Update baseline symbols for hppa-linux.
[official-gcc.git] / gcc / tree-ssa-loop-niter.cc
blob705bcc009cdf298556dc82d3456939a3cc5fcab5
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "intl.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
41 #include "cfgloop.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "tree-dfa.h"
45 #include "internal-fn.h"
46 #include "gimple-range.h"
47 #include "sreal.h"
50 /* The maximum number of dominator BBs we search for conditions
51 of loop header copies we use for simplifying a conditional
52 expression. */
53 #define MAX_DOMINATORS_TO_WALK 8
57 Analysis of number of iterations of an affine exit test.
61 /* Bounds on some value, BELOW <= X <= UP. */
63 struct bounds
65 mpz_t below, up;
68 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
70 static void
71 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
73 tree type = TREE_TYPE (expr);
74 tree op0, op1;
75 bool negate = false;
77 *var = expr;
78 mpz_set_ui (offset, 0);
80 switch (TREE_CODE (expr))
82 case MINUS_EXPR:
83 negate = true;
84 /* Fallthru. */
86 case PLUS_EXPR:
87 case POINTER_PLUS_EXPR:
88 op0 = TREE_OPERAND (expr, 0);
89 op1 = TREE_OPERAND (expr, 1);
91 if (TREE_CODE (op1) != INTEGER_CST)
92 break;
94 *var = op0;
95 /* Always sign extend the offset. */
96 wi::to_mpz (wi::to_wide (op1), offset, SIGNED);
97 if (negate)
98 mpz_neg (offset, offset);
99 break;
101 case INTEGER_CST:
102 *var = build_int_cst_type (type, 0);
103 wi::to_mpz (wi::to_wide (expr), offset, TYPE_SIGN (type));
104 break;
106 default:
107 break;
111 /* From condition C0 CMP C1 derives information regarding the value range
112 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
114 static void
115 refine_value_range_using_guard (tree type, tree var,
116 tree c0, enum tree_code cmp, tree c1,
117 mpz_t below, mpz_t up)
119 tree varc0, varc1, ctype;
120 mpz_t offc0, offc1;
121 mpz_t mint, maxt, minc1, maxc1;
122 bool no_wrap = nowrap_type_p (type);
123 bool c0_ok, c1_ok;
124 signop sgn = TYPE_SIGN (type);
126 switch (cmp)
128 case LT_EXPR:
129 case LE_EXPR:
130 case GT_EXPR:
131 case GE_EXPR:
132 STRIP_SIGN_NOPS (c0);
133 STRIP_SIGN_NOPS (c1);
134 ctype = TREE_TYPE (c0);
135 if (!useless_type_conversion_p (ctype, type))
136 return;
138 break;
140 case EQ_EXPR:
141 /* We could derive quite precise information from EQ_EXPR, however,
142 such a guard is unlikely to appear, so we do not bother with
143 handling it. */
144 return;
146 case NE_EXPR:
147 /* NE_EXPR comparisons do not contain much of useful information,
148 except for cases of comparing with bounds. */
149 if (TREE_CODE (c1) != INTEGER_CST
150 || !INTEGRAL_TYPE_P (type))
151 return;
153 /* Ensure that the condition speaks about an expression in the same
154 type as X and Y. */
155 ctype = TREE_TYPE (c0);
156 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
157 return;
158 c0 = fold_convert (type, c0);
159 c1 = fold_convert (type, c1);
161 if (operand_equal_p (var, c0, 0))
163 /* Case of comparing VAR with its below/up bounds. */
164 auto_mpz valc1;
165 wi::to_mpz (wi::to_wide (c1), valc1, TYPE_SIGN (type));
166 if (mpz_cmp (valc1, below) == 0)
167 cmp = GT_EXPR;
168 if (mpz_cmp (valc1, up) == 0)
169 cmp = LT_EXPR;
171 else
173 /* Case of comparing with the bounds of the type. */
174 wide_int min = wi::min_value (type);
175 wide_int max = wi::max_value (type);
177 if (wi::to_wide (c1) == min)
178 cmp = GT_EXPR;
179 if (wi::to_wide (c1) == max)
180 cmp = LT_EXPR;
183 /* Quick return if no useful information. */
184 if (cmp == NE_EXPR)
185 return;
187 break;
189 default:
190 return;
193 mpz_init (offc0);
194 mpz_init (offc1);
195 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
196 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
198 /* We are only interested in comparisons of expressions based on VAR. */
199 if (operand_equal_p (var, varc1, 0))
201 std::swap (varc0, varc1);
202 mpz_swap (offc0, offc1);
203 cmp = swap_tree_comparison (cmp);
205 else if (!operand_equal_p (var, varc0, 0))
207 mpz_clear (offc0);
208 mpz_clear (offc1);
209 return;
212 mpz_init (mint);
213 mpz_init (maxt);
214 get_type_static_bounds (type, mint, maxt);
215 mpz_init (minc1);
216 mpz_init (maxc1);
217 Value_Range r (TREE_TYPE (varc1));
218 /* Setup range information for varc1. */
219 if (integer_zerop (varc1))
221 wi::to_mpz (0, minc1, TYPE_SIGN (type));
222 wi::to_mpz (0, maxc1, TYPE_SIGN (type));
224 else if (TREE_CODE (varc1) == SSA_NAME
225 && INTEGRAL_TYPE_P (type)
226 && get_range_query (cfun)->range_of_expr (r, varc1)
227 && !r.undefined_p ()
228 && !r.varying_p ())
230 gcc_assert (wi::le_p (r.lower_bound (), r.upper_bound (), sgn));
231 wi::to_mpz (r.lower_bound (), minc1, sgn);
232 wi::to_mpz (r.upper_bound (), maxc1, sgn);
234 else
236 mpz_set (minc1, mint);
237 mpz_set (maxc1, maxt);
240 /* Compute valid range information for varc1 + offc1. Note nothing
241 useful can be derived if it overflows or underflows. Overflow or
242 underflow could happen when:
244 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
245 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
246 mpz_add (minc1, minc1, offc1);
247 mpz_add (maxc1, maxc1, offc1);
248 c1_ok = (no_wrap
249 || mpz_sgn (offc1) == 0
250 || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
251 || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
252 if (!c1_ok)
253 goto end;
255 if (mpz_cmp (minc1, mint) < 0)
256 mpz_set (minc1, mint);
257 if (mpz_cmp (maxc1, maxt) > 0)
258 mpz_set (maxc1, maxt);
260 if (cmp == LT_EXPR)
262 cmp = LE_EXPR;
263 mpz_sub_ui (maxc1, maxc1, 1);
265 if (cmp == GT_EXPR)
267 cmp = GE_EXPR;
268 mpz_add_ui (minc1, minc1, 1);
271 /* Compute range information for varc0. If there is no overflow,
272 the condition implied that
274 (varc0) cmp (varc1 + offc1 - offc0)
276 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
277 or the below bound if cmp is GE_EXPR.
279 To prove there is no overflow/underflow, we need to check below
280 four cases:
281 1) cmp == LE_EXPR && offc0 > 0
283 (varc0 + offc0) doesn't overflow
284 && (varc1 + offc1 - offc0) doesn't underflow
286 2) cmp == LE_EXPR && offc0 < 0
288 (varc0 + offc0) doesn't underflow
289 && (varc1 + offc1 - offc0) doesn't overfloe
291 In this case, (varc0 + offc0) will never underflow if we can
292 prove (varc1 + offc1 - offc0) doesn't overflow.
294 3) cmp == GE_EXPR && offc0 < 0
296 (varc0 + offc0) doesn't underflow
297 && (varc1 + offc1 - offc0) doesn't overflow
299 4) cmp == GE_EXPR && offc0 > 0
301 (varc0 + offc0) doesn't overflow
302 && (varc1 + offc1 - offc0) doesn't underflow
304 In this case, (varc0 + offc0) will never overflow if we can
305 prove (varc1 + offc1 - offc0) doesn't underflow.
307 Note we only handle case 2 and 4 in below code. */
309 mpz_sub (minc1, minc1, offc0);
310 mpz_sub (maxc1, maxc1, offc0);
311 c0_ok = (no_wrap
312 || mpz_sgn (offc0) == 0
313 || (cmp == LE_EXPR
314 && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
315 || (cmp == GE_EXPR
316 && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
317 if (!c0_ok)
318 goto end;
320 if (cmp == LE_EXPR)
322 if (mpz_cmp (up, maxc1) > 0)
323 mpz_set (up, maxc1);
325 else
327 if (mpz_cmp (below, minc1) < 0)
328 mpz_set (below, minc1);
331 end:
332 mpz_clear (mint);
333 mpz_clear (maxt);
334 mpz_clear (minc1);
335 mpz_clear (maxc1);
336 mpz_clear (offc0);
337 mpz_clear (offc1);
340 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
341 in TYPE to MIN and MAX. */
343 static void
344 determine_value_range (class loop *loop, tree type, tree var, mpz_t off,
345 mpz_t min, mpz_t max)
347 int cnt = 0;
348 mpz_t minm, maxm;
349 basic_block bb;
350 wide_int minv, maxv;
351 enum value_range_kind rtype = VR_VARYING;
353 /* If the expression is a constant, we know its value exactly. */
354 if (integer_zerop (var))
356 mpz_set (min, off);
357 mpz_set (max, off);
358 return;
361 get_type_static_bounds (type, min, max);
363 /* See if we have some range info from VRP. */
364 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
366 edge e = loop_preheader_edge (loop);
367 signop sgn = TYPE_SIGN (type);
368 gphi_iterator gsi;
370 /* Either for VAR itself... */
371 Value_Range var_range (TREE_TYPE (var));
372 get_range_query (cfun)->range_of_expr (var_range, var);
373 if (var_range.varying_p () || var_range.undefined_p ())
374 rtype = VR_VARYING;
375 else
376 rtype = VR_RANGE;
377 if (!var_range.undefined_p ())
379 minv = var_range.lower_bound ();
380 maxv = var_range.upper_bound ();
383 /* Or for PHI results in loop->header where VAR is used as
384 PHI argument from the loop preheader edge. */
385 Value_Range phi_range (TREE_TYPE (var));
386 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
388 gphi *phi = gsi.phi ();
389 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
390 && get_range_query (cfun)->range_of_expr (phi_range,
391 gimple_phi_result (phi))
392 && !phi_range.varying_p ()
393 && !phi_range.undefined_p ())
395 if (rtype != VR_RANGE)
397 rtype = VR_RANGE;
398 minv = phi_range.lower_bound ();
399 maxv = phi_range.upper_bound ();
401 else
403 minv = wi::max (minv, phi_range.lower_bound (), sgn);
404 maxv = wi::min (maxv, phi_range.upper_bound (), sgn);
405 /* If the PHI result range are inconsistent with
406 the VAR range, give up on looking at the PHI
407 results. This can happen if VR_UNDEFINED is
408 involved. */
409 if (wi::gt_p (minv, maxv, sgn))
411 Value_Range vr (TREE_TYPE (var));
412 get_range_query (cfun)->range_of_expr (vr, var);
413 if (vr.varying_p () || vr.undefined_p ())
414 rtype = VR_VARYING;
415 else
416 rtype = VR_RANGE;
417 if (!vr.undefined_p ())
419 minv = vr.lower_bound ();
420 maxv = vr.upper_bound ();
422 break;
427 mpz_init (minm);
428 mpz_init (maxm);
429 if (rtype != VR_RANGE)
431 mpz_set (minm, min);
432 mpz_set (maxm, max);
434 else
436 gcc_assert (wi::le_p (minv, maxv, sgn));
437 wi::to_mpz (minv, minm, sgn);
438 wi::to_mpz (maxv, maxm, sgn);
440 /* Now walk the dominators of the loop header and use the entry
441 guards to refine the estimates. */
442 for (bb = loop->header;
443 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
444 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
446 edge e;
447 tree c0, c1;
448 enum tree_code cmp;
450 if (!single_pred_p (bb))
451 continue;
452 e = single_pred_edge (bb);
454 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
455 continue;
457 gcond *cond = as_a <gcond *> (*gsi_last_bb (e->src));
458 c0 = gimple_cond_lhs (cond);
459 cmp = gimple_cond_code (cond);
460 c1 = gimple_cond_rhs (cond);
462 if (e->flags & EDGE_FALSE_VALUE)
463 cmp = invert_tree_comparison (cmp, false);
465 refine_value_range_using_guard (type, var, c0, cmp, c1, minm, maxm);
466 ++cnt;
469 mpz_add (minm, minm, off);
470 mpz_add (maxm, maxm, off);
471 /* If the computation may not wrap or off is zero, then this
472 is always fine. If off is negative and minv + off isn't
473 smaller than type's minimum, or off is positive and
474 maxv + off isn't bigger than type's maximum, use the more
475 precise range too. */
476 if (nowrap_type_p (type)
477 || mpz_sgn (off) == 0
478 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
479 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
481 mpz_set (min, minm);
482 mpz_set (max, maxm);
483 mpz_clear (minm);
484 mpz_clear (maxm);
485 return;
487 mpz_clear (minm);
488 mpz_clear (maxm);
491 /* If the computation may wrap, we know nothing about the value, except for
492 the range of the type. */
493 if (!nowrap_type_p (type))
494 return;
496 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
497 add it to MIN, otherwise to MAX. */
498 if (mpz_sgn (off) < 0)
499 mpz_add (max, max, off);
500 else
501 mpz_add (min, min, off);
504 /* Stores the bounds on the difference of the values of the expressions
505 (var + X) and (var + Y), computed in TYPE, to BNDS. */
507 static void
508 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
509 bounds *bnds)
511 int rel = mpz_cmp (x, y);
512 bool may_wrap = !nowrap_type_p (type);
514 /* If X == Y, then the expressions are always equal.
515 If X > Y, there are the following possibilities:
516 a) neither of var + X and var + Y overflow or underflow, or both of
517 them do. Then their difference is X - Y.
518 b) var + X overflows, and var + Y does not. Then the values of the
519 expressions are var + X - M and var + Y, where M is the range of
520 the type, and their difference is X - Y - M.
521 c) var + Y underflows and var + X does not. Their difference again
522 is M - X + Y.
523 Therefore, if the arithmetics in type does not overflow, then the
524 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
525 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
526 (X - Y, X - Y + M). */
528 if (rel == 0)
530 mpz_set_ui (bnds->below, 0);
531 mpz_set_ui (bnds->up, 0);
532 return;
535 auto_mpz m;
536 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
537 mpz_add_ui (m, m, 1);
538 mpz_sub (bnds->up, x, y);
539 mpz_set (bnds->below, bnds->up);
541 if (may_wrap)
543 if (rel > 0)
544 mpz_sub (bnds->below, bnds->below, m);
545 else
546 mpz_add (bnds->up, bnds->up, m);
550 /* From condition C0 CMP C1 derives information regarding the
551 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
552 and stores it to BNDS. */
554 static void
555 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
556 tree vary, mpz_t offy,
557 tree c0, enum tree_code cmp, tree c1,
558 bounds *bnds)
560 tree varc0, varc1, ctype;
561 mpz_t offc0, offc1, loffx, loffy, bnd;
562 bool lbound = false;
563 bool no_wrap = nowrap_type_p (type);
564 bool x_ok, y_ok;
566 switch (cmp)
568 case LT_EXPR:
569 case LE_EXPR:
570 case GT_EXPR:
571 case GