimple_code (stmt) != GIMPLE_LABEL)
4770 break;
4771 label = gimple_label_label (stmt);
4772 if (!DECL_NONLOCAL (label))
4774 if (!first)
4775 gsi_move_before (&i, &s);
4776 return label;
4780 label = create_artificial_label (UNKNOWN_LOCATION);
4781 stmt = gimple_build_label (label);
4782 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4783 return label;
4787 /* Attempt to perform edge redirection by replacing a possibly complex
4788 jump instruction by a goto or by removing the jump completely.
4789 This can apply only if all edges now point to the same block. The
4790 parameters and return values are equivalent to
4791 redirect_edge_and_branch. */
4793 static edge
4794 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4796 basic_block src = e->src;
4797 gimple_stmt_iterator i;
4798 gimple stmt;
4800 /* We can replace or remove a complex jump only when we have exactly
4801 two edges. */
4802 if (EDGE_COUNT (src->succs) != 2
4803 /* Verify that all targets will be TARGET. Specifically, the
4804 edge that is not E must also go to TARGET. */
4805 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4806 return NULL;
4808 i = gsi_last_bb (src);
4809 if (gsi_end_p (i))
4810 return NULL;
4812 stmt = gsi_stmt (i);
4814 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4816 gsi_remove (&i, true);
4817 e = ssa_redirect_edge (e, target);
4818 e->flags = EDGE_FALLTHRU;
4819 return e;
4822 return NULL;
4826 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4827 edge representing the redirected branch. */
4829 static edge
4830 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4832 basic_block bb = e->src;
4833 gimple_stmt_iterator gsi;
4834 edge ret;
4835 gimple stmt;
4837 if (e->flags & EDGE_ABNORMAL)
4838 return NULL;
4840 if (e->dest == dest)
4841 return NULL;
4843 if (e->flags & EDGE_EH)
4844 return redirect_eh_edge (e, dest);
4846 if (e->src != ENTRY_BLOCK_PTR)
4848 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4849 if (ret)
4850 return ret;
4853 gsi = gsi_last_bb (bb);
4854 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4856 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4858 case GIMPLE_COND:
4859 /* For COND_EXPR, we only need to redirect the edge. */
4860 break;
4862 case GIMPLE_GOTO:
4863 /* No non-abnormal edges should lead from a non-simple goto, and
4864 simple ones should be represented implicitly. */
4865 gcc_unreachable ();
4867 case GIMPLE_SWITCH:
4869 tree label = gimple_block_label (dest);
4870 tree cases = get_cases_for_edge (e, stmt);
4872 /* If we have a list of cases associated with E, then use it
4873 as it's a lot faster than walking the entire case vector. */
4874 if (cases)
4876 edge e2 = find_edge (e->src, dest);
4877 tree last, first;
4879 first = cases;
4880 while (cases)
4882 last = cases;
4883 CASE_LABEL (cases) = label;
4884 cases = TREE_CHAIN (cases);
4887 /* If there was already an edge in the CFG, then we need
4888 to move all the cases associated with E to E2. */
4889 if (e2)
4891 tree cases2 = get_cases_for_edge (e2, stmt);
4893 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4894 TREE_CHAIN (cases2) = first;
4896 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4898 else
4900 size_t i, n = gimple_switch_num_labels (stmt);
4902 for (i = 0; i < n; i++)
4904 tree elt = gimple_switch_label (stmt, i);
4905 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4906 CASE_LABEL (elt) = label;
4910 break;
4912 case GIMPLE_ASM:
4914 int i, n = gimple_asm_nlabels (stmt);
4915 tree label = NULL;
4917 for (i = 0; i < n; ++i)
4919 tree cons = gimple_asm_label_op (stmt, i);
4920 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4922 if (!label)
4923 label = gimple_block_label (dest);
4924 TREE_VALUE (cons) = label;
4928 /* If we didn't find any label matching the former edge in the
4929 asm labels, we must be redirecting the fallthrough
4930 edge. */
4931 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4933 break;
4935 case GIMPLE_RETURN:
4936 gsi_remove (&gsi, true);
4937 e->flags |= EDGE_FALLTHRU;
4938 break;
4940 case GIMPLE_OMP_RETURN:
4941 case GIMPLE_OMP_CONTINUE:
4942 case GIMPLE_OMP_SECTIONS_SWITCH:
4943 case GIMPLE_OMP_FOR:
4944 /* The edges from OMP constructs can be simply redirected. */
4945 break;
4947 case GIMPLE_EH_DISPATCH:
4948 if (!(e->flags & EDGE_FALLTHRU))
4949 redirect_eh_dispatch_edge (stmt, e, dest);
4950 break;
4952 default:
4953 /* Otherwise it must be a fallthru edge, and we don't need to
4954 do anything besides redirecting it. */
4955 gcc_assert (e->flags & EDGE_FALLTHRU);
4956 break;
4959 /* Update/insert PHI nodes as necessary. */
4961 /* Now update the edges in the CFG. */
4962 e = ssa_redirect_edge (e, dest);
4964 return e;
4967 /* Returns true if it is possible to remove edge E by redirecting
4968 it to the destination of the other edge from E->src. */
4970 static bool
4971 gimple_can_remove_branch_p (const_edge e)
4973 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4974 return false;
4976 return true;
4979 /* Simple wrapper, as we can always redirect fallthru edges. */
4981 static basic_block
4982 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4984 e = gimple_redirect_edge_and_branch (e, dest);
4985 gcc_assert (e);
4987 return NULL;
4991 /* Splits basic block BB after statement STMT (but at least after the
4992 labels). If STMT is NULL, BB is split just after the labels. */
4994 static basic_block
4995 gimple_split_block (basic_block bb, void *stmt)
4997 gimple_stmt_iterator gsi;
4998 gimple_stmt_iterator gsi_tgt;
4999 gimple act;
5000 gimple_seq list;
5001 basic_block new_bb;
5002 edge e;
5003 edge_iterator ei;
5005 new_bb = create_empty_bb (bb);
5007 /* Redirect the outgoing edges. */
5008 new_bb->succs = bb->succs;
5009 bb->succs = NULL;
5010 FOR_EACH_EDGE (e, ei, new_bb->succs)
5011 e->src = new_bb;
5013 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5014 stmt = NULL;
5016 /* Move everything from GSI to the new basic block. */
5017 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5019 act = gsi_stmt (gsi);
5020 if (gimple_code (act) == GIMPLE_LABEL)
5021 continue;
5023 if (!stmt)
5024 break;
5026 if (stmt == act)
5028 gsi_next (&gsi);
5029 break;
5033 if (gsi_end_p (gsi))
5034 return new_bb;
5036 /* Split the statement list - avoid re-creating new containers as this
5037 brings ugly quadratic memory consumption in the inliner.
5038 (We are still quadratic since we need to update stmt BB pointers,
5039 sadly.) */
5040 list = gsi_split_seq_before (&gsi);
5041 set_bb_seq (new_bb, list);
5042 for (gsi_tgt = gsi_start (list);
5043 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5044 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5046 return new_bb;
5050 /* Moves basic block BB after block AFTER. */
5052 static bool
5053 gimple_move_block_after (basic_block bb, basic_block after)
5055 if (bb->prev_bb == after)
5056 return true;
5058 unlink_block (bb);
5059 link_block (bb, after);
5061 return true;
5065 /* Return true if basic_block can be duplicated. */
5067 static bool
5068 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5070 return true;
5073 /* Create a duplicate of the basic block BB. NOTE: This does not
5074 preserve SSA form. */
5076 static basic_block
5077 gimple_duplicate_bb (basic_block bb)
5079 basic_block new_bb;
5080 gimple_stmt_iterator gsi, gsi_tgt;
5081 gimple_seq phis = phi_nodes (bb);
5082 gimple phi, stmt, copy;
5084 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5086 /* Copy the PHI nodes. We ignore PHI node arguments here because
5087 the incoming edges have not been setup yet. */
5088 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5090 phi = gsi_stmt (gsi);
5091 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5092 create_new_def_for (gimple_phi_result (copy), copy,
5093 gimple_phi_result_ptr (copy));
5096 gsi_tgt = gsi_start_bb (new_bb);
5097 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5099 def_operand_p def_p;
5100 ssa_op_iter op_iter;
5102 stmt = gsi_stmt (gsi);
5103 if (gimple_code (stmt) == GIMPLE_LABEL)
5104 continue;
5106 /* Create a new copy of STMT and duplicate STMT's virtual
5107 operands. */
5108 copy = gimple_copy (stmt);
5109 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5111 maybe_duplicate_eh_stmt (copy, stmt);
5112 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5114 /* Create new names for all the definitions created by COPY and
5115 add replacement mappings for each new name. */
5116 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5117 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5120 return new_bb;
5123 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5125 static void
5126 add_phi_args_after_copy_edge (edge e_copy)
5128 basic_block bb, bb_copy = e_copy->src, dest;
5129 edge e;
5130 edge_iterator ei;
5131 gimple phi, phi_copy;
5132 tree def;
5133 gimple_stmt_iterator psi, psi_copy;
5135 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5136 return;
5138 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5140 if (e_copy->dest->flags & BB_DUPLICATED)
5141 dest = get_bb_original (e_copy->dest);
5142 else
5143 dest = e_copy->dest;
5145 e = find_edge (bb, dest);
5146 if (!e)
5148 /* During loop unrolling the target of the latch edge is copied.
