Merge from mainline.
[official-gcc.git] / gcc / config / bfin / bfin.h
blob732a9b8a74f16026e4fbb0681cbc922b198e9fe5
1 /* Definitions for the Blackfin port.
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by Analog Devices.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 2, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #ifndef _BFIN_CONFIG
23 #define _BFIN_CONFIG
25 #define OBJECT_FORMAT_ELF
27 #define BRT 1
28 #define BRF 0
30 /* Print subsidiary information on the compiler version in use. */
31 #define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
33 /* Run-time compilation parameters selecting different hardware subsets. */
35 extern int target_flags;
37 /* Predefinition in the preprocessor for this target machine */
38 #ifndef TARGET_CPU_CPP_BUILTINS
39 #define TARGET_CPU_CPP_BUILTINS() \
40 do \
41 { \
42 builtin_define ("bfin"); \
43 builtin_define ("BFIN"); \
44 builtin_define ("__ADSPBLACKFIN__"); \
45 if (TARGET_FDPIC) \
46 builtin_define ("__BFIN_FDPIC__"); \
47 if (TARGET_ID_SHARED_LIBRARY) \
48 builtin_define ("__ID_SHARED_LIB__"); \
49 } \
50 while (0)
51 #endif
53 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS "\
54 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
55 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
57 #ifndef SUBTARGET_DRIVER_SELF_SPECS
58 # define SUBTARGET_DRIVER_SELF_SPECS
59 #endif
61 #define LINK_GCC_C_SEQUENCE_SPEC \
62 "%{mfdpic:%{!static: %L} %{static: %G %L %G}} \
63 %{!mfdpic:%G %L %G}"
65 /* A C string constant that tells the GCC driver program options to pass to
66 the assembler. It can also specify how to translate options you give to GNU
67 CC into options for GCC to pass to the assembler. See the file `sun3.h'
68 for an example of this.
70 Do not define this macro if it does not need to do anything.
72 Defined in svr4.h. */
73 #undef ASM_SPEC
74 #define ASM_SPEC "\
75 %{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
76 %{mno-fdpic:-mnopic} %{mfdpic}"
78 #define LINK_SPEC "\
79 %{h*} %{v:-V} \
80 %{b} \
81 %{mfdpic:-melf32bfinfd -z text} \
82 %{static:-dn -Bstatic} \
83 %{shared:-G -Bdynamic} \
84 %{symbolic:-Bsymbolic} \
85 %{G*} \
86 %{YP,*} \
87 %{Qy:} %{!Qn:-Qy} \
88 -init __init -fini __fini "
90 /* Generate DSP instructions, like DSP halfword loads */
91 #define TARGET_DSP (1)
93 #define TARGET_DEFAULT (MASK_SPECLD_ANOMALY | MASK_CSYNC_ANOMALY)
95 /* Maximum number of library ids we permit */
96 #define MAX_LIBRARY_ID 255
98 extern const char *bfin_library_id_string;
100 /* Sometimes certain combinations of command options do not make
101 sense on a particular target machine. You can define a macro
102 `OVERRIDE_OPTIONS' to take account of this. This macro, if
103 defined, is executed once just after all the command options have
104 been parsed.
106 Don't use this macro to turn on various extra optimizations for
107 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
109 #define OVERRIDE_OPTIONS override_options ()
111 #define FUNCTION_MODE SImode
112 #define Pmode SImode
114 /* store-condition-codes instructions store 0 for false
115 This is the value stored for true. */
116 #define STORE_FLAG_VALUE 1
118 /* Define this if pushing a word on the stack
119 makes the stack pointer a smaller address. */
120 #define STACK_GROWS_DOWNWARD
122 #define STACK_PUSH_CODE PRE_DEC
124 /* Define this to nonzero if the nominal address of the stack frame
125 is at the high-address end of the local variables;
126 that is, each additional local variable allocated
127 goes at a more negative offset in the frame. */
128 #define FRAME_GROWS_DOWNWARD 1
130 /* We define a dummy ARGP register; the parameters start at offset 0 from
131 it. */
132 #define FIRST_PARM_OFFSET(DECL) 0
134 /* Offset within stack frame to start allocating local variables at.
135 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
136 first local allocated. Otherwise, it is the offset to the BEGINNING
137 of the first local allocated. */
138 #define STARTING_FRAME_OFFSET 0
140 /* Register to use for pushing function arguments. */
141 #define STACK_POINTER_REGNUM REG_P6
143 /* Base register for access to local variables of the function. */
144 #define FRAME_POINTER_REGNUM REG_P7
146 /* A dummy register that will be eliminated to either FP or SP. */
147 #define ARG_POINTER_REGNUM REG_ARGP
149 /* `PIC_OFFSET_TABLE_REGNUM'
150 The register number of the register used to address a table of
151 static data addresses in memory. In some cases this register is
152 defined by a processor's "application binary interface" (ABI).
