fix pr/45972
[official-gcc.git] / gcc / graphite-clast-to-gimple.c
blob9a90ef79185fbeeaac99e703ffaa069af09e8ab8
1 /* Translation of CLAST (CLooG AST) to Gimple.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "toplev.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "tree-chrec.h"
36 #include "tree-data-ref.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "gimple.h"
43 #include "langhooks.h"
44 #include "sese.h"
46 #ifdef HAVE_cloog
47 #include "cloog/cloog.h"
48 #include "ppl_c.h"
49 #include "graphite-cloog-util.h"
50 #include "graphite-ppl.h"
51 #include "graphite.h"
52 #include "graphite-poly.h"
53 #include "graphite-scop-detection.h"
54 #include "graphite-clast-to-gimple.h"
55 #include "graphite-dependences.h"
56 #include "graphite-cloog-compat.h"
58 /* This flag is set when an error occurred during the translation of
59 CLAST to Gimple. */
60 static bool gloog_error;
62 /* Verifies properties that GRAPHITE should maintain during translation. */
64 static inline void
65 graphite_verify (void)
67 #ifdef ENABLE_CHECKING
68 verify_loop_structure ();
69 verify_dominators (CDI_DOMINATORS);
70 verify_loop_closed_ssa (true);
71 #endif
74 /* Stores the INDEX in a vector for a given clast NAME. */
76 typedef struct clast_name_index {
77 int index;
78 const char *name;
79 } *clast_name_index_p;
81 /* Returns a pointer to a new element of type clast_name_index_p built
82 from NAME and INDEX. */
84 static inline clast_name_index_p
85 new_clast_name_index (const char *name, int index)
87 clast_name_index_p res = XNEW (struct clast_name_index);
89 res->name = name;
90 res->index = index;
91 return res;
94 /* For a given clast NAME, returns -1 if it does not correspond to any
95 parameter, or otherwise, returns the index in the PARAMS or
96 SCATTERING_DIMENSIONS vector. */
98 static inline int
99 clast_name_to_index (clast_name_p name, htab_t index_table)
101 struct clast_name_index tmp;
102 PTR *slot;
104 #ifdef CLOOG_ORG
105 gcc_assert (name->type == clast_expr_name);
106 tmp.name = ((const struct clast_name*) name)->name;
107 #else
108 tmp.name = name;
109 #endif
111 slot = htab_find_slot (index_table, &tmp, NO_INSERT);
113 if (slot && *slot)
114 return ((struct clast_name_index *) *slot)->index;
116 return -1;
119 /* Records in INDEX_TABLE the INDEX for NAME. */
121 static inline void
122 save_clast_name_index (htab_t index_table, const char *name, int index)
124 struct clast_name_index tmp;
125 PTR *slot;
127 tmp.name = name;
128 slot = htab_find_slot (index_table, &tmp, INSERT);
130 if (slot)
132 if (*slot)
133 free (*slot);
135 *slot = new_clast_name_index (name, index);
139 /* Computes a hash function for database element ELT. */
141 static inline hashval_t
142 clast_name_index_elt_info (const void *elt)
144 return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
147 /* Compares database elements E1 and E2. */
149 static inline int
150 eq_clast_name_indexes (const void *e1, const void *e2)
152 const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
153 const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
155 return (elt1->name == elt2->name);
158 /* For a given scattering dimension, return the new induction variable
159 associated to it. */
161 static inline tree
162 newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
164 return VEC_index (tree, newivs, depth);
169 /* Returns the tree variable from the name NAME that was given in
170 Cloog representation. */
172 static tree
173 clast_name_to_gcc (clast_name_p name, sese region, VEC (tree, heap) *newivs,
174 htab_t newivs_index, htab_t params_index)
176 int index;
177 VEC (tree, heap) *params = SESE_PARAMS (region);
179 if (params && params_index)
181 index = clast_name_to_index (name, params_index);
183 if (index >= 0)
184 return VEC_index (tree, params, index);
187 gcc_assert (newivs && newivs_index);
188 index = clast_name_to_index (name, newivs_index);
189 gcc_assert (index >= 0);
191 return newivs_to_depth_to_newiv (newivs, index);
194 /* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */
196 static tree
197 max_signed_precision_type (tree type1, tree type2)
199 int p1 = TYPE_PRECISION (type1);
200 int p2 = TYPE_PRECISION (type2);
201 int precision;
202 tree type;
203 enum machine_mode mode;
205 if (p1 > p2)
206 precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
207 else
208 precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
210 if (precision > BITS_PER_WORD)
212 gloog_error = true;
213 return integer_type_node;
216 mode = smallest_mode_for_size (precision, MODE_INT);
217 precision = GET_MODE_PRECISION (mode);
218 type = build_nonstandard_integer_type (precision, false);
220 if (!type)
222 gloog_error = true;
223 return integer_type_node;
226 return type;
229 /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
231 static tree
232 max_precision_type (tree type1, tree type2)
234 if (POINTER_TYPE_P (type1))
235 return type1;
237 if (POINTER_TYPE_P (type2))
238 return type2;
240 if (!TYPE_UNSIGNED (type1)
241 || !TYPE_UNSIGNED (type2))
242 return max_signed_precision_type (type1, type2);
244 return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
247 static tree
248 clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
249 htab_t, htab_t);
251 /* Converts a Cloog reduction expression R with reduction operation OP
252 to a GCC expression tree of type TYPE. */
254 static tree
255 clast_to_gcc_expression_red (tree type, enum tree_code op,
256 struct clast_reduction *r,
257 sese region, VEC (tree, heap) *newivs,
