fix pr/45972
[official-gcc.git] / gcc / loop-iv.c
blob836fe15a2d1161433d088b2c6748ffb8f7b9940f
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This is a simple analysis of induction variables of the loop. The major use
22 is for determining the number of iterations of a loop for loop unrolling,
23 doloop optimization and branch prediction. The iv information is computed
24 on demand.
26 Induction variables are analyzed by walking the use-def chains. When
27 a basic induction variable (biv) is found, it is cached in the bivs
28 hash table. When register is proved to be a biv, its description
29 is stored to DF_REF_DATA of the def reference.
31 The analysis works always with one loop -- you must call
32 iv_analysis_loop_init (loop) for it. All the other functions then work with
33 this loop. When you need to work with another loop, just call
34 iv_analysis_loop_init for it. When you no longer need iv analysis, call
35 iv_analysis_done () to clean up the memory.
37 The available functions are:
39 iv_analyze (insn, reg, iv): Stores the description of the induction variable
40 corresponding to the use of register REG in INSN to IV. Returns true if
41 REG is an induction variable in INSN. false otherwise.
42 If use of REG is not found in INSN, following insns are scanned (so that
43 we may call this function on insn returned by get_condition).
44 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
45 corresponding to DEF, which is a register defined in INSN.
46 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
47 corresponding to expression EXPR evaluated at INSN. All registers used bu
48 EXPR must also be used in INSN.
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "tm.h"
55 #include "rtl.h"
56 #include "hard-reg-set.h"
57 #include "obstack.h"
58 #include "basic-block.h"
59 #include "cfgloop.h"
60 #include "expr.h"
61 #include "intl.h"
62 #include "output.h"
63 #include "diagnostic-core.h"
64 #include "toplev.h"
65 #include "df.h"
66 #include "hashtab.h"
68 /* Possible return values of iv_get_reaching_def. */
70 enum iv_grd_result
72 /* More than one reaching def, or reaching def that does not
73 dominate the use. */
74 GRD_INVALID,
76 /* The use is trivial invariant of the loop, i.e. is not changed
77 inside the loop. */
78 GRD_INVARIANT,
80 /* The use is reached by initial value and a value from the
81 previous iteration. */
82 GRD_MAYBE_BIV,
84 /* The use has single dominating def. */
85 GRD_SINGLE_DOM
88 /* Information about a biv. */
90 struct biv_entry
92 unsigned regno; /* The register of the biv. */
93 struct rtx_iv iv; /* Value of the biv. */
96 static bool clean_slate = true;
98 static unsigned int iv_ref_table_size = 0;
100 /* Table of rtx_ivs indexed by the df_ref uid field. */
101 static struct rtx_iv ** iv_ref_table;
103 /* Induction variable stored at the reference. */
104 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID(REF)]
105 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID(REF)] = (IV)
107 /* The current loop. */
109 static struct loop *current_loop;
111 /* Bivs of the current loop. */
113 static htab_t bivs;
115 static bool iv_analyze_op (rtx, rtx, struct rtx_iv *);
117 /* Dumps information about IV to FILE. */
119 extern void dump_iv_info (FILE *, struct rtx_iv *);
120 void
121 dump_iv_info (FILE *file, struct rtx_iv *iv)
123 if (!iv->base)
125 fprintf (file, "not simple");
126 return;
129 if (iv->step == const0_rtx
130 && !iv->first_special)
131 fprintf (file, "invariant ");
133 print_rtl (file, iv->base);
134 if (iv->step != const0_rtx)
136 fprintf (file, " + ");
137 print_rtl (file, iv->step);
138 fprintf (file, " * iteration");
140 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
142 if (iv->mode != iv->extend_mode)
143 fprintf (file, " %s to %s",
144 rtx_name[iv->extend],
145 GET_MODE_NAME (iv->extend_mode));
147 if (iv->mult != const1_rtx)
149 fprintf (file, " * ");
150 print_rtl (file, iv->mult);
152 if (iv->delta != const0_rtx)
154 fprintf (file, " + ");
155 print_rtl (file, iv->delta);
157 if (iv->first_special)
158 fprintf (file, " (first special)");
161 /* Generates a subreg to get the least significant part of EXPR (in mode
162 INNER_MODE) to OUTER_MODE. */
165 lowpart_subreg (enum machine_mode outer_mode, rtx expr,
166 enum machine_mode inner_mode)
168 return simplify_gen_subreg (outer_mode, expr, inner_mode,
169 subreg_lowpart_offset (outer_mode, inner_mode));
172 static void
173 check_iv_ref_table_size (void)
175 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE())
177 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
178 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
179 memset (&iv_ref_table[iv_ref_table_size], 0,
180 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
181 iv_ref_table_size = new_size;
186 /* Checks whether REG is a well-behaved register. */
188 static bool
189 simple_reg_p (rtx reg)
191 unsigned r;
193 if (GET_CODE (reg) == SUBREG)
195 if (!subreg_lowpart_p (reg))
196 return false;
197 reg = SUBREG_REG (reg);
200 if (!REG_P (reg))
201 return false;
203 r = REGNO (reg);
204 if (HARD_REGISTER_NUM_P (r))
205 return false;
207 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
208 return false;
210 return true;
213 /* Clears the information about ivs stored in df. */
215 static void
216 clear_iv_info (void)
218 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
219 struct rtx_iv *iv;
221 check_iv_ref_table_size ();
222 for (i = 0; i < n_defs; i++)
224 iv = iv_ref_table[i];
225 if (iv)
227 free (iv);
228 iv_ref_table[i] = NULL;
232 htab_empty (bivs);
235 /* Returns hash value for biv B. */
237 static hashval_t
238 biv_hash (const void *b)
240 return ((const struct biv_entry *) b)->regno;
243 /* Compares biv B and register R. */
245 static int
246 biv_eq (const void *b, const void *r)
248 return ((const struct biv_entry *) b)->regno == REGNO ((const_rtx) r);
251 /* Prepare the data for an induction variable analysis of a LOOP. */
253 void
254 iv_analysis_loop_init (struct loop *loop)
256 basic_block *body = get_loop_body_in_dom_order (loop), bb;
257 bitmap blocks = BITMAP_ALLOC (NULL);
258 unsigned i;
260 current_loop = loop;
262 /* Clear the information from the analysis of the previous loop. */
263 if (clean_slate)
265 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
266 bivs = htab_create (10, biv_hash, biv_eq, free);
267 clean_slate = false;
269 else
270 clear_iv_info ();
272 for (i = 0; i < loop->num_nodes; i++)
274 bb = body[i];
275 bitmap_set_bit (blocks, bb->index);
277 /* Get rid of the ud chains before processing the rescans. Then add
278 the problem back. */
279 df_remove_problem (df_chain);
280 df_process_deferred_rescans ();
281 df_chain_add_problem (DF_UD_CHAIN);
282 df_note_add_problem ();
283 df_set_blocks (blocks);
284 df_analyze ();
285 if (dump_file)
286 df_dump_region (dump_file);
288 check_iv_ref_table_size ();
289 BITMAP_FREE (blocks);
290 free (body);
293 /* Finds the definition of REG that dominates loop latch and stores
294 it to DEF. Returns false if there is not a single definition
295 dominating the latch. If REG has no definition in loop, DEF
296 is set to NULL and true is returned. */
298 static bool
299 latch_dominating_def (rtx reg, df_ref *def)
301 df_ref single_rd = NULL, adef;
302 unsigned regno = REGNO (reg);
303 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
305 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
307 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
308 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
309 continue;
311 /* More than one reaching definition. */
312 if (single_rd)
313 return false;
315 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
316 return false;
318 single_rd = adef;
321 *def = single_rd;
322 return true;
325 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
327 static enum iv_grd_result
328 iv_get_reaching_def (rtx insn, rtx reg, df_ref *def)
330 df_ref use, adef;
331 basic_block def_bb, use_bb;
332 rtx def_insn;
333 bool dom_p;
335 *def = NULL;
336 if (!simple_reg_p (reg))
337 return GRD_INVALID;
338 if (GET_CODE (reg) == SUBREG)
339 reg = SUBREG_REG (reg);
340 gcc_assert (REG_P (reg));
342 use = df_find_use (insn, reg);
343 gcc_assert (use != NULL);
345 if (!DF_REF_CHAIN (use))
346 return GRD_INVARIANT;
348 /* More than one reaching def. */
349 if (DF_REF_CHAIN (use)->next)
350 return GRD_INVALID;
352 adef = DF_REF_CHAIN (use)->ref;
354 /* We do not handle setting only part of the register. */
355 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
356 return GRD_INVALID;
358 def_insn = DF_REF_INSN (adef);
359 def_bb = DF_REF_BB (adef);
360 use_bb = BLOCK_FOR_INSN (insn);
362 if (use_bb == def_bb)
363 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
364 else
365 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
367 if (dom_p)
369 *def = adef;
370 return GRD_SINGLE_DOM;
373 /* The definition does not dominate the use. This is still OK if
374 this may be a use of a biv, i.e. if the def_bb dominates loop
375 latch. */
376 if (just_once_each_iteration_p (current_loop, def_bb))
377 return GRD_MAYBE_BIV;
379 return GRD_INVALID;
382 /* Sets IV to invariant CST in MODE. Always returns true (just for
383 consistency with other iv manipulation functions that may fail). */
385 static bool
386 iv_constant (struct rtx_iv *iv, rtx cst, enum machine_mode mode)
388 if (mode == VOIDmode)
389 mode = GET_MODE (cst);
391 iv->mode = mode;
392 iv->base = cst;
393 iv->step = const0_rtx;
394 iv->first_special = false;
395 iv->extend = UNKNOWN;
396 iv->extend_mode = iv->mode;
397 iv->delta = const0_rtx;
398 iv->mult = const1_rtx;
400 return true;
403 /* Evaluates application of subreg to MODE on IV. */
405 static bool
406 iv_subreg (struct rtx_iv *iv, enum machine_mode mode)
408 /* If iv is invariant, just calculate the new value. */
409 if (iv->step == const0_rtx
410 && !iv->first_special)
412 rtx val = get_iv_value (iv, const0_rtx);
413 val = lowpart_subreg (mode, val, iv->extend_mode);
415 iv->base = val;
416 iv->extend = UNKNOWN;
417 iv->mode = iv->extend_mode = mode;
418 iv->delta = const0_rtx;
419 iv->mult = const1_rtx;
420 return true;
423 if (iv->extend_mode == mode)
424 return true;
426 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
427 return false;
429 iv->extend = UNKNOWN;
430 iv->mode = mode;
432 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
433 simplify_gen_binary (MULT, iv->extend_mode,
434 iv->base, iv->mult));
435 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
436 iv->mult = const1_rtx;
437 iv->delta = const0_rtx;
438 iv->first_special = false;
440 return true;
443 /* Evaluates application of EXTEND to MODE on IV. */
445 static bool
446 iv_extend (struct rtx_iv *iv, enum rtx_code extend, enum machine_mode mode)
448 /* If iv is invariant, just calculate the new value. */
449 if (iv->step == const0_rtx
450 && !iv->first_special)
452 rtx val = get_iv_value (iv, const0_rtx);
453 val = simplify_gen_unary (extend, mode, val, iv->extend_mode);
455 iv->base = val;
456 iv->extend = UNKNOWN;
457 iv->mode = iv->extend_mode = mode;
458 iv->delta = const0_rtx;
459 iv->mult = const1_rtx;
460 return true;
463 if (mode != iv->extend_mode)
464 return false;
466 if (iv->extend != UNKNOWN
467 && iv->extend != extend)
468 return false;
470 iv->extend = extend;
472 return true;
475 /* Evaluates negation of IV. */
477 static bool
478 iv_neg (struct rtx_iv *iv)
480 if (iv->extend == UNKNOWN)
482 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
483 iv->base, iv->extend_mode);
484 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
485 iv->step, iv->extend_mode);
487 else
489 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
490 iv->delta, iv->extend_mode);
491 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
492 iv->mult, iv->extend_mode);
495 return true;
498 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
500 static bool
501 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
503 enum machine_mode mode;
504 rtx arg;
506 /* Extend the constant to extend_mode of the other operand if necessary. */
507 if (iv0->extend == UNKNOWN
508 && iv0->mode == iv0->extend_mode
509 && iv0->step == const0_rtx
510 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
512 iv0->extend_mode = iv1->extend_mode;
513 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
514 iv0->base, iv0->mode);
516 if (iv1->extend == UNKNOWN
517 && iv1->mode == iv1->extend_mode
518 && iv1->step == const0_rtx
519 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
521 iv1->extend_mode = iv0->extend_mode;
522 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
523 iv1->base, iv1->mode);
526 mode = iv0->extend_mode;
527 if (mode != iv1->extend_mode)
528 return false;
530 if (iv0->extend == UNKNOWN && iv1->extend == UNKNOWN)
532 if (iv0->mode != iv1->mode)
533 return false;
535 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
536 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
538 return true;
541 /* Handle addition of constant. */
542 if (iv1->extend == UNKNOWN
543 && iv1->mode == mode
544 && iv1->step == const0_rtx)
546 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
547 return true;
550 if (iv0->extend == UNKNOWN
551 && iv0->mode == mode
552 && iv0->step == const0_rtx)
554 arg = iv0->base;
555 *iv0 = *iv1;
556 if (op == MINUS
557 && !iv_neg (iv0))
558 return false;
560 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
561 return true;
564 return false;
567 /* Evaluates multiplication of IV by constant CST. */
569 static bool
570 iv_mult (struct rtx_iv *iv, rtx mby)
572 enum machine_mode mode = iv->extend_mode;
574 if (GET_MODE (mby) != VOIDmode
575 && GET_MODE (mby) != mode)
576 return false;
578 if (iv->extend == UNKNOWN)
580 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
581 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
583 else
585 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
586 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
589 return true;
592 /* Evaluates shift of IV by constant CST. */
594 static bool
595 iv_shift (struct rtx_iv *iv, rtx mby)
597 enum machine_mode mode = iv->extend_mode;
599 if (GET_MODE (mby) != VOIDmode
600 && GET_MODE (mby) != mode)
601 return false;
603 if (iv->extend == UNKNOWN)
605 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
606 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
608 else
610 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
611 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
614 return true;
617 /* The recursive part of get_biv_step. Gets the value of the single value
618 defined by DEF wrto initial value of REG inside loop, in shape described
619 at get_biv_step. */
621 static bool
622 get_biv_step_1 (df_ref def, rtx reg,
623 rtx *inner_step, enum machine_mode *inner_mode,
624 enum rtx_code *extend, enum machine_mode outer_mode,
625 rtx *outer_step)
627 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
628 rtx next, nextr, tmp;
629 enum rtx_code code;
630 rtx insn = DF_REF_INSN (def);
631 df_ref next_def;
632 enum iv_grd_result res;
634 set = single_set (insn);
635 if (!set)
636 return false;
638 rhs = find_reg_equal_equiv_note (insn);
639 if (rhs)
640 rhs = XEXP (rhs, 0);
641 else
642 rhs = SET_SRC (set);
644 code = GET_CODE (rhs);
645 switch (code)
647 case SUBREG:
648 case REG:
649 next = rhs;
650 break;
652 case PLUS:
653 case MINUS:
654 op0 = XEXP (rhs, 0);
655 op1 = XEXP (rhs, 1);
657 if (code == PLUS && CONSTANT_P (op0))
659 tmp = op0; op0 = op1; op1 = tmp;
662 if (!simple_reg_p (op0)
663 || !CONSTANT_P (op1))
664 return false;
666 if (GET_MODE (rhs) != outer_mode)
668 /* ppc64 uses expressions like
670 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
672 this is equivalent to
674 (set x':DI (plus:DI y:DI 1))
675 (set x:SI (subreg:SI (x':DI)). */
676 if (GET_CODE (op0) != SUBREG)
677 return false;
678 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
679 return false;
682 next = op0;
683 break;
685 case SIGN_EXTEND:
686 case ZERO_EXTEND:
687 if (GET_MODE (rhs) != outer_mode)
688 return false;
690 op0 = XEXP (rhs, 0);
691 if (!simple_reg_p (op0))
692 return false;
694 next = op0;
695 break;
697 default:
698 return false;
701 if (GET_CODE (next) == SUBREG)
703 if (!subreg_lowpart_p (next))
704 return false;
706 nextr = SUBREG_REG (next);
707 if (GET_MODE (nextr) != outer_mode)
708 return false;
710 else
711 nextr = next;
713 res = iv_get_reaching_def (insn, nextr, &next_def);
715 if (res == GRD_INVALID || res == GRD_INVARIANT)
716 return false;
718 if (res == GRD_MAYBE_BIV)
720 if (!rtx_equal_p (nextr, reg))
721 return false;
723 *inner_step = const0_rtx;
724 *extend = UNKNOWN;
725 *inner_mode = outer_mode;
726 *outer_step = const0_rtx;
728 else if (!get_biv_step_1 (next_def, reg,
729 inner_step, inner_mode, extend, outer_mode,
730 outer_step))
731 return false;
733 if (GET_CODE (next) == SUBREG)
735 enum machine_mode amode = GET_MODE (next);
737 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
738 return false;
740 *inner_mode = amode;
741 *inner_step = simplify_gen_binary (PLUS, outer_mode,
742 *inner_step, *outer_step);
743 *outer_step = const0_rtx;
744 *extend = UNKNOWN;
747 switch (code)
749 case REG:
750 case SUBREG:
751 break;
753 case PLUS:
754 case MINUS:
755 if (*inner_mode == outer_mode
756 /* See comment in previous switch. */
757 || GET_MODE (rhs) != outer_mode)
758 *inner_step = simplify_gen_binary (code, outer_mode,
759 *inner_step, op1);
760 else
761 *outer_step = simplify_gen_binary (code, outer_mode,
762 *outer_step, op1);
763 break;
765 case SIGN_EXTEND:
766 case ZERO_EXTEND:
767 gcc_assert (GET_MODE (op0) == *inner_mode
768 && *extend == UNKNOWN
769 && *outer_step == const0_rtx);
771 *extend = code;
772 break;
774 default:
775 return false;
778 return true;
781 /* Gets the operation on register REG inside loop, in shape
783 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
785 If the operation cannot be described in this shape, return false.
786 LAST_DEF is the definition of REG that dominates loop latch. */
788 static bool
789 get_biv_step (df_ref last_def, rtx reg, rtx *inner_step,
790 enum machine_mode *inner_mode, enum rtx_code *extend,
791 enum machine_mode *outer_mode, rtx *outer_step)
793 *outer_mode = GET_MODE (reg);
795 if (!get_biv_step_1 (last_def, reg,
796 inner_step, inner_mode, extend, *outer_mode,
797 outer_step))
798 return false;
800 gcc_assert ((*inner_mode == *outer_mode) != (*extend != UNKNOWN));
801 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx);
803 return true;
806 /* Records information that DEF is induction variable IV. */
808 static void
809 record_iv (df_ref def, struct rtx_iv *iv)
811 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
813 *recorded_iv = *iv;
814 check_iv_ref_table_size ();
815 DF_REF_IV_SET (def, recorded_iv);
818 /* If DEF was already analyzed for bivness, store the description of the biv to
819 IV and return true. Otherwise return false. */
821 static bool
822 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
824 struct biv_entry *biv =
825 (struct biv_entry *) htab_find_with_hash (bivs, def, REGNO (def));
827 if (!biv)
828 return false;
830 *iv = biv->iv;
831 return true;
834 static void
835 record_biv (rtx def, struct rtx_iv *iv)
837 struct biv_entry *biv = XNEW (struct biv_entry);
838 void **slot = htab_find_slot_with_hash (bivs, def, REGNO (def), INSERT);
840 biv->regno = REGNO (def);
841 biv->iv = *iv;
842 gcc_assert (!*slot);
843 *slot = biv;
846 /* Determines whether DEF is a biv and if so, stores its description
847 to *IV. */
849 static bool
850 iv_analyze_biv (rtx def, struct rtx_iv *iv)
852 rtx inner_step, outer_step;
853 enum machine_mode inner_mode, outer_mode;
854 enum rtx_code extend;
855 df_ref last_def;
857 if (dump_file)
859 fprintf (dump_file, "Analyzing ");
860 print_rtl (dump_file, def);
861 fprintf (dump_file, " for bivness.\n");
864 if (!REG_P (def))
866 if (!CONSTANT_P (def))
867 return false;
869 return iv_constant (iv, def, VOIDmode);
872 if (!latch_dominating_def (def, &last_def))
874 if (dump_file)
875 fprintf (dump_file, " not simple.\n");
876 return false;
879 if (!last_def)
880 return iv_constant (iv, def, VOIDmode);
882 if (analyzed_for_bivness_p (def, iv))
884 if (dump_file)
885 fprintf (dump_file, " already analysed.\n");
886 return iv->base != NULL_RTX;
889 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend,
890 &outer_mode, &outer_step))
892 iv->base = NULL_RTX;
893 goto end;
896 /* Loop transforms base to es (base + inner_step) + outer_step,
897 where es means extend of subreg between inner_mode and outer_mode.
898 The corresponding induction variable is
900 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
902 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
903 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
904 iv->mode = inner_mode;
905 iv->extend_mode = outer_mode;
906 iv->extend = extend;
907 iv->mult = const1_rtx;
908 iv->delta = outer_step;
909 iv->first_special = inner_mode != outer_mode;
911 end:
912 if (dump_file)
914 fprintf (dump_file, " ");
915 dump_iv_info (dump_file, iv);
916 fprintf (dump_file, "\n");
919 record_biv (def, iv);
920 return iv->base != NULL_RTX;
923 /* Analyzes expression RHS used at INSN and stores the result to *IV.
924 The mode of the induction variable is MODE. */
926 bool
927 iv_analyze_expr (rtx insn, rtx rhs, enum machine_mode mode, struct rtx_iv *iv)
929 rtx mby = NULL_RTX, tmp;
930 rtx op0 = NULL_RTX, op1 = NULL_RTX;
931 struct rtx_iv iv0, iv1;
932 enum rtx_code code = GET_CODE (rhs);
933 enum machine_mode omode = mode;
935 iv->mode = VOIDmode;
936 iv->base = NULL_RTX;
937 iv->step = NULL_RTX;
939 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
941 if (CONSTANT_P (rhs)
942 || REG_P (rhs)
943 || code == SUBREG)
945 if (!iv_analyze_op (insn, rhs, iv))
946 return false;
948 if (iv->mode == VOIDmode)
950 iv->mode = mode;
951 iv->extend_mode = mode;
954 return true;
957 switch (code)
959 case REG:
960 op0 = rhs;
961 break;
963 case SIGN_EXTEND:
964 case ZERO_EXTEND:
965 case NEG:
966 op0 = XEXP (rhs, 0);
967 omode = GET_MODE (op0);
968 break;
970 case PLUS:
971 case MINUS:
972 op0 = XEXP (rhs, 0);
973 op1 = XEXP (rhs, 1);
974 break;
976 case MULT:
977 op0 = XEXP (rhs, 0);
978 mby = XEXP (rhs, 1);
979 if (!CONSTANT_P (mby))
981 tmp = op0;
982 op0 = mby;
983 mby = tmp;
985 if (!CONSTANT_P (mby))
986 return false;
987 break;
989 case ASHIFT:
990 op0 = XEXP (rhs, 0);
991 mby = XEXP (rhs, 1);
992 if (!CONSTANT_P (mby))
993 return false;
994 break;
996 default:
997 return false;
1000 if (op0
1001 && !iv_analyze_expr (insn, op0, omode, &iv0))
1002 return false;
1004 if (op1
1005 && !iv_analyze_expr (insn, op1, omode, &iv1))
1006 return false;
1008 switch (code)
1010 case SIGN_EXTEND:
1011 case ZERO_EXTEND:
1012 if (!iv_extend (&iv0, code, mode))
1013 return false;
1014 break;
1016 case NEG:
1017 if (!iv_neg (&iv0))
1018 return false;
1019 break;
1021 case PLUS:
1022 case MINUS:
1023 if (!iv_add (&iv0, &iv1, code))
1024 return false;
1025 break;
1027 case MULT:
1028 if (!iv_mult (&iv0, mby))
1029 return false;
1030 break;
1032 case ASHIFT:
1033 if (!iv_shift (&iv0, mby))
1034 return false;
1035 break;
1037 default:
1038 break;
1041 *iv = iv0;
1042 return iv->base != NULL_RTX;
1045 /* Analyzes iv DEF and stores the result to *IV. */
1047 static bool
1048 iv_analyze_def (df_ref def, struct rtx_iv *iv)
1050 rtx insn = DF_REF_INSN (def);
1051 rtx reg = DF_REF_REG (def);
1052 rtx set, rhs;
1054 if (dump_file)
1056 fprintf (dump_file, "Analyzing def of ");
1057 print_rtl (dump_file, reg);
1058 fprintf (dump_file, " in insn ");
1059 print_rtl_single (dump_file, insn);
1062 check_iv_ref_table_size ();
1063 if (DF_REF_IV (def))
1065 if (dump_file)
1066 fprintf (dump_file, " already analysed.\n");
1067 *iv = *DF_REF_IV (def);
1068 return iv->base != NULL_RTX;
1071 iv->mode = VOIDmode;
1072 iv->base = NULL_RTX;
1073 iv->step = NULL_RTX;
1075 if (!REG_P (reg))
1076 return false;
1078 set = single_set (insn);
1079 if (!set)
1080 return false;
1082 if (!REG_P (SET_DEST (set)))
1083 return false;
1085 gcc_assert (SET_DEST (set) == reg);
1086 rhs = find_reg_equal_equiv_note (insn);
1087 if (rhs)
1088 rhs = XEXP (rhs, 0);
1089 else
1090 rhs = SET_SRC (set);
1092 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv);
1093 record_iv (def, iv);
1095 if (dump_file)
1097 print_rtl (dump_file, reg);
1098 fprintf (dump_file, " in insn ");
1099 print_rtl_single (dump_file, insn);
1100 fprintf (dump_file, " is ");
1101 dump_iv_info (dump_file, iv);
1102 fprintf (dump_file, "\n");
1105 return iv->base != NULL_RTX;
1108 /* Analyzes operand OP of INSN and stores the result to *IV. */
1110 static bool
1111 iv_analyze_op (rtx insn, rtx op, struct rtx_iv *iv)
1113 df_ref def = NULL;
1114 enum iv_grd_result res;
1116 if (dump_file)
1118 fprintf (dump_file, "Analyzing operand ");
1119 print_rtl (dump_file, op);
1120 fprintf (dump_file, " of insn ");
1121 print_rtl_single (dump_file, insn);
1124 if (function_invariant_p (op))
1125 res = GRD_INVARIANT;
1126 else if (GET_CODE (op) == SUBREG)
1128 if (!subreg_lowpart_p (op))
1129 return false;
1131 if (!iv_analyze_op (insn, SUBREG_REG (op), iv))
1132 return false;
1134 return iv_subreg (iv, GET_MODE (op));
1136 else
1138 res = iv_get_reaching_def (insn, op, &def);
1139 if (res == GRD_INVALID)
1141 if (dump_file)
1142 fprintf (dump_file, " not simple.\n");
1143 return false;
1147 if (res == GRD_INVARIANT)
1149 iv_constant (iv, op, VOIDmode);
1151 if (dump_file)
1153 fprintf (dump_file, " ");
1154 dump_iv_info (dump_file, iv);
1155 fprintf (dump_file, "\n");
1157 return true;
1160 if (res == GRD_MAYBE_BIV)
1161 return iv_analyze_biv (op, iv);
1163 return iv_analyze_def (def, iv);
1166 /* Analyzes value VAL at INSN and stores the result to *IV. */
1168 bool
1169 iv_analyze (rtx insn, rtx val, struct rtx_iv *iv)
1171 rtx reg;
1173 /* We must find the insn in that val is used, so that we get to UD chains.
1174 Since the function is sometimes called on result of get_condition,
1175 this does not necessarily have to be directly INSN; scan also the
1176 following insns. */
1177 if (simple_reg_p (val))
1179 if (GET_CODE (val) == SUBREG)
1180 reg = SUBREG_REG (val);
1181 else
1182 reg = val;
1184 while (!df_find_use (insn, reg))
1185 insn = NEXT_INSN (insn);
1188 return iv_analyze_op (insn, val, iv);
1191 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1193 bool
1194 iv_analyze_result (rtx insn, rtx def, struct rtx_iv *iv)
1196 df_ref adef;
1198 adef = df_find_def (insn, def);
1199 if (!adef)
1200 return false;
1202 return iv_analyze_def (adef, iv);
1205 /* Checks whether definition of register REG in INSN is a basic induction
1206 variable. IV analysis must have been initialized (via a call to
1207 iv_analysis_loop_init) for this function to produce a result. */
1209 bool
1210 biv_p (rtx insn, rtx reg)
1212 struct rtx_iv iv;
1213 df_ref def, last_def;
1215 if (!simple_reg_p (reg))
1216 return false;
1218 def = df_find_def (insn, reg);
1219 gcc_assert (def != NULL);
1220 if (!latch_dominating_def (reg, &last_def))
1221 return false;
1222 if (last_def != def)
1223 return false;
1225 if (!iv_analyze_biv (reg, &iv))
1226 return false;
1228 return iv.step != const0_rtx;
1231 /* Calculates value of IV at ITERATION-th iteration. */
1234 get_iv_value (struct rtx_iv *iv, rtx iteration)
1236 rtx val;
1238 /* We would need to generate some if_then_else patterns, and so far
1239 it is not needed anywhere. */
1240 gcc_assert (!iv->first_special);
1242 if (iv->step != const0_rtx && iteration != const0_rtx)
1243 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1244 simplify_gen_binary (MULT, iv->extend_mode,
1245 iv->step, iteration));
1246 else
1247 val = iv->base;
1249 if (iv->extend_mode == iv->mode)
1250 return val;
1252 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1254 if (iv->extend == UNKNOWN)
1255 return val;
1257 val = simplify_gen_unary (iv->extend, iv->extend_mode, val, iv->mode);
1258 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1259 simplify_gen_binary (MULT, iv->extend_mode,
1260 iv->mult, val));
1262 return val;
1265 /* Free the data for an induction variable analysis. */
1267 void
1268 iv_analysis_done (void)
1270 if (!clean_slate)
1272 clear_iv_info ();
1273 clean_slate = true;
1274 df_finish_pass (true);
1275 htab_delete (bivs);
1276 free (iv_ref_table);
1277 iv_ref_table = NULL;
1278 iv_ref_table_size = 0;
1279 bivs = NULL;
1283 /* Computes inverse to X modulo (1 << MOD). */
1285 static unsigned HOST_WIDEST_INT
1286 inverse (unsigned HOST_WIDEST_INT x, int mod)
1288 unsigned HOST_WIDEST_INT mask =
1289 ((unsigned HOST_WIDEST_INT) 1 << (mod - 1) << 1) - 1;
1290 unsigned HOST_WIDEST_INT rslt = 1;
1291 int i;
1293 for (i = 0; i < mod - 1; i++)
1295 rslt = (rslt * x) & mask;
1296 x = (x * x) & mask;
1299 return rslt;
1302 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1304 static int
1305 altered_reg_used (rtx *reg, void *alt)
1307 if (!REG_P (*reg))
1308 return 0;
1310 return REGNO_REG_SET_P ((bitmap) alt, REGNO (*reg));
1313 /* Marks registers altered by EXPR in set ALT. */
1315 static void
1316 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1318 if (GET_CODE (expr) == SUBREG)
1319 expr = SUBREG_REG (expr);
1320 if (!REG_P (expr))
1321 return;
1323 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1326 /* Checks whether RHS is simple enough to process. */
1328 static bool
1329 simple_rhs_p (rtx rhs)
1331 rtx op0, op1;
1333 if (function_invariant_p (rhs)
1334 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1335 return true;
1337 switch (GET_CODE (rhs))
1339 case PLUS:
1340 case MINUS:
1341 case AND:
1342 op0 = XEXP (rhs, 0);
1343 op1 = XEXP (rhs, 1);
1344 /* Allow reg OP const and reg OP reg. */
1345 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1346 && !function_invariant_p (op0))
1347 return false;
1348 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1349 && !function_invariant_p (op1))
1350 return false;
1352 return true;
1354 case ASHIFT:
1355 case ASHIFTRT:
1356 case LSHIFTRT:
1357 case MULT:
1358 op0 = XEXP (rhs, 0);
1359 op1 = XEXP (rhs, 1);
1360 /* Allow reg OP const. */
1361 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1362 return false;
1363 if (!function_invariant_p (op1))
1364 return false;
1366 return true;
1368 default:
1369 return false;
1373 /* If REG has a single definition, replace it with its known value in EXPR.
1374 Callback for for_each_rtx. */
1376 static int
1377 replace_single_def_regs (rtx *reg, void *expr1)
1379 unsigned regno;
1380 df_ref adef;
1381 rtx set, src;
1382 rtx *expr = (rtx *)expr1;
1384 if (!REG_P (*reg))
1385 return 0;
1387 regno = REGNO (*reg);
1388 for (;;)
1390 rtx note;
1391 adef = DF_REG_DEF_CHAIN (regno);
1392 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1393 || DF_REF_IS_ARTIFICIAL (adef))
1394 return -1;
1396 set = single_set (DF_REF_INSN (adef));
1397 if (set == NULL || !REG_P (SET_DEST (set))
1398 || REGNO (SET_DEST (set)) != regno)
1399 return -1;
1401 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1403 if (note && function_invariant_p (XEXP (note, 0)))
1405 src = XEXP (note, 0);
1406 break;
1408 src = SET_SRC (set);
1410 if (REG_P (src))
1412 regno = REGNO (src);
1413 continue;
1415 break;
1417 if (!function_invariant_p (src))
1418 return -1;
1420 *expr = simplify_replace_rtx (*expr, *reg, src);
1421 return 1;
1424 /* A subroutine of simplify_using_initial_values, this function examines INSN
1425 to see if it contains a suitable set that we can use to make a replacement.
1426 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1427 the set; return false otherwise. */
1429 static bool
1430 suitable_set_for_replacement (rtx insn, rtx *dest, rtx *src)
1432 rtx set = single_set (insn);
1433 rtx lhs = NULL_RTX, rhs;
1435 if (!set)
1436 return false;
1438 lhs = SET_DEST (set);
1439 if (!REG_P (lhs))
1440 return false;
1442 rhs = find_reg_equal_equiv_note (insn);
1443 if (rhs)
1444 rhs = XEXP (rhs, 0);
1445 else
1446 rhs = SET_SRC (set);
1448 if (!simple_rhs_p (rhs))
1449 return false;
1451 *dest = lhs;
1452 *src = rhs;
1453 return true;
1456 /* Using the data returned by suitable_set_for_replacement, replace DEST
1457 with SRC in *EXPR and return the new expression. Also call
1458 replace_single_def_regs if the replacement changed something. */
1459 static void
1460 replace_in_expr (rtx *expr, rtx dest, rtx src)
1462 rtx old = *expr;
1463 *expr = simplify_replace_rtx (*expr, dest, src);
1464 if (old == *expr)
1465 return;
1466 while (for_each_rtx (expr, replace_single_def_regs, expr) != 0)
1467 continue;
1470 /* Checks whether A implies B. */
1472 static bool
1473 implies_p (rtx a, rtx b)
1475 rtx op0, op1, opb0, opb1, r;
1476 enum machine_mode mode;
1478 if (GET_CODE (a) == EQ)
1480 op0 = XEXP (a, 0);
1481 op1 = XEXP (a, 1);
1483 if (REG_P (op0))
1485 r = simplify_replace_rtx (b, op0, op1);
1486 if (r == const_true_rtx)
1487 return true;
1490 if (REG_P (op1))
1492 r = simplify_replace_rtx (b, op1, op0);
1493 if (r == const_true_rtx)
1494 return true;
1498 if (b == const_true_rtx)
1499 return true;
1501 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1502 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1503 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1504 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1505 return false;
1507 op0 = XEXP (a, 0);
1508 op1 = XEXP (a, 1);
1509 opb0 = XEXP (b, 0);
1510 opb1 = XEXP (b, 1);
1512 mode = GET_MODE (op0);
1513 if (mode != GET_MODE (opb0))
1514 mode = VOIDmode;
1515 else if (mode == VOIDmode)
1517 mode = GET_MODE (op1);
1518 if (mode != GET_MODE (opb1))
1519 mode = VOIDmode;
1522 /* A < B implies A + 1 <= B. */
1523 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1524 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1527 if (GET_CODE (a) == GT)
1529 r = op0;
1530 op0 = op1;
1531 op1 = r;
1534 if (GET_CODE (b) == GE)
1536 r = opb0;
1537 opb0 = opb1;
1538 opb1 = r;
1541 if (SCALAR_INT_MODE_P (mode)
1542 && rtx_equal_p (op1, opb1)
1543 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1544 return true;
1545 return false;
1548 /* A < B or A > B imply A != B. TODO: Likewise
1549 A + n < B implies A != B + n if neither wraps. */
1550 if (GET_CODE (b) == NE
1551 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1552 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1554 if (rtx_equal_p (op0, opb0)
1555 && rtx_equal_p (op1, opb1))
1556 return true;
1559 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1560 if (GET_CODE (a) == NE
1561 && op1 == const0_rtx)
1563 if ((GET_CODE (b) == GTU
1564 && opb1 == const0_rtx)
1565 || (GET_CODE (b) == GEU
1566 && opb1 == const1_rtx))
1567 return rtx_equal_p (op0, opb0);
1570 /* A != N is equivalent to A - (N + 1) <u -1. */
1571 if (GET_CODE (a) == NE
1572 && CONST_INT_P (op1)
1573 && GET_CODE (b) == LTU
1574 && opb1 == constm1_rtx
1575 && GET_CODE (opb0) == PLUS
1576 && CONST_INT_P (XEXP (opb0, 1))
1577 /* Avoid overflows. */
1578 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1579 != ((unsigned HOST_WIDE_INT)1
1580 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1581 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1582 return rtx_equal_p (op0, XEXP (opb0, 0));
1584 /* Likewise, A != N implies A - N > 0. */
1585 if (GET_CODE (a) == NE
1586 && CONST_INT_P (op1))
1588 if (GET_CODE (b) == GTU
1589 && GET_CODE (opb0) == PLUS
1590 && opb1 == const0_rtx
1591 && CONST_INT_P (XEXP (opb0, 1))
1592 /* Avoid overflows. */
1593 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1594 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1595 && rtx_equal_p (XEXP (opb0, 0), op0))
1596 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1597 if (GET_CODE (b) == GEU
1598 && GET_CODE (opb0) == PLUS
1599 && opb1 == const1_rtx
1600 && CONST_INT_P (XEXP (opb0, 1))
1601 /* Avoid overflows. */
1602 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1603 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1604 && rtx_equal_p (XEXP (opb0, 0), op0))
1605 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1608 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1609 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1610 && CONST_INT_P (op1)
1611 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1612 || INTVAL (op1) >= 0)
1613 && GET_CODE (b) == LTU
1614 && CONST_INT_P (opb1)
1615 && rtx_equal_p (op0, opb0))
1616 return INTVAL (opb1) < 0;
1618 return false;
1621 /* Canonicalizes COND so that
1623 (1) Ensure that operands are ordered according to
1624 swap_commutative_operands_p.
1625 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1626 for GE, GEU, and LEU. */
1629 canon_condition (rtx cond)
1631 rtx tem;
1632 rtx op0, op1;
1633 enum rtx_code code;
1634 enum machine_mode mode;
1636 code = GET_CODE (cond);
1637 op0 = XEXP (cond, 0);
1638 op1 = XEXP (cond, 1);
1640 if (swap_commutative_operands_p (op0, op1))
1642 code = swap_condition (code);
1643 tem = op0;
1644 op0 = op1;
1645 op1 = tem;
1648 mode = GET_MODE (op0);
1649 if (mode == VOIDmode)
1650 mode = GET_MODE (op1);
1651 gcc_assert (mode != VOIDmode);
1653 if (CONST_INT_P (op1)
1654 && GET_MODE_CLASS (mode) != MODE_CC
1655 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1657 HOST_WIDE_INT const_val = INTVAL (op1);
1658 unsigned HOST_WIDE_INT uconst_val = const_val;
1659 unsigned HOST_WIDE_INT max_val
1660 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode);
1662 switch (code)
1664 case LE:
1665 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
1666 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
1667 break;
1669 /* When cross-compiling, const_val might be sign-extended from
1670 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1671 case GE:
1672 if ((HOST_WIDE_INT) (const_val & max_val)
1673 != (((HOST_WIDE_INT) 1
1674 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
1675 code = GT, op1 = gen_int_mode (const_val - 1, mode);
1676 break;
1678 case LEU:
1679 if (uconst_val < max_val)
1680 code = LTU, op1 = gen_int_mode (uconst_val + 1, mode);
1681 break;
1683 case GEU:
1684 if (uconst_val != 0)
1685 code = GTU, op1 = gen_int_mode (uconst_val - 1, mode);
1686 break;
1688 default:
1689 break;
1693 if (op0 != XEXP (cond, 0)
1694 || op1 != XEXP (cond, 1)
1695 || code != GET_CODE (cond)
1696 || GET_MODE (cond) != SImode)
1697 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1699 return cond;
1702 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1703 set of altered regs. */
1705 void
1706 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1708 rtx rev, reve, exp = *expr;
1710 /* If some register gets altered later, we do not really speak about its
1711 value at the time of comparison. */
1712 if (altered
1713 && for_each_rtx (&cond, altered_reg_used, altered))
1714 return;
1716 if (GET_CODE (cond) == EQ
1717 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1719 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1720 return;
1723 if (!COMPARISON_P (exp))
1724 return;
1726 rev = reversed_condition (cond);
1727 reve = reversed_condition (exp);
1729 cond = canon_condition (cond);
1730 exp = canon_condition (exp);
1731 if (rev)
1732 rev = canon_condition (rev);
1733 if (reve)
1734 reve = canon_condition (reve);
1736 if (rtx_equal_p (exp, cond))
1738 *expr = const_true_rtx;
1739 return;
1742 if (rev && rtx_equal_p (exp, rev))
1744 *expr = const0_rtx;
1745 return;
1748 if (implies_p (cond, exp))
1750 *expr = const_true_rtx;
1751 return;
1754 if (reve && implies_p (cond, reve))
1756 *expr = const0_rtx;
1757 return;
1760 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1761 be false. */
1762 if (rev && implies_p (exp, rev))
1764 *expr = const0_rtx;
1765 return;
1768 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1769 if (rev && reve && implies_p (reve, rev))
1771 *expr = const_true_rtx;
1772 return;
1775 /* We would like to have some other tests here. TODO. */
1777 return;
1780 /* Use relationship between A and *B to eventually eliminate *B.
1781 OP is the operation we consider. */
1783 static void
1784 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1786 switch (op)
1788 case AND:
1789 /* If A implies *B, we may replace *B by true. */
1790 if (implies_p (a, *b))
1791 *b = const_true_rtx;
1792 break;
1794 case IOR:
1795 /* If *B implies A, we may replace *B by false. */
1796 if (implies_p (*b, a))
1797 *b = const0_rtx;
1798 break;
1800 default:
1801 gcc_unreachable ();
1805 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1806 operation we consider. */
1808 static void
1809 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1811 rtx elt;
1813 for (elt = tail; elt; elt = XEXP (elt, 1))
1814 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1815 for (elt = tail; elt; elt = XEXP (elt, 1))
1816 eliminate_implied_condition (op, XEXP (elt, 0), head);
1819 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1820 is a list, its elements are assumed to be combined using OP. */
1822 static void
1823 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1825 bool expression_valid;
1826 rtx head, tail, insn, cond_list, last_valid_expr;
1827 rtx neutral, aggr;
1828 regset altered, this_altered;
1829 edge e;
1831 if (!*expr)
1832 return;
1834 if (CONSTANT_P (*expr))
1835 return;
1837 if (GET_CODE (*expr) == EXPR_LIST)
1839 head = XEXP (*expr, 0);
1840 tail = XEXP (*expr, 1);
1842 eliminate_implied_conditions (op, &head, tail);
1844 switch (op)
1846 case AND:
1847 neutral = const_true_rtx;
1848 aggr = const0_rtx;
1849 break;
1851 case IOR:
1852 neutral = const0_rtx;
1853 aggr = const_true_rtx;
1854 break;
1856 default:
1857 gcc_unreachable ();
1860 simplify_using_initial_values (loop, UNKNOWN, &head);
1861 if (head == aggr)
1863 XEXP (*expr, 0) = aggr;
1864 XEXP (*expr, 1) = NULL_RTX;
1865 return;
1867 else if (head == neutral)
1869 *expr = tail;
1870 simplify_using_initial_values (loop, op, expr);
1871 return;
1873 simplify_using_initial_values (loop, op, &tail);
1875 if (tail && XEXP (tail, 0) == aggr)
1877 *expr = tail;
1878 return;
1881 XEXP (*expr, 0) = head;
1882 XEXP (*expr, 1) = tail;
1883 return;
1886 gcc_assert (op == UNKNOWN);
1888 for (;;)
1889 if (for_each_rtx (expr, replace_single_def_regs, expr) == 0)
1890 break;
1891 if (CONSTANT_P (*expr))
1892 return;
1894 e = loop_preheader_edge (loop);
1895 if (e->src == ENTRY_BLOCK_PTR)
1896 return;
1898 altered = ALLOC_REG_SET (&reg_obstack);
1899 this_altered = ALLOC_REG_SET (&reg_obstack);
1901 expression_valid = true;
1902 last_valid_expr = *expr;
1903 cond_list = NULL_RTX;
1904 while (1)
1906 insn = BB_END (e->src);
1907 if (any_condjump_p (insn))
1909 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1911 if (cond && (e->flags & EDGE_FALLTHRU))
1912 cond = reversed_condition (cond);
1913 if (cond)
1915 rtx old = *expr;
1916 simplify_using_condition (cond, expr, altered);
1917 if (old != *expr)
1919 rtx note;
1920 if (CONSTANT_P (*expr))
1921 goto out;
1922 for (note = cond_list; note; note = XEXP (note, 1))
1924 simplify_using_condition (XEXP (note, 0), expr, altered);
1925 if (CONSTANT_P (*expr))
1926 goto out;
1929 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1933 FOR_BB_INSNS_REVERSE (e->src, insn)
1935 rtx src, dest;
1936 rtx old = *expr;
1938 if (!INSN_P (insn))
1939 continue;
1941 CLEAR_REG_SET (this_altered);
1942 note_stores (PATTERN (insn), mark_altered, this_altered);
1943 if (CALL_P (insn))
1945 int i;
1947 /* Kill all call clobbered registers. */
1948 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1949 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1950 SET_REGNO_REG_SET (this_altered, i);
1953 if (suitable_set_for_replacement (insn, &dest, &src))
1955 rtx *pnote, *pnote_next;
1957 replace_in_expr (expr, dest, src);
1958 if (CONSTANT_P (*expr))
1959 goto out;
1961 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1963 rtx note = *pnote;
1964 rtx old_cond = XEXP (note, 0);
1966 pnote_next = &XEXP (note, 1);
1967 replace_in_expr (&XEXP (note, 0), dest, src);
1969 /* We can no longer use a condition that has been simplified
1970 to a constant, and simplify_using_condition will abort if
1971 we try. */
1972 if (CONSTANT_P (XEXP (note, 0)))
1974 *pnote = *pnote_next;
1975 pnote_next = pnote;
1976 free_EXPR_LIST_node (note);
1978 /* Retry simplifications with this condition if either the
1979 expression or the condition changed. */
1980 else if (old_cond != XEXP (note, 0) || old != *expr)
1981 simplify_using_condition (XEXP (note, 0), expr, altered);
1984 else
1985 /* If we did not use this insn to make a replacement, any overlap
1986 between stores in this insn and our expression will cause the
1987 expression to become invalid. */
1988 if (for_each_rtx (expr, altered_reg_used, this_altered))
1989 goto out;
1991 if (CONSTANT_P (*expr))
1992 goto out;
1994 IOR_REG_SET (altered, this_altered);
1996 /* If the expression now contains regs that have been altered, we
1997 can't return it to the caller. However, it is still valid for
1998 further simplification, so keep searching to see if we can
1999 eventually turn it into a constant. */
2000 if (for_each_rtx (expr, altered_reg_used, altered))
2001 expression_valid = false;
2002 if (expression_valid)
2003 last_valid_expr = *expr;
2006 if (!single_pred_p (e->src)
2007 || single_pred (e->src) == ENTRY_BLOCK_PTR)
2008 break;
2009 e = single_pred_edge (e->src);
2012 out:
2013 free_EXPR_LIST_list (&cond_list);
2014 if (!CONSTANT_P (*expr))
2015 *expr = last_valid_expr;
2016 FREE_REG_SET (altered);
2017 FREE_REG_SET (this_altered);
2020 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2021 that IV occurs as left operands of comparison COND and its signedness
2022 is SIGNED_P to DESC. */
2024 static void
2025 shorten_into_mode (struct rtx_iv *iv, enum machine_mode mode,
2026 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2028 rtx mmin, mmax, cond_over, cond_under;
2030 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2031 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2032 iv->base, mmin);
2033 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2034 iv->base, mmax);
2036 switch (cond)
2038 case LE:
2039 case LT:
2040 case LEU:
2041 case LTU:
2042 if (cond_under != const0_rtx)
2043 desc->infinite =
2044 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2045 if (cond_over != const0_rtx)
2046 desc->noloop_assumptions =
2047 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2048 break;
2050 case GE:
2051 case GT:
2052 case GEU:
2053 case GTU:
2054 if (cond_over != const0_rtx)
2055 desc->infinite =
2056 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2057 if (cond_under != const0_rtx)
2058 desc->noloop_assumptions =
2059 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2060 break;
2062 case NE:
2063 if (cond_over != const0_rtx)
2064 desc->infinite =
2065 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2066 if (cond_under != const0_rtx)
2067 desc->infinite =
2068 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2069 break;
2071 default:
2072 gcc_unreachable ();
2075 iv->mode = mode;
2076 iv->extend = signed_p ? SIGN_EXTEND : ZERO_EXTEND;
2079 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2080 subregs of the same mode if possible (sometimes it is necessary to add
2081 some assumptions to DESC). */
2083 static bool
2084 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2085 enum rtx_code cond, struct niter_desc *desc)
2087 enum machine_mode comp_mode;
2088 bool signed_p;
2090 /* If the ivs behave specially in the first iteration, or are
2091 added/multiplied after extending, we ignore them. */
2092 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2093 return false;
2094 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2095 return false;
2097 /* If there is some extend, it must match signedness of the comparison. */
2098 switch (cond)
2100 case LE:
2101 case LT:
2102 if (iv0->extend == ZERO_EXTEND
2103 || iv1->extend == ZERO_EXTEND)
2104 return false;
2105 signed_p = true;
2106 break;
2108 case LEU:
2109 case LTU:
2110 if (iv0->extend == SIGN_EXTEND
2111 || iv1->extend == SIGN_EXTEND)
2112 return false;
2113 signed_p = false;
2114 break;
2116 case NE:
2117 if (iv0->extend != UNKNOWN
2118 && iv1->extend != UNKNOWN
2119 && iv0->extend != iv1->extend)
2120 return false;
2122 signed_p = false;
2123 if (iv0->extend != UNKNOWN)
2124 signed_p = iv0->extend == SIGN_EXTEND;
2125 if (iv1->extend != UNKNOWN)
2126 signed_p = iv1->extend == SIGN_EXTEND;
2127 break;
2129 default:
2130 gcc_unreachable ();
2133 /* Values of both variables should be computed in the same mode. These
2134 might indeed be different, if we have comparison like
2136 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2138 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2139 in different modes. This does not seem impossible to handle, but
2140 it hardly ever occurs in practice.
2142 The only exception is the case when one of operands is invariant.
2143 For example pentium 3 generates comparisons like
2144 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2145 definitely do not want this prevent the optimization. */
2146 comp_mode = iv0->extend_mode;
2147 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2148 comp_mode = iv1->extend_mode;
2150 if (iv0->extend_mode != comp_mode)
2152 if (iv0->mode != iv0->extend_mode
2153 || iv0->step != const0_rtx)
2154 return false;
2156 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2157 comp_mode, iv0->base, iv0->mode);
2158 iv0->extend_mode = comp_mode;
2161 if (iv1->extend_mode != comp_mode)
2163 if (iv1->mode != iv1->extend_mode
2164 || iv1->step != const0_rtx)
2165 return false;
2167 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2168 comp_mode, iv1->base, iv1->mode);
2169 iv1->extend_mode = comp_mode;
2172 /* Check that both ivs belong to a range of a single mode. If one of the
2173 operands is an invariant, we may need to shorten it into the common
2174 mode. */
2175 if (iv0->mode == iv0->extend_mode
2176 && iv0->step == const0_rtx
2177 && iv0->mode != iv1->mode)
2178 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2180 if (iv1->mode == iv1->extend_mode
2181 && iv1->step == const0_rtx
2182 && iv0->mode != iv1->mode)
2183 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2185 if (iv0->mode != iv1->mode)
2186 return false;
2188 desc->mode = iv0->mode;
2189 desc->signed_p = signed_p;
2191 return true;
2194 /* Tries to estimate the maximum number of iterations in LOOP, and store the
2195 result in DESC. This function is called from iv_number_of_iterations with
2196 a number of fields in DESC already filled in. OLD_NITER is the original
2197 expression for the number of iterations, before we tried to simplify it. */
2199 static unsigned HOST_WIDEST_INT
2200 determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
2202 rtx niter = desc->niter_expr;
2203 rtx mmin, mmax, cmp;
2204 unsigned HOST_WIDEST_INT nmax, inc;
2206 if (GET_CODE (niter) == AND
2207 && CONST_INT_P (XEXP (niter, 0)))
2209 nmax = INTVAL (XEXP (niter, 0));
2210 if (!(nmax & (nmax + 1)))
2212 desc->niter_max = nmax;
2213 return nmax;
2217 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2218 nmax = INTVAL (mmax) - INTVAL (mmin);
2220 if (GET_CODE (niter) == UDIV)
2222 if (!CONST_INT_P (XEXP (niter, 1)))
2224 desc->niter_max = nmax;
2225 return nmax;
2227 inc = INTVAL (XEXP (niter, 1));
2228 niter = XEXP (niter, 0);
2230 else
2231 inc = 1;
2233 /* We could use a binary search here, but for now improving the upper
2234 bound by just one eliminates one important corner case. */
2235 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2236 desc->mode, old_niter, mmax);
2237 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2238 if (cmp == const_true_rtx)
2240 nmax--;
2242 if (dump_file)
2243 fprintf (dump_file, ";; improved upper bound by one.\n");
2245 desc->niter_max = nmax / inc;
2246 return nmax / inc;
2249 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2250 the result into DESC. Very similar to determine_number_of_iterations
2251 (basically its rtl version), complicated by things like subregs. */
2253 static void
2254 iv_number_of_iterations (struct loop *loop, rtx insn, rtx condition,
2255 struct niter_desc *desc)
2257 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2258 struct rtx_iv iv0, iv1, tmp_iv;
2259 rtx assumption, may_not_xform;
2260 enum rtx_code cond;
2261 enum machine_mode mode, comp_mode;
2262 rtx mmin, mmax, mode_mmin, mode_mmax;
2263 unsigned HOST_WIDEST_INT s, size, d, inv;
2264 HOST_WIDEST_INT up, down, inc, step_val;
2265 int was_sharp = false;
2266 rtx old_niter;
2267 bool step_is_pow2;
2269 /* The meaning of these assumptions is this:
2270 if !assumptions
2271 then the rest of information does not have to be valid
2272 if noloop_assumptions then the loop does not roll
2273 if infinite then this exit is never used */
2275 desc->assumptions = NULL_RTX;
2276 desc->noloop_assumptions = NULL_RTX;
2277 desc->infinite = NULL_RTX;
2278 desc->simple_p = true;
2280 desc->const_iter = false;
2281 desc->niter_expr = NULL_RTX;
2282 desc->niter_max = 0;
2284 cond = GET_CODE (condition);
2285 gcc_assert (COMPARISON_P (condition));
2287 mode = GET_MODE (XEXP (condition, 0));
2288 if (mode == VOIDmode)
2289 mode = GET_MODE (XEXP (condition, 1));
2290 /* The constant comparisons should be folded. */
2291 gcc_assert (mode != VOIDmode);
2293 /* We only handle integers or pointers. */
2294 if (GET_MODE_CLASS (mode) != MODE_INT
2295 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
2296 goto fail;
2298 op0 = XEXP (condition, 0);
2299 if (!iv_analyze (insn, op0, &iv0))
2300 goto fail;
2301 if (iv0.extend_mode == VOIDmode)
2302 iv0.mode = iv0.extend_mode = mode;
2304 op1 = XEXP (condition, 1);
2305 if (!iv_analyze (insn, op1, &iv1))
2306 goto fail;
2307 if (iv1.extend_mode == VOIDmode)
2308 iv1.mode = iv1.extend_mode = mode;
2310 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2311 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2312 goto fail;
2314 /* Check condition and normalize it. */
2316 switch (cond)
2318 case GE:
2319 case GT:
2320 case GEU:
2321 case GTU:
2322 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
2323 cond = swap_condition (cond);
2324 break;
2325 case NE:
2326 case LE:
2327 case LEU:
2328 case LT:
2329 case LTU:
2330 break;
2331 default:
2332 goto fail;
2335 /* Handle extends. This is relatively nontrivial, so we only try in some
2336 easy cases, when we can canonicalize the ivs (possibly by adding some
2337 assumptions) to shape subreg (base + i * step). This function also fills
2338 in desc->mode and desc->signed_p. */
2340 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2341 goto fail;
2343 comp_mode = iv0.extend_mode;
2344 mode = iv0.mode;
2345 size = GET_MODE_BITSIZE (mode);
2346 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2347 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2348 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2350 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2351 goto fail;
2353 /* We can take care of the case of two induction variables chasing each other
2354 if the test is NE. I have never seen a loop using it, but still it is
2355 cool. */
2356 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2358 if (cond != NE)
2359 goto fail;
2361 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2362 iv1.step = const0_rtx;
2365 /* This is either infinite loop or the one that ends immediately, depending
2366 on initial values. Unswitching should remove this kind of conditions. */
2367 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2368 goto fail;
2370 if (cond != NE)
2372 if (iv0.step == const0_rtx)
2373 step_val = -INTVAL (iv1.step);
2374 else
2375 step_val = INTVAL (iv0.step);
2377 /* Ignore loops of while (i-- < 10) type. */
2378 if (step_val < 0)
2379 goto fail;
2381 step_is_pow2 = !(step_val & (step_val - 1));
2383 else
2385 /* We do not care about whether the step is power of two in this
2386 case. */
2387 step_is_pow2 = false;
2388 step_val = 0;
2391 /* Some more condition normalization. We must record some assumptions
2392 due to overflows. */
2393 switch (cond)
2395 case LT:
2396 case LTU:
2397 /* We want to take care only of non-sharp relationals; this is easy,
2398 as in cases the overflow would make the transformation unsafe
2399 the loop does not roll. Seemingly it would make more sense to want
2400 to take care of sharp relationals instead, as NE is more similar to
2401 them, but the problem is that here the transformation would be more
2402 difficult due to possibly infinite loops. */
2403 if (iv0.step == const0_rtx)
2405 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2406 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2407 mode_mmax);
2408 if (assumption == const_true_rtx)
2409 goto zero_iter_simplify;
2410 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2411 iv0.base, const1_rtx);
2413 else
2415 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2416 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2417 mode_mmin);
2418 if (assumption == const_true_rtx)
2419 goto zero_iter_simplify;
2420 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2421 iv1.base, constm1_rtx);
2424 if (assumption != const0_rtx)
2425 desc->noloop_assumptions =
2426 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2427 cond = (cond == LT) ? LE : LEU;
2429 /* It will be useful to be able to tell the difference once more in
2430 LE -> NE reduction. */
2431 was_sharp = true;
2432 break;
2433 default: ;
2436 /* Take care of trivially infinite loops. */
2437 if (cond != NE)
2439 if (iv0.step == const0_rtx)
2441 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2442 if (rtx_equal_p (tmp, mode_mmin))
2444 desc->infinite =
2445 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2446 /* Fill in the remaining fields somehow. */
2447 goto zero_iter_simplify;
2450 else
2452 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2453 if (rtx_equal_p (tmp, mode_mmax))
2455 desc->infinite =
2456 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2457 /* Fill in the remaining fields somehow. */
2458 goto zero_iter_simplify;
2463 /* If we can we want to take care of NE conditions instead of size
2464 comparisons, as they are much more friendly (most importantly
2465 this takes care of special handling of loops with step 1). We can
2466 do it if we first check that upper bound is greater or equal to
2467 lower bound, their difference is constant c modulo step and that
2468 there is not an overflow. */
2469 if (cond != NE)
2471 if (iv0.step == const0_rtx)
2472 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2473 else
2474 step = iv0.step;
2475 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2476 delta = lowpart_subreg (mode, delta, comp_mode);
2477 delta = simplify_gen_binary (UMOD, mode, delta, step);
2478 may_xform = const0_rtx;
2479 may_not_xform = const_true_rtx;
2481 if (CONST_INT_P (delta))
2483 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2485 /* A special case. We have transformed condition of type
2486 for (i = 0; i < 4; i += 4)
2487 into
2488 for (i = 0; i <= 3; i += 4)
2489 obviously if the test for overflow during that transformation
2490 passed, we cannot overflow here. Most importantly any
2491 loop with sharp end condition and step 1 falls into this
2492 category, so handling this case specially is definitely
2493 worth the troubles. */
2494 may_xform = const_true_rtx;
2496 else if (iv0.step == const0_rtx)
2498 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2499 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2500 bound = lowpart_subreg (mode, bound, comp_mode);
2501 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2502 may_xform = simplify_gen_relational (cond, SImode, mode,
2503 bound, tmp);
2504 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2505 SImode, mode,
2506 bound, tmp);
2508 else
2510 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2511 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2512 bound = lowpart_subreg (mode, bound, comp_mode);
2513 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2514 may_xform = simplify_gen_relational (cond, SImode, mode,
2515 tmp, bound);
2516 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2517 SImode, mode,
2518 tmp, bound);
2522 if (may_xform != const0_rtx)
2524 /* We perform the transformation always provided that it is not
2525 completely senseless. This is OK, as we would need this assumption
2526 to determine the number of iterations anyway. */
2527 if (may_xform != const_true_rtx)
2529 /* If the step is a power of two and the final value we have
2530 computed overflows, the cycle is infinite. Otherwise it
2531 is nontrivial to compute the number of iterations. */
2532 if (step_is_pow2)
2533 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2534 desc->infinite);
2535 else
2536 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2537 desc->assumptions);
2540 /* We are going to lose some information about upper bound on
2541 number of iterations in this step, so record the information
2542 here. */
2543 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2544 if (CONST_INT_P (iv1.base))
2545 up = INTVAL (iv1.base);
2546 else
2547 up = INTVAL (mode_mmax) - inc;
2548 down = INTVAL (CONST_INT_P (iv0.base)
2549 ? iv0.base
2550 : mode_mmin);
2551 desc->niter_max = (up - down) / inc + 1;
2553 if (iv0.step == const0_rtx)
2555 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2556 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2558 else
2560 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2561 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2564 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2565 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2566 assumption = simplify_gen_relational (reverse_condition (cond),
2567 SImode, mode, tmp0, tmp1);
2568 if (assumption == const_true_rtx)
2569 goto zero_iter_simplify;
2570 else if (assumption != const0_rtx)
2571 desc->noloop_assumptions =
2572 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2573 cond = NE;
2577 /* Count the number of iterations. */
2578 if (cond == NE)
2580 /* Everything we do here is just arithmetics modulo size of mode. This
2581 makes us able to do more involved computations of number of iterations
2582 than in other cases. First transform the condition into shape
2583 s * i <> c, with s positive. */
2584 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2585 iv0.base = const0_rtx;
2586 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2587 iv1.step = const0_rtx;
2588 if (INTVAL (iv0.step) < 0)
2590 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, mode);
2591 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, mode);
2593 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2595 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2596 is infinite. Otherwise, the number of iterations is
2597 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2598 s = INTVAL (iv0.step); d = 1;
2599 while (s % 2 != 1)
2601 s /= 2;
2602 d *= 2;
2603 size--;
2605 bound = GEN_INT (((unsigned HOST_WIDEST_INT) 1 << (size - 1 ) << 1) - 1);
2607 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2608 tmp = simplify_gen_binary (UMOD, mode, tmp1, GEN_INT (d));
2609 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2610 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2612 tmp = simplify_gen_binary (UDIV, mode, tmp1, GEN_INT (d));
2613 inv = inverse (s, size);
2614 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2615 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2617 else
2619 if (iv1.step == const0_rtx)
2620 /* Condition in shape a + s * i <= b
2621 We must know that b + s does not overflow and a <= b + s and then we
2622 can compute number of iterations as (b + s - a) / s. (It might
2623 seem that we in fact could be more clever about testing the b + s
2624 overflow condition using some information about b - a mod s,
2625 but it was already taken into account during LE -> NE transform). */
2627 step = iv0.step;
2628 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2629 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2631 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2632 lowpart_subreg (mode, step,
2633 comp_mode));
2634 if (step_is_pow2)
2636 rtx t0, t1;
2638 /* If s is power of 2, we know that the loop is infinite if
2639 a % s <= b % s and b + s overflows. */
2640 assumption = simplify_gen_relational (reverse_condition (cond),
2641 SImode, mode,
2642 tmp1, bound);
2644 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2645 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2646 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2647 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2648 desc->infinite =
2649 alloc_EXPR_LIST (0, assumption, desc->infinite);
2651 else
2653 assumption = simplify_gen_relational (cond, SImode, mode,
2654 tmp1, bound);
2655 desc->assumptions =
