Merge from mainline.
[official-gcc.git] / gcc / dwarf2out.c
blob3d0c89017e1e83698cfeb0b39240c6175fdd1131
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
113 dwarf2out_do_frame (void)
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_str_section;
160 static GTY(()) section *debug_ranges_section;
161 static GTY(()) section *debug_frame_section;
163 /* How to start an assembler comment. */
164 #ifndef ASM_COMMENT_START
165 #define ASM_COMMENT_START ";#"
166 #endif
168 typedef struct dw_cfi_struct *dw_cfi_ref;
169 typedef struct dw_fde_struct *dw_fde_ref;
170 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
172 /* Call frames are described using a sequence of Call Frame
173 Information instructions. The register number, offset
174 and address fields are provided as possible operands;
175 their use is selected by the opcode field. */
177 enum dw_cfi_oprnd_type {
178 dw_cfi_oprnd_unused,
179 dw_cfi_oprnd_reg_num,
180 dw_cfi_oprnd_offset,
181 dw_cfi_oprnd_addr,
182 dw_cfi_oprnd_loc
185 typedef union dw_cfi_oprnd_struct GTY(())
187 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
188 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
189 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
190 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
192 dw_cfi_oprnd;
194 typedef struct dw_cfi_struct GTY(())
196 dw_cfi_ref dw_cfi_next;
197 enum dwarf_call_frame_info dw_cfi_opc;
198 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
199 dw_cfi_oprnd1;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd2;
203 dw_cfi_node;
205 /* This is how we define the location of the CFA. We use to handle it
206 as REG + OFFSET all the time, but now it can be more complex.
207 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
208 Instead of passing around REG and OFFSET, we pass a copy
209 of this structure. */
210 typedef struct cfa_loc GTY(())
212 HOST_WIDE_INT offset;
213 HOST_WIDE_INT base_offset;
214 unsigned int reg;
215 int indirect; /* 1 if CFA is accessed via a dereference. */
216 } dw_cfa_location;
218 /* All call frame descriptions (FDE's) in the GCC generated DWARF
219 refer to a single Common Information Entry (CIE), defined at
220 the beginning of the .debug_frame section. This use of a single
221 CIE obviates the need to keep track of multiple CIE's
222 in the DWARF generation routines below. */
224 typedef struct dw_fde_struct GTY(())
226 tree decl;
227 const char *dw_fde_begin;
228 const char *dw_fde_current_label;
229 const char *dw_fde_end;
230 const char *dw_fde_hot_section_label;
231 const char *dw_fde_hot_section_end_label;
232 const char *dw_fde_unlikely_section_label;
233 const char *dw_fde_unlikely_section_end_label;
234 bool dw_fde_switched_sections;
235 dw_cfi_ref dw_fde_cfi;
236 unsigned funcdef_number;
237 unsigned all_throwers_are_sibcalls : 1;
238 unsigned nothrow : 1;
239 unsigned uses_eh_lsda : 1;
241 dw_fde_node;
243 /* Maximum size (in bytes) of an artificially generated label. */
244 #define MAX_ARTIFICIAL_LABEL_BYTES 30
246 /* The size of addresses as they appear in the Dwarf 2 data.
247 Some architectures use word addresses to refer to code locations,
248 but Dwarf 2 info always uses byte addresses. On such machines,
249 Dwarf 2 addresses need to be larger than the architecture's
250 pointers. */
251 #ifndef DWARF2_ADDR_SIZE
252 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
253 #endif
255 /* The size in bytes of a DWARF field indicating an offset or length
256 relative to a debug info section, specified to be 4 bytes in the
257 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
258 as PTR_SIZE. */
260 #ifndef DWARF_OFFSET_SIZE
261 #define DWARF_OFFSET_SIZE 4
262 #endif
264 /* According to the (draft) DWARF 3 specification, the initial length
265 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
266 bytes are 0xffffffff, followed by the length stored in the next 8
267 bytes.
269 However, the SGI/MIPS ABI uses an initial length which is equal to
270 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
272 #ifndef DWARF_INITIAL_LENGTH_SIZE
273 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
274 #endif
276 #define DWARF_VERSION 2
278 /* Round SIZE up to the nearest BOUNDARY. */
279 #define DWARF_ROUND(SIZE,BOUNDARY) \
280 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
282 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
283 #ifndef DWARF_CIE_DATA_ALIGNMENT
284 #ifdef STACK_GROWS_DOWNWARD
285 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
286 #else
287 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
288 #endif
289 #endif
291 /* CIE identifier. */
292 #if HOST_BITS_PER_WIDE_INT >= 64
293 #define DWARF_CIE_ID \
294 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
295 #else
296 #define DWARF_CIE_ID DW_CIE_ID
297 #endif
299 /* A pointer to the base of a table that contains frame description
300 information for each routine. */
301 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
303 /* Number of elements currently allocated for fde_table. */
304 static GTY(()) unsigned fde_table_allocated;
306 /* Number of elements in fde_table currently in use. */
307 static GTY(()) unsigned fde_table_in_use;
309 /* Size (in elements) of increments by which we may expand the
310 fde_table. */
311 #define FDE_TABLE_INCREMENT 256
313 /* A list of call frame insns for the CIE. */
314 static GTY(()) dw_cfi_ref cie_cfi_head;
316 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
317 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
318 attribute that accelerates the lookup of the FDE associated
319 with the subprogram. This variable holds the table index of the FDE
320 associated with the current function (body) definition. */
321 static unsigned current_funcdef_fde;
322 #endif
324 struct indirect_string_node GTY(())
326 const char *str;
327 unsigned int refcount;
328 unsigned int form;
329 char *label;
332 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
334 static GTY(()) int dw2_string_counter;
335 static GTY(()) unsigned long dwarf2out_cfi_label_num;
337 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
339 /* Forward declarations for functions defined in this file. */
341 static char *stripattributes (const char *);
342 static const char *dwarf_cfi_name (unsigned);
343 static dw_cfi_ref new_cfi (void);
344 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
345 static void add_fde_cfi (const char *, dw_cfi_ref);
346 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
347 static void lookup_cfa (dw_cfa_location *);
348 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
349 static void initial_return_save (rtx);
350 static HOST_WIDE_INT stack_adjust_offset (rtx);
351 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
352 static void output_call_frame_info (int);
353 static void dwarf2out_stack_adjust (rtx, bool);
354 static void flush_queued_reg_saves (void);
355 static bool clobbers_queued_reg_save (rtx);
356 static void dwarf2out_frame_debug_expr (rtx, const char *);
358 /* Support for complex CFA locations. */
359 static void output_cfa_loc (dw_cfi_ref);
360 static void get_cfa_from_loc_descr (dw_cfa_location *,
361 struct dw_loc_descr_struct *);
362 static struct dw_loc_descr_struct *build_cfa_loc
363 (dw_cfa_location *, HOST_WIDE_INT);
364 static void def_cfa_1 (const char *, dw_cfa_location *);
366 /* How to start an assembler comment. */
367 #ifndef ASM_COMMENT_START
368 #define ASM_COMMENT_START ";#"
369 #endif
371 /* Data and reference forms for relocatable data. */
372 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
373 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
375 #ifndef DEBUG_FRAME_SECTION
376 #define DEBUG_FRAME_SECTION ".debug_frame"
377 #endif
379 #ifndef FUNC_BEGIN_LABEL
380 #define FUNC_BEGIN_LABEL "LFB"
381 #endif
383 #ifndef FUNC_END_LABEL
384 #define FUNC_END_LABEL "LFE"
385 #endif
387 #ifndef FRAME_BEGIN_LABEL
388 #define FRAME_BEGIN_LABEL "Lframe"
389 #endif
390 #define CIE_AFTER_SIZE_LABEL "LSCIE"
391 #define CIE_END_LABEL "LECIE"
392 #define FDE_LABEL "LSFDE"
393 #define FDE_AFTER_SIZE_LABEL "LASFDE"
394 #define FDE_END_LABEL "LEFDE"
395 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
396 #define LINE_NUMBER_END_LABEL "LELT"
397 #define LN_PROLOG_AS_LABEL "LASLTP"
398 #define LN_PROLOG_END_LABEL "LELTP"
399 #define DIE_LABEL_PREFIX "DW"
401 /* The DWARF 2 CFA column which tracks the return address. Normally this
402 is the column for PC, or the first column after all of the hard
403 registers. */
404 #ifndef DWARF_FRAME_RETURN_COLUMN
405 #ifdef PC_REGNUM
406 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
407 #else
408 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
409 #endif
410 #endif
412 /* The mapping from gcc register number to DWARF 2 CFA column number. By
413 default, we just provide columns for all registers. */
414 #ifndef DWARF_FRAME_REGNUM
415 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
416 #endif
418 /* Hook used by __throw. */
421 expand_builtin_dwarf_sp_column (void)
423 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
424 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
427 /* Return a pointer to a copy of the section string name S with all
428 attributes stripped off, and an asterisk prepended (for assemble_name). */
430 static inline char *
431 stripattributes (const char *s)
433 char *stripped = XNEWVEC (char, strlen (s) + 2);
434 char *p = stripped;
436 *p++ = '*';
438 while (*s && *s != ',')
439 *p++ = *s++;
441 *p = '\0';
442 return stripped;
445 /* Generate code to initialize the register size table. */
447 void
448 expand_builtin_init_dwarf_reg_sizes (tree address)
450 unsigned int i;
451 enum machine_mode mode = TYPE_MODE (char_type_node);
452 rtx addr = expand_normal (address);
453 rtx mem = gen_rtx_MEM (BLKmode, addr);
454 bool wrote_return_column = false;
456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
458 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
460 if (rnum < DWARF_FRAME_REGISTERS)
462 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
463 enum machine_mode save_mode = reg_raw_mode[i];
464 HOST_WIDE_INT size;
466 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
467 save_mode = choose_hard_reg_mode (i, 1, true);
468 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
470 if (save_mode == VOIDmode)
471 continue;
472 wrote_return_column = true;
474 size = GET_MODE_SIZE (save_mode);
475 if (offset < 0)
476 continue;
478 emit_move_insn (adjust_address (mem, mode, offset),
479 gen_int_mode (size, mode));
483 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
484 gcc_assert (wrote_return_column);
485 i = DWARF_ALT_FRAME_RETURN_COLUMN;
486 wrote_return_column = false;
487 #else
488 i = DWARF_FRAME_RETURN_COLUMN;
489 #endif
491 if (! wrote_return_column)
493 enum machine_mode save_mode = Pmode;
494 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
495 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
496 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
500 /* Convert a DWARF call frame info. operation to its string name */
502 static const char *
503 dwarf_cfi_name (unsigned int cfi_opc)
505 switch (cfi_opc)
507 case DW_CFA_advance_loc:
508 return "DW_CFA_advance_loc";
509 case DW_CFA_offset:
510 return "DW_CFA_offset";
511 case DW_CFA_restore:
512 return "DW_CFA_restore";
513 case DW_CFA_nop:
514 return "DW_CFA_nop";
515 case DW_CFA_set_loc:
516 return "DW_CFA_set_loc";
517 case DW_CFA_advance_loc1:
518 return "DW_CFA_advance_loc1";
519 case DW_CFA_advance_loc2:
520 return "DW_CFA_advance_loc2";
521 case DW_CFA_advance_loc4:
522 return "DW_CFA_advance_loc4";
523 case DW_CFA_offset_extended:
524 return "DW_CFA_offset_extended";
525 case DW_CFA_restore_extended:
526 return "DW_CFA_restore_extended";
527 case DW_CFA_undefined:
528 return "DW_CFA_undefined";
529 case DW_CFA_same_value:
530 return "DW_CFA_same_value";
531 case DW_CFA_register:
532 return "DW_CFA_register";
533 case DW_CFA_remember_state:
534 return "DW_CFA_remember_state";
535 case DW_CFA_restore_state:
536 return "DW_CFA_restore_state";
537 case DW_CFA_def_cfa:
538 return "DW_CFA_def_cfa";
539 case DW_CFA_def_cfa_register:
540 return "DW_CFA_def_cfa_register";
541 case DW_CFA_def_cfa_offset:
542 return "DW_CFA_def_cfa_offset";
544 /* DWARF 3 */
545 case DW_CFA_def_cfa_expression:
546 return "DW_CFA_def_cfa_expression";
547 case DW_CFA_expression:
548 return "DW_CFA_expression";
549 case DW_CFA_offset_extended_sf:
550 return "DW_CFA_offset_extended_sf";
551 case DW_CFA_def_cfa_sf:
552 return "DW_CFA_def_cfa_sf";
553 case DW_CFA_def_cfa_offset_sf:
554 return "DW_CFA_def_cfa_offset_sf";
556 /* SGI/MIPS specific */
557 case DW_CFA_MIPS_advance_loc8:
558 return "DW_CFA_MIPS_advance_loc8";
560 /* GNU extensions */
561 case DW_CFA_GNU_window_save:
562 return "DW_CFA_GNU_window_save";
563 case DW_CFA_GNU_args_size:
564 return "DW_CFA_GNU_args_size";
565 case DW_CFA_GNU_negative_offset_extended:
566 return "DW_CFA_GNU_negative_offset_extended";
568 default:
569 return "DW_CFA_<unknown>";
573 /* Return a pointer to a newly allocated Call Frame Instruction. */
575 static inline dw_cfi_ref
576 new_cfi (void)
578 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
580 cfi->dw_cfi_next = NULL;
581 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
582 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
584 return cfi;
587 /* Add a Call Frame Instruction to list of instructions. */
589 static inline void
590 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
592 dw_cfi_ref *p;
594 /* Find the end of the chain. */
595 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
598 *p = cfi;
601 /* Generate a new label for the CFI info to refer to. */
603 char *
604 dwarf2out_cfi_label (void)
606 static char label[20];
608 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
609 ASM_OUTPUT_LABEL (asm_out_file, label);
610 return label;
613 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
614 or to the CIE if LABEL is NULL. */
616 static void
617 add_fde_cfi (const char *label, dw_cfi_ref cfi)
619 if (label)
621 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
623 if (*label == 0)
624 label = dwarf2out_cfi_label ();
626 if (fde->dw_fde_current_label == NULL
627 || strcmp (label, fde->dw_fde_current_label) != 0)
629 dw_cfi_ref xcfi;
631 fde->dw_fde_current_label = label = xstrdup (label);
633 /* Set the location counter to the new label. */
634 xcfi = new_cfi ();
635 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
636 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
637 add_cfi (&fde->dw_fde_cfi, xcfi);
640 add_cfi (&fde->dw_fde_cfi, cfi);
643 else
644 add_cfi (&cie_cfi_head, cfi);
647 /* Subroutine of lookup_cfa. */
649 static void
650 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
652 switch (cfi->dw_cfi_opc)
654 case DW_CFA_def_cfa_offset:
655 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
656 break;
657 case DW_CFA_def_cfa_offset_sf:
658 loc->offset
659 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
660 break;
661 case DW_CFA_def_cfa_register:
662 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
663 break;
664 case DW_CFA_def_cfa:
665 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
666 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
667 break;
668 case DW_CFA_def_cfa_sf:
669 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
670 loc->offset
671 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
672 break;
673 case DW_CFA_def_cfa_expression:
674 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
675 break;
676 default:
677 break;
681 /* Find the previous value for the CFA. */
683 static void
684 lookup_cfa (dw_cfa_location *loc)
686 dw_cfi_ref cfi;
688 loc->reg = INVALID_REGNUM;
689 loc->offset = 0;
690 loc->indirect = 0;
691 loc->base_offset = 0;
693 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
694 lookup_cfa_1 (cfi, loc);
696 if (fde_table_in_use)
698 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
699 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
700 lookup_cfa_1 (cfi, loc);
704 /* The current rule for calculating the DWARF2 canonical frame address. */
705 static dw_cfa_location cfa;
707 /* The register used for saving registers to the stack, and its offset
708 from the CFA. */
709 static dw_cfa_location cfa_store;
711 /* The running total of the size of arguments pushed onto the stack. */
712 static HOST_WIDE_INT args_size;
714 /* The last args_size we actually output. */
715 static HOST_WIDE_INT old_args_size;
717 /* Entry point to update the canonical frame address (CFA).
718 LABEL is passed to add_fde_cfi. The value of CFA is now to be
719 calculated from REG+OFFSET. */
721 void
722 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
724 dw_cfa_location loc;
725 loc.indirect = 0;
726 loc.base_offset = 0;
727 loc.reg = reg;
728 loc.offset = offset;
729 def_cfa_1 (label, &loc);
732 /* Determine if two dw_cfa_location structures define the same data. */
734 static bool
735 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
737 return (loc1->reg == loc2->reg
738 && loc1->offset == loc2->offset
739 && loc1->indirect == loc2->indirect
740 && (loc1->indirect == 0
741 || loc1->base_offset == loc2->base_offset));
744 /* This routine does the actual work. The CFA is now calculated from
745 the dw_cfa_location structure. */
747 static void
748 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
750 dw_cfi_ref cfi;
751 dw_cfa_location old_cfa, loc;
753 cfa = *loc_p;
754 loc = *loc_p;
756 if (cfa_store.reg == loc.reg && loc.indirect == 0)
757 cfa_store.offset = loc.offset;
759 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
760 lookup_cfa (&old_cfa);
762 /* If nothing changed, no need to issue any call frame instructions. */
763 if (cfa_equal_p (&loc, &old_cfa))
764 return;
766 cfi = new_cfi ();
768 if (loc.reg == old_cfa.reg && !loc.indirect)
770 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
771 the CFA register did not change but the offset did. */
772 if (loc.offset < 0)
774 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
775 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
777 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
778 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
780 else
782 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
783 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
787 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
788 else if (loc.offset == old_cfa.offset
789 && old_cfa.reg != INVALID_REGNUM
790 && !loc.indirect)
792 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
793 indicating the CFA register has changed to <register> but the
794 offset has not changed. */
795 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
796 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
798 #endif
800 else if (loc.indirect == 0)
802 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
803 indicating the CFA register has changed to <register> with
804 the specified offset. */
805 if (loc.offset < 0)
807 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
808 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
810 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
811 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
812 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
814 else
816 cfi->dw_cfi_opc = DW_CFA_def_cfa;
817 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
818 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
821 else
823 /* Construct a DW_CFA_def_cfa_expression instruction to
824 calculate the CFA using a full location expression since no
825 register-offset pair is available. */
826 struct dw_loc_descr_struct *loc_list;
828 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
829 loc_list = build_cfa_loc (&loc, 0);
830 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
833 add_fde_cfi (label, cfi);
836 /* Add the CFI for saving a register. REG is the CFA column number.
837 LABEL is passed to add_fde_cfi.
838 If SREG is -1, the register is saved at OFFSET from the CFA;
839 otherwise it is saved in SREG. */
841 static void
842 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
844 dw_cfi_ref cfi = new_cfi ();
846 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
848 if (sreg == INVALID_REGNUM)
850 if (reg & ~0x3f)
851 /* The register number won't fit in 6 bits, so we have to use
852 the long form. */
853 cfi->dw_cfi_opc = DW_CFA_offset_extended;
854 else
855 cfi->dw_cfi_opc = DW_CFA_offset;
857 #ifdef ENABLE_CHECKING
859 /* If we get an offset that is not a multiple of
860 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
861 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
862 description. */
863 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
865 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
867 #endif
868 offset /= DWARF_CIE_DATA_ALIGNMENT;
869 if (offset < 0)
870 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
872 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
874 else if (sreg == reg)
875 cfi->dw_cfi_opc = DW_CFA_same_value;
876 else
878 cfi->dw_cfi_opc = DW_CFA_register;
879 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
882 add_fde_cfi (label, cfi);
885 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
886 This CFI tells the unwinder that it needs to restore the window registers
887 from the previous frame's window save area.
889 ??? Perhaps we should note in the CIE where windows are saved (instead of
890 assuming 0(cfa)) and what registers are in the window. */
892 void
893 dwarf2out_window_save (const char *label)
895 dw_cfi_ref cfi = new_cfi ();
897 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
898 add_fde_cfi (label, cfi);
901 /* Add a CFI to update the running total of the size of arguments
902 pushed onto the stack. */
904 void
905 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
907 dw_cfi_ref cfi;
909 if (size == old_args_size)
910 return;
912 old_args_size = size;
914 cfi = new_cfi ();
915 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
916 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
917 add_fde_cfi (label, cfi);
920 /* Entry point for saving a register to the stack. REG is the GCC register
921 number. LABEL and OFFSET are passed to reg_save. */
923 void
924 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
926 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
929 /* Entry point for saving the return address in the stack.
930 LABEL and OFFSET are passed to reg_save. */
932 void
933 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
935 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
938 /* Entry point for saving the return address in a register.
939 LABEL and SREG are passed to reg_save. */
941 void
942 dwarf2out_return_reg (const char *label, unsigned int sreg)
944 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
947 /* Record the initial position of the return address. RTL is
948 INCOMING_RETURN_ADDR_RTX. */
950 static void
951 initial_return_save (rtx rtl)
953 unsigned int reg = INVALID_REGNUM;
954 HOST_WIDE_INT offset = 0;
956 switch (GET_CODE (rtl))
958 case REG:
959 /* RA is in a register. */
960 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
961 break;
963 case MEM:
964 /* RA is on the stack. */
965 rtl = XEXP (rtl, 0);
966 switch (GET_CODE (rtl))
968 case REG:
969 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
970 offset = 0;
971 break;
973 case PLUS:
974 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
975 offset = INTVAL (XEXP (rtl, 1));
976 break;
978 case MINUS:
979 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
980 offset = -INTVAL (XEXP (rtl, 1));
981 break;
983 default:
984 gcc_unreachable ();
987 break;
989 case PLUS:
990 /* The return address is at some offset from any value we can
991 actually load. For instance, on the SPARC it is in %i7+8. Just
992 ignore the offset for now; it doesn't matter for unwinding frames. */
993 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
994 initial_return_save (XEXP (rtl, 0));
995 return;
997 default:
998 gcc_unreachable ();
1001 if (reg != DWARF_FRAME_RETURN_COLUMN)
1002 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1005 /* Given a SET, calculate the amount of stack adjustment it
1006 contains. */
1008 static HOST_WIDE_INT
1009 stack_adjust_offset (rtx pattern)
1011 rtx src = SET_SRC (pattern);
1012 rtx dest = SET_DEST (pattern);
1013 HOST_WIDE_INT offset = 0;
1014 enum rtx_code code;
1016 if (dest == stack_pointer_rtx)
1018 /* (set (reg sp) (plus (reg sp) (const_int))) */
1019 code = GET_CODE (src);
1020 if (! (code == PLUS || code == MINUS)
1021 || XEXP (src, 0) != stack_pointer_rtx
1022 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1023 return 0;
1025 offset = INTVAL (XEXP (src, 1));
1026 if (code == PLUS)
1027 offset = -offset;
1029 else if (MEM_P (dest))
1031 /* (set (mem (pre_dec (reg sp))) (foo)) */
1032 src = XEXP (dest, 0);
1033 code = GET_CODE (src);
1035 switch (code)
1037 case PRE_MODIFY:
1038 case POST_MODIFY:
1039 if (XEXP (src, 0) == stack_pointer_rtx)
1041 rtx val = XEXP (XEXP (src, 1), 1);
1042 /* We handle only adjustments by constant amount. */
1043 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1044 && GET_CODE (val) == CONST_INT);
1045 offset = -INTVAL (val);
1046 break;
1048 return 0;
1050 case PRE_DEC:
1051 case POST_DEC:
1052 if (XEXP (src, 0) == stack_pointer_rtx)
1054 offset = GET_MODE_SIZE (GET_MODE (dest));
1055 break;
1057 return 0;
1059 case PRE_INC:
1060 case POST_INC:
1061 if (XEXP (src, 0) == stack_pointer_rtx)
1063 offset = -GET_MODE_SIZE (GET_MODE (dest));
1064 break;
1066 return 0;
1068 default:
1069 return 0;
1072 else
1073 return 0;
1075 return offset;
1078 /* Check INSN to see if it looks like a push or a stack adjustment, and
1079 make a note of it if it does. EH uses this information to find out how
1080 much extra space it needs to pop off the stack. */
1082 static void
1083 dwarf2out_stack_adjust (rtx insn, bool after_p ATTRIBUTE_UNUSED)
1085 HOST_WIDE_INT offset;
1086 const char *label;
1087 int i;
1089 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1090 with this function. Proper support would require all frame-related
1091 insns to be marked, and to be able to handle saving state around
1092 epilogues textually in the middle of the function. */
1093 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1094 return;
1096 if (BARRIER_P (insn))
1098 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1099 the compiler will have already emitted a stack adjustment, but
1100 doesn't bother for calls to noreturn functions. */
1101 #ifdef STACK_GROWS_DOWNWARD
1102 offset = -args_size;
1103 #else
1104 offset = args_size;
1105 #endif
1107 else if (GET_CODE (PATTERN (insn)) == SET)
1108 offset = stack_adjust_offset (PATTERN (insn));
1109 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1110 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1112 /* There may be stack adjustments inside compound insns. Search
1113 for them. */
1114 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1115 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1116 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1118 else if (GET_CODE (insn) == CALL_INSN)
1119 offset = 0;
1120 else
1121 return;
1123 /* We handle this separately because we want stack adjustments in a
1124 CALL_INSN to be handled. */;
1125 if (GET_CODE (insn) == CALL_INSN)
1127 /* If only calls can throw, adjust args_size only at call sites. */
1128 if (!flag_asynchronous_unwind_tables)
1129 dwarf2out_args_size ("", args_size);
1132 if (offset == 0)
1133 return;
1135 if (cfa.reg == STACK_POINTER_REGNUM)
1136 cfa.offset += offset;
1138 #ifndef STACK_GROWS_DOWNWARD
1139 offset = -offset;
1140 #endif
1142 args_size += offset;
1143 if (args_size < 0)
1144 args_size = 0;
1146 /* If only calls can throw and we have a frame pointer, we'll save
1147 up adjustments until we see the CALL_INSN. We used to return
1148 early and derive args_size from NARGS in the CALL_INSN itself,
1149 but that doesn't compute the right value if we have nested call
1150 expansions, e.g., stack adjustments for a call have already been
1151 emitted, and then we issue another call to compute an argument
1152 for the enclosing call (i.e., bar (foo ())). */
1153 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1154 return;
1156 label = dwarf2out_cfi_label ();
1157 def_cfa_1 (label, &cfa);
1158 if (flag_asynchronous_unwind_tables)
1159 dwarf2out_args_size (label, args_size);
1162 #endif
1164 /* We delay emitting a register save until either (a) we reach the end
1165 of the prologue or (b) the register is clobbered. This clusters
1166 register saves so that there are fewer pc advances. */
1168 struct queued_reg_save GTY(())
1170 struct queued_reg_save *next;
1171 rtx reg;
1172 HOST_WIDE_INT cfa_offset;
1173 rtx saved_reg;
1176 static GTY(()) struct queued_reg_save *queued_reg_saves;
1178 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1179 struct reg_saved_in_data GTY(()) {
1180 rtx orig_reg;
1181 rtx saved_in_reg;
1184 /* A list of registers saved in other registers.
1185 The list intentionally has a small maximum capacity of 4; if your
1186 port needs more than that, you might consider implementing a
1187 more efficient data structure. */
1188 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1189 static GTY(()) size_t num_regs_saved_in_regs;
1191 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1192 static const char *last_reg_save_label;
1194 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1195 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1197 static void
1198 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1200 struct queued_reg_save *q;
1202 /* Duplicates waste space, but it's also necessary to remove them
1203 for correctness, since the queue gets output in reverse
1204 order. */
1205 for (q = queued_reg_saves; q != NULL; q = q->next)
1206 if (REGNO (q->reg) == REGNO (reg))
1207 break;
1209 if (q == NULL)
1211 q = ggc_alloc (sizeof (*q));
1212 q->next = queued_reg_saves;
1213 queued_reg_saves = q;
1216 q->reg = reg;
1217 q->cfa_offset = offset;
1218 q->saved_reg = sreg;
1220 last_reg_save_label = label;
1223 /* Output all the entries in QUEUED_REG_SAVES. */
1225 static void
1226 flush_queued_reg_saves (void)
1228 struct queued_reg_save *q;
1230 for (q = queued_reg_saves; q; q = q->next)
1232 size_t i;
1233 unsigned int reg, sreg;
1235 for (i = 0; i < num_regs_saved_in_regs; i++)
1236 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1237 break;
1238 if (q->saved_reg && i == num_regs_saved_in_regs)
1240 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1241 num_regs_saved_in_regs++;
1243 if (i != num_regs_saved_in_regs)
1245 regs_saved_in_regs[i].orig_reg = q->reg;
1246 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1249 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1250 if (q->saved_reg)
1251 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1252 else
1253 sreg = INVALID_REGNUM;
1254 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1257 queued_reg_saves = NULL;
1258 last_reg_save_label = NULL;
1261 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1262 location for? Or, does it clobber a register which we've previously
1263 said that some other register is saved in, and for which we now
1264 have a new location for? */
1266 static bool
1267 clobbers_queued_reg_save (rtx insn)
1269 struct queued_reg_save *q;
1271 for (q = queued_reg_saves; q; q = q->next)
1273 size_t i;
1274 if (modified_in_p (q->reg, insn))
1275 return true;
1276 for (i = 0; i < num_regs_saved_in_regs; i++)
1277 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1278 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1279 return true;
1282 return false;
1285 /* Entry point for saving the first register into the second. */
1287 void
1288 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1290 size_t i;
1291 unsigned int regno, sregno;
1293 for (i = 0; i < num_regs_saved_in_regs; i++)
1294 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1295 break;
1296 if (i == num_regs_saved_in_regs)
1298 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1299 num_regs_saved_in_regs++;
1301 regs_saved_in_regs[i].orig_reg = reg;
1302 regs_saved_in_regs[i].saved_in_reg = sreg;
1304 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1305 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1306 reg_save (label, regno, sregno, 0);
1309 /* What register, if any, is currently saved in REG? */
1311 static rtx
1312 reg_saved_in (rtx reg)
1314 unsigned int regn = REGNO (reg);
1315 size_t i;
1316 struct queued_reg_save *q;
1318 for (q = queued_reg_saves; q; q = q->next)
1319 if (q->saved_reg && regn == REGNO (q->saved_reg))
1320 return q->reg;
1322 for (i = 0; i < num_regs_saved_in_regs; i++)
1323 if (regs_saved_in_regs[i].saved_in_reg
1324 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1325 return regs_saved_in_regs[i].orig_reg;
1327 return NULL_RTX;
1331 /* A temporary register holding an integral value used in adjusting SP
1332 or setting up the store_reg. The "offset" field holds the integer
1333 value, not an offset. */
1334 static dw_cfa_location cfa_temp;
1336 /* Record call frame debugging information for an expression EXPR,
1337 which either sets SP or FP (adjusting how we calculate the frame
1338 address) or saves a register to the stack or another register.
1339 LABEL indicates the address of EXPR.
1341 This function encodes a state machine mapping rtxes to actions on
1342 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1343 users need not read the source code.
1345 The High-Level Picture
1347 Changes in the register we use to calculate the CFA: Currently we
1348 assume that if you copy the CFA register into another register, we
1349 should take the other one as the new CFA register; this seems to
1350 work pretty well. If it's wrong for some target, it's simple
1351 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1353 Changes in the register we use for saving registers to the stack:
1354 This is usually SP, but not always. Again, we deduce that if you
1355 copy SP into another register (and SP is not the CFA register),
1356 then the new register is the one we will be using for register
1357 saves. This also seems to work.
1359 Register saves: There's not much guesswork about this one; if
1360 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1361 register save, and the register used to calculate the destination
1362 had better be the one we think we're using for this purpose.
1363 It's also assumed that a copy from a call-saved register to another
1364 register is saving that register if RTX_FRAME_RELATED_P is set on
1365 that instruction. If the copy is from a call-saved register to
1366 the *same* register, that means that the register is now the same
1367 value as in the caller.
1369 Except: If the register being saved is the CFA register, and the
1370 offset is nonzero, we are saving the CFA, so we assume we have to
1371 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1372 the intent is to save the value of SP from the previous frame.
1374 In addition, if a register has previously been saved to a different
1375 register,
1377 Invariants / Summaries of Rules
1379 cfa current rule for calculating the CFA. It usually
1380 consists of a register and an offset.
1381 cfa_store register used by prologue code to save things to the stack
1382 cfa_store.offset is the offset from the value of
1383 cfa_store.reg to the actual CFA
1384 cfa_temp register holding an integral value. cfa_temp.offset
1385 stores the value, which will be used to adjust the
1386 stack pointer. cfa_temp is also used like cfa_store,
1387 to track stores to the stack via fp or a temp reg.
1389 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1390 with cfa.reg as the first operand changes the cfa.reg and its
1391 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1392 cfa_temp.offset.
1394 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1395 expression yielding a constant. This sets cfa_temp.reg
1396 and cfa_temp.offset.
1398 Rule 5: Create a new register cfa_store used to save items to the
1399 stack.
1401 Rules 10-14: Save a register to the stack. Define offset as the
1402 difference of the original location and cfa_store's
1403 location (or cfa_temp's location if cfa_temp is used).
1405 The Rules
1407 "{a,b}" indicates a choice of a xor b.
1408 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1410 Rule 1:
1411 (set <reg1> <reg2>:cfa.reg)
1412 effects: cfa.reg = <reg1>
1413 cfa.offset unchanged
1414 cfa_temp.reg = <reg1>
1415 cfa_temp.offset = cfa.offset
1417 Rule 2:
1418 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1419 {<const_int>,<reg>:cfa_temp.reg}))
1420 effects: cfa.reg = sp if fp used
1421 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1422 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1423 if cfa_store.reg==sp
1425 Rule 3:
1426 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1427 effects: cfa.reg = fp
1428 cfa_offset += +/- <const_int>
1430 Rule 4:
1431 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1432 constraints: <reg1> != fp
1433 <reg1> != sp
1434 effects: cfa.reg = <reg1>
1435 cfa_temp.reg = <reg1>
1436 cfa_temp.offset = cfa.offset
1438 Rule 5:
1439 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1440 constraints: <reg1> != fp
1441 <reg1> != sp
1442 effects: cfa_store.reg = <reg1>
1443 cfa_store.offset = cfa.offset - cfa_temp.offset
1445 Rule 6:
1446 (set <reg> <const_int>)
1447 effects: cfa_temp.reg = <reg>
1448 cfa_temp.offset = <const_int>
1450 Rule 7:
1451 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1452 effects: cfa_temp.reg = <reg1>
1453 cfa_temp.offset |= <const_int>
1455 Rule 8:
1456 (set <reg> (high <exp>))
1457 effects: none
1459 Rule 9:
1460 (set <reg> (lo_sum <exp> <const_int>))
1461 effects: cfa_temp.reg = <reg>
1462 cfa_temp.offset = <const_int>
1464 Rule 10:
1465 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1466 effects: cfa_store.offset -= <const_int>
1467 cfa.offset = cfa_store.offset if cfa.reg == sp
1468 cfa.reg = sp
1469 cfa.base_offset = -cfa_store.offset
1471 Rule 11:
1472 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1473 effects: cfa_store.offset += -/+ mode_size(mem)
1474 cfa.offset = cfa_store.offset if cfa.reg == sp
1475 cfa.reg = sp
1476 cfa.base_offset = -cfa_store.offset
1478 Rule 12:
1479 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1481 <reg2>)
1482 effects: cfa.reg = <reg1>
1483 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1485 Rule 13:
1486 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1487 effects: cfa.reg = <reg1>
1488 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1490 Rule 14:
1491 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1492 effects: cfa.reg = <reg1>
1493 cfa.base_offset = -cfa_temp.offset
1494 cfa_temp.offset -= mode_size(mem)
1496   Rule 15:
1497   (set <reg> {unspec, unspec_volatile})
1498   effects: target-dependent */
1500 static void
1501 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1503 rtx src, dest;
1504 HOST_WIDE_INT offset;
1506 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1507 the PARALLEL independently. The first element is always processed if
1508 it is a SET. This is for backward compatibility. Other elements
1509 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1510 flag is set in them. */
1511 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1513 int par_index;
1514 int limit = XVECLEN (expr, 0);
1516 for (par_index = 0; par_index < limit; par_index++)
1517 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1518 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1519 || par_index == 0))
1520 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1522 return;
1525 gcc_assert (GET_CODE (expr) == SET);
1527 src = SET_SRC (expr);
1528 dest = SET_DEST (expr);
1530 if (REG_P (src))
1532 rtx rsi = reg_saved_in (src);
1533 if (rsi)
1534 src = rsi;
1537 switch (GET_CODE (dest))
1539 case REG:
1540 switch (GET_CODE (src))
1542 /* Setting FP from SP. */
1543 case REG:
1544 if (cfa.reg == (unsigned) REGNO (src))
1546 /* Rule 1 */
1547 /* Update the CFA rule wrt SP or FP. Make sure src is
1548 relative to the current CFA register.
1550 We used to require that dest be either SP or FP, but the
1551 ARM copies SP to a temporary register, and from there to
1552 FP. So we just rely on the backends to only set
1553 RTX_FRAME_RELATED_P on appropriate insns. */
1554 cfa.reg = REGNO (dest);
1555 cfa_temp.reg = cfa.reg;
1556 cfa_temp.offset = cfa.offset;
1558 else
1560 /* Saving a register in a register. */
1561 gcc_assert (!fixed_regs [REGNO (dest)]
1562 /* For the SPARC and its register window. */
1563 || (DWARF_FRAME_REGNUM (REGNO (src))
1564 == DWARF_FRAME_RETURN_COLUMN));
1565 queue_reg_save (label, src, dest, 0);
1567 break;
1569 case PLUS:
1570 case MINUS:
1571 case LO_SUM:
1572 if (dest == stack_pointer_rtx)
1574 /* Rule 2 */
1575 /* Adjusting SP. */
1576 switch (GET_CODE (XEXP (src, 1)))
1578 case CONST_INT:
1579 offset = INTVAL (XEXP (src, 1));
1580 break;
1581 case REG:
1582 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1583 == cfa_temp.reg);
1584 offset = cfa_temp.offset;
1585 break;
1586 default:
1587 gcc_unreachable ();
1590 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1592 /* Restoring SP from FP in the epilogue. */
1593 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1594 cfa.reg = STACK_POINTER_REGNUM;
1596 else if (GET_CODE (src) == LO_SUM)
1597 /* Assume we've set the source reg of the LO_SUM from sp. */
1599 else
1600 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1602 if (GET_CODE (src) != MINUS)
1603 offset = -offset;
1604 if (cfa.reg == STACK_POINTER_REGNUM)
1605 cfa.offset += offset;
1606 if (cfa_store.reg == STACK_POINTER_REGNUM)
1607 cfa_store.offset += offset;
1609 else if (dest == hard_frame_pointer_rtx)
1611 /* Rule 3 */
1612 /* Either setting the FP from an offset of the SP,
1613 or adjusting the FP */
1614 gcc_assert (frame_pointer_needed);
1616 gcc_assert (REG_P (XEXP (src, 0))
1617 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1618 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1619 offset = INTVAL (XEXP (src, 1));
1620 if (GET_CODE (src) != MINUS)
1621 offset = -offset;
1622 cfa.offset += offset;
1623 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1625 else
1627 gcc_assert (GET_CODE (src) != MINUS);
1629 /* Rule 4 */
1630 if (REG_P (XEXP (src, 0))
1631 && REGNO (XEXP (src, 0)) == cfa.reg
1632 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1634 /* Setting a temporary CFA register that will be copied
1635 into the FP later on. */
1636 offset = - INTVAL (XEXP (src, 1));
1637 cfa.offset += offset;
1638 cfa.reg = REGNO (dest);
1639 /* Or used to save regs to the stack. */
1640 cfa_temp.reg = cfa.reg;
1641 cfa_temp.offset = cfa.offset;
1644 /* Rule 5 */
1645 else if (REG_P (XEXP (src, 0))
1646 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1647 && XEXP (src, 1) == stack_pointer_rtx)
1649 /* Setting a scratch register that we will use instead
1650 of SP for saving registers to the stack. */
1651 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1652 cfa_store.reg = REGNO (dest);
1653 cfa_store.offset = cfa.offset - cfa_temp.offset;
1656 /* Rule 9 */
1657 else if (GET_CODE (src) == LO_SUM
1658 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1660 cfa_temp.reg = REGNO (dest);
1661 cfa_temp.offset = INTVAL (XEXP (src, 1));
1663 else
1664 gcc_unreachable ();
1666 break;
1668 /* Rule 6 */
1669 case CONST_INT:
1670 cfa_temp.reg = REGNO (dest);
1671 cfa_temp.offset = INTVAL (src);
1672 break;
1674 /* Rule 7 */
1675 case IOR:
1676 gcc_assert (REG_P (XEXP (src, 0))
1677 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1678 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1680 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1681 cfa_temp.reg = REGNO (dest);
1682 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1683 break;
1685 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1686 which will fill in all of the bits. */
1687 /* Rule 8 */
1688 case HIGH:
1689 break;
1691 /* Rule 15 */
1692 case UNSPEC:
1693 case UNSPEC_VOLATILE:
1694 gcc_assert (targetm.dwarf_handle_frame_unspec);
1695 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1696 return;
1698 default:
1699 gcc_unreachable ();
1702 def_cfa_1 (label, &cfa);
1703 break;
1705 case MEM:
1706 gcc_assert (REG_P (src));
1708 /* Saving a register to the stack. Make sure dest is relative to the
1709 CFA register. */
1710 switch (GET_CODE (XEXP (dest, 0)))
1712 /* Rule 10 */
1713 /* With a push. */
1714 case PRE_MODIFY:
1715 /* We can't handle variable size modifications. */
1716 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1717 == CONST_INT);
1718 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1720 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1721 && cfa_store.reg == STACK_POINTER_REGNUM);
1723 cfa_store.offset += offset;
1724 if (cfa.reg == STACK_POINTER_REGNUM)
1725 cfa.offset = cfa_store.offset;
1727 offset = -cfa_store.offset;
1728 break;
1730 /* Rule 11 */
1731 case PRE_INC:
1732 case PRE_DEC:
1733 offset = GET_MODE_SIZE (GET_MODE (dest));
1734 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1735 offset = -offset;
1737 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1738 && cfa_store.reg == STACK_POINTER_REGNUM);
1740 cfa_store.offset += offset;
1741 if (cfa.reg == STACK_POINTER_REGNUM)
1742 cfa.offset = cfa_store.offset;
1744 offset = -cfa_store.offset;
1745 break;
1747 /* Rule 12 */
1748 /* With an offset. */
1749 case PLUS:
1750 case MINUS:
1751 case LO_SUM:
1753 int regno;
1755 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1756 && REG_P (XEXP (XEXP (dest, 0), 0)));
1757 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1758 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1759 offset = -offset;
1761 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1763 if (cfa_store.reg == (unsigned) regno)
1764 offset -= cfa_store.offset;
1765 else
1767 gcc_assert (cfa_temp.reg == (unsigned) regno);
1768 offset -= cfa_temp.offset;
1771 break;
1773 /* Rule 13 */
1774 /* Without an offset. */
1775 case REG:
1777 int regno = REGNO (XEXP (dest, 0));
1779 if (cfa_store.reg == (unsigned) regno)
1780 offset = -cfa_store.offset;
1781 else
1783 gcc_assert (cfa_temp.reg == (unsigned) regno);
1784 offset = -cfa_temp.offset;
1787 break;
1789 /* Rule 14 */
1790 case POST_INC:
1791 gcc_assert (cfa_temp.reg
1792 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1793 offset = -cfa_temp.offset;
1794 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1795 break;
1797 default:
1798 gcc_unreachable ();
1801 if (REGNO (src) != STACK_POINTER_REGNUM
1802 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1803 && (unsigned) REGNO (src) == cfa.reg)
1805 /* We're storing the current CFA reg into the stack. */
1807 if (cfa.offset == 0)
1809 /* If the source register is exactly the CFA, assume
1810 we're saving SP like any other register; this happens
1811 on the ARM. */
1812 def_cfa_1 (label, &cfa);
1813 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1814 break;
1816 else
1818 /* Otherwise, we'll need to look in the stack to
1819 calculate the CFA. */
1820 rtx x = XEXP (dest, 0);
1822 if (!REG_P (x))
1823 x = XEXP (x, 0);
1824 gcc_assert (REG_P (x));
1826 cfa.reg = REGNO (x);
1827 cfa.base_offset = offset;
1828 cfa.indirect = 1;
1829 def_cfa_1 (label, &cfa);
1830 break;
1834 def_cfa_1 (label, &cfa);
1835 queue_reg_save (label, src, NULL_RTX, offset);
1836 break;
1838 default:
1839 gcc_unreachable ();
1843 /* Record call frame debugging information for INSN, which either
1844 sets SP or FP (adjusting how we calculate the frame address) or saves a
1845 register to the stack. If INSN is NULL_RTX, initialize our state.