153 When this macro is defined, RTL is generated for this register
154 once, as with the stack pointer and frame pointer registers. If
155 this macro is not defined, it is up to the machine-dependent files
156 to allocate such a register (if necessary). */
157 #define PIC_OFFSET_TABLE_REGNUM (REG_P5)
159 #define FDPIC_FPTR_REGNO REG_P1
160 #define FDPIC_REGNO REG_P3
161 #define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
163 /* A static chain register for nested functions. We need to use a
164 call-clobbered register for this. */
165 #define STATIC_CHAIN_REGNUM REG_P2
167 /* Define this if functions should assume that stack space has been
168 allocated for arguments even when their values are passed in
169 registers.
171 The value of this macro is the size, in bytes, of the area reserved for
172 arguments passed in registers.
174 This space can either be allocated by the caller or be a part of the
175 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
176 says which. */
177 #define FIXED_STACK_AREA 12
178 #define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
180 /* Define this if the above stack space is to be considered part of the
181 * space allocated by the caller. */
182 #define OUTGOING_REG_PARM_STACK_SPACE
184 /* Define this if the maximum size of all the outgoing args is to be
185 accumulated and pushed during the prologue. The amount can be
186 found in the variable current_function_outgoing_args_size. */
187 #define ACCUMULATE_OUTGOING_ARGS 1
189 /* Value should be nonzero if functions must have frame pointers.
190 Zero means the frame pointer need not be set up (and parms
191 may be accessed via the stack pointer) in functions that seem suitable.
192 This is computed in `reload', in reload1.c.
194 #define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
196 /*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
198 /* Make strings word-aligned so strcpy from constants will be faster. */
199 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
200 (TREE_CODE (EXP) == STRING_CST \
201 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
203 #define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
204 #define TRAMPOLINE_TEMPLATE(FILE) \
205 if (TARGET_FDPIC) \
207 fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */ \
208 fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */ \
209 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
210 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */ \
211 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */ \
212 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */ \
213 fprintf(FILE, "\t.dw\t0xac4b\n"); /* p3 = [p1 + 4] */ \
214 fprintf(FILE, "\t.dw\t0x9149\n"); /* p1 = [p1] */ \
215 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/ \
217 else \
219 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
220 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */ \
221 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */ \
222 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */ \
223 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/ \
226 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
227 initialize_trampoline (TRAMP, FNADDR, CXT)
229 /* Definitions for register eliminations.
231 This is an array of structures. Each structure initializes one pair
232 of eliminable registers. The "from" register number is given first,
233 followed by "to". Eliminations of the same "from" register are listed
234 in order of preference.
236 There are two registers that can always be eliminated on the i386.
237 The frame pointer and the arg pointer can be replaced by either the
238 hard frame pointer or to the stack pointer, depending upon the
239 circumstances. The hard frame pointer is not used before reload and
240 so it is not eligible for elimination. */
242 #define ELIMINABLE_REGS \
243 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
244 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
245 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
247 /* Given FROM and TO register numbers, say whether this elimination is
248 allowed. Frame pointer elimination is automatically handled.
250 All other eliminations are valid. */
252 #define CAN_ELIMINATE(FROM, TO) \
253 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
255 /* Define the offset between two registers, one to be eliminated, and the other
256 its replacement, at the start of a routine. */
258 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
259 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
261 /* This processor has
262 8 data register for doing arithmetic
263 8 pointer register for doing addressing, including
264 1 stack pointer P6
265 1 frame pointer P7
266 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
267 1 condition code flag register CC
268 5 return address registers RETS/I/X/N/E
269 1 arithmetic status register (ASTAT). */
271 #define FIRST_PSEUDO_REGISTER 50
273 #define D_REGNO_P(X) ((X) <= REG_R7)
274 #define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
275 #define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
276 #define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
277 #define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
278 #define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
279 #define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
280 #define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
281 #define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
283 #define REGISTER_NAMES { \
284 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
285 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
286 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
287 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
288 "A0", "A1", \
289 "CC", \
290 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
291 "ARGP", \
292 "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
295 #define SHORT_REGISTER_NAMES { \
296 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
297 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
298 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
299 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
301 #define HIGH_REGISTER_NAMES { \
302 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
303 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
304 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
305 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
307 #define DREGS_PAIR_NAMES { \
308 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
310 #define BYTE_REGISTER_NAMES { \
311 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
314 /* 1 for registers that have pervasive standard uses
315 and are not available for the register allocator. */
317 #define FIXED_REGISTERS \
318 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
319 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
320 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
321 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
322 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
323 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
324 /*lb0/1 */ \
325 1, 1 \
328 /* 1 for registers not available across function calls.
329 These must include the FIXED_REGISTERS and also any
330 registers that can be used without being saved.
331 The latter must include the registers where values are returned
332 and the register where structure-value addresses are passed.