2656 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2659 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2660 tmp = lowpart_subreg (mode, tmp, comp_mode);
2661 assumption = simplify_gen_relational (reverse_condition (cond),
2662 SImode, mode, tmp0, tmp);
2664 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2665 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2667 else
2669 /* Condition in shape a <= b - s * i
2670 We must know that a - s does not overflow and a - s <= b and then
2671 we can again compute number of iterations as (b - (a - s)) / s. */
2672 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2673 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2674 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2676 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2677 lowpart_subreg (mode, step, comp_mode));
2678 if (step_is_pow2)
2680 rtx t0, t1;
2682 /* If s is power of 2, we know that the loop is infinite if
2683 a % s <= b % s and a - s overflows. */
2684 assumption = simplify_gen_relational (reverse_condition (cond),
2685 SImode, mode,
2686 bound, tmp0);
2688 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2689 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2690 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2691 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2692 desc->infinite =
2693 alloc_EXPR_LIST (0, assumption, desc->infinite);
2695 else
2697 assumption = simplify_gen_relational (cond, SImode, mode,
2698 bound, tmp0);
2699 desc->assumptions =
2700 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2703 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2704 tmp = lowpart_subreg (mode, tmp, comp_mode);
2705 assumption = simplify_gen_relational (reverse_condition (cond),
2706 SImode, mode,
2707 tmp, tmp1);
2708 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2709 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2711 if (assumption == const_true_rtx)
2712 goto zero_iter_simplify;
2713 else if (assumption != const0_rtx)
2714 desc->noloop_assumptions =
2715 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2716 delta = simplify_gen_binary (UDIV, mode, delta, step);
2717 desc->niter_expr = delta;
2720 old_niter = desc->niter_expr;
2722 simplify_using_initial_values (loop, AND, &desc->assumptions);
2723 if (desc->assumptions
2724 && XEXP (desc->assumptions, 0) == const0_rtx)
2725 goto fail;
2726 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2727 simplify_using_initial_values (loop, IOR, &desc->infinite);
2728 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2730 /* Rerun the simplification. Consider code (created by copying loop headers)
2732 i = 0;
2734 if (0 < n)
2738 i++;
2739 } while (i < n);
2742 The first pass determines that i = 0, the second pass uses it to eliminate
2743 noloop assumption. */
2745 simplify_using_initial_values (loop, AND, &desc->assumptions);
2746 if (desc->assumptions
2747 && XEXP (desc->assumptions, 0) == const0_rtx)
2748 goto fail;
2749 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2750 simplify_using_initial_values (loop, IOR, &desc->infinite);
2751 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2753 if (desc->noloop_assumptions
2754 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2755 goto zero_iter;
2757 if (CONST_INT_P (desc->niter_expr))
2759 unsigned HOST_WIDEST_INT val = INTVAL (desc->niter_expr);
2761 desc->const_iter = true;
2762 desc->niter_max = desc->niter = val & GET_MODE_MASK (desc->mode);
2764 else
2766 if (!desc->niter_max)
2767 desc->niter_max = determine_max_iter (loop, desc, old_niter);
2769 /* simplify_using_initial_values does a copy propagation on the registers
2770 in the expression for the number of iterations. This prolongs life
2771 ranges of registers and increases register pressure, and usually
2772 brings no gain (and if it happens to do, the cse pass will take care
2773 of it anyway). So prevent this behavior, unless it enabled us to
2774 derive that the number of iterations is a constant. */
2775 desc->niter_expr = old_niter;
2778 return;
2780 zero_iter_simplify:
2781 /* Simplify the assumptions. */
2782 simplify_using_initial_values (loop, AND, &desc->assumptions);
2783 if (desc->assumptions
2784 && XEXP (desc->assumptions, 0) == const0_rtx)
2785 goto fail;
2786 simplify_using_initial_values (loop, IOR, &desc->infinite);
2788 /* Fallthru. */
2789 zero_iter:
2790 desc->const_iter = true;
2791 desc->niter = 0;
2792 desc->niter_max = 0;
2793 desc->noloop_assumptions = NULL_RTX;
2794 desc->niter_expr = const0_rtx;
2795 return;
2797 fail:
2798 desc->simple_p = false;
2799 return;
2802 /* Checks whether E is a simple exit from LOOP and stores its description
2803 into DESC. */
2805 static void
2806 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2808 basic_block exit_bb;
2809 rtx condition, at;
2810 edge ein;
2812 exit_bb = e->src;
2813 desc->simple_p = false;
2815 /* It must belong directly to the loop. */
2816 if (exit_bb->loop_father != loop)
2817 return;
2819 /* It must be tested (at least) once during any iteration. */
2820 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2821 return;
2823 /* It must end in a simple conditional jump. */
2824 if (!any_condjump_p (BB_END (exit_bb)))
2825 return;
2827 ein = EDGE_SUCC (exit_bb, 0);
2828 if (ein == e)
2829 ein = EDGE_SUCC (exit_bb, 1);
2831 desc->out_edge = e;
2832 desc->in_edge = ein;
2834 /* Test whether the condition is suitable. */
2835 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2836 return;
2838 if (ein->flags & EDGE_FALLTHRU)
2840 condition = reversed_condition (condition);
2841 if (!condition)
2842 return;
2845 /* Check that we are able to determine number of iterations and fill
2846 in information about it. */
2847 iv_number_of_iterations (loop, at, condition, desc);
2850 /* Finds a simple exit of LOOP and stores its description into DESC. */
2852 void
2853 find_simple_exit (struct loop *loop, struct niter_desc *desc)
2855 unsigned i;
2856 basic_block *body;
2857 edge e;
2858 struct niter_desc act;
2859 bool any = false;
2860 edge_iterator ei;
2862 desc->simple_p = false;
2863 body = get_loop_body (loop);
2865 for (i = 0; i < loop->num_nodes; i++)
2867 FOR_EACH_EDGE (e, ei, body[i]->succs)
2869 if (flow_bb_inside_loop_p (loop, e->dest))
2870 continue;
2872 check_simple_exit (loop, e, &act);
2873 if (!act.simple_p)
2874 continue;
2876 if (!any)
2877 any = true;
2878 else
2880 /* Prefer constant iterations; the less the better. */
2881 if (!act.const_iter
2882 || (desc->const_iter && act.niter >= desc->niter))
2883 continue;
2885 /* Also if the actual exit may be infinite, while the old one
2886 not, prefer the old one. */
2887 if (act.infinite && !desc->infinite)
2888 continue;
2891 *desc = act;
2895 if (dump_file)
2897 if (desc->simple_p)
2899 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2900 fprintf (dump_file, " simple exit %d -> %d\n",
2901 desc->out_edge->src->index,
2902 desc->out_edge->dest->index);
2903 if (desc->assumptions)
2905 fprintf (dump_file, " assumptions: ");
2906 print_rtl (dump_file, desc->assumptions);
2907 fprintf (dump_file, "\n");
2909 if (desc->noloop_assumptions)
2911 fprintf (dump_file, " does not roll if: ");
2912 print_rtl (dump_file, desc->noloop_assumptions);
2913 fprintf (dump_file, "\n");
2915 if (desc->infinite)
2917 fprintf (dump_file, " infinite if: ");
2918 print_rtl (dump_file, desc->infinite);
2919 fprintf (dump_file, "\n");
2922 fprintf (dump_file, " number of iterations: ");
2923 print_rtl (dump_file, desc->niter_expr);
2924 fprintf (dump_file, "\n");
2926 fprintf (dump_file, " upper bound: ");
2927 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter_max);
2928 fprintf (dump_file, "\n");
2930 else
2931 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
2934 free (body);
2937 /* Creates a simple loop description of LOOP if it was not computed
2938 already. */
2940 struct niter_desc *
2941 get_simple_loop_desc (struct loop *loop)
2943 struct niter_desc *desc = simple_loop_desc (loop);
2945 if (desc)
2946 return desc;
2948 /* At least desc->infinite is not always initialized by
2949 find_simple_loop_exit. */
2950 desc = XCNEW (struct niter_desc);
2951 iv_analysis_loop_init (loop);
2952 find_simple_exit (loop, desc);
2953 loop->aux = desc;
2955 if (desc->simple_p && (desc->assumptions || desc->infinite))
2957 const char *wording;
2959 /* Assume that no overflow happens and that the loop is finite.
2960 We already warned at the tree level if we ran optimizations there. */
2961 if (!flag_tree_loop_optimize && warn_unsafe_loop_optimizations)
2963 if (desc->infinite)
2965 wording =
2966 flag_unsafe_loop_optimizations
2967 ? N_("assuming that the loop is not infinite")
2968 : N_("cannot optimize possibly infinite loops");
2969 warning (OPT_Wunsafe_loop_optimizations, "%s",
2970 gettext (wording));
2972 if (desc->assumptions)
2974 wording =
2975 flag_unsafe_loop_optimizations
2976 ? N_("assuming that the loop counter does not overflow")
2977 : N_("cannot optimize loop, the loop counter may overflow");
2978 warning (OPT_Wunsafe_loop_optimizations, "%s",
2979 gettext (wording));
2983 if (flag_unsafe_loop_optimizations)
2985 desc->assumptions = NULL_RTX;
2986 desc->infinite = NULL_RTX;
2990 return desc;
2993 /* Releases simple loop description for LOOP. */
2995 void
2996 free_simple_loop_desc (struct loop *loop)
2998 struct niter_desc *desc = simple_loop_desc (loop);
3000 if (!desc)
3001 return;
3003 free (desc);
3004 loop->aux = NULL;