1847 If AFTER_P is false, we're being called before the insn is emitted,
1848 otherwise after. Call instructions get invoked twice. */
1850 void
1851 dwarf2out_frame_debug (rtx insn, bool after_p)
1853 const char *label;
1854 rtx src;
1856 if (insn == NULL_RTX)
1858 size_t i;
1860 /* Flush any queued register saves. */
1861 flush_queued_reg_saves ();
1863 /* Set up state for generating call frame debug info. */
1864 lookup_cfa (&cfa);
1865 gcc_assert (cfa.reg
1866 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1868 cfa.reg = STACK_POINTER_REGNUM;
1869 cfa_store = cfa;
1870 cfa_temp.reg = -1;
1871 cfa_temp.offset = 0;
1873 for (i = 0; i < num_regs_saved_in_regs; i++)
1875 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1876 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1878 num_regs_saved_in_regs = 0;
1879 return;
1882 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1883 flush_queued_reg_saves ();
1885 if (! RTX_FRAME_RELATED_P (insn))
1887 if (!ACCUMULATE_OUTGOING_ARGS)
1888 dwarf2out_stack_adjust (insn, after_p);
1889 return;
1892 label = dwarf2out_cfi_label ();
1893 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1894 if (src)
1895 insn = XEXP (src, 0);
1896 else
1897 insn = PATTERN (insn);
1899 dwarf2out_frame_debug_expr (insn, label);
1902 #endif
1904 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1905 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1906 (enum dwarf_call_frame_info cfi);
1908 static enum dw_cfi_oprnd_type
1909 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1911 switch (cfi)
1913 case DW_CFA_nop:
1914 case DW_CFA_GNU_window_save:
1915 return dw_cfi_oprnd_unused;
1917 case DW_CFA_set_loc:
1918 case DW_CFA_advance_loc1:
1919 case DW_CFA_advance_loc2:
1920 case DW_CFA_advance_loc4:
1921 case DW_CFA_MIPS_advance_loc8:
1922 return dw_cfi_oprnd_addr;
1924 case DW_CFA_offset:
1925 case DW_CFA_offset_extended:
1926 case DW_CFA_def_cfa:
1927 case DW_CFA_offset_extended_sf:
1928 case DW_CFA_def_cfa_sf:
1929 case DW_CFA_restore_extended:
1930 case DW_CFA_undefined:
1931 case DW_CFA_same_value:
1932 case DW_CFA_def_cfa_register:
1933 case DW_CFA_register:
1934 return dw_cfi_oprnd_reg_num;
1936 case DW_CFA_def_cfa_offset:
1937 case DW_CFA_GNU_args_size:
1938 case DW_CFA_def_cfa_offset_sf:
1939 return dw_cfi_oprnd_offset;
1941 case DW_CFA_def_cfa_expression:
1942 case DW_CFA_expression:
1943 return dw_cfi_oprnd_loc;
1945 default:
1946 gcc_unreachable ();
1950 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1951 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1952 (enum dwarf_call_frame_info cfi);
1954 static enum dw_cfi_oprnd_type
1955 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1957 switch (cfi)
1959 case DW_CFA_def_cfa:
1960 case DW_CFA_def_cfa_sf:
1961 case DW_CFA_offset:
1962 case DW_CFA_offset_extended_sf:
1963 case DW_CFA_offset_extended:
1964 return dw_cfi_oprnd_offset;
1966 case DW_CFA_register:
1967 return dw_cfi_oprnd_reg_num;
1969 default:
1970 return dw_cfi_oprnd_unused;
1974 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1976 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1977 switch to the data section instead, and write out a synthetic label
1978 for collect2. */
1980 static void
1981 switch_to_eh_frame_section (void)
1983 tree label;
1985 #ifdef EH_FRAME_SECTION_NAME
1986 if (eh_frame_section == 0)
1988 int flags;
1990 if (EH_TABLES_CAN_BE_READ_ONLY)
1992 int fde_encoding;
1993 int per_encoding;
1994 int lsda_encoding;
1996 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
1997 /*global=*/0);
1998 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
1999 /*global=*/1);
2000 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2001 /*global=*/0);
2002 flags = ((! flag_pic
2003 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2004 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2005 && (per_encoding & 0x70) != DW_EH_PE_absptr
2006 && (per_encoding & 0x70) != DW_EH_PE_aligned
2007 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2008 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2009 ? 0 : SECTION_WRITE);
2011 else
2012 flags = SECTION_WRITE;
2013 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2015 #endif
2017 if (eh_frame_section)
2018 switch_to_section (eh_frame_section);
2019 else
2021 /* We have no special eh_frame section. Put the information in
2022 the data section and emit special labels to guide collect2. */
2023 switch_to_section (data_section);
2024 label = get_file_function_name ('F');
2025 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2026 targetm.asm_out.globalize_label (asm_out_file,
2027 IDENTIFIER_POINTER (label));
2028 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2032 /* Output a Call Frame Information opcode and its operand(s). */
2034 static void
2035 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2037 unsigned long r;
2038 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2039 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2040 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2041 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2042 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2043 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2045 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2046 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2047 "DW_CFA_offset, column 0x%lx", r);
2048 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2050 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2052 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2053 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2054 "DW_CFA_restore, column 0x%lx", r);
2056 else
2058 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2059 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2061 switch (cfi->dw_cfi_opc)
2063 case DW_CFA_set_loc:
2064 if (for_eh)
2065 dw2_asm_output_encoded_addr_rtx (
2066 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2067 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2068 false, NULL);
2069 else
2070 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2071 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2072 break;
2074 case DW_CFA_advance_loc1:
2075 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2076 fde->dw_fde_current_label, NULL);
2077 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2078 break;
2080 case DW_CFA_advance_loc2:
2081 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2082 fde->dw_fde_current_label, NULL);
2083 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2084 break;
2086 case DW_CFA_advance_loc4:
2087 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2088 fde->dw_fde_current_label, NULL);
2089 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2090 break;
2092 case DW_CFA_MIPS_advance_loc8:
2093 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2094 fde->dw_fde_current_label, NULL);
2095 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2096 break;
2098 case DW_CFA_offset_extended:
2099 case DW_CFA_def_cfa:
2100 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2101 dw2_asm_output_data_uleb128 (r, NULL);
2102 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2103 break;
2105 case DW_CFA_offset_extended_sf:
2106 case DW_CFA_def_cfa_sf:
2107 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2108 dw2_asm_output_data_uleb128 (r, NULL);
2109 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2110 break;
2112 case DW_CFA_restore_extended:
2113 case DW_CFA_undefined:
2114 case DW_CFA_same_value:
2115 case DW_CFA_def_cfa_register:
2116 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2117 dw2_asm_output_data_uleb128 (r, NULL);
2118 break;
2120 case DW_CFA_register:
2121 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2122 dw2_asm_output_data_uleb128 (r, NULL);
2123 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2124 dw2_asm_output_data_uleb128 (r, NULL);
2125 break;
2127 case DW_CFA_def_cfa_offset:
2128 case DW_CFA_GNU_args_size:
2129 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2130 break;
2132 case DW_CFA_def_cfa_offset_sf:
2133 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2134 break;
2136 case DW_CFA_GNU_window_save:
2137 break;
2139 case DW_CFA_def_cfa_expression:
2140 case DW_CFA_expression:
2141 output_cfa_loc (cfi);
2142 break;
2144 case DW_CFA_GNU_negative_offset_extended:
2145 /* Obsoleted by DW_CFA_offset_extended_sf. */
2146 gcc_unreachable ();
2148 default:
2149 break;
2154 /* Output the call frame information used to record information
2155 that relates to calculating the frame pointer, and records the
2156 location of saved registers. */
2158 static void
2159 output_call_frame_info (int for_eh)
2161 unsigned int i;
2162 dw_fde_ref fde;
2163 dw_cfi_ref cfi;
2164 char l1[20], l2[20], section_start_label[20];
2165 bool any_lsda_needed = false;
2166 char augmentation[6];
2167 int augmentation_size;
2168 int fde_encoding = DW_EH_PE_absptr;
2169 int per_encoding = DW_EH_PE_absptr;
2170 int lsda_encoding = DW_EH_PE_absptr;
2171 int return_reg;
2173 /* Don't emit a CIE if there won't be any FDEs. */
2174 if (fde_table_in_use == 0)
2175 return;
2177 /* If we make FDEs linkonce, we may have to emit an empty label for
2178 an FDE that wouldn't otherwise be emitted. We want to avoid
2179 having an FDE kept around when the function it refers to is
2180 discarded. Example where this matters: a primary function
2181 template in C++ requires EH information, but an explicit
2182 specialization doesn't. */
2183 if (TARGET_USES_WEAK_UNWIND_INFO
2184 && ! flag_asynchronous_unwind_tables
2185 && for_eh)
2186 for (i = 0; i < fde_table_in_use; i++)
2187 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2188 && !fde_table[i].uses_eh_lsda
2189 && ! DECL_WEAK (fde_table[i].decl))
2190 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2191 for_eh, /* empty */ 1);
2193 /* If we don't have any functions we'll want to unwind out of, don't
2194 emit any EH unwind information. Note that if exceptions aren't
2195 enabled, we won't have collected nothrow information, and if we
2196 asked for asynchronous tables, we always want this info. */
2197 if (for_eh)
2199 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2201 for (i = 0; i < fde_table_in_use; i++)
2202 if (fde_table[i].uses_eh_lsda)
2203 any_eh_needed = any_lsda_needed = true;
2204 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2205 any_eh_needed = true;
2206 else if (! fde_table[i].nothrow
2207 && ! fde_table[i].all_throwers_are_sibcalls)
2208 any_eh_needed = true;
2210 if (! any_eh_needed)
2211 return;
2214 /* We're going to be generating comments, so turn on app. */
2215 if (flag_debug_asm)
2216 app_enable ();
2218 if (for_eh)
2219 switch_to_eh_frame_section ();
2220 else
2222 if (!debug_frame_section)
2223 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2224 SECTION_DEBUG, NULL);
2225 switch_to_section (debug_frame_section);
2228 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2229 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2231 /* Output the CIE. */
2232 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2233 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2234 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2235 dw2_asm_output_data (4, 0xffffffff,
2236 "Initial length escape value indicating 64-bit DWARF extension");
2237 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2238 "Length of Common Information Entry");
2239 ASM_OUTPUT_LABEL (asm_out_file, l1);
2241 /* Now that the CIE pointer is PC-relative for EH,
2242 use 0 to identify the CIE. */
2243 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2244 (for_eh ? 0 : DWARF_CIE_ID),
2245 "CIE Identifier Tag");
2247 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2249 augmentation[0] = 0;
2250 augmentation_size = 0;
2251 if (for_eh)
2253 char *p;
2255 /* Augmentation:
2256 z Indicates that a uleb128 is present to size the
2257 augmentation section.
2258 L Indicates the encoding (and thus presence) of
2259 an LSDA pointer in the FDE augmentation.
2260 R Indicates a non-default pointer encoding for
2261 FDE code pointers.
2262 P Indicates the presence of an encoding + language
2263 personality routine in the CIE augmentation. */
2265 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2266 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2267 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2269 p = augmentation + 1;
2270 if (eh_personality_libfunc)
2272 *p++ = 'P';
2273 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2275 if (any_lsda_needed)
2277 *p++ = 'L';
2278 augmentation_size += 1;
2280 if (fde_encoding != DW_EH_PE_absptr)
2282 *p++ = 'R';
2283 augmentation_size += 1;
2285 if (p > augmentation + 1)
2287 augmentation[0] = 'z';
2288 *p = '\0';
2291 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2292 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2294 int offset = ( 4 /* Length */
2295 + 4 /* CIE Id */
2296 + 1 /* CIE version */
2297 + strlen (augmentation) + 1 /* Augmentation */
2298 + size_of_uleb128 (1) /* Code alignment */
2299 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2300 + 1 /* RA column */
2301 + 1 /* Augmentation size */
2302 + 1 /* Personality encoding */ );
2303 int pad = -offset & (PTR_SIZE - 1);
2305 augmentation_size += pad;
2307 /* Augmentations should be small, so there's scarce need to
2308 iterate for a solution. Die if we exceed one uleb128 byte. */
2309 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2313 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2314 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2315 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2316 "CIE Data Alignment Factor");
2318 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2319 if (DW_CIE_VERSION == 1)
2320 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2321 else
2322 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2324 if (augmentation[0])
2326 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2327 if (eh_personality_libfunc)
2329 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2330 eh_data_format_name (per_encoding));
2331 dw2_asm_output_encoded_addr_rtx (per_encoding,
2332 eh_personality_libfunc,
2333 true, NULL);
2336 if (any_lsda_needed)
2337 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2338 eh_data_format_name (lsda_encoding));
2340 if (fde_encoding != DW_EH_PE_absptr)
2341 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2342 eh_data_format_name (fde_encoding));
2345 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2346 output_cfi (cfi, NULL, for_eh);
2348 /* Pad the CIE out to an address sized boundary. */
2349 ASM_OUTPUT_ALIGN (asm_out_file,
2350 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2351 ASM_OUTPUT_LABEL (asm_out_file, l2);
2353 /* Loop through all of the FDE's. */
2354 for (i = 0; i < fde_table_in_use; i++)
2356 fde = &fde_table[i];
2358 /* Don't emit EH unwind info for leaf functions that don't need it. */
2359 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2360 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2361 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2362 && !fde->uses_eh_lsda)
2363 continue;
2365 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2366 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2367 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2368 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2369 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2370 dw2_asm_output_data (4, 0xffffffff,
2371 "Initial length escape value indicating 64-bit DWARF extension");
2372 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2373 "FDE Length");
2374 ASM_OUTPUT_LABEL (asm_out_file, l1);
2376 if (for_eh)
2377 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2378 else
2379 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2380 debug_frame_section, "FDE CIE offset");
2382 if (for_eh)
2384 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2385 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2386 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2387 sym_ref,
2388 false,
2389 "FDE initial location");
2390 if (fde->dw_fde_switched_sections)
2392 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2393 fde->dw_fde_unlikely_section_label);
2394 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2395 fde->dw_fde_hot_section_label);
2396 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2397 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2398 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2399 "FDE initial location");
2400 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2401 fde->dw_fde_hot_section_end_label,
2402 fde->dw_fde_hot_section_label,
2403 "FDE address range");
2404 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2405 "FDE initial location");
2406 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2407 fde->dw_fde_unlikely_section_end_label,
2408 fde->dw_fde_unlikely_section_label,
2409 "FDE address range");
2411 else
2412 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2413 fde->dw_fde_end, fde->dw_fde_begin,
2414 "FDE address range");
2416 else
2418 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2419 "FDE initial location");
2420 if (fde->dw_fde_switched_sections)
2422 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2423 fde->dw_fde_hot_section_label,
2424 "FDE initial location");
2425 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2426 fde->dw_fde_hot_section_end_label,
2427 fde->dw_fde_hot_section_label,
2428 "FDE address range");
2429 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2430 fde->dw_fde_unlikely_section_label,
2431 "FDE initial location");
2432 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2433 fde->dw_fde_unlikely_section_end_label,
2434 fde->dw_fde_unlikely_section_label,
2435 "FDE address range");
2437 else
2438 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2439 fde->dw_fde_end, fde->dw_fde_begin,
2440 "FDE address range");
2443 if (augmentation[0])
2445 if (any_lsda_needed)
2447 int size = size_of_encoded_value (lsda_encoding);
2449 if (lsda_encoding == DW_EH_PE_aligned)
2451 int offset = ( 4 /* Length */
2452 + 4 /* CIE offset */
2453 + 2 * size_of_encoded_value (fde_encoding)
2454 + 1 /* Augmentation size */ );
2455 int pad = -offset & (PTR_SIZE - 1);
2457 size += pad;
2458 gcc_assert (size_of_uleb128 (size) == 1);
2461 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2463 if (fde->uses_eh_lsda)
2465 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2466 fde->funcdef_number);
2467 dw2_asm_output_encoded_addr_rtx (
2468 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2469 false, "Language Specific Data Area");
2471 else
2473 if (lsda_encoding == DW_EH_PE_aligned)
2474 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2475 dw2_asm_output_data
2476 (size_of_encoded_value (lsda_encoding), 0,
2477 "Language Specific Data Area (none)");
2480 else
2481 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2484 /* Loop through the Call Frame Instructions associated with
2485 this FDE. */
2486 fde->dw_fde_current_label = fde->dw_fde_begin;
2487 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2488 output_cfi (cfi, fde, for_eh);
2490 /* Pad the FDE out to an address sized boundary. */
2491 ASM_OUTPUT_ALIGN (asm_out_file,
2492 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2493 ASM_OUTPUT_LABEL (asm_out_file, l2);
2496 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2497 dw2_asm_output_data (4, 0, "End of Table");
2498 #ifdef MIPS_DEBUGGING_INFO
2499 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2500 get a value of 0. Putting .align 0 after the label fixes it. */
2501 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2502 #endif
2504 /* Turn off app to make assembly quicker. */
2505 if (flag_debug_asm)
2506 app_disable ();
2509 /* Output a marker (i.e. a label) for the beginning of a function, before
2510 the prologue. */
2512 void
2513 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2514 const char *file ATTRIBUTE_UNUSED)
2516 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2517 char * dup_label;
2518 dw_fde_ref fde;
2520 current_function_func_begin_label = NULL;
2522 #ifdef TARGET_UNWIND_INFO
2523 /* ??? current_function_func_begin_label is also used by except.c
2524 for call-site information. We must emit this label if it might
2525 be used. */
2526 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2527 && ! dwarf2out_do_frame ())
2528 return;
2529 #else
2530 if (! dwarf2out_do_frame ())
2531 return;
2532 #endif
2534 switch_to_section (function_section (current_function_decl));
2535 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2536 current_function_funcdef_no);
2537 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2538 current_function_funcdef_no);
2539 dup_label = xstrdup (label);
2540 current_function_func_begin_label = dup_label;
2542 #ifdef TARGET_UNWIND_INFO
2543 /* We can elide the fde allocation if we're not emitting debug info. */
2544 if (! dwarf2out_do_frame ())
2545 return;
2546 #endif
2548 /* Expand the fde table if necessary. */
2549 if (fde_table_in_use == fde_table_allocated)
2551 fde_table_allocated += FDE_TABLE_INCREMENT;
2552 fde_table = ggc_realloc (fde_table,
2553 fde_table_allocated * sizeof (dw_fde_node));
2554 memset (fde_table + fde_table_in_use, 0,
2555 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2558 /* Record the FDE associated with this function. */
2559 current_funcdef_fde = fde_table_in_use;
2561 /* Add the new FDE at the end of the fde_table. */
2562 fde = &fde_table[fde_table_in_use++];
2563 fde->decl = current_function_decl;
2564 fde->dw_fde_begin = dup_label;
2565 fde->dw_fde_current_label = NULL;
2566 fde->dw_fde_hot_section_label = NULL;
2567 fde->dw_fde_hot_section_end_label = NULL;
2568 fde->dw_fde_unlikely_section_label = NULL;
2569 fde->dw_fde_unlikely_section_end_label = NULL;
2570 fde->dw_fde_switched_sections = false;
2571 fde->dw_fde_end = NULL;
2572 fde->dw_fde_cfi = NULL;
2573 fde->funcdef_number = current_function_funcdef_no;
2574 fde->nothrow = TREE_NOTHROW (current_function_decl);
2575 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2576 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2578 args_size = old_args_size = 0;
2580 /* We only want to output line number information for the genuine dwarf2
2581 prologue case, not the eh frame case. */
2582 #ifdef DWARF2_DEBUGGING_INFO
2583 if (file)
2584 dwarf2out_source_line (line, file);
2585 #endif
2588 /* Output a marker (i.e. a label) for the absolute end of the generated code
2589 for a function definition. This gets called *after* the epilogue code has
2590 been generated. */
2592 void
2593 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2594 const char *file ATTRIBUTE_UNUSED)
2596 dw_fde_ref fde;
2597 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2599 /* Output a label to mark the endpoint of the code generated for this
2600 function. */
2601 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2602 current_function_funcdef_no);
2603 ASM_OUTPUT_LABEL (asm_out_file, label);
2604 fde = &fde_table[fde_table_in_use - 1];
2605 fde->dw_fde_end = xstrdup (label);
2608 void
2609 dwarf2out_frame_init (void)
2611 /* Allocate the initial hunk of the fde_table. */
2612 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2613 fde_table_allocated = FDE_TABLE_INCREMENT;
2614 fde_table_in_use = 0;
2616 /* Generate the CFA instructions common to all FDE's. Do it now for the
2617 sake of lookup_cfa. */
2619 /* On entry, the Canonical Frame Address is at SP. */
2620 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2622 #ifdef DWARF2_UNWIND_INFO
2623 if (DWARF2_UNWIND_INFO)
2624 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2625 #endif
2628 void
2629 dwarf2out_frame_finish (void)
2631 /* Output call frame information. */
2632 if (DWARF2_FRAME_INFO)
2633 output_call_frame_info (0);
2635 #ifndef TARGET_UNWIND_INFO
2636 /* Output another copy for the unwinder. */
2637 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2638 output_call_frame_info (1);
2639 #endif
2641 #endif
2643 /* And now, the subset of the debugging information support code necessary
2644 for emitting location expressions. */
2646 /* We need some way to distinguish DW_OP_addr with a direct symbol
2647 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2648 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2651 typedef struct dw_val_struct *dw_val_ref;
2652 typedef struct die_struct *dw_die_ref;
2653 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2654 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2656 /* Each DIE may have a series of attribute/value pairs. Values
2657 can take on several forms. The forms that are used in this
2658 implementation are listed below. */
2660 enum dw_val_class
2662 dw_val_class_addr,
2663 dw_val_class_offset,
2664 dw_val_class_loc,
2665 dw_val_class_loc_list,
2666 dw_val_class_range_list,
2667 dw_val_class_const,
2668 dw_val_class_unsigned_const,
2669 dw_val_class_long_long,
2670 dw_val_class_vec,
2671 dw_val_class_flag,
2672 dw_val_class_die_ref,
2673 dw_val_class_fde_ref,
2674 dw_val_class_lbl_id,
2675 dw_val_class_lineptr,
2676 dw_val_class_str,
2677 dw_val_class_macptr
2680 /* Describe a double word constant value. */
2681 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2683 typedef struct dw_long_long_struct GTY(())
2685 unsigned long hi;
2686 unsigned long low;
2688 dw_long_long_const;
2690 /* Describe a floating point constant value, or a vector constant value. */
2692 typedef struct dw_vec_struct GTY(())
2694 unsigned char * GTY((length ("%h.length"))) array;
2695 unsigned length;
2696 unsigned elt_size;
2698 dw_vec_const;
2700 /* The dw_val_node describes an attribute's value, as it is
2701 represented internally. */
2703 typedef struct dw_val_struct GTY(())
2705 enum dw_val_class val_class;
2706 union dw_val_struct_union
2708 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2709 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2710 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2711 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2712 HOST_WIDE_INT GTY ((default)) val_int;
2713 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2714 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2715 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2716 struct dw_val_die_union
2718 dw_die_ref die;
2719 int external;
2720 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2721 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2722 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2723 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2724 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2726 GTY ((desc ("%1.val_class"))) v;
2728 dw_val_node;
2730 /* Locations in memory are described using a sequence of stack machine
2731 operations. */
2733 typedef struct dw_loc_descr_struct GTY(())
2735 dw_loc_descr_ref dw_loc_next;
2736 enum dwarf_location_atom dw_loc_opc;
2737 dw_val_node dw_loc_oprnd1;
2738 dw_val_node dw_loc_oprnd2;
2739 int dw_loc_addr;
2741 dw_loc_descr_node;
2743 /* Location lists are ranges + location descriptions for that range,
2744 so you can track variables that are in different places over
2745 their entire life. */
2746 typedef struct dw_loc_list_struct GTY(())
2748 dw_loc_list_ref dw_loc_next;
2749 const char *begin; /* Label for begin address of range */
2750 const char *end; /* Label for end address of range */
2751 char *ll_symbol; /* Label for beginning of location list.
2752 Only on head of list */
2753 const char *section; /* Section this loclist is relative to */
2754 dw_loc_descr_ref expr;
2755 } dw_loc_list_node;
2757 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2759 static const char *dwarf_stack_op_name (unsigned);
2760 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2761 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2762 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2763 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2764 static unsigned long size_of_locs (dw_loc_descr_ref);
2765 static void output_loc_operands (dw_loc_descr_ref);
2766 static void output_loc_sequence (dw_loc_descr_ref);
2768 /* Convert a DWARF stack opcode into its string name. */
2770 static const char *
2771 dwarf_stack_op_name (unsigned int op)
2773 switch (op)
2775 case DW_OP_addr:
2776 case INTERNAL_DW_OP_tls_addr:
2777 return "DW_OP_addr";
2778 case DW_OP_deref:
2779 return "DW_OP_deref";
2780 case DW_OP_const1u:
2781 return "DW_OP_const1u";
2782 case DW_OP_const1s:
2783 return "DW_OP_const1s";
2784 case DW_OP_const2u:
2785 return "DW_OP_const2u";
2786 case DW_OP_const2s:
2787 return "DW_OP_const2s";
2788 case DW_OP_const4u:
2789 return "DW_OP_const4u";
2790 case DW_OP_const4s:
2791 return "DW_OP_const4s";
2792 case DW_OP_const8u:
2793 return "DW_OP_const8u";
2794 case DW_OP_const8s:
2795 return "DW_OP_const8s";
2796 case DW_OP_constu:
2797 return "DW_OP_constu";
2798 case DW_OP_consts:
2799 return "DW_OP_consts";
2800 case DW_OP_dup:
2801 return "DW_OP_dup";
2802 case DW_OP_drop:
2803 return "DW_OP_drop";
2804 case DW_OP_over:
2805 return "DW_OP_over";
2806 case DW_OP_pick:
2807 return "DW_OP_pick";
2808 case DW_OP_swap:
2809 return "DW_OP_swap";
2810 case DW_OP_rot:
2811 return "DW_OP_rot";
2812 case DW_OP_xderef:
2813 return "DW_OP_xderef";
2814 case DW_OP_abs:
2815 return "DW_OP_abs";
2816 case DW_OP_and:
2817 return "DW_OP_and";
2818 case DW_OP_div:
2819 return "DW_OP_div";
2820 case DW_OP_minus:
2821 return "DW_OP_minus";
2822 case DW_OP_mod:
2823 return "DW_OP_mod";
2824 case DW_OP_mul:
2825 return "DW_OP_mul";
2826 case DW_OP_neg:
2827 return "DW_OP_neg";
2828 case DW_OP_not:
2829 return "DW_OP_not";
2830 case DW_OP_or:
2831 return "DW_OP_or";
2832 case DW_OP_plus:
2833 return "DW_OP_plus";
2834 case DW_OP_plus_uconst:
2835 return "DW_OP_plus_uconst";
2836 case DW_OP_shl:
2837 return "DW_OP_shl";
2838 case DW_OP_shr:
2839 return "DW_OP_shr";
2840 case DW_OP_shra:
2841 return "DW_OP_shra";
2842 case DW_OP_xor:
2843 return "DW_OP_xor";
2844 case DW_OP_bra:
2845 return "DW_OP_bra";
2846 case DW_OP_eq:
2847 return "DW_OP_eq";
2848 case DW_OP_ge:
2849 return "DW_OP_ge";
2850 case DW_OP_gt:
2851 return "DW_OP_gt";
2852 case DW_OP_le:
2853 return "DW_OP_le";
2854 case DW_OP_lt:
2855 return "DW_OP_lt";
2856 case DW_OP_ne:
2857 return "DW_OP_ne";
2858 case DW_OP_skip:
2859 return "DW_OP_skip";
2860 case DW_OP_lit0:
2861 return "DW_OP_lit0";
2862 case DW_OP_lit1:
2863 return "DW_OP_lit1";
2864 case DW_OP_lit2:
2865 return "DW_OP_lit2";
2866 case DW_OP_lit3:
2867 return "DW_OP_lit3";
2868 case DW_OP_lit4:
2869 return "DW_OP_lit4";
2870 case DW_OP_lit5:
2871 return "DW_OP_lit5";
2872 case DW_OP_lit6:
2873 return "DW_OP_lit6";
2874 case DW_OP_lit7:
2875 return "DW_OP_lit7";
2876 case DW_OP_lit8:
2877 return "DW_OP_lit8";
2878 case DW_OP_lit9:
2879 return "DW_OP_lit9";
2880 case DW_OP_lit10:
2881 return "DW_OP_lit10";
2882 case DW_OP_lit11:
2883 return "DW_OP_lit11";
2884 case DW_OP_lit12:
2885 return "DW_OP_lit12";
2886 case DW_OP_lit13:
2887 return "DW_OP_lit13";
2888 case DW_OP_lit14:
2889 return "DW_OP_lit14";
2890 case DW_OP_lit15:
2891 return "DW_OP_lit15";
2892 case DW_OP_lit16:
2893 return "DW_OP_lit16";
2894 case DW_OP_lit17:
2895 return "DW_OP_lit17";
2896 case DW_OP_lit18:
2897 return "DW_OP_lit18";
2898 case DW_OP_lit19:
2899 return "DW_OP_lit19";
2900 case DW_OP_lit20:
2901 return "DW_OP_lit20";
2902 case DW_OP_lit21:
2903 return "DW_OP_lit21";
2904 case DW_OP_lit22:
2905 return "DW_OP_lit22";
2906 case DW_OP_lit23:
2907 return "DW_OP_lit23";
2908 case DW_OP_lit24:
2909 return "DW_OP_lit24";
2910 case DW_OP_lit25:
2911 return "DW_OP_lit25";
2912 case DW_OP_lit26:
2913 return "DW_OP_lit26";
2914 case DW_OP_lit27:
2915 return "DW_OP_lit27";
2916 case DW_OP_lit28:
2917 return "DW_OP_lit28";
2918 case DW_OP_lit29:
2919 return "DW_OP_lit29";
2920 case DW_OP_lit30:
2921 return "DW_OP_lit30";
2922 case DW_OP_lit31:
2923 return "DW_OP_lit31";
2924 case DW_OP_reg0:
2925 return "DW_OP_reg0";
2926 case DW_OP_reg1:
2927 return "DW_OP_reg1";
2928 case DW_OP_reg2:
2929 return "DW_OP_reg2";
2930 case DW_OP_reg3:
2931 return "DW_OP_reg3";
2932 case DW_OP_reg4:
2933 return "DW_OP_reg4";
2934 case DW_OP_reg5:
2935 return "DW_OP_reg5";
2936 case DW_OP_reg6:
2937 return "DW_OP_reg6";
2938 case DW_OP_reg7:
2939 return "DW_OP_reg7";
2940 case DW_OP_reg8:
2941 return "DW_OP_reg8";
2942 case DW_OP_reg9:
2943 return "DW_OP_reg9";
2944 case DW_OP_reg10:
2945 return "DW_OP_reg10";
2946 case DW_OP_reg11:
2947 return "DW_OP_reg11";
2948 case DW_OP_reg12:
2949 return "DW_OP_reg12";
2950 case DW_OP_reg13:
2951 return "DW_OP_reg13";
2952 case DW_OP_reg14:
2953 return "DW_OP_reg14";
2954 case DW_OP_reg15:
2955 return "DW_OP_reg15";
2956 case DW_OP_reg16:
2957 return "DW_OP_reg16";
2958 case DW_OP_reg17:
2959 return "DW_OP_reg17";
2960 case DW_OP_reg18:
2961 return "DW_OP_reg18";
2962 case DW_OP_reg19:
2963 return "DW_OP_reg19";
2964 case DW_OP_reg20:
2965 return "DW_OP_reg20";
2966 case DW_OP_reg21:
2967 return "DW_OP_reg21";
2968 case DW_OP_reg22:
2969 return "DW_OP_reg22";
2970 case DW_OP_reg23:
2971 return "DW_OP_reg23";
2972 case DW_OP_reg24:
2973 return "DW_OP_reg24";
2974 case DW_OP_reg25:
2975 return "DW_OP_reg25";
2976 case DW_OP_reg26:
2977 return "DW_OP_reg26";
2978 case DW_OP_reg27:
2979 return "DW_OP_reg27";
2980 case DW_OP_reg28:
2981 return "DW_OP_reg28";
2982 case DW_OP_reg29:
2983 return "DW_OP_reg29";
2984 case DW_OP_reg30:
2985 return "DW_OP_reg30";
2986 case DW_OP_reg31:
2987 return "DW_OP_reg31";
2988 case DW_OP_breg0:
2989 return "DW_OP_breg0";
2990 case DW_OP_breg1:
2991 return "DW_OP_breg1";
2992 case DW_OP_breg2:
2993 return "DW_OP_breg2";
2994 case DW_OP_breg3:
2995 return "DW_OP_breg3";
2996 case DW_OP_breg4:
2997 return "DW_OP_breg4";
2998 case DW_OP_breg5:
2999 return "DW_OP_breg5";
3000 case DW_OP_breg6:
3001 return "DW_OP_breg6";
3002 case DW_OP_breg7:
3003 return "DW_OP_breg7";
3004 case DW_OP_breg8:
3005 return "DW_OP_breg8";
3006 case DW_OP_breg9:
3007 return "DW_OP_breg9";
3008 case DW_OP_breg10:
3009 return "DW_OP_breg10";
3010 case DW_OP_breg11:
3011 return "DW_OP_breg11";
3012 case DW_OP_breg12:
3013 return "DW_OP_breg12";
3014 case DW_OP_breg13:
3015 return "DW_OP_breg13";
3016 case DW_OP_breg14:
3017 return "DW_OP_breg14";
3018 case DW_OP_breg15:
3019 return "DW_OP_breg15";
3020 case DW_OP_breg16:
3021 return "DW_OP_breg16";
3022 case DW_OP_breg17:
3023 return "DW_OP_breg17";
3024 case DW_OP_breg18:
3025 return "DW_OP_breg18";
3026 case DW_OP_breg19:
3027 return "DW_OP_breg19";
3028 case DW_OP_breg20:
3029 return "DW_OP_breg20";
3030 case DW_OP_breg21:
3031 return "DW_OP_breg21";
3032 case DW_OP_breg22:
3033 return "DW_OP_breg22";
3034 case DW_OP_breg23:
3035 return "DW_OP_breg23";
3036 case DW_OP_breg24:
3037 return "DW_OP_breg24";
3038 case DW_OP_breg25:
3039 return "DW_OP_breg25";
3040 case DW_OP_breg26:
3041 return "DW_OP_breg26";
3042 case DW_OP_breg27:
3043 return "DW_OP_breg27";
3044 case DW_OP_breg28:
3045 return "DW_OP_breg28";
3046 case DW_OP_breg29:
3047 return "DW_OP_breg29";
3048 case DW_OP_breg30:
3049 return "DW_OP_breg30";
3050 case DW_OP_breg31:
3051 return "DW_OP_breg31";
3052 case DW_OP_regx:
3053 return "DW_OP_regx";
3054 case DW_OP_fbreg:
3055 return "DW_OP_fbreg";
3056 case DW_OP_bregx:
3057 return "DW_OP_bregx";
3058 case DW_OP_piece:
3059 return "DW_OP_piece";
3060 case DW_OP_deref_size:
3061 return "DW_OP_deref_size";
3062 case DW_OP_xderef_size:
3063 return "DW_OP_xderef_size";
3064 case DW_OP_nop:
3065 return "DW_OP_nop";
3066 case DW_OP_push_object_address:
3067 return "DW_OP_push_object_address";
3068 case DW_OP_call2:
3069 return "DW_OP_call2";
3070 case DW_OP_call4:
3071 return "DW_OP_call4";
3072 case DW_OP_call_ref:
3073 return "DW_OP_call_ref";
3074 case DW_OP_GNU_push_tls_address:
3075 return "DW_OP_GNU_push_tls_address";
3076 default:
3077 return "OP_<unknown>";
3081 /* Return a pointer to a newly allocated location description. Location
3082 descriptions are simple expression terms that can be strung
3083 together to form more complicated location (address) descriptions. */
3085 static inline dw_loc_descr_ref
3086 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3087 unsigned HOST_WIDE_INT oprnd2)
3089 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3091 descr->dw_loc_opc = op;
3092 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3093 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3094 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3095 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3097 return descr;
3100 /* Add a location description term to a location description expression. */
3102 static inline void
3103 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3105 dw_loc_descr_ref *d;
3107 /* Find the end of the chain. */
3108 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3111 *d = descr;
3114 /* Return the size of a location descriptor. */
3116 static unsigned long
3117 size_of_loc_descr (dw_loc_descr_ref loc)
3119 unsigned long size = 1;
3121 switch (loc->dw_loc_opc)
3123 case DW_OP_addr:
3124 case INTERNAL_DW_OP_tls_addr:
3125 size += DWARF2_ADDR_SIZE;
3126 break;
3127 case DW_OP_const1u:
3128 case DW_OP_const1s:
3129 size += 1;
3130 break;
3131 case DW_OP_const2u:
3132 case DW_OP_const2s:
3133 size += 2;
3134 break;
3135 case DW_OP_const4u:
3136 case DW_OP_const4s:
3137 size += 4;
3138 break;
3139 case DW_OP_const8u:
3140 case DW_OP_const8s:
3141 size += 8;
3142 break;
3143 case DW_OP_constu:
3144 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3145 break;
3146 case DW_OP_consts:
3147 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3148 break;
3149 case DW_OP_pick:
3150 size += 1;
3151 break;
3152 case DW_OP_plus_uconst:
3153 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3154 break;
3155 case DW_OP_skip:
3156 case DW_OP_bra:
3157 size += 2;
3158 break;
3159 case DW_OP_breg0:
3160 case DW_OP_breg1:
3161 case DW_OP_breg2:
3162 case DW_OP_breg3:
3163 case DW_OP_breg4:
3164 case DW_OP_breg5:
3165 case DW_OP_breg6:
3166 case DW_OP_breg7:
3167 case DW_OP_breg8:
3168 case DW_OP_breg9:
3169 case DW_OP_breg10:
3170 case DW_OP_breg11:
3171 case DW_OP_breg12:
3172 case DW_OP_breg13:
3173 case DW_OP_breg14:
3174 case DW_OP_breg15:
3175 case DW_OP_breg16:
3176 case DW_OP_breg17:
3177 case DW_OP_breg18:
3178 case DW_OP_breg19:
3179 case DW_OP_breg20:
3180 case DW_OP_breg21:
3181 case DW_OP_breg22:
3182 case DW_OP_breg23:
3183 case DW_OP_breg24:
3184 case DW_OP_breg25:
3185 case DW_OP_breg26:
3186 case DW_OP_breg27:
3187 case DW_OP_breg28:
3188 case DW_OP_breg29:
3189 case DW_OP_breg30:
3190 case DW_OP_breg31:
3191 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3192 break;
3193 case DW_OP_regx:
3194 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3195 break;
3196 case DW_OP_fbreg:
3197 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3198 break;
3199 case DW_OP_bregx:
3200 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3201 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3202 break;
3203 case DW_OP_piece:
3204 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3205 break;
3206 case DW_OP_deref_size:
3207 case DW_OP_xderef_size:
3208 size += 1;
3209 break;
3210 case DW_OP_call2:
3211 size += 2;
3212 break;
3213 case DW_OP_call4:
3214 size += 4;
3215 break;
3216 case DW_OP_call_ref:
3217 size += DWARF2_ADDR_SIZE;
3218 break;
3219 default:
3220 break;
3223 return size;
3226 /* Return the size of a series of location descriptors. */
3228 static unsigned long
3229 size_of_locs (dw_loc_descr_ref loc)
3231 dw_loc_descr_ref l;
3232 unsigned long size;
3234 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3235 field, to avoid writing to a PCH file. */
3236 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3238 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3239 break;
3240 size += size_of_loc_descr (l);
3242 if (! l)
3243 return size;
3245 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3247 l->dw_loc_addr = size;
3248 size += size_of_loc_descr (l);
3251 return size;
3254 /* Output location description stack opcode's operands (if any). */
3256 static void
3257 output_loc_operands (dw_loc_descr_ref loc)
3259 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3260 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3262 switch (loc->dw_loc_opc)
3264 #ifdef DWARF2_DEBUGGING_INFO
3265 case DW_OP_addr:
3266 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3267 break;
3268 case DW_OP_const2u:
3269 case DW_OP_const2s:
3270 dw2_asm_output_data (2, val1->v.val_int, NULL);
3271 break;
3272 case DW_OP_const4u:
3273 case DW_OP_const4s:
3274 dw2_asm_output_data (4, val1->v.val_int, NULL);
3275 break;
3276 case DW_OP_const8u:
3277 case DW_OP_const8s:
3278 gcc_assert (HOST_BITS_PER_LONG >= 64);
3279 dw2_asm_output_data (8, val1->v.val_int, NULL);
3280 break;
3281 case DW_OP_skip:
3282 case DW_OP_bra:
3284 int offset;
3286 gcc_assert (val1->val_class == dw_val_class_loc);
3287 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3289 dw2_asm_output_data (2, offset, NULL);
3291 break;
3292 #else
3293 case DW_OP_addr:
3294 case DW_OP_const2u:
3295 case DW_OP_const2s:
3296 case DW_OP_const4u:
3297 case DW_OP_const4s:
3298 case DW_OP_const8u:
3299 case DW_OP_const8s:
3300 case DW_OP_skip:
3301 case DW_OP_bra:
3302 /* We currently don't make any attempt to make sure these are
3303 aligned properly like we do for the main unwind info, so
3304 don't support emitting things larger than a byte if we're
3305 only doing unwinding. */
3306 gcc_unreachable ();
3307 #endif
3308 case DW_OP_const1u:
3309 case DW_OP_const1s:
3310 dw2_asm_output_data (1, val1->v.val_int, NULL);
3311 break;
3312 case DW_OP_constu:
3313 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3314 break;
3315 case DW_OP_consts:
3316 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3317 break;
3318 case DW_OP_pick:
3319 dw2_asm_output_data (1, val1->v.val_int, NULL);
3320 break;
3321 case DW_OP_plus_uconst:
3322 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3323 break;
3324 case DW_OP_breg0:
3325 case DW_OP_breg1:
3326 case DW_OP_breg2:
3327 case DW_OP_breg3:
3328 case DW_OP_breg4:
3329 case DW_OP_breg5:
3330 case DW_OP_breg6:
3331 case DW_OP_breg7:
3332 case DW_OP_breg8:
3333 case DW_OP_breg9:
3334 case DW_OP_breg10:
3335 case DW_OP_breg11:
3336 case DW_OP_breg12:
3337 case DW_OP_breg13:
3338 case DW_OP_breg14:
3339 case DW_OP_breg15:
3340 case DW_OP_breg16:
3341 case DW_OP_breg17:
3342 case DW_OP_breg18:
3343 case DW_OP_breg19:
3344 case DW_OP_breg20:
3345 case DW_OP_breg21:
3346 case DW_OP_breg22:
3347 case DW_OP_breg23:
3348 case DW_OP_breg24:
3349 case DW_OP_breg25:
3350 case DW_OP_breg26:
3351 case DW_OP_breg27:
3352 case DW_OP_breg28:
3353 case DW_OP_breg29:
3354 case DW_OP_breg30:
3355 case DW_OP_breg31:
3356 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3357 break;
3358 case DW_OP_regx:
3359 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3360 break;
3361 case DW_OP_fbreg:
3362 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3363 break;
3364 case DW_OP_bregx:
3365 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3366 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3367 break;
3368 case DW_OP_piece:
3369 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3370 break;
3371 case DW_OP_deref_size:
3372 case DW_OP_xderef_size:
3373 dw2_asm_output_data (1, val1->v.val_int, NULL);
3374 break;
3376 case INTERNAL_DW_OP_tls_addr:
3377 if (targetm.asm_out.output_dwarf_dtprel)
3379 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3380 DWARF2_ADDR_SIZE,
3381 val1->v.val_addr);
3382 fputc ('\n', asm_out_file);
3384 else
3385 gcc_unreachable ();
3386 break;
3388 default:
3389 /* Other codes have no operands. */
3390 break;
3394 /* Output a sequence of location operations. */
3396 static void
3397 output_loc_sequence (dw_loc_descr_ref loc)
3399 for (; loc != NULL; loc = loc->dw_loc_next)
3401 /* Output the opcode. */
3402 dw2_asm_output_data (1, loc->dw_loc_opc,
3403 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3405 /* Output the operand(s) (if any). */
3406 output_loc_operands (loc);
3410 /* This routine will generate the correct assembly data for a location
3411 description based on a cfi entry with a complex address. */
3413 static void
3414 output_cfa_loc (dw_cfi_ref cfi)
3416 dw_loc_descr_ref loc;
3417 unsigned long size;
3419 /* Output the size of the block. */
3420 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3421 size = size_of_locs (loc);
3422 dw2_asm_output_data_uleb128 (size, NULL);
3424 /* Now output the operations themselves. */
3425 output_loc_sequence (loc);
3428 /* This function builds a dwarf location descriptor sequence from a
3429 dw_cfa_location, adding the given OFFSET to the result of the
3430 expression. */
3432 static struct dw_loc_descr_struct *
3433 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3435 struct dw_loc_descr_struct *head, *tmp;
3437 offset += cfa->offset;
3439 if (cfa->indirect)
3441 if (cfa->base_offset)
3443 if (cfa->reg <= 31)
3444 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3445 else
3446 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3448 else if (cfa->reg <= 31)
3449 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3450 else
3451 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3453 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3454 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3455 add_loc_descr (&head, tmp);
3456 if (offset != 0)
3458 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3459 add_loc_descr (&head, tmp);
3462 else
3464 if (offset == 0)
3465 if (cfa->reg <= 31)
3466 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3467 else
3468 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3469 else if (cfa->reg <= 31)
3470 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3471 else
3472 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3475 return head;
3478 /* This function fills in aa dw_cfa_location structure from a dwarf location
3479 descriptor sequence. */
3481 static void
3482 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3484 struct dw_loc_descr_struct *ptr;
3485 cfa->offset = 0;
3486 cfa->base_offset = 0;
3487 cfa->indirect = 0;
3488 cfa->reg = -1;
3490 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3492 enum dwarf_location_atom op = ptr->dw_loc_opc;
3494 switch (op)
3496 case DW_OP_reg0:
3497 case DW_OP_reg1:
3498 case DW_OP_reg2:
3499 case DW_OP_reg3:
3500 case DW_OP_reg4:
3501 case DW_OP_reg5:
3502 case DW_OP_reg6:
3503 case DW_OP_reg7:
3504 case DW_OP_reg8:
3505 case DW_OP_reg9:
3506 case DW_OP_reg10:
3507 case DW_OP_reg11:
3508 case DW_OP_reg12:
3509 case DW_OP_reg13:
3510 case DW_OP_reg14:
3511 case DW_OP_reg15:
3512 case DW_OP_reg16:
3513 case DW_OP_reg17:
3514 case DW_OP_reg18:
3515 case DW_OP_reg19:
3516 case DW_OP_reg20:
3517 case DW_OP_reg21:
3518 case DW_OP_reg22:
3519 case DW_OP_reg23:
3520 case DW_OP_reg24:
3521 case DW_OP_reg25:
3522 case DW_OP_reg26:
3523 case DW_OP_reg27:
3524 case DW_OP_reg28:
3525 case DW_OP_reg29:
3526 case DW_OP_reg30:
3527 case DW_OP_reg31:
3528 cfa->reg = op - DW_OP_reg0;
3529 break;
3530 case DW_OP_regx:
3531 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3532 break;
3533 case DW_OP_breg0:
3534 case DW_OP_breg1:
3535 case DW_OP_breg2:
3536 case DW_OP_breg3:
3537 case DW_OP_breg4:
3538 case DW_OP_breg5:
3539 case DW_OP_breg6:
3540 case DW_OP_breg7:
3541 case DW_OP_breg8:
3542 case DW_OP_breg9:
3543 case DW_OP_breg10:
3544 case DW_OP_breg11:
3545 case DW_OP_breg12:
3546 case DW_OP_breg13:
3547 case DW_OP_breg14:
3548 case DW_OP_breg15:
3549 case DW_OP_breg16:
3550 case DW_OP_breg17:
3551 case DW_OP_breg18:
3552 case DW_OP_breg19:
3553 case DW_OP_breg20:
3554 case DW_OP_breg21:
3555 case DW_OP_breg22:
3556 case DW_OP_breg23:
3557 case DW_OP_breg24:
3558 case DW_OP_breg25:
3559 case DW_OP_breg26:
3560 case DW_OP_breg27:
3561 case DW_OP_breg28:
3562 case DW_OP_breg29:
3563 case DW_OP_breg30:
3564 case DW_OP_breg31:
3565 cfa->reg = op - DW_OP_breg0;
3566 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3567 break;
3568 case DW_OP_bregx:
3569 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3570 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3571 break;
3572 case DW_OP_deref:
3573 cfa->indirect = 1;
3574 break;
3575 case DW_OP_plus_uconst:
3576 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3577 break;
3578 default:
3579 internal_error ("DW_LOC_OP %s not implemented",
3580 dwarf_stack_op_name (ptr->dw_loc_opc));
3584 #endif /* .debug_frame support */
3586 /* And now, the support for symbolic debugging information. */
3587 #ifdef DWARF2_DEBUGGING_INFO
3589 /* .debug_str support. */
3590 static int output_indirect_string (void **, void *);
3592 static void dwarf2out_init (const char *);
3593 static void dwarf2out_finish (const char *);
3594 static void dwarf2out_define (unsigned int, const char *);
3595 static void dwarf2out_undef (unsigned int, const char *);
3596 static void dwarf2out_start_source_file (unsigned, const char *);
3597 static void dwarf2out_end_source_file (unsigned);
3598 static void dwarf2out_begin_block (unsigned, unsigned);
3599 static void dwarf2out_end_block (unsigned, unsigned);
3600 static bool dwarf2out_ignore_block (tree);
3601 static void dwarf2out_global_decl (tree);
3602 static void dwarf2out_type_decl (tree, int);
3603 static void dwarf2out_imported_module_or_decl (tree, tree);
3604 static void dwarf2out_abstract_function (tree);
3605 static void dwarf2out_var_location (rtx);
3606 static void dwarf2out_begin_function (tree);
3607 static void dwarf2out_switch_text_section (void);
3609 /* The debug hooks structure. */
3611 const struct gcc_debug_hooks dwarf2_debug_hooks =
3613 dwarf2out_init,
3614 dwarf2out_finish,
3615 dwarf2out_define,
3616 dwarf2out_undef,
3617 dwarf2out_start_source_file,
3618 dwarf2out_end_source_file,
3619 dwarf2out_begin_block,
3620 dwarf2out_end_block,
3621 dwarf2out_ignore_block,
3622 dwarf2out_source_line,
3623 dwarf2out_begin_prologue,
3624 debug_nothing_int_charstar, /* end_prologue */
3625 dwarf2out_end_epilogue,
3626 dwarf2out_begin_function,
3627 debug_nothing_int, /* end_function */
3628 dwarf2out_decl, /* function_decl */
3629 dwarf2out_global_decl,
3630 dwarf2out_type_decl, /* type_decl */
3631 dwarf2out_imported_module_or_decl,
3632 debug_nothing_tree, /* deferred_inline_function */
3633 /* The DWARF 2 backend tries to reduce debugging bloat by not
3634 emitting the abstract description of inline functions until
3635 something tries to reference them. */
3636 dwarf2out_abstract_function, /* outlining_inline_function */
3637 debug_nothing_rtx, /* label */
3638 debug_nothing_int, /* handle_pch */
3639 dwarf2out_var_location,
3640 dwarf2out_switch_text_section,
3641 1 /* start_end_main_source_file */
3643 #endif
3645 /* NOTE: In the comments in this file, many references are made to
3646 "Debugging Information Entries". This term is abbreviated as `DIE'
3647 throughout the remainder of this file. */
3649 /* An internal representation of the DWARF output is built, and then
3650 walked to generate the DWARF debugging info. The walk of the internal
3651 representation is done after the entire program has been compiled.
3652 The types below are used to describe the internal representation. */
3654 /* Various DIE's use offsets relative to the beginning of the
3655 .debug_info section to refer to each other. */
3657 typedef long int dw_offset;
3659 /* Define typedefs here to avoid circular dependencies. */
3661 typedef struct dw_attr_struct *dw_attr_ref;
3662 typedef struct dw_line_info_struct *dw_line_info_ref;
3663 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3664 typedef struct pubname_struct *pubname_ref;
3665 typedef struct dw_ranges_struct *dw_ranges_ref;
3667 /* Each entry in the line_info_table maintains the file and
3668 line number associated with the label generated for that
3669 entry. The label gives the PC value associated with
3670 the line number entry. */
3672 typedef struct dw_line_info_struct GTY(())
3674 unsigned long dw_file_num;
3675 unsigned long dw_line_num;
3677 dw_line_info_entry;
3679 /* Line information for functions in separate sections; each one gets its
3680 own sequence. */
3681 typedef struct dw_separate_line_info_struct GTY(())
3683 unsigned long dw_file_num;
3684 unsigned long dw_line_num;
3685 unsigned long function;
3687 dw_separate_line_info_entry;
3689 /* Each DIE attribute has a field specifying the attribute kind,
3690 a link to the next attribute in the chain, and an attribute value.
3691 Attributes are typically linked below the DIE they modify. */
3693 typedef struct dw_attr_struct GTY(())
3695 enum dwarf_attribute dw_attr;
3696 dw_val_node dw_attr_val;
3698 dw_attr_node;
3700 DEF_VEC_O(dw_attr_node);
3701 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3703 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3704 The children of each node form a circular list linked by
3705 die_sib. die_child points to the node *before* the "first" child node. */
3707 typedef struct die_struct GTY(())
3709 enum dwarf_tag die_tag;
3710 char *die_symbol;
3711 VEC(dw_attr_node,gc) * die_attr;
3712 dw_die_ref die_parent;
3713 dw_die_ref die_child;
3714 dw_die_ref die_sib;
3715 dw_die_ref die_definition; /* ref from a specification to its definition */
3716 dw_offset die_offset;
3717 unsigned long die_abbrev;
3718 int die_mark;
3719 /* Die is used and must not be pruned as unused. */
3720 int die_perennial_p;
3721 unsigned int decl_id;
3723 die_node;
3725 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3726 #define FOR_EACH_CHILD(die, c, expr) do { \
3727 c = die->die_child; \
3728 if (c) do { \
3729 c = c->die_sib; \
3730 expr; \
3731 } while (c != die->die_child); \
3732 } while (0)
3734 /* The pubname structure */
3736 typedef struct pubname_struct GTY(())
3738 dw_die_ref die;
3739 char *name;
3741 pubname_entry;
3743 struct dw_ranges_struct GTY(())
3745 int block_num;
3748 /* The limbo die list structure. */
3749 typedef struct limbo_die_struct GTY(())
3751 dw_die_ref die;
3752 tree created_for;
3753 struct limbo_die_struct *next;
3755 limbo_die_node;
3757 /* How to start an assembler comment. */
3758 #ifndef ASM_COMMENT_START
3759 #define ASM_COMMENT_START ";#"
3760 #endif
3762 /* Define a macro which returns nonzero for a TYPE_DECL which was
3763 implicitly generated for a tagged type.
3765 Note that unlike the gcc front end (which generates a NULL named
3766 TYPE_DECL node for each complete tagged type, each array type, and
3767 each function type node created) the g++ front end generates a
3768 _named_ TYPE_DECL node for each tagged type node created.
3769 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3770 generate a DW_TAG_typedef DIE for them. */
3772 #define TYPE_DECL_IS_STUB(decl) \
3773 (DECL_NAME (decl) == NULL_TREE \
3774 || (DECL_ARTIFICIAL (decl) \
3775 && is_tagged_type (TREE_TYPE (decl)) \
3776 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3777 /* This is necessary for stub decls that \
3778 appear in nested inline functions. */ \
3779 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3780 && (decl_ultimate_origin (decl) \
3781 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3783 /* Information concerning the compilation unit's programming
3784 language, and compiler version. */
3786 /* Fixed size portion of the DWARF compilation unit header. */
3787 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3788 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3790 /* Fixed size portion of public names info. */
3791 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3793 /* Fixed size portion of the address range info. */
3794 #define DWARF_ARANGES_HEADER_SIZE \
3795 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3796 DWARF2_ADDR_SIZE * 2) \
3797 - DWARF_INITIAL_LENGTH_SIZE)
3799 /* Size of padding portion in the address range info. It must be
3800 aligned to twice the pointer size. */
3801 #define DWARF_ARANGES_PAD_SIZE \
3802 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3803 DWARF2_ADDR_SIZE * 2) \
3804 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3806 /* Use assembler line directives if available. */
3807 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3808 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3809 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3810 #else
3811 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3812 #endif
3813 #endif
3815 /* Minimum line offset in a special line info. opcode.
3816 This value was chosen to give a reasonable range of values. */
3817 #define DWARF_LINE_BASE -10
3819 /* First special line opcode - leave room for the standard opcodes. */
3820 #define DWARF_LINE_OPCODE_BASE 10
3822 /* Range of line offsets in a special line info. opcode. */
3823 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3825 /* Flag that indicates the initial value of the is_stmt_start flag.
3826 In the present implementation, we do not mark any lines as
3827 the beginning of a source statement, because that information
3828 is not made available by the GCC front-end. */
3829 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3831 #ifdef DWARF2_DEBUGGING_INFO
3832 /* This location is used by calc_die_sizes() to keep track
3833 the offset of each DIE within the .debug_info section. */
3834 static unsigned long next_die_offset;
3835 #endif
3837 /* Record the root of the DIE's built for the current compilation unit. */
3838 static GTY(()) dw_die_ref comp_unit_die;
3840 /* A list of DIEs with a NULL parent waiting to be relocated. */
3841 static GTY(()) limbo_die_node *limbo_die_list;
3843 /* Filenames referenced by this compilation unit. */
3844 static GTY(()) varray_type file_table;
3845 static GTY(()) varray_type file_table_emitted;
3846 static GTY(()) size_t file_table_last_lookup_index;
3848 /* A hash table of references to DIE's that describe declarations.
3849 The key is a DECL_UID() which is a unique number identifying each decl. */
3850 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3852 /* Node of the variable location list. */
3853 struct var_loc_node GTY ((chain_next ("%h.next")))
3855 rtx GTY (()) var_loc_note;
3856 const char * GTY (()) label;
3857 const char * GTY (()) section_label;
3858 struct var_loc_node * GTY (()) next;
3861 /* Variable location list. */
3862 struct var_loc_list_def GTY (())
3864 struct var_loc_node * GTY (()) first;
3866 /* Do not mark the last element of the chained list because
3867 it is marked through the chain. */
3868 struct var_loc_node * GTY ((skip ("%h"))) last;
3870 /* DECL_UID of the variable decl. */
3871 unsigned int decl_id;
3873 typedef struct var_loc_list_def var_loc_list;
3876 /* Table of decl location linked lists. */
3877 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3879 /* A pointer to the base of a list of references to DIE's that
3880 are uniquely identified by their tag, presence/absence of
3881 children DIE's, and list of attribute/value pairs. */
3882 static GTY((length ("abbrev_die_table_allocated")))
3883 dw_die_ref *abbrev_die_table;
3885 /* Number of elements currently allocated for abbrev_die_table. */
3886 static GTY(()) unsigned abbrev_die_table_allocated;
3888 /* Number of elements in type_die_table currently in use. */
3889 static GTY(()) unsigned abbrev_die_table_in_use;
3891 /* Size (in elements) of increments by which we may expand the
3892 abbrev_die_table. */
3893 #define ABBREV_DIE_TABLE_INCREMENT 256
3895 /* A pointer to the base of a table that contains line information
3896 for each source code line in .text in the compilation unit. */
3897 static GTY((length ("line_info_table_allocated")))
3898 dw_line_info_ref line_info_table;
3900 /* Number of elements currently allocated for line_info_table. */
3901 static GTY(()) unsigned line_info_table_allocated;
3903 /* Number of elements in line_info_table currently in use. */
3904 static GTY(()) unsigned line_info_table_in_use;
3906 /* True if the compilation unit places functions in more than one section. */
3907 static GTY(()) bool have_multiple_function_sections = false;
3909 /* A pointer to the base of a table that contains line information
3910 for each source code line outside of .text in the compilation unit. */
3911 static GTY ((length ("separate_line_info_table_allocated")))
3912 dw_separate_line_info_ref separate_line_info_table;
3914 /* Number of elements currently allocated for separate_line_info_table. */
3915 static GTY(()) unsigned separate_line_info_table_allocated;
3917 /* Number of elements in separate_line_info_table currently in use. */
3918 static GTY(()) unsigned separate_line_info_table_in_use;
3920 /* Size (in elements) of increments by which we may expand the
3921 line_info_table. */
3922 #define LINE_INFO_TABLE_INCREMENT 1024
3924 /* A pointer to the base of a table that contains a list of publicly
3925 accessible names. */
3926 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3928 /* Number of elements currently allocated for pubname_table. */
3929 static GTY(()) unsigned pubname_table_allocated;
3931 /* Number of elements in pubname_table currently in use. */
3932 static GTY(()) unsigned pubname_table_in_use;
3934 /* Size (in elements) of increments by which we may expand the
3935 pubname_table. */
3936 #define PUBNAME_TABLE_INCREMENT 64
3938 /* Array of dies for which we should generate .debug_arange info. */
3939 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3941 /* Number of elements currently allocated for arange_table. */
3942 static GTY(()) unsigned arange_table_allocated;
3944 /* Number of elements in arange_table currently in use. */
3945 static GTY(()) unsigned arange_table_in_use;
3947 /* Size (in elements) of increments by which we may expand the
3948 arange_table. */
3949 #define ARANGE_TABLE_INCREMENT 64
3951 /* Array of dies for which we should generate .debug_ranges info. */
3952 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3954 /* Number of elements currently allocated for ranges_table. */
3955 static GTY(()) unsigned ranges_table_allocated;
3957 /* Number of elements in ranges_table currently in use. */
3958 static GTY(()) unsigned ranges_table_in_use;
3960 /* Size (in elements) of increments by which we may expand the
3961 ranges_table. */
3962 #define RANGES_TABLE_INCREMENT 64
3964 /* Whether we have location lists that need outputting */
3965 static GTY(()) bool have_location_lists;
3967 /* Unique label counter. */
3968 static GTY(()) unsigned int loclabel_num;
3970 #ifdef DWARF2_DEBUGGING_INFO
3971 /* Record whether the function being analyzed contains inlined functions. */
3972 static int current_function_has_inlines;
3973 #endif
3974 #if 0 && defined (MIPS_DEBUGGING_INFO)
3975 static int comp_unit_has_inlines;
3976 #endif
3978 /* Number of file tables emitted in maybe_emit_file(). */
3979 static GTY(()) int emitcount = 0;
3981 /* Number of internal labels generated by gen_internal_sym(). */
3982 static GTY(()) int label_num;
3984 #ifdef DWARF2_DEBUGGING_INFO
3986 /* Offset from the "steady-state frame pointer" to the frame base,
3987 within the current function. */
3988 static HOST_WIDE_INT frame_pointer_fb_offset;
3990 /* Forward declarations for functions defined in this file. */
3992 static int is_pseudo_reg (rtx);
3993 static tree type_main_variant (tree);
3994 static int is_tagged_type (tree);
3995 static const char *dwarf_tag_name (unsigned);
3996 static const char *dwarf_attr_name (unsigned);
3997 static const char *dwarf_form_name (unsigned);
3998 static tree decl_ultimate_origin (tree);
3999 static tree block_ultimate_origin (tree);
4000 static tree decl_class_context (tree);
4001 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4002 static inline enum dw_val_class AT_class (dw_attr_ref);
4003 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4004 static inline unsigned AT_flag (dw_attr_ref);
4005 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4006 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4007 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4008 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4009 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4010 unsigned long);
4011 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4012 unsigned int, unsigned char *);
4013 static hashval_t debug_str_do_hash (const void *);
4014 static int debug_str_eq (const void *, const void *);
4015 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4016 static inline const char *AT_string (dw_attr_ref);
4017 static int AT_string_form (dw_attr_ref);
4018 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4019 static void add_AT_specification (dw_die_ref, dw_die_ref);
4020 static inline dw_die_ref AT_ref (dw_attr_ref);
4021 static inline int AT_ref_external (dw_attr_ref);
4022 static inline void set_AT_ref_external (dw_attr_ref, int);
4023 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4024 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4025 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4026 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4027 dw_loc_list_ref);
4028 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4029 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4030 static inline rtx AT_addr (dw_attr_ref);
4031 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4032 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4033 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4034 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4035 unsigned HOST_WIDE_INT);
4036 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4037 unsigned long);
4038 static inline const char *AT_lbl (dw_attr_ref);
4039 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4040 static const char *get_AT_low_pc (dw_die_ref);
4041 static const char *get_AT_hi_pc (dw_die_ref);
4042 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4043 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4044 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4045 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4046 static bool is_c_family (void);
4047 static bool is_cxx (void);
4048 static bool is_java (void);
4049 static bool is_fortran (void);
4050 static bool is_ada (void);
4051 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4052 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4053 static void add_child_die (dw_die_ref, dw_die_ref);
4054 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4055 static dw_die_ref lookup_type_die (tree);
4056 static void equate_type_number_to_die (tree, dw_die_ref);
4057 static hashval_t decl_die_table_hash (const void *);
4058 static int decl_die_table_eq (const void *, const void *);
4059 static dw_die_ref lookup_decl_die (tree);
4060 static hashval_t decl_loc_table_hash (const void *);
4061 static int decl_loc_table_eq (const void *, const void *);
4062 static var_loc_list *lookup_decl_loc (tree);
4063 static void equate_decl_number_to_die (tree, dw_die_ref);
4064 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4065 static void print_spaces (FILE *);
4066 static void print_die (dw_die_ref, FILE *);
4067 static void print_dwarf_line_table (FILE *);
4068 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4069 static dw_die_ref pop_compile_unit (dw_die_ref);
4070 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4071 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4072 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4073 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4074 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4075 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4076 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4077 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4078 static void compute_section_prefix (dw_die_ref);
4079 static int is_type_die (dw_die_ref);
4080 static int is_comdat_die (dw_die_ref);
4081 static int is_symbol_die (dw_die_ref);
4082 static void assign_symbol_names (dw_die_ref);
4083 static void break_out_includes (dw_die_ref);
4084 static hashval_t htab_cu_hash (const void *);
4085 static int htab_cu_eq (const void *, const void *);
4086 static void htab_cu_del (void *);
4087 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4088 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4089 static void add_sibling_attributes (dw_die_ref);
4090 static void build_abbrev_table (dw_die_ref);
4091 static void output_location_lists (dw_die_ref);
4092 static int constant_size (long unsigned);
4093 static unsigned long size_of_die (dw_die_ref);
4094 static void calc_die_sizes (dw_die_ref);
4095 static void mark_dies (dw_die_ref);
4096 static void unmark_dies (dw_die_ref);
4097 static void unmark_all_dies (dw_die_ref);
4098 static unsigned long size_of_pubnames (void);
4099 static unsigned long size_of_aranges (void);
4100 static enum dwarf_form value_format (dw_attr_ref);
4101 static void output_value_format (dw_attr_ref);
4102 static void output_abbrev_section (void);
4103 static void output_die_symbol (dw_die_ref);
4104 static void output_die (dw_die_ref);
4105 static void output_compilation_unit_header (void);
4106 static void output_comp_unit (dw_die_ref, int);
4107 static const char *dwarf2_name (tree, int);
4108 static void add_pubname (tree, dw_die_ref);
4109 static void output_pubnames (void);
4110 static void add_arange (tree, dw_die_ref);
4111 static void output_aranges (void);
4112 static unsigned int add_ranges (tree);
4113 static void output_ranges (void);
4114 static void output_line_info (void);
4115 static void output_file_names (void);
4116 static dw_die_ref base_type_die (tree);
4117 static tree root_type (tree);
4118 static int is_base_type (tree);
4119 static bool is_subrange_type (tree);
4120 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4121 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4122 static int type_is_enum (tree);
4123 static unsigned int dbx_reg_number (rtx);
4124 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4125 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4126 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4127 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4128 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4129 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4130 static int is_based_loc (rtx);
4131 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4132 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4133 static dw_loc_descr_ref loc_descriptor (rtx);
4134 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4135 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4136 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4137 static tree field_type (tree);
4138 static unsigned int simple_type_align_in_bits (tree);
4139 static unsigned int simple_decl_align_in_bits (tree);
4140 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4141 static HOST_WIDE_INT field_byte_offset (tree);
4142 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4143 dw_loc_descr_ref);
4144 static void add_data_member_location_attribute (dw_die_ref, tree);
4145 static void add_const_value_attribute (dw_die_ref, rtx);
4146 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4147 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4148 static void insert_float (rtx, unsigned char *);
4149 static rtx rtl_for_decl_location (tree);
4150 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4151 enum dwarf_attribute);
4152 static void tree_add_const_value_attribute (dw_die_ref, tree);
4153 static void add_name_attribute (dw_die_ref, const char *);
4154 static void add_comp_dir_attribute (dw_die_ref);
4155 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4156 static void add_subscript_info (dw_die_ref, tree);
4157 static void add_byte_size_attribute (dw_die_ref, tree);
4158 static void add_bit_offset_attribute (dw_die_ref, tree);
4159 static void add_bit_size_attribute (dw_die_ref, tree);
4160 static void add_prototyped_attribute (dw_die_ref, tree);
4161 static void add_abstract_origin_attribute (dw_die_ref, tree);
4162 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4163 static void add_src_coords_attributes (dw_die_ref, tree);
4164 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4165 static void push_decl_scope (tree);
4166 static void pop_decl_scope (void);
4167 static dw_die_ref scope_die_for (tree, dw_die_ref);
4168 static inline int local_scope_p (dw_die_ref);
4169 static inline int class_or_namespace_scope_p (dw_die_ref);
4170 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4171 static void add_calling_convention_attribute (dw_die_ref, tree);
4172 static const char *type_tag (tree);
4173 static tree member_declared_type (tree);
4174 #if 0
4175 static const char *decl_start_label (tree);
4176 #endif
4177 static void gen_array_type_die (tree, dw_die_ref);
4178 #if 0
4179 static void gen_entry_point_die (tree, dw_die_ref);
4180 #endif
4181 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4182 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4183 static void gen_inlined_union_type_die (tree, dw_die_ref);
4184 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4185 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4186 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4187 static void gen_formal_types_die (tree, dw_die_ref);
4188 static void gen_subprogram_die (tree, dw_die_ref);
4189 static void gen_variable_die (tree, dw_die_ref);
4190 static void gen_label_die (tree, dw_die_ref);
4191 static void gen_lexical_block_die (tree, dw_die_ref, int);
4192 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4193 static void gen_field_die (tree, dw_die_ref);
4194 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4195 static dw_die_ref gen_compile_unit_die (const char *);
4196 static void gen_inheritance_die (tree, tree, dw_die_ref);
4197 static void gen_member_die (tree, dw_die_ref);
4198 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4199 static void gen_subroutine_type_die (tree, dw_die_ref);
4200 static void gen_typedef_die (tree, dw_die_ref);
4201 static void gen_type_die (tree, dw_die_ref);
4202 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4203 static void gen_block_die (tree, dw_die_ref, int);
4204 static void decls_for_scope (tree, dw_die_ref, int);
4205 static int is_redundant_typedef (tree);
4206 static void gen_namespace_die (tree);
4207 static void gen_decl_die (tree, dw_die_ref);
4208 static dw_die_ref force_decl_die (tree);
4209 static dw_die_ref force_type_die (tree);
4210 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4211 static void declare_in_namespace (tree, dw_die_ref);
4212 static unsigned lookup_filename (const char *);
4213 static void init_file_table (void);
4214 static void retry_incomplete_types (void);
4215 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4216 static void splice_child_die (dw_die_ref, dw_die_ref);
4217 static int file_info_cmp (const void *, const void *);
4218 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4219 const char *, const char *, unsigned);
4220 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4221 const char *, const char *,
4222 const char *);
4223 static void output_loc_list (dw_loc_list_ref);
4224 static char *gen_internal_sym (const char *);
4226 static void prune_unmark_dies (dw_die_ref);
4227 static void prune_unused_types_mark (dw_die_ref, int);
4228 static void prune_unused_types_walk (dw_die_ref);
4229 static void prune_unused_types_walk_attribs (dw_die_ref);
4230 static void prune_unused_types_prune (dw_die_ref);
4231 static void prune_unused_types (void);
4232 static int maybe_emit_file (int);
4234 /* Section names used to hold DWARF debugging information. */
4235 #ifndef DEBUG_INFO_SECTION
4236 #define DEBUG_INFO_SECTION ".debug_info"
4237 #endif
4238 #ifndef DEBUG_ABBREV_SECTION
4239 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4240 #endif
4241 #ifndef DEBUG_ARANGES_SECTION
4242 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4243 #endif
4244 #ifndef DEBUG_MACINFO_SECTION
4245 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4246 #endif
4247 #ifndef DEBUG_LINE_SECTION
4248 #define DEBUG_LINE_SECTION ".debug_line"
4249 #endif
4250 #ifndef DEBUG_LOC_SECTION
4251 #define DEBUG_LOC_SECTION ".debug_loc"
4252 #endif
4253 #ifndef DEBUG_PUBNAMES_SECTION
4254 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4255 #endif
4256 #ifndef DEBUG_STR_SECTION
4257 #define DEBUG_STR_SECTION ".debug_str"
4258 #endif
4259 #ifndef DEBUG_RANGES_SECTION
4260 #define DEBUG_RANGES_SECTION ".debug_ranges"
4261 #endif
4263 /* Standard ELF section names for compiled code and data. */
4264 #ifndef TEXT_SECTION_NAME
4265 #define TEXT_SECTION_NAME ".text"
4266 #endif
4268 /* Section flags for .debug_str section. */
4269 #define DEBUG_STR_SECTION_FLAGS \
4270 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4271 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4272 : SECTION_DEBUG)
4274 /* Labels we insert at beginning sections we can reference instead of
4275 the section names themselves. */
4277 #ifndef TEXT_SECTION_LABEL
4278 #define TEXT_SECTION_LABEL "Ltext"
4279 #endif
4280 #ifndef COLD_TEXT_SECTION_LABEL
4281 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4282 #endif
4283 #ifndef DEBUG_LINE_SECTION_LABEL
4284 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4285 #endif
4286 #ifndef DEBUG_INFO_SECTION_LABEL
4287 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4288 #endif
4289 #ifndef DEBUG_ABBREV_SECTION_LABEL
4290 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4291 #endif
4292 #ifndef DEBUG_LOC_SECTION_LABEL
4293 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4294 #endif
4295 #ifndef DEBUG_RANGES_SECTION_LABEL
4296 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4297 #endif
4298 #ifndef DEBUG_MACINFO_SECTION_LABEL
4299 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4300 #endif
4302 /* Definitions of defaults for formats and names of various special
4303 (artificial) labels which may be generated within this file (when the -g
4304 options is used and DWARF2_DEBUGGING_INFO is in effect.
4305 If necessary, these may be overridden from within the tm.h file, but
4306 typically, overriding these defaults is unnecessary. */
4308 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4309 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4310 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4311 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4312 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4313 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4314 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4315 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4316 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4317 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4319 #ifndef TEXT_END_LABEL
4320 #define TEXT_END_LABEL "Letext"
4321 #endif
4322 #ifndef COLD_END_LABEL
4323 #define COLD_END_LABEL "Letext_cold"
4324 #endif
4325 #ifndef BLOCK_BEGIN_LABEL
4326 #define BLOCK_BEGIN_LABEL "LBB"
4327 #endif
4328 #ifndef BLOCK_END_LABEL
4329 #define BLOCK_END_LABEL "LBE"
4330 #endif
4331 #ifndef LINE_CODE_LABEL
4332 #define LINE_CODE_LABEL "LM"
4333 #endif
4334 #ifndef SEPARATE_LINE_CODE_LABEL
4335 #define SEPARATE_LINE_CODE_LABEL "LSM"
4336 #endif
4338 /* We allow a language front-end to designate a function that is to be
4339 called to "demangle" any name before it is put into a DIE. */
4341 static const char *(*demangle_name_func) (const char *);
4343 void
4344 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4346 demangle_name_func = func;
4349 /* Test if rtl node points to a pseudo register. */
4351 static inline int
4352 is_pseudo_reg (rtx rtl)
4354 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4355 || (GET_CODE (rtl) == SUBREG
4356 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4359 /* Return a reference to a type, with its const and volatile qualifiers
4360 removed. */
4362 static inline tree
4363 type_main_variant (tree type)
4365 type = TYPE_MAIN_VARIANT (type);
4367 /* ??? There really should be only one main variant among any group of
4368 variants of a given type (and all of the MAIN_VARIANT values for all
4369 members of the group should point to that one type) but sometimes the C
4370 front-end messes this up for array types, so we work around that bug
4371 here. */
4372 if (TREE_CODE (type) == ARRAY_TYPE)
4373 while (type != TYPE_MAIN_VARIANT (type))
4374 type = TYPE_MAIN_VARIANT (type);
4376 return type;
4379 /* Return nonzero if the given type node represents a tagged type. */
4381 static inline int
4382 is_tagged_type (tree type)
4384 enum tree_code code = TREE_CODE (type);
4386 return (code == RECORD_TYPE || code == UNION_TYPE
4387 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4390 /* Convert a DIE tag into its string name. */
4392 static const char *
4393 dwarf_tag_name (unsigned int tag)
4395 switch (tag)
4397 case DW_TAG_padding:
4398 return "DW_TAG_padding";
4399 case DW_TAG_array_type:
4400 return "DW_TAG_array_type";
4401 case DW_TAG_class_type:
4402 return "DW_TAG_class_type";
4403 case DW_TAG_entry_point:
4404 return "DW_TAG_entry_point";
4405 case DW_TAG_enumeration_type:
4406 return "DW_TAG_enumeration_type";
4407 case DW_TAG_formal_parameter:
4408 return "DW_TAG_formal_parameter";
4409 case DW_TAG_imported_declaration:
4410 return "DW_TAG_imported_declaration";
4411 case DW_TAG_label:
4412 return "DW_TAG_label";
4413 case DW_TAG_lexical_block:
4414 return "DW_TAG_lexical_block";
4415 case DW_TAG_member:
4416 return "DW_TAG_member";
4417 case DW_TAG_pointer_type:
4418 return "DW_TAG_pointer_type";
4419 case DW_TAG_reference_type:
4420 return "DW_TAG_reference_type";
4421 case DW_TAG_compile_unit:
4422 return "DW_TAG_compile_unit";
4423 case DW_TAG_string_type:
4424 return "DW_TAG_string_type";
4425 case DW_TAG_structure_type:
4426 return "DW_TAG_structure_type";
4427 case DW_TAG_subroutine_type:
4428 return "DW_TAG_subroutine_type";
4429 case DW_TAG_typedef:
4430 return "DW_TAG_typedef";
4431 case DW_TAG_union_type:
4432 return "DW_TAG_union_type";
4433 case DW_TAG_unspecified_parameters:
4434 return "DW_TAG_unspecified_parameters";
4435 case DW_TAG_variant:
4436 return "DW_TAG_variant";
4437 case DW_TAG_common_block:
4438 return "DW_TAG_common_block";
4439 case DW_TAG_common_inclusion:
4440 return "DW_TAG_common_inclusion";
4441 case DW_TAG_inheritance:
4442 return "DW_TAG_inheritance";
4443 case DW_TAG_inlined_subroutine:
4444 return "DW_TAG_inlined_subroutine";
4445 case DW_TAG_module:
4446 return "DW_TAG_module";
4447 case DW_TAG_ptr_to_member_type:
4448 return "DW_TAG_ptr_to_member_type";
4449 case DW_TAG_set_type:
4450 return "DW_TAG_set_type";
4451 case DW_TAG_subrange_type:
4452 return "DW_TAG_subrange_type";
4453 case DW_TAG_with_stmt:
4454 return "DW_TAG_with_stmt";
4455 case DW_TAG_access_declaration:
4456 return "DW_TAG_access_declaration";
4457 case DW_TAG_base_type:
4458 return "DW_TAG_base_type";
4459 case DW_TAG_catch_block:
4460 return "DW_TAG_catch_block";
4461 case DW_TAG_const_type:
4462 return "DW_TAG_const_type";
4463 case DW_TAG_constant:
4464 return "DW_TAG_constant";
4465 case DW_TAG_enumerator:
4466 return "DW_TAG_enumerator";
4467 case DW_TAG_file_type:
4468 return "DW_TAG_file_type";
4469 case DW_TAG_friend:
4470 return "DW_TAG_friend";
4471 case DW_TAG_namelist:
4472 return "DW_TAG_namelist";
4473 case DW_TAG_namelist_item:
4474 return "DW_TAG_namelist_item";
4475 case DW_TAG_namespace:
4476 return "DW_TAG_namespace";
4477 case DW_TAG_packed_type:
4478 return "DW_TAG_packed_type";
4479 case DW_TAG_subprogram:
4480 return "DW_TAG_subprogram";
4481 case DW_TAG_template_type_param:
4482 return "DW_TAG_template_type_param";
4483 case DW_TAG_template_value_param:
4484 return "DW_TAG_template_value_param";
4485 case DW_TAG_thrown_type:
4486 return "DW_TAG_thrown_type";
4487 case DW_TAG_try_block:
4488 return "DW_TAG_try_block";
4489 case DW_TAG_variant_part:
4490 return "DW_TAG_variant_part";
4491 case DW_TAG_variable:
4492 return "DW_TAG_variable";
4493 case DW_TAG_volatile_type:
4494 return "DW_TAG_volatile_type";
4495 case DW_TAG_imported_module:
4496 return "DW_TAG_imported_module";
4497 case DW_TAG_MIPS_loop:
4498 return "DW_TAG_MIPS_loop";
4499 case DW_TAG_format_label:
4500 return "DW_TAG_format_label";
4501 case DW_TAG_function_template:
4502 return "DW_TAG_function_template";
4503 case DW_TAG_class_template:
4504 return "DW_TAG_class_template";
4505 case DW_TAG_GNU_BINCL:
4506 return "DW_TAG_GNU_BINCL";
4507 case DW_TAG_GNU_EINCL:
4508 return "DW_TAG_GNU_EINCL";
4509 default:
4510 return "DW_TAG_<unknown>";
4514 /* Convert a DWARF attribute code into its string name. */
4516 static const char *
4517 dwarf_attr_name (unsigned int attr)
4519 switch (attr)
4521 case DW_AT_sibling:
4522 return "DW_AT_sibling";
4523 case DW_AT_location:
4524 return "DW_AT_location";
4525 case DW_AT_name:
4526 return "DW_AT_name";
4527 case DW_AT_ordering:
4528 return "DW_AT_ordering";
4529 case DW_AT_subscr_data:
4530 return "DW_AT_subscr_data";
4531 case DW_AT_byte_size:
4532 return "DW_AT_byte_size";
4533 case DW_AT_bit_offset:
4534 return "DW_AT_bit_offset";
4535 case DW_AT_bit_size:
4536 return "DW_AT_bit_size";
4537 case DW_AT_element_list:
4538 return "DW_AT_element_list";
4539 case DW_AT_stmt_list:
4540 return "DW_AT_stmt_list";
4541 case DW_AT_low_pc:
4542 return "DW_AT_low_pc";
4543 case DW_AT_high_pc:
4544 return "DW_AT_high_pc";
4545 case DW_AT_language:
4546 return "DW_AT_language";
4547 case DW_AT_member:
4548 return "DW_AT_member";
4549 case DW_AT_discr:
4550 return "DW_AT_discr";
4551 case DW_AT_discr_value:
4552 return "DW_AT_discr_value";
4553 case DW_AT_visibility:
4554 return "DW_AT_visibility";
4555 case DW_AT_import:
4556 return "DW_AT_import";
4557 case DW_AT_string_length:
4558 return "DW_AT_string_length";
4559 case DW_AT_common_reference:
4560 return "DW_AT_common_reference";
4561 case DW_AT_comp_dir:
4562 return "DW_AT_comp_dir";
4563 case DW_AT_const_value:
4564 return "DW_AT_const_value";
4565 case DW_AT_containing_type:
4566 return "DW_AT_containing_type";
4567 case DW_AT_default_value:
4568 return "DW_AT_default_value";
4569 case DW_AT_inline:
4570 return "DW_AT_inline";
4571 case DW_AT_is_optional:
4572 return "DW_AT_is_optional";
4573 case DW_AT_lower_bound:
4574 return "DW_AT_lower_bound";
4575 case DW_AT_producer:
4576 return "DW_AT_producer";
4577 case DW_AT_prototyped:
4578 return "DW_AT_prototyped";
4579 case DW_AT_return_addr:
4580 return "DW_AT_return_addr";
4581 case DW_AT_start_scope:
4582 return "DW_AT_start_scope";
4583 case DW_AT_stride_size:
4584 return "DW_AT_stride_size";
4585 case DW_AT_upper_bound:
4586 return "DW_AT_upper_bound";
4587 case DW_AT_abstract_origin:
4588 return "DW_AT_abstract_origin";
4589 case DW_AT_accessibility:
4590 return "DW_AT_accessibility";
4591 case DW_AT_address_class:
4592 return "DW_AT_address_class";
4593 case DW_AT_artificial:
4594 return "DW_AT_artificial";
4595 case DW_AT_base_types:
4596 return "DW_AT_base_types";
4597 case DW_AT_calling_convention:
4598 return "DW_AT_calling_convention";
4599 case DW_AT_count:
4600 return "DW_AT_count";
4601 case DW_AT_data_member_location:
4602 return "DW_AT_data_member_location";
4603 case DW_AT_decl_column:
4604 return "DW_AT_decl_column";
4605 case DW_AT_decl_file:
4606 return "DW_AT_decl_file";
4607 case DW_AT_decl_line:
4608 return "DW_AT_decl_line";
4609 case DW_AT_declaration:
4610 return "DW_AT_declaration";
4611 case DW_AT_discr_list:
4612 return "DW_AT_discr_list";
4613 case DW_AT_encoding:
4614 return "DW_AT_encoding";
4615 case DW_AT_external:
4616 return "DW_AT_external";
4617 case DW_AT_frame_base:
4618 return "DW_AT_frame_base";
4619 case DW_AT_friend:
4620 return "DW_AT_friend";
4621 case DW_AT_identifier_case:
4622 return "DW_AT_identifier_case";
4623 case DW_AT_macro_info:
4624 return "DW_AT_macro_info";
4625 case DW_AT_namelist_items:
4626 return "DW_AT_namelist_items";
4627 case DW_AT_priority:
4628 return "DW_AT_priority";
4629 case DW_AT_segment:
4630 return "DW_AT_segment";
4631 case DW_AT_specification:
4632 return "DW_AT_specification";
4633 case DW_AT_static_link:
4634 return "DW_AT_static_link";
4635 case DW_AT_type:
4636 return "DW_AT_type";
4637 case DW_AT_use_location:
4638 return "DW_AT_use_location";
4639 case DW_AT_variable_parameter:
4640 return "DW_AT_variable_parameter";
4641 case DW_AT_virtuality:
4642 return "DW_AT_virtuality";
4643 case DW_AT_vtable_elem_location:
4644 return "DW_AT_vtable_elem_location";
4646 case DW_AT_allocated:
4647 return "DW_AT_allocated";
4648 case DW_AT_associated:
4649 return "DW_AT_associated";
4650 case DW_AT_data_location:
4651 return "DW_AT_data_location";
4652 case DW_AT_stride:
4653 return "DW_AT_stride";
4654 case DW_AT_entry_pc:
4655 return "DW_AT_entry_pc";
4656 case DW_AT_use_UTF8:
4657 return "DW_AT_use_UTF8";
4658 case DW_AT_extension:
4659 return "DW_AT_extension";
4660 case DW_AT_ranges:
4661 return "DW_AT_ranges";
4662 case DW_AT_trampoline:
4663 return "DW_AT_trampoline";
4664 case DW_AT_call_column:
4665 return "DW_AT_call_column";
4666 case DW_AT_call_file:
4667 return "DW_AT_call_file";
4668 case DW_AT_call_line:
4669 return "DW_AT_call_line";
4671 case DW_AT_MIPS_fde:
4672 return "DW_AT_MIPS_fde";
4673 case DW_AT_MIPS_loop_begin:
4674 return "DW_AT_MIPS_loop_begin";
4675 case DW_AT_MIPS_tail_loop_begin:
4676 return "DW_AT_MIPS_tail_loop_begin";
4677 case DW_AT_MIPS_epilog_begin:
4678 return "DW_AT_MIPS_epilog_begin";
4679 case DW_AT_MIPS_loop_unroll_factor:
4680 return "DW_AT_MIPS_loop_unroll_factor";
4681 case DW_AT_MIPS_software_pipeline_depth:
4682 return "DW_AT_MIPS_software_pipeline_depth";
4683 case DW_AT_MIPS_linkage_name:
4684 return "DW_AT_MIPS_linkage_name";
4685 case DW_AT_MIPS_stride:
4686 return "DW_AT_MIPS_stride";
4687 case DW_AT_MIPS_abstract_name:
4688 return "DW_AT_MIPS_abstract_name";
4689 case DW_AT_MIPS_clone_origin:
4690 return "DW_AT_MIPS_clone_origin";
4691 case DW_AT_MIPS_has_inlines:
4692 return "DW_AT_MIPS_has_inlines";
4694 case DW_AT_sf_names:
4695 return "DW_AT_sf_names";
4696 case DW_AT_src_info:
4697 return "DW_AT_src_info";
4698 case DW_AT_mac_info:
4699 return "DW_AT_mac_info";
4700 case DW_AT_src_coords:
4701 return "DW_AT_src_coords";
4702 case DW_AT_body_begin:
4703 return "DW_AT_body_begin";
4704 case DW_AT_body_end:
4705 return "DW_AT_body_end";
4706 case DW_AT_GNU_vector:
4707 return "DW_AT_GNU_vector";
4709 case DW_AT_VMS_rtnbeg_pd_address:
4710 return "DW_AT_VMS_rtnbeg_pd_address";
4712 default:
4713 return "DW_AT_<unknown>";
4717 /* Convert a DWARF value form code into its string name. */
4719 static const char *
4720 dwarf_form_name (unsigned int form)
4722 switch (form)
4724 case DW_FORM_addr:
4725 return "DW_FORM_addr";
4726 case DW_FORM_block2:
4727 return "DW_FORM_block2";
4728 case DW_FORM_block4:
4729 return "DW_FORM_block4";
4730 case DW_FORM_data2:
4731 return "DW_FORM_data2";
4732 case DW_FORM_data4:
4733 return "DW_FORM_data4";
4734 case DW_FORM_data8:
4735 return "DW_FORM_data8";
4736 case DW_FORM_string:
4737 return "DW_FORM_string";
4738 case DW_FORM_block:
4739 return "DW_FORM_block";
4740 case DW_FORM_block1:
4741 return "DW_FORM_block1";
4742 case DW_FORM_data1:
4743 return "DW_FORM_data1";
4744 case DW_FORM_flag:
4745 return "DW_FORM_flag";
4746 case DW_FORM_sdata:
4747 return "DW_FORM_sdata";
4748 case DW_FORM_strp:
4749 return "DW_FORM_strp";
4750 case DW_FORM_udata:
4751 return "DW_FORM_udata";
4752 case DW_FORM_ref_addr:
4753 return "DW_FORM_ref_addr";
4754 case DW_FORM_ref1:
4755 return "DW_FORM_ref1";
4756 case DW_FORM_ref2:
4757 return "DW_FORM_ref2";
4758 case DW_FORM_ref4:
4759 return "DW_FORM_ref4";
4760 case DW_FORM_ref8:
4761 return "DW_FORM_ref8";
4762 case DW_FORM_ref_udata:
4763 return "DW_FORM_ref_udata";
4764 case DW_FORM_indirect:
4765 return "DW_FORM_indirect";
4766 default:
4767 return "DW_FORM_<unknown>";
4771 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4772 instance of an inlined instance of a decl which is local to an inline
4773 function, so we have to trace all of the way back through the origin chain
4774 to find out what sort of node actually served as the original seed for the
4775 given block. */
4777 static tree
4778 decl_ultimate_origin (tree decl)
4780 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4781 return NULL_TREE;
4783 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4784 nodes in the function to point to themselves; ignore that if
4785 we're trying to output the abstract instance of this function. */
4786 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4787 return NULL_TREE;
4789 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4790 most distant ancestor, this should never happen. */
4791 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4793 return DECL_ABSTRACT_ORIGIN (decl);
4796 /* Determine the "ultimate origin" of a block. The block may be an inlined
4797 instance of an inlined instance of a block which is local to an inline
4798 function, so we have to trace all of the way back through the origin chain
4799 to find out what sort of node actually served as the original seed for the
4800 given block. */
4802 static tree
4803 block_ultimate_origin (tree block)
4805 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4807 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4808 nodes in the function to point to themselves; ignore that if
4809 we're trying to output the abstract instance of this function. */
4810 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4811 return NULL_TREE;
4813 if (immediate_origin == NULL_TREE)
4814 return NULL_TREE;
4815 else
4817 tree ret_val;
4818 tree lookahead = immediate_origin;
4822 ret_val = lookahead;
4823 lookahead = (TREE_CODE (ret_val) == BLOCK
4824 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4826 while (lookahead != NULL && lookahead != ret_val);
4828 /* The block's abstract origin chain may not be the *ultimate* origin of
4829 the block. It could lead to a DECL that has an abstract origin set.
4830 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4831 will give us if it has one). Note that DECL's abstract origins are
4832 supposed to be the most distant ancestor (or so decl_ultimate_origin
4833 claims), so we don't need to loop following the DECL origins. */
4834 if (DECL_P (ret_val))
4835 return DECL_ORIGIN (ret_val);
4837 return ret_val;
4841 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4842 of a virtual function may refer to a base class, so we check the 'this'
4843 parameter. */
4845 static tree
4846 decl_class_context (tree decl)
4848 tree context = NULL_TREE;
4850 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4851 context = DECL_CONTEXT (decl);
4852 else
4853 context = TYPE_MAIN_VARIANT
4854 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4856 if (context && !TYPE_P (context))
4857 context = NULL_TREE;
4859 return context;
4862 /* Add an attribute/value pair to a DIE. */
4864 static inline void
4865 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4867 /* Maybe this should be an assert? */
4868 if (die == NULL)
4869 return;
4871 if (die->die_attr == NULL)
4872 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4873 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4876 static inline enum dw_val_class
4877 AT_class (dw_attr_ref a)
4879 return a->dw_attr_val.val_class;
4882 /* Add a flag value attribute to a DIE. */
4884 static inline void
4885 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4887 dw_attr_node attr;
4889 attr.dw_attr = attr_kind;
4890 attr.dw_attr_val.val_class = dw_val_class_flag;
4891 attr.dw_attr_val.v.val_flag = flag;
4892 add_dwarf_attr (die, &attr);
4895 static inline unsigned
4896 AT_flag (dw_attr_ref a)
4898 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4899 return a->dw_attr_val.v.val_flag;
4902 /* Add a signed integer attribute value to a DIE. */
4904 static inline void
4905 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4907 dw_attr_node attr;
4909 attr.dw_attr = attr_kind;
4910 attr.dw_attr_val.val_class = dw_val_class_const;
4911 attr.dw_attr_val.v.val_int = int_val;
4912 add_dwarf_attr (die, &attr);
4915 static inline HOST_WIDE_INT
4916 AT_int (dw_attr_ref a)
4918 gcc_assert (a && AT_class (a) == dw_val_class_const);
4919 return a->dw_attr_val.v.val_int;
4922 /* Add an unsigned integer attribute value to a DIE. */
4924 static inline void
4925 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4926 unsigned HOST_WIDE_INT unsigned_val)
4928 dw_attr_node attr;
4930 attr.dw_attr = attr_kind;
4931 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4932 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4933 add_dwarf_attr (die, &attr);
4936 static inline unsigned HOST_WIDE_INT
4937 AT_unsigned (dw_attr_ref a)
4939 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4940 return a->dw_attr_val.v.val_unsigned;
4943 /* Add an unsigned double integer attribute value to a DIE. */
4945 static inline void
4946 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4947 long unsigned int val_hi, long unsigned int val_low)
4949 dw_attr_node attr;
4951 attr.dw_attr = attr_kind;
4952 attr.dw_attr_val.val_class = dw_val_class_long_long;
4953 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4954 attr.dw_attr_val.v.val_long_long.low = val_low;
4955 add_dwarf_attr (die, &attr);
4958 /* Add a floating point attribute value to a DIE and return it. */
4960 static inline void
4961 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4962 unsigned int length, unsigned int elt_size, unsigned char *array)
4964 dw_attr_node attr;
4966 attr.dw_attr = attr_kind;
4967 attr.dw_attr_val.val_class = dw_val_class_vec;
4968 attr.dw_attr_val.v.val_vec.length = length;
4969 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4970 attr.dw_attr_val.v.val_vec.array = array;
4971 add_dwarf_attr (die, &attr);
4974 /* Hash and equality functions for debug_str_hash. */
4976 static hashval_t
4977 debug_str_do_hash (const void *x)
4979 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4982 static int
4983 debug_str_eq (const void *x1, const void *x2)
4985 return strcmp ((((const struct indirect_string_node *)x1)->str),
4986 (const char *)x2) == 0;
4989 /* Add a string attribute value to a DIE. */
4991 static inline void
4992 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4994 dw_attr_node attr;
4995 struct indirect_string_node *node;
4996 void **slot;
4998 if (! debug_str_hash)
4999 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5000 debug_str_eq, NULL);
5002 slot = htab_find_slot_with_hash (debug_str_hash, str,
5003 htab_hash_string (str), INSERT);
5004 if (*slot == NULL)
5005 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5006 node = (struct indirect_string_node *) *slot;
5007 node->str = ggc_strdup (str);
5008 node->refcount++;
5010 attr.dw_attr = attr_kind;
5011 attr.dw_attr_val.val_class = dw_val_class_str;
5012 attr.dw_attr_val.v.val_str = node;
5013 add_dwarf_attr (die, &attr);
5016 static inline const char *
5017 AT_string (dw_attr_ref a)
5019 gcc_assert (a && AT_class (a) == dw_val_class_str);
5020 return a->dw_attr_val.v.val_str->str;
5023 /* Find out whether a string should be output inline in DIE
5024 or out-of-line in .debug_str section. */
5026 static int
5027 AT_string_form (dw_attr_ref a)
5029 struct indirect_string_node *node;
5030 unsigned int len;
5031 char label[32];
5033 gcc_assert (a && AT_class (a) == dw_val_class_str);
5035 node = a->dw_attr_val.v.val_str;
5036 if (node->form)
5037 return node->form;
5039 len = strlen (node->str) + 1;
5041 /* If the string is shorter or equal to the size of the reference, it is
5042 always better to put it inline. */
5043 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5044 return node->form = DW_FORM_string;
5046 /* If we cannot expect the linker to merge strings in .debug_str
5047 section, only put it into .debug_str if it is worth even in this
5048 single module. */
5049 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5050 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5051 return node->form = DW_FORM_string;
5053 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5054 ++dw2_string_counter;
5055 node->label = xstrdup (label);
5057 return node->form = DW_FORM_strp;
5060 /* Add a DIE reference attribute value to a DIE. */
5062 static inline void
5063 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5065 dw_attr_node attr;
5067 attr.dw_attr = attr_kind;
5068 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5069 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5070 attr.dw_attr_val.v.val_die_ref.external = 0;
5071 add_dwarf_attr (die, &attr);
5074 /* Add an AT_specification attribute to a DIE, and also make the back
5075 pointer from the specification to the definition. */
5077 static inline void
5078 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5080 add_AT_die_ref (die, DW_AT_specification, targ_die);
5081 gcc_assert (!targ_die->die_definition);
5082 targ_die->die_definition = die;
5085 static inline dw_die_ref
5086 AT_ref (dw_attr_ref a)
5088 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5089 return a->dw_attr_val.v.val_die_ref.die;
5092 static inline int
5093 AT_ref_external (dw_attr_ref a)
5095 if (a && AT_class (a) == dw_val_class_die_ref)
5096 return a->dw_attr_val.v.val_die_ref.external;
5098 return 0;
5101 static inline void
5102 set_AT_ref_external (dw_attr_ref a, int i)
5104 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5105 a->dw_attr_val.v.val_die_ref.external = i;
5108 /* Add an FDE reference attribute value to a DIE. */
5110 static inline void
5111 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5113 dw_attr_node attr;
5115 attr.dw_attr = attr_kind;
5116 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5117 attr.dw_attr_val.v.val_fde_index = targ_fde;
5118 add_dwarf_attr (die, &attr);
5121 /* Add a location description attribute value to a DIE. */
5123 static inline void
5124 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5126 dw_attr_node attr;
5128 attr.dw_attr = attr_kind;
5129 attr.dw_attr_val.val_class = dw_val_class_loc;
5130 attr.dw_attr_val.v.val_loc = loc;
5131 add_dwarf_attr (die, &attr);
5134 static inline dw_loc_descr_ref
5135 AT_loc (dw_attr_ref a)
5137 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5138 return a->dw_attr_val.v.val_loc;
5141 static inline void
5142 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5144 dw_attr_node attr;
5146 attr.dw_attr = attr_kind;
5147 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5148 attr.dw_attr_val.v.val_loc_list = loc_list;
5149 add_dwarf_attr (die, &attr);
5150 have_location_lists = true;
5153 static inline dw_loc_list_ref
5154 AT_loc_list (dw_attr_ref a)
5156 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5157 return a->dw_attr_val.v.val_loc_list;
5160 /* Add an address constant attribute value to a DIE. */
5162 static inline void
5163 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5165 dw_attr_node attr;
5167 attr.dw_attr = attr_kind;
5168 attr.dw_attr_val.val_class = dw_val_class_addr;
5169 attr.dw_attr_val.v.val_addr = addr;
5170 add_dwarf_attr (die, &attr);
5173 static inline rtx
5174 AT_addr (dw_attr_ref a)
5176 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5177 return a->dw_attr_val.v.val_addr;
5180 /* Add a label identifier attribute value to a DIE. */
5182 static inline void
5183 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5185 dw_attr_node attr;
5187 attr.dw_attr = attr_kind;
5188 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5189 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5190 add_dwarf_attr (die, &attr);
5193 /* Add a section offset attribute value to a DIE, an offset into the
5194 debug_line section. */
5196 static inline void
5197 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5198 const char *label)
5200 dw_attr_node attr;
5202 attr.dw_attr = attr_kind;
5203 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5204 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5205 add_dwarf_attr (die, &attr);
5208 /* Add a section offset attribute value to a DIE, an offset into the
5209 debug_macinfo section. */
5211 static inline void
5212 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5213 const char *label)
5215 dw_attr_node attr;
5217 attr.dw_attr = attr_kind;
5218 attr.dw_attr_val.val_class = dw_val_class_macptr;
5219 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5220 add_dwarf_attr (die, &attr);
5223 /* Add an offset attribute value to a DIE. */
5225 static inline void
5226 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5227 unsigned HOST_WIDE_INT offset)
5229 dw_attr_node attr;
5231 attr.dw_attr = attr_kind;
5232 attr.dw_attr_val.val_class = dw_val_class_offset;
5233 attr.dw_attr_val.v.val_offset = offset;
5234 add_dwarf_attr (die, &attr);
5237 /* Add an range_list attribute value to a DIE. */
5239 static void
5240 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5241 long unsigned int offset)
5243 dw_attr_node attr;
5245 attr.dw_attr = attr_kind;
5246 attr.dw_attr_val.val_class = dw_val_class_range_list;
5247 attr.dw_attr_val.v.val_offset = offset;
5248 add_dwarf_attr (die, &attr);
5251 static inline const char *
5252 AT_lbl (dw_attr_ref a)
5254 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5255 || AT_class (a) == dw_val_class_lineptr
5256 || AT_class (a) == dw_val_class_macptr));
5257 return a->dw_attr_val.v.val_lbl_id;
5260 /* Get the attribute of type attr_kind. */
5262 static dw_attr_ref
5263 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5265 dw_attr_ref a;
5266 unsigned ix;
5267 dw_die_ref spec = NULL;
5269 if (! die)
5270 return NULL;
5272 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5273 if (a->dw_attr == attr_kind)
5274 return a;
5275 else if (a->dw_attr == DW_AT_specification
5276 || a->dw_attr == DW_AT_abstract_origin)
5277 spec = AT_ref (a);
5279 if (spec)
5280 return get_AT (spec, attr_kind);
5282 return NULL;
5285 /* Return the "low pc" attribute value, typically associated with a subprogram
5286 DIE. Return null if the "low pc" attribute is either not present, or if it
5287 cannot be represented as an assembler label identifier. */
5289 static inline const char *
5290 get_AT_low_pc (dw_die_ref die)
5292 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5294 return a ? AT_lbl (a) : NULL;
5297 /* Return the "high pc" attribute value, typically associated with a subprogram
5298 DIE. Return null if the "high pc" attribute is either not present, or if it
5299 cannot be represented as an assembler label identifier. */
5301 static inline const char *
5302 get_AT_hi_pc (dw_die_ref die)
5304 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5306 return a ? AT_lbl (a) : NULL;
5309 /* Return the value of the string attribute designated by ATTR_KIND, or
5310 NULL if it is not present. */
5312 static inline const char *
5313 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5315 dw_attr_ref a = get_AT (die, attr_kind);
5317 return a ? AT_string (a) : NULL;
5320 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5321 if it is not present. */
5323 static inline int
5324 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5326 dw_attr_ref a = get_AT (die, attr_kind);
5328 return a ? AT_flag (a) : 0;
5331 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5332 if it is not present. */
5334 static inline unsigned
5335 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5337 dw_attr_ref a = get_AT (die, attr_kind);
5339 return a ? AT_unsigned (a) : 0;
5342 static inline dw_die_ref
5343 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5345 dw_attr_ref a = get_AT (die, attr_kind);
5347 return a ? AT_ref (a) : NULL;
5350 /* Return TRUE if the language is C or C++. */
5352 static inline bool
5353 is_c_family (void)
5355 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5357 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5358 || lang == DW_LANG_C99
5359 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5362 /* Return TRUE if the language is C++. */
5364 static inline bool
5365 is_cxx (void)
5367 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5369 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5372 /* Return TRUE if the language is Fortran. */
5374 static inline bool
5375 is_fortran (void)
5377 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5379 return (lang == DW_LANG_Fortran77
5380 || lang == DW_LANG_Fortran90
5381 || lang == DW_LANG_Fortran95);
5384 /* Return TRUE if the language is Java. */
5386 static inline bool
5387 is_java (void)
5389 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5391 return lang == DW_LANG_Java;
5394 /* Return TRUE if the language is Ada. */
5396 static inline bool
5397 is_ada (void)
5399 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5401 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5404 /* Remove the specified attribute if present. */
5406 static void
5407 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5409 dw_attr_ref a;
5410 unsigned ix;
5412 if (! die)
5413 return;
5415 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5416 if (a->dw_attr == attr_kind)
5418 if (AT_class (a) == dw_val_class_str)
5419 if (a->dw_attr_val.v.val_str->refcount)
5420 a->dw_attr_val.v.val_str->refcount--;
5422 /* VEC_ordered_remove should help reduce the number of abbrevs
5423 that are needed. */
5424 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5425 return;
5429 /* Remove CHILD from its parent. PREV must have the property that
5430 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5432 static void
5433 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5435 gcc_assert (child->die_parent == prev->die_parent);
5436 gcc_assert (prev->die_sib == child);
5437 if (prev == child)
5439 gcc_assert (child->die_parent->die_child == child);
5440 prev = NULL;
5442 else
5443 prev->die_sib = child->die_sib;
5444 if (child->die_parent->die_child == child)
5445 child->die_parent->die_child = prev;
5448 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5449 matches TAG. */
5451 static void
5452 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5454 dw_die_ref c;
5456 c = die->die_child;
5457 if (c) do {
5458 dw_die_ref prev = c;
5459 c = c->die_sib;
5460 while (c->die_tag == tag)
5462 remove_child_with_prev (c, prev);
5463 /* Might have removed every child. */
5464 if (c == c->die_sib)
5465 return;
5466 c = c->die_sib;
5468 } while (c != die->die_child);
5471 /* Add a CHILD_DIE as the last child of DIE. */
5473 static void
5474 add_child_die (dw_die_ref die, dw_die_ref child_die)
5476 /* FIXME this should probably be an assert. */
5477 if (! die || ! child_die)
5478 return;
5479 gcc_assert (die != child_die);
5481 child_die->die_parent = die;
5482 if (die->die_child)
5484 child_die->die_sib = die->die_child->die_sib;
5485 die->die_child->die_sib = child_die;
5487 else
5488 child_die->die_sib = child_die;
5489 die->die_child = child_die;
5492 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5493 is the specification, to the end of PARENT's list of children.
5494 This is done by removing and re-adding it. */
5496 static void
5497 splice_child_die (dw_die_ref parent, dw_die_ref child)
5499 dw_die_ref p;
5501 /* We want the declaration DIE from inside the class, not the
5502 specification DIE at toplevel. */
5503 if (child->die_parent != parent)
5505 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5507 if (tmp)
5508 child = tmp;
5511 gcc_assert (child->die_parent == parent
5512 || (child->die_parent
5513 == get_AT_ref (parent, DW_AT_specification)));
5515 for (p = child->die_parent->die_child; ; p = p->die_sib)
5516 if (p->die_sib == child)
5518 remove_child_with_prev (child, p);
5519 break;
5522 add_child_die (parent, child);
5525 /* Return a pointer to a newly created DIE node. */
5527 static inline dw_die_ref
5528 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5530 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5532 die->die_tag = tag_value;
5534 if (parent_die != NULL)
5535 add_child_die (parent_die, die);
5536 else
5538 limbo_die_node *limbo_node;
5540 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5541 limbo_node->die = die;
5542 limbo_node->created_for = t;
5543 limbo_node->next = limbo_die_list;
5544 limbo_die_list = limbo_node;
5547 return die;
5550 /* Return the DIE associated with the given type specifier. */
5552 static inline dw_die_ref
5553 lookup_type_die (tree type)
5555 return TYPE_SYMTAB_DIE (type);
5558 /* Equate a DIE to a given type specifier. */
5560 static inline void
5561 equate_type_number_to_die (tree type, dw_die_ref type_die)
5563 TYPE_SYMTAB_DIE (type) = type_die;
5566 /* Returns a hash value for X (which really is a die_struct). */
5568 static hashval_t
5569 decl_die_table_hash (const void *x)
5571 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5574 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5576 static int
5577 decl_die_table_eq (const void *x, const void *y)
5579 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5582 /* Return the DIE associated with a given declaration. */
5584 static inline dw_die_ref
5585 lookup_decl_die (tree decl)
5587 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5590 /* Returns a hash value for X (which really is a var_loc_list). */
5592 static hashval_t
5593 decl_loc_table_hash (const void *x)
5595 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5598 /* Return nonzero if decl_id of var_loc_list X is the same as
5599 UID of decl *Y. */
5601 static int
5602 decl_loc_table_eq (const void *x, const void *y)
5604 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5607 /* Return the var_loc list associated with a given declaration. */
5609 static inline var_loc_list *
5610 lookup_decl_loc (tree decl)
5612 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5615 /* Equate a DIE to a particular declaration. */
5617 static void
5618 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5620 unsigned int decl_id = DECL_UID (decl);
5621 void **slot;
5623 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5624 *slot = decl_die;
5625 decl_die->decl_id = decl_id;
5628 /* Add a variable location node to the linked list for DECL. */
5630 static void
5631 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5633 unsigned int decl_id = DECL_UID (decl);
5634 var_loc_list *temp;
5635 void **slot;
5637 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5638 if (*slot == NULL)
5640 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5641 temp->decl_id = decl_id;
5642 *slot = temp;
5644 else
5645 temp = *slot;
5647 if (temp->last)
5649 /* If the current location is the same as the end of the list,
5650 we have nothing to do. */
5651 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5652 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5654 /* Add LOC to the end of list and update LAST. */
5655 temp->last->next = loc;
5656 temp->last = loc;
5659 /* Do not add empty location to the beginning of the list. */
5660 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5662 temp->first = loc;
5663 temp->last = loc;
5667 /* Keep track of the number of spaces used to indent the
5668 output of the debugging routines that print the structure of
5669 the DIE internal representation. */
5670 static int print_indent;
5672 /* Indent the line the number of spaces given by print_indent. */
5674 static inline void
5675 print_spaces (FILE *outfile)
5677 fprintf (outfile, "%*s", print_indent, "");
5680 /* Print the information associated with a given DIE, and its children.
5681 This routine is a debugging aid only. */
5683 static void
5684 print_die (dw_die_ref die, FILE *outfile)
5686 dw_attr_ref a;
5687 dw_die_ref c;
5688 unsigned ix;
5690 print_spaces (outfile);
5691 fprintf (outfile, "DIE %4lu: %s\n",
5692 die->die_offset, dwarf_tag_name (die->die_tag));
5693 print_spaces (outfile);
5694 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5695 fprintf (outfile, " offset: %lu\n", die->die_offset);
5697 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5699 print_spaces (outfile);
5700 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5702 switch (AT_class (a))
5704 case dw_val_class_addr:
5705 fprintf (outfile, "address");
5706 break;
5707 case dw_val_class_offset:
5708 fprintf (outfile, "offset");
5709 break;
5710 case dw_val_class_loc:
5711 fprintf (outfile, "location descriptor");
5712 break;
5713 case dw_val_class_loc_list:
5714 fprintf (outfile, "location list -> label:%s",
5715 AT_loc_list (a)->ll_symbol);
5716 break;
5717 case dw_val_class_range_list:
5718 fprintf (outfile, "range list");
5719 break;
5720 case dw_val_class_const:
5721 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5722 break;
5723 case dw_val_class_unsigned_const:
5724 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5725 break;
5726 case dw_val_class_long_long:
5727 fprintf (outfile, "constant (%lu,%lu)",
5728 a->dw_attr_val.v.val_long_long.hi,
5729 a->dw_attr_val.v.val_long_long.low);
5730 break;
5731 case dw_val_class_vec:
5732 fprintf (outfile, "floating-point or vector constant");
5733 break;
5734 case dw_val_class_flag:
5735 fprintf (outfile, "%u", AT_flag (a));
5736 break;
5737 case dw_val_class_die_ref:
5738 if (AT_ref (a) != NULL)
5740 if (AT_ref (a)->die_symbol)
5741 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5742 else
5743 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5745 else
5746 fprintf (outfile, "die -> <null>");
5747 break;
5748 case dw_val_class_lbl_id:
5749 case dw_val_class_lineptr:
5750 case dw_val_class_macptr:
5751 fprintf (outfile, "label: %s", AT_lbl (a));
5752 break;
5753 case dw_val_class_str:
5754 if (AT_string (a) != NULL)
5755 fprintf (outfile, "\"%s\"", AT_string (a));
5756 else
5757 fprintf (outfile, "<null>");
5758 break;
5759 default:
5760 break;
5763 fprintf (outfile, "\n");
5766 if (die->die_child != NULL)
5768 print_indent += 4;
5769 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5770 print_indent -= 4;
5772 if (print_indent == 0)
5773 fprintf (outfile, "\n");
5776 /* Print the contents of the source code line number correspondence table.
5777 This routine is a debugging aid only. */
5779 static void
5780 print_dwarf_line_table (FILE *outfile)
5782 unsigned i;
5783 dw_line_info_ref line_info;
5785 fprintf (outfile, "\n\nDWARF source line information\n");
5786 for (i = 1; i < line_info_table_in_use; i++)
5788 line_info = &line_info_table[i];
5789 fprintf (outfile, "%5d: ", i);
5790 fprintf (outfile, "%-20s",
5791 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5792 fprintf (outfile, "%6ld", line_info->dw_line_num);
5793 fprintf (outfile, "\n");
5796 fprintf (outfile, "\n\n");
5799 /* Print the information collected for a given DIE. */
5801 void
5802 debug_dwarf_die (dw_die_ref die)
5804 print_die (die, stderr);
5807 /* Print all DWARF information collected for the compilation unit.
5808 This routine is a debugging aid only. */
5810 void
5811 debug_dwarf (void)
5813 print_indent = 0;
5814 print_die (comp_unit_die, stderr);
5815 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5816 print_dwarf_line_table (stderr);
5819 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5820 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5821 DIE that marks the start of the DIEs for this include file. */
5823 static dw_die_ref
5824 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5826 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5827 dw_die_ref new_unit = gen_compile_unit_die (filename);
5829 new_unit->die_sib = old_unit;
5830 return new_unit;
5833 /* Close an include-file CU and reopen the enclosing one. */
5835 static dw_die_ref
5836 pop_compile_unit (dw_die_ref old_unit)
5838 dw_die_ref new_unit = old_unit->die_sib;
5840 old_unit->die_sib = NULL;
5841 return new_unit;
5844 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5845 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5847 /* Calculate the checksum of a location expression. */
5849 static inline void
5850 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5852 CHECKSUM (loc->dw_loc_opc);
5853 CHECKSUM (loc->dw_loc_oprnd1);
5854 CHECKSUM (loc->dw_loc_oprnd2);
5857 /* Calculate the checksum of an attribute. */
5859 static void
5860 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5862 dw_loc_descr_ref loc;
5863 rtx r;
5865 CHECKSUM (at->dw_attr);
5867 /* We don't care about differences in file numbering. */
5868 if (at->dw_attr == DW_AT_decl_file
5869 /* Or that this was compiled with a different compiler snapshot; if
5870 the output is the same, that's what matters. */
5871 || at->dw_attr == DW_AT_producer)
5872 return;
5874 switch (AT_class (at))
5876 case dw_val_class_const:
5877 CHECKSUM (at->dw_attr_val.v.val_int);
5878 break;
5879 case dw_val_class_unsigned_const:
5880 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5881 break;
5882 case dw_val_class_long_long:
5883 CHECKSUM (at->dw_attr_val.v.val_long_long);
5884 break;
5885 case dw_val_class_vec:
5886 CHECKSUM (at->dw_attr_val.v.val_vec);
5887 break;
5888 case dw_val_class_flag:
5889 CHECKSUM (at->dw_attr_val.v.val_flag);
5890 break;
5891 case dw_val_class_str:
5892 CHECKSUM_STRING (AT_string (at));
5893 break;
5895 case dw_val_class_addr:
5896 r = AT_addr (at);
5897 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5898 CHECKSUM_STRING (XSTR (r, 0));
5899 break;
5901 case dw_val_class_offset:
5902 CHECKSUM (at->dw_attr_val.v.val_offset);
5903 break;
5905 case dw_val_class_loc:
5906 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5907 loc_checksum (loc, ctx);
5908 break;
5910 case dw_val_class_die_ref:
5911 die_checksum (AT_ref (at), ctx, mark);
5912 break;
5914 case dw_val_class_fde_ref:
5915 case dw_val_class_lbl_id:
5916 case dw_val_class_lineptr:
5917 case dw_val_class_macptr:
5918 break;
5920 default:
5921 break;
5925 /* Calculate the checksum of a DIE. */
5927 static void
5928 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5930 dw_die_ref c;
5931 dw_attr_ref a;
5932 unsigned ix;
5934 /* To avoid infinite recursion. */
5935 if (die->die_mark)
5937 CHECKSUM (die->die_mark);
5938 return;
5940 die->die_mark = ++(*mark);
5942 CHECKSUM (die->die_tag);
5944 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5945 attr_checksum (a, ctx, mark);
5947 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
5950 #undef CHECKSUM
5951 #undef CHECKSUM_STRING
5953 /* Do the location expressions look same? */
5954 static inline int
5955 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5957 return loc1->dw_loc_opc == loc2->dw_loc_opc
5958 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5959 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5962 /* Do the values look the same? */
5963 static int
5964 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5966 dw_loc_descr_ref loc1, loc2;
5967 rtx r1, r2;
5969 if (v1->val_class != v2->val_class)
5970 return 0;
5972 switch (v1->val_class)
5974 case dw_val_class_const:
5975 return v1->v.val_int == v2->v.val_int;
5976 case dw_val_class_unsigned_const:
5977 return v1->v.val_unsigned == v2->v.val_unsigned;
5978 case dw_val_class_long_long:
5979 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5980 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5981 case dw_val_class_vec:
5982 if (v1->v.val_vec.length != v2->v.val_vec.length
5983 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5984 return 0;
5985 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5986 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5987 return 0;
5988 return 1;
5989 case dw_val_class_flag:
5990 return v1->v.val_flag == v2->v.val_flag;
5991 case dw_val_class_str:
5992 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5994 case dw_val_class_addr:
5995 r1 = v1->v.val_addr;
5996 r2 = v2->v.val_addr;
5997 if (GET_CODE (r1) != GET_CODE (r2))
5998 return 0;
5999 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6000 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6002 case dw_val_class_offset:
6003 return v1->v.val_offset == v2->v.val_offset;
6005 case dw_val_class_loc:
6006 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6007 loc1 && loc2;
6008 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6009 if (!same_loc_p (loc1, loc2, mark))
6010 return 0;
6011 return !loc1 && !loc2;
6013 case dw_val_class_die_ref:
6014 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6016 case dw_val_class_fde_ref:
6017 case dw_val_class_lbl_id:
6018 case dw_val_class_lineptr:
6019 case dw_val_class_macptr:
6020 return 1;
6022 default:
6023 return 1;
6027 /* Do the attributes look the same? */
6029 static int
6030 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6032 if (at1->dw_attr != at2->dw_attr)
6033 return 0;
6035 /* We don't care about differences in file numbering. */
6036 if (at1->dw_attr == DW_AT_decl_file
6037 /* Or that this was compiled with a different compiler snapshot; if
6038 the output is the same, that's what matters. */
6039 || at1->dw_attr == DW_AT_producer)
6040 return 1;
6042 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6045 /* Do the dies look the same? */
6047 static int
6048 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6050 dw_die_ref c1, c2;
6051 dw_attr_ref a1;
6052 unsigned ix;
6054 /* To avoid infinite recursion. */
6055 if (die1->die_mark)
6056 return die1->die_mark == die2->die_mark;
6057 die1->die_mark = die2->die_mark = ++(*mark);
6059 if (die1->die_tag != die2->die_tag)
6060 return 0;
6062 if (VEC_length (dw_attr_node, die1->die_attr)
6063 != VEC_length (dw_attr_node, die2->die_attr))
6064 return 0;
6066 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6067 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6068 return 0;
6070 c1 = die1->die_child;
6071 c2 = die2->die_child;
6072 if (! c1)
6074 if (c2)
6075 return 0;
6077 else
6078 for (;;)
6080 if (!same_die_p (c1, c2, mark))
6081 return 0;
6082 c1 = c1->die_sib;
6083 c2 = c2->die_sib;
6084 if (c1 == die1->die_child)
6086 if (c2 == die2->die_child)
6087 break;
6088 else
6089 return 0;
6093 return 1;
6096 /* Do the dies look the same? Wrapper around same_die_p. */
6098 static int
6099 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6101 int mark = 0;
6102 int ret = same_die_p (die1, die2, &mark);
6104 unmark_all_dies (die1);
6105 unmark_all_dies (die2);
6107 return ret;
6110 /* The prefix to attach to symbols on DIEs in the current comdat debug
6111 info section. */
6112 static char *comdat_symbol_id;
6114 /* The index of the current symbol within the current comdat CU. */
6115 static unsigned int comdat_symbol_number;
6117 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6118 children, and set comdat_symbol_id accordingly. */
6120 static void
6121 compute_section_prefix (dw_die_ref unit_die)
6123 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6124 const char *base = die_name ? lbasename (die_name) : "anonymous";
6125 char *name = alloca (strlen (base) + 64);
6126 char *p;
6127 int i, mark;
6128 unsigned char checksum[16];
6129 struct md5_ctx ctx;
6131 /* Compute the checksum of the DIE, then append part of it as hex digits to
6132 the name filename of the unit. */
6134 md5_init_ctx (&ctx);
6135 mark = 0;
6136 die_checksum (unit_die, &ctx, &mark);
6137 unmark_all_dies (unit_die);
6138 md5_finish_ctx (&ctx, checksum);
6140 sprintf (name, "%s.", base);
6141 clean_symbol_name (name);
6143 p = name + strlen (name);
6144 for (i = 0; i < 4; i++)
6146 sprintf (p, "%.2x", checksum[i]);
6147 p += 2;
6150 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6151 comdat_symbol_number = 0;
6154 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6156 static int
6157 is_type_die (dw_die_ref die)
6159 switch (die->die_tag)
6161 case DW_TAG_array_type:
6162 case DW_TAG_class_type:
6163 case DW_TAG_enumeration_type:
6164 case DW_TAG_pointer_type:
6165 case DW_TAG_reference_type:
6166 case DW_TAG_string_type:
6167 case DW_TAG_structure_type:
6168 case DW_TAG_subroutine_type:
6169 case DW_TAG_union_type:
6170 case DW_TAG_ptr_to_member_type:
6171 case DW_TAG_set_type:
6172 case DW_TAG_subrange_type:
6173 case DW_TAG_base_type:
6174 case DW_TAG_const_type:
6175 case DW_TAG_file_type:
6176 case DW_TAG_packed_type:
6177 case DW_TAG_volatile_type:
6178 case DW_TAG_typedef:
6179 return 1;
6180 default:
6181 return 0;
6185 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6186 Basically, we want to choose the bits that are likely to be shared between
6187 compilations (types) and leave out the bits that are specific to individual
6188 compilations (functions). */
6190 static int
6191 is_comdat_die (dw_die_ref c)
6193 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6194 we do for stabs. The advantage is a greater likelihood of sharing between
6195 objects that don't include headers in the same order (and therefore would
6196 put the base types in a different comdat). jason 8/28/00 */
6198 if (c->die_tag == DW_TAG_base_type)
6199 return 0;
6201 if (c->die_tag == DW_TAG_pointer_type
6202 || c->die_tag == DW_TAG_reference_type
6203 || c->die_tag == DW_TAG_const_type
6204 || c->die_tag == DW_TAG_volatile_type)
6206 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6208 return t ? is_comdat_die (t) : 0;
6211 return is_type_die (c);
6214 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6215 compilation unit. */
6217 static int
6218 is_symbol_die (dw_die_ref c)
6220 return (is_type_die (c)
6221 || (get_AT (c, DW_AT_declaration)
6222 && !get_AT (c, DW_AT_specification))
6223 || c->die_tag == DW_TAG_namespace);
6226 static char *
6227 gen_internal_sym (const char *prefix)
6229 char buf[256];
6231 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6232 return xstrdup (buf);
6235 /* Assign symbols to all worthy DIEs under DIE. */
6237 static void
6238 assign_symbol_names (dw_die_ref die)
6240 dw_die_ref c;
6242 if (is_symbol_die (die))
6244 if (comdat_symbol_id)
6246 char *p = alloca (strlen (comdat_symbol_id) + 64);
6248 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6249 comdat_symbol_id, comdat_symbol_number++);
6250 die->die_symbol = xstrdup (p);
6252 else
6253 die->die_symbol = gen_internal_sym ("LDIE");
6256 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6259 struct cu_hash_table_entry
6261 dw_die_ref cu;
6262 unsigned min_comdat_num, max_comdat_num;
6263 struct cu_hash_table_entry *next;
6266 /* Routines to manipulate hash table of CUs. */
6267 static hashval_t
6268 htab_cu_hash (const void *of)
6270 const struct cu_hash_table_entry *entry = of;
6272 return htab_hash_string (entry->cu->die_symbol);
6275 static int
6276 htab_cu_eq (const void *of1, const void *of2)
6278 const struct cu_hash_table_entry *entry1 = of1;
6279 const struct die_struct *entry2 = of2;
6281 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6284 static void
6285 htab_cu_del (void *what)
6287 struct cu_hash_table_entry *next, *entry = what;
6289 while (entry)
6291 next = entry->next;
6292 free (entry);
6293 entry = next;
6297 /* Check whether we have already seen this CU and set up SYM_NUM
6298 accordingly. */
6299 static int
6300 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6302 struct cu_hash_table_entry dummy;
6303 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6305 dummy.max_comdat_num = 0;
6307 slot = (struct cu_hash_table_entry **)
6308 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6309 INSERT);
6310 entry = *slot;
6312 for (; entry; last = entry, entry = entry->next)
6314 if (same_die_p_wrap (cu, entry->cu))
6315 break;
6318 if (entry)
6320 *sym_num = entry->min_comdat_num;
6321 return 1;
6324 entry = XCNEW (struct cu_hash_table_entry);
6325 entry->cu = cu;
6326 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6327 entry->next = *slot;
6328 *slot = entry;
6330 return 0;
6333 /* Record SYM_NUM to record of CU in HTABLE. */
6334 static void
6335 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6337 struct cu_hash_table_entry **slot, *entry;
6339 slot = (struct cu_hash_table_entry **)
6340 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6341 NO_INSERT);
6342 entry = *slot;
6344 entry->max_comdat_num = sym_num;
6347 /* Traverse the DIE (which is always comp_unit_die), and set up
6348 additional compilation units for each of the include files we see
6349 bracketed by BINCL/EINCL. */
6351 static void
6352 break_out_includes (dw_die_ref die)
6354 dw_die_ref c;
6355 dw_die_ref unit = NULL;
6356 limbo_die_node *node, **pnode;
6357 htab_t cu_hash_table;
6359 c = die->die_child;
6360 if (c) do {
6361 dw_die_ref prev = c;
6362 c = c->die_sib;
6363 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6364 || (unit && is_comdat_die (c)))
6366 dw_die_ref next = c->die_sib;
6368 /* This DIE is for a secondary CU; remove it from the main one. */
6369 remove_child_with_prev (c, prev);
6371 if (c->die_tag == DW_TAG_GNU_BINCL)
6372 unit = push_new_compile_unit (unit, c);
6373 else if (c->die_tag == DW_TAG_GNU_EINCL)
6374 unit = pop_compile_unit (unit);
6375 else
6376 add_child_die (unit, c);
6377 c = next;
6378 if (c == die->die_child)
6379 break;
6381 } while (c != die->die_child);
6383 #if 0
6384 /* We can only use this in debugging, since the frontend doesn't check
6385 to make sure that we leave every include file we enter. */
6386 gcc_assert (!unit);
6387 #endif
6389 assign_symbol_names (die);
6390 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6391 for (node = limbo_die_list, pnode = &limbo_die_list;
6392 node;
6393 node = node->next)
6395 int is_dupl;
6397 compute_section_prefix (node->die);
6398 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6399 &comdat_symbol_number);
6400 assign_symbol_names (node->die);
6401 if (is_dupl)
6402 *pnode = node->next;
6403 else
6405 pnode = &node->next;
6406 record_comdat_symbol_number (node->die, cu_hash_table,
6407 comdat_symbol_number);
6410 htab_delete (cu_hash_table);
6413 /* Traverse the DIE and add a sibling attribute if it may have the
6414 effect of speeding up access to siblings. To save some space,
6415 avoid generating sibling attributes for DIE's without children. */
6417 static void
6418 add_sibling_attributes (dw_die_ref die)
6420 dw_die_ref c;
6422 if (! die->die_child)
6423 return;
6425 if (die->die_parent && die != die->die_parent->die_child)
6426 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6428 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6431 /* Output all location lists for the DIE and its children. */
6433 static void
6434 output_location_lists (dw_die_ref die)
6436 dw_die_ref c;
6437 dw_attr_ref a;
6438 unsigned ix;
6440 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6441 if (AT_class (a) == dw_val_class_loc_list)
6442 output_loc_list (AT_loc_list (a));
6444 FOR_EACH_CHILD (die, c, output_location_lists (c));
6447 /* The format of each DIE (and its attribute value pairs) is encoded in an
6448 abbreviation table. This routine builds the abbreviation table and assigns
6449 a unique abbreviation id for each abbreviation entry. The children of each
6450 die are visited recursively. */
6452 static void
6453 build_abbrev_table (dw_die_ref die)
6455 unsigned long abbrev_id;
6456 unsigned int n_alloc;
6457 dw_die_ref c;
6458 dw_attr_ref a;
6459 unsigned ix;
6461 /* Scan the DIE references, and mark as external any that refer to
6462 DIEs from other CUs (i.e. those which are not marked). */
6463 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6464 if (AT_class (a) == dw_val_class_die_ref
6465 && AT_ref (a)->die_mark == 0)
6467 gcc_assert (AT_ref (a)->die_symbol);
6469 set_AT_ref_external (a, 1);
6472 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6474 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6475 dw_attr_ref die_a, abbrev_a;
6476 unsigned ix;
6477 bool ok = true;
6479 if (abbrev->die_tag != die->die_tag)
6480 continue;
6481 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6482 continue;
6484 if (VEC_length (dw_attr_node, abbrev->die_attr)
6485 != VEC_length (dw_attr_node, die->die_attr))
6486 continue;
6488 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6490 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6491 if ((abbrev_a->dw_attr != die_a->dw_attr)
6492 || (value_format (abbrev_a) != value_format (die_a)))
6494 ok = false;
6495 break;
6498 if (ok)
6499 break;
6502 if (abbrev_id >= abbrev_die_table_in_use)
6504 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6506 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6507 abbrev_die_table = ggc_realloc (abbrev_die_table,
6508 sizeof (dw_die_ref) * n_alloc);
6510 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6511 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6512 abbrev_die_table_allocated = n_alloc;
6515 ++abbrev_die_table_in_use;
6516 abbrev_die_table[abbrev_id] = die;
6519 die->die_abbrev = abbrev_id;
6520 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6523 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6525 static int
6526 constant_size (long unsigned int value)
6528 int log;
6530 if (value == 0)
6531 log = 0;
6532 else
6533 log = floor_log2 (value);
6535 log = log / 8;
6536 log = 1 << (floor_log2 (log) + 1);
6538 return log;
6541 /* Return the size of a DIE as it is represented in the
6542 .debug_info section. */
6544 static unsigned long
6545 size_of_die (dw_die_ref die)
6547 unsigned long size = 0;
6548 dw_attr_ref a;
6549 unsigned ix;
6551 size += size_of_uleb128 (die->die_abbrev);
6552 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6554 switch (AT_class (a))
6556 case dw_val_class_addr:
6557 size += DWARF2_ADDR_SIZE;
6558 break;
6559 case dw_val_class_offset:
6560 size += DWARF_OFFSET_SIZE;
6561 break;
6562 case dw_val_class_loc:
6564 unsigned long lsize = size_of_locs (AT_loc (a));
6566 /* Block length. */
6567 size += constant_size (lsize);
6568 size += lsize;
6570 break;
6571 case dw_val_class_loc_list:
6572 size += DWARF_OFFSET_SIZE;
6573 break;
6574 case dw_val_class_range_list:
6575 size += DWARF_OFFSET_SIZE;
6576 break;
6577 case dw_val_class_const:
6578 size += size_of_sleb128 (AT_int (a));
6579 break;
6580 case dw_val_class_unsigned_const:
6581 size += constant_size (AT_unsigned (a));
6582 break;
6583 case dw_val_class_long_long:
6584 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6585 break;
6586 case dw_val_class_vec:
6587 size += 1 + (a->dw_attr_val.v.val_vec.length
6588 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6589 break;
6590 case dw_val_class_flag:
6591 size += 1;
6592 break;
6593 case dw_val_class_die_ref:
6594 if (AT_ref_external (a))
6595 size += DWARF2_ADDR_SIZE;
6596 else
6597 size += DWARF_OFFSET_SIZE;
6598 break;
6599 case dw_val_class_fde_ref:
6600 size += DWARF_OFFSET_SIZE;
6601 break;
6602 case dw_val_class_lbl_id:
6603 size += DWARF2_ADDR_SIZE;
6604 break;
6605 case dw_val_class_lineptr:
6606 case dw_val_class_macptr:
6607 size += DWARF_OFFSET_SIZE;
6608 break;
6609 case dw_val_class_str:
6610 if (AT_string_form (a) == DW_FORM_strp)
6611 size += DWARF_OFFSET_SIZE;
6612 else
6613 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6614 break;
6615 default:
6616 gcc_unreachable ();
6620 return size;
6623 /* Size the debugging information associated with a given DIE. Visits the
6624 DIE's children recursively. Updates the global variable next_die_offset, on
6625 each time through. Uses the current value of next_die_offset to update the
6626 die_offset field in each DIE. */
6628 static void
6629 calc_die_sizes (dw_die_ref die)
6631 dw_die_ref c;
6633 die->die_offset = next_die_offset;
6634 next_die_offset += size_of_die (die);
6636 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6638 if (die->die_child != NULL)
6639 /* Count the null byte used to terminate sibling lists. */
6640 next_die_offset += 1;
6643 /* Set the marks for a die and its children. We do this so
6644 that we know whether or not a reference needs to use FORM_ref_addr; only
6645 DIEs in the same CU will be marked. We used to clear out the offset
6646 and use that as the flag, but ran into ordering problems. */
6648 static void
6649 mark_dies (dw_die_ref die)
6651 dw_die_ref c;
6653 gcc_assert (!die->die_mark);
6655 die->die_mark = 1;
6656 FOR_EACH_CHILD (die, c, mark_dies (c));
6659 /* Clear the marks for a die and its children. */
6661 static void
6662 unmark_dies (dw_die_ref die)
6664 dw_die_ref c;
6666 gcc_assert (die->die_mark);
6668 die->die_mark = 0;
6669 FOR_EACH_CHILD (die, c, unmark_dies (c));
6672 /* Clear the marks for a die, its children and referred dies. */
6674 static void
6675 unmark_all_dies (dw_die_ref die)
6677 dw_die_ref c;
6678 dw_attr_ref a;
6679 unsigned ix;
6681 if (!die->die_mark)
6682 return;
6683 die->die_mark = 0;
6685 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6687 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6688 if (AT_class (a) == dw_val_class_die_ref)
6689 unmark_all_dies (AT_ref (a));
6692 /* Return the size of the .debug_pubnames table generated for the
6693 compilation unit. */
6695 static unsigned long
6696 size_of_pubnames (void)
6698 unsigned long size;
6699 unsigned i;
6701 size = DWARF_PUBNAMES_HEADER_SIZE;
6702 for (i = 0; i < pubname_table_in_use; i++)
6704 pubname_ref p = &pubname_table[i];
6705 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6708 size += DWARF_OFFSET_SIZE;
6709 return size;
6712 /* Return the size of the information in the .debug_aranges section. */
6714 static unsigned long
6715 size_of_aranges (void)
6717 unsigned long size;
6719 size = DWARF_ARANGES_HEADER_SIZE;
6721 /* Count the address/length pair for this compilation unit. */
6722 size += 2 * DWARF2_ADDR_SIZE;
6723 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6725 /* Count the two zero words used to terminated the address range table. */
6726 size += 2 * DWARF2_ADDR_SIZE;
6727 return size;
6730 /* Select the encoding of an attribute value. */
6732 static enum dwarf_form
6733 value_format (dw_attr_ref a)
6735 switch (a->dw_attr_val.val_class)
6737 case dw_val_class_addr:
6738 return DW_FORM_addr;
6739 case dw_val_class_range_list:
6740 case dw_val_class_offset:
6741 case dw_val_class_loc_list:
6742 switch (DWARF_OFFSET_SIZE)
6744 case 4:
6745 return DW_FORM_data4;
6746 case 8:
6747 return DW_FORM_data8;
6748 default:
6749 gcc_unreachable ();
6751 case dw_val_class_loc:
6752 switch (constant_size (size_of_locs (AT_loc (a))))
6754 case 1:
6755 return DW_FORM_block1;
6756 case 2:
6757 return DW_FORM_block2;
6758 default:
6759 gcc_unreachable ();
6761 case dw_val_class_const:
6762 return DW_FORM_sdata;
6763 case dw_val_class_unsigned_const:
6764 switch (constant_size (AT_unsigned (a)))
6766 case 1:
6767 return DW_FORM_data1;
6768 case 2:
6769 return DW_FORM_data2;
6770 case 4:
6771 return DW_FORM_data4;
6772 case 8:
6773 return DW_FORM_data8;
6774 default:
6775 gcc_unreachable ();
6777 case dw_val_class_long_long:
6778 return DW_FORM_block1;
6779 case dw_val_class_vec:
6780 return DW_FORM_block1;
6781 case dw_val_class_flag:
6782 return DW_FORM_flag;
6783 case dw_val_class_die_ref:
6784 if (AT_ref_external (a))
6785 return DW_FORM_ref_addr;
6786 else
6787 return DW_FORM_ref;
6788 case dw_val_class_fde_ref:
6789 return DW_FORM_data;
6790 case dw_val_class_lbl_id:
6791 return DW_FORM_addr;
6792 case dw_val_class_lineptr:
6793 case dw_val_class_macptr:
6794 return DW_FORM_data;
6795 case dw_val_class_str:
6796 return AT_string_form (a);
6798 default:
6799 gcc_unreachable ();
6803 /* Output the encoding of an attribute value. */
6805 static void
6806 output_value_format (dw_attr_ref a)
6808 enum dwarf_form form = value_format (a);
6810 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6813 /* Output the .debug_abbrev section which defines the DIE abbreviation
6814 table. */
6816 static void
6817 output_abbrev_section (void)
6819 unsigned long abbrev_id;
6821 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6823 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6824 unsigned ix;
6825 dw_attr_ref a_attr;
6827 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6828 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6829 dwarf_tag_name (abbrev->die_tag));
6831 if (abbrev->die_child != NULL)
6832 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6833 else
6834 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6836 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6837 ix++)
6839 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6840 dwarf_attr_name (a_attr->dw_attr));
6841 output_value_format (a_attr);
6844 dw2_asm_output_data (1, 0, NULL);
6845 dw2_asm_output_data (1, 0, NULL);
6848 /* Terminate the table. */
6849 dw2_asm_output_data (1, 0, NULL);
6852 /* Output a symbol we can use to refer to this DIE from another CU. */
6854 static inline void
6855 output_die_symbol (dw_die_ref die)
6857 char *sym = die->die_symbol;
6859 if (sym == 0)
6860 return;
6862 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6863 /* We make these global, not weak; if the target doesn't support
6864 .linkonce, it doesn't support combining the sections, so debugging
6865 will break. */
6866 targetm.asm_out.globalize_label (asm_out_file, sym);
6868 ASM_OUTPUT_LABEL (asm_out_file, sym);
6871 /* Return a new location list, given the begin and end range, and the
6872 expression. gensym tells us whether to generate a new internal symbol for
6873 this location list node, which is done for the head of the list only. */
6875 static inline dw_loc_list_ref
6876 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6877 const char *section, unsigned int gensym)
6879 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6881 retlist->begin = begin;
6882 retlist->end = end;
6883 retlist->expr = expr;
6884 retlist->section = section;
6885 if (gensym)
6886 retlist->ll_symbol = gen_internal_sym ("LLST");
6888 return retlist;
6891 /* Add a location description expression to a location list. */
6893 static inline void
6894 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6895 const char *begin, const char *end,
6896 const char *section)
6898 dw_loc_list_ref *d;
6900 /* Find the end of the chain. */
6901 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6904 /* Add a new location list node to the list. */
6905 *d = new_loc_list (descr, begin, end, section, 0);
6908 static void
6909 dwarf2out_switch_text_section (void)
6911 dw_fde_ref fde;
6913 gcc_assert (cfun);
6915 fde = &fde_table[fde_table_in_use - 1];
6916 fde->dw_fde_switched_sections = true;
6917 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6918 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6919 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6920 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6921 have_multiple_function_sections = true;
6924 /* Output the location list given to us. */
6926 static void
6927 output_loc_list (dw_loc_list_ref list_head)
6929 dw_loc_list_ref curr = list_head;
6931 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6933 /* Walk the location list, and output each range + expression. */
6934 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6936 unsigned long size;
6937 if (!have_multiple_function_sections)
6939 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6940 "Location list begin address (%s)",
6941 list_head->ll_symbol);
6942 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6943 "Location list end address (%s)",
6944 list_head->ll_symbol);
6946 else
6948 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6949 "Location list begin address (%s)",
6950 list_head->ll_symbol);
6951 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6952 "Location list end address (%s)",
6953 list_head->ll_symbol);
6955 size = size_of_locs (curr->expr);
6957 /* Output the block length for this list of location operations. */
6958 gcc_assert (size <= 0xffff);
6959 dw2_asm_output_data (2, size, "%s", "Location expression size");
6961 output_loc_sequence (curr->expr);
6964 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6965 "Location list terminator begin (%s)",
6966 list_head->ll_symbol);
6967 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6968 "Location list terminator end (%s)",
6969 list_head->ll_symbol);
6972 /* Output the DIE and its attributes. Called recursively to generate
6973 the definitions of each child DIE. */
6975 static void
6976 output_die (dw_die_ref die)
6978 dw_attr_ref a;
6979 dw_die_ref c;
6980 unsigned long size;
6981 unsigned ix;
6983 /* If someone in another CU might refer to us, set up a symbol for
6984 them to point to. */
6985 if (die->die_symbol)
6986 output_die_symbol (die);
6988 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6989 die->die_offset, dwarf_tag_name (die->die_tag));
6991 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6993 const char *name = dwarf_attr_name (a->dw_attr);
6995 switch (AT_class (a))
6997 case dw_val_class_addr:
6998 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6999 break;
7001 case dw_val_class_offset:
7002 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7003 "%s", name);
7004 break;
7006 case dw_val_class_range_list:
7008 char *p = strchr (ranges_section_label, '\0');
7010 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7011 a->dw_attr_val.v.val_offset);
7012 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7013 debug_ranges_section, "%s", name);
7014 *p = '\0';
7016 break;
7018 case dw_val_class_loc:
7019 size = size_of_locs (AT_loc (a));
7021 /* Output the block length for this list of location operations. */
7022 dw2_asm_output_data (constant_size (size), size, "%s", name);
7024 output_loc_sequence (AT_loc (a));
7025 break;
7027 case dw_val_class_const:
7028 /* ??? It would be slightly more efficient to use a scheme like is
7029 used for unsigned constants below, but gdb 4.x does not sign
7030 extend. Gdb 5.x does sign extend. */
7031 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7032 break;
7034 case dw_val_class_unsigned_const:
7035 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7036 AT_unsigned (a), "%s", name);
7037 break;
7039 case dw_val_class_long_long:
7041 unsigned HOST_WIDE_INT first, second;
7043 dw2_asm_output_data (1,
7044 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7045 "%s", name);
7047 if (WORDS_BIG_ENDIAN)
7049 first = a->dw_attr_val.v.val_long_long.hi;
7050 second = a->dw_attr_val.v.val_long_long.low;
7052 else
7054 first = a->dw_attr_val.v.val_long_long.low;
7055 second = a->dw_attr_val.v.val_long_long.hi;
7058 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7059 first, "long long constant");
7060 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7061 second, NULL);
7063 break;
7065 case dw_val_class_vec:
7067 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7068 unsigned int len = a->dw_attr_val.v.val_vec.length;
7069 unsigned int i;
7070 unsigned char *p;
7072 dw2_asm_output_data (1, len * elt_size, "%s", name);
7073 if (elt_size > sizeof (HOST_WIDE_INT))
7075 elt_size /= 2;
7076 len *= 2;
7078 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7079 i < len;
7080 i++, p += elt_size)
7081 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7082 "fp or vector constant word %u", i);
7083 break;
7086 case dw_val_class_flag:
7087 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7088 break;
7090 case dw_val_class_loc_list:
7092 char *sym = AT_loc_list (a)->ll_symbol;
7094 gcc_assert (sym);
7095 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7096 "%s", name);
7098 break;
7100 case dw_val_class_die_ref:
7101 if (AT_ref_external (a))
7103 char *sym = AT_ref (a)->die_symbol;
7105 gcc_assert (sym);
7106 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7107 "%s", name);
7109 else
7111 gcc_assert (AT_ref (a)->die_offset);
7112 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7113 "%s", name);
7115 break;
7117 case dw_val_class_fde_ref:
7119 char l1[20];
7121 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7122 a->dw_attr_val.v.val_fde_index * 2);
7123 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7124 "%s", name);
7126 break;
7128 case dw_val_class_lbl_id:
7129 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7130 break;
7132 case dw_val_class_lineptr:
7133 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7134 debug_line_section, "%s", name);
7135 break;
7137 case dw_val_class_macptr:
7138 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7139 debug_macinfo_section, "%s", name);
7140 break;
7142 case dw_val_class_str:
7143 if (AT_string_form (a) == DW_FORM_strp)
7144 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7145 a->dw_attr_val.v.val_str->label,
7146 debug_str_section,
7147 "%s: \"%s\"", name, AT_string (a));
7148 else
7149 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7150 break;
7152 default:
7153 gcc_unreachable ();
7157 FOR_EACH_CHILD (die, c, output_die (c));
7159 /* Add null byte to terminate sibling list. */
7160 if (die->die_child != NULL)
7161 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7162 die->die_offset);
7165 /* Output the compilation unit that appears at the beginning of the
7166 .debug_info section, and precedes the DIE descriptions. */
7168 static void
7169 output_compilation_unit_header (void)
7171 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7172 dw2_asm_output_data (4, 0xffffffff,
7173 "Initial length escape value indicating 64-bit DWARF extension");
7174 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7175 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7176 "Length of Compilation Unit Info");
7177 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7178 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7179 debug_abbrev_section,
7180 "Offset Into Abbrev. Section");
7181 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7184 /* Output the compilation unit DIE and its children. */
7186 static void
7187 output_comp_unit (dw_die_ref die, int output_if_empty)
7189 const char *secname;
7190 char *oldsym, *tmp;
7192 /* Unless we are outputting main CU, we may throw away empty ones. */
7193 if (!output_if_empty && die->die_child == NULL)
7194 return;
7196 /* Even if there are no children of this DIE, we must output the information
7197 about the compilation unit. Otherwise, on an empty translation unit, we
7198 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7199 will then complain when examining the file. First mark all the DIEs in
7200 this CU so we know which get local refs. */
7201 mark_dies (die);
7203 build_abbrev_table (die);
7205 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7206 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7207 calc_die_sizes (die);
7209 oldsym = die->die_symbol;
7210 if (oldsym)
7212 tmp = alloca (strlen (oldsym) + 24);
7214 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7215 secname = tmp;
7216 die->die_symbol = NULL;
7217 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7219 else
7220 switch_to_section (debug_info_section);
7222 /* Output debugging information. */
7223 output_compilation_unit_header ();
7224 output_die (die);
7226 /* Leave the marks on the main CU, so we can check them in
7227 output_pubnames. */
7228 if (oldsym)
7230 unmark_dies (die);
7231 die->die_symbol = oldsym;
7235 /* Return the DWARF2/3 pubname associated with a decl. */
7237 static const char *
7238 dwarf2_name (tree decl, int scope)
7240 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7243 /* Add a new entry to .debug_pubnames if appropriate. */
7245 static void
7246 add_pubname (tree decl, dw_die_ref die)
7248 pubname_ref p;
7250 if (! TREE_PUBLIC (decl))
7251 return;
7253 if (pubname_table_in_use == pubname_table_allocated)
7255 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7256 pubname_table
7257 = ggc_realloc (pubname_table,
7258 (pubname_table_allocated * sizeof (pubname_entry)));
7259 memset (pubname_table + pubname_table_in_use, 0,
7260 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7263 p = &pubname_table[pubname_table_in_use++];
7264 p->die = die;
7265 p->name = xstrdup (dwarf2_name (decl, 1));
7268 /* Output the public names table used to speed up access to externally
7269 visible names. For now, only generate entries for externally
7270 visible procedures. */
7272 static void
7273 output_pubnames (void)
7275 unsigned i;
7276 unsigned long pubnames_length = size_of_pubnames ();
7278 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7279 dw2_asm_output_data (4, 0xffffffff,
7280 "Initial length escape value indicating 64-bit DWARF extension");
7281 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7282 "Length of Public Names Info");
7283 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7284 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7285 debug_info_section,
7286 "Offset of Compilation Unit Info");
7287 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7288 "Compilation Unit Length");
7290 for (i = 0; i < pubname_table_in_use; i++)
7292 pubname_ref pub = &pubname_table[i];
7294 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7295 gcc_assert (pub->die->die_mark);
7297 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7298 "DIE offset");
7300 dw2_asm_output_nstring (pub->name, -1, "external name");
7303 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7306 /* Add a new entry to .debug_aranges if appropriate. */
7308 static void
7309 add_arange (tree decl, dw_die_ref die)
7311 if (! DECL_SECTION_NAME (decl))
7312 return;
7314 if (arange_table_in_use == arange_table_allocated)
7316 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7317 arange_table = ggc_realloc (arange_table,
7318 (arange_table_allocated
7319 * sizeof (dw_die_ref)));
7320 memset (arange_table + arange_table_in_use, 0,
7321 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7324 arange_table[arange_table_in_use++] = die;
7327 /* Output the information that goes into the .debug_aranges table.
7328 Namely, define the beginning and ending address range of the
7329 text section generated for this compilation unit. */
7331 static void
7332 output_aranges (void)
7334 unsigned i;
7335 unsigned long aranges_length = size_of_aranges ();
7337 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7338 dw2_asm_output_data (4, 0xffffffff,
7339 "Initial length escape value indicating 64-bit DWARF extension");
7340 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7341 "Length of Address Ranges Info");
7342 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7343 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7344 debug_info_section,
7345 "Offset of Compilation Unit Info");
7346 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7347 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7349 /* We need to align to twice the pointer size here. */
7350 if (DWARF_ARANGES_PAD_SIZE)
7352 /* Pad using a 2 byte words so that padding is correct for any
7353 pointer size. */
7354 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7355 2 * DWARF2_ADDR_SIZE);
7356 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7357 dw2_asm_output_data (2, 0, NULL);
7360 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7361 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7362 text_section_label, "Length");
7363 if (flag_reorder_blocks_and_partition)
7365 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7366 "Address");
7367 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7368 cold_text_section_label, "Length");
7371 for (i = 0; i < arange_table_in_use; i++)
7373 dw_die_ref die = arange_table[i];
7375 /* We shouldn't see aranges for DIEs outside of the main CU. */
7376 gcc_assert (die->die_mark);
7378 if (die->die_tag == DW_TAG_subprogram)
7380 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7381 "Address");
7382 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7383 get_AT_low_pc (die), "Length");
7385 else
7387 /* A static variable; extract the symbol from DW_AT_location.
7388 Note that this code isn't currently hit, as we only emit
7389 aranges for functions (jason 9/23/99). */
7390 dw_attr_ref a = get_AT (die, DW_AT_location);
7391 dw_loc_descr_ref loc;
7393 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7395 loc = AT_loc (a);
7396 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7398 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7399 loc->dw_loc_oprnd1.v.val_addr, "Address");
7400 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7401 get_AT_unsigned (die, DW_AT_byte_size),
7402 "Length");
7406 /* Output the terminator words. */
7407 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7408 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7411 /* Add a new entry to .debug_ranges. Return the offset at which it
7412 was placed. */
7414 static unsigned int
7415 add_ranges (tree block)
7417 unsigned int in_use = ranges_table_in_use;
7419 if (in_use == ranges_table_allocated)
7421 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7422 ranges_table
7423 = ggc_realloc (ranges_table, (ranges_table_allocated
7424 * sizeof (struct dw_ranges_struct)));
7425 memset (ranges_table + ranges_table_in_use, 0,
7426 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7429 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7430 ranges_table_in_use = in_use + 1;
7432 return in_use * 2 * DWARF2_ADDR_SIZE;
7435 static void
7436 output_ranges (void)
7438 unsigned i;
7439 static const char *const start_fmt = "Offset 0x%x";
7440 const char *fmt = start_fmt;
7442 for (i = 0; i < ranges_table_in_use; i++)
7444 int block_num = ranges_table[i].block_num;
7446 if (block_num)
7448 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7449 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7451 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7452 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7454 /* If all code is in the text section, then the compilation
7455 unit base address defaults to DW_AT_low_pc, which is the
7456 base of the text section. */
7457 if (!have_multiple_function_sections)
7459 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7460 text_section_label,
7461 fmt, i * 2 * DWARF2_ADDR_SIZE);
7462 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7463 text_section_label, NULL);
7466 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7467 compilation unit base address to zero, which allows us to
7468 use absolute addresses, and not worry about whether the
7469 target supports cross-section arithmetic. */
7470 else
7472 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7473 fmt, i * 2 * DWARF2_ADDR_SIZE);
7474 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7477 fmt = NULL;
7479 else
7481 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7482 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7483 fmt = start_fmt;
7488 /* Data structure containing information about input files. */
7489 struct file_info
7491 char *path; /* Complete file name. */
7492 char *fname; /* File name part. */
7493 int length; /* Length of entire string. */
7494 int file_idx; /* Index in input file table. */
7495 int dir_idx; /* Index in directory table. */
7498 /* Data structure containing information about directories with source
7499 files. */
7500 struct dir_info
7502 char *path; /* Path including directory name. */
7503 int length; /* Path length. */
7504 int prefix; /* Index of directory entry which is a prefix. */
7505 int count; /* Number of files in this directory. */
7506 int dir_idx; /* Index of directory used as base. */
7507 int used; /* Used in the end? */
7510 /* Callback function for file_info comparison. We sort by looking at
7511 the directories in the path. */
7513 static int
7514 file_info_cmp (const void *p1, const void *p2)
7516 const struct file_info *s1 = p1;
7517 const struct file_info *s2 = p2;
7518 unsigned char *cp1;
7519 unsigned char *cp2;
7521 /* Take care of file names without directories. We need to make sure that
7522 we return consistent values to qsort since some will get confused if
7523 we return the same value when identical operands are passed in opposite
7524 orders. So if neither has a directory, return 0 and otherwise return
7525 1 or -1 depending on which one has the directory. */
7526 if ((s1->path == s1->fname || s2->path == s2->fname))
7527 return (s2->path == s2->fname) - (s1->path == s1->fname);
7529 cp1 = (unsigned char *) s1->path;
7530 cp2 = (unsigned char *) s2->path;
7532 while (1)
7534 ++cp1;
7535 ++cp2;
7536 /* Reached the end of the first path? If so, handle like above. */
7537 if ((cp1 == (unsigned char *) s1->fname)
7538 || (cp2 == (unsigned char *) s2->fname))
7539 return ((cp2 == (unsigned char *) s2->fname)
7540 - (cp1 == (unsigned char *) s1->fname));
7542 /* Character of current path component the same? */
7543 else if (*cp1 != *cp2)
7544 return *cp1 - *cp2;
7548 /* Output the directory table and the file name table. We try to minimize
7549 the total amount of memory needed. A heuristic is used to avoid large
7550 slowdowns with many input files. */
7552 static void
7553 output_file_names (void)
7555 struct file_info *files;
7556 struct dir_info *dirs;
7557 int *saved;
7558 int *savehere;
7559 int *backmap;
7560 size_t ndirs;
7561 int idx_offset;
7562 size_t i;
7563 int idx;
7565 /* Handle the case where file_table is empty. */
7566 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7568 dw2_asm_output_data (1, 0, "End directory table");
7569 dw2_asm_output_data (1, 0, "End file name table");
7570 return;
7573 /* Allocate the various arrays we need. */
7574 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7575 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7577 /* Sort the file names. */
7578 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7580 char *f;
7582 /* Skip all leading "./". */
7583 f = VARRAY_CHAR_PTR (file_table, i);
7584 while (f[0] == '.' && f[1] == '/')
7585 f += 2;
7587 /* Create a new array entry. */
7588 files[i].path = f;
7589 files[i].length = strlen (f);
7590 files[i].file_idx = i;
7592 /* Search for the file name part. */
7593 f = strrchr (f, '/');
7594 files[i].fname = f == NULL ? files[i].path : f + 1;
7597 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7598 sizeof (files[0]), file_info_cmp);
7600 /* Find all the different directories used. */
7601 dirs[0].path = files[1].path;
7602 dirs[0].length = files[1].fname - files[1].path;
7603 dirs[0].prefix = -1;
7604 dirs[0].count = 1;
7605 dirs[0].dir_idx = 0;
7606 dirs[0].used = 0;
7607 files[1].dir_idx = 0;
7608 ndirs = 1;
7610 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7611 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7612 && memcmp (dirs[ndirs - 1].path, files[i].path,
7613 dirs[ndirs - 1].length) == 0)
7615 /* Same directory as last entry. */
7616 files[i].dir_idx = ndirs - 1;
7617 ++dirs[ndirs - 1].count;
7619 else
7621 size_t j;
7623 /* This is a new directory. */
7624 dirs[ndirs].path = files[i].path;
7625 dirs[ndirs].length = files[i].fname - files[i].path;
7626 dirs[ndirs].count = 1;
7627 dirs[ndirs].dir_idx = ndirs;
7628 dirs[ndirs].used = 0;
7629 files[i].dir_idx = ndirs;
7631 /* Search for a prefix. */
7632 dirs[ndirs].prefix = -1;
7633 for (j = 0; j < ndirs; j++)
7634 if (dirs[j].length < dirs[ndirs].length
7635 && dirs[j].length > 1
7636 && (dirs[ndirs].prefix == -1
7637 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7638 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7639 dirs[ndirs].prefix = j;
7641 ++ndirs;
7644 /* Now to the actual work. We have to find a subset of the directories which
7645 allow expressing the file name using references to the directory table
7646 with the least amount of characters. We do not do an exhaustive search
7647 where we would have to check out every combination of every single
7648 possible prefix. Instead we use a heuristic which provides nearly optimal
7649 results in most cases and never is much off. */
7650 saved = alloca (ndirs * sizeof (int));
7651 savehere = alloca (ndirs * sizeof (int));
7653 memset (saved, '\0', ndirs * sizeof (saved[0]));
7654 for (i = 0; i < ndirs; i++)
7656 size_t j;
7657 int total;
7659 /* We can always save some space for the current directory. But this
7660 does not mean it will be enough to justify adding the directory. */
7661 savehere[i] = dirs[i].length;
7662 total = (savehere[i] - saved[i]) * dirs[i].count;
7664 for (j = i + 1; j < ndirs; j++)
7666 savehere[j] = 0;
7667 if (saved[j] < dirs[i].length)
7669 /* Determine whether the dirs[i] path is a prefix of the
7670 dirs[j] path. */
7671 int k;
7673 k = dirs[j].prefix;
7674 while (k != -1 && k != (int) i)
7675 k = dirs[k].prefix;
7677 if (k == (int) i)
7679 /* Yes it is. We can possibly safe some memory but
7680 writing the filenames in dirs[j] relative to
7681 dirs[i]. */
7682 savehere[j] = dirs[i].length;
7683 total += (savehere[j] - saved[j]) * dirs[j].count;
7688 /* Check whether we can safe enough to justify adding the dirs[i]
7689 directory. */
7690 if (total > dirs[i].length + 1)
7692 /* It's worthwhile adding. */
7693 for (j = i; j < ndirs; j++)
7694 if (savehere[j] > 0)
7696 /* Remember how much we saved for this directory so far. */
7697 saved[j] = savehere[j];
7699 /* Remember the prefix directory. */
7700 dirs[j].dir_idx = i;
7705 /* We have to emit them in the order they appear in the file_table array
7706 since the index is used in the debug info generation. To do this
7707 efficiently we generate a back-mapping of the indices first. */
7708 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7709 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7711 backmap[files[i].file_idx] = i;
7713 /* Mark this directory as used. */
7714 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7717 /* That was it. We are ready to emit the information. First emit the
7718 directory name table. We have to make sure the first actually emitted
7719 directory name has index one; zero is reserved for the current working
7720 directory. Make sure we do not confuse these indices with the one for the
7721 constructed table (even though most of the time they are identical). */
7722 idx = 1;
7723 idx_offset = dirs[0].length > 0 ? 1 : 0;
7724 for (i = 1 - idx_offset; i < ndirs; i++)
7725 if (dirs[i].used != 0)
7727 dirs[i].used = idx++;
7728 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7729 "Directory Entry: 0x%x", dirs[i].used);
7732 dw2_asm_output_data (1, 0, "End directory table");
7734 /* Correct the index for the current working directory entry if it
7735 exists. */
7736 if (idx_offset == 0)
7737 dirs[0].used = 0;
7739 /* Now write all the file names. */
7740 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7742 int file_idx = backmap[i];
7743 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7745 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7746 "File Entry: 0x%lx", (unsigned long) i);
7748 /* Include directory index. */
7749 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7751 /* Modification time. */
7752 dw2_asm_output_data_uleb128 (0, NULL);
7754 /* File length in bytes. */
7755 dw2_asm_output_data_uleb128 (0, NULL);
7758 dw2_asm_output_data (1, 0, "End file name table");
7762 /* Output the source line number correspondence information. This
7763 information goes into the .debug_line section. */
7765 static void
7766 output_line_info (void)
7768 char l1[20], l2[20], p1[20], p2[20];
7769 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7770 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7771 unsigned opc;
7772 unsigned n_op_args;
7773 unsigned long lt_index;
7774 unsigned long current_line;
7775 long line_offset;
7776 long line_delta;
7777 unsigned long current_file;
7778 unsigned long function;
7780 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7781 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7782 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7783 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7785 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7786 dw2_asm_output_data (4, 0xffffffff,
7787 "Initial length escape value indicating 64-bit DWARF extension");
7788 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7789 "Length of Source Line Info");
7790 ASM_OUTPUT_LABEL (asm_out_file, l1);
7792 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7793 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7794 ASM_OUTPUT_LABEL (asm_out_file, p1);
7796 /* Define the architecture-dependent minimum instruction length (in
7797 bytes). In this implementation of DWARF, this field is used for
7798 information purposes only. Since GCC generates assembly language,
7799 we have no a priori knowledge of how many instruction bytes are
7800 generated for each source line, and therefore can use only the
7801 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7802 commands. Accordingly, we fix this as `1', which is "correct
7803 enough" for all architectures, and don't let the target override. */
7804 dw2_asm_output_data (1, 1,
7805 "Minimum Instruction Length");
7807 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7808 "Default is_stmt_start flag");
7809 dw2_asm_output_data (1, DWARF_LINE_BASE,
7810 "Line Base Value (Special Opcodes)");
7811 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7812 "Line Range Value (Special Opcodes)");
7813 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7814 "Special Opcode Base");
7816 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7818 switch (opc)
7820 case DW_LNS_advance_pc:
7821 case DW_LNS_advance_line:
7822 case DW_LNS_set_file:
7823 case DW_LNS_set_column:
7824 case DW_LNS_fixed_advance_pc:
7825 n_op_args = 1;
7826 break;
7827 default:
7828 n_op_args = 0;
7829 break;
7832 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7833 opc, n_op_args);
7836 /* Write out the information about the files we use. */
7837 output_file_names ();
7838 ASM_OUTPUT_LABEL (asm_out_file, p2);
7840 /* We used to set the address register to the first location in the text
7841 section here, but that didn't accomplish anything since we already
7842 have a line note for the opening brace of the first function. */
7844 /* Generate the line number to PC correspondence table, encoded as
7845 a series of state machine operations. */
7846 current_file = 1;
7847 current_line = 1;
7849 if (cfun && in_cold_section_p)
7850 strcpy (prev_line_label, cfun->cold_section_label);
7851 else
7852 strcpy (prev_line_label, text_section_label);
7853 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7855 dw_line_info_ref line_info = &line_info_table[lt_index];
7857 #if 0
7858 /* Disable this optimization for now; GDB wants to see two line notes
7859 at the beginning of a function so it can find the end of the
7860 prologue. */
7862 /* Don't emit anything for redundant notes. Just updating the
7863 address doesn't accomplish anything, because we already assume
7864 that anything after the last address is this line. */
7865 if (line_info->dw_line_num == current_line
7866 && line_info->dw_file_num == current_file)
7867 continue;
7868 #endif
7870 /* Emit debug info for the address of the current line.
7872 Unfortunately, we have little choice here currently, and must always
7873 use the most general form. GCC does not know the address delta
7874 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7875 attributes which will give an upper bound on the address range. We
7876 could perhaps use length attributes to determine when it is safe to
7877 use DW_LNS_fixed_advance_pc. */
7879 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7880 if (0)
7882 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7883 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7884 "DW_LNS_fixed_advance_pc");
7885 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7887 else
7889 /* This can handle any delta. This takes
7890 4+DWARF2_ADDR_SIZE bytes. */
7891 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7892 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7893 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7894 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7897 strcpy (prev_line_label, line_label);
7899 /* Emit debug info for the source file of the current line, if
7900 different from the previous line. */
7901 if (line_info->dw_file_num != current_file)
7903 current_file = line_info->dw_file_num;
7904 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7905 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7906 VARRAY_CHAR_PTR (file_table,
7907 current_file));
7910 /* Emit debug info for the current line number, choosing the encoding
7911 that uses the least amount of space. */
7912 if (line_info->dw_line_num != current_line)
7914 line_offset = line_info->dw_line_num - current_line;
7915 line_delta = line_offset - DWARF_LINE_BASE;
7916 current_line = line_info->dw_line_num;
7917 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7918 /* This can handle deltas from -10 to 234, using the current
7919 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7920 takes 1 byte. */
7921 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7922 "line %lu", current_line);
7923 else
7925 /* This can handle any delta. This takes at least 4 bytes,
7926 depending on the value being encoded. */
7927 dw2_asm_output_data (1, DW_LNS_advance_line,
7928 "advance to line %lu", current_line);
7929 dw2_asm_output_data_sleb128 (line_offset, NULL);
7930 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7933 else
7934 /* We still need to start a new row, so output a copy insn. */
7935 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7938 /* Emit debug info for the address of the end of the function. */
7939 if (0)
7941 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7942 "DW_LNS_fixed_advance_pc");
7943 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7945 else
7947 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7948 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7949 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7950 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7953 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7954 dw2_asm_output_data_uleb128 (1, NULL);
7955 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7957 function = 0;
7958 current_file = 1;
7959 current_line = 1;
7960 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7962 dw_separate_line_info_ref line_info
7963 = &separate_line_info_table[lt_index];
7965 #if 0
7966 /* Don't emit anything for redundant notes. */
7967 if (line_info->dw_line_num == current_line
7968 && line_info->dw_file_num == current_file
7969 && line_info->function == function)
7970 goto cont;
7971 #endif
7973 /* Emit debug info for the address of the current line. If this is
7974 a new function, or the first line of a function, then we need
7975 to handle it differently. */
7976 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7977 lt_index);
7978 if (function != line_info->function)
7980 function = line_info->function;
7982 /* Set the address register to the first line in the function. */
7983 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7984 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7985 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7986 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7988 else
7990 /* ??? See the DW_LNS_advance_pc comment above. */
7991 if (0)
7993 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7994 "DW_LNS_fixed_advance_pc");
7995 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7997 else
7999 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8000 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8001 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8002 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8006 strcpy (prev_line_label, line_label);
8008 /* Emit debug info for the source file of the current line, if
8009 different from the previous line. */
8010 if (line_info->dw_file_num != current_file)
8012 current_file = line_info->dw_file_num;
8013 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8014 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
8015 VARRAY_CHAR_PTR (file_table,
8016 current_file));
8019 /* Emit debug info for the current line number, choosing the encoding
8020 that uses the least amount of space. */
8021 if (line_info->dw_line_num != current_line)
8023 line_offset = line_info->dw_line_num - current_line;
8024 line_delta = line_offset - DWARF_LINE_BASE;
8025 current_line = line_info->dw_line_num;
8026 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8027 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8028 "line %lu", current_line);
8029 else
8031 dw2_asm_output_data (1, DW_LNS_advance_line,
8032 "advance to line %lu", current_line);
8033 dw2_asm_output_data_sleb128 (line_offset, NULL);
8034 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8037 else
8038 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8040 #if 0
8041 cont:
8042 #endif
8044 lt_index++;
8046 /* If we're done with a function, end its sequence. */
8047 if (lt_index == separate_line_info_table_in_use
8048 || separate_line_info_table[lt_index].function != function)
8050 current_file = 1;
8051 current_line = 1;
8053 /* Emit debug info for the address of the end of the function. */
8054 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8055 if (0)
8057 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8058 "DW_LNS_fixed_advance_pc");
8059 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8061 else
8063 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8064 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8065 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8066 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8069 /* Output the marker for the end of this sequence. */
8070 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8071 dw2_asm_output_data_uleb128 (1, NULL);
8072 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8076 /* Output the marker for the end of the line number info. */
8077 ASM_OUTPUT_LABEL (asm_out_file, l2);
8080 /* Given a pointer to a tree node for some base type, return a pointer to
8081 a DIE that describes the given type.
8083 This routine must only be called for GCC type nodes that correspond to
8084 Dwarf base (fundamental) types. */
8086 static dw_die_ref
8087 base_type_die (tree type)
8089 dw_die_ref base_type_result;
8090 enum dwarf_type encoding;
8092 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8093 return 0;
8095 switch (TREE_CODE (type))
8097 case INTEGER_TYPE:
8098 if (TYPE_STRING_FLAG (type))
8100 if (TYPE_UNSIGNED (type))
8101 encoding = DW_ATE_unsigned_char;
8102 else
8103 encoding = DW_ATE_signed_char;
8105 else if (TYPE_UNSIGNED (type))
8106 encoding = DW_ATE_unsigned;
8107 else
8108 encoding = DW_ATE_signed;
8109 break;
8111 case REAL_TYPE:
8112 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8113 encoding = DW_ATE_decimal_float;
8114 else
8115 encoding = DW_ATE_float;
8116 break;
8118 /* Dwarf2 doesn't know anything about complex ints, so use
8119 a user defined type for it. */
8120 case COMPLEX_TYPE:
8121 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8122 encoding = DW_ATE_complex_float;
8123 else
8124 encoding = DW_ATE_lo_user;
8125 break;
8127 case BOOLEAN_TYPE:
8128 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8129 encoding = DW_ATE_boolean;
8130 break;
8132 default:
8133 /* No other TREE_CODEs are Dwarf fundamental types. */
8134 gcc_unreachable ();
8137 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8139 /* This probably indicates a bug. */
8140 if (! TYPE_NAME (type))
8141 add_name_attribute (base_type_result, "__unknown__");
8143 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8144 int_size_in_bytes (type));
8145 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8147 return base_type_result;
8150 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8151 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8152 a given type is generally the same as the given type, except that if the
8153 given type is a pointer or reference type, then the root type of the given
8154 type is the root type of the "basis" type for the pointer or reference
8155 type. (This definition of the "root" type is recursive.) Also, the root
8156 type of a `const' qualified type or a `volatile' qualified type is the
8157 root type of the given type without the qualifiers. */
8159 static tree
8160 root_type (tree type)
8162 if (TREE_CODE (type) == ERROR_MARK)
8163 return error_mark_node;
8165 switch (TREE_CODE (type))
8167 case ERROR_MARK:
8168 return error_mark_node;
8170 case POINTER_TYPE:
8171 case REFERENCE_TYPE:
8172 return type_main_variant (root_type (TREE_TYPE (type)));
8174 default:
8175 return type_main_variant (type);
8179 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8180 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8182 static inline int
8183 is_base_type (tree type)
8185 switch (TREE_CODE (type))
8187 case ERROR_MARK:
8188 case VOID_TYPE:
8189 case INTEGER_TYPE:
8190 case REAL_TYPE:
8191 case COMPLEX_TYPE:
8192 case BOOLEAN_TYPE:
8193 return 1;
8195 case ARRAY_TYPE:
8196 case RECORD_TYPE:
8197 case UNION_TYPE:
8198 case QUAL_UNION_TYPE:
8199 case ENUMERAL_TYPE:
8200 case FUNCTION_TYPE:
8201 case METHOD_TYPE:
8202 case POINTER_TYPE:
8203 case REFERENCE_TYPE:
8204 case OFFSET_TYPE:
8205 case LANG_TYPE:
8206 case VECTOR_TYPE:
8207 return 0;
8209 default:
8210 gcc_unreachable ();
8213 return 0;
8216 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8217 node, return the size in bits for the type if it is a constant, or else
8218 return the alignment for the type if the type's size is not constant, or
8219 else return BITS_PER_WORD if the type actually turns out to be an
8220 ERROR_MARK node. */
8222 static inline unsigned HOST_WIDE_INT
8223 simple_type_size_in_bits (tree type)
8225 if (TREE_CODE (type) == ERROR_MARK)
8226 return BITS_PER_WORD;
8227 else if (TYPE_SIZE (type) == NULL_TREE)
8228 return 0;
8229 else if (host_integerp (TYPE_SIZE (type), 1))
8230 return tree_low_cst (TYPE_SIZE (type), 1);
8231 else
8232 return TYPE_ALIGN (type);
8235 /* Return true if the debug information for the given type should be
8236 emitted as a subrange type. */
8238 static inline bool
8239 is_subrange_type (tree type)
8241 tree subtype = TREE_TYPE (type);
8243 /* Subrange types are identified by the fact that they are integer
8244 types, and that they have a subtype which is either an integer type
8245 or an enumeral type. */
8247 if (TREE_CODE (type) != INTEGER_TYPE
8248 || subtype == NULL_TREE)
8249 return false;
8251 if (TREE_CODE (subtype) != INTEGER_TYPE
8252 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8253 return false;
8255 if (TREE_CODE (type) == TREE_CODE (subtype)
8256 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8257 && TYPE_MIN_VALUE (type) != NULL
8258 && TYPE_MIN_VALUE (subtype) != NULL
8259 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8260 && TYPE_MAX_VALUE (type) != NULL
8261 && TYPE_MAX_VALUE (subtype) != NULL
8262 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8264 /* The type and its subtype have the same representation. If in
8265 addition the two types also have the same name, then the given
8266 type is not a subrange type, but rather a plain base type. */
8267 /* FIXME: brobecker/2004-03-22:
8268 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8269 therefore be sufficient to check the TYPE_SIZE node pointers
8270 rather than checking the actual size. Unfortunately, we have
8271 found some cases, such as in the Ada "integer" type, where
8272 this is not the case. Until this problem is solved, we need to
8273 keep checking the actual size. */
8274 tree type_name = TYPE_NAME (type);
8275 tree subtype_name = TYPE_NAME (subtype);
8277 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8278 type_name = DECL_NAME (type_name);
8280 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8281 subtype_name = DECL_NAME (subtype_name);
8283 if (type_name == subtype_name)
8284 return false;
8287 return true;
8290 /* Given a pointer to a tree node for a subrange type, return a pointer
8291 to a DIE that describes the given type. */
8293 static dw_die_ref
8294 subrange_type_die (tree type, dw_die_ref context_die)
8296 dw_die_ref subrange_die;
8297 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8299 if (context_die == NULL)
8300 context_die = comp_unit_die;
8302 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8304 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8306 /* The size of the subrange type and its base type do not match,
8307 so we need to generate a size attribute for the subrange type. */
8308 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8311 if (TYPE_MIN_VALUE (type) != NULL)
8312 add_bound_info (subrange_die, DW_AT_lower_bound,
8313 TYPE_MIN_VALUE (type));
8314 if (TYPE_MAX_VALUE (type) != NULL)
8315 add_bound_info (subrange_die, DW_AT_upper_bound,
8316 TYPE_MAX_VALUE (type));
8318 return subrange_die;
8321 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8322 entry that chains various modifiers in front of the given type. */
8324 static dw_die_ref
8325 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8326 dw_die_ref context_die)
8328 enum tree_code code = TREE_CODE (type);
8329 dw_die_ref mod_type_die;
8330 dw_die_ref sub_die = NULL;
8331 tree item_type = NULL;
8332 tree qualified_type;
8333 tree name;
8335 if (code == ERROR_MARK)
8336 return NULL;
8338 /* See if we already have the appropriately qualified variant of
8339 this type. */
8340 qualified_type
8341 = get_qualified_type (type,
8342 ((is_const_type ? TYPE_QUAL_CONST : 0)
8343 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8345 /* If we do, then we can just use its DIE, if it exists. */
8346 if (qualified_type)
8348 mod_type_die = lookup_type_die (qualified_type);
8349 if (mod_type_die)
8350 return mod_type_die;
8353 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8355 /* Handle C typedef types. */
8356 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8358 tree dtype = TREE_TYPE (name);
8360 if (qualified_type == dtype)
8362 /* For a named type, use the typedef. */
8363 gen_type_die (qualified_type, context_die);
8364 return lookup_type_die (qualified_type);
8366 else if (DECL_ORIGINAL_TYPE (name)
8367 && (is_const_type < TYPE_READONLY (dtype)
8368 || is_volatile_type < TYPE_VOLATILE (dtype)))
8369 /* cv-unqualified version of named type. Just use the unnamed
8370 type to which it refers. */
8371 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8372 is_const_type, is_volatile_type,
8373 context_die);
8374 /* Else cv-qualified version of named type; fall through. */
8377 if (is_const_type)
8379 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8380 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8382 else if (is_volatile_type)
8384 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8385 sub_die = modified_type_die (type, 0, 0, context_die);
8387 else if (code == POINTER_TYPE)
8389 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8390 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8391 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8392 item_type = TREE_TYPE (type);
8394 else if (code == REFERENCE_TYPE)
8396 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8397 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8398 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8399 item_type = TREE_TYPE (type);
8401 else if (is_subrange_type (type))
8403 mod_type_die = subrange_type_die (type, context_die);
8404 item_type = TREE_TYPE (type);
8406 else if (is_base_type (type))
8407 mod_type_die = base_type_die (type);
8408 else
8410 gen_type_die (type, context_die);
8412 /* We have to get the type_main_variant here (and pass that to the
8413 `lookup_type_die' routine) because the ..._TYPE node we have
8414 might simply be a *copy* of some original type node (where the
8415 copy was created to help us keep track of typedef names) and
8416 that copy might have a different TYPE_UID from the original
8417 ..._TYPE node. */
8418 if (TREE_CODE (type) != VECTOR_TYPE)
8419 return lookup_type_die (type_main_variant (type));
8420 else
8421 /* Vectors have the debugging information in the type,
8422 not the main variant. */
8423 return lookup_type_die (type);
8426 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8427 don't output a DW_TAG_typedef, since there isn't one in the
8428 user's program; just attach a DW_AT_name to the type. */
8429 if (name
8430 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8432 if (TREE_CODE (name) == TYPE_DECL)
8433 /* Could just call add_name_and_src_coords_attributes here,
8434 but since this is a builtin type it doesn't have any
8435 useful source coordinates anyway. */
8436 name = DECL_NAME (name);
8437 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8440 if (qualified_type)
8441 equate_type_number_to_die (qualified_type, mod_type_die);
8443 if (item_type)
8444 /* We must do this after the equate_type_number_to_die call, in case
8445 this is a recursive type. This ensures that the modified_type_die
8446 recursion will terminate even if the type is recursive. Recursive
8447 types are possible in Ada. */
8448 sub_die = modified_type_die (item_type,
8449 TYPE_READONLY (item_type),
8450 TYPE_VOLATILE (item_type),
8451 context_die);
8453 if (sub_die != NULL)
8454 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8456 return mod_type_die;
8459 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8460 an enumerated type. */
8462 static inline int
8463 type_is_enum (tree type)
8465 return TREE_CODE (type) == ENUMERAL_TYPE;
8468 /* Return the DBX register number described by a given RTL node. */
8470 static unsigned int
8471 dbx_reg_number (rtx rtl)
8473 unsigned regno = REGNO (rtl);
8475 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8477 #ifdef LEAF_REG_REMAP
8479 int leaf_reg;
8481 leaf_reg = LEAF_REG_REMAP (regno);
8482 if (leaf_reg != -1)
8483 regno = (unsigned) leaf_reg;
8485 #endif
8487 return DBX_REGISTER_NUMBER (regno);
8490 /* Optionally add a DW_OP_piece term to a location description expression.
8491 DW_OP_piece is only added if the location description expression already
8492 doesn't end with DW_OP_piece. */
8494 static void
8495 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8497 dw_loc_descr_ref loc;
8499 if (*list_head != NULL)
8501 /* Find the end of the chain. */
8502 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8505 if (loc->dw_loc_opc != DW_OP_piece)
8506 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8510 /* Return a location descriptor that designates a machine register or
8511 zero if there is none. */
8513 static dw_loc_descr_ref
8514 reg_loc_descriptor (rtx rtl)
8516 rtx regs;
8518 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8519 return 0;
8521 regs = targetm.dwarf_register_span (rtl);
8523 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8524 return multiple_reg_loc_descriptor (rtl, regs);
8525 else
8526 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8529 /* Return a location descriptor that designates a machine register for
8530 a given hard register number. */
8532 static dw_loc_descr_ref
8533 one_reg_loc_descriptor (unsigned int regno)
8535 if (regno <= 31)
8536 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8537 else
8538 return new_loc_descr (DW_OP_regx, regno, 0);
8541 /* Given an RTL of a register, return a location descriptor that
8542 designates a value that spans more than one register. */
8544 static dw_loc_descr_ref
8545 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8547 int nregs, size, i;
8548 unsigned reg;
8549 dw_loc_descr_ref loc_result = NULL;
8551 reg = REGNO (rtl);
8552 #ifdef LEAF_REG_REMAP
8554 int leaf_reg;
8556 leaf_reg = LEAF_REG_REMAP (reg);
8557 if (leaf_reg != -1)
8558 reg = (unsigned) leaf_reg;
8560 #endif
8561 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8562 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8564 /* Simple, contiguous registers. */
8565 if (regs == NULL_RTX)
8567 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8569 loc_result = NULL;
8570 while (nregs--)
8572 dw_loc_descr_ref t;
8574 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8575 add_loc_descr (&loc_result, t);
8576 add_loc_descr_op_piece (&loc_result, size);
8577 ++reg;
8579 return loc_result;
8582 /* Now onto stupid register sets in non contiguous locations. */
8584 gcc_assert (GET_CODE (regs) == PARALLEL);
8586 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8587 loc_result = NULL;
8589 for (i = 0; i < XVECLEN (regs, 0); ++i)
8591 dw_loc_descr_ref t;
8593 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8594 add_loc_descr (&loc_result, t);
8595 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8596 add_loc_descr_op_piece (&loc_result, size);
8598 return loc_result;
8601 /* Return a location descriptor that designates a constant. */
8603 static dw_loc_descr_ref
8604 int_loc_descriptor (HOST_WIDE_INT i)
8606 enum dwarf_location_atom op;
8608 /* Pick the smallest representation of a constant, rather than just
8609 defaulting to the LEB encoding. */
8610 if (i >= 0)
8612 if (i <= 31)
8613 op = DW_OP_lit0 + i;
8614 else if (i <= 0xff)
8615 op = DW_OP_const1u;
8616 else if (i <= 0xffff)
8617 op = DW_OP_const2u;
8618 else if (HOST_BITS_PER_WIDE_INT == 32
8619 || i <= 0xffffffff)
8620 op = DW_OP_const4u;
8621 else
8622 op = DW_OP_constu;
8624 else
8626 if (i >= -0x80)
8627 op = DW_OP_const1s;
8628 else if (i >= -0x8000)
8629 op = DW_OP_const2s;
8630 else if (HOST_BITS_PER_WIDE_INT == 32
8631 || i >= -0x80000000)
8632 op = DW_OP_const4s;
8633 else
8634 op = DW_OP_consts;
8637 return new_loc_descr (op, i, 0);
8640 /* Return a location descriptor that designates a base+offset location. */
8642 static dw_loc_descr_ref
8643 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8645 unsigned int regno;
8647 /* We only use "frame base" when we're sure we're talking about the
8648 post-prologue local stack frame. We do this by *not* running
8649 register elimination until this point, and recognizing the special
8650 argument pointer and soft frame pointer rtx's. */
8651 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8653 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8655 if (elim != reg)
8657 if (GET_CODE (elim) == PLUS)
8659 offset += INTVAL (XEXP (elim, 1));
8660 elim = XEXP (elim, 0);
8662 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8663 : stack_pointer_rtx));
8664 offset += frame_pointer_fb_offset;
8666 return new_loc_descr (DW_OP_fbreg, offset, 0);
8670 regno = dbx_reg_number (reg);
8671 if (regno <= 31)
8672 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8673 else
8674 return new_loc_descr (DW_OP_bregx, regno, offset);
8677 /* Return true if this RTL expression describes a base+offset calculation. */
8679 static inline int
8680 is_based_loc (rtx rtl)
8682 return (GET_CODE (rtl) == PLUS
8683 && ((REG_P (XEXP (rtl, 0))
8684 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8685 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8688 /* The following routine converts the RTL for a variable or parameter
8689 (resident in memory) into an equivalent Dwarf representation of a
8690 mechanism for getting the address of that same variable onto the top of a
8691 hypothetical "address evaluation" stack.
8693 When creating memory location descriptors, we are effectively transforming
8694 the RTL for a memory-resident object into its Dwarf postfix expression
8695 equivalent. This routine recursively descends an RTL tree, turning
8696 it into Dwarf postfix code as it goes.
8698 MODE is the mode of the memory reference, needed to handle some
8699 autoincrement addressing modes.
8701 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8702 location list for RTL.
8704 Return 0 if we can't represent the location. */
8706 static dw_loc_descr_ref
8707 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8709 dw_loc_descr_ref mem_loc_result = NULL;
8710 enum dwarf_location_atom op;
8712 /* Note that for a dynamically sized array, the location we will generate a
8713 description of here will be the lowest numbered location which is
8714 actually within the array. That's *not* necessarily the same as the
8715 zeroth element of the array. */
8717 rtl = targetm.delegitimize_address (rtl);
8719 switch (GET_CODE (rtl))
8721 case POST_INC:
8722 case POST_DEC:
8723 case POST_MODIFY:
8724 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8725 just fall into the SUBREG code. */
8727 /* ... fall through ... */
8729 case SUBREG:
8730 /* The case of a subreg may arise when we have a local (register)
8731 variable or a formal (register) parameter which doesn't quite fill
8732 up an entire register. For now, just assume that it is
8733 legitimate to make the Dwarf info refer to the whole register which
8734 contains the given subreg. */
8735 rtl = XEXP (rtl, 0);
8737 /* ... fall through ... */
8739 case REG:
8740 /* Whenever a register number forms a part of the description of the
8741 method for calculating the (dynamic) address of a memory resident
8742 object, DWARF rules require the register number be referred to as
8743 a "base register". This distinction is not based in any way upon
8744 what category of register the hardware believes the given register
8745 belongs to. This is strictly DWARF terminology we're dealing with
8746 here. Note that in cases where the location of a memory-resident
8747 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8748 OP_CONST (0)) the actual DWARF location descriptor that we generate
8749 may just be OP_BASEREG (basereg). This may look deceptively like
8750 the object in question was allocated to a register (rather than in
8751 memory) so DWARF consumers need to be aware of the subtle
8752 distinction between OP_REG and OP_BASEREG. */
8753 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8754 mem_loc_result = based_loc_descr (rtl, 0);
8755 break;
8757 case MEM:
8758 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8759 if (mem_loc_result != 0)
8760 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8761 break;
8763 case LO_SUM:
8764 rtl = XEXP (rtl, 1);
8766 /* ... fall through ... */
8768 case LABEL_REF:
8769 /* Some ports can transform a symbol ref into a label ref, because
8770 the symbol ref is too far away and has to be dumped into a constant
8771 pool. */
8772 case CONST:
8773 case SYMBOL_REF:
8774 /* Alternatively, the symbol in the constant pool might be referenced
8775 by a different symbol. */
8776 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8778 bool marked;
8779 rtx tmp = get_pool_constant_mark (rtl, &marked);
8781 if (GET_CODE (tmp) == SYMBOL_REF)
8783 rtl = tmp;
8784 if (CONSTANT_POOL_ADDRESS_P (tmp))
8785 get_pool_constant_mark (tmp, &marked);
8786 else
8787 marked = true;
8790 /* If all references to this pool constant were optimized away,
8791 it was not output and thus we can't represent it.
8792 FIXME: might try to use DW_OP_const_value here, though
8793 DW_OP_piece complicates it. */
8794 if (!marked)
8795 return 0;
8798 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8799 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8800 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8801 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8802 break;
8804 case PRE_MODIFY:
8805 /* Extract the PLUS expression nested inside and fall into
8806 PLUS code below. */
8807 rtl = XEXP (rtl, 1);
8808 goto plus;
8810 case PRE_INC:
8811 case PRE_DEC:
8812 /* Turn these into a PLUS expression and fall into the PLUS code
8813 below. */
8814 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8815 GEN_INT (GET_CODE (rtl) == PRE_INC
8816 ? GET_MODE_UNIT_SIZE (mode)
8817 : -GET_MODE_UNIT_SIZE (mode)));
8819 /* ... fall through ... */
8821 case PLUS:
8822 plus:
8823 if (is_based_loc (rtl))
8824 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8825 INTVAL (XEXP (rtl, 1)));
8826 else
8828 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8829 if (mem_loc_result == 0)
8830 break;
8832 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8833 && INTVAL (XEXP (rtl, 1)) >= 0)
8834 add_loc_descr (&mem_loc_result,
8835 new_loc_descr (DW_OP_plus_uconst,
8836 INTVAL (XEXP (rtl, 1)), 0));
8837 else
8839 add_loc_descr (&mem_loc_result,
8840 mem_loc_descriptor (XEXP (rtl, 1), mode));
8841 add_loc_descr (&mem_loc_result,
8842 new_loc_descr (DW_OP_plus, 0, 0));
8845 break;
8847 /* If a pseudo-reg is optimized away, it is possible for it to
8848 be replaced with a MEM containing a multiply or shift. */
8849 case MULT:
8850 op = DW_OP_mul;
8851 goto do_binop;
8853 case ASHIFT:
8854 op = DW_OP_shl;
8855 goto do_binop;
8857 case ASHIFTRT:
8858 op = DW_OP_shra;
8859 goto do_binop;
8861 case LSHIFTRT:
8862 op = DW_OP_shr;
8863 goto do_binop;
8865 do_binop:
8867 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8868 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8870 if (op0 == 0 || op1 == 0)
8871 break;
8873 mem_loc_result = op0;
8874 add_loc_descr (&mem_loc_result, op1);
8875 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8876 break;
8879 case CONST_INT:
8880 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8881 break;
8883 default:
8884 gcc_unreachable ();
8887 return mem_loc_result;
8890 /* Return a descriptor that describes the concatenation of two locations.
8891 This is typically a complex variable. */
8893 static dw_loc_descr_ref
8894 concat_loc_descriptor (rtx x0, rtx x1)
8896 dw_loc_descr_ref cc_loc_result = NULL;
8897 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8898 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8900 if (x0_ref == 0 || x1_ref == 0)
8901 return 0;
8903 cc_loc_result = x0_ref;
8904 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8906 add_loc_descr (&cc_loc_result, x1_ref);
8907 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8909 return cc_loc_result;
8912 /* Output a proper Dwarf location descriptor for a variable or parameter
8913 which is either allocated in a register or in a memory location. For a
8914 register, we just generate an OP_REG and the register number. For a
8915 memory location we provide a Dwarf postfix expression describing how to
8916 generate the (dynamic) address of the object onto the address stack.
8918 If we don't know how to describe it, return 0. */
8920 static dw_loc_descr_ref
8921 loc_descriptor (rtx rtl)
8923 dw_loc_descr_ref loc_result = NULL;
8925 switch (GET_CODE (rtl))
8927 case SUBREG:
8928 /* The case of a subreg may arise when we have a local (register)
8929 variable or a formal (register) parameter which doesn't quite fill
8930 up an entire register. For now, just assume that it is
8931 legitimate to make the Dwarf info refer to the whole register which
8932 contains the given subreg. */
8933 rtl = SUBREG_REG (rtl);
8935 /* ... fall through ... */
8937 case REG:
8938 loc_result = reg_loc_descriptor (rtl);
8939 break;
8941 case MEM:
8942 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8943 break;
8945 case CONCAT:
8946 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8947 break;
8949 case VAR_LOCATION:
8950 /* Single part. */
8951 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8953 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
8954 break;
8957 rtl = XEXP (rtl, 1);
8958 /* FALLTHRU */
8960 case PARALLEL:
8962 rtvec par_elems = XVEC (rtl, 0);
8963 int num_elem = GET_NUM_ELEM (par_elems);
8964 enum machine_mode mode;
8965 int i;
8967 /* Create the first one, so we have something to add to. */
8968 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
8969 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8970 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8971 for (i = 1; i < num_elem; i++)
8973 dw_loc_descr_ref temp;
8975 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
8976 add_loc_descr (&loc_result, temp);
8977 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8978 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8981 break;
8983 default:
8984 gcc_unreachable ();
8987 return loc_result;
8990 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8991 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8992 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8993 top-level invocation, and we require the address of LOC; is 0 if we require
8994 the value of LOC. */
8996 static dw_loc_descr_ref
8997 loc_descriptor_from_tree_1 (tree loc, int want_address)
8999 dw_loc_descr_ref ret, ret1;
9000 int have_address = 0;
9001 enum dwarf_location_atom op;
9003 /* ??? Most of the time we do not take proper care for sign/zero
9004 extending the values properly. Hopefully this won't be a real
9005 problem... */
9007 switch (TREE_CODE (loc))
9009 case ERROR_MARK:
9010 return 0;
9012 case PLACEHOLDER_EXPR:
9013 /* This case involves extracting fields from an object to determine the
9014 position of other fields. We don't try to encode this here. The
9015 only user of this is Ada, which encodes the needed information using
9016 the names of types. */
9017 return 0;
9019 case CALL_EXPR:
9020 return 0;
9022 case PREINCREMENT_EXPR:
9023 case PREDECREMENT_EXPR:
9024 case POSTINCREMENT_EXPR:
9025 case POSTDECREMENT_EXPR:
9026 /* There are no opcodes for these operations. */
9027 return 0;
9029 case ADDR_EXPR:
9030 /* If we already want an address, there's nothing we can do. */
9031 if (want_address)
9032 return 0;
9034 /* Otherwise, process the argument and look for the address. */
9035 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9037 case VAR_DECL:
9038 if (DECL_THREAD_LOCAL_P (loc))
9040 rtx rtl;
9042 /* If this is not defined, we have no way to emit the data. */
9043 if (!targetm.asm_out.output_dwarf_dtprel)
9044 return 0;
9046 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9047 look up addresses of objects in the current module. */
9048 if (DECL_EXTERNAL (loc))
9049 return 0;
9051 rtl = rtl_for_decl_location (loc);
9052 if (rtl == NULL_RTX)
9053 return 0;
9055 if (!MEM_P (rtl))
9056 return 0;
9057 rtl = XEXP (rtl, 0);
9058 if (! CONSTANT_P (rtl))
9059 return 0;
9061 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9062 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9063 ret->dw_loc_oprnd1.v.val_addr = rtl;
9065 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9066 add_loc_descr (&ret, ret1);
9068 have_address = 1;
9069 break;
9071 /* FALLTHRU */
9073 case PARM_DECL:
9074 if (DECL_HAS_VALUE_EXPR_P (loc))
9075 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9076 want_address);
9077 /* FALLTHRU */
9079 case RESULT_DECL:
9081 rtx rtl = rtl_for_decl_location (loc);
9083 if (rtl == NULL_RTX)
9084 return 0;
9085 else if (GET_CODE (rtl) == CONST_INT)
9087 HOST_WIDE_INT val = INTVAL (rtl);
9088 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9089 val &= GET_MODE_MASK (DECL_MODE (loc));
9090 ret = int_loc_descriptor (val);
9092 else if (GET_CODE (rtl) == CONST_STRING)
9093 return 0;
9094 else if (CONSTANT_P (rtl))
9096 ret = new_loc_descr (DW_OP_addr, 0, 0);
9097 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9098 ret->dw_loc_oprnd1.v.val_addr = rtl;
9100 else
9102 enum machine_mode mode;
9104 /* Certain constructs can only be represented at top-level. */
9105 if (want_address == 2)
9106 return loc_descriptor (rtl);
9108 mode = GET_MODE (rtl);
9109 if (MEM_P (rtl))
9111 rtl = XEXP (rtl, 0);
9112 have_address = 1;
9114 ret = mem_loc_descriptor (rtl, mode);
9117 break;
9119 case INDIRECT_REF:
9120 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9121 have_address = 1;
9122 break;
9124 case COMPOUND_EXPR:
9125 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9127 case NOP_EXPR:
9128 case CONVERT_EXPR:
9129 case NON_LVALUE_EXPR:
9130 case VIEW_CONVERT_EXPR:
9131 case SAVE_EXPR:
9132 case MODIFY_EXPR:
9133 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9135 case COMPONENT_REF:
9136 case BIT_FIELD_REF:
9137 case ARRAY_REF:
9138 case ARRAY_RANGE_REF:
9140 tree obj, offset;
9141 HOST_WIDE_INT bitsize, bitpos, bytepos;
9142 enum machine_mode mode;
9143 int volatilep;
9144 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9146 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9147 &unsignedp, &volatilep, false);
9149 if (obj == loc)
9150 return 0;
9152 ret = loc_descriptor_from_tree_1 (obj, 1);
9153 if (ret == 0
9154 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9155 return 0;
9157 if (offset != NULL_TREE)
9159 /* Variable offset. */
9160 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9161 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9164 bytepos = bitpos / BITS_PER_UNIT;
9165 if (bytepos > 0)
9166 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9167 else if (bytepos < 0)
9169 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9170 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9173 have_address = 1;
9174 break;
9177 case INTEGER_CST:
9178 if (host_integerp (loc, 0))
9179 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9180 else
9181 return 0;
9182 break;
9184 case CONSTRUCTOR:
9186 /* Get an RTL for this, if something has been emitted. */
9187 rtx rtl = lookup_constant_def (loc);
9188 enum machine_mode mode;
9190 if (!rtl || !MEM_P (rtl))
9191 return 0;
9192 mode = GET_MODE (rtl);
9193 rtl = XEXP (rtl, 0);
9194 ret = mem_loc_descriptor (rtl, mode);
9195 have_address = 1;
9196 break;
9199 case TRUTH_AND_EXPR:
9200 case TRUTH_ANDIF_EXPR:
9201 case BIT_AND_EXPR:
9202 op = DW_OP_and;
9203 goto do_binop;
9205 case TRUTH_XOR_EXPR:
9206 case BIT_XOR_EXPR:
9207 op = DW_OP_xor;
9208 goto do_binop;
9210 case TRUTH_OR_EXPR:
9211 case TRUTH_ORIF_EXPR:
9212 case BIT_IOR_EXPR:
9213 op = DW_OP_or;
9214 goto do_binop;
9216 case FLOOR_DIV_EXPR:
9217 case CEIL_DIV_EXPR:
9218 case ROUND_DIV_EXPR:
9219 case TRUNC_DIV_EXPR:
9220 op = DW_OP_div;
9221 goto do_binop;
9223 case MINUS_EXPR:
9224 op = DW_OP_minus;
9225 goto do_binop;
9227 case FLOOR_MOD_EXPR:
9228 case CEIL_MOD_EXPR:
9229 case ROUND_MOD_EXPR:
9230 case TRUNC_MOD_EXPR:
9231 op = DW_OP_mod;
9232 goto do_binop;
9234 case MULT_EXPR:
9235 op = DW_OP_mul;
9236 goto do_binop;
9238 case LSHIFT_EXPR:
9239 op = DW_OP_shl;
9240 goto do_binop;
9242 case RSHIFT_EXPR:
9243 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9244 goto do_binop;
9246 case PLUS_EXPR:
9247 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9248 && host_integerp (TREE_OPERAND (loc, 1), 0))
9250 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9251 if (ret == 0)
9252 return 0;
9254 add_loc_descr (&ret,
9255 new_loc_descr (DW_OP_plus_uconst,
9256 tree_low_cst (TREE_OPERAND (loc, 1),
9258 0));
9259 break;
9262 op = DW_OP_plus;
9263 goto do_binop;
9265 case LE_EXPR:
9266 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9267 return 0;
9269 op = DW_OP_le;
9270 goto do_binop;
9272 case GE_EXPR:
9273 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9274 return 0;
9276 op = DW_OP_ge;
9277 goto do_binop;
9279 case LT_EXPR:
9280 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9281 return 0;
9283 op = DW_OP_lt;
9284 goto do_binop;
9286 case GT_EXPR:
9287 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9288 return 0;
9290 op = DW_OP_gt;
9291 goto do_binop;
9293 case EQ_EXPR:
9294 op = DW_OP_eq;
9295 goto do_binop;
9297 case NE_EXPR:
9298 op = DW_OP_ne;
9299 goto do_binop;
9301 do_binop:
9302 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9303 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9304 if (ret == 0 || ret1 == 0)
9305 return 0;
9307 add_loc_descr (&ret, ret1);
9308 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9309 break;
9311 case TRUTH_NOT_EXPR:
9312 case BIT_NOT_EXPR:
9313 op = DW_OP_not;
9314 goto do_unop;
9316 case ABS_EXPR:
9317 op = DW_OP_abs;
9318 goto do_unop;
9320 case NEGATE_EXPR:
9321 op = DW_OP_neg;
9322 goto do_unop;
9324 do_unop:
9325 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9326 if (ret == 0)
9327 return 0;
9329 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9330 break;
9332 case MIN_EXPR:
9333 case MAX_EXPR:
9335 const enum tree_code code =
9336 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9338 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9339 build2 (code, integer_type_node,
9340 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9341 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9344 /* ... fall through ... */
9346 case COND_EXPR:
9348 dw_loc_descr_ref lhs
9349 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9350 dw_loc_descr_ref rhs
9351 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9352 dw_loc_descr_ref bra_node, jump_node, tmp;
9354 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9355 if (ret == 0 || lhs == 0 || rhs == 0)
9356 return 0;
9358 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9359 add_loc_descr (&ret, bra_node);
9361 add_loc_descr (&ret, rhs);
9362 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9363 add_loc_descr (&ret, jump_node);
9365 add_loc_descr (&ret, lhs);
9366 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9367 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9369 /* ??? Need a node to point the skip at. Use a nop. */
9370 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9371 add_loc_descr (&ret, tmp);
9372 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9373 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9375 break;
9377 case FIX_TRUNC_EXPR:
9378 case FIX_CEIL_EXPR:
9379 case FIX_FLOOR_EXPR:
9380 case FIX_ROUND_EXPR:
9381 return 0;
9383 default:
9384 /* Leave front-end specific codes as simply unknown. This comes
9385 up, for instance, with the C STMT_EXPR. */
9386 if ((unsigned int) TREE_CODE (loc)
9387 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9388 return 0;
9390 #ifdef ENABLE_CHECKING
9391 /* Otherwise this is a generic code; we should just lists all of
9392 these explicitly. We forgot one. */
9393 gcc_unreachable ();
9394 #else
9395 /* In a release build, we want to degrade gracefully: better to
9396 generate incomplete debugging information than to crash. */
9397 return NULL;
9398 #endif
9401 /* Show if we can't fill the request for an address. */
9402 if (want_address && !have_address)
9403 return 0;
9405 /* If we've got an address and don't want one, dereference. */
9406 if (!want_address && have_address && ret)
9408 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9410 if (size > DWARF2_ADDR_SIZE || size == -1)
9411 return 0;
9412 else if (size == DWARF2_ADDR_SIZE)
9413 op = DW_OP_deref;
9414 else
9415 op = DW_OP_deref_size;
9417 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9420 return ret;
9423 static inline dw_loc_descr_ref
9424 loc_descriptor_from_tree (tree loc)
9426 return loc_descriptor_from_tree_1 (loc, 2);
9429 /* Given a value, round it up to the lowest multiple of `boundary'
9430 which is not less than the value itself. */
9432 static inline HOST_WIDE_INT
9433 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9435 return (((value + boundary - 1) / boundary) * boundary);
9438 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9439 pointer to the declared type for the relevant field variable, or return
9440 `integer_type_node' if the given node turns out to be an
9441 ERROR_MARK node. */
9443 static inline tree
9444 field_type (tree decl)
9446 tree type;
9448 if (TREE_CODE (decl) == ERROR_MARK)
9449 return integer_type_node;
9451 type = DECL_BIT_FIELD_TYPE (decl);
9452 if (type == NULL_TREE)
9453 type = TREE_TYPE (decl);
9455 return type;
9458 /* Given a pointer to a tree node, return the alignment in bits for
9459 it, or else return BITS_PER_WORD if the node actually turns out to
9460 be an ERROR_MARK node. */
9462 static inline unsigned
9463 simple_type_align_in_bits (tree type)
9465 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9468 static inline unsigned
9469 simple_decl_align_in_bits (tree decl)
9471 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9474 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9475 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9476 or return 0 if we are unable to determine what that offset is, either
9477 because the argument turns out to be a pointer to an ERROR_MARK node, or
9478 because the offset is actually variable. (We can't handle the latter case
9479 just yet). */
9481 static HOST_WIDE_INT
9482 field_byte_offset (tree decl)
9484 unsigned int type_align_in_bits;
9485 unsigned int decl_align_in_bits;
9486 unsigned HOST_WIDE_INT type_size_in_bits;
9487 HOST_WIDE_INT object_offset_in_bits;
9488 tree type;
9489 tree field_size_tree;
9490 HOST_WIDE_INT bitpos_int;
9491 HOST_WIDE_INT deepest_bitpos;
9492 unsigned HOST_WIDE_INT field_size_in_bits;
9494 if (TREE_CODE (decl) == ERROR_MARK)
9495 return 0;
9497 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9499 type = field_type (decl);
9500 field_size_tree = DECL_SIZE (decl);
9502 /* The size could be unspecified if there was an error, or for
9503 a flexible array member. */
9504 if (! field_size_tree)
9505 field_size_tree = bitsize_zero_node;
9507 /* We cannot yet cope with fields whose positions are variable, so
9508 for now, when we see such things, we simply return 0. Someday, we may
9509 be able to handle such cases, but it will be damn difficult. */
9510 if (! host_integerp (bit_position (decl), 0))
9511 return 0;
9513 bitpos_int = int_bit_position (decl);
9515 /* If we don't know the size of the field, pretend it's a full word. */
9516 if (host_integerp (field_size_tree, 1))
9517 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9518 else
9519 field_size_in_bits = BITS_PER_WORD;
9521 type_size_in_bits = simple_type_size_in_bits (type);
9522 type_align_in_bits = simple_type_align_in_bits (type);
9523 decl_align_in_bits = simple_decl_align_in_bits (decl);
9525 /* The GCC front-end doesn't make any attempt to keep track of the starting
9526 bit offset (relative to the start of the containing structure type) of the
9527 hypothetical "containing object" for a bit-field. Thus, when computing
9528 the byte offset value for the start of the "containing object" of a
9529 bit-field, we must deduce this information on our own. This can be rather
9530 tricky to do in some cases. For example, handling the following structure
9531 type definition when compiling for an i386/i486 target (which only aligns
9532 long long's to 32-bit boundaries) can be very tricky:
9534 struct S { int field1; long long field2:31; };
9536 Fortunately, there is a simple rule-of-thumb which can be used in such
9537 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9538 structure shown above. It decides to do this based upon one simple rule
9539 for bit-field allocation. GCC allocates each "containing object" for each
9540 bit-field at the first (i.e. lowest addressed) legitimate alignment
9541 boundary (based upon the required minimum alignment for the declared type
9542 of the field) which it can possibly use, subject to the condition that
9543 there is still enough available space remaining in the containing object
9544 (when allocated at the selected point) to fully accommodate all of the
9545 bits of the bit-field itself.
9547 This simple rule makes it obvious why GCC allocates 8 bytes for each
9548 object of the structure type shown above. When looking for a place to
9549 allocate the "containing object" for `field2', the compiler simply tries
9550 to allocate a 64-bit "containing object" at each successive 32-bit
9551 boundary (starting at zero) until it finds a place to allocate that 64-
9552 bit field such that at least 31 contiguous (and previously unallocated)
9553 bits remain within that selected 64 bit field. (As it turns out, for the
9554 example above, the compiler finds it is OK to allocate the "containing
9555 object" 64-bit field at bit-offset zero within the structure type.)
9557 Here we attempt to work backwards from the limited set of facts we're
9558 given, and we try to deduce from those facts, where GCC must have believed
9559 that the containing object started (within the structure type). The value
9560 we deduce is then used (by the callers of this routine) to generate
9561 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9562 and, in the case of DW_AT_location, regular fields as well). */
9564 /* Figure out the bit-distance from the start of the structure to the
9565 "deepest" bit of the bit-field. */
9566 deepest_bitpos = bitpos_int + field_size_in_bits;
9568 /* This is the tricky part. Use some fancy footwork to deduce where the
9569 lowest addressed bit of the containing object must be. */
9570 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9572 /* Round up to type_align by default. This works best for bitfields. */
9573 object_offset_in_bits += type_align_in_bits - 1;
9574 object_offset_in_bits /= type_align_in_bits;
9575 object_offset_in_bits *= type_align_in_bits;
9577 if (object_offset_in_bits > bitpos_int)
9579 /* Sigh, the decl must be packed. */
9580 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9582 /* Round up to decl_align instead. */
9583 object_offset_in_bits += decl_align_in_bits - 1;
9584 object_offset_in_bits /= decl_align_in_bits;
9585 object_offset_in_bits *= decl_align_in_bits;
9588 return object_offset_in_bits / BITS_PER_UNIT;
9591 /* The following routines define various Dwarf attributes and any data
9592 associated with them. */
9594 /* Add a location description attribute value to a DIE.
9596 This emits location attributes suitable for whole variables and
9597 whole parameters. Note that the location attributes for struct fields are
9598 generated by the routine `data_member_location_attribute' below. */
9600 static inline void
9601 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9602 dw_loc_descr_ref descr)
9604 if (descr != 0)
9605 add_AT_loc (die, attr_kind, descr);
9608 /* Attach the specialized form of location attribute used for data members of
9609 struct and union types. In the special case of a FIELD_DECL node which
9610 represents a bit-field, the "offset" part of this special location
9611 descriptor must indicate the distance in bytes from the lowest-addressed
9612 byte of the containing struct or union type to the lowest-addressed byte of
9613 the "containing object" for the bit-field. (See the `field_byte_offset'
9614 function above).
9616 For any given bit-field, the "containing object" is a hypothetical object
9617 (of some integral or enum type) within which the given bit-field lives. The
9618 type of this hypothetical "containing object" is always the same as the
9619 declared type of the individual bit-field itself (for GCC anyway... the
9620 DWARF spec doesn't actually mandate this). Note that it is the size (in
9621 bytes) of the hypothetical "containing object" which will be given in the
9622 DW_AT_byte_size attribute for this bit-field. (See the
9623 `byte_size_attribute' function below.) It is also used when calculating the
9624 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9625 function below.) */
9627 static void
9628 add_data_member_location_attribute (dw_die_ref die, tree decl)
9630 HOST_WIDE_INT offset;
9631 dw_loc_descr_ref loc_descr = 0;
9633 if (TREE_CODE (decl) == TREE_BINFO)
9635 /* We're working on the TAG_inheritance for a base class. */
9636 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9638 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9639 aren't at a fixed offset from all (sub)objects of the same
9640 type. We need to extract the appropriate offset from our
9641 vtable. The following dwarf expression means
9643 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9645 This is specific to the V3 ABI, of course. */
9647 dw_loc_descr_ref tmp;
9649 /* Make a copy of the object address. */
9650 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9651 add_loc_descr (&loc_descr, tmp);
9653 /* Extract the vtable address. */
9654 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9655 add_loc_descr (&loc_descr, tmp);
9657 /* Calculate the address of the offset. */
9658 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9659 gcc_assert (offset < 0);
9661 tmp = int_loc_descriptor (-offset);
9662 add_loc_descr (&loc_descr, tmp);
9663 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9664 add_loc_descr (&loc_descr, tmp);
9666 /* Extract the offset. */
9667 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9668 add_loc_descr (&loc_descr, tmp);
9670 /* Add it to the object address. */
9671 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9672 add_loc_descr (&loc_descr, tmp);
9674 else
9675 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9677 else
9678 offset = field_byte_offset (decl);
9680 if (! loc_descr)
9682 enum dwarf_location_atom op;
9684 /* The DWARF2 standard says that we should assume that the structure
9685 address is already on the stack, so we can specify a structure field
9686 address by using DW_OP_plus_uconst. */
9688 #ifdef MIPS_DEBUGGING_INFO
9689 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9690 operator correctly. It works only if we leave the offset on the
9691 stack. */
9692 op = DW_OP_constu;
9693 #else
9694 op = DW_OP_plus_uconst;
9695 #endif
9697 loc_descr = new_loc_descr (op, offset, 0);
9700 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9703 /* Writes integer values to dw_vec_const array. */
9705 static void
9706 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9708 while (size != 0)
9710 *dest++ = val & 0xff;
9711 val >>= 8;
9712 --size;
9716 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9718 static HOST_WIDE_INT
9719 extract_int (const unsigned char *src, unsigned int size)
9721 HOST_WIDE_INT val = 0;
9723 src += size;
9724 while (size != 0)
9726 val <<= 8;
9727 val |= *--src & 0xff;
9728 --size;
9730 return val;
9733 /* Writes floating point values to dw_vec_const array. */
9735 static void
9736 insert_float (rtx rtl, unsigned char *array)
9738 REAL_VALUE_TYPE rv;
9739 long val[4];
9740 int i;
9742 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9743 real_to_target (val, &rv, GET_MODE (rtl));
9745 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9746 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9748 insert_int (val[i], 4, array);
9749 array += 4;
9753 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9754 does not have a "location" either in memory or in a register. These
9755 things can arise in GNU C when a constant is passed as an actual parameter
9756 to an inlined function. They can also arise in C++ where declared
9757 constants do not necessarily get memory "homes". */
9759 static void
9760 add_const_value_attribute (dw_die_ref die, rtx rtl)
9762 switch (GET_CODE (rtl))
9764 case CONST_INT:
9766 HOST_WIDE_INT val = INTVAL (rtl);
9768 if (val < 0)
9769 add_AT_int (die, DW_AT_const_value, val);
9770 else
9771 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9773 break;
9775 case CONST_DOUBLE:
9776 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9777 floating-point constant. A CONST_DOUBLE is used whenever the
9778 constant requires more than one word in order to be adequately
9779 represented. We output CONST_DOUBLEs as blocks. */
9781 enum machine_mode mode = GET_MODE (rtl);
9783 if (SCALAR_FLOAT_MODE_P (mode))
9785 unsigned int length = GET_MODE_SIZE (mode);
9786 unsigned char *array = ggc_alloc (length);
9788 insert_float (rtl, array);
9789 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9791 else
9793 /* ??? We really should be using HOST_WIDE_INT throughout. */
9794 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9796 add_AT_long_long (die, DW_AT_const_value,
9797 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9800 break;
9802 case CONST_VECTOR:
9804 enum machine_mode mode = GET_MODE (rtl);
9805 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9806 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9807 unsigned char *array = ggc_alloc (length * elt_size);
9808 unsigned int i;
9809 unsigned char *p;
9811 switch (GET_MODE_CLASS (mode))
9813 case MODE_VECTOR_INT:
9814 for (i = 0, p = array; i < length; i++, p += elt_size)
9816 rtx elt = CONST_VECTOR_ELT (rtl, i);
9817 HOST_WIDE_INT lo, hi;
9819 switch (GET_CODE (elt))
9821 case CONST_INT:
9822 lo = INTVAL (elt);
9823 hi = -(lo < 0);
9824 break;
9826 case CONST_DOUBLE:
9827 lo = CONST_DOUBLE_LOW (elt);
9828 hi = CONST_DOUBLE_HIGH (elt);
9829 break;
9831 default:
9832 gcc_unreachable ();
9835 if (elt_size <= sizeof (HOST_WIDE_INT))
9836 insert_int (lo, elt_size, p);
9837 else
9839 unsigned char *p0 = p;
9840 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9842 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9843 if (WORDS_BIG_ENDIAN)
9845 p0 = p1;
9846 p1 = p;
9848 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9849 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9852 break;
9854 case MODE_VECTOR_FLOAT:
9855 for (i = 0, p = array; i < length; i++, p += elt_size)
9857 rtx elt = CONST_VECTOR_ELT (rtl, i);
9858 insert_float (elt, p);
9860 break;
9862 default:
9863 gcc_unreachable ();
9866 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9868 break;
9870 case CONST_STRING:
9871 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9872 break;
9874 case SYMBOL_REF:
9875 case LABEL_REF:
9876 case CONST:
9877 add_AT_addr (die, DW_AT_const_value, rtl);
9878 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9879 break;
9881 case PLUS:
9882 /* In cases where an inlined instance of an inline function is passed
9883 the address of an `auto' variable (which is local to the caller) we
9884 can get a situation where the DECL_RTL of the artificial local
9885 variable (for the inlining) which acts as a stand-in for the
9886 corresponding formal parameter (of the inline function) will look
9887 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9888 exactly a compile-time constant expression, but it isn't the address
9889 of the (artificial) local variable either. Rather, it represents the
9890 *value* which the artificial local variable always has during its
9891 lifetime. We currently have no way to represent such quasi-constant
9892 values in Dwarf, so for now we just punt and generate nothing. */
9893 break;
9895 default:
9896 /* No other kinds of rtx should be possible here. */
9897 gcc_unreachable ();
9902 /* Determine whether the evaluation of EXPR references any variables
9903 or functions which aren't otherwise used (and therefore may not be
9904 output). */
9905 static tree
9906 reference_to_unused (tree * tp, int * walk_subtrees,
9907 void * data ATTRIBUTE_UNUSED)
9909 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
9910 *walk_subtrees = 0;
9912 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
9913 && ! TREE_ASM_WRITTEN (*tp))
9914 return *tp;
9915 else
9916 return NULL_TREE;
9919 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9920 for use in a later add_const_value_attribute call. */
9922 static rtx
9923 rtl_for_decl_init (tree init, tree type)
9925 rtx rtl = NULL_RTX;
9927 /* If a variable is initialized with a string constant without embedded
9928 zeros, build CONST_STRING. */
9929 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9931 tree enttype = TREE_TYPE (type);
9932 tree domain = TYPE_DOMAIN (type);
9933 enum machine_mode mode = TYPE_MODE (enttype);
9935 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9936 && domain
9937 && integer_zerop (TYPE_MIN_VALUE (domain))
9938 && compare_tree_int (TYPE_MAX_VALUE (domain),
9939 TREE_STRING_LENGTH (init) - 1) == 0
9940 && ((size_t) TREE_STRING_LENGTH (init)
9941 == strlen (TREE_STRING_POINTER (init)) + 1))
9942 rtl = gen_rtx_CONST_STRING (VOIDmode,
9943 ggc_strdup (TREE_STRING_POINTER (init)));
9945 /* Although DWARF could easily handle other kinds of aggregates, we
9946 have no way to represent such values as RTL constants, so skip
9947 those. */
9948 else if (AGGREGATE_TYPE_P (type))
9950 /* If the initializer is something that we know will expand into an
9951 immediate RTL constant, expand it now. We must be careful not to
9952 reference variables which won't be output. */
9953 else if (initializer_constant_valid_p (init, type)
9954 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
9956 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9958 /* If expand_expr returns a MEM, it wasn't immediate. */
9959 gcc_assert (!rtl || !MEM_P (rtl));
9962 return rtl;
9965 /* Generate RTL for the variable DECL to represent its location. */
9967 static rtx
9968 rtl_for_decl_location (tree decl)
9970 rtx rtl;
9972 /* Here we have to decide where we are going to say the parameter "lives"
9973 (as far as the debugger is concerned). We only have a couple of
9974 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9976 DECL_RTL normally indicates where the parameter lives during most of the
9977 activation of the function. If optimization is enabled however, this
9978 could be either NULL or else a pseudo-reg. Both of those cases indicate
9979 that the parameter doesn't really live anywhere (as far as the code
9980 generation parts of GCC are concerned) during most of the function's
9981 activation. That will happen (for example) if the parameter is never
9982 referenced within the function.
9984 We could just generate a location descriptor here for all non-NULL
9985 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9986 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9987 where DECL_RTL is NULL or is a pseudo-reg.
9989 Note however that we can only get away with using DECL_INCOMING_RTL as
9990 a backup substitute for DECL_RTL in certain limited cases. In cases
9991 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9992 we can be sure that the parameter was passed using the same type as it is
9993 declared to have within the function, and that its DECL_INCOMING_RTL
9994 points us to a place where a value of that type is passed.
9996 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9997 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9998 because in these cases DECL_INCOMING_RTL points us to a value of some
9999 type which is *different* from the type of the parameter itself. Thus,
10000 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10001 such cases, the debugger would end up (for example) trying to fetch a
10002 `float' from a place which actually contains the first part of a
10003 `double'. That would lead to really incorrect and confusing
10004 output at debug-time.
10006 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10007 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10008 are a couple of exceptions however. On little-endian machines we can
10009 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10010 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10011 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10012 when (on a little-endian machine) a non-prototyped function has a
10013 parameter declared to be of type `short' or `char'. In such cases,
10014 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10015 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10016 passed `int' value. If the debugger then uses that address to fetch
10017 a `short' or a `char' (on a little-endian machine) the result will be
10018 the correct data, so we allow for such exceptional cases below.
10020 Note that our goal here is to describe the place where the given formal
10021 parameter lives during most of the function's activation (i.e. between the
10022 end of the prologue and the start of the epilogue). We'll do that as best
10023 as we can. Note however that if the given formal parameter is modified
10024 sometime during the execution of the function, then a stack backtrace (at
10025 debug-time) will show the function as having been called with the *new*
10026 value rather than the value which was originally passed in. This happens
10027 rarely enough that it is not a major problem, but it *is* a problem, and
10028 I'd like to fix it.
10030 A future version of dwarf2out.c may generate two additional attributes for
10031 any given DW_TAG_formal_parameter DIE which will describe the "passed
10032 type" and the "passed location" for the given formal parameter in addition
10033 to the attributes we now generate to indicate the "declared type" and the
10034 "active location" for each parameter. This additional set of attributes
10035 could be used by debuggers for stack backtraces. Separately, note that
10036 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10037 This happens (for example) for inlined-instances of inline function formal
10038 parameters which are never referenced. This really shouldn't be
10039 happening. All PARM_DECL nodes should get valid non-NULL
10040 DECL_INCOMING_RTL values. FIXME. */
10042 /* Use DECL_RTL as the "location" unless we find something better. */
10043 rtl = DECL_RTL_IF_SET (decl);
10045 /* When generating abstract instances, ignore everything except
10046 constants, symbols living in memory, and symbols living in
10047 fixed registers. */
10048 if (! reload_completed)
10050 if (rtl
10051 && (CONSTANT_P (rtl)
10052 || (MEM_P (rtl)
10053 && CONSTANT_P (XEXP (rtl, 0)))
10054 || (REG_P (rtl)
10055 && TREE_CODE (decl) == VAR_DECL
10056 && TREE_STATIC (decl))))
10058 rtl = targetm.delegitimize_address (rtl);
10059 return rtl;
10061 rtl = NULL_RTX;
10063 else if (TREE_CODE (decl) == PARM_DECL)
10065 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10067 tree declared_type = TREE_TYPE (decl);
10068 tree passed_type = DECL_ARG_TYPE (decl);
10069 enum machine_mode dmode = TYPE_MODE (declared_type);
10070 enum machine_mode pmode = TYPE_MODE (passed_type);
10072 /* This decl represents a formal parameter which was optimized out.
10073 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10074 all cases where (rtl == NULL_RTX) just below. */
10075 if (dmode == pmode)
10076 rtl = DECL_INCOMING_RTL (decl);
10077 else if (SCALAR_INT_MODE_P (dmode)
10078 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10079 && DECL_INCOMING_RTL (decl))
10081 rtx inc = DECL_INCOMING_RTL (decl);
10082 if (REG_P (inc))
10083 rtl = inc;
10084 else if (MEM_P (inc))
10086 if (BYTES_BIG_ENDIAN)
10087 rtl = adjust_address_nv (inc, dmode,
10088 GET_MODE_SIZE (pmode)
10089 - GET_MODE_SIZE (dmode));
10090 else
10091 rtl = inc;
10096 /* If the parm was passed in registers, but lives on the stack, then
10097 make a big endian correction if the mode of the type of the
10098 parameter is not the same as the mode of the rtl. */
10099 /* ??? This is the same series of checks that are made in dbxout.c before
10100 we reach the big endian correction code there. It isn't clear if all
10101 of these checks are necessary here, but keeping them all is the safe
10102 thing to do. */
10103 else if (MEM_P (rtl)
10104 && XEXP (rtl, 0) != const0_rtx
10105 && ! CONSTANT_P (XEXP (rtl, 0))
10106 /* Not passed in memory. */
10107 && !MEM_P (DECL_INCOMING_RTL (decl))
10108 /* Not passed by invisible reference. */
10109 && (!REG_P (XEXP (rtl, 0))
10110 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10111 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10112 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10113 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10114 #endif
10116 /* Big endian correction check. */
10117 && BYTES_BIG_ENDIAN
10118 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10119 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10120 < UNITS_PER_WORD))
10122 int offset = (UNITS_PER_WORD
10123 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10125 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10126 plus_constant (XEXP (rtl, 0), offset));
10129 else if (TREE_CODE (decl) == VAR_DECL
10130 && rtl
10131 && MEM_P (rtl)
10132 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10133 && BYTES_BIG_ENDIAN)
10135 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10136 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10138 /* If a variable is declared "register" yet is smaller than
10139 a register, then if we store the variable to memory, it
10140 looks like we're storing a register-sized value, when in
10141 fact we are not. We need to adjust the offset of the
10142 storage location to reflect the actual value's bytes,
10143 else gdb will not be able to display it. */
10144 if (rsize > dsize)
10145 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10146 plus_constant (XEXP (rtl, 0), rsize-dsize));
10149 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10150 and will have been substituted directly into all expressions that use it.
10151 C does not have such a concept, but C++ and other languages do. */
10152 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10153 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10155 if (rtl)
10156 rtl = targetm.delegitimize_address (rtl);
10158 /* If we don't look past the constant pool, we risk emitting a
10159 reference to a constant pool entry that isn't referenced from
10160 code, and thus is not emitted. */
10161 if (rtl)
10162 rtl = avoid_constant_pool_reference (rtl);
10164 return rtl;
10167 /* We need to figure out what section we should use as the base for the
10168 address ranges where a given location is valid.
10169 1. If this particular DECL has a section associated with it, use that.
10170 2. If this function has a section associated with it, use that.
10171 3. Otherwise, use the text section.
10172 XXX: If you split a variable across multiple sections, we won't notice. */
10174 static const char *
10175 secname_for_decl (tree decl)
10177 const char *secname;
10179 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10181 tree sectree = DECL_SECTION_NAME (decl);
10182 secname = TREE_STRING_POINTER (sectree);
10184 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10186 tree sectree = DECL_SECTION_NAME (current_function_decl);
10187 secname = TREE_STRING_POINTER (sectree);
10189 else if (cfun && in_cold_section_p)
10190 secname = cfun->cold_section_label;
10191 else
10192 secname = text_section_label;
10194 return secname;
10197 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10198 data attribute for a variable or a parameter. We generate the
10199 DW_AT_const_value attribute only in those cases where the given variable
10200 or parameter does not have a true "location" either in memory or in a
10201 register. This can happen (for example) when a constant is passed as an
10202 actual argument in a call to an inline function. (It's possible that
10203 these things can crop up in other ways also.) Note that one type of
10204 constant value which can be passed into an inlined function is a constant
10205 pointer. This can happen for example if an actual argument in an inlined
10206 function call evaluates to a compile-time constant address. */
10208 static void
10209 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10210 enum dwarf_attribute attr)
10212 rtx rtl;
10213 dw_loc_descr_ref descr;
10214 var_loc_list *loc_list;
10215 struct var_loc_node *node;
10216 if (TREE_CODE (decl) == ERROR_MARK)
10217 return;
10219 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10220 || TREE_CODE (decl) == RESULT_DECL);
10222 /* See if we possibly have multiple locations for this variable. */
10223 loc_list = lookup_decl_loc (decl);
10225 /* If it truly has multiple locations, the first and last node will
10226 differ. */
10227 if (loc_list && loc_list->first != loc_list->last)
10229 const char *endname, *secname;
10230 dw_loc_list_ref list;
10231 rtx varloc;
10233 /* Now that we know what section we are using for a base,
10234 actually construct the list of locations.
10235 The first location information is what is passed to the
10236 function that creates the location list, and the remaining
10237 locations just get added on to that list.
10238 Note that we only know the start address for a location
10239 (IE location changes), so to build the range, we use
10240 the range [current location start, next location start].
10241 This means we have to special case the last node, and generate
10242 a range of [last location start, end of function label]. */
10244 node = loc_list->first;
10245 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10246 secname = secname_for_decl (decl);
10248 list = new_loc_list (loc_descriptor (varloc),
10249 node->label, node->next->label, secname, 1);
10250 node = node->next;
10252 for (; node->next; node = node->next)
10253 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10255 /* The variable has a location between NODE->LABEL and
10256 NODE->NEXT->LABEL. */
10257 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10258 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10259 node->label, node->next->label, secname);
10262 /* If the variable has a location at the last label
10263 it keeps its location until the end of function. */
10264 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10266 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10268 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10269 if (!current_function_decl)
10270 endname = text_end_label;
10271 else
10273 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10274 current_function_funcdef_no);
10275 endname = ggc_strdup (label_id);
10277 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10278 node->label, endname, secname);
10281 /* Finally, add the location list to the DIE, and we are done. */
10282 add_AT_loc_list (die, attr, list);
10283 return;
10286 /* Try to get some constant RTL for this decl, and use that as the value of
10287 the location. */
10289 rtl = rtl_for_decl_location (decl);
10290 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10292 add_const_value_attribute (die, rtl);
10293 return;
10296 /* If we have tried to generate the location otherwise, and it
10297 didn't work out (we wouldn't be here if we did), and we have a one entry
10298 location list, try generating a location from that. */
10299 if (loc_list && loc_list->first)
10301 node = loc_list->first;
10302 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10303 if (descr)
10305 add_AT_location_description (die, attr, descr);
10306 return;
10310 /* We couldn't get any rtl, so try directly generating the location
10311 description from the tree. */
10312 descr = loc_descriptor_from_tree (decl);
10313 if (descr)
10315 add_AT_location_description (die, attr, descr);
10316 return;
10318 /* None of that worked, so it must not really have a location;
10319 try adding a constant value attribute from the DECL_INITIAL. */
10320 tree_add_const_value_attribute (die, decl);
10323 /* If we don't have a copy of this variable in memory for some reason (such
10324 as a C++ member constant that doesn't have an out-of-line definition),
10325 we should tell the debugger about the constant value. */
10327 static void
10328 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10330 tree init = DECL_INITIAL (decl);
10331 tree type = TREE_TYPE (decl);
10332 rtx rtl;
10334 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10335 /* OK */;
10336 else
10337 return;
10339 rtl = rtl_for_decl_init (init, type);
10340 if (rtl)
10341 add_const_value_attribute (var_die, rtl);
10344 /* Convert the CFI instructions for the current function into a
10345 location list. This is used for DW_AT_frame_base when we targeting
10346 a dwarf2 consumer that does not support the dwarf3
10347 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10348 expressions. */
10350 static dw_loc_list_ref
10351 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10353 dw_fde_ref fde;
10354 dw_loc_list_ref list, *list_tail;
10355 dw_cfi_ref cfi;
10356 dw_cfa_location last_cfa, next_cfa;
10357 const char *start_label, *last_label, *section;
10359 fde = &fde_table[fde_table_in_use - 1];
10361 section = secname_for_decl (current_function_decl);
10362 list_tail = &list;
10363 list = NULL;
10365 next_cfa.reg = INVALID_REGNUM;
10366 next_cfa.offset = 0;
10367 next_cfa.indirect = 0;
10368 next_cfa.base_offset = 0;
10370 start_label = fde->dw_fde_begin;
10372 /* ??? Bald assumption that the CIE opcode list does not contain
10373 advance opcodes. */
10374 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10375 lookup_cfa_1 (cfi, &next_cfa);
10377 last_cfa = next_cfa;
10378 last_label = start_label;
10380 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10381 switch (cfi->dw_cfi_opc)
10383 case DW_CFA_advance_loc1:
10384 case DW_CFA_advance_loc2:
10385 case DW_CFA_advance_loc4:
10386 if (!cfa_equal_p (&last_cfa, &next_cfa))
10388 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10389 start_label, last_label, section,
10390 list == NULL);
10392 list_tail = &(*list_tail)->dw_loc_next;
10393 last_cfa = next_cfa;
10394 start_label = last_label;
10396 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10397 break;
10399 case DW_CFA_advance_loc:
10400 /* The encoding is complex enough that we should never emit this. */
10401 case DW_CFA_remember_state:
10402 case DW_CFA_restore_state:
10403 /* We don't handle these two in this function. It would be possible
10404 if it were to be required. */
10405 gcc_unreachable ();
10407 default:
10408 lookup_cfa_1 (cfi, &next_cfa);
10409 break;
10412 if (!cfa_equal_p (&last_cfa, &next_cfa))
10414 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10415 start_label, last_label, section,
10416 list == NULL);
10417 list_tail = &(*list_tail)->dw_loc_next;
10418 start_label = last_label;
10420 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10421 start_label, fde->dw_fde_end, section,
10422 list == NULL);
10424 return list;
10427 /* Compute a displacement from the "steady-state frame pointer" to the
10428 frame base (often the same as the CFA), and store it in
10429 frame_pointer_fb_offset. OFFSET is added to the displacement
10430 before the latter is negated. */
10432 static void
10433 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10435 rtx reg, elim;
10437 #ifdef FRAME_POINTER_CFA_OFFSET
10438 reg = frame_pointer_rtx;
10439 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10440 #else
10441 reg = arg_pointer_rtx;
10442 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10443 #endif
10445 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10446 if (GET_CODE (elim) == PLUS)
10448 offset += INTVAL (XEXP (elim, 1));
10449 elim = XEXP (elim, 0);
10451 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10452 : stack_pointer_rtx));
10454 frame_pointer_fb_offset = -offset;
10457 /* Generate a DW_AT_name attribute given some string value to be included as
10458 the value of the attribute. */
10460 static void
10461 add_name_attribute (dw_die_ref die, const char *name_string)
10463 if (name_string != NULL && *name_string != 0)
10465 if (demangle_name_func)
10466 name_string = (*demangle_name_func) (name_string);
10468 add_AT_string (die, DW_AT_name, name_string);
10472 /* Generate a DW_AT_comp_dir attribute for DIE. */
10474 static void
10475 add_comp_dir_attribute (dw_die_ref die)
10477 const char *wd = get_src_pwd ();
10478 if (wd != NULL)
10479 add_AT_string (die, DW_AT_comp_dir, wd);
10482 /* Given a tree node describing an array bound (either lower or upper) output
10483 a representation for that bound. */
10485 static void
10486 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10488 switch (TREE_CODE (bound))
10490 case ERROR_MARK:
10491 return;
10493 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10494 case INTEGER_CST:
10495 if (! host_integerp (bound, 0)
10496 || (bound_attr == DW_AT_lower_bound
10497 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10498 || (is_fortran () && integer_onep (bound)))))
10499 /* Use the default. */
10501 else
10502 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10503 break;
10505 case CONVERT_EXPR:
10506 case NOP_EXPR:
10507 case NON_LVALUE_EXPR:
10508 case VIEW_CONVERT_EXPR:
10509 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10510 break;
10512 case SAVE_EXPR:
10513 break;
10515 case VAR_DECL:
10516 case PARM_DECL:
10517 case RESULT_DECL:
10519 dw_die_ref decl_die = lookup_decl_die (bound);
10521 /* ??? Can this happen, or should the variable have been bound
10522 first? Probably it can, since I imagine that we try to create
10523 the types of parameters in the order in which they exist in
10524 the list, and won't have created a forward reference to a
10525 later parameter. */
10526 if (decl_die != NULL)
10527 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10528 break;
10531 default:
10533 /* Otherwise try to create a stack operation procedure to
10534 evaluate the value of the array bound. */
10536 dw_die_ref ctx, decl_die;
10537 dw_loc_descr_ref loc;
10539 loc = loc_descriptor_from_tree (bound);
10540 if (loc == NULL)
10541 break;
10543 if (current_function_decl == 0)
10544 ctx = comp_unit_die;
10545 else
10546 ctx = lookup_decl_die (current_function_decl);
10548 decl_die = new_die (DW_TAG_variable, ctx, bound);
10549 add_AT_flag (decl_die, DW_AT_artificial, 1);
10550 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10551 add_AT_loc (decl_die, DW_AT_location, loc);
10553 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10554 break;
10559 /* Note that the block of subscript information for an array type also
10560 includes information about the element type of type given array type. */
10562 static void
10563 add_subscript_info (dw_die_ref type_die, tree type)
10565 #ifndef MIPS_DEBUGGING_INFO
10566 unsigned dimension_number;
10567 #endif
10568 tree lower, upper;
10569 dw_die_ref subrange_die;
10571 /* The GNU compilers represent multidimensional array types as sequences of
10572 one dimensional array types whose element types are themselves array
10573 types. Here we squish that down, so that each multidimensional array
10574 type gets only one array_type DIE in the Dwarf debugging info. The draft
10575 Dwarf specification say that we are allowed to do this kind of
10576 compression in C (because there is no difference between an array or
10577 arrays and a multidimensional array in C) but for other source languages
10578 (e.g. Ada) we probably shouldn't do this. */
10580 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10581 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10582 We work around this by disabling this feature. See also
10583 gen_array_type_die. */
10584 #ifndef MIPS_DEBUGGING_INFO
10585 for (dimension_number = 0;
10586 TREE_CODE (type) == ARRAY_TYPE;
10587 type = TREE_TYPE (type), dimension_number++)
10588 #endif
10590 tree domain = TYPE_DOMAIN (type);
10592 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10593 and (in GNU C only) variable bounds. Handle all three forms
10594 here. */
10595 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10596 if (domain)
10598 /* We have an array type with specified bounds. */
10599 lower = TYPE_MIN_VALUE (domain);
10600 upper = TYPE_MAX_VALUE (domain);
10602 /* Define the index type. */
10603 if (TREE_TYPE (domain))
10605 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10606 TREE_TYPE field. We can't emit debug info for this
10607 because it is an unnamed integral type. */
10608 if (TREE_CODE (domain) == INTEGER_TYPE
10609 && TYPE_NAME (domain) == NULL_TREE
10610 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10611 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10613 else
10614 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10615 type_die);
10618 /* ??? If upper is NULL, the array has unspecified length,
10619 but it does have a lower bound. This happens with Fortran
10620 dimension arr(N:*)
10621 Since the debugger is definitely going to need to know N
10622 to produce useful results, go ahead and output the lower
10623 bound solo, and hope the debugger can cope. */
10625 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10626 if (upper)
10627 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10630 /* Otherwise we have an array type with an unspecified length. The
10631 DWARF-2 spec does not say how to handle this; let's just leave out the
10632 bounds. */
10636 static void
10637 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10639 unsigned size;
10641 switch (TREE_CODE (tree_node))
10643 case ERROR_MARK:
10644 size = 0;
10645 break;
10646 case ENUMERAL_TYPE:
10647 case RECORD_TYPE:
10648 case UNION_TYPE:
10649 case QUAL_UNION_TYPE:
10650 size = int_size_in_bytes (tree_node);
10651 break;
10652 case FIELD_DECL:
10653 /* For a data member of a struct or union, the DW_AT_byte_size is
10654 generally given as the number of bytes normally allocated for an
10655 object of the *declared* type of the member itself. This is true
10656 even for bit-fields. */
10657 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10658 break;
10659 default:
10660 gcc_unreachable ();
10663 /* Note that `size' might be -1 when we get to this point. If it is, that
10664 indicates that the byte size of the entity in question is variable. We
10665 have no good way of expressing this fact in Dwarf at the present time,
10666 so just let the -1 pass on through. */
10667 add_AT_unsigned (die, DW_AT_byte_size, size);
10670 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10671 which specifies the distance in bits from the highest order bit of the
10672 "containing object" for the bit-field to the highest order bit of the
10673 bit-field itself.
10675 For any given bit-field, the "containing object" is a hypothetical object
10676 (of some integral or enum type) within which the given bit-field lives. The
10677 type of this hypothetical "containing object" is always the same as the
10678 declared type of the individual bit-field itself. The determination of the
10679 exact location of the "containing object" for a bit-field is rather
10680 complicated. It's handled by the `field_byte_offset' function (above).
10682 Note that it is the size (in bytes) of the hypothetical "containing object"
10683 which will be given in the DW_AT_byte_size attribute for this bit-field.
10684 (See `byte_size_attribute' above). */
10686 static inline void
10687 add_bit_offset_attribute (dw_die_ref die, tree decl)
10689 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10690 tree type = DECL_BIT_FIELD_TYPE (decl);
10691 HOST_WIDE_INT bitpos_int;
10692 HOST_WIDE_INT highest_order_object_bit_offset;
10693 HOST_WIDE_INT highest_order_field_bit_offset;
10694 HOST_WIDE_INT unsigned bit_offset;
10696 /* Must be a field and a bit field. */
10697 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10699 /* We can't yet handle bit-fields whose offsets are variable, so if we
10700 encounter such things, just return without generating any attribute
10701 whatsoever. Likewise for variable or too large size. */
10702 if (! host_integerp (bit_position (decl), 0)
10703 || ! host_integerp (DECL_SIZE (decl), 1))
10704 return;
10706 bitpos_int = int_bit_position (decl);
10708 /* Note that the bit offset is always the distance (in bits) from the
10709 highest-order bit of the "containing object" to the highest-order bit of
10710 the bit-field itself. Since the "high-order end" of any object or field
10711 is different on big-endian and little-endian machines, the computation
10712 below must take account of these differences. */
10713 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10714 highest_order_field_bit_offset = bitpos_int;
10716 if (! BYTES_BIG_ENDIAN)
10718 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10719 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10722 bit_offset
10723 = (! BYTES_BIG_ENDIAN
10724 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10725 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10727 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10730 /* For a FIELD_DECL node which represents a bit field, output an attribute
10731 which specifies the length in bits of the given field. */
10733 static inline void
10734 add_bit_size_attribute (dw_die_ref die, tree decl)
10736 /* Must be a field and a bit field. */
10737 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10738 && DECL_BIT_FIELD_TYPE (decl));
10740 if (host_integerp (DECL_SIZE (decl), 1))
10741 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10744 /* If the compiled language is ANSI C, then add a 'prototyped'
10745 attribute, if arg types are given for the parameters of a function. */
10747 static inline void
10748 add_prototyped_attribute (dw_die_ref die, tree func_type)
10750 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10751 && TYPE_ARG_TYPES (func_type) != NULL)
10752 add_AT_flag (die, DW_AT_prototyped, 1);
10755 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10756 by looking in either the type declaration or object declaration
10757 equate table. */
10759 static inline void
10760 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10762 dw_die_ref origin_die = NULL;
10764 if (TREE_CODE (origin) != FUNCTION_DECL)
10766 /* We may have gotten separated from the block for the inlined
10767 function, if we're in an exception handler or some such; make
10768 sure that the abstract function has been written out.
10770 Doing this for nested functions is wrong, however; functions are
10771 distinct units, and our context might not even be inline. */
10772 tree fn = origin;
10774 if (TYPE_P (fn))
10775 fn = TYPE_STUB_DECL (fn);
10777 fn = decl_function_context (fn);
10778 if (fn)
10779 dwarf2out_abstract_function (fn);
10782 if (DECL_P (origin))
10783 origin_die = lookup_decl_die (origin);
10784 else if (TYPE_P (origin))
10785 origin_die = lookup_type_die (origin);
10787 /* XXX: Functions that are never lowered don't always have correct block
10788 trees (in the case of java, they simply have no block tree, in some other
10789 languages). For these functions, there is nothing we can really do to
10790 output correct debug info for inlined functions in all cases. Rather
10791 than die, we'll just produce deficient debug info now, in that we will
10792 have variables without a proper abstract origin. In the future, when all
10793 functions are lowered, we should re-add a gcc_assert (origin_die)
10794 here. */
10796 if (origin_die)
10797 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10800 /* We do not currently support the pure_virtual attribute. */
10802 static inline void
10803 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10805 if (DECL_VINDEX (func_decl))
10807 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10809 if (host_integerp (DECL_VINDEX (func_decl), 0))
10810 add_AT_loc (die, DW_AT_vtable_elem_location,
10811 new_loc_descr (DW_OP_constu,
10812 tree_low_cst (DECL_VINDEX (func_decl), 0),
10813 0));
10815 /* GNU extension: Record what type this method came from originally. */
10816 if (debug_info_level > DINFO_LEVEL_TERSE)
10817 add_AT_die_ref (die, DW_AT_containing_type,
10818 lookup_type_die (DECL_CONTEXT (func_decl)));
10822 /* Add source coordinate attributes for the given decl. */
10824 static void
10825 add_src_coords_attributes (dw_die_ref die, tree decl)
10827 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10828 unsigned file_index = lookup_filename (s.file);
10830 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10831 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10834 /* Add a DW_AT_name attribute and source coordinate attribute for the
10835 given decl, but only if it actually has a name. */
10837 static void
10838 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10840 tree decl_name;
10842 decl_name = DECL_NAME (decl);
10843 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10845 add_name_attribute (die, dwarf2_name (decl, 0));
10846 if (! DECL_ARTIFICIAL (decl))
10847 add_src_coords_attributes (die, decl);
10849 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10850 && TREE_PUBLIC (decl)
10851 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10852 && !DECL_ABSTRACT (decl)
10853 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10854 add_AT_string (die, DW_AT_MIPS_linkage_name,
10855 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10858 #ifdef VMS_DEBUGGING_INFO
10859 /* Get the function's name, as described by its RTL. This may be different
10860 from the DECL_NAME name used in the source file. */
10861 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10863 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10864 XEXP (DECL_RTL (decl), 0));
10865 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10867 #endif
10870 /* Push a new declaration scope. */
10872 static void
10873 push_decl_scope (tree scope)
10875 VEC_safe_push (tree, gc, decl_scope_table, scope);
10878 /* Pop a declaration scope. */
10880 static inline void
10881 pop_decl_scope (void)
10883 VEC_pop (tree, decl_scope_table);
10886 /* Return the DIE for the scope that immediately contains this type.
10887 Non-named types get global scope. Named types nested in other
10888 types get their containing scope if it's open, or global scope
10889 otherwise. All other types (i.e. function-local named types) get
10890 the current active scope. */
10892 static dw_die_ref
10893 scope_die_for (tree t, dw_die_ref context_die)
10895 dw_die_ref scope_die = NULL;
10896 tree containing_scope;
10897 int i;
10899 /* Non-types always go in the current scope. */
10900 gcc_assert (TYPE_P (t));
10902 containing_scope = TYPE_CONTEXT (t);
10904 /* Use the containing namespace if it was passed in (for a declaration). */
10905 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10907 if (context_die == lookup_decl_die (containing_scope))
10908 /* OK */;
10909 else
10910 containing_scope = NULL_TREE;
10913 /* Ignore function type "scopes" from the C frontend. They mean that
10914 a tagged type is local to a parmlist of a function declarator, but
10915 that isn't useful to DWARF. */
10916 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10917 containing_scope = NULL_TREE;
10919 if (containing_scope == NULL_TREE)
10920 scope_die = comp_unit_die;
10921 else if (TYPE_P (containing_scope))
10923 /* For types, we can just look up the appropriate DIE. But
10924 first we check to see if we're in the middle of emitting it
10925 so we know where the new DIE should go. */
10926 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
10927 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
10928 break;
10930 if (i < 0)
10932 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10933 || TREE_ASM_WRITTEN (containing_scope));
10935 /* If none of the current dies are suitable, we get file scope. */
10936 scope_die = comp_unit_die;
10938 else
10939 scope_die = lookup_type_die (containing_scope);
10941 else
10942 scope_die = context_die;
10944 return scope_die;
10947 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10949 static inline int
10950 local_scope_p (dw_die_ref context_die)
10952 for (; context_die; context_die = context_die->die_parent)
10953 if (context_die->die_tag == DW_TAG_inlined_subroutine
10954 || context_die->die_tag == DW_TAG_subprogram)
10955 return 1;
10957 return 0;
10960 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10961 whether or not to treat a DIE in this context as a declaration. */
10963 static inline int
10964 class_or_namespace_scope_p (dw_die_ref context_die)
10966 return (context_die
10967 && (context_die->die_tag == DW_TAG_structure_type
10968 || context_die->die_tag == DW_TAG_union_type
10969 || context_die->die_tag == DW_TAG_namespace));
10972 /* Many forms of DIEs require a "type description" attribute. This
10973 routine locates the proper "type descriptor" die for the type given
10974 by 'type', and adds a DW_AT_type attribute below the given die. */
10976 static void
10977 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10978 int decl_volatile, dw_die_ref context_die)
10980 enum tree_code code = TREE_CODE (type);
10981 dw_die_ref type_die = NULL;
10983 /* ??? If this type is an unnamed subrange type of an integral or
10984 floating-point type, use the inner type. This is because we have no
10985 support for unnamed types in base_type_die. This can happen if this is
10986 an Ada subrange type. Correct solution is emit a subrange type die. */
10987 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10988 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10989 type = TREE_TYPE (type), code = TREE_CODE (type);
10991 if (code == ERROR_MARK
10992 /* Handle a special case. For functions whose return type is void, we
10993 generate *no* type attribute. (Note that no object may have type
10994 `void', so this only applies to function return types). */
10995 || code == VOID_TYPE)
10996 return;
10998 type_die = modified_type_die (type,
10999 decl_const || TYPE_READONLY (type),
11000 decl_volatile || TYPE_VOLATILE (type),
11001 context_die);
11003 if (type_die != NULL)
11004 add_AT_die_ref (object_die, DW_AT_type, type_die);
11007 /* Given an object die, add the calling convention attribute for the
11008 function call type. */
11009 static void
11010 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11012 enum dwarf_calling_convention value = DW_CC_normal;
11014 value = targetm.dwarf_calling_convention (type);
11016 /* Only add the attribute if the backend requests it, and
11017 is not DW_CC_normal. */
11018 if (value && (value != DW_CC_normal))
11019 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11022 /* Given a tree pointer to a struct, class, union, or enum type node, return
11023 a pointer to the (string) tag name for the given type, or zero if the type
11024 was declared without a tag. */
11026 static const char *
11027 type_tag (tree type)
11029 const char *name = 0;
11031 if (TYPE_NAME (type) != 0)
11033 tree t = 0;
11035 /* Find the IDENTIFIER_NODE for the type name. */
11036 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11037 t = TYPE_NAME (type);
11039 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11040 a TYPE_DECL node, regardless of whether or not a `typedef' was
11041 involved. */
11042 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11043 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11044 t = DECL_NAME (TYPE_NAME (type));
11046 /* Now get the name as a string, or invent one. */
11047 if (t != 0)
11048 name = IDENTIFIER_POINTER (t);
11051 return (name == 0 || *name == '\0') ? 0 : name;
11054 /* Return the type associated with a data member, make a special check
11055 for bit field types. */
11057 static inline tree
11058 member_declared_type (tree member)
11060 return (DECL_BIT_FIELD_TYPE (member)
11061 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11064 /* Get the decl's label, as described by its RTL. This may be different
11065 from the DECL_NAME name used in the source file. */
11067 #if 0
11068 static const char *
11069 decl_start_label (tree decl)
11071 rtx x;
11072 const char *fnname;
11074 x = DECL_RTL (decl);
11075 gcc_assert (MEM_P (x));
11077 x = XEXP (x, 0);
11078 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11080 fnname = XSTR (x, 0);
11081 return fnname;
11083 #endif
11085 /* These routines generate the internal representation of the DIE's for
11086 the compilation unit. Debugging information is collected by walking
11087 the declaration trees passed in from dwarf2out_decl(). */
11089 static void
11090 gen_array_type_die (tree type, dw_die_ref context_die)
11092 dw_die_ref scope_die = scope_die_for (type, context_die);
11093 dw_die_ref array_die;
11094 tree element_type;
11096 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11097 the inner array type comes before the outer array type. Thus we must
11098 call gen_type_die before we call new_die. See below also. */
11099 #ifdef MIPS_DEBUGGING_INFO
11100 gen_type_die (TREE_TYPE (type), context_die);
11101 #endif
11103 array_die = new_die (DW_TAG_array_type, scope_die, type);
11104 add_name_attribute (array_die, type_tag (type));
11105 equate_type_number_to_die (type, array_die);
11107 if (TREE_CODE (type) == VECTOR_TYPE)
11109 /* The frontend feeds us a representation for the vector as a struct
11110 containing an array. Pull out the array type. */
11111 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11112 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11115 #if 0
11116 /* We default the array ordering. SDB will probably do
11117 the right things even if DW_AT_ordering is not present. It's not even
11118 an issue until we start to get into multidimensional arrays anyway. If
11119 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11120 then we'll have to put the DW_AT_ordering attribute back in. (But if
11121 and when we find out that we need to put these in, we will only do so
11122 for multidimensional arrays. */
11123 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11124 #endif
11126 #ifdef MIPS_DEBUGGING_INFO
11127 /* The SGI compilers handle arrays of unknown bound by setting
11128 AT_declaration and not emitting any subrange DIEs. */
11129 if (! TYPE_DOMAIN (type))
11130 add_AT_flag (array_die, DW_AT_declaration, 1);
11131 else
11132 #endif
11133 add_subscript_info (array_die, type);
11135 /* Add representation of the type of the elements of this array type. */
11136 element_type = TREE_TYPE (type);
11138 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11139 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11140 We work around this by disabling this feature. See also
11141 add_subscript_info. */
11142 #ifndef MIPS_DEBUGGING_INFO
11143 while (TREE_CODE (element_type) == ARRAY_TYPE)
11144 element_type = TREE_TYPE (element_type);
11146 gen_type_die (element_type, context_die);
11147 #endif
11149 add_type_attribute (array_die, element_type, 0, 0, context_die);
11152 #if 0
11153 static void
11154 gen_entry_point_die (tree decl, dw_die_ref context_die)
11156 tree origin = decl_ultimate_origin (decl);
11157 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11159 if (origin != NULL)
11160 add_abstract_origin_attribute (decl_die, origin);
11161 else
11163 add_name_and_src_coords_attributes (decl_die, decl);
11164 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11165 0, 0, context_die);
11168 if (DECL_ABSTRACT (decl))
11169 equate_decl_number_to_die (decl, decl_die);
11170 else
11171 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11173 #endif
11175 /* Walk through the list of incomplete types again, trying once more to
11176 emit full debugging info for them. */
11178 static void
11179 retry_incomplete_types (void)
11181 int i;
11183 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11184 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11187 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11189 static void
11190 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11192 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11194 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11195 be incomplete and such types are not marked. */
11196 add_abstract_origin_attribute (type_die, type);
11199 /* Generate a DIE to represent an inlined instance of a structure type. */
11201 static void
11202 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11204 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11206 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11207 be incomplete and such types are not marked. */
11208 add_abstract_origin_attribute (type_die, type);
11211 /* Generate a DIE to represent an inlined instance of a union type. */
11213 static void
11214 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11216 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11218 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11219 be incomplete and such types are not marked. */
11220 add_abstract_origin_attribute (type_die, type);
11223 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11224 include all of the information about the enumeration values also. Each
11225 enumerated type name/value is listed as a child of the enumerated type
11226 DIE. */
11228 static dw_die_ref
11229 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11231 dw_die_ref type_die = lookup_type_die (type);
11233 if (type_die == NULL)
11235 type_die = new_die (DW_TAG_enumeration_type,
11236 scope_die_for (type, context_die), type);
11237 equate_type_number_to_die (type, type_die);
11238 add_name_attribute (type_die, type_tag (type));
11240 else if (! TYPE_SIZE (type))
11241 return type_die;
11242 else
11243 remove_AT (type_die, DW_AT_declaration);
11245 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11246 given enum type is incomplete, do not generate the DW_AT_byte_size
11247 attribute or the DW_AT_element_list attribute. */
11248 if (TYPE_SIZE (type))
11250 tree link;
11252 TREE_ASM_WRITTEN (type) = 1;
11253 add_byte_size_attribute (type_die, type);
11254 if (TYPE_STUB_DECL (type) != NULL_TREE)
11255 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11257 /* If the first reference to this type was as the return type of an
11258 inline function, then it may not have a parent. Fix this now. */
11259 if (type_die->die_parent == NULL)
11260 add_child_die (scope_die_for (type, context_die), type_die);
11262 for (link = TYPE_VALUES (type);
11263 link != NULL; link = TREE_CHAIN (link))
11265 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11266 tree value = TREE_VALUE (link);
11268 add_name_attribute (enum_die,
11269 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11271 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11272 /* DWARF2 does not provide a way of indicating whether or
11273 not enumeration constants are signed or unsigned. GDB
11274 always assumes the values are signed, so we output all
11275 values as if they were signed. That means that
11276 enumeration constants with very large unsigned values
11277 will appear to have negative values in the debugger. */
11278 add_AT_int (enum_die, DW_AT_const_value,
11279 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11282 else
11283 add_AT_flag (type_die, DW_AT_declaration, 1);
11285 return type_die;
11288 /* Generate a DIE to represent either a real live formal parameter decl or to
11289 represent just the type of some formal parameter position in some function
11290 type.
11292 Note that this routine is a bit unusual because its argument may be a
11293 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11294 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11295 node. If it's the former then this function is being called to output a
11296 DIE to represent a formal parameter object (or some inlining thereof). If
11297 it's the latter, then this function is only being called to output a
11298 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11299 argument type of some subprogram type. */
11301 static dw_die_ref
11302 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11304 dw_die_ref parm_die
11305 = new_die (DW_TAG_formal_parameter, context_die, node);
11306 tree origin;
11308 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11310 case tcc_declaration:
11311 origin = decl_ultimate_origin (node);
11312 if (origin != NULL)
11313 add_abstract_origin_attribute (parm_die, origin);
11314 else
11316 add_name_and_src_coords_attributes (parm_die, node);
11317 add_type_attribute (parm_die, TREE_TYPE (node),
11318 TREE_READONLY (node),
11319 TREE_THIS_VOLATILE (node),
11320 context_die);
11321 if (DECL_ARTIFICIAL (node))
11322 add_AT_flag (parm_die, DW_AT_artificial, 1);
11325 equate_decl_number_to_die (node, parm_die);
11326 if (! DECL_ABSTRACT (node))
11327 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11329 break;
11331 case tcc_type:
11332 /* We were called with some kind of a ..._TYPE node. */
11333 add_type_attribute (parm_die, node, 0, 0, context_die);
11334 break;
11336 default:
11337 gcc_unreachable ();
11340 return parm_die;
11343 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11344 at the end of an (ANSI prototyped) formal parameters list. */
11346 static void
11347 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11349 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11352 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11353 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11354 parameters as specified in some function type specification (except for
11355 those which appear as part of a function *definition*). */
11357 static void
11358 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11360 tree link;
11361 tree formal_type = NULL;
11362 tree first_parm_type;
11363 tree arg;
11365 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11367 arg = DECL_ARGUMENTS (function_or_method_type);
11368 function_or_method_type = TREE_TYPE (function_or_method_type);
11370 else
11371 arg = NULL_TREE;
11373 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11375 /* Make our first pass over the list of formal parameter types and output a
11376 DW_TAG_formal_parameter DIE for each one. */
11377 for (link = first_parm_type; link; )
11379 dw_die_ref parm_die;
11381 formal_type = TREE_VALUE (link);
11382 if (formal_type == void_type_node)
11383 break;
11385 /* Output a (nameless) DIE to represent the formal parameter itself. */
11386 parm_die = gen_formal_parameter_die (formal_type, context_die);
11387 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11388 && link == first_parm_type)
11389 || (arg && DECL_ARTIFICIAL (arg)))
11390 add_AT_flag (parm_die, DW_AT_artificial, 1);
11392 link = TREE_CHAIN (link);
11393 if (arg)
11394 arg = TREE_CHAIN (arg);
11397 /* If this function type has an ellipsis, add a
11398 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11399 if (formal_type != void_type_node)
11400 gen_unspecified_parameters_die (function_or_method_type, context_die);
11402 /* Make our second (and final) pass over the list of formal parameter types
11403 and output DIEs to represent those types (as necessary). */
11404 for (link = TYPE_ARG_TYPES (function_or_method_type);
11405 link && TREE_VALUE (link);
11406 link = TREE_CHAIN (link))
11407 gen_type_die (TREE_VALUE (link), context_die);
11410 /* We want to generate the DIE for TYPE so that we can generate the
11411 die for MEMBER, which has been defined; we will need to refer back
11412 to the member declaration nested within TYPE. If we're trying to
11413 generate minimal debug info for TYPE, processing TYPE won't do the
11414 trick; we need to attach the member declaration by hand. */
11416 static void
11417 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11419 gen_type_die (type, context_die);
11421 /* If we're trying to avoid duplicate debug info, we may not have
11422 emitted the member decl for this function. Emit it now. */
11423 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11424 && ! lookup_decl_die (member))
11426 dw_die_ref type_die;
11427 gcc_assert (!decl_ultimate_origin (member));
11429 push_decl_scope (type);
11430 type_die = lookup_type_die (type);
11431 if (TREE_CODE (member) == FUNCTION_DECL)
11432 gen_subprogram_die (member, type_die);
11433 else if (TREE_CODE (member) == FIELD_DECL)
11435 /* Ignore the nameless fields that are used to skip bits but handle
11436 C++ anonymous unions and structs. */
11437 if (DECL_NAME (member) != NULL_TREE
11438 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11439 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11441 gen_type_die (member_declared_type (member), type_die);
11442 gen_field_die (member, type_die);
11445 else
11446 gen_variable_die (member, type_die);
11448 pop_decl_scope ();
11452 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11453 may later generate inlined and/or out-of-line instances of. */
11455 static void
11456 dwarf2out_abstract_function (tree decl)
11458 dw_die_ref old_die;
11459 tree save_fn;
11460 tree context;
11461 int was_abstract = DECL_ABSTRACT (decl);
11463 /* Make sure we have the actual abstract inline, not a clone. */
11464 decl = DECL_ORIGIN (decl);
11466 old_die = lookup_decl_die (decl);
11467 if (old_die && get_AT (old_die, DW_AT_inline))
11468 /* We've already generated the abstract instance. */
11469 return;
11471 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11472 we don't get confused by DECL_ABSTRACT. */
11473 if (debug_info_level > DINFO_LEVEL_TERSE)
11475 context = decl_class_context (decl);
11476 if (context)
11477 gen_type_die_for_member
11478 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11481 /* Pretend we've just finished compiling this function. */
11482 save_fn = current_function_decl;
11483 current_function_decl = decl;
11485 set_decl_abstract_flags (decl, 1);
11486 dwarf2out_decl (decl);
11487 if (! was_abstract)
11488 set_decl_abstract_flags (decl, 0);
11490 current_function_decl = save_fn;
11493 /* Helper function of premark_used_types() which gets called through
11494 htab_traverse_resize().
11496 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11497 marked as unused by prune_unused_types. */
11498 static int
11499 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11501 tree type;
11502 dw_die_ref die;
11504 type = *slot;
11505 die = lookup_type_die (type);
11506 if (die != NULL)
11507 die->die_perennial_p = 1;
11508 return 1;
11511 /* Mark all members of used_types_hash as perennial. */
11512 static void
11513 premark_used_types (void)
11515 if (cfun && cfun->used_types_hash)
11516 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11519 /* Generate a DIE to represent a declared function (either file-scope or
11520 block-local). */
11522 static void
11523 gen_subprogram_die (tree decl, dw_die_ref context_die)
11525 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11526 tree origin = decl_ultimate_origin (decl);
11527 dw_die_ref subr_die;
11528 tree fn_arg_types;
11529 tree outer_scope;
11530 dw_die_ref old_die = lookup_decl_die (decl);
11531 int declaration = (current_function_decl != decl
11532 || class_or_namespace_scope_p (context_die));
11534 premark_used_types();
11536 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11537 started to generate the abstract instance of an inline, decided to output
11538 its containing class, and proceeded to emit the declaration of the inline
11539 from the member list for the class. If so, DECLARATION takes priority;
11540 we'll get back to the abstract instance when done with the class. */
11542 /* The class-scope declaration DIE must be the primary DIE. */
11543 if (origin && declaration && class_or_namespace_scope_p (context_die))
11545 origin = NULL;
11546 gcc_assert (!old_die);
11549 /* Now that the C++ front end lazily declares artificial member fns, we
11550 might need to retrofit the declaration into its class. */
11551 if (!declaration && !origin && !old_die
11552 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11553 && !class_or_namespace_scope_p (context_die)
11554 && debug_info_level > DINFO_LEVEL_TERSE)
11555 old_die = force_decl_die (decl);
11557 if (origin != NULL)
11559 gcc_assert (!declaration || local_scope_p (context_die));
11561 /* Fixup die_parent for the abstract instance of a nested
11562 inline function. */
11563 if (old_die && old_die->die_parent == NULL)
11564 add_child_die (context_die, old_die);
11566 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11567 add_abstract_origin_attribute (subr_die, origin);
11569 else if (old_die)
11571 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11572 unsigned file_index = lookup_filename (s.file);
11574 if (!get_AT_flag (old_die, DW_AT_declaration)
11575 /* We can have a normal definition following an inline one in the
11576 case of redefinition of GNU C extern inlines.
11577 It seems reasonable to use AT_specification in this case. */
11578 && !get_AT (old_die, DW_AT_inline))
11580 /* Detect and ignore this case, where we are trying to output
11581 something we have already output. */
11582 return;
11585 /* If the definition comes from the same place as the declaration,
11586 maybe use the old DIE. We always want the DIE for this function
11587 that has the *_pc attributes to be under comp_unit_die so the
11588 debugger can find it. We also need to do this for abstract
11589 instances of inlines, since the spec requires the out-of-line copy
11590 to have the same parent. For local class methods, this doesn't
11591 apply; we just use the old DIE. */
11592 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11593 && (DECL_ARTIFICIAL (decl)
11594 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11595 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11596 == (unsigned) s.line))))
11598 subr_die = old_die;
11600 /* Clear out the declaration attribute and the formal parameters.
11601 Do not remove all children, because it is possible that this
11602 declaration die was forced using force_decl_die(). In such
11603 cases die that forced declaration die (e.g. TAG_imported_module)
11604 is one of the children that we do not want to remove. */
11605 remove_AT (subr_die, DW_AT_declaration);
11606 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11608 else
11610 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11611 add_AT_specification (subr_die, old_die);
11612 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11613 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11614 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11615 != (unsigned) s.line)
11616 add_AT_unsigned
11617 (subr_die, DW_AT_decl_line, s.line);
11620 else
11622 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11624 if (TREE_PUBLIC (decl))
11625 add_AT_flag (subr_die, DW_AT_external, 1);
11627 add_name_and_src_coords_attributes (subr_die, decl);
11628 if (debug_info_level > DINFO_LEVEL_TERSE)
11630 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11631 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11632 0, 0, context_die);
11635 add_pure_or_virtual_attribute (subr_die, decl);
11636 if (DECL_ARTIFICIAL (decl))
11637 add_AT_flag (subr_die, DW_AT_artificial, 1);
11639 if (TREE_PROTECTED (decl))
11640 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11641 else if (TREE_PRIVATE (decl))
11642 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11645 if (declaration)
11647 if (!old_die || !get_AT (old_die, DW_AT_inline))
11649 add_AT_flag (subr_die, DW_AT_declaration, 1);
11651 /* The first time we see a member function, it is in the context of
11652 the class to which it belongs. We make sure of this by emitting
11653 the class first. The next time is the definition, which is
11654 handled above. The two may come from the same source text.
11656 Note that force_decl_die() forces function declaration die. It is
11657 later reused to represent definition. */
11658 equate_decl_number_to_die (decl, subr_die);
11661 else if (DECL_ABSTRACT (decl))
11663 if (DECL_DECLARED_INLINE_P (decl))
11665 if (cgraph_function_possibly_inlined_p (decl))
11666 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11667 else
11668 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11670 else
11672 if (cgraph_function_possibly_inlined_p (decl))
11673 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11674 else
11675 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11678 equate_decl_number_to_die (decl, subr_die);
11680 else if (!DECL_EXTERNAL (decl))
11682 HOST_WIDE_INT cfa_fb_offset;
11684 if (!old_die || !get_AT (old_die, DW_AT_inline))
11685 equate_decl_number_to_die (decl, subr_die);
11687 if (!flag_reorder_blocks_and_partition)
11689 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11690 current_function_funcdef_no);
11691 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11692 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11693 current_function_funcdef_no);
11694 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11696 add_pubname (decl, subr_die);
11697 add_arange (decl, subr_die);
11699 else
11700 { /* Do nothing for now; maybe need to duplicate die, one for
11701 hot section and ond for cold section, then use the hot/cold
11702 section begin/end labels to generate the aranges... */
11704 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11705 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11706 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11707 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11709 add_pubname (decl, subr_die);
11710 add_arange (decl, subr_die);
11711 add_arange (decl, subr_die);
11715 #ifdef MIPS_DEBUGGING_INFO
11716 /* Add a reference to the FDE for this routine. */
11717 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11718 #endif
11720 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11722 /* We define the "frame base" as the function's CFA. This is more
11723 convenient for several reasons: (1) It's stable across the prologue
11724 and epilogue, which makes it better than just a frame pointer,
11725 (2) With dwarf3, there exists a one-byte encoding that allows us
11726 to reference the .debug_frame data by proxy, but failing that,
11727 (3) We can at least reuse the code inspection and interpretation
11728 code that determines the CFA position at various points in the
11729 function. */
11730 /* ??? Use some command-line or configury switch to enable the use
11731 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11732 consumers that understand it; fall back to "pure" dwarf2 and
11733 convert the CFA data into a location list. */
11735 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11736 if (list->dw_loc_next)
11737 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11738 else
11739 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11742 /* Compute a displacement from the "steady-state frame pointer" to
11743 the CFA. The former is what all stack slots and argument slots
11744 will reference in the rtl; the later is what we've told the
11745 debugger about. We'll need to adjust all frame_base references
11746 by this displacement. */
11747 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11749 if (cfun->static_chain_decl)
11750 add_AT_location_description (subr_die, DW_AT_static_link,
11751 loc_descriptor_from_tree (cfun->static_chain_decl));
11754 /* Now output descriptions of the arguments for this function. This gets
11755 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11756 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11757 `...' at the end of the formal parameter list. In order to find out if
11758 there was a trailing ellipsis or not, we must instead look at the type
11759 associated with the FUNCTION_DECL. This will be a node of type
11760 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11761 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11762 an ellipsis at the end. */
11764 /* In the case where we are describing a mere function declaration, all we
11765 need to do here (and all we *can* do here) is to describe the *types* of
11766 its formal parameters. */
11767 if (debug_info_level <= DINFO_LEVEL_TERSE)
11769 else if (declaration)
11770 gen_formal_types_die (decl, subr_die);
11771 else
11773 /* Generate DIEs to represent all known formal parameters. */
11774 tree arg_decls = DECL_ARGUMENTS (decl);
11775 tree parm;
11777 /* When generating DIEs, generate the unspecified_parameters DIE
11778 instead if we come across the arg "__builtin_va_alist" */
11779 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11780 if (TREE_CODE (parm) == PARM_DECL)
11782 if (DECL_NAME (parm)
11783 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11784 "__builtin_va_alist"))
11785 gen_unspecified_parameters_die (parm, subr_die);
11786 else
11787 gen_decl_die (parm, subr_die);
11790 /* Decide whether we need an unspecified_parameters DIE at the end.
11791 There are 2 more cases to do this for: 1) the ansi ... declaration -
11792 this is detectable when the end of the arg list is not a
11793 void_type_node 2) an unprototyped function declaration (not a
11794 definition). This just means that we have no info about the
11795 parameters at all. */
11796 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11797 if (fn_arg_types != NULL)
11799 /* This is the prototyped case, check for.... */
11800 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11801 gen_unspecified_parameters_die (decl, subr_die);
11803 else if (DECL_INITIAL (decl) == NULL_TREE)
11804 gen_unspecified_parameters_die (decl, subr_die);
11807 /* Output Dwarf info for all of the stuff within the body of the function
11808 (if it has one - it may be just a declaration). */
11809 outer_scope = DECL_INITIAL (decl);
11811 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11812 a function. This BLOCK actually represents the outermost binding contour
11813 for the function, i.e. the contour in which the function's formal
11814 parameters and labels get declared. Curiously, it appears that the front
11815 end doesn't actually put the PARM_DECL nodes for the current function onto
11816 the BLOCK_VARS list for this outer scope, but are strung off of the
11817 DECL_ARGUMENTS list for the function instead.
11819 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11820 the LABEL_DECL nodes for the function however, and we output DWARF info
11821 for those in decls_for_scope. Just within the `outer_scope' there will be
11822 a BLOCK node representing the function's outermost pair of curly braces,
11823 and any blocks used for the base and member initializers of a C++
11824 constructor function. */
11825 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11827 /* Emit a DW_TAG_variable DIE for a named return value. */
11828 if (DECL_NAME (DECL_RESULT (decl)))
11829 gen_decl_die (DECL_RESULT (decl), subr_die);
11831 current_function_has_inlines = 0;
11832 decls_for_scope (outer_scope, subr_die, 0);
11834 #if 0 && defined (MIPS_DEBUGGING_INFO)
11835 if (current_function_has_inlines)
11837 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11838 if (! comp_unit_has_inlines)
11840 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11841 comp_unit_has_inlines = 1;
11844 #endif
11846 /* Add the calling convention attribute if requested. */
11847 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11851 /* Generate a DIE to represent a declared data object. */
11853 static void
11854 gen_variable_die (tree decl, dw_die_ref context_die)
11856 tree origin = decl_ultimate_origin (decl);
11857 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11859 dw_die_ref old_die = lookup_decl_die (decl);
11860 int declaration = (DECL_EXTERNAL (decl)
11861 /* If DECL is COMDAT and has not actually been
11862 emitted, we cannot take its address; there
11863 might end up being no definition anywhere in
11864 the program. For example, consider the C++
11865 test case:
11867 template <class T>
11868 struct S { static const int i = 7; };
11870 template <class T>
11871 const int S<T>::i;
11873 int f() { return S<int>::i; }
11875 Here, S<int>::i is not DECL_EXTERNAL, but no
11876 definition is required, so the compiler will
11877 not emit a definition. */
11878 || (TREE_CODE (decl) == VAR_DECL
11879 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11880 || class_or_namespace_scope_p (context_die));
11882 if (origin != NULL)
11883 add_abstract_origin_attribute (var_die, origin);
11885 /* Loop unrolling can create multiple blocks that refer to the same
11886 static variable, so we must test for the DW_AT_declaration flag.
11888 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11889 copy decls and set the DECL_ABSTRACT flag on them instead of
11890 sharing them.
11892 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11894 ??? The declare_in_namespace support causes us to get two DIEs for one
11895 variable, both of which are declarations. We want to avoid considering
11896 one to be a specification, so we must test that this DIE is not a
11897 declaration. */
11898 else if (old_die && TREE_STATIC (decl) && ! declaration
11899 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11901 /* This is a definition of a C++ class level static. */
11902 add_AT_specification (var_die, old_die);
11903 if (DECL_NAME (decl))
11905 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11906 unsigned file_index = lookup_filename (s.file);
11908 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11909 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11911 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11912 != (unsigned) s.line)
11914 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11917 else
11919 add_name_and_src_coords_attributes (var_die, decl);
11920 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11921 TREE_THIS_VOLATILE (decl), context_die);
11923 if (TREE_PUBLIC (decl))
11924 add_AT_flag (var_die, DW_AT_external, 1);
11926 if (DECL_ARTIFICIAL (decl))
11927 add_AT_flag (var_die, DW_AT_artificial, 1);
11929 if (TREE_PROTECTED (decl))
11930 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11931 else if (TREE_PRIVATE (decl))
11932 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11935 if (declaration)
11936 add_AT_flag (var_die, DW_AT_declaration, 1);
11938 if (DECL_ABSTRACT (decl) || declaration)
11939 equate_decl_number_to_die (decl, var_die);
11941 if (! declaration && ! DECL_ABSTRACT (decl))
11943 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11944 add_pubname (decl, var_die);
11946 else
11947 tree_add_const_value_attribute (var_die, decl);
11950 /* Generate a DIE to represent a label identifier. */
11952 static void
11953 gen_label_die (tree decl, dw_die_ref context_die)
11955 tree origin = decl_ultimate_origin (decl);
11956 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11957 rtx insn;
11958 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11960 if (origin != NULL)
11961 add_abstract_origin_attribute (lbl_die, origin);
11962 else
11963 add_name_and_src_coords_attributes (lbl_die, decl);
11965 if (DECL_ABSTRACT (decl))
11966 equate_decl_number_to_die (decl, lbl_die);
11967 else
11969 insn = DECL_RTL_IF_SET (decl);
11971 /* Deleted labels are programmer specified labels which have been
11972 eliminated because of various optimizations. We still emit them
11973 here so that it is possible to put breakpoints on them. */
11974 if (insn
11975 && (LABEL_P (insn)
11976 || ((NOTE_P (insn)
11977 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11979 /* When optimization is enabled (via -O) some parts of the compiler
11980 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11981 represent source-level labels which were explicitly declared by
11982 the user. This really shouldn't be happening though, so catch
11983 it if it ever does happen. */
11984 gcc_assert (!INSN_DELETED_P (insn));
11986 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11987 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11992 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
11993 attributes to the DIE for a block STMT, to describe where the inlined
11994 function was called from. This is similar to add_src_coords_attributes. */
11996 static inline void
11997 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
11999 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12000 unsigned file_index = lookup_filename (s.file);
12002 add_AT_unsigned (die, DW_AT_call_file, file_index);
12003 add_AT_unsigned (die, DW_AT_call_line, s.line);
12006 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12007 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12009 static inline void
12010 add_high_low_attributes (tree stmt, dw_die_ref die)
12012 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12014 if (BLOCK_FRAGMENT_CHAIN (stmt))
12016 tree chain;
12018 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12020 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12023 add_ranges (chain);
12024 chain = BLOCK_FRAGMENT_CHAIN (chain);
12026 while (chain);
12027 add_ranges (NULL);
12029 else
12031 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12032 BLOCK_NUMBER (stmt));
12033 add_AT_lbl_id (die, DW_AT_low_pc, label);
12034 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12035 BLOCK_NUMBER (stmt));
12036 add_AT_lbl_id (die, DW_AT_high_pc, label);
12040 /* Generate a DIE for a lexical block. */
12042 static void
12043 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12045 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12047 if (! BLOCK_ABSTRACT (stmt))
12048 add_high_low_attributes (stmt, stmt_die);
12050 decls_for_scope (stmt, stmt_die, depth);
12053 /* Generate a DIE for an inlined subprogram. */
12055 static void
12056 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12058 tree decl = block_ultimate_origin (stmt);
12060 /* Emit info for the abstract instance first, if we haven't yet. We
12061 must emit this even if the block is abstract, otherwise when we
12062 emit the block below (or elsewhere), we may end up trying to emit
12063 a die whose origin die hasn't been emitted, and crashing. */
12064 dwarf2out_abstract_function (decl);
12066 if (! BLOCK_ABSTRACT (stmt))
12068 dw_die_ref subr_die
12069 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12071 add_abstract_origin_attribute (subr_die, decl);
12072 add_high_low_attributes (stmt, subr_die);
12073 add_call_src_coords_attributes (stmt, subr_die);
12075 decls_for_scope (stmt, subr_die, depth);
12076 current_function_has_inlines = 1;
12078 else
12079 /* We may get here if we're the outer block of function A that was
12080 inlined into function B that was inlined into function C. When
12081 generating debugging info for C, dwarf2out_abstract_function(B)
12082 would mark all inlined blocks as abstract, including this one.
12083 So, we wouldn't (and shouldn't) expect labels to be generated
12084 for this one. Instead, just emit debugging info for
12085 declarations within the block. This is particularly important
12086 in the case of initializers of arguments passed from B to us:
12087 if they're statement expressions containing declarations, we
12088 wouldn't generate dies for their abstract variables, and then,
12089 when generating dies for the real variables, we'd die (pun
12090 intended :-) */
12091 gen_lexical_block_die (stmt, context_die, depth);
12094 /* Generate a DIE for a field in a record, or structure. */
12096 static void
12097 gen_field_die (tree decl, dw_die_ref context_die)
12099 dw_die_ref decl_die;
12101 if (TREE_TYPE (decl) == error_mark_node)
12102 return;
12104 decl_die = new_die (DW_TAG_member, context_die, decl);
12105 add_name_and_src_coords_attributes (decl_die, decl);
12106 add_type_attribute (decl_die, member_declared_type (decl),
12107 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12108 context_die);
12110 if (DECL_BIT_FIELD_TYPE (decl))
12112 add_byte_size_attribute (decl_die, decl);
12113 add_bit_size_attribute (decl_die, decl);
12114 add_bit_offset_attribute (decl_die, decl);
12117 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12118 add_data_member_location_attribute (decl_die, decl);
12120 if (DECL_ARTIFICIAL (decl))
12121 add_AT_flag (decl_die, DW_AT_artificial, 1);
12123 if (TREE_PROTECTED (decl))
12124 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12125 else if (TREE_PRIVATE (decl))
12126 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12128 /* Equate decl number to die, so that we can look up this decl later on. */
12129 equate_decl_number_to_die (decl, decl_die);
12132 #if 0
12133 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12134 Use modified_type_die instead.
12135 We keep this code here just in case these types of DIEs may be needed to
12136 represent certain things in other languages (e.g. Pascal) someday. */
12138 static void
12139 gen_pointer_type_die (tree type, dw_die_ref context_die)
12141 dw_die_ref ptr_die
12142 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12144 equate_type_number_to_die (type, ptr_die);
12145 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12146 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12149 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12150 Use modified_type_die instead.
12151 We keep this code here just in case these types of DIEs may be needed to
12152 represent certain things in other languages (e.g. Pascal) someday. */
12154 static void
12155 gen_reference_type_die (tree type, dw_die_ref context_die)
12157 dw_die_ref ref_die
12158 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12160 equate_type_number_to_die (type, ref_die);
12161 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12162 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12164 #endif
12166 /* Generate a DIE for a pointer to a member type. */
12168 static void
12169 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12171 dw_die_ref ptr_die
12172 = new_die (DW_TAG_ptr_to_member_type,
12173 scope_die_for (type, context_die), type);
12175 equate_type_number_to_die (type, ptr_die);
12176 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12177 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12178 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12181 /* Generate the DIE for the compilation unit. */
12183 static dw_die_ref
12184 gen_compile_unit_die (const char *filename)
12186 dw_die_ref die;
12187 char producer[250];
12188 const char *language_string = lang_hooks.name;
12189 int language;
12191 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12193 if (filename)
12195 add_name_attribute (die, filename);
12196 /* Don't add cwd for <built-in>. */
12197 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
12198 add_comp_dir_attribute (die);
12201 sprintf (producer, "%s %s", language_string, version_string);
12203 #ifdef MIPS_DEBUGGING_INFO
12204 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12205 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12206 not appear in the producer string, the debugger reaches the conclusion
12207 that the object file is stripped and has no debugging information.
12208 To get the MIPS/SGI debugger to believe that there is debugging
12209 information in the object file, we add a -g to the producer string. */
12210 if (debug_info_level > DINFO_LEVEL_TERSE)
12211 strcat (producer, " -g");
12212 #endif
12214 add_AT_string (die, DW_AT_producer, producer);
12216 if (strcmp (language_string, "GNU C++") == 0)
12217 language = DW_LANG_C_plus_plus;
12218 else if (strcmp (language_string, "GNU Ada") == 0)
12219 language = DW_LANG_Ada95;
12220 else if (strcmp (language_string, "GNU F77") == 0)
12221 language = DW_LANG_Fortran77;
12222 else if (strcmp (language_string, "GNU F95") == 0)
12223 language = DW_LANG_Fortran95;
12224 else if (strcmp (language_string, "GNU Pascal") == 0)
12225 language = DW_LANG_Pascal83;
12226 else if (strcmp (language_string, "GNU Java") == 0)
12227 language = DW_LANG_Java;
12228 else if (strcmp (language_string, "GNU Objective-C") == 0)
12229 language = DW_LANG_ObjC;
12230 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12231 language = DW_LANG_ObjC_plus_plus;
12232 else
12233 language = DW_LANG_C89;
12235 add_AT_unsigned (die, DW_AT_language, language);
12236 return die;
12239 /* Generate the DIE for a base class. */
12241 static void
12242 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12244 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12246 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12247 add_data_member_location_attribute (die, binfo);
12249 if (BINFO_VIRTUAL_P (binfo))
12250 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12252 if (access == access_public_node)
12253 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12254 else if (access == access_protected_node)
12255 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12258 /* Generate a DIE for a class member. */
12260 static void
12261 gen_member_die (tree type, dw_die_ref context_die)
12263 tree member;
12264 tree binfo = TYPE_BINFO (type);
12265 dw_die_ref child;
12267 /* If this is not an incomplete type, output descriptions of each of its
12268 members. Note that as we output the DIEs necessary to represent the
12269 members of this record or union type, we will also be trying to output
12270 DIEs to represent the *types* of those members. However the `type'
12271 function (above) will specifically avoid generating type DIEs for member
12272 types *within* the list of member DIEs for this (containing) type except
12273 for those types (of members) which are explicitly marked as also being
12274 members of this (containing) type themselves. The g++ front- end can
12275 force any given type to be treated as a member of some other (containing)
12276 type by setting the TYPE_CONTEXT of the given (member) type to point to
12277 the TREE node representing the appropriate (containing) type. */
12279 /* First output info about the base classes. */
12280 if (binfo)
12282 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12283 int i;
12284 tree base;
12286 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12287 gen_inheritance_die (base,
12288 (accesses ? VEC_index (tree, accesses, i)
12289 : access_public_node), context_die);
12292 /* Now output info about the data members and type members. */
12293 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12295 /* If we thought we were generating minimal debug info for TYPE
12296 and then changed our minds, some of the member declarations
12297 may have already been defined. Don't define them again, but
12298 do put them in the right order. */
12300 child = lookup_decl_die (member);
12301 if (child)
12302 splice_child_die (context_die, child);
12303 else
12304 gen_decl_die (member, context_die);
12307 /* Now output info about the function members (if any). */
12308 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12310 /* Don't include clones in the member list. */
12311 if (DECL_ABSTRACT_ORIGIN (member))
12312 continue;
12314 child = lookup_decl_die (member);
12315 if (child)
12316 splice_child_die (context_die, child);
12317 else
12318 gen_decl_die (member, context_die);
12322 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12323 is set, we pretend that the type was never defined, so we only get the
12324 member DIEs needed by later specification DIEs. */
12326 static void
12327 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12329 dw_die_ref type_die = lookup_type_die (type);
12330 dw_die_ref scope_die = 0;
12331 int nested = 0;
12332 int complete = (TYPE_SIZE (type)
12333 && (! TYPE_STUB_DECL (type)
12334 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12335 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12337 if (type_die && ! complete)
12338 return;
12340 if (TYPE_CONTEXT (type) != NULL_TREE
12341 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12342 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12343 nested = 1;
12345 scope_die = scope_die_for (type, context_die);
12347 if (! type_die || (nested && scope_die == comp_unit_die))
12348 /* First occurrence of type or toplevel definition of nested class. */
12350 dw_die_ref old_die = type_die;
12352 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12353 ? DW_TAG_structure_type : DW_TAG_union_type,
12354 scope_die, type);
12355 equate_type_number_to_die (type, type_die);
12356 if (old_die)
12357 add_AT_specification (type_die, old_die);
12358 else
12359 add_name_attribute (type_die, type_tag (type));
12361 else
12362 remove_AT (type_die, DW_AT_declaration);
12364 /* If this type has been completed, then give it a byte_size attribute and
12365 then give a list of members. */
12366 if (complete && !ns_decl)
12368 /* Prevent infinite recursion in cases where the type of some member of
12369 this type is expressed in terms of this type itself. */
12370 TREE_ASM_WRITTEN (type) = 1;
12371 add_byte_size_attribute (type_die, type);
12372 if (TYPE_STUB_DECL (type) != NULL_TREE)
12373 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12375 /* If the first reference to this type was as the return type of an
12376 inline function, then it may not have a parent. Fix this now. */
12377 if (type_die->die_parent == NULL)
12378 add_child_die (scope_die, type_die);
12380 push_decl_scope (type);
12381 gen_member_die (type, type_die);
12382 pop_decl_scope ();
12384 /* GNU extension: Record what type our vtable lives in. */
12385 if (TYPE_VFIELD (type))
12387 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12389 gen_type_die (vtype, context_die);
12390 add_AT_die_ref (type_die, DW_AT_containing_type,
12391 lookup_type_die (vtype));
12394 else
12396 add_AT_flag (type_die, DW_AT_declaration, 1);
12398 /* We don't need to do this for function-local types. */
12399 if (TYPE_STUB_DECL (type)
12400 && ! decl_function_context (TYPE_STUB_DECL (type)))
12401 VEC_safe_push (tree, gc, incomplete_types, type);
12405 /* Generate a DIE for a subroutine _type_. */
12407 static void
12408 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12410 tree return_type = TREE_TYPE (type);
12411 dw_die_ref subr_die
12412 = new_die (DW_TAG_subroutine_type,
12413 scope_die_for (type, context_die), type);
12415 equate_type_number_to_die (type, subr_die);
12416 add_prototyped_attribute (subr_die, type);
12417 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12418 gen_formal_types_die (type, subr_die);
12421 /* Generate a DIE for a type definition. */
12423 static void
12424 gen_typedef_die (tree decl, dw_die_ref context_die)
12426 dw_die_ref type_die;
12427 tree origin;
12429 if (TREE_ASM_WRITTEN (decl))
12430 return;
12432 TREE_ASM_WRITTEN (decl) = 1;
12433 type_die = new_die (DW_TAG_typedef, context_die, decl);
12434 origin = decl_ultimate_origin (decl);
12435 if (origin != NULL)
12436 add_abstract_origin_attribute (type_die, origin);
12437 else
12439 tree type;
12441 add_name_and_src_coords_attributes (type_die, decl);
12442 if (DECL_ORIGINAL_TYPE (decl))
12444 type = DECL_ORIGINAL_TYPE (decl);
12446 gcc_assert (type != TREE_TYPE (decl));
12447 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12449 else
12450 type = TREE_TYPE (decl);
12452 add_type_attribute (type_die, type, TREE_READONLY (decl),
12453 TREE_THIS_VOLATILE (decl), context_die);
12456 if (DECL_ABSTRACT (decl))
12457 equate_decl_number_to_die (decl, type_die);
12460 /* Generate a type description DIE. */
12462 static void
12463 gen_type_die (tree type, dw_die_ref context_die)
12465 int need_pop;
12467 if (type == NULL_TREE || type == error_mark_node)
12468 return;
12470 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12471 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12473 if (TREE_ASM_WRITTEN (type))
12474 return;
12476 /* Prevent broken recursion; we can't hand off to the same type. */
12477 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12479 TREE_ASM_WRITTEN (type) = 1;
12480 gen_decl_die (TYPE_NAME (type), context_die);
12481 return;
12484 /* We are going to output a DIE to represent the unqualified version
12485 of this type (i.e. without any const or volatile qualifiers) so
12486 get the main variant (i.e. the unqualified version) of this type
12487 now. (Vectors are special because the debugging info is in the
12488 cloned type itself). */
12489 if (TREE_CODE (type) != VECTOR_TYPE)
12490 type = type_main_variant (type);
12492 if (TREE_ASM_WRITTEN (type))
12493 return;
12495 switch (TREE_CODE (type))
12497 case ERROR_MARK:
12498 break;
12500 case POINTER_TYPE:
12501 case REFERENCE_TYPE:
12502 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12503 ensures that the gen_type_die recursion will terminate even if the
12504 type is recursive. Recursive types are possible in Ada. */
12505 /* ??? We could perhaps do this for all types before the switch
12506 statement. */
12507 TREE_ASM_WRITTEN (type) = 1;
12509 /* For these types, all that is required is that we output a DIE (or a
12510 set of DIEs) to represent the "basis" type. */
12511 gen_type_die (TREE_TYPE (type), context_die);
12512 break;
12514 case OFFSET_TYPE:
12515 /* This code is used for C++ pointer-to-data-member types.