258 htab_t newivs_index, htab_t params_index)
260 int i;
261 tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
262 newivs_index, params_index);
263 tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
265 for (i = 1; i < r->n; i++)
267 tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
268 newivs, newivs_index, params_index);
269 res = fold_build2 (op, type, res, t);
272 return res;
275 /* Converts a Cloog AST expression E back to a GCC expression tree of
276 type TYPE. */
278 static tree
279 clast_to_gcc_expression (tree type, struct clast_expr *e,
280 sese region, VEC (tree, heap) *newivs,
281 htab_t newivs_index, htab_t params_index)
283 switch (e->type)
285 case clast_expr_term:
287 struct clast_term *t = (struct clast_term *) e;
289 if (t->var)
291 if (mpz_cmp_si (t->val, 1) == 0)
293 tree name = clast_name_to_gcc (t->var, region, newivs,
294 newivs_index, params_index);
296 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
297 name = fold_convert (sizetype, name);
299 name = fold_convert (type, name);
300 return name;
303 else if (mpz_cmp_si (t->val, -1) == 0)
305 tree name = clast_name_to_gcc (t->var, region, newivs,
306 newivs_index, params_index);
308 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
309 name = fold_convert (sizetype, name);
311 name = fold_convert (type, name);
313 return fold_build1 (NEGATE_EXPR, type, name);
315 else
317 tree name = clast_name_to_gcc (t->var, region, newivs,
318 newivs_index, params_index);
319 tree cst = gmp_cst_to_tree (type, t->val);
321 if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
322 name = fold_convert (sizetype, name);
324 name = fold_convert (type, name);
326 if (!POINTER_TYPE_P (type))
327 return fold_build2 (MULT_EXPR, type, cst, name);
329 gloog_error = true;
330 return cst;
333 else
334 return gmp_cst_to_tree (type, t->val);
337 case clast_expr_red:
339 struct clast_reduction *r = (struct clast_reduction *) e;
341 switch (r->type)
343 case clast_red_sum:
344 return clast_to_gcc_expression_red
345 (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
346 r, region, newivs, newivs_index, params_index);
348 case clast_red_min:
349 return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
350 newivs, newivs_index,
351 params_index);
353 case clast_red_max:
354 return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
355 newivs, newivs_index,
356 params_index);
358 default:
359 gcc_unreachable ();
361 break;
364 case clast_expr_bin:
366 struct clast_binary *b = (struct clast_binary *) e;
367 struct clast_expr *lhs = (struct clast_expr *) b->LHS;
368 tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
369 newivs_index, params_index);
370 tree tr = gmp_cst_to_tree (type, b->RHS);
372 switch (b->type)
374 case clast_bin_fdiv:
375 return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
377 case clast_bin_cdiv:
378 return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
380 case clast_bin_div:
381 return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
383 case clast_bin_mod:
384 return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
386 default:
387 gcc_unreachable ();
391 default:
392 gcc_unreachable ();
395 return NULL_TREE;
398 /* Return the precision needed to represent the value VAL. */
400 static int
401 precision_for_value (mpz_t val)
403 mpz_t x, y, two;
404 int precision;
406 mpz_init (x);
407 mpz_init (y);
408 mpz_init (two);
409 mpz_set_si (x, 2);
410 mpz_set (y, val);
411 mpz_set_si (two, 2);
412 precision = 1;
414 if (mpz_sgn (y) < 0)
415 mpz_neg (y, y);
417 while (mpz_cmp (y, x) >= 0)
419 mpz_mul (x, x, two);
420 precision++;
423 mpz_clear (x);
424 mpz_clear (y);
425 mpz_clear (two);
427 return precision;
430 /* Return the precision needed to represent the values between LOW and
431 UP. */
433 static int
434 precision_for_interval (mpz_t low, mpz_t up)
436 mpz_t diff;
437 int precision;
439 gcc_assert (mpz_cmp (low, up) <= 0);
441 mpz_init (diff);
442 mpz_sub (diff, up, low);
443 precision = precision_for_value (diff);
444 mpz_clear (diff);
446 return precision;
449 /* Return a type that could represent the integer value VAL. */
451 static tree
452 gcc_type_for_interval (mpz_t low, mpz_t up)
454 bool unsigned_p = true;
455 int precision, prec_up, prec_int;
456 tree type;
457 enum machine_mode mode;
459 gcc_assert (mpz_cmp (low, up) <= 0);
461 prec_up = precision_for_value (up);
462 prec_int = precision_for_interval (low, up);
463 precision = MAX (prec_up, prec_int);
465 if (precision > BITS_PER_WORD)
467 gloog_error = true;
468 return integer_type_node;
471 if (mpz_sgn (low) <= 0)
472 unsigned_p = false;
474 else if (precision < BITS_PER_WORD)
476 unsigned_p = false;
477 precision++;
480 mode = smallest_mode_for_size (precision, MODE_INT);
481 precision = GET_MODE_PRECISION (mode);
482 type = build_nonstandard_integer_type (precision, unsigned_p);
484 if (!type)
486 gloog_error = true;
487 return integer_type_node;
490 return type;
493 /* Return a type that could represent the integer value VAL, or
494 otherwise return NULL_TREE. */
496 static tree
497 gcc_type_for_value (mpz_t val)
499 return gcc_type_for_interval (val, val);
502 /* Return the type for the clast_term T used in STMT. */
504 static tree
505 gcc_type_for_clast_term (struct clast_term *t,
506 sese region, VEC (tree, heap) *newivs,
507 htab_t newivs_index, htab_t params_index)
509 gcc_assert (t->expr.type == clast_expr_term);
511 if (!t->var)
512 return gcc_type_for_value (t->val);
514 return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