333 Aside from that, you can include as many other registers as you like. */
335 #define CALL_USED_REGISTERS \
336 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
337 { 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
338 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
339 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
340 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
341 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
342 /*lb0/1 */ \
343 1, 1 \
346 /* Order in which to allocate registers. Each register must be
347 listed once, even those in FIXED_REGISTERS. List frame pointer
348 late and fixed registers last. Note that, in general, we prefer
349 registers listed in CALL_USED_REGISTERS, keeping the others
350 available for storage of persistent values. */
352 #define REG_ALLOC_ORDER \
353 { REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
354 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
355 REG_A0, REG_A1, \
356 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
357 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
358 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
359 REG_ASTAT, REG_SEQSTAT, REG_USP, \
360 REG_CC, REG_ARGP, \
361 REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1 \
364 /* Macro to conditionally modify fixed_regs/call_used_regs. */
365 #define CONDITIONAL_REGISTER_USAGE \
367 conditional_register_usage(); \
368 if (TARGET_FDPIC) \
369 call_used_regs[FDPIC_REGNO] = 1; \
370 if (!TARGET_FDPIC && flag_pic) \
372 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
373 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
377 /* Define the classes of registers for register constraints in the
378 machine description. Also define ranges of constants.
380 One of the classes must always be named ALL_REGS and include all hard regs.
381 If there is more than one class, another class must be named NO_REGS
382 and contain no registers.
384 The name GENERAL_REGS must be the name of a class (or an alias for
385 another name such as ALL_REGS). This is the class of registers
386 that is allowed by "g" or "r" in a register constraint.
387 Also, registers outside this class are allocated only when
388 instructions express preferences for them.
390 The classes must be numbered in nondecreasing order; that is,
391 a larger-numbered class must never be contained completely
392 in a smaller-numbered class.
394 For any two classes, it is very desirable that there be another
395 class that represents their union. */
398 enum reg_class
400 NO_REGS,
401 IREGS,
402 BREGS,
403 LREGS,
404 MREGS,
405 CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
406 DAGREGS,
407 EVEN_AREGS,
408 ODD_AREGS,
409 AREGS,
410 CCREGS,
411 EVEN_DREGS,
412 ODD_DREGS,
413 DREGS,
414 FDPIC_REGS,
415 FDPIC_FPTR_REGS,
416 PREGS_CLOBBERED,
417 PREGS,
418 IPREGS,
419 DPREGS,
420 MOST_REGS,
421 LT_REGS,
422 LC_REGS,
423 LB_REGS,
424 PROLOGUE_REGS,
425 NON_A_CC_REGS,
426 ALL_REGS, LIM_REG_CLASSES
429 #define N_REG_CLASSES ((int)LIM_REG_CLASSES)
431 #define GENERAL_REGS DPREGS
433 /* Give names of register classes as strings for dump file. */
435 #define REG_CLASS_NAMES \
436 { "NO_REGS", \
437 "IREGS", \
438 "BREGS", \
439 "LREGS", \
440 "MREGS", \
441 "CIRCREGS", \
442 "DAGREGS", \
443 "EVEN_AREGS", \
444 "ODD_AREGS", \
445 "AREGS", \
446 "CCREGS", \
447 "EVEN_DREGS", \
448 "ODD_DREGS", \
449 "DREGS", \
450 "FDPIC_REGS", \
451 "FDPIC_FPTR_REGS", \
452 "PREGS_CLOBBERED", \
453 "PREGS", \
454 "IPREGS", \
455 "DPREGS", \
456 "MOST_REGS", \
457 "LT_REGS", \
458 "LC_REGS", \
459 "LB_REGS", \
460 "PROLOGUE_REGS", \
461 "NON_A_CC_REGS", \
462 "ALL_REGS" }
464 /* An initializer containing the contents of the register classes, as integers
465 which are bit masks. The Nth integer specifies the contents of class N.
466 The way the integer MASK is interpreted is that register R is in the class
467 if `MASK & (1 << R)' is 1.
469 When the machine has more than 32 registers, an integer does not suffice.
470 Then the integers are replaced by sub-initializers, braced groupings
471 containing several integers. Each sub-initializer must be suitable as an
472 initializer for the type `HARD_REG_SET' which is defined in
473 `hard-reg-set.h'. */
475 /* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
476 MOST_REGS as the union of DPREGS and DAGREGS. */
478 #define REG_CLASS_CONTENTS \
479 /* 31 - 0 63-32 */ \
480 { { 0x00000000, 0 }, /* NO_REGS */ \
481 { 0x000f0000, 0 }, /* IREGS */ \
482 { 0x00f00000, 0 }, /* BREGS */ \
483 { 0x0f000000, 0 }, /* LREGS */ \
484 { 0xf0000000, 0 }, /* MREGS */ \
485 { 0x0fff0000, 0 }, /* CIRCREGS */ \
486 { 0xffff0000, 0 }, /* DAGREGS */ \
487 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
488 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
489 { 0x00000000, 0x3 }, /* AREGS */ \
490 { 0x00000000, 0x4 }, /* CCREGS */ \
491 { 0x00000055, 0 }, /* EVEN_DREGS */ \
492 { 0x000000aa, 0 }, /* ODD_DREGS */ \
493 { 0x000000ff, 0 }, /* DREGS */ \
494 { 0x00000800, 0x000 }, /* FDPIC_REGS */ \
495 { 0x00000200, 0x000 }, /* FDPIC_FPTR_REGS */ \
496 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
497 { 0x0000ff00, 0x800 }, /* PREGS */ \
498 { 0x000fff00, 0x800 }, /* IPREGS */ \
499 { 0x0000ffff, 0x800 }, /* DPREGS */ \
500 { 0xffffffff, 0x800 }, /* MOST_REGS */\
501 { 0x00000000, 0x3000 }, /* LT_REGS */\
502 { 0x00000000, 0xc000 }, /* LC_REGS */\
503 { 0x00000000, 0x30000 }, /* LB_REGS */\
504 { 0x00000000, 0x3f7f8 }, /* PROLOGUE_REGS */\
505 { 0xffffffff, 0x3fff8 }, /* NON_A_CC_REGS */\
506 { 0xffffffff, 0x3ffff }} /* ALL_REGS */
508 #define IREG_POSSIBLE_P(OUTER) \
509 ((OUTER) == POST_INC || (OUTER) == PRE_INC \
510 || (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
511 || (OUTER) == MEM || (OUTER) == ADDRESS)
513 #define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX) \
514 ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
516 #define INDEX_REG_CLASS PREGS
518 #define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
519 (P_REGNO_P (X) || (X) == REG_ARGP \
520 || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
521 && I_REGNO_P (X)))
523 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
524 ((X) >= FIRST_PSEUDO_REGISTER \
525 || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
527 #ifdef REG_OK_STRICT
528 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
529 REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
530 #else
531 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
532 REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
533 #endif
535 #define REGNO_OK_FOR_INDEX_P(X) 0
537 /* Get reg_class from a letter such as appears in the machine description. */
539 #define REG_CLASS_FROM_LETTER(LETTER) \
540 ((LETTER) == 'a' ? PREGS : \
541 (LETTER) == 'Z' ? FDPIC_REGS : \
542 (LETTER) == 'Y' ? FDPIC_FPTR_REGS : \
543 (LETTER) == 'd' ? DREGS : \
544 (LETTER) == 'z' ? PREGS_CLOBBERED : \
545 (LETTER) == 'D' ? EVEN_DREGS : \
546 (LETTER) == 'W' ? ODD_DREGS : \
547 (LETTER) == 'e' ? AREGS : \
548 (LETTER) == 'A' ? EVEN_AREGS : \
549 (LETTER) == 'B' ? ODD_AREGS : \
550 (LETTER) == 'b' ? IREGS : \
551 (LETTER) == 'B' ? BREGS : \
552 (LETTER) == 'f' ? MREGS : \
553 (LETTER) == 'c' ? CIRCREGS : \
554 (LETTER) == 'C' ? CCREGS : \
555 (LETTER) == 't' ? LT_REGS : \
556 (LETTER) == 'k' ? LC_REGS : \
557 (LETTER) == 'l' ? LB_REGS : \
558 (LETTER) == 'x' ? MOST_REGS : \
559 (LETTER) == 'y' ? PROLOGUE_REGS : \
560 (LETTER) == 'w' ? NON_A_CC_REGS : \
561 NO_REGS)
563 /* The same information, inverted:
564 Return the class number of the smallest class containing
565 reg number REGNO. This could be a conditional expression
566 or could index an array. */
568 #define REGNO_REG_CLASS(REGNO) \
569 ((REGNO) < REG_P0 ? DREGS \
570 : (REGNO) < REG_I0 ? PREGS \
571 : (REGNO) == REG_ARGP ? PREGS \
572 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
573 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
574 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
575 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
576 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
577 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS \
578 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS \
579 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS \
580 : (REGNO) == REG_CC ? CCREGS \
581 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
582 : NO_REGS)
584 /* When defined, the compiler allows registers explicitly used in the
585 rtl to be used as spill registers but prevents the compiler from
586 extending the lifetime of these registers. */
587 #define SMALL_REGISTER_CLASSES 1
589 #define CLASS_LIKELY_SPILLED_P(CLASS) \
590 ((CLASS) == PREGS_CLOBBERED \
591 || (CLASS) == PROLOGUE_REGS \
592 || (CLASS) == CCREGS)
594 /* Do not allow to store a value in REG_CC for any mode */
595 /* Do not allow to store value in pregs if mode is not SI*/
596 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
598 /* Return the maximum number of consecutive registers
599 needed to represent mode MODE in a register of class CLASS. */
600 #define CLASS_MAX_NREGS(CLASS, MODE) \
601 ((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
602 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
604 #define HARD_REGNO_NREGS(REGNO, MODE) \
605 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1 \
606 : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
607 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
609 /* A C expression that is nonzero if hard register TO can be
610 considered for use as a rename register for FROM register */
611 #define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
613 /* A C expression that is nonzero if it is desirable to choose
614 register allocation so as to avoid move instructions between a
615 value of mode MODE1 and a value of mode MODE2.
617 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
618 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
619 MODE2)' must be zero. */
620 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
622 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
623 A C expression that places additional restrictions on the register
624 class to use when it is necessary to copy value X into a register
625 in class CLASS. The value is a register class; perhaps CLASS, or
626 perhaps another, smaller class. */
627 #define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
629 /* Function Calling Conventions. */
631 /* The type of the current function; normal functions are of type
632 SUBROUTINE. */
633 typedef enum {
634 SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
635 } e_funkind;
637 #define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
639 /* Flags for the call/call_value rtl operations set up by function_arg */
640 #define CALL_NORMAL 0x00000000 /* no special processing */
641 #define CALL_LONG 0x00000001 /* always call indirect */
642 #define CALL_SHORT 0x00000002 /* always call by symbol */
644 typedef struct {
645 int words; /* # words passed so far */
646 int nregs; /* # registers available for passing */
647 int *arg_regs; /* array of register -1 terminated */
648 int call_cookie; /* Do special things for this call */
649 } CUMULATIVE_ARGS;
651 /* Define where to put the arguments to a function.