5149 In this case we are not looking for edge to dest, but to
5150 duplicated block whose original was dest. */
5151 FOR_EACH_EDGE (e, ei, bb->succs)
5153 if ((e->dest->flags & BB_DUPLICATED)
5154 && get_bb_original (e->dest) == dest)
5155 break;
5158 gcc_assert (e != NULL);
5161 for (psi = gsi_start_phis (e->dest),
5162 psi_copy = gsi_start_phis (e_copy->dest);
5163 !gsi_end_p (psi);
5164 gsi_next (&psi), gsi_next (&psi_copy))
5166 phi = gsi_stmt (psi);
5167 phi_copy = gsi_stmt (psi_copy);
5168 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5169 add_phi_arg (phi_copy, def, e_copy,
5170 gimple_phi_arg_location_from_edge (phi, e));
5175 /* Basic block BB_COPY was created by code duplication. Add phi node
5176 arguments for edges going out of BB_COPY. The blocks that were
5177 duplicated have BB_DUPLICATED set. */
5179 void
5180 add_phi_args_after_copy_bb (basic_block bb_copy)
5182 edge e_copy;
5183 edge_iterator ei;
5185 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5187 add_phi_args_after_copy_edge (e_copy);
5191 /* Blocks in REGION_COPY array of length N_REGION were created by
5192 duplication of basic blocks. Add phi node arguments for edges
5193 going from these blocks. If E_COPY is not NULL, also add
5194 phi node arguments for its destination.*/
5196 void
5197 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5198 edge e_copy)
5200 unsigned i;
5202 for (i = 0; i < n_region; i++)
5203 region_copy[i]->flags |= BB_DUPLICATED;
5205 for (i = 0; i < n_region; i++)
5206 add_phi_args_after_copy_bb (region_copy[i]);
5207 if (e_copy)
5208 add_phi_args_after_copy_edge (e_copy);
5210 for (i = 0; i < n_region; i++)
5211 region_copy[i]->flags &= ~BB_DUPLICATED;
5214 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5215 important exit edge EXIT. By important we mean that no SSA name defined
5216 inside region is live over the other exit edges of the region. All entry
5217 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5218 to the duplicate of the region. SSA form, dominance and loop information
5219 is updated. The new basic blocks are stored to REGION_COPY in the same
5220 order as they had in REGION, provided that REGION_COPY is not NULL.
5221 The function returns false if it is unable to copy the region,
5222 true otherwise. */
5224 bool
5225 gimple_duplicate_sese_region (edge entry, edge exit,
5226 basic_block *region, unsigned n_region,
5227 basic_block *region_copy)
5229 unsigned i;
5230 bool free_region_copy = false, copying_header = false;
5231 struct loop *loop = entry->dest->loop_father;
5232 edge exit_copy;
5233 VEC (basic_block, heap) *doms;
5234 edge redirected;
5235 int total_freq = 0, entry_freq = 0;
5236 gcov_type total_count = 0, entry_count = 0;
5238 if (!can_copy_bbs_p (region, n_region))
5239 return false;
5241 /* Some sanity checking. Note that we do not check for all possible
5242 missuses of the functions. I.e. if you ask to copy something weird,
5243 it will work, but the state of structures probably will not be
5244 correct. */
5245 for (i = 0; i < n_region; i++)
5247 /* We do not handle subloops, i.e. all the blocks must belong to the
5248 same loop. */
5249 if (region[i]->loop_father != loop)
5250 return false;
5252 if (region[i] != entry->dest
5253 && region[i] == loop->header)
5254 return false;
5257 set_loop_copy (loop, loop);
5259 /* In case the function is used for loop header copying (which is the primary
5260 use), ensure that EXIT and its copy will be new latch and entry edges. */
5261 if (loop->header == entry->dest)
5263 copying_header = true;
5264 set_loop_copy (loop, loop_outer (loop));
5266 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5267 return false;
5269 for (i = 0; i < n_region; i++)
5270 if (region[i] != exit->src
5271 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5272 return false;
5275 if (!region_copy)
5277 region_copy = XNEWVEC (basic_block, n_region);
5278 free_region_copy = true;
5281 gcc_assert (!need_ssa_update_p (cfun));
5283 /* Record blocks outside the region that are dominated by something
5284 inside. */
5285 doms = NULL;
5286 initialize_original_copy_tables ();
5288 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5290 if (entry->dest->count)
5292 total_count = entry->dest->count;
5293 entry_count = entry->count;
5294 /* Fix up corner cases, to avoid division by zero or creation of negative
5295 frequencies. */
5296 if (entry_count > total_count)
5297 entry_count = total_count;
5299 else
5301 total_freq = entry->dest->frequency;
5302 entry_freq = EDGE_FREQUENCY (entry);
5303 /* Fix up corner cases, to avoid division by zero or creation of negative
5304 frequencies. */
5305 if (total_freq == 0)
5306 total_freq = 1;
5307 else if (entry_freq > total_freq)
5308 entry_freq = total_freq;
5311 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5312 split_edge_bb_loc (entry));
5313 if (total_count)
5315 scale_bbs_frequencies_gcov_type (region, n_region,
5316 total_count - entry_count,
5317 total_count);
5318 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5319 total_count);
5321 else
5323 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5324 total_freq);
5325 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5328 if (copying_header)
5330 loop->header = exit->dest;
5331 loop->latch = exit->src;
5334 /* Redirect the entry and add the phi node arguments. */
5335 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5336 gcc_assert (redirected != NULL);
5337 flush_pending_stmts (entry);
5339 /* Concerning updating of dominators: We must recount dominators
5340 for entry block and its copy. Anything that is outside of the
5341 region, but was dominated by something inside needs recounting as
5342 well. */
5343 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5344 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5345 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5346 VEC_free (basic_block, heap, doms);
5348 /* Add the other PHI node arguments. */
5349 add_phi_args_after_copy (region_copy, n_region, NULL);
5351 /* Update the SSA web. */
5352 update_ssa (TODO_update_ssa);
5354 if (free_region_copy)
5355 free (region_copy);
5357 free_original_copy_tables ();
5358 return true;
5361 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5362 are stored to REGION_COPY in the same order in that they appear
5363 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5364 the region, EXIT an exit from it. The condition guarding EXIT
5365 is moved to ENTRY. Returns true if duplication succeeds, false
5366 otherwise.