515 newivs_index, params_index));
518 static tree
519 gcc_type_for_clast_expr (struct clast_expr *, sese,
520 VEC (tree, heap) *, htab_t, htab_t);
522 /* Return the type for the clast_reduction R used in STMT. */
524 static tree
525 gcc_type_for_clast_red (struct clast_reduction *r, sese region,
526 VEC (tree, heap) *newivs,
527 htab_t newivs_index, htab_t params_index)
529 int i;
530 tree type = NULL_TREE;
532 if (r->n == 1)
533 return gcc_type_for_clast_expr (r->elts[0], region, newivs,
534 newivs_index, params_index);
536 switch (r->type)
538 case clast_red_sum:
539 case clast_red_min:
540 case clast_red_max:
541 type = gcc_type_for_clast_expr (r->elts[0], region, newivs,
542 newivs_index, params_index);
543 for (i = 1; i < r->n; i++)
544 type = max_precision_type (type, gcc_type_for_clast_expr
545 (r->elts[i], region, newivs,
546 newivs_index, params_index));
548 return type;
550 default:
551 break;
554 gcc_unreachable ();
555 return NULL_TREE;
558 /* Return the type for the clast_binary B used in STMT. */
560 static tree
561 gcc_type_for_clast_bin (struct clast_binary *b,
562 sese region, VEC (tree, heap) *newivs,
563 htab_t newivs_index, htab_t params_index)
565 tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region,
566 newivs, newivs_index, params_index);
567 tree r = gcc_type_for_value (b->RHS);
568 return max_signed_precision_type (l, r);
571 /* Returns the type for the CLAST expression E when used in statement
572 STMT. */
574 static tree
575 gcc_type_for_clast_expr (struct clast_expr *e,
576 sese region, VEC (tree, heap) *newivs,
577 htab_t newivs_index, htab_t params_index)
579 switch (e->type)
581 case clast_expr_term:
582 return gcc_type_for_clast_term ((struct clast_term *) e, region,
583 newivs, newivs_index, params_index);
585 case clast_expr_red:
586 return gcc_type_for_clast_red ((struct clast_reduction *) e, region,
587 newivs, newivs_index, params_index);
589 case clast_expr_bin:
590 return gcc_type_for_clast_bin ((struct clast_binary *) e, region,
591 newivs, newivs_index, params_index);
593 default:
594 gcc_unreachable ();
597 return NULL_TREE;
600 /* Returns the type for the equation CLEQ. */
602 static tree
603 gcc_type_for_clast_eq (struct clast_equation *cleq,
604 sese region, VEC (tree, heap) *newivs,
605 htab_t newivs_index, htab_t params_index)
607 tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
608 newivs_index, params_index);
609 tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs,
610 newivs_index, params_index);
611 return max_precision_type (l, r);
614 /* Translates a clast equation CLEQ to a tree. */
616 static tree
617 graphite_translate_clast_equation (sese region,
618 struct clast_equation *cleq,
619 VEC (tree, heap) *newivs,
620 htab_t newivs_index, htab_t params_index)
622 enum tree_code comp;
623 tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index,
624 params_index);
625 tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
626 newivs_index, params_index);
627 tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
628 newivs_index, params_index);
630 if (cleq->sign == 0)
631 comp = EQ_EXPR;
633 else if (cleq->sign > 0)
634 comp = GE_EXPR;
636 else
637 comp = LE_EXPR;
639 return fold_build2 (comp, boolean_type_node, lhs, rhs);
642 /* Creates the test for the condition in STMT. */
644 static tree
645 graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
646 VEC (tree, heap) *newivs,
647 htab_t newivs_index, htab_t params_index)
649 tree cond = NULL;
650 int i;
652 for (i = 0; i < stmt->n; i++)
654 tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
655 newivs, newivs_index,
656 params_index);
658 if (cond)
659 cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
660 else
661 cond = eq;
664 return cond;
667 /* Creates a new if region corresponding to Cloog's guard. */
669 static edge
670 graphite_create_new_guard (sese region, edge entry_edge,
671 struct clast_guard *stmt,
672 VEC (tree, heap) *newivs,
673 htab_t newivs_index, htab_t params_index)
675 tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
676 newivs_index, params_index);
677 edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
678 return exit_edge;
681 /* Compute the lower bound LOW and upper bound UP for the induction
682 variable at LEVEL for the statement PBB, based on the transformed
683 scattering of PBB: T|I|G|Cst, with T the scattering transform, I
684 the iteration domain, and G the context parameters. */
686 static void
687 compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
689 ppl_Pointset_Powerset_C_Polyhedron_t ps;
690 ppl_Linear_Expression_t le;
692 combine_context_id_scat (&ps, pbb, false);
694 /* Prepare the linear expression corresponding to the level that we
695 want to maximize/minimize. */
697 ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
698 + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
700 ppl_new_Linear_Expression_with_dimension (&le, dim);
701 ppl_set_coef (le, 2 * level + 1, 1);
704 ppl_max_for_le_pointset (ps, le, up);
705 ppl_min_for_le_pointset (ps, le, low);
706 ppl_delete_Linear_Expression (le);
707 ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
710 /* Compute the type for the induction variable at LEVEL for the
711 statement PBB, based on the transformed schedule of PBB. */
713 static tree
714 compute_type_for_level (poly_bb_p pbb, int level)
716 mpz_t low, up;
717 tree type;
719 mpz_init (low);
720 mpz_init (up);
722 compute_bounds_for_level (pbb, level, low, up);
723 type = gcc_type_for_interval (low, up);
725 mpz_clear (low);