652 Value is zero to push the argument on the stack,
653 or a hard register in which to store the argument.
655 MODE is the argument's machine mode.
656 TYPE is the data type of the argument (as a tree).
657 This is null for libcalls where that information may
658 not be available.
659 CUM is a variable of type CUMULATIVE_ARGS which gives info about
660 the preceding args and about the function being called.
661 NAMED is nonzero if this argument is a named parameter
662 (otherwise it is an extra parameter matching an ellipsis). */
664 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
665 (function_arg (&CUM, MODE, TYPE, NAMED))
667 #define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
670 /* Initialize a variable CUM of type CUMULATIVE_ARGS
671 for a call to a function whose data type is FNTYPE.
672 For a library call, FNTYPE is 0. */
673 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
674 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
676 /* Update the data in CUM to advance over an argument
677 of mode MODE and data type TYPE.
678 (TYPE is null for libcalls where that information may not be available.) */
679 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
680 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
682 #define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
684 /* Define how to find the value returned by a function.
685 VALTYPE is the data type of the value (as a tree).
686 If the precise function being called is known, FUNC is its FUNCTION_DECL;
687 otherwise, FUNC is 0.
690 #define VALUE_REGNO(MODE) (REG_R0)
692 #define FUNCTION_VALUE(VALTYPE, FUNC) \
693 gen_rtx_REG (TYPE_MODE (VALTYPE), \
694 VALUE_REGNO(TYPE_MODE(VALTYPE)))
696 /* Define how to find the value returned by a library function
697 assuming the value has mode MODE. */
699 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
701 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
703 #define DEFAULT_PCC_STRUCT_RETURN 0
704 #define RETURN_IN_MEMORY(TYPE) bfin_return_in_memory(TYPE)
706 /* Before the prologue, the return address is in the RETS register. */
707 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
709 #define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
711 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
713 /* Call instructions don't modify the stack pointer on the Blackfin. */
714 #define INCOMING_FRAME_SP_OFFSET 0
716 /* Describe how we implement __builtin_eh_return. */
717 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
718 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
719 #define EH_RETURN_HANDLER_RTX \
720 gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
722 /* Addressing Modes */
724 /* Recognize any constant value that is a valid address. */
725 #define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
727 /* Nonzero if the constant value X is a legitimate general operand.
728 symbol_ref are not legitimate and will be put into constant pool.
729 See force_const_mem().
730 If -mno-pool, all constants are legitimate.
732 #define LEGITIMATE_CONSTANT_P(x) 1
734 /* A number, the maximum number of registers that can appear in a
735 valid memory address. Note that it is up to you to specify a
736 value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
737 would ever accept. */
738 #define MAX_REGS_PER_ADDRESS 1
740 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
741 that is a valid memory address for an instruction.
742 The MODE argument is the machine mode for the MEM expression
743 that wants to use this address.
745 Blackfin addressing modes are as follows:
747 [preg]
748 [preg + imm16]
750 B [ Preg + uimm15 ]
751 W [ Preg + uimm16m2 ]
752 [ Preg + uimm17m4 ]
754 [preg++]
755 [preg--]
756 [--sp]
759 #define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
760 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
762 #ifdef REG_OK_STRICT
763 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
764 do { \
765 if (bfin_legitimate_address_p (MODE, X, 1)) \
766 goto WIN; \
767 } while (0);
768 #else
769 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
770 do { \
771 if (bfin_legitimate_address_p (MODE, X, 0)) \
772 goto WIN; \
773 } while (0);
774 #endif
776 /* Try machine-dependent ways of modifying an illegitimate address
777 to be legitimate. If we find one, return the new, valid address.
778 This macro is used in only one place: `memory_address' in explow.c.
780 OLDX is the address as it was before break_out_memory_refs was called.
781 In some cases it is useful to look at this to decide what needs to be done.
783 MODE and WIN are passed so that this macro can use
784 GO_IF_LEGITIMATE_ADDRESS.
786 It is always safe for this macro to do nothing. It exists to recognize
787 opportunities to optimize the output.
789 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
790 do { \
791 rtx _q = legitimize_address(X, OLDX, MODE); \
792 if (_q) { X = _q; goto WIN; } \
793 } while (0)
795 #define HAVE_POST_INCREMENT 1
796 #define HAVE_POST_DECREMENT 1
797 #define HAVE_PRE_DECREMENT 1
799 /* `LEGITIMATE_PIC_OPERAND_P (X)'
800 A C expression that is nonzero if X is a legitimate immediate
801 operand on the target machine when generating position independent
802 code. You can assume that X satisfies `CONSTANT_P', so you need
803 not check this. You can also assume FLAG_PIC is true, so you need
804 not check it either. You need not define this macro if all
805 constants (including `SYMBOL_REF') can be immediate operands when
806 generating position independent code. */
807 #define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
809 #define SYMBOLIC_CONST(X) \
810 (GET_CODE (X) == SYMBOL_REF \
811 || GET_CODE (X) == LABEL_REF \
812 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
815 A C statement or compound statement with a conditional `goto
816 LABEL;' executed if memory address X (an RTX) can have different
817 meanings depending on the machine mode of the memory reference it
818 is used for or if the address is valid for some modes but not
819 others.
821 Autoincrement and autodecrement addresses typically have
822 mode-dependent effects because the amount of the increment or
823 decrement is the size of the operand being addressed. Some
824 machines have other mode-dependent addresses. Many RISC machines
825 have no mode-dependent addresses.
827 You may assume that ADDR is a valid address for the machine.
829 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
830 do { \
831 if (GET_CODE (ADDR) == POST_INC \
832 || GET_CODE (ADDR) == POST_DEC \
833 || GET_CODE (ADDR) == PRE_DEC) \
834 goto LABEL; \
835 } while (0)
837 #define NOTICE_UPDATE_CC(EXPR, INSN) 0
839 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
840 is done just by pretending it is already truncated. */
841 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
843 /* Max number of bytes we can move from memory to memory
844 in one reasonably fast instruction. */
845 #define MOVE_MAX UNITS_PER_WORD
848 /* STORAGE LAYOUT: target machine storage layout
849 Define this macro as a C expression which is nonzero if accessing
850 less than a word of memory (i.e. a `char' or a `short') is no
851 faster than accessing a word of memory, i.e., if such access
852 require more than one instruction or if there is no difference in
853 cost between byte and (aligned) word loads.
855 When this macro is not defined, the compiler will access a field by
856 finding the smallest containing object; when it is defined, a
857 fullword load will be used if alignment permits. Unless bytes
858 accesses are faster than word accesses, using word accesses is
859 preferable since it may eliminate subsequent memory access if
860 subsequent accesses occur to other fields in the same word of the
861 structure, but to different bytes. */
862 #define SLOW_BYTE_ACCESS 0
863 #define SLOW_SHORT_ACCESS 0
865 /* Define this if most significant bit is lowest numbered
866 in instructions that operate on numbered bit-fields. */
867 #define BITS_BIG_ENDIAN 0
869 /* Define this if most significant byte of a word is the lowest numbered.
870 We can't access bytes but if we could we would in the Big Endian order. */
871 #define BYTES_BIG_ENDIAN 0
873 /* Define this if most significant word of a multiword number is numbered. */
874 #define WORDS_BIG_ENDIAN 0
876 /* number of bits in an addressable storage unit */
877 #define BITS_PER_UNIT 8
879 /* Width in bits of a "word", which is the contents of a machine register.
880 Note that this is not necessarily the width of data type `int';
881 if using 16-bit ints on a 68000, this would still be 32.
882 But on a machine with 16-bit registers, this would be 16. */
883 #define BITS_PER_WORD 32
885 /* Width of a word, in units (bytes). */
886 #define UNITS_PER_WORD 4
888 /* Width in bits of a pointer.
889 See also the macro `Pmode1' defined below. */
890 #define POINTER_SIZE 32
892 /* Allocation boundary (in *bits*) for storing pointers in memory. */
893 #define POINTER_BOUNDARY 32
895 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
896 #define PARM_BOUNDARY 32
898 /* Boundary (in *bits*) on which stack pointer should be aligned. */
899 #define STACK_BOUNDARY 32
901 /* Allocation boundary (in *bits*) for the code of a function. */
902 #define FUNCTION_BOUNDARY 32
904 /* Alignment of field after `int : 0' in a structure. */
905 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
907 /* No data type wants to be aligned rounder than this. */
908 #define BIGGEST_ALIGNMENT 32
910 /* Define this if move instructions will actually fail to work
911 when given unaligned data. */
912 #define STRICT_ALIGNMENT 1
914 /* (shell-command "rm c-decl.o stor-layout.o")
915 * never define PCC_BITFIELD_TYPE_MATTERS
916 * really cause some alignment problem
919 #define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
920 BITS_PER_UNIT)
922 #define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
923 BITS_PER_UNIT)
926 /* what is the 'type' of size_t */
927 #define SIZE_TYPE "long unsigned int"
929 /* Define this as 1 if `char' should by default be signed; else as 0. */
930 #define DEFAULT_SIGNED_CHAR 1
931 #define FLOAT_TYPE_SIZE BITS_PER_WORD
932 #define SHORT_TYPE_SIZE 16
933 #define CHAR_TYPE_SIZE 8
934 #define INT_TYPE_SIZE 32
935 #define LONG_TYPE_SIZE 32
936 #define LONG_LONG_TYPE_SIZE 64
938 /* Note: Fix this to depend on target switch. -- lev */
940 /* Note: Try to implement double and force long double. -- tonyko
941 * #define __DOUBLES_ARE_FLOATS__
942 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
943 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
944 * #define DOUBLES_ARE_FLOATS 1
947 #define DOUBLE_TYPE_SIZE 64
948 #define LONG_DOUBLE_TYPE_SIZE 64
950 /* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
951 A macro to update M and UNSIGNEDP when an object whose type is
952 TYPE and which has the specified mode and signedness is to be
953 stored in a register. This macro is only called when TYPE is a
954 scalar type.
956 On most RISC machines, which only have operations that operate on
957 a full register, define this macro to set M to `word_mode' if M is
958 an integer mode narrower than `BITS_PER_WORD'. In most cases,
959 only integer modes should be widened because wider-precision
960 floating-point operations are usually more expensive than their
961 narrower counterparts.
963 For most machines, the macro definition does not change UNSIGNEDP.
964 However, some machines, have instructions that preferentially
965 handle either signed or unsigned quantities of certain modes. For
966 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
967 instructions sign-extend the result to 64 bits. On such machines,
968 set UNSIGNEDP according to which kind of extension is more
969 efficient.
971 Do not define this macro if it would never modify M.*/
973 #define BFIN_PROMOTE_MODE_P(MODE) \
974 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
975 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
977 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
978 if (BFIN_PROMOTE_MODE_P(MODE)) \
980 if (MODE == QImode) \
981 UNSIGNEDP = 1; \
982 else if (MODE == HImode) \
983 UNSIGNEDP = 0; \
984 (MODE) = SImode; \
987 /* Describing Relative Costs of Operations */
989 /* Do not put function addr into constant pool */
990 #define NO_FUNCTION_CSE 1
992 /* A C expression for the cost of moving data from a register in class FROM to
993 one in class TO. The classes are expressed using the enumeration values
994 such as `GENERAL_REGS'. A value of 2 is the default; other values are
995 interpreted relative to that.
997 It is not required that the cost always equal 2 when FROM is the same as TO;
998 on some machines it is expensive to move between registers if they are not
999 general registers. */
1001 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1002 bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
1004 /* A C expression for the cost of moving data of mode M between a
1005 register and memory. A value of 2 is the default; this cost is
1006 relative to those in `REGISTER_MOVE_COST'.
1008 If moving between registers and memory is more expensive than
1009 between two registers, you should define this macro to express the
1010 relative cost. */
1012 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1013 bfin_memory_move_cost ((MODE), (CLASS), (IN))
1015 /* Specify the machine mode that this machine uses
1016 for the index in the tablejump instruction. */
1017 #define CASE_VECTOR_MODE SImode
1019 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
1021 /* Define if operations between registers always perform the operation
1022 on the full register even if a narrower mode is specified.
1023 #define WORD_REGISTER_OPERATIONS
1026 #define CONST_18UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 262140)
1027 #define CONST_16BIT_IMM_P(VALUE) ((VALUE) >= -32768 && (VALUE) <= 32767)
1028 #define CONST_16UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 65535)
1029 #define CONST_7BIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 63)
1030 #define CONST_7NBIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 0)
1031 #define CONST_5UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 31)
1032 #define CONST_4BIT_IMM_P(VALUE) ((VALUE) >= -8 && (VALUE) <= 7)
1033 #define CONST_4UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 15)
1034 #define CONST_3BIT_IMM_P(VALUE) ((VALUE) >= -4 && (VALUE) <= 3)
1035 #define CONST_3UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 7)
1037 #define CONSTRAINT_LEN(C, STR) \
1038 ((C) == 'P' || (C) == 'M' || (C) == 'N' ? 2 \
1039 : (C) == 'K' ? 3 \
1040 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1042 #define CONST_OK_FOR_P(VALUE, STR) \
1043 ((STR)[1] == '0' ? (VALUE) == 0 \
1044 : (STR)[1] == '1' ? (VALUE) == 1 \
1045 : (STR)[1] == '2' ? (VALUE) == 2 \
1046 : (STR)[1] == '3' ? (VALUE) == 3 \
1047 : (STR)[1] == '4' ? (VALUE) == 4 \
1048 : 0)
1050 #define CONST_OK_FOR_K(VALUE, STR) \
1051 ((STR)[1] == 'u' \
1052 ? ((STR)[2] == '3' ? CONST_3UBIT_IMM_P (VALUE) \
1053 : (STR)[2] == '4' ? CONST_4UBIT_IMM_P (VALUE) \
1054 : (STR)[2] == '5' ? CONST_5UBIT_IMM_P (VALUE) \
1055 : (STR)[2] == 'h' ? CONST_16UBIT_IMM_P (VALUE) \
1056 : 0) \
1057 : (STR)[1] == 's' \
1058 ? ((STR)[2] == '3' ? CONST_3BIT_IMM_P (VALUE) \
1059 : (STR)[2] == '4' ? CONST_4BIT_IMM_P (VALUE) \
1060 : (STR)[2] == '7' ? CONST_7BIT_IMM_P (VALUE) \
1061 : (STR)[2] == 'h' ? CONST_16BIT_IMM_P (VALUE) \
1062 : 0) \
1063 : (STR)[1] == 'n' \
1064 ? ((STR)[2] == '7' ? CONST_7NBIT_IMM_P (VALUE) \
1065 : 0) \
1066 : 0)
1068 #define CONST_OK_FOR_M(VALUE, STR) \
1069 ((STR)[1] == '1' ? (VALUE) == 255 \
1070 : (STR)[1] == '2' ? (VALUE) == 65535 \
1071 : 0)
1073 /* The letters I, J, K, L and M in a register constraint string
1074 can be used to stand for particular ranges of immediate operands.
1075 This macro defines what the ranges are.
1076 C is the letter, and VALUE is a constant value.
1077 Return 1 if VALUE is in the range specified by C.
1079 bfin constant operands are as follows
1081 J 2**N 5bit imm scaled
1082 Ks7 -64 .. 63 signed 7bit imm
1083 Ku5 0..31 unsigned 5bit imm
1084 Ks4 -8 .. 7 signed 4bit imm
1085 Ks3 -4 .. 3 signed 3bit imm
1086 Ku3 0 .. 7 unsigned 3bit imm
1087 Pn 0, 1, 2 constants 0, 1 or 2, corresponding to n
1089 #define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
1090 ((C) == 'J' ? (log2constp (VALUE)) \
1091 : (C) == 'K' ? CONST_OK_FOR_K (VALUE, STR) \
1092 : (C) == 'L' ? log2constp (~(VALUE)) \
1093 : (C) == 'M' ? CONST_OK_FOR_M (VALUE, STR) \
1094 : (C) == 'P' ? CONST_OK_FOR_P (VALUE, STR) \
1095 : 0)
1097 /*Constant Output Formats */
1098 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1099 ((C) == 'H' ? 1 : 0)
1101 #define EXTRA_CONSTRAINT(VALUE, D) \
1102 ((D) == 'Q' ? GET_CODE (VALUE) == SYMBOL_REF : 0)
1104 /* Switch into a generic section. */
1105 #define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
1107 #define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
1108 #define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1110 typedef enum sections {
1111 CODE_DIR,
1112 DATA_DIR,
1113 LAST_SECT_NM
1114 } SECT_ENUM_T;
1116 typedef enum directives {
1117 LONG_CONST_DIR,
1118 SHORT_CONST_DIR,
1119 BYTE_CONST_DIR,
1120 SPACE_DIR,
1121 INIT_DIR,
1122 LAST_DIR_NM
1123 } DIR_ENUM_T;
1125 #define TEXT_SECTION_ASM_OP ".text;"
1126 #define DATA_SECTION_ASM_OP ".data;"
1128 #define ASM_APP_ON ""
1129 #define ASM_APP_OFF ""
1131 #define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1132 do { fputs (".global ", FILE); \
1133 assemble_name (FILE, NAME); \
1134 fputc (';',FILE); \
1135 fputc ('\n',FILE); \
1136 } while (0)
1138 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1139 do { \
1140 fputs (".type ", FILE); \
1141 assemble_name (FILE, NAME); \
1142 fputs (", STT_FUNC", FILE); \
1143 fputc (';',FILE); \
1144 fputc ('\n',FILE); \
1145 ASM_OUTPUT_LABEL(FILE, NAME); \
1146 } while (0)
1148 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1149 do { assemble_name (FILE, NAME); \
1150 fputs (":\n",FILE); \
1151 } while (0)
1153 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1154 do { fprintf (FILE, "_%s", NAME); \
1155 } while (0)
1157 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1158 do { char __buf[256]; \
1159 fprintf (FILE, "\t.dd\t"); \
1160 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1161 assemble_name (FILE, __buf); \
1162 fputc (';', FILE); \
1163 fputc ('\n', FILE); \
1164 } while (0)
1166 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1167 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1169 #define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1170 do { \
1171 char __buf[256]; \
1172 fprintf (FILE, "\t.dd\t"); \
1173 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1174 assemble_name (FILE, __buf); \
1175 fputs (" - ", FILE); \
1176 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1177 assemble_name (FILE, __buf); \
1178 fputc (';', FILE); \
1179 fputc ('\n', FILE); \
1180 } while (0)
1182 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1183 do { \
1184 if ((LOG) != 0) \
1185 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1186 } while (0)
1188 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1189 do { \
1190 asm_output_skip (FILE, SIZE); \
1191 } while (0)
1193 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1194 do { \
1195 switch_to_section (data_section); \
1196 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1197 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1198 ASM_OUTPUT_LABEL (FILE, NAME); \
1199 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1200 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1201 } while (0)
1203 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1204 do { \
1205 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1206 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1208 #define ASM_COMMENT_START "//"
1210 #define FUNCTION_PROFILER(FILE, LABELNO) \
1211 do {\
1212 fprintf (FILE, "\tP1.l =LP$%d; P1.h =LP$%d; call mcount;\n", \
1213 LABELNO, LABELNO);\
1214 } while(0)
1216 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1217 #define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1219 extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1220 extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1222 /* This works for GAS and some other assemblers. */
1223 #define SET_ASM_OP ".set "
1225 /* DBX register number for a given compiler register number */
1226 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1228 #define SIZE_ASM_OP "\t.size\t"
1230 #endif /* _BFIN_CONFIG */