5368 For example,
5370 some_code;
5371 if (cond)
5373 else
5376 is transformed to
5378 if (cond)
5380 some_code;
5383 else
5385 some_code;
5390 bool
5391 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5392 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5393 basic_block *region_copy ATTRIBUTE_UNUSED)
5395 unsigned i;
5396 bool free_region_copy = false;
5397 struct loop *loop = exit->dest->loop_father;
5398 struct loop *orig_loop = entry->dest->loop_father;
5399 basic_block switch_bb, entry_bb, nentry_bb;
5400 VEC (basic_block, heap) *doms;
5401 int total_freq = 0, exit_freq = 0;
5402 gcov_type total_count = 0, exit_count = 0;
5403 edge exits[2], nexits[2], e;
5404 gimple_stmt_iterator gsi,gsi1;
5405 gimple cond_stmt;
5406 edge sorig, snew;
5407 basic_block exit_bb;
5408 basic_block iters_bb;
5409 tree new_rhs;
5410 gimple_stmt_iterator psi;
5411 gimple phi;
5412 tree def;
5414 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5415 exits[0] = exit;
5416 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5418 if (!can_copy_bbs_p (region, n_region))
5419 return false;
5421 initialize_original_copy_tables ();
5422 set_loop_copy (orig_loop, loop);
5423 duplicate_subloops (orig_loop, loop);
5425 if (!region_copy)
5427 region_copy = XNEWVEC (basic_block, n_region);
5428 free_region_copy = true;
5431 gcc_assert (!need_ssa_update_p (cfun));
5433 /* Record blocks outside the region that are dominated by something
5434 inside. */
5435 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5437 if (exit->src->count)
5439 total_count = exit->src->count;
5440 exit_count = exit->count;
5441 /* Fix up corner cases, to avoid division by zero or creation of negative
5442 frequencies. */
5443 if (exit_count > total_count)
5444 exit_count = total_count;
5446 else
5448 total_freq = exit->src->frequency;
5449 exit_freq = EDGE_FREQUENCY (exit);
5450 /* Fix up corner cases, to avoid division by zero or creation of negative
5451 frequencies. */
5452 if (total_freq == 0)
5453 total_freq = 1;
5454 if (exit_freq > total_freq)
5455 exit_freq = total_freq;
5458 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5459 split_edge_bb_loc (exit));
5460 if (total_count)
5462 scale_bbs_frequencies_gcov_type (region, n_region,
5463 total_count - exit_count,
5464 total_count);
5465 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5466 total_count);
5468 else
5470 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5471 total_freq);
5472 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5475 /* Create the switch block, and put the exit condition to it. */
5476 entry_bb = entry->dest;
5477 nentry_bb = get_bb_copy (entry_bb);
5478 if (!last_stmt (entry->src)
5479 || !stmt_ends_bb_p (last_stmt (entry->src)))
5480 switch_bb = entry->src;
5481 else
5482 switch_bb = split_edge (entry);
5483 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5485 gsi = gsi_last_bb (switch_bb);
5486 cond_stmt = last_stmt (exit->src);
5487 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5488 cond_stmt = gimple_copy (cond_stmt);
5490 /* If the block consisting of the exit condition has the latch as
5491 successor, then the body of the loop is executed before
5492 the exit condition is tested. In such case, moving the
5493 condition to the entry, causes that the loop will iterate
5494 one less iteration (which is the wanted outcome, since we
5495 peel out the last iteration). If the body is executed after
5496 the condition, moving the condition to the entry requires
5497 decrementing one iteration. */
5498 if (exits[1]->dest == orig_loop->latch)
5499 new_rhs = gimple_cond_rhs (cond_stmt);
5500 else
5502 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5503 gimple_cond_rhs (cond_stmt),
5504 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5506 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5508 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5509 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5510 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5511 break;
5513 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5514 NULL_TREE,false,GSI_CONTINUE_LINKING);
5517 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5518 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5519 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5521 sorig = single_succ_edge (switch_bb);
5522 sorig->flags = exits[1]->flags;
5523 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5525 /* Register the new edge from SWITCH_BB in loop exit lists. */
5526 rescan_loop_exit (snew, true, false);
5528 /* Add the PHI node arguments. */
5529 add_phi_args_after_copy (region_copy, n_region, snew);
5531 /* Get rid of now superfluous conditions and associated edges (and phi node
5532 arguments). */
5533 exit_bb = exit->dest;
5535 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5536 PENDING_STMT (e) = NULL;
5538 /* The latch of ORIG_LOOP was copied, and so was the backedge
5539 to the original header. We redirect this backedge to EXIT_BB. */
5540 for (i = 0; i < n_region; i++)
5541 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5543 gcc_assert (single_succ_edge (region_copy[i]));
5544 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5545 PENDING_STMT (e) = NULL;
5546 for (psi = gsi_start_phis (exit_bb);
5547 !gsi_end_p (psi);
5548 gsi_next (&psi))
5550 phi = gsi_stmt (psi);
5551 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5552 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5555 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5556 PENDING_STMT (e) = NULL;
5558 /* Anything that is outside of the region, but was dominated by something
5559 inside needs to update dominance info. */
5560 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5561 VEC_free (basic_block, heap, doms);
5562 /* Update the SSA web. */
5563 update_ssa (TODO_update_ssa);
5565 if (free_region_copy)
5566 free (region_copy);
5568 free_original_copy_tables ();
5569 return true;
5572 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5573 adding blocks when the dominator traversal reaches EXIT. This
5574 function silently assumes that ENTRY strictly dominates EXIT. */
5576 void
5577 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5578 VEC(basic_block,heap) **bbs_p)
5580 basic_block son;
5582 for (son = first_dom_son (CDI_DOMINATORS, entry);
5583 son;
5584 son = next_dom_son (CDI_DOMINATORS, son))
5586 VEC_safe_push (basic_block, heap, *bbs_p, son);
5587 if (son != exit)
5588 gather_blocks_in_sese_region (son, exit, bbs_p);
5592 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5593 The duplicates are recorded in VARS_MAP. */
5595 static void
5596 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5597 tree to_context)
5599 tree t = *tp, new_t;
5600 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5601 void **loc;
5603 if (DECL_CONTEXT (t) == to_context)
5604 return;
5606 loc = pointer_map_contains (vars_map, t);
5608 if (!loc)
5610 loc = pointer_map_insert (vars_map, t);
5612 if (SSA_VAR_P (t))
5614 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5615 add_local_decl (f, new_t);
5617 else
5619 gcc_assert (TREE_CODE (t) == CONST_DECL);
5620 new_t = copy_node (t);
5622 DECL_CONTEXT (new_t) = to_context;
5624 *loc = new_t;
5626 else
5627 new_t = (tree) *loc;
5629 *tp = new_t;
5633 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5634 VARS_MAP maps old ssa names and var_decls to the new ones. */
5636 static tree
5637 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5638 tree to_context)
5640 void **loc;
5641 tree new_name, decl = SSA_NAME_VAR (name);
5643 gcc_assert (is_gimple_reg (name));
5645 loc = pointer_map_contains (vars_map, name);
5647 if (!loc)
5649 replace_by_duplicate_decl (&decl, vars_map, to_context);
5651 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5652 if (gimple_in_ssa_p (cfun))
5653 add_referenced_var (decl);
5655 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5656 if (SSA_NAME_IS_DEFAULT_DEF (name))
5657 set_default_def (decl, new_name);
5658 pop_cfun ();
5660 loc = pointer_map_insert (vars_map, name);
5661 *loc = new_name;
5663 else
5664 new_name = (tree) *loc;
5666 return new_name;
5669 struct move_stmt_d
5671 tree orig_block;
5672 tree new_block;
5673 tree from_context;
5674 tree to_context;
5675 struct pointer_map_t *vars_map;
5676 htab_t new_label_map;
5677 struct pointer_map_t *eh_map;
5678 bool remap_decls_p;
5681 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5682 contained in *TP if it has been ORIG_BLOCK previously and change the
5683 DECL_CONTEXT of every local variable referenced in *TP. */
5685 static tree
5686 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5688 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5689 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5690 tree t = *tp;
5692 if (EXPR_P (t))
5693 /* We should never have TREE_BLOCK set on non-statements. */
5694 gcc_assert (!TREE_BLOCK (t));
5696 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5698 if (TREE_CODE (t) == SSA_NAME)
5699 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5700 else if (TREE_CODE (t) == LABEL_DECL)
5702 if (p->new_label_map)
5704 struct tree_map in, *out;
5705 in.base.from = t;
5706 out = (struct tree_map *)
5707 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5708 if (out)
5709 *tp = t = out->to;
5712 DECL_CONTEXT (t) = p->to_context;
5714 else if (p->remap_decls_p)
5716 /* Replace T with its duplicate. T should no longer appear in the
5717 parent function, so this looks wasteful; however, it may appear
5718 in referenced_vars, and more importantly, as virtual operands of
5719 statements, and in alias lists of other variables. It would be
5720 quite difficult to expunge it from all those places. ??? It might
5721 suffice to do this for addressable variables. */
5722 if ((TREE_CODE (t) == VAR_DECL
5723 && !is_global_var (t))
5724 || TREE_CODE (t) == CONST_DECL)
5725 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5727 if (SSA_VAR_P (t)
5728 && gimple_in_ssa_p (cfun))
5730 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5731 add_referenced_var (*tp);
5732 pop_cfun ();
5735 *walk_subtrees = 0;
5737 else if (TYPE_P (t))
5738 *walk_subtrees = 0;
5740 return NULL_TREE;
5743 /* Helper for move_stmt_r. Given an EH region number for the source
5744 function, map that to the duplicate EH regio number in the dest. */
5746 static int
5747 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5749 eh_region old_r, new_r;
5750 void **slot;
5752 old_r = get_eh_region_from_number (old_nr);
5753 slot = pointer_map_contains (p->eh_map, old_r);
5754 new_r = (eh_region) *slot;
5756 return new_r->index;
5759 /* Similar, but operate on INTEGER_CSTs. */
5761 static tree
5762 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5764 int old_nr, new_nr;
5766 old_nr = tree_low_cst (old_t_nr, 0);
5767 new_nr = move_stmt_eh_region_nr (old_nr, p);
5769 return build_int_cst (NULL, new_nr);
5772 /* Like move_stmt_op, but for gimple statements.