726 mpz_clear (up);
727 return type;
730 /* Walks a CLAST and returns the first statement in the body of a
731 loop. */
733 static struct clast_user_stmt *
734 clast_get_body_of_loop (struct clast_stmt *stmt)
736 if (!stmt
737 || CLAST_STMT_IS_A (stmt, stmt_user))
738 return (struct clast_user_stmt *) stmt;
740 if (CLAST_STMT_IS_A (stmt, stmt_for))
741 return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
743 if (CLAST_STMT_IS_A (stmt, stmt_guard))
744 return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
746 if (CLAST_STMT_IS_A (stmt, stmt_block))
747 return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
749 gcc_unreachable ();
752 /* Returns the type for the induction variable for the loop translated
753 from STMT_FOR. */
755 static tree
756 gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level,
757 tree lb_type, tree ub_type)
759 struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
760 struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
761 CloogStatement *cs = body->statement;
762 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
764 return max_signed_precision_type (lb_type, max_precision_type
765 (ub_type, compute_type_for_level
766 (pbb, level - 1)));
769 /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
770 induction variable for the new LOOP. New LOOP is attached to CFG
771 starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
772 becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
773 CLooG's scattering name to the induction variable created for the
774 loop of STMT. The new induction variable is inserted in the NEWIVS
775 vector. */
777 static struct loop *
778 graphite_create_new_loop (sese region, edge entry_edge,
779 struct clast_for *stmt,
780 loop_p outer, VEC (tree, heap) **newivs,
781 htab_t newivs_index, htab_t params_index, int level)
783 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs,
784 newivs_index, params_index);
785 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs,
786 newivs_index, params_index);
787 tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type);
788 tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
789 newivs_index, params_index);
790 tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
791 newivs_index, params_index);
792 tree stride = gmp_cst_to_tree (type, stmt->stride);
793 tree ivvar = create_tmp_var (type, "graphite_IV");
794 tree iv, iv_after_increment;
795 loop_p loop = create_empty_loop_on_edge
796 (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
797 outer ? outer : entry_edge->src->loop_father);
799 add_referenced_var (ivvar);
801 save_clast_name_index (newivs_index, stmt->iterator,
802 VEC_length (tree, *newivs));
803 VEC_safe_push (tree, heap, *newivs, iv);
804 return loop;
807 /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the
808 induction variables of the loops around GBB in SESE. */
810 static void
811 build_iv_mapping (VEC (tree, heap) *iv_map, sese region,
812 VEC (tree, heap) *newivs, htab_t newivs_index,
813 struct clast_user_stmt *user_stmt,
814 htab_t params_index)
816 struct clast_stmt *t;
817 int depth = 0;
818 CloogStatement *cs = user_stmt->statement;
819 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
820 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
822 for (t = user_stmt->substitutions; t; t = t->next, depth++)
824 struct clast_expr *expr = (struct clast_expr *)
825 ((struct clast_assignment *)t)->RHS;
826 tree type = gcc_type_for_clast_expr (expr, region, newivs,
827 newivs_index, params_index);
828 tree new_name = clast_to_gcc_expression (type, expr, region, newivs,
829 newivs_index, params_index);
830 loop_p old_loop = gbb_loop_at_index (gbb, region, depth);
832 VEC_replace (tree, iv_map, old_loop->num, new_name);
836 /* Construct bb_pbb_def with BB and PBB. */
838 static bb_pbb_def *
839 new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
841 bb_pbb_def *bb_pbb_p;
843 bb_pbb_p = XNEW (bb_pbb_def);
844 bb_pbb_p->bb = bb;
845 bb_pbb_p->pbb = pbb;
847 return bb_pbb_p;
850 /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
852 static void
853 mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
855 bb_pbb_def tmp;
856 PTR *x;
858 tmp.bb = bb;
859 x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
861 if (x && !*x)
862 *x = new_bb_pbb_def (bb, pbb);
865 /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
867 static poly_bb_p
868 find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
870 bb_pbb_def tmp;
871 PTR *slot;
873 tmp.bb = bb;
874 slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
876 if (slot && *slot)
877 return ((bb_pbb_def *) *slot)->pbb;
879 return NULL;
882 /* Check data dependency in LOOP at scattering level LEVEL.
883 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
884 mapping. */
886 static bool
887 dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
889 unsigned i,j;
890 basic_block *bbs = get_loop_body_in_dom_order (loop);
892 for (i = 0; i < loop->num_nodes; i++)
894 poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
896 if (pbb1 == NULL)
897 continue;
899 for (j = 0; j < loop->num_nodes; j++)
901 poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
903 if (pbb2 == NULL)
904 continue;
906 if (dependency_between_pbbs_p (pbb1, pbb2, level))
908 free (bbs);
909 return true;
914 free (bbs);
916 return false;
919 /* Translates a clast user statement STMT to gimple.
921 - REGION is the sese region we used to generate the scop.
922 - NEXT_E is the edge where new generated code should be attached.
923 - CONTEXT_LOOP is the loop in which the generated code will be placed
924 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
925 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
926 the sese region. */
927 static edge
928 translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e,
929 VEC (tree, heap) **newivs,
930 htab_t newivs_index, htab_t bb_pbb_mapping,
931 htab_t params_index)
933 int i, nb_loops;
934 basic_block new_bb;
935 poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
936 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
937 VEC (tree, heap) *iv_map;
939 if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
940 return next_e;
942 nb_loops = number_of_loops ();
943 iv_map = VEC_alloc (tree, heap, nb_loops);
944 for (i = 0; i < nb_loops; i++)
945 VEC_quick_push (tree, iv_map, NULL_TREE);
947 build_iv_mapping (iv_map, region, *newivs, newivs_index, stmt, params_index);
948 next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
949 next_e, iv_map);
950 VEC_free (tree, heap, iv_map);
952 new_bb = next_e->src;
953 mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
954 update_ssa (TODO_update_ssa);
956 return next_e;
959 /* Creates a new if region protecting the loop to be executed, if the execution
960 count is zero (lb > ub). */
962 static edge
963 graphite_create_new_loop_guard (sese region, edge entry_edge,
964 struct clast_for *stmt,
965 VEC (tree, heap) *newivs,
966 htab_t newivs_index, htab_t params_index)
968 tree cond_expr;
969 edge exit_edge;
970 tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs,
971 newivs_index, params_index);
972 tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs,
973 newivs_index, params_index);
974 tree type = max_precision_type (lb_type, ub_type);
975 tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs,
976 newivs_index, params_index);
977 tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs,
978 newivs_index, params_index);
979 tree one = POINTER_TYPE_P (type) ? size_one_node
980 : fold_convert (type, integer_one_node);
981 /* Adding +1 and using LT_EXPR helps with loop latches that have a
982 loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
983 2^{32|64}, and the condition lb <= ub is true, even if we do not want this.
984 However lb < ub + 1 is false, as expected. */
985 tree ub_one = fold_build2 (POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR
986 : PLUS_EXPR, type, ub, one);
988 /* When ub + 1 wraps around, use lb <= ub. */
989 if (integer_zerop (ub_one))
990 cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub);
991 else
992 cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one);
994 exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
996 return exit_edge;
999 static edge
1000 translate_clast (sese, loop_p, struct clast_stmt *, edge,
1001 VEC (tree, heap) **, htab_t, htab_t, int, htab_t);
1003 /* Create the loop for a clast for statement.
1005 - REGION is the sese region we used to generate the scop.
1006 - NEXT_E is the edge where new generated code should be attached.
1007 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1008 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1009 the sese region. */
1010 static edge
1011 translate_clast_for_loop (sese region, loop_p context_loop,
1012 struct clast_for *stmt, edge next_e,
1013 VEC (tree, heap) **newivs,
1014 htab_t newivs_index, htab_t bb_pbb_mapping,
1015 int level, htab_t params_index)
1017 struct loop *loop = graphite_create_new_loop (region, next_e, stmt,
1018 context_loop, newivs,
1019 newivs_index, params_index,
1020 level);
1021 edge last_e = single_exit (loop);
1022 edge to_body = single_succ_edge (loop->header);
1023 basic_block after = to_body->dest;
1025 /* Create a basic block for loop close phi nodes. */
1026 last_e = single_succ_edge (split_edge (last_e));
1028 /* Translate the body of the loop. */
1029 next_e = translate_clast (region, loop, stmt->body, to_body,
1030 newivs, newivs_index, bb_pbb_mapping, level + 1,
1031 params_index);
1032 redirect_edge_succ_nodup (next_e, after);
1033 set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
1035 if (flag_loop_parallelize_all
1036 && !dependency_in_loop_p (loop, bb_pbb_mapping,
1037 get_scattering_level (level)))
1038 loop->can_be_parallel = true;
1040 return last_e;
1043 /* Translates a clast for statement STMT to gimple. First a guard is created
1044 protecting the loop, if it is executed zero times. In this guard we create
1045 the real loop structure.
1047 - REGION is the sese region we used to generate the scop.
1048 - NEXT_E is the edge where new generated code should be attached.
1049 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1050 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1051 the sese region. */
1052 static edge
1053 translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt,
1054 edge next_e, VEC (tree, heap) **newivs,
1055 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1056 htab_t params_index)
1058 edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs,
1059 newivs_index, params_index);
1060 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1062 translate_clast_for_loop (region, context_loop, stmt, true_e, newivs,
1063 newivs_index, bb_pbb_mapping, level,
1064 params_index);
1065 return last_e;
1068 /* Translates a clast guard statement STMT to gimple.
1070 - REGION is the sese region we used to generate the scop.
1071 - NEXT_E is the edge where new generated code should be attached.
1072 - CONTEXT_LOOP is the loop in which the generated code will be placed
1073 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1074 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1075 the sese region. */
1076 static edge
1077 translate_clast_guard (sese region, loop_p context_loop,
1078 struct clast_guard *stmt, edge next_e,
1079 VEC (tree, heap) **newivs,
1080 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1081 htab_t params_index)
1083 edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs,
1084 newivs_index, params_index);
1085 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1087 translate_clast (region, context_loop, stmt->then, true_e,
1088 newivs, newivs_index, bb_pbb_mapping,
1089 level, params_index);
1090 return last_e;
1093 /* Translates a CLAST statement STMT to GCC representation in the
1094 context of a SESE.
1096 - NEXT_E is the edge where new generated code should be attached.
1097 - CONTEXT_LOOP is the loop in which the generated code will be placed
1098 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1099 static edge
1100 translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt,
1101 edge next_e, VEC (tree, heap) **newivs,
1102 htab_t newivs_index, htab_t bb_pbb_mapping, int level,
1103 htab_t params_index)
1105 if (!stmt)
1106 return next_e;
1108 if (CLAST_STMT_IS_A (stmt, stmt_root))
1109 ; /* Do nothing. */
1111 else if (CLAST_STMT_IS_A (stmt, stmt_user))
1112 next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt,
1113 next_e, newivs, newivs_index,
1114 bb_pbb_mapping, params_index);
1116 else if (CLAST_STMT_IS_A (stmt, stmt_for))
1117 next_e = translate_clast_for (region, context_loop,
1118 (struct clast_for *) stmt, next_e,
1119 newivs, newivs_index,
1120 bb_pbb_mapping, level, params_index);
1122 else if (CLAST_STMT_IS_A (stmt, stmt_guard))
1123 next_e = translate_clast_guard (region, context_loop,
1124 (struct clast_guard *) stmt, next_e,
1125 newivs, newivs_index,
1126 bb_pbb_mapping, level, params_index);
1128 else if (CLAST_STMT_IS_A (stmt, stmt_block))
1129 next_e = translate_clast (region, context_loop,
1130 ((struct clast_block *) stmt)->body,
1131 next_e, newivs, newivs_index,
1132 bb_pbb_mapping, level, params_index);
1133 else
1134 gcc_unreachable();
1136 recompute_all_dominators ();
1137 graphite_verify ();
1139 return translate_clast (region, context_loop, stmt->next, next_e,
1140 newivs, newivs_index,
1141 bb_pbb_mapping, level, params_index);
1144 /* Free the SCATTERING domain list. */
1146 static void
1147 free_scattering (CloogScatteringList *scattering)
1149 while (scattering)
1151 CloogScattering *dom = cloog_scattering (scattering);
1152 CloogScatteringList *next = cloog_next_scattering (scattering);
1154 cloog_scattering_free (dom);
1155 free (scattering);
1156 scattering = next;
1160 /* Initialize Cloog's parameter names from the names used in GIMPLE.
1161 Initialize Cloog's iterator names, using 'graphite_iterator_%d'
1162 from 0 to scop_nb_loops (scop). */
1164 static void
1165 initialize_cloog_names (scop_p scop, CloogProgram *prog)
1167 sese region = SCOP_REGION (scop);
1168 int i;
1169 int nb_iterators = scop_max_loop_depth (scop);
1170 int nb_scattering = cloog_program_nb_scattdims (prog);
1171 int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
1172 char **iterators = XNEWVEC (char *, nb_iterators * 2);
1173 char **scattering = XNEWVEC (char *, nb_scattering);
1174 char **parameters= XNEWVEC (char *, nb_parameters);
1176 cloog_program_set_names (prog, cloog_names_malloc ());
1178 for (i = 0; i < nb_parameters; i++)
1180 tree param = VEC_index (tree, SESE_PARAMS(region), i);
1181 const char *name = get_name (param);
1182 int len;
1184 if (!name)
1185 name = "T";
1187 len = strlen (name);
1188 len += 17;
1189 parameters[i] = XNEWVEC (char, len + 1);
1190 snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
1193 cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
1194 cloog_names_set_parameters (cloog_program_names (prog), parameters);
1196 for (i = 0; i < nb_iterators; i++)
1198 int len = 4 + 16;
1199 iterators[i] = XNEWVEC (char, len);
1200 snprintf (iterators[i], len, "git_%d", i);
1203 cloog_names_set_nb_iterators (cloog_program_names (prog),
1204 nb_iterators);
1205 cloog_names_set_iterators (cloog_program_names (prog),
1206 iterators);
1208 for (i = 0; i < nb_scattering; i++)
1210 int len = 5 + 16;
1211 scattering[i] = XNEWVEC (char, len);
1212 snprintf (scattering[i], len, "scat_%d", i);
1215 cloog_names_set_nb_scattering (cloog_program_names (prog),
1216 nb_scattering);
1217 cloog_names_set_scattering (cloog_program_names (prog),
1218 scattering);
1221 /* Initialize a CLooG input file. */
1223 static FILE *
1224 init_cloog_input_file (int scop_number)
1226 FILE *graphite_out_file;
1227 int len = strlen (dump_base_name);
1228 char *dumpname = XNEWVEC (char, len + 25);
1229 char *s_scop_number = XNEWVEC (char, 15);
1231 memcpy (dumpname, dump_base_name, len + 1);
1232 strip_off_ending (dumpname, len);
1233 sprintf (s_scop_number, ".%d", scop_number);
1234 strcat (dumpname, s_scop_number);
1235 strcat (dumpname, ".cloog");
1236 graphite_out_file = fopen (dumpname, "w+b");
1238 if (graphite_out_file == 0)
1239 fatal_error ("can%'t open %s for writing: %m", dumpname);
1241 free (dumpname);
1243 return graphite_out_file;
1246 /* Build cloog program for SCoP. */
1248 static void
1249 build_cloog_prog (scop_p scop, CloogProgram *prog,
1250 CloogOptions *options, CloogState *state ATTRIBUTE_UNUSED)
1252 int i;
1253 int max_nb_loops = scop_max_loop_depth (scop);
1254 poly_bb_p pbb;
1255 CloogLoop *loop_list = NULL;
1256 CloogBlockList *block_list = NULL;
1257 CloogScatteringList *scattering = NULL;
1258 int nbs = 2 * max_nb_loops + 1;
1259 int *scaldims;
1261 cloog_program_set_context
1262 (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop),
1263 scop_nb_params (scop), state));
1264 nbs = unify_scattering_dimensions (scop);
1265 scaldims = (int *) xmalloc (nbs * (sizeof (int)));
1266 cloog_program_set_nb_scattdims (prog, nbs);
1267 initialize_cloog_names (scop, prog);
1269 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
1271 CloogStatement *stmt;
1272 CloogBlock *block;
1273 CloogDomain *dom;
1275 /* Dead code elimination: when the domain of a PBB is empty,
1276 don't generate code for the PBB. */
1277 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
1278 continue;
1280 /* Build the new statement and its block. */
1281 stmt = cloog_statement_alloc (state, pbb_index (pbb));
1282 dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb),
1283 scop_nb_params (scop),
1284 state);
1285 block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
1286 cloog_statement_set_usr (stmt, pbb);
1288 /* Build loop list. */
1290 CloogLoop *new_loop_list = cloog_loop_malloc (state);
1291 cloog_loop_set_next (new_loop_list, loop_list);
1292 cloog_loop_set_domain (new_loop_list, dom);
1293 cloog_loop_set_block (new_loop_list, block);
1294 loop_list = new_loop_list;
1297 /* Build block list. */
1299 CloogBlockList *new_block_list = cloog_block_list_malloc ();
1301 cloog_block_list_set_next (new_block_list, block_list);
1302 cloog_block_list_set_block (new_block_list, block);
1303 block_list = new_block_list;
1306 /* Build scattering list. */
1308 /* XXX: Replace with cloog_domain_list_alloc(), when available. */
1309 CloogScatteringList *new_scattering
1310 = (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList));
1311 ppl_Polyhedron_t scat;
1312 CloogScattering *dom;
1314 scat = PBB_TRANSFORMED_SCATTERING (pbb);
1315 dom = new_Cloog_Scattering_from_ppl_Polyhedron
1316 (scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb),
1317 state);
1319 cloog_set_next_scattering (new_scattering, scattering);
1320 cloog_set_scattering (new_scattering, dom);
1321 scattering = new_scattering;
1325 cloog_program_set_loop (prog, loop_list);
1326 cloog_program_set_blocklist (prog, block_list);
1328 for (i = 0; i < nbs; i++)
1329 scaldims[i] = 0 ;
1331 cloog_program_set_scaldims (prog, scaldims);
1333 /* Extract scalar dimensions to simplify the code generation problem. */
1334 cloog_program_extract_scalars (prog, scattering, options);
1336 /* Dump a .cloog input file, if requested. This feature is only
1337 enabled in the Graphite branch. */
1338 if (0)
1340 static size_t file_scop_number = 0;
1341 FILE *cloog_file = init_cloog_input_file (file_scop_number);
1343 cloog_program_dump_cloog (cloog_file, prog, scattering);
1344 ++file_scop_number;
1347 /* Apply scattering. */
1348 cloog_program_scatter (prog, scattering, options);
1349 free_scattering (scattering);
1351 /* Iterators corresponding to scalar dimensions have to be extracted. */
1352 cloog_names_scalarize (cloog_program_names (prog), nbs,
1353 cloog_program_scaldims (prog));
1355 /* Free blocklist. */
1357 CloogBlockList *next = cloog_program_blocklist (prog);
1359 while (next)
1361 CloogBlockList *toDelete = next;
1362 next = cloog_block_list_next (next);
1363 cloog_block_list_set_next (toDelete, NULL);
1364 cloog_block_list_set_block (toDelete, NULL);
1365 cloog_block_list_free (toDelete);
1367 cloog_program_set_blocklist (prog, NULL);
1371 /* Return the options that will be used in GLOOG. */
1373 static CloogOptions *
1374 set_cloog_options (CloogState *state ATTRIBUTE_UNUSED)
1376 CloogOptions *options = cloog_options_malloc (state);
1378 /* Change cloog output language to C. If we do use FORTRAN instead, cloog
1379 will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
1380 we pass an incomplete program to cloog. */
1381 options->language = LANGUAGE_C;
1383 /* Enable complex equality spreading: removes dummy statements
1384 (assignments) in the generated code which repeats the
1385 substitution equations for statements. This is useless for
1386 GLooG. */
1387 options->esp = 1;
1389 #ifdef CLOOG_ORG
1390 /* Silence CLooG to avoid failing tests due to debug output to stderr. */
1391 options->quiet = 1;
1392 #else
1393 /* Enable C pretty-printing mode: normalizes the substitution
1394 equations for statements. */
1395 options->cpp = 1;
1396 #endif
1398 /* Allow cloog to build strides with a stride width different to one.
1399 This example has stride = 4:
1401 for (i = 0; i < 20; i += 4)
1402 A */
1403 options->strides = 1;
1405 /* Disable optimizations and make cloog generate source code closer to the
1406 input. This is useful for debugging, but later we want the optimized
1407 code.
1409 XXX: We can not disable optimizations, as loop blocking is not working
1410 without them. */
1411 if (0)
1413 options->f = -1;
1414 options->l = INT_MAX;
1417 return options;
1420 /* Prints STMT to STDERR. */
1422 void
1423 print_clast_stmt (FILE *file, struct clast_stmt *stmt)
1425 CloogState *state = cloog_state_malloc ();
1426 CloogOptions *options = set_cloog_options (state);
1428 clast_pprint (file, stmt, 0, options);
1429 cloog_options_free (options);
1430 cloog_state_free (state);
1433 /* Prints STMT to STDERR. */
1435 DEBUG_FUNCTION void
1436 debug_clast_stmt (struct clast_stmt *stmt)
1438 print_clast_stmt (stderr, stmt);
1441 /* Translate SCOP to a CLooG program and clast. These two
1442 representations should be freed together: a clast cannot be used
1443 without a program. */
1445 cloog_prog_clast
1446 scop_to_clast (scop_p scop, CloogState *state)
1448 CloogOptions *options = set_cloog_options (state);
1449 cloog_prog_clast pc;
1451 /* Connect new cloog prog generation to graphite. */
1452 pc.prog = cloog_program_malloc ();
1453 build_cloog_prog (scop, pc.prog, options, state);
1454 pc.prog = cloog_program_generate (pc.prog, options);
1455 pc.stmt = cloog_clast_create (pc.prog, options);
1457 cloog_options_free (options);
1458 return pc;
1461 /* Prints to FILE the code generated by CLooG for SCOP. */
1463 void
1464 print_generated_program (FILE *file, scop_p scop)
1466 CloogState *state = cloog_state_malloc ();
1467 CloogOptions *options = set_cloog_options (state);
1469 cloog_prog_clast pc = scop_to_clast (scop, state);
1471 fprintf (file, " (prog: \n");
1472 cloog_program_print (file, pc.prog);
1473 fprintf (file, " )\n");
1475 fprintf (file, " (clast: \n");
1476 clast_pprint (file, pc.stmt, 0, options);
1477 fprintf (file, " )\n");
1479 cloog_options_free (options);
1480 cloog_clast_free (pc.stmt);
1481 cloog_program_free (pc.prog);
1484 /* Prints to STDERR the code generated by CLooG for SCOP. */
1486 DEBUG_FUNCTION void
1487 debug_generated_program (scop_p scop)
1489 print_generated_program (stderr, scop);
1492 /* Add CLooG names to parameter index. The index is used to translate
1493 back from CLooG names to GCC trees. */
1495 static void
1496 create_params_index (htab_t index_table, CloogProgram *prog) {
1497 CloogNames* names = cloog_program_names (prog);
1498 int nb_parameters = cloog_names_nb_parameters (names);
1499 char **parameters = cloog_names_parameters (names);
1500 int i;
1502 for (i = 0; i < nb_parameters; i++)
1503 save_clast_name_index (index_table, parameters[i], i);
1506 /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
1507 the given SCOP. Return true if code generation succeeded.
1508 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
1511 bool
1512 gloog (scop_p scop, htab_t bb_pbb_mapping)
1514 VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
1515 loop_p context_loop;
1516 sese region = SCOP_REGION (scop);
1517 ifsese if_region = NULL;
1518 htab_t newivs_index, params_index;
1519 cloog_prog_clast pc;
1520 CloogState *state;
1522 state = cloog_state_malloc ();
1523 timevar_push (TV_GRAPHITE_CODE_GEN);
1524 gloog_error = false;
1526 pc = scop_to_clast (scop, state);
1528 if (dump_file && (dump_flags & TDF_DETAILS))
1530 fprintf (dump_file, "\nCLAST generated by CLooG: \n");
1531 print_clast_stmt (dump_file, pc.stmt);
1532 fprintf (dump_file, "\n");
1535 recompute_all_dominators ();
1536 graphite_verify ();
1538 if_region = move_sese_in_condition (region);
1539 sese_insert_phis_for_liveouts (region,
1540 if_region->region->exit->src,
1541 if_region->false_region->exit,
1542 if_region->true_region->exit);
1543 recompute_all_dominators ();
1544 graphite_verify ();
1546 context_loop = SESE_ENTRY (region)->src->loop_father;
1547 newivs_index = htab_create (10, clast_name_index_elt_info,
1548 eq_clast_name_indexes, free);
1549 params_index = htab_create (10, clast_name_index_elt_info,
1550 eq_clast_name_indexes, free);
1552 create_params_index (params_index, pc.prog);
1554 translate_clast (region, context_loop, pc.stmt,
1555 if_region->true_region->entry,
1556 &newivs, newivs_index,
1557 bb_pbb_mapping, 1, params_index);
1558 graphite_verify ();
1559 scev_reset_htab ();
1560 recompute_all_dominators ();
1561 graphite_verify ();
1563 if (gloog_error)
1564 set_ifsese_condition (if_region, integer_zero_node);
1566 free (if_region->true_region);
1567 free (if_region->region);
1568 free (if_region);
1570 htab_delete (newivs_index);
1571 htab_delete (params_index);
1572 VEC_free (tree, heap, newivs);
1573 cloog_clast_free (pc.stmt);
1574 cloog_program_free (pc.prog);
1575 timevar_pop (TV_GRAPHITE_CODE_GEN);
1577 if (dump_file && (dump_flags & TDF_DETAILS))
1579 loop_p loop;
1580 loop_iterator li;
1581 int num_no_dependency = 0;
1583 FOR_EACH_LOOP (li, loop, 0)
1584 if (loop->can_be_parallel)
1585 num_no_dependency++;
1587 fprintf (dump_file, "\n%d loops carried no dependency.\n",
1588 num_no_dependency);
1591 cloog_state_free (state);
1593 return !gloog_error;
1595 #endif