12516 Output a description of the relevant class type. */
12517 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12519 /* Output a description of the type of the object pointed to. */
12520 gen_type_die (TREE_TYPE (type), context_die);
12522 /* Now output a DIE to represent this pointer-to-data-member type
12523 itself. */
12524 gen_ptr_to_mbr_type_die (type, context_die);
12525 break;
12527 case FUNCTION_TYPE:
12528 /* Force out return type (in case it wasn't forced out already). */
12529 gen_type_die (TREE_TYPE (type), context_die);
12530 gen_subroutine_type_die (type, context_die);
12531 break;
12533 case METHOD_TYPE:
12534 /* Force out return type (in case it wasn't forced out already). */
12535 gen_type_die (TREE_TYPE (type), context_die);
12536 gen_subroutine_type_die (type, context_die);
12537 break;
12539 case ARRAY_TYPE:
12540 gen_array_type_die (type, context_die);
12541 break;
12543 case VECTOR_TYPE:
12544 gen_array_type_die (type, context_die);
12545 break;
12547 case ENUMERAL_TYPE:
12548 case RECORD_TYPE:
12549 case UNION_TYPE:
12550 case QUAL_UNION_TYPE:
12551 /* If this is a nested type whose containing class hasn't been written
12552 out yet, writing it out will cover this one, too. This does not apply
12553 to instantiations of member class templates; they need to be added to
12554 the containing class as they are generated. FIXME: This hurts the
12555 idea of combining type decls from multiple TUs, since we can't predict
12556 what set of template instantiations we'll get. */
12557 if (TYPE_CONTEXT (type)
12558 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12559 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12561 gen_type_die (TYPE_CONTEXT (type), context_die);
12563 if (TREE_ASM_WRITTEN (type))
12564 return;
12566 /* If that failed, attach ourselves to the stub. */
12567 push_decl_scope (TYPE_CONTEXT (type));
12568 context_die = lookup_type_die (TYPE_CONTEXT (type));
12569 need_pop = 1;
12571 else
12573 declare_in_namespace (type, context_die);
12574 need_pop = 0;
12577 if (TREE_CODE (type) == ENUMERAL_TYPE)
12578 gen_enumeration_type_die (type, context_die);
12579 else
12580 gen_struct_or_union_type_die (type, context_die);
12582 if (need_pop)
12583 pop_decl_scope ();
12585 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12586 it up if it is ever completed. gen_*_type_die will set it for us
12587 when appropriate. */
12588 return;
12590 case VOID_TYPE:
12591 case INTEGER_TYPE:
12592 case REAL_TYPE:
12593 case COMPLEX_TYPE:
12594 case BOOLEAN_TYPE:
12595 /* No DIEs needed for fundamental types. */
12596 break;
12598 case LANG_TYPE:
12599 /* No Dwarf representation currently defined. */
12600 break;
12602 default:
12603 gcc_unreachable ();
12606 TREE_ASM_WRITTEN (type) = 1;
12609 /* Generate a DIE for a tagged type instantiation. */
12611 static void
12612 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12614 if (type == NULL_TREE || type == error_mark_node)
12615 return;
12617 /* We are going to output a DIE to represent the unqualified version of
12618 this type (i.e. without any const or volatile qualifiers) so make sure
12619 that we have the main variant (i.e. the unqualified version) of this
12620 type now. */
12621 gcc_assert (type == type_main_variant (type));
12623 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12624 an instance of an unresolved type. */
12626 switch (TREE_CODE (type))
12628 case ERROR_MARK:
12629 break;
12631 case ENUMERAL_TYPE:
12632 gen_inlined_enumeration_type_die (type, context_die);
12633 break;
12635 case RECORD_TYPE:
12636 gen_inlined_structure_type_die (type, context_die);
12637 break;
12639 case UNION_TYPE:
12640 case QUAL_UNION_TYPE:
12641 gen_inlined_union_type_die (type, context_die);
12642 break;
12644 default:
12645 gcc_unreachable ();
12649 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12650 things which are local to the given block. */
12652 static void
12653 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12655 int must_output_die = 0;
12656 tree origin;
12657 tree decl;
12658 enum tree_code origin_code;
12660 /* Ignore blocks that are NULL. */
12661 if (stmt == NULL_TREE)
12662 return;
12664 /* If the block is one fragment of a non-contiguous block, do not
12665 process the variables, since they will have been done by the
12666 origin block. Do process subblocks. */
12667 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12669 tree sub;
12671 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12672 gen_block_die (sub, context_die, depth + 1);
12674 return;
12677 /* Determine the "ultimate origin" of this block. This block may be an
12678 inlined instance of an inlined instance of inline function, so we have
12679 to trace all of the way back through the origin chain to find out what
12680 sort of node actually served as the original seed for the creation of
12681 the current block. */
12682 origin = block_ultimate_origin (stmt);
12683 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12685 /* Determine if we need to output any Dwarf DIEs at all to represent this
12686 block. */
12687 if (origin_code == FUNCTION_DECL)
12688 /* The outer scopes for inlinings *must* always be represented. We
12689 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12690 must_output_die = 1;
12691 else
12693 /* In the case where the current block represents an inlining of the
12694 "body block" of an inline function, we must *NOT* output any DIE for
12695 this block because we have already output a DIE to represent the whole
12696 inlined function scope and the "body block" of any function doesn't
12697 really represent a different scope according to ANSI C rules. So we
12698 check here to make sure that this block does not represent a "body
12699 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12700 if (! is_body_block (origin ? origin : stmt))
12702 /* Determine if this block directly contains any "significant"
12703 local declarations which we will need to output DIEs for. */
12704 if (debug_info_level > DINFO_LEVEL_TERSE)
12705 /* We are not in terse mode so *any* local declaration counts
12706 as being a "significant" one. */
12707 must_output_die = (BLOCK_VARS (stmt) != NULL
12708 && (TREE_USED (stmt)
12709 || TREE_ASM_WRITTEN (stmt)
12710 || BLOCK_ABSTRACT (stmt)));
12711 else
12712 /* We are in terse mode, so only local (nested) function
12713 definitions count as "significant" local declarations. */
12714 for (decl = BLOCK_VARS (stmt);
12715 decl != NULL; decl = TREE_CHAIN (decl))
12716 if (TREE_CODE (decl) == FUNCTION_DECL
12717 && DECL_INITIAL (decl))
12719 must_output_die = 1;
12720 break;
12725 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12726 DIE for any block which contains no significant local declarations at
12727 all. Rather, in such cases we just call `decls_for_scope' so that any
12728 needed Dwarf info for any sub-blocks will get properly generated. Note
12729 that in terse mode, our definition of what constitutes a "significant"
12730 local declaration gets restricted to include only inlined function
12731 instances and local (nested) function definitions. */
12732 if (must_output_die)
12734 if (origin_code == FUNCTION_DECL)
12735 gen_inlined_subroutine_die (stmt, context_die, depth);
12736 else
12737 gen_lexical_block_die (stmt, context_die, depth);
12739 else
12740 decls_for_scope (stmt, context_die, depth);
12743 /* Generate all of the decls declared within a given scope and (recursively)
12744 all of its sub-blocks. */
12746 static void
12747 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12749 tree decl;
12750 tree subblocks;
12752 /* Ignore NULL blocks. */
12753 if (stmt == NULL_TREE)
12754 return;
12756 if (TREE_USED (stmt))
12758 /* Output the DIEs to represent all of the data objects and typedefs
12759 declared directly within this block but not within any nested
12760 sub-blocks. Also, nested function and tag DIEs have been
12761 generated with a parent of NULL; fix that up now. */
12762 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12764 dw_die_ref die;
12766 if (TREE_CODE (decl) == FUNCTION_DECL)
12767 die = lookup_decl_die (decl);
12768 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12769 die = lookup_type_die (TREE_TYPE (decl));
12770 else
12771 die = NULL;
12773 if (die != NULL && die->die_parent == NULL)
12774 add_child_die (context_die, die);
12775 /* Do not produce debug information for static variables since
12776 these might be optimized out. We are called for these later
12777 in cgraph_varpool_analyze_pending_decls. */
12778 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12780 else
12781 gen_decl_die (decl, context_die);
12785 /* If we're at -g1, we're not interested in subblocks. */
12786 if (debug_info_level <= DINFO_LEVEL_TERSE)
12787 return;
12789 /* Output the DIEs to represent all sub-blocks (and the items declared
12790 therein) of this block. */
12791 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12792 subblocks != NULL;
12793 subblocks = BLOCK_CHAIN (subblocks))
12794 gen_block_die (subblocks, context_die, depth + 1);
12797 /* Is this a typedef we can avoid emitting? */
12799 static inline int
12800 is_redundant_typedef (tree decl)
12802 if (TYPE_DECL_IS_STUB (decl))
12803 return 1;
12805 if (DECL_ARTIFICIAL (decl)
12806 && DECL_CONTEXT (decl)
12807 && is_tagged_type (DECL_CONTEXT (decl))
12808 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12809 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12810 /* Also ignore the artificial member typedef for the class name. */
12811 return 1;
12813 return 0;
12816 /* Returns the DIE for decl. A DIE will always be returned. */
12818 static dw_die_ref
12819 force_decl_die (tree decl)
12821 dw_die_ref decl_die;
12822 unsigned saved_external_flag;
12823 tree save_fn = NULL_TREE;
12824 decl_die = lookup_decl_die (decl);
12825 if (!decl_die)
12827 dw_die_ref context_die;
12828 tree decl_context = DECL_CONTEXT (decl);
12829 if (decl_context)
12831 /* Find die that represents this context. */
12832 if (TYPE_P (decl_context))
12833 context_die = force_type_die (decl_context);
12834 else
12835 context_die = force_decl_die (decl_context);
12837 else
12838 context_die = comp_unit_die;
12840 decl_die = lookup_decl_die (decl);
12841 if (decl_die)
12842 return decl_die;
12844 switch (TREE_CODE (decl))
12846 case FUNCTION_DECL:
12847 /* Clear current_function_decl, so that gen_subprogram_die thinks
12848 that this is a declaration. At this point, we just want to force
12849 declaration die. */
12850 save_fn = current_function_decl;
12851 current_function_decl = NULL_TREE;
12852 gen_subprogram_die (decl, context_die);
12853 current_function_decl = save_fn;
12854 break;
12856 case VAR_DECL:
12857 /* Set external flag to force declaration die. Restore it after
12858 gen_decl_die() call. */
12859 saved_external_flag = DECL_EXTERNAL (decl);
12860 DECL_EXTERNAL (decl) = 1;
12861 gen_decl_die (decl, context_die);
12862 DECL_EXTERNAL (decl) = saved_external_flag;
12863 break;
12865 case NAMESPACE_DECL:
12866 dwarf2out_decl (decl);
12867 break;
12869 default:
12870 gcc_unreachable ();
12873 /* We should be able to find the DIE now. */
12874 if (!decl_die)
12875 decl_die = lookup_decl_die (decl);
12876 gcc_assert (decl_die);
12879 return decl_die;
12882 /* Returns the DIE for TYPE. A DIE is always returned. */
12884 static dw_die_ref
12885 force_type_die (tree type)
12887 dw_die_ref type_die;
12889 type_die = lookup_type_die (type);
12890 if (!type_die)
12892 dw_die_ref context_die;
12893 if (TYPE_CONTEXT (type))
12895 if (TYPE_P (TYPE_CONTEXT (type)))
12896 context_die = force_type_die (TYPE_CONTEXT (type));
12897 else
12898 context_die = force_decl_die (TYPE_CONTEXT (type));
12900 else
12901 context_die = comp_unit_die;
12903 type_die = lookup_type_die (type);
12904 if (type_die)
12905 return type_die;
12906 gen_type_die (type, context_die);
12907 type_die = lookup_type_die (type);
12908 gcc_assert (type_die);
12910 return type_die;
12913 /* Force out any required namespaces to be able to output DECL,
12914 and return the new context_die for it, if it's changed. */
12916 static dw_die_ref
12917 setup_namespace_context (tree thing, dw_die_ref context_die)
12919 tree context = (DECL_P (thing)
12920 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12921 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12922 /* Force out the namespace. */
12923 context_die = force_decl_die (context);
12925 return context_die;
12928 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12929 type) within its namespace, if appropriate.
12931 For compatibility with older debuggers, namespace DIEs only contain
12932 declarations; all definitions are emitted at CU scope. */
12934 static void
12935 declare_in_namespace (tree thing, dw_die_ref context_die)
12937 dw_die_ref ns_context;
12939 if (debug_info_level <= DINFO_LEVEL_TERSE)
12940 return;
12942 /* If this decl is from an inlined function, then don't try to emit it in its
12943 namespace, as we will get confused. It would have already been emitted
12944 when the abstract instance of the inline function was emitted anyways. */
12945 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12946 return;
12948 ns_context = setup_namespace_context (thing, context_die);
12950 if (ns_context != context_die)
12952 if (DECL_P (thing))
12953 gen_decl_die (thing, ns_context);
12954 else
12955 gen_type_die (thing, ns_context);
12959 /* Generate a DIE for a namespace or namespace alias. */
12961 static void
12962 gen_namespace_die (tree decl)
12964 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12966 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12967 they are an alias of. */
12968 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12970 /* Output a real namespace. */
12971 dw_die_ref namespace_die
12972 = new_die (DW_TAG_namespace, context_die, decl);
12973 add_name_and_src_coords_attributes (namespace_die, decl);
12974 equate_decl_number_to_die (decl, namespace_die);
12976 else
12978 /* Output a namespace alias. */
12980 /* Force out the namespace we are an alias of, if necessary. */
12981 dw_die_ref origin_die
12982 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12984 /* Now create the namespace alias DIE. */
12985 dw_die_ref namespace_die
12986 = new_die (DW_TAG_imported_declaration, context_die, decl);
12987 add_name_and_src_coords_attributes (namespace_die, decl);
12988 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12989 equate_decl_number_to_die (decl, namespace_die);
12993 /* Generate Dwarf debug information for a decl described by DECL. */
12995 static void
12996 gen_decl_die (tree decl, dw_die_ref context_die)
12998 tree origin;
13000 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13001 return;
13003 switch (TREE_CODE (decl))
13005 case ERROR_MARK:
13006 break;
13008 case CONST_DECL:
13009 /* The individual enumerators of an enum type get output when we output
13010 the Dwarf representation of the relevant enum type itself. */
13011 break;
13013 case FUNCTION_DECL:
13014 /* Don't output any DIEs to represent mere function declarations,
13015 unless they are class members or explicit block externs. */
13016 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13017 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13018 break;
13020 #if 0
13021 /* FIXME */
13022 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13023 on local redeclarations of global functions. That seems broken. */
13024 if (current_function_decl != decl)
13025 /* This is only a declaration. */;
13026 #endif
13028 /* If we're emitting a clone, emit info for the abstract instance. */
13029 if (DECL_ORIGIN (decl) != decl)
13030 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13032 /* If we're emitting an out-of-line copy of an inline function,
13033 emit info for the abstract instance and set up to refer to it. */
13034 else if (cgraph_function_possibly_inlined_p (decl)
13035 && ! DECL_ABSTRACT (decl)
13036 && ! class_or_namespace_scope_p (context_die)
13037 /* dwarf2out_abstract_function won't emit a die if this is just
13038 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13039 that case, because that works only if we have a die. */
13040 && DECL_INITIAL (decl) != NULL_TREE)
13042 dwarf2out_abstract_function (decl);
13043 set_decl_origin_self (decl);
13046 /* Otherwise we're emitting the primary DIE for this decl. */
13047 else if (debug_info_level > DINFO_LEVEL_TERSE)
13049 /* Before we describe the FUNCTION_DECL itself, make sure that we
13050 have described its return type. */
13051 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13053 /* And its virtual context. */
13054 if (DECL_VINDEX (decl) != NULL_TREE)
13055 gen_type_die (DECL_CONTEXT (decl), context_die);
13057 /* And its containing type. */
13058 origin = decl_class_context (decl);
13059 if (origin != NULL_TREE)
13060 gen_type_die_for_member (origin, decl, context_die);
13062 /* And its containing namespace. */
13063 declare_in_namespace (decl, context_die);
13066 /* Now output a DIE to represent the function itself. */
13067 gen_subprogram_die (decl, context_die);
13068 break;
13070 case TYPE_DECL:
13071 /* If we are in terse mode, don't generate any DIEs to represent any
13072 actual typedefs. */
13073 if (debug_info_level <= DINFO_LEVEL_TERSE)
13074 break;
13076 /* In the special case of a TYPE_DECL node representing the declaration
13077 of some type tag, if the given TYPE_DECL is marked as having been
13078 instantiated from some other (original) TYPE_DECL node (e.g. one which
13079 was generated within the original definition of an inline function) we
13080 have to generate a special (abbreviated) DW_TAG_structure_type,
13081 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13082 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13084 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13085 break;
13088 if (is_redundant_typedef (decl))
13089 gen_type_die (TREE_TYPE (decl), context_die);
13090 else
13091 /* Output a DIE to represent the typedef itself. */
13092 gen_typedef_die (decl, context_die);
13093 break;
13095 case LABEL_DECL:
13096 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13097 gen_label_die (decl, context_die);
13098 break;
13100 case VAR_DECL:
13101 case RESULT_DECL:
13102 /* If we are in terse mode, don't generate any DIEs to represent any
13103 variable declarations or definitions. */
13104 if (debug_info_level <= DINFO_LEVEL_TERSE)
13105 break;
13107 /* Output any DIEs that are needed to specify the type of this data
13108 object. */
13109 gen_type_die (TREE_TYPE (decl), context_die);
13111 /* And its containing type. */
13112 origin = decl_class_context (decl);
13113 if (origin != NULL_TREE)
13114 gen_type_die_for_member (origin, decl, context_die);
13116 /* And its containing namespace. */
13117 declare_in_namespace (decl, context_die);
13119 /* Now output the DIE to represent the data object itself. This gets
13120 complicated because of the possibility that the VAR_DECL really
13121 represents an inlined instance of a formal parameter for an inline
13122 function. */
13123 origin = decl_ultimate_origin (decl);
13124 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13125 gen_formal_parameter_die (decl, context_die);
13126 else
13127 gen_variable_die (decl, context_die);
13128 break;
13130 case FIELD_DECL:
13131 /* Ignore the nameless fields that are used to skip bits but handle C++
13132 anonymous unions and structs. */
13133 if (DECL_NAME (decl) != NULL_TREE
13134 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13135 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13137 gen_type_die (member_declared_type (decl), context_die);
13138 gen_field_die (decl, context_die);
13140 break;
13142 case PARM_DECL:
13143 gen_type_die (TREE_TYPE (decl), context_die);
13144 gen_formal_parameter_die (decl, context_die);
13145 break;
13147 case NAMESPACE_DECL:
13148 gen_namespace_die (decl);
13149 break;
13151 default:
13152 /* Probably some frontend-internal decl. Assume we don't care. */
13153 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13154 break;
13158 /* Output debug information for global decl DECL. Called from toplev.c after
13159 compilation proper has finished. */
13161 static void
13162 dwarf2out_global_decl (tree decl)
13164 /* Output DWARF2 information for file-scope tentative data object
13165 declarations, file-scope (extern) function declarations (which had no
13166 corresponding body) and file-scope tagged type declarations and
13167 definitions which have not yet been forced out. */
13168 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13169 dwarf2out_decl (decl);
13172 /* Output debug information for type decl DECL. Called from toplev.c
13173 and from language front ends (to record built-in types). */
13174 static void
13175 dwarf2out_type_decl (tree decl, int local)
13177 if (!local)
13178 dwarf2out_decl (decl);
13181 /* Output debug information for imported module or decl. */
13183 static void
13184 dwarf2out_imported_module_or_decl (tree decl, tree context)
13186 dw_die_ref imported_die, at_import_die;
13187 dw_die_ref scope_die;
13188 unsigned file_index;
13189 expanded_location xloc;
13191 if (debug_info_level <= DINFO_LEVEL_TERSE)
13192 return;
13194 gcc_assert (decl);
13196 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13197 We need decl DIE for reference and scope die. First, get DIE for the decl
13198 itself. */
13200 /* Get the scope die for decl context. Use comp_unit_die for global module
13201 or decl. If die is not found for non globals, force new die. */
13202 if (!context)
13203 scope_die = comp_unit_die;
13204 else if (TYPE_P (context))
13205 scope_die = force_type_die (context);
13206 else
13207 scope_die = force_decl_die (context);
13209 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13210 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13211 at_import_die = force_type_die (TREE_TYPE (decl));
13212 else
13214 at_import_die = lookup_decl_die (decl);
13215 if (!at_import_die)
13217 /* If we're trying to avoid duplicate debug info, we may not have
13218 emitted the member decl for this field. Emit it now. */
13219 if (TREE_CODE (decl) == FIELD_DECL)
13221 tree type = DECL_CONTEXT (decl);
13222 dw_die_ref type_context_die;
13224 if (TYPE_CONTEXT (type))
13225 if (TYPE_P (TYPE_CONTEXT (type)))
13226 type_context_die = force_type_die (TYPE_CONTEXT (type));
13227 else
13228 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13229 else
13230 type_context_die = comp_unit_die;
13231 gen_type_die_for_member (type, decl, type_context_die);
13233 at_import_die = force_decl_die (decl);
13237 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13238 if (TREE_CODE (decl) == NAMESPACE_DECL)
13239 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13240 else
13241 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13243 xloc = expand_location (input_location);
13244 file_index = lookup_filename (xloc.file);
13245 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
13246 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13247 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13250 /* Write the debugging output for DECL. */
13252 void
13253 dwarf2out_decl (tree decl)
13255 dw_die_ref context_die = comp_unit_die;
13257 switch (TREE_CODE (decl))
13259 case ERROR_MARK:
13260 return;
13262 case FUNCTION_DECL:
13263 /* What we would really like to do here is to filter out all mere
13264 file-scope declarations of file-scope functions which are never
13265 referenced later within this translation unit (and keep all of ones
13266 that *are* referenced later on) but we aren't clairvoyant, so we have
13267 no idea which functions will be referenced in the future (i.e. later
13268 on within the current translation unit). So here we just ignore all
13269 file-scope function declarations which are not also definitions. If
13270 and when the debugger needs to know something about these functions,
13271 it will have to hunt around and find the DWARF information associated
13272 with the definition of the function.
13274 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13275 nodes represent definitions and which ones represent mere
13276 declarations. We have to check DECL_INITIAL instead. That's because
13277 the C front-end supports some weird semantics for "extern inline"
13278 function definitions. These can get inlined within the current
13279 translation unit (and thus, we need to generate Dwarf info for their
13280 abstract instances so that the Dwarf info for the concrete inlined
13281 instances can have something to refer to) but the compiler never
13282 generates any out-of-lines instances of such things (despite the fact
13283 that they *are* definitions).
13285 The important point is that the C front-end marks these "extern
13286 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13287 them anyway. Note that the C++ front-end also plays some similar games
13288 for inline function definitions appearing within include files which
13289 also contain `#pragma interface' pragmas. */
13290 if (DECL_INITIAL (decl) == NULL_TREE)
13291 return;
13293 /* If we're a nested function, initially use a parent of NULL; if we're
13294 a plain function, this will be fixed up in decls_for_scope. If
13295 we're a method, it will be ignored, since we already have a DIE. */
13296 if (decl_function_context (decl)
13297 /* But if we're in terse mode, we don't care about scope. */
13298 && debug_info_level > DINFO_LEVEL_TERSE)
13299 context_die = NULL;
13300 break;
13302 case VAR_DECL:
13303 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13304 declaration and if the declaration was never even referenced from
13305 within this entire compilation unit. We suppress these DIEs in
13306 order to save space in the .debug section (by eliminating entries
13307 which are probably useless). Note that we must not suppress
13308 block-local extern declarations (whether used or not) because that
13309 would screw-up the debugger's name lookup mechanism and cause it to
13310 miss things which really ought to be in scope at a given point. */
13311 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13312 return;
13314 /* For local statics lookup proper context die. */
13315 if (TREE_STATIC (decl) && decl_function_context (decl))
13316 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13318 /* If we are in terse mode, don't generate any DIEs to represent any
13319 variable declarations or definitions. */
13320 if (debug_info_level <= DINFO_LEVEL_TERSE)
13321 return;
13322 break;
13324 case NAMESPACE_DECL:
13325 if (debug_info_level <= DINFO_LEVEL_TERSE)
13326 return;
13327 if (lookup_decl_die (decl) != NULL)
13328 return;
13329 break;
13331 case TYPE_DECL:
13332 /* Don't emit stubs for types unless they are needed by other DIEs. */
13333 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13334 return;
13336 /* Don't bother trying to generate any DIEs to represent any of the
13337 normal built-in types for the language we are compiling. */
13338 if (DECL_IS_BUILTIN (decl))
13340 /* OK, we need to generate one for `bool' so GDB knows what type
13341 comparisons have. */
13342 if (is_cxx ()
13343 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13344 && ! DECL_IGNORED_P (decl))
13345 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13347 return;
13350 /* If we are in terse mode, don't generate any DIEs for types. */
13351 if (debug_info_level <= DINFO_LEVEL_TERSE)
13352 return;
13354 /* If we're a function-scope tag, initially use a parent of NULL;
13355 this will be fixed up in decls_for_scope. */
13356 if (decl_function_context (decl))
13357 context_die = NULL;
13359 break;
13361 default:
13362 return;
13365 gen_decl_die (decl, context_die);
13368 /* Output a marker (i.e. a label) for the beginning of the generated code for
13369 a lexical block. */
13371 static void
13372 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13373 unsigned int blocknum)
13375 switch_to_section (current_function_section ());
13376 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13379 /* Output a marker (i.e. a label) for the end of the generated code for a
13380 lexical block. */
13382 static void
13383 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13385 switch_to_section (current_function_section ());
13386 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13389 /* Returns nonzero if it is appropriate not to emit any debugging
13390 information for BLOCK, because it doesn't contain any instructions.
13392 Don't allow this for blocks with nested functions or local classes
13393 as we would end up with orphans, and in the presence of scheduling
13394 we may end up calling them anyway. */
13396 static bool
13397 dwarf2out_ignore_block (tree block)
13399 tree decl;
13401 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13402 if (TREE_CODE (decl) == FUNCTION_DECL
13403 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13404 return 0;
13406 return 1;
13409 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13410 dwarf2out.c) and return its "index". The index of each (known) filename is
13411 just a unique number which is associated with only that one filename. We
13412 need such numbers for the sake of generating labels (in the .debug_sfnames
13413 section) and references to those files numbers (in the .debug_srcinfo
13414 and.debug_macinfo sections). If the filename given as an argument is not
13415 found in our current list, add it to the list and assign it the next
13416 available unique index number. In order to speed up searches, we remember
13417 the index of the filename was looked up last. This handles the majority of
13418 all searches. */
13420 static unsigned
13421 lookup_filename (const char *file_name)
13423 size_t i, n;
13424 char *save_file_name;
13426 /* Check to see if the file name that was searched on the previous
13427 call matches this file name. If so, return the index. */
13428 if (file_table_last_lookup_index != 0)
13430 const char *last
13431 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13432 if (strcmp (file_name, last) == 0)
13433 return file_table_last_lookup_index;
13436 /* Didn't match the previous lookup, search the table. */
13437 n = VARRAY_ACTIVE_SIZE (file_table);
13438 for (i = 1; i < n; i++)
13439 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13441 file_table_last_lookup_index = i;
13442 return i;
13445 /* Add the new entry to the end of the filename table. */
13446 file_table_last_lookup_index = n;
13447 save_file_name = (char *) ggc_strdup (file_name);
13448 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13449 VARRAY_PUSH_UINT (file_table_emitted, 0);
13451 /* If the assembler is emitting the file table, and we aren't eliminating
13452 unused debug types, then we must emit .file here. If we are eliminating
13453 unused debug types, then this will be done by the maybe_emit_file call in
13454 prune_unused_types_walk_attribs. */
13456 if (DWARF2_ASM_LINE_DEBUG_INFO && ! flag_eliminate_unused_debug_types)
13457 return maybe_emit_file (i);
13459 return i;
13462 /* If the assembler will construct the file table, then translate the compiler
13463 internal file table number into the assembler file table number, and emit
13464 a .file directive if we haven't already emitted one yet. The file table
13465 numbers are different because we prune debug info for unused variables and
13466 types, which may include filenames. */
13468 static int
13469 maybe_emit_file (int fileno)
13471 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13473 if (!VARRAY_UINT (file_table_emitted, fileno))
13475 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13476 fprintf (asm_out_file, "\t.file %u ",
13477 VARRAY_UINT (file_table_emitted, fileno));
13478 output_quoted_string (asm_out_file,
13479 VARRAY_CHAR_PTR (file_table, fileno));
13480 fputc ('\n', asm_out_file);
13482 return VARRAY_UINT (file_table_emitted, fileno);
13484 else
13485 return fileno;
13488 /* Initialize the compiler internal file table. */
13490 static void
13491 init_file_table (void)
13493 /* Allocate the initial hunk of the file_table. */
13494 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13495 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13497 /* Skip the first entry - file numbers begin at 1. */
13498 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13499 VARRAY_PUSH_UINT (file_table_emitted, 0);
13500 file_table_last_lookup_index = 0;
13503 /* Called by the final INSN scan whenever we see a var location. We
13504 use it to drop labels in the right places, and throw the location in
13505 our lookup table. */
13507 static void
13508 dwarf2out_var_location (rtx loc_note)
13510 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13511 struct var_loc_node *newloc;
13512 rtx prev_insn;
13513 static rtx last_insn;
13514 static const char *last_label;
13515 tree decl;
13517 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13518 return;
13519 prev_insn = PREV_INSN (loc_note);
13521 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13522 /* If the insn we processed last time is the previous insn
13523 and it is also a var location note, use the label we emitted
13524 last time. */
13525 if (last_insn != NULL_RTX
13526 && last_insn == prev_insn
13527 && NOTE_P (prev_insn)
13528 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13530 newloc->label = last_label;
13532 else
13534 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13535 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13536 loclabel_num++;
13537 newloc->label = ggc_strdup (loclabel);
13539 newloc->var_loc_note = loc_note;
13540 newloc->next = NULL;
13542 if (cfun && in_cold_section_p)
13543 newloc->section_label = cfun->cold_section_label;
13544 else
13545 newloc->section_label = text_section_label;
13547 last_insn = loc_note;
13548 last_label = newloc->label;
13549 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13550 if (DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
13551 && DECL_P (DECL_DEBUG_EXPR (decl)))
13552 decl = DECL_DEBUG_EXPR (decl);
13553 add_var_loc_to_decl (decl, newloc);
13556 /* We need to reset the locations at the beginning of each
13557 function. We can't do this in the end_function hook, because the
13558 declarations that use the locations won't have been output when
13559 that hook is called. Also compute have_multiple_function_sections here. */
13561 static void
13562 dwarf2out_begin_function (tree fun)
13564 htab_empty (decl_loc_table);
13566 if (function_section (fun) != text_section)
13567 have_multiple_function_sections = true;
13570 /* Output a label to mark the beginning of a source code line entry
13571 and record information relating to this source line, in
13572 'line_info_table' for later output of the .debug_line section. */
13574 static void
13575 dwarf2out_source_line (unsigned int line, const char *filename)
13577 if (debug_info_level >= DINFO_LEVEL_NORMAL
13578 && line != 0)
13580 switch_to_section (current_function_section ());
13582 /* If requested, emit something human-readable. */
13583 if (flag_debug_asm)
13584 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13585 filename, line);
13587 if (DWARF2_ASM_LINE_DEBUG_INFO)
13589 unsigned file_num = lookup_filename (filename);
13591 file_num = maybe_emit_file (file_num);
13593 /* Emit the .loc directive understood by GNU as. */
13594 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13596 /* Indicate that line number info exists. */
13597 line_info_table_in_use++;
13599 else if (function_section (current_function_decl) != text_section)
13601 dw_separate_line_info_ref line_info;
13602 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13603 separate_line_info_table_in_use);
13605 /* Expand the line info table if necessary. */
13606 if (separate_line_info_table_in_use
13607 == separate_line_info_table_allocated)
13609 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13610 separate_line_info_table
13611 = ggc_realloc (separate_line_info_table,
13612 separate_line_info_table_allocated
13613 * sizeof (dw_separate_line_info_entry));
13614 memset (separate_line_info_table
13615 + separate_line_info_table_in_use,
13617 (LINE_INFO_TABLE_INCREMENT
13618 * sizeof (dw_separate_line_info_entry)));
13621 /* Add the new entry at the end of the line_info_table. */
13622 line_info
13623 = &separate_line_info_table[separate_line_info_table_in_use++];
13624 line_info->dw_file_num = lookup_filename (filename);
13625 line_info->dw_line_num = line;
13626 line_info->function = current_function_funcdef_no;
13628 else
13630 dw_line_info_ref line_info;
13632 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13633 line_info_table_in_use);
13635 /* Expand the line info table if necessary. */
13636 if (line_info_table_in_use == line_info_table_allocated)
13638 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13639 line_info_table
13640 = ggc_realloc (line_info_table,
13641 (line_info_table_allocated
13642 * sizeof (dw_line_info_entry)));
13643 memset (line_info_table + line_info_table_in_use, 0,
13644 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13647 /* Add the new entry at the end of the line_info_table. */
13648 line_info = &line_info_table[line_info_table_in_use++];
13649 line_info->dw_file_num = lookup_filename (filename);
13650 line_info->dw_line_num = line;
13655 /* Record the beginning of a new source file. */
13657 static void
13658 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13660 if (flag_eliminate_dwarf2_dups)
13662 /* Record the beginning of the file for break_out_includes. */
13663 dw_die_ref bincl_die;
13665 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13666 add_AT_string (bincl_die, DW_AT_name, filename);
13669 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13671 int fileno;
13673 switch_to_section (debug_macinfo_section);
13674 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13675 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13676 lineno);
13678 fileno = maybe_emit_file (lookup_filename (filename));
13679 dw2_asm_output_data_uleb128 (fileno, "Filename we just started");
13683 /* Record the end of a source file. */
13685 static void
13686 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13688 if (flag_eliminate_dwarf2_dups)
13689 /* Record the end of the file for break_out_includes. */
13690 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13692 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13694 switch_to_section (debug_macinfo_section);
13695 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13699 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13700 the tail part of the directive line, i.e. the part which is past the
13701 initial whitespace, #, whitespace, directive-name, whitespace part. */
13703 static void
13704 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13705 const char *buffer ATTRIBUTE_UNUSED)
13707 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13709 switch_to_section (debug_macinfo_section);
13710 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13711 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13712 dw2_asm_output_nstring (buffer, -1, "The macro");
13716 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13717 the tail part of the directive line, i.e. the part which is past the
13718 initial whitespace, #, whitespace, directive-name, whitespace part. */
13720 static void
13721 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13722 const char *buffer ATTRIBUTE_UNUSED)
13724 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13726 switch_to_section (debug_macinfo_section);
13727 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13728 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13729 dw2_asm_output_nstring (buffer, -1, "The macro");
13733 /* Set up for Dwarf output at the start of compilation. */
13735 static void
13736 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13738 init_file_table ();
13740 /* Allocate the decl_die_table. */
13741 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13742 decl_die_table_eq, NULL);
13744 /* Allocate the decl_loc_table. */
13745 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13746 decl_loc_table_eq, NULL);
13748 /* Allocate the initial hunk of the decl_scope_table. */
13749 decl_scope_table = VEC_alloc (tree, gc, 256);
13751 /* Allocate the initial hunk of the abbrev_die_table. */
13752 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13753 * sizeof (dw_die_ref));
13754 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13755 /* Zero-th entry is allocated, but unused. */
13756 abbrev_die_table_in_use = 1;
13758 /* Allocate the initial hunk of the line_info_table. */
13759 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13760 * sizeof (dw_line_info_entry));
13761 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13763 /* Zero-th entry is allocated, but unused. */
13764 line_info_table_in_use = 1;
13766 /* Generate the initial DIE for the .debug section. Note that the (string)
13767 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13768 will (typically) be a relative pathname and that this pathname should be
13769 taken as being relative to the directory from which the compiler was
13770 invoked when the given (base) source file was compiled. We will fill
13771 in this value in dwarf2out_finish. */
13772 comp_unit_die = gen_compile_unit_die (NULL);
13774 incomplete_types = VEC_alloc (tree, gc, 64);
13776 used_rtx_array = VEC_alloc (rtx, gc, 32);
13778 debug_info_section = get_section (DEBUG_INFO_SECTION,
13779 SECTION_DEBUG, NULL);
13780 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13781 SECTION_DEBUG, NULL);
13782 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13783 SECTION_DEBUG, NULL);
13784 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13785 SECTION_DEBUG, NULL);
13786 debug_line_section = get_section (DEBUG_LINE_SECTION,
13787 SECTION_DEBUG, NULL);
13788 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13789 SECTION_DEBUG, NULL);
13790 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13791 SECTION_DEBUG, NULL);
13792 debug_str_section = get_section (DEBUG_STR_SECTION,
13793 DEBUG_STR_SECTION_FLAGS, NULL);
13794 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13795 SECTION_DEBUG, NULL);
13796 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13797 SECTION_DEBUG, NULL);
13799 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13800 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13801 DEBUG_ABBREV_SECTION_LABEL, 0);
13802 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13803 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13804 COLD_TEXT_SECTION_LABEL, 0);
13805 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13807 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13808 DEBUG_INFO_SECTION_LABEL, 0);
13809 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13810 DEBUG_LINE_SECTION_LABEL, 0);
13811 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13812 DEBUG_RANGES_SECTION_LABEL, 0);
13813 switch_to_section (debug_abbrev_section);
13814 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13815 switch_to_section (debug_info_section);
13816 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13817 switch_to_section (debug_line_section);
13818 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13820 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13822 switch_to_section (debug_macinfo_section);
13823 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13824 DEBUG_MACINFO_SECTION_LABEL, 0);
13825 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13828 switch_to_section (text_section);
13829 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13830 if (flag_reorder_blocks_and_partition)
13832 switch_to_section (unlikely_text_section ());
13833 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13837 /* A helper function for dwarf2out_finish called through
13838 ht_forall. Emit one queued .debug_str string. */
13840 static int
13841 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13843 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13845 if (node->form == DW_FORM_strp)
13847 switch_to_section (debug_str_section);
13848 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13849 assemble_string (node->str, strlen (node->str) + 1);
13852 return 1;
13855 #if ENABLE_ASSERT_CHECKING
13856 /* Verify that all marks are clear. */
13858 static void
13859 verify_marks_clear (dw_die_ref die)
13861 dw_die_ref c;
13863 gcc_assert (! die->die_mark);
13864 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
13866 #endif /* ENABLE_ASSERT_CHECKING */
13868 /* Clear the marks for a die and its children.
13869 Be cool if the mark isn't set. */
13871 static void
13872 prune_unmark_dies (dw_die_ref die)
13874 dw_die_ref c;
13876 if (die->die_mark)
13877 die->die_mark = 0;
13878 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
13881 /* Given DIE that we're marking as used, find any other dies
13882 it references as attributes and mark them as used. */
13884 static void
13885 prune_unused_types_walk_attribs (dw_die_ref die)
13887 dw_attr_ref a;
13888 unsigned ix;
13890 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
13892 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13894 /* A reference to another DIE.
13895 Make sure that it will get emitted. */
13896 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13898 else if (a->dw_attr == DW_AT_decl_file || a->dw_attr == DW_AT_call_file)
13900 /* A reference to a file. Make sure the file name is emitted. */
13901 a->dw_attr_val.v.val_unsigned =
13902 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13904 /* Set the string's refcount to 0 so that prune_unused_types_mark
13905 accounts properly for it. */
13906 if (AT_class (a) == dw_val_class_str)
13907 a->dw_attr_val.v.val_str->refcount = 0;
13912 /* Mark DIE as being used. If DOKIDS is true, then walk down
13913 to DIE's children. */
13915 static void
13916 prune_unused_types_mark (dw_die_ref die, int dokids)
13918 dw_die_ref c;
13920 if (die->die_mark == 0)
13922 /* We haven't done this node yet. Mark it as used. */
13923 die->die_mark = 1;
13925 /* We also have to mark its parents as used.
13926 (But we don't want to mark our parents' kids due to this.) */
13927 if (die->die_parent)
13928 prune_unused_types_mark (die->die_parent, 0);
13930 /* Mark any referenced nodes. */
13931 prune_unused_types_walk_attribs (die);
13933 /* If this node is a specification,
13934 also mark the definition, if it exists. */
13935 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13936 prune_unused_types_mark (die->die_definition, 1);
13939 if (dokids && die->die_mark != 2)
13941 /* We need to walk the children, but haven't done so yet.
13942 Remember that we've walked the kids. */
13943 die->die_mark = 2;
13945 /* If this is an array type, we need to make sure our
13946 kids get marked, even if they're types. */
13947 if (die->die_tag == DW_TAG_array_type)
13948 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
13949 else
13950 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
13955 /* Walk the tree DIE and mark types that we actually use. */
13957 static void
13958 prune_unused_types_walk (dw_die_ref die)
13960 dw_die_ref c;
13962 /* Don't do anything if this node is already marked. */
13963 if (die->die_mark)
13964 return;
13966 switch (die->die_tag) {
13967 case DW_TAG_const_type:
13968 case DW_TAG_packed_type:
13969 case DW_TAG_pointer_type:
13970 case DW_TAG_reference_type:
13971 case DW_TAG_volatile_type:
13972 case DW_TAG_typedef:
13973 case DW_TAG_array_type:
13974 case DW_TAG_structure_type:
13975 case DW_TAG_union_type:
13976 case DW_TAG_class_type:
13977 case DW_TAG_friend:
13978 case DW_TAG_variant_part:
13979 case DW_TAG_enumeration_type:
13980 case DW_TAG_subroutine_type:
13981 case DW_TAG_string_type:
13982 case DW_TAG_set_type:
13983 case DW_TAG_subrange_type:
13984 case DW_TAG_ptr_to_member_type:
13985 case DW_TAG_file_type:
13986 if (die->die_perennial_p)
13987 break;
13989 /* It's a type node --- don't mark it. */
13990 return;
13992 default:
13993 /* Mark everything else. */
13994 break;
13997 die->die_mark = 1;
13999 /* Now, mark any dies referenced from here. */
14000 prune_unused_types_walk_attribs (die);
14002 /* Mark children. */
14003 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14006 /* Increment the string counts on strings referred to from DIE's
14007 attributes. */
14009 static void
14010 prune_unused_types_update_strings (dw_die_ref die)
14012 dw_attr_ref a;
14013 unsigned ix;
14015 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14016 if (AT_class (a) == dw_val_class_str)
14018 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14019 s->refcount++;
14020 /* Avoid unnecessarily putting strings that are used less than
14021 twice in the hash table. */
14022 if (s->refcount
14023 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14025 void ** slot;
14026 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14027 htab_hash_string (s->str),
14028 INSERT);
14029 gcc_assert (*slot == NULL);
14030 *slot = s;
14035 /* Remove from the tree DIE any dies that aren't marked. */
14037 static void
14038 prune_unused_types_prune (dw_die_ref die)
14040 dw_die_ref c;
14042 gcc_assert (die->die_mark);
14044 if (! die->die_child)
14045 return;
14047 c = die->die_child;
14048 do {
14049 dw_die_ref prev = c;
14050 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14051 if (c == die->die_child)
14053 /* No marked children between 'prev' and the end of the list. */
14054 if (prev == c)
14055 /* No marked children at all. */
14056 die->die_child = NULL;
14057 else
14059 prev->die_sib = c->die_sib;
14060 die->die_child = prev;
14062 return;
14065 if (c != prev->die_sib)
14066 prev->die_sib = c;
14067 prune_unused_types_update_strings (c);
14068 prune_unused_types_prune (c);
14069 } while (c != die->die_child);
14073 /* Remove dies representing declarations that we never use. */
14075 static void
14076 prune_unused_types (void)
14078 unsigned int i;
14079 limbo_die_node *node;
14081 #if ENABLE_ASSERT_CHECKING
14082 /* All the marks should already be clear. */
14083 verify_marks_clear (comp_unit_die);
14084 for (node = limbo_die_list; node; node = node->next)
14085 verify_marks_clear (node->die);
14086 #endif /* ENABLE_ASSERT_CHECKING */
14088 /* Set the mark on nodes that are actually used. */
14089 prune_unused_types_walk (comp_unit_die);
14090 for (node = limbo_die_list; node; node = node->next)
14091 prune_unused_types_walk (node->die);
14093 /* Also set the mark on nodes referenced from the
14094 pubname_table or arange_table. */
14095 for (i = 0; i < pubname_table_in_use; i++)
14096 prune_unused_types_mark (pubname_table[i].die, 1);
14097 for (i = 0; i < arange_table_in_use; i++)
14098 prune_unused_types_mark (arange_table[i], 1);
14100 /* Get rid of nodes that aren't marked; and update the string counts. */
14101 if (debug_str_hash)
14102 htab_empty (debug_str_hash);
14103 prune_unused_types_prune (comp_unit_die);
14104 for (node = limbo_die_list; node; node = node->next)
14105 prune_unused_types_prune (node->die);
14107 /* Leave the marks clear. */
14108 prune_unmark_dies (comp_unit_die);
14109 for (node = limbo_die_list; node; node = node->next)
14110 prune_unmark_dies (node->die);
14113 /* Output stuff that dwarf requires at the end of every file,
14114 and generate the DWARF-2 debugging info. */
14116 static void
14117 dwarf2out_finish (const char *filename)
14119 limbo_die_node *node, *next_node;
14120 dw_die_ref die = 0;
14122 /* Add the name for the main input file now. We delayed this from
14123 dwarf2out_init to avoid complications with PCH. */
14124 add_name_attribute (comp_unit_die, filename);
14125 if (filename[0] != DIR_SEPARATOR)
14126 add_comp_dir_attribute (comp_unit_die);
14127 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14129 size_t i;
14130 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
14131 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
14132 /* Don't add cwd for <built-in>. */
14133 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
14135 add_comp_dir_attribute (comp_unit_die);
14136 break;
14140 /* Traverse the limbo die list, and add parent/child links. The only
14141 dies without parents that should be here are concrete instances of
14142 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14143 For concrete instances, we can get the parent die from the abstract
14144 instance. */
14145 for (node = limbo_die_list; node; node = next_node)
14147 next_node = node->next;
14148 die = node->die;
14150 if (die->die_parent == NULL)
14152 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14154 if (origin)
14155 add_child_die (origin->die_parent, die);
14156 else if (die == comp_unit_die)
14158 else if (errorcount > 0 || sorrycount > 0)
14159 /* It's OK to be confused by errors in the input. */
14160 add_child_die (comp_unit_die, die);
14161 else
14163 /* In certain situations, the lexical block containing a
14164 nested function can be optimized away, which results
14165 in the nested function die being orphaned. Likewise
14166 with the return type of that nested function. Force
14167 this to be a child of the containing function.
14169 It may happen that even the containing function got fully
14170 inlined and optimized out. In that case we are lost and
14171 assign the empty child. This should not be big issue as
14172 the function is likely unreachable too. */
14173 tree context = NULL_TREE;
14175 gcc_assert (node->created_for);
14177 if (DECL_P (node->created_for))
14178 context = DECL_CONTEXT (node->created_for);
14179 else if (TYPE_P (node->created_for))
14180 context = TYPE_CONTEXT (node->created_for);
14182 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14184 origin = lookup_decl_die (context);
14185 if (origin)
14186 add_child_die (origin, die);
14187 else
14188 add_child_die (comp_unit_die, die);
14193 limbo_die_list = NULL;
14195 /* Walk through the list of incomplete types again, trying once more to
14196 emit full debugging info for them. */
14197 retry_incomplete_types ();
14199 if (flag_eliminate_unused_debug_types)
14200 prune_unused_types ();
14202 /* Generate separate CUs for each of the include files we've seen.
14203 They will go into limbo_die_list. */
14204 if (flag_eliminate_dwarf2_dups)
14205 break_out_includes (comp_unit_die);
14207 /* Traverse the DIE's and add add sibling attributes to those DIE's
14208 that have children. */
14209 add_sibling_attributes (comp_unit_die);
14210 for (node = limbo_die_list; node; node = node->next)
14211 add_sibling_attributes (node->die);
14213 /* Output a terminator label for the .text section. */
14214 switch_to_section (text_section);
14215 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14216 if (flag_reorder_blocks_and_partition)
14218 switch_to_section (unlikely_text_section ());
14219 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14222 /* Output the source line correspondence table. We must do this
14223 even if there is no line information. Otherwise, on an empty
14224 translation unit, we will generate a present, but empty,
14225 .debug_info section. IRIX 6.5 `nm' will then complain when
14226 examining the file. */
14227 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14229 switch_to_section (debug_line_section);
14230 output_line_info ();
14233 /* We can only use the low/high_pc attributes if all of the code was
14234 in .text. */
14235 if (!have_multiple_function_sections)
14237 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14238 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14241 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14242 "base address". Use zero so that these addresses become absolute. */
14243 else if (have_location_lists || ranges_table_in_use)
14244 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14246 /* Output location list section if necessary. */
14247 if (have_location_lists)
14249 /* Output the location lists info. */
14250 switch_to_section (debug_loc_section);
14251 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14252 DEBUG_LOC_SECTION_LABEL, 0);
14253 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14254 output_location_lists (die);
14257 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14258 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14259 debug_line_section_label);
14261 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14262 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14264 /* Output all of the compilation units. We put the main one last so that
14265 the offsets are available to output_pubnames. */
14266 for (node = limbo_die_list; node; node = node->next)
14267 output_comp_unit (node->die, 0);
14269 output_comp_unit (comp_unit_die, 0);
14271 /* Output the abbreviation table. */
14272 switch_to_section (debug_abbrev_section);
14273 output_abbrev_section ();
14275 /* Output public names table if necessary. */
14276 if (pubname_table_in_use)
14278 switch_to_section (debug_pubnames_section);
14279 output_pubnames ();
14282 /* Output the address range information. We only put functions in the arange
14283 table, so don't write it out if we don't have any. */
14284 if (fde_table_in_use)
14286 switch_to_section (debug_aranges_section);
14287 output_aranges ();
14290 /* Output ranges section if necessary. */
14291 if (ranges_table_in_use)
14293 switch_to_section (debug_ranges_section);
14294 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14295 output_ranges ();
14298 /* Have to end the macro section. */
14299 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14301 switch_to_section (debug_macinfo_section);
14302 dw2_asm_output_data (1, 0, "End compilation unit");
14305 /* If we emitted any DW_FORM_strp form attribute, output the string
14306 table too. */
14307 if (debug_str_hash)
14308 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14310 #else
14312 /* This should never be used, but its address is needed for comparisons. */
14313 const struct gcc_debug_hooks dwarf2_debug_hooks;
14315 #endif /* DWARF2_DEBUGGING_INFO */
14317 #include "gt-dwarf2out.h"