5774 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5775 contained in the current statement in *GSI_P and change the
5776 DECL_CONTEXT of every local variable referenced in the current
5777 statement. */
5779 static tree
5780 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5781 struct walk_stmt_info *wi)
5783 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5784 gimple stmt = gsi_stmt (*gsi_p);
5785 tree block = gimple_block (stmt);
5787 if (p->orig_block == NULL_TREE
5788 || block == p->orig_block
5789 || block == NULL_TREE)
5790 gimple_set_block (stmt, p->new_block);
5791 #ifdef ENABLE_CHECKING
5792 else if (block != p->new_block)
5794 while (block && block != p->orig_block)
5795 block = BLOCK_SUPERCONTEXT (block);
5796 gcc_assert (block);
5798 #endif
5800 switch (gimple_code (stmt))
5802 case GIMPLE_CALL:
5803 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5805 tree r, fndecl = gimple_call_fndecl (stmt);
5806 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5807 switch (DECL_FUNCTION_CODE (fndecl))
5809 case BUILT_IN_EH_COPY_VALUES:
5810 r = gimple_call_arg (stmt, 1);
5811 r = move_stmt_eh_region_tree_nr (r, p);
5812 gimple_call_set_arg (stmt, 1, r);
5813 /* FALLTHRU */
5815 case BUILT_IN_EH_POINTER:
5816 case BUILT_IN_EH_FILTER:
5817 r = gimple_call_arg (stmt, 0);
5818 r = move_stmt_eh_region_tree_nr (r, p);
5819 gimple_call_set_arg (stmt, 0, r);
5820 break;
5822 default:
5823 break;
5826 break;
5828 case GIMPLE_RESX:
5830 int r = gimple_resx_region (stmt);
5831 r = move_stmt_eh_region_nr (r, p);
5832 gimple_resx_set_region (stmt, r);
5834 break;
5836 case GIMPLE_EH_DISPATCH:
5838 int r = gimple_eh_dispatch_region (stmt);
5839 r = move_stmt_eh_region_nr (r, p);
5840 gimple_eh_dispatch_set_region (stmt, r);
5842 break;
5844 case GIMPLE_OMP_RETURN:
5845 case GIMPLE_OMP_CONTINUE:
5846 break;
5847 default:
5848 if (is_gimple_omp (stmt))
5850 /* Do not remap variables inside OMP directives. Variables
5851 referenced in clauses and directive header belong to the
5852 parent function and should not be moved into the child
5853 function. */
5854 bool save_remap_decls_p = p->remap_decls_p;
5855 p->remap_decls_p = false;
5856 *handled_ops_p = true;
5858 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5859 move_stmt_op, wi);
5861 p->remap_decls_p = save_remap_decls_p;
5863 break;
5866 return NULL_TREE;
5869 /* Move basic block BB from function CFUN to function DEST_FN. The
5870 block is moved out of the original linked list and placed after
5871 block AFTER in the new list. Also, the block is removed from the
5872 original array of blocks and placed in DEST_FN's array of blocks.
5873 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5874 updated to reflect the moved edges.
5876 The local variables are remapped to new instances, VARS_MAP is used
5877 to record the mapping. */
5879 static void
5880 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5881 basic_block after, bool update_edge_count_p,
5882 struct move_stmt_d *d)
5884 struct control_flow_graph *cfg;
5885 edge_iterator ei;
5886 edge e;
5887 gimple_stmt_iterator si;
5888 unsigned old_len, new_len;
5890 /* Remove BB from dominance structures. */
5891 delete_from_dominance_info (CDI_DOMINATORS, bb);
5892 if (current_loops)
5893 remove_bb_from_loops (bb);
5895 /* Link BB to the new linked list. */
5896 move_block_after (bb, after);
5898 /* Update the edge count in the corresponding flowgraphs. */
5899 if (update_edge_count_p)
5900 FOR_EACH_EDGE (e, ei, bb->succs)
5902 cfun->cfg->x_n_edges--;
5903 dest_cfun->cfg->x_n_edges++;
5906 /* Remove BB from the original basic block array. */
5907 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5908 cfun->cfg->x_n_basic_blocks--;
5910 /* Grow DEST_CFUN's basic block array if needed. */
5911 cfg = dest_cfun->cfg;
5912 cfg->x_n_basic_blocks++;
5913 if (bb->index >= cfg->x_last_basic_block)
5914 cfg->x_last_basic_block = bb->index + 1;
5916 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5917 if ((unsigned) cfg->x_last_basic_block >= old_len)
5919 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5920 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5921 new_len);
5924 VEC_replace (basic_block, cfg->x_basic_block_info,
5925 bb->index, bb);
5927 /* Remap the variables in phi nodes. */
5928 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5930 gimple phi = gsi_stmt (si);
5931 use_operand_p use;
5932 tree op = PHI_RESULT (phi);
5933 ssa_op_iter oi;
5935 if (!is_gimple_reg (op))
5937 /* Remove the phi nodes for virtual operands (alias analysis will be
5938 run for the new function, anyway). */
5939 remove_phi_node (&si, true);
5940 continue;
5943 SET_PHI_RESULT (phi,
5944 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5945 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5947 op = USE_FROM_PTR (use);
5948 if (TREE_CODE (op) == SSA_NAME)
5949 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5952 gsi_next (&si);
5955 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5957 gimple stmt = gsi_stmt (si);
5958 struct walk_stmt_info wi;
5960 memset (&wi, 0, sizeof (wi));
5961 wi.info = d;
5962 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5964 if (gimple_code (stmt) == GIMPLE_LABEL)
5966 tree label = gimple_label_label (stmt);
5967 int uid = LABEL_DECL_UID (label);
5969 gcc_assert (uid > -1);
5971 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5972 if (old_len <= (unsigned) uid)
5974 new_len = 3 * uid / 2 + 1;
5975 VEC_safe_grow_cleared (basic_block, gc,
5976 cfg->x_label_to_block_map, new_len);
5979 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5980 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5982 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5984 if (uid >= dest_cfun->cfg->last_label_uid)
5985 dest_cfun->cfg->last_label_uid = uid + 1;
5988 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5989 remove_stmt_from_eh_lp_fn (cfun, stmt);
5991 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5992 gimple_remove_stmt_histograms (cfun, stmt);
5994 /* We cannot leave any operands allocated from the operand caches of
5995 the current function. */
5996 free_stmt_operands (stmt);
5997 push_cfun (dest_cfun);
5998 update_stmt (stmt);
5999 pop_cfun ();
6002 FOR_EACH_EDGE (e, ei, bb->succs)
6003 if (e->goto_locus)
6005 tree block = e->goto_block;
6006 if (d->orig_block == NULL_TREE
6007 || block == d->orig_block)
6008 e->goto_block = d->new_block;
6009 #ifdef ENABLE_CHECKING
6010 else if (block != d->new_block)
6012 while (block && block != d->orig_block)
6013 block = BLOCK_SUPERCONTEXT (block);
6014 gcc_assert (block);
6016 #endif
6020 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6021 the outermost EH region. Use REGION as the incoming base EH region. */
6023 static eh_region
6024 find_outermost_region_in_block (struct function *src_cfun,
6025 basic_block bb, eh_region region)
6027 gimple_stmt_iterator si;
6029 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6031 gimple stmt = gsi_stmt (si);
6032 eh_region stmt_region;
6033 int lp_nr;
6035 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6036 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6037 if (stmt_region)
6039 if (region == NULL)
6040 region = stmt_region;
6041 else if (stmt_region != region)
6043 region = eh_region_outermost (src_cfun, stmt_region, region);
6044 gcc_assert (region != NULL);
6049 return region;
6052 static tree
6053 new_label_mapper (tree decl, void *data)
6055 htab_t hash = (htab_t) data;
6056 struct tree_map *m;
6057 void **slot;
6059 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6061 m = XNEW (struct tree_map);
6062 m->hash = DECL_UID (decl);
6063 m->base.from = decl;
6064 m->to = create_artificial_label (UNKNOWN_LOCATION);
6065 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6066 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6067 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6069 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6070 gcc_assert (*slot == NULL);
6072 *slot = m;
6074 return m->to;
6077 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6078 subblocks. */
6080 static void
6081 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6082 tree to_context)
6084 tree *tp, t;
6086 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6088 t = *tp;
6089 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6090 continue;
6091 replace_by_duplicate_decl (&t, vars_map, to_context);
6092 if (t != *tp)
6094 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6096 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6097 DECL_HAS_VALUE_EXPR_P (t) = 1;
6099 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6100 *tp = t;
6104 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6105 replace_block_vars_by_duplicates (block, vars_map, to_context);
6108 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6109 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6110 single basic block in the original CFG and the new basic block is
6111 returned. DEST_CFUN must not have a CFG yet.
6113 Note that the region need not be a pure SESE region. Blocks inside
6114 the region may contain calls to abort/exit. The only restriction
6115 is that ENTRY_BB should be the only entry point and it must
6116 dominate EXIT_BB.
6118 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6119 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6120 to the new function.
6122 All local variables referenced in the region are assumed to be in
6123 the corresponding BLOCK_VARS and unexpanded variable lists
6124 associated with DEST_CFUN. */
6126 basic_block
6127 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6128 basic_block exit_bb, tree orig_block)
6130 VEC(basic_block,heap) *bbs, *dom_bbs;
6131 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6132 basic_block after, bb, *entry_pred, *exit_succ, abb;
6133 struct function *saved_cfun = cfun;
6134 int *entry_flag, *exit_flag;
6135 unsigned *entry_prob, *exit_prob;
6136 unsigned i, num_entry_edges, num_exit_edges;
6137 edge e;
6138 edge_iterator ei;
6139 htab_t new_label_map;
6140 struct pointer_map_t *vars_map, *eh_map;
6141 struct loop *loop = entry_bb->loop_father;
6142 struct move_stmt_d d;
6144 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6145 region. */
6146 gcc_assert (entry_bb != exit_bb
6147 && (!exit_bb
6148 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6150 /* Collect all the blocks in the region. Manually add ENTRY_BB
6151 because it won't be added by dfs_enumerate_from. */
6152 bbs = NULL;
6153 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6154 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6156 /* The blocks that used to be dominated by something in BBS will now be
6157 dominated by the new block. */
6158 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6159 VEC_address (basic_block, bbs),
6160 VEC_length (basic_block, bbs));
6162 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6163 the predecessor edges to ENTRY_BB and the successor edges to
6164 EXIT_BB so that we can re-attach them to the new basic block that
6165 will replace the region. */
6166 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6167 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6168 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6169 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6170 i = 0;
6171 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6173 entry_prob[i] = e->probability;
6174 entry_flag[i] = e->flags;
6175 entry_pred[i++] = e->src;
6176 remove_edge (e);
6179 if (exit_bb)
6181 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6182 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6183 sizeof (basic_block));
6184 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6185 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6186 i = 0;
6187 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6189 exit_prob[i] = e->probability;
6190 exit_flag[i] = e->flags;
6191 exit_succ[i++] = e->dest;
6192 remove_edge (e);
6195 else
6197 num_exit_edges = 0;
6198 exit_succ = NULL;
6199 exit_flag = NULL;
6200 exit_prob = NULL;
6203 /* Switch context to the child function to initialize DEST_FN's CFG. */
6204 gcc_assert (dest_cfun->cfg == NULL);
6205 push_cfun (dest_cfun);
6207 init_empty_tree_cfg ();
6209 /* Initialize EH information for the new function. */
6210 eh_map = NULL;
6211 new_label_map = NULL;
6212 if (saved_cfun->eh)
6214 eh_region region = NULL;
6216 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6217 region = find_outermost_region_in_block (saved_cfun, bb, region);
6219 init_eh_for_function ();
6220 if (region != NULL)
6222 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6223 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6224 new_label_mapper, new_label_map);
6228 pop_cfun ();
6230 /* Move blocks from BBS into DEST_CFUN. */
6231 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6232 after = dest_cfun->cfg->x_entry_block_ptr;
6233 vars_map = pointer_map_create ();
6235 memset (&d, 0, sizeof (d));
6236 d.orig_block = orig_block;
6237 d.new_block = DECL_INITIAL (dest_cfun->decl);
6238 d.from_context = cfun->decl;
6239 d.to_context = dest_cfun->decl;
6240 d.vars_map = vars_map;
6241 d.new_label_map = new_label_map;
6242 d.eh_map = eh_map;
6243 d.remap_decls_p = true;
6245 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6247 /* No need to update edge counts on the last block. It has
6248 already been updated earlier when we detached the region from
6249 the original CFG. */
6250 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6251 after = bb;
6254 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6255 if (orig_block)
6257 tree block;
6258 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6259 == NULL_TREE);
6260 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6261 = BLOCK_SUBBLOCKS (orig_block);
6262 for (block = BLOCK_SUBBLOCKS (orig_block);
6263 block; block = BLOCK_CHAIN (block))
6264 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6265 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6268 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6269 vars_map, dest_cfun->decl);
6271 if (new_label_map)
6272 htab_delete (new_label_map);
6273 if (eh_map)
6274 pointer_map_destroy (eh_map);
6275 pointer_map_destroy (vars_map);
6277 /* Rewire the entry and exit blocks. The successor to the entry
6278 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6279 the child function. Similarly, the predecessor of DEST_FN's
6280 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6281 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6282 various CFG manipulation function get to the right CFG.
6284 FIXME, this is silly. The CFG ought to become a parameter to
6285 these helpers. */
6286 push_cfun (dest_cfun);
6287 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6288 if (exit_bb)
6289 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6290 pop_cfun ();
6292 /* Back in the original function, the SESE region has disappeared,
6293 create a new basic block in its place. */
6294 bb = create_empty_bb (entry_pred[0]);
6295 if (current_loops)
6296 add_bb_to_loop (bb, loop);
6297 for (i = 0; i < num_entry_edges; i++)
6299 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6300 e->probability = entry_prob[i];
6303 for (i = 0; i < num_exit_edges; i++)
6305 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6306 e->probability = exit_prob[i];
6309 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6310 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6311 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6312 VEC_free (basic_block, heap, dom_bbs);
6314 if (exit_bb)
6316 free (exit_prob);
6317 free (exit_flag);
6318 free (exit_succ);
6320 free (entry_prob);
6321 free (entry_flag);
6322 free (entry_pred);
6323 VEC_free (basic_block, heap, bbs);
6325 return bb;
6329 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6332 void
6333 dump_function_to_file (tree fn, FILE *file, int flags)
6335 tree arg, var;
6336 struct function *dsf;
6337 bool ignore_topmost_bind = false, any_var = false;
6338 basic_block bb;
6339 tree chain;
6341 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6343 arg = DECL_ARGUMENTS (fn);
6344 while (arg)
6346 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6347 fprintf (file, " ");
6348 print_generic_expr (file, arg, dump_flags);
6349 if (flags & TDF_VERBOSE)
6350 print_node (file, "", arg, 4);
6351 if (DECL_CHAIN (arg))
6352 fprintf (file, ", ");
6353 arg = DECL_CHAIN (arg);
6355 fprintf (file, ")\n");
6357 if (flags & TDF_VERBOSE)
6358 print_node (file, "", fn, 2);
6360 dsf = DECL_STRUCT_FUNCTION (fn);
6361 if (dsf && (flags & TDF_EH))
6362 dump_eh_tree (file, dsf);
6364 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6366 dump_node (fn, TDF_SLIM | flags, file);
6367 return;
6370 /* Switch CFUN to point to FN. */
6371 push_cfun (DECL_STRUCT_FUNCTION (fn));
6373 /* When GIMPLE is lowered, the variables are no longer available in
6374 BIND_EXPRs, so display them separately. */
6375 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6377 unsigned ix;
6378 ignore_topmost_bind = true;
6380 fprintf (file, "{\n");
6381 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6383 print_generic_decl (file, var, flags);
6384 if (flags & TDF_VERBOSE)
6385 print_node (file, "", var, 4);
6386 fprintf (file, "\n");
6388 any_var = true;
6392 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6394 /* If the CFG has been built, emit a CFG-based dump. */
6395 check_bb_profile (ENTRY_BLOCK_PTR, file);
6396 if (!ignore_topmost_bind)
6397 fprintf (file, "{\n");
6399 if (any_var && n_basic_blocks)
6400 fprintf (file, "\n");
6402 FOR_EACH_BB (bb)
6403 gimple_dump_bb (bb, file, 2, flags);
6405 fprintf (file, "}\n");
6406 check_bb_profile (EXIT_BLOCK_PTR, file);
6408 else if (DECL_SAVED_TREE (fn) == NULL)
6410 /* The function is now in GIMPLE form but the CFG has not been
6411 built yet. Emit the single sequence of GIMPLE statements
6412 that make up its body. */
6413 gimple_seq body = gimple_body (fn);
6415 if (gimple_seq_first_stmt (body)
6416 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6417 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6418 print_gimple_seq (file, body, 0, flags);
6419 else
6421 if (!ignore_topmost_bind)
6422 fprintf (file, "{\n");
6424 if (any_var)
6425 fprintf (file, "\n");
6427 print_gimple_seq (file, body, 2, flags);
6428 fprintf (file, "}\n");
6431 else
6433 int indent;
6435 /* Make a tree based dump. */
6436 chain = DECL_SAVED_TREE (fn);
6438 if (chain && TREE_CODE (chain) == BIND_EXPR)
6440 if (ignore_topmost_bind)
6442 chain = BIND_EXPR_BODY (chain);
6443 indent = 2;
6445 else
6446 indent = 0;
6448 else
6450 if (!ignore_topmost_bind)
6451 fprintf (file, "{\n");
6452 indent = 2;
6455 if (any_var)
6456 fprintf (file, "\n");
6458 print_generic_stmt_indented (file, chain, flags, indent);
6459 if (ignore_topmost_bind)
6460 fprintf (file, "}\n");
6463 if (flags & TDF_ENUMERATE_LOCALS)
6464 dump_enumerated_decls (file, flags);
6465 fprintf (file, "\n\n");
6467 /* Restore CFUN. */
6468 pop_cfun ();
6472 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6474 DEBUG_FUNCTION void
6475 debug_function (tree fn, int flags)
6477 dump_function_to_file (fn, stderr, flags);
6481 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6483 static void
6484 print_pred_bbs (FILE *file, basic_block bb)
6486 edge e;
6487 edge_iterator ei;
6489 FOR_EACH_EDGE (e, ei, bb->preds)
6490 fprintf (file, "bb_%d ", e->src->index);
6494 /* Print on FILE the indexes for the successors of basic_block BB. */
6496 static void
6497 print_succ_bbs (FILE *file, basic_block bb)
6499 edge e;
6500 edge_iterator ei;
6502 FOR_EACH_EDGE (e, ei, bb->succs)
6503 fprintf (file, "bb_%d ", e->dest->index);
6506 /* Print to FILE the basic block BB following the VERBOSITY level. */
6508 void
6509 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6511 char *s_indent = (char *) alloca ((size_t) indent + 1);
6512 memset ((void *) s_indent, ' ', (size_t) indent);
6513 s_indent[indent] = '\0';
6515 /* Print basic_block's header. */
6516 if (verbosity >= 2)
6518 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6519 print_pred_bbs (file, bb);
6520 fprintf (file, "}, succs = {");
6521 print_succ_bbs (file, bb);
6522 fprintf (file, "})\n");
6525 /* Print basic_block's body. */
6526 if (verbosity >= 3)
6528 fprintf (file, "%s {\n", s_indent);
6529 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6530 fprintf (file, "%s }\n", s_indent);
6534 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6536 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6537 VERBOSITY level this outputs the contents of the loop, or just its
6538 structure. */
6540 static void
6541 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6543 char *s_indent;
6544 basic_block bb;
6546 if (loop == NULL)
6547 return;
6549 s_indent = (char *) alloca ((size_t) indent + 1);
6550 memset ((void *) s_indent, ' ', (size_t) indent);
6551 s_indent[indent] = '\0';
6553 /* Print loop's header. */
6554 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6555 loop->num, loop->header->index, loop->latch->index);
6556 fprintf (file, ", niter = ");
6557 print_generic_expr (file, loop->nb_iterations, 0);
6559 if (loop->any_upper_bound)
6561 fprintf (file, ", upper_bound = ");
6562 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6565 if (loop->any_estimate)
6567 fprintf (file, ", estimate = ");
6568 dump_double_int (file, loop->nb_iterations_estimate, true);
6570 fprintf (file, ")\n");
6572 /* Print loop's body. */
6573 if (verbosity >= 1)
6575 fprintf (file, "%s{\n", s_indent);
6576 FOR_EACH_BB (bb)
6577 if (bb->loop_father == loop)
6578 print_loops_bb (file, bb, indent, verbosity);
6580 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6581 fprintf (file, "%s}\n", s_indent);
6585 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6586 spaces. Following VERBOSITY level this outputs the contents of the
6587 loop, or just its structure. */
6589 static void
6590 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6592 if (loop == NULL)
6593 return;
6595 print_loop (file, loop, indent, verbosity);
6596 print_loop_and_siblings (file, loop->next, indent, verbosity);
6599 /* Follow a CFG edge from the entry point of the program, and on entry
6600 of a loop, pretty print the loop structure on FILE. */
6602 void
6603 print_loops (FILE *file, int verbosity)
6605 basic_block bb;
6607 bb = ENTRY_BLOCK_PTR;
6608 if (bb && bb->loop_father)
6609 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6613 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6615 DEBUG_FUNCTION void
6616 debug_loops (int verbosity)
6618 print_loops (stderr, verbosity);
6621 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6623 DEBUG_FUNCTION void
6624 debug_loop (struct loop *loop, int verbosity)
6626 print_loop (stderr, loop, 0, verbosity);
6629 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6630 level. */
6632 DEBUG_FUNCTION void
6633 debug_loop_num (unsigned num, int verbosity)
6635 debug_loop (get_loop (num), verbosity);
6638 /* Return true if BB ends with a call, possibly followed by some
6639 instructions that must stay with the call. Return false,
6640 otherwise. */
6642 static bool
6643 gimple_block_ends_with_call_p (basic_block bb)
6645 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6646 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6650 /* Return true if BB ends with a conditional branch. Return false,
6651 otherwise. */
6653 static bool
6654 gimple_block_ends_with_condjump_p (const_basic_block bb)
6656 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6657 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6661 /* Return true if we need to add fake edge to exit at statement T.
6662 Helper function for gimple_flow_call_edges_add. */
6664 static bool
6665 need_fake_edge_p (gimple t)
6667 tree fndecl = NULL_TREE;
6668 int call_flags = 0;
6670 /* NORETURN and LONGJMP calls already have an edge to exit.
6671 CONST and PURE calls do not need one.
6672 We don't currently check for CONST and PURE here, although
6673 it would be a good idea, because those attributes are
6674 figured out from the RTL in mark_constant_function, and
6675 the counter incrementation code from -fprofile-arcs
6676 leads to different results from -fbranch-probabilities. */
6677 if (is_gimple_call (t))
6679 fndecl = gimple_call_fndecl (t);
6680 call_flags = gimple_call_flags (t);
6683 if (is_gimple_call (t)
6684 && fndecl
6685 && DECL_BUILT_IN (fndecl)
6686 && (call_flags & ECF_NOTHROW)
6687 && !(call_flags & ECF_RETURNS_TWICE)
6688 /* fork() doesn't really return twice, but the effect of
6689 wrapping it in __gcov_fork() which calls __gcov_flush()
6690 and clears the counters before forking has the same
6691 effect as returning twice. Force a fake edge. */
6692 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6693 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6694 return false;
6696 if (is_gimple_call (t)
6697 && !(call_flags & ECF_NORETURN))
6698 return true;
6700 if (gimple_code (t) == GIMPLE_ASM
6701 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6702 return true;
6704 return false;
6708 /* Add fake edges to the function exit for any non constant and non
6709 noreturn calls, volatile inline assembly in the bitmap of blocks
6710 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6711 the number of blocks that were split.
6713 The goal is to expose cases in which entering a basic block does
6714 not imply that all subsequent instructions must be executed. */
6716 static int
6717 gimple_flow_call_edges_add (sbitmap blocks)
6719 int i;
6720 int blocks_split = 0;
6721 int last_bb = last_basic_block;
6722 bool check_last_block = false;
6724 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6725 return 0;
6727 if (! blocks)
6728 check_last_block = true;
6729 else
6730 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6732 /* In the last basic block, before epilogue generation, there will be
6733 a fallthru edge to EXIT. Special care is required if the last insn
6734 of the last basic block is a call because make_edge folds duplicate
6735 edges, which would result in the fallthru edge also being marked
6736 fake, which would result in the fallthru edge being removed by
6737 remove_fake_edges, which would result in an invalid CFG.
6739 Moreover, we can't elide the outgoing fake edge, since the block
6740 profiler needs to take this into account in order to solve the minimal
6741 spanning tree in the case that the call doesn't return.
6743 Handle this by adding a dummy instruction in a new last basic block. */
6744 if (check_last_block)
6746 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6747 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6748 gimple t = NULL;
6750 if (!gsi_end_p (gsi))
6751 t = gsi_stmt (gsi);
6753 if (t && need_fake_edge_p (t))
6755 edge e;
6757 e = find_edge (bb, EXIT_BLOCK_PTR);
6758 if (e)
6760 gsi_insert_on_edge (e, gimple_build_nop ());
6761 gsi_commit_edge_inserts ();
6766 /* Now add fake edges to the function exit for any non constant
6767 calls since there is no way that we can determine if they will
6768 return or not... */
6769 for (i = 0; i < last_bb; i++)
6771 basic_block bb = BASIC_BLOCK (i);
6772 gimple_stmt_iterator gsi;
6773 gimple stmt, last_stmt;
6775 if (!bb)
6776 continue;
6778 if (blocks && !TEST_BIT (blocks, i))
6779 continue;
6781 gsi = gsi_last_bb (bb);
6782 if (!gsi_end_p (gsi))
6784 last_stmt = gsi_stmt (gsi);
6787 stmt = gsi_stmt (gsi);
6788 if (need_fake_edge_p (stmt))
6790 edge e;
6792 /* The handling above of the final block before the
6793 epilogue should be enough to verify that there is
6794 no edge to the exit block in CFG already.
6795 Calling make_edge in such case would cause us to
6796 mark that edge as fake and remove it later. */
6797 #ifdef ENABLE_CHECKING
6798 if (stmt == last_stmt)
6800 e = find_edge (bb, EXIT_BLOCK_PTR);
6801 gcc_assert (e == NULL);
6803 #endif
6805 /* Note that the following may create a new basic block
6806 and renumber the existing basic blocks. */
6807 if (stmt != last_stmt)
6809 e = split_block (bb, stmt);
6810 if (e)
6811 blocks_split++;
6813 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6815 gsi_prev (&gsi);
6817 while (!gsi_end_p (gsi));
6821 if (blocks_split)
6822 verify_flow_info ();
6824 return blocks_split;
6827 /* Purge dead abnormal call edges from basic block BB. */
6829 bool
6830 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6832 bool changed = gimple_purge_dead_eh_edges (bb);
6834 if (cfun->has_nonlocal_label)
6836 gimple stmt = last_stmt (bb);
6837 edge_iterator ei;
6838 edge e;
6840 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6841 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6843 if (e->flags & EDGE_ABNORMAL)
6845 remove_edge (e);
6846 changed = true;
6848 else
6849 ei_next (&ei);
6852 /* See gimple_purge_dead_eh_edges below. */
6853 if (changed)
6854 free_dominance_info (CDI_DOMINATORS);
6857 return changed;
6860 /* Removes edge E and all the blocks dominated by it, and updates dominance
6861 information. The IL in E->src needs to be updated separately.
6862 If dominance info is not available, only the edge E is removed.*/
6864 void
6865 remove_edge_and_dominated_blocks (edge e)
6867 VEC (basic_block, heap) *bbs_to_remove = NULL;
6868 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6869 bitmap df, df_idom;
6870 edge f;
6871 edge_iterator ei;
6872 bool none_removed = false;
6873 unsigned i;
6874 basic_block bb, dbb;
6875 bitmap_iterator bi;
6877 if (!dom_info_available_p (CDI_DOMINATORS))
6879 remove_edge (e);
6880 return;
6883 /* No updating is needed for edges to exit. */
6884 if (e->dest == EXIT_BLOCK_PTR)
6886 if (cfgcleanup_altered_bbs)
6887 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6888 remove_edge (e);
6889 return;
6892 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6893 that is not dominated by E->dest, then this set is empty. Otherwise,
6894 all the basic blocks dominated by E->dest are removed.
6896 Also, to DF_IDOM we store the immediate dominators of the blocks in
6897 the dominance frontier of E (i.e., of the successors of the
6898 removed blocks, if there are any, and of E->dest otherwise). */
6899 FOR_EACH_EDGE (f, ei, e->dest->preds)
6901 if (f == e)
6902 continue;
6904 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6906 none_removed = true;
6907 break;
6911 df = BITMAP_ALLOC (NULL);
6912 df_idom = BITMAP_ALLOC (NULL);
6914 if (none_removed)
6915 bitmap_set_bit (df_idom,
6916 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6917 else
6919 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6920 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6922 FOR_EACH_EDGE (f, ei, bb->succs)
6924 if (f->dest != EXIT_BLOCK_PTR)
6925 bitmap_set_bit (df, f->dest->index);
6928 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6929 bitmap_clear_bit (df, bb->index);
6931 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6933 bb = BASIC_BLOCK (i);
6934 bitmap_set_bit (df_idom,
6935 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6939 if (cfgcleanup_altered_bbs)
6941 /* Record the set of the altered basic blocks. */
6942 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6943 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6946 /* Remove E and the cancelled blocks. */
6947 if (none_removed)
6948 remove_edge (e);
6949 else
6951 /* Walk backwards so as to get a chance to substitute all
6952 released DEFs into debug stmts. See
6953 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6954 details. */
6955 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6956 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6959 /* Update the dominance information. The immediate dominator may change only
6960 for blocks whose immediate dominator belongs to DF_IDOM:
6962 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6963 removal. Let Z the arbitrary block such that idom(Z) = Y and
6964 Z dominates X after the removal. Before removal, there exists a path P
6965 from Y to X that avoids Z. Let F be the last edge on P that is
6966 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6967 dominates W, and because of P, Z does not dominate W), and W belongs to
6968 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6969 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6971 bb = BASIC_BLOCK (i);
6972 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6973 dbb;
6974 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6975 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6978 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6980 BITMAP_FREE (df);
6981 BITMAP_FREE (df_idom);
6982 VEC_free (basic_block, heap, bbs_to_remove);
6983 VEC_free (basic_block, heap, bbs_to_fix_dom);
6986 /* Purge dead EH edges from basic block BB. */
6988 bool
6989 gimple_purge_dead_eh_edges (basic_block bb)
6991 bool changed = false;
6992 edge e;
6993 edge_iterator ei;
6994 gimple stmt = last_stmt (bb);
6996 if (stmt && stmt_can_throw_internal (stmt))
6997 return false;
6999 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7001 if (e->flags & EDGE_EH)
7003 remove_edge_and_dominated_blocks (e);
7004 changed = true;
7006 else
7007 ei_next (&ei);
7010 return changed;
7013 bool
7014 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7016 bool changed = false;
7017 unsigned i;
7018 bitmap_iterator bi;
7020 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7022 basic_block bb = BASIC_BLOCK (i);
7024 /* Earlier gimple_purge_dead_eh_edges could have removed
7025 this basic block already. */
7026 gcc_assert (bb || changed);
7027 if (bb != NULL)
7028 changed |= gimple_purge_dead_eh_edges (bb);
7031 return changed;
7034 /* This function is called whenever a new edge is created or
7035 redirected. */
7037 static void
7038 gimple_execute_on_growing_pred (edge e)
7040 basic_block bb = e->dest;
7042 if (!gimple_seq_empty_p (phi_nodes (bb)))
7043 reserve_phi_args_for_new_edge (bb);
7046 /* This function is called immediately before edge E is removed from
7047 the edge vector E->dest->preds. */
7049 static void
7050 gimple_execute_on_shrinking_pred (edge e)
7052 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7053 remove_phi_args (e);
7056 /*---------------------------------------------------------------------------
7057 Helper functions for Loop versioning
7058 ---------------------------------------------------------------------------*/
7060 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7061 of 'first'. Both of them are dominated by 'new_head' basic block. When
7062 'new_head' was created by 'second's incoming edge it received phi arguments
7063 on the edge by split_edge(). Later, additional edge 'e' was created to
7064 connect 'new_head' and 'first'. Now this routine adds phi args on this
7065 additional edge 'e' that new_head to second edge received as part of edge
7066 splitting. */
7068 static void
7069 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7070 basic_block new_head, edge e)
7072 gimple phi1, phi2;
7073 gimple_stmt_iterator psi1, psi2;
7074 tree def;
7075 edge e2 = find_edge (new_head, second);
7077 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7078 edge, we should always have an edge from NEW_HEAD to SECOND. */
7079 gcc_assert (e2 != NULL);
7081 /* Browse all 'second' basic block phi nodes and add phi args to
7082 edge 'e' for 'first' head. PHI args are always in correct order. */
7084 for (psi2 = gsi_start_phis (second),
7085 psi1 = gsi_start_phis (first);
7086 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7087 gsi_next (&psi2), gsi_next (&psi1))
7089 phi1 = gsi_stmt (psi1);
7090 phi2 = gsi_stmt (psi2);
7091 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7092 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7097 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7098 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7099 the destination of the ELSE part. */
7101 static void
7102 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7103 basic_block second_head ATTRIBUTE_UNUSED,
7104 basic_block cond_bb, void *cond_e)
7106 gimple_stmt_iterator gsi;
7107 gimple new_cond_expr;
7108 tree cond_expr = (tree) cond_e;
7109 edge e0;
7111 /* Build new conditional expr */
7112 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7113 NULL_TREE, NULL_TREE);
7115 /* Add new cond in cond_bb. */
7116 gsi = gsi_last_bb (cond_bb);
7117 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7119 /* Adjust edges appropriately to connect new head with first head
7120 as well as second head. */
7121 e0 = single_succ_edge (cond_bb);
7122 e0->flags &= ~EDGE_FALLTHRU;
7123 e0->flags |= EDGE_FALSE_VALUE;
7126 struct cfg_hooks gimple_cfg_hooks = {
7127 "gimple",
7128 gimple_verify_flow_info,
7129 gimple_dump_bb, /* dump_bb */
7130 create_bb, /* create_basic_block */
7131 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7132 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7133 gimple_can_remove_branch_p, /* can_remove_branch_p */
7134 remove_bb, /* delete_basic_block */
7135 gimple_split_block, /* split_block */
7136 gimple_move_block_after, /* move_block_after */
7137 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7138 gimple_merge_blocks, /* merge_blocks */
7139 gimple_predict_edge, /* predict_edge */
7140 gimple_predicted_by_p, /* predicted_by_p */
7141 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7142 gimple_duplicate_bb, /* duplicate_block */
7143 gimple_split_edge, /* split_edge */
7144 gimple_make_forwarder_block, /* make_forward_block */
7145 NULL, /* tidy_fallthru_edge */
7146 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7147 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7148 gimple_flow_call_edges_add, /* flow_call_edges_add */
7149 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7150 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7151 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7152 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7153 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7154 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7155 flush_pending_stmts /* flush_pending_stmts */
7159 /* Split all critical edges. */
7161 static unsigned int
7162 split_critical_edges (void)
7164 basic_block bb;
7165 edge e;
7166 edge_iterator ei;
7168 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7169 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7170 mappings around the calls to split_edge. */
7171 start_recording_case_labels ();
7172 FOR_ALL_BB (bb)
7174 FOR_EACH_EDGE (e, ei, bb->succs)
7176 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7177 split_edge (e);
7178 /* PRE inserts statements to edges and expects that
7179 since split_critical_edges was done beforehand, committing edge
7180 insertions will not split more edges. In addition to critical
7181 edges we must split edges that have multiple successors and
7182 end by control flow statements, such as RESX.
7183 Go ahead and split them too. This matches the logic in
7184 gimple_find_edge_insert_loc. */
7185 else if ((!single_pred_p (e->dest)
7186 || !gimple_seq_empty_p (phi_nodes (e->dest))
7187 || e->dest == EXIT_BLOCK_PTR)
7188 && e->src != ENTRY_BLOCK_PTR
7189 && !(e->flags & EDGE_ABNORMAL))
7191 gimple_stmt_iterator gsi;
7193 gsi = gsi_last_bb (e->src);
7194 if (!gsi_end_p (gsi)
7195 && stmt_ends_bb_p (gsi_stmt (gsi))
7196 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7197 && !gimple_call_builtin_p (gsi_stmt (gsi),
7198 BUILT_IN_RETURN)))
7199 split_edge (e);
7203 end_recording_case_labels ();
7204 return 0;
7207 struct gimple_opt_pass pass_split_crit_edges =
7210 GIMPLE_PASS,
7211 "crited", /* name */
7212 NULL, /* gate */
7213 split_critical_edges, /* execute */
7214 NULL, /* sub */
7215 NULL, /* next */
7216 0, /* static_pass_number */
7217 TV_TREE_SPLIT_EDGES, /* tv_id */
7218 PROP_cfg, /* properties required */
7219 PROP_no_crit_edges, /* properties_provided */
7220 0, /* properties_destroyed */
7221 0, /* todo_flags_start */
7222 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7227 /* Build a ternary operation and gimplify it. Emit code before GSI.
7228 Return the gimple_val holding the result. */
7230 tree
7231 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7232 tree type, tree a, tree b, tree c)
7234 tree ret;
7235 location_t loc = gimple_location (gsi_stmt (*gsi));
7237 ret = fold_build3_loc (loc, code, type, a, b, c);
7238 STRIP_NOPS (ret);
7240 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7241 GSI_SAME_STMT);
7244 /* Build a binary operation and gimplify it. Emit code before GSI.
7245 Return the gimple_val holding the result. */
7247 tree
7248 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7249 tree type, tree a, tree b)
7251 tree ret;
7253 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7254 STRIP_NOPS (ret);
7256 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7257 GSI_SAME_STMT);
7260 /* Build a unary operation and gimplify it. Emit code before GSI.
7261 Return the gimple_val holding the result. */
7263 tree
7264 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7265 tree a)
7267 tree ret;
7269 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7270 STRIP_NOPS (ret);
7272 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7273 GSI_SAME_STMT);
7278 /* Emit return warnings. */
7280 static unsigned int
7281 execute_warn_function_return (void)
7283 source_location location;
7284 gimple last;
7285 edge e;
7286 edge_iterator ei;
7288 /* If we have a path to EXIT, then we do return. */
7289 if (TREE_THIS_VOLATILE (cfun->decl)
7290 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7292 location = UNKNOWN_LOCATION;
7293 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7295 last = last_stmt (e->src);
7296 if ((gimple_code (last) == GIMPLE_RETURN
7297 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7298 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7299 break;
7301 if (location == UNKNOWN_LOCATION)
7302 location = cfun->function_end_locus;
7303 warning_at (location, 0, "%<noreturn%> function does return");
7306 /* If we see "return;" in some basic block, then we do reach the end
7307 without returning a value. */
7308 else if (warn_return_type
7309 && !TREE_NO_WARNING (cfun->decl)
7310 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7311 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7313 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7315 gimple last = last_stmt (e->src);
7316 if (gimple_code (last) == GIMPLE_RETURN
7317 && gimple_return_retval (last) == NULL
7318 && !gimple_no_warning_p (last))
7320 location = gimple_location (last);
7321 if (location == UNKNOWN_LOCATION)
7322 location = cfun->function_end_locus;
7323 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7324 TREE_NO_WARNING (cfun->decl) = 1;
7325 break;
7329 return 0;
7333 /* Given a basic block B which ends with a conditional and has
7334 precisely two successors, determine which of the edges is taken if
7335 the conditional is true and which is taken if the conditional is
7336 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7338 void
7339 extract_true_false_edges_from_block (basic_block b,
7340 edge *true_edge,
7341 edge *false_edge)
7343 edge e = EDGE_SUCC (b, 0);
7345 if (e->flags & EDGE_TRUE_VALUE)
7347 *true_edge = e;
7348 *false_edge = EDGE_SUCC (b, 1);
7350 else
7352 *false_edge = e;
7353 *true_edge = EDGE_SUCC (b, 1);
7357 struct gimple_opt_pass pass_warn_function_return =
7360 GIMPLE_PASS,
7361 "*warn_function_return", /* name */
7362 NULL, /* gate */
7363 execute_warn_function_return, /* execute */
7364 NULL, /* sub */
7365 NULL, /* next */
7366 0, /* static_pass_number */
7367 TV_NONE, /* tv_id */
7368 PROP_cfg, /* properties_required */
7369 0, /* properties_provided */
7370 0, /* properties_destroyed */
7371 0, /* todo_flags_start */
7372 0 /* todo_flags_finish */
7376 /* Emit noreturn warnings. */
7378 static unsigned int
7379 execute_warn_function_noreturn (void)
7381 if (!TREE_THIS_VOLATILE (current_function_decl)
7382 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7383 warn_function_noreturn (current_function_decl);
7384 return 0;
7387 static bool
7388 gate_warn_function_noreturn (void)
7390 return warn_suggest_attribute_noreturn;
7393 struct gimple_opt_pass pass_warn_function_noreturn =
7396 GIMPLE_PASS,
7397 "*warn_function_noreturn", /* name */
7398 gate_warn_function_noreturn, /* gate */
7399 execute_warn_function_noreturn, /* execute */
7400 NULL, /* sub */
7401 NULL, /* next */
7402 0, /* static_pass_number */
7403 TV_NONE, /* tv_id */
7404 PROP_cfg, /* properties_required */
7405 0, /* properties_provided */
7406 0, /* properties_destroyed */
7407 0, /* todo_flags_start */
7408 0 /* todo_flags_finish */
7413 /* Walk a gimplified function and warn for functions whose return value is
7414 ignored and attribute((warn_unused_result)) is set. This is done before
7415 inlining, so we don't have to worry about that. */
7417 static void
7418 do_warn_unused_result (gimple_seq seq)
7420 tree fdecl, ftype;
7421 gimple_stmt_iterator i;
7423 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7425 gimple g = gsi_stmt (i);
7427 switch (gimple_code (g))
7429 case GIMPLE_BIND:
7430 do_warn_unused_result (gimple_bind_body (g));
7431 break;
7432 case GIMPLE_TRY:
7433 do_warn_unused_result (gimple_try_eval (g));
7434 do_warn_unused_result (gimple_try_cleanup (g));
7435 break;
7436 case GIMPLE_CATCH:
7437 do_warn_unused_result (gimple_catch_handler (g));
7438 break;
7439 case GIMPLE_EH_FILTER:
7440 do_warn_unused_result (gimple_eh_filter_failure (g));
7441 break;
7443 case GIMPLE_CALL:
7444 if (gimple_call_lhs (g))
7445 break;
7447 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7448 LHS. All calls whose value is ignored should be
7449 represented like this. Look for the attribute. */
7450 fdecl = gimple_call_fndecl (g);
7451 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7453 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7455 location_t loc = gimple_location (g);
7457 if (fdecl)
7458 warning_at (loc, OPT_Wunused_result,
7459 "ignoring return value of %qD, "
7460 "declared with attribute warn_unused_result",
7461 fdecl);
7462 else
7463 warning_at (loc, OPT_Wunused_result,
7464 "ignoring return value of function "
7465 "declared with attribute warn_unused_result");
7467 break;
7469 default:
7470 /* Not a container, not a call, or a call whose value is used. */
7471 break;
7476 static unsigned int
7477 run_warn_unused_result (void)
7479 do_warn_unused_result (gimple_body (current_function_decl));
7480 return 0;
7483 static bool
7484 gate_warn_unused_result (void)
7486 return flag_warn_unused_result;
7489 struct gimple_opt_pass pass_warn_unused_result =
7492 GIMPLE_PASS,
7493 "*warn_unused_result", /* name */
7494 gate_warn_unused_result, /* gate */
7495 run_warn_unused_result, /* execute */
7496 NULL, /* sub */
7497 NULL, /* next */
7498 0, /* static_pass_number */
7499 TV_NONE, /* tv_id */
7500 PROP_gimple_any, /* properties_required */
7501 0, /* properties_provided */
7502 0, /* properties_destroyed */
7503 0, /* todo_flags_start */
7504 0, /* todo_flags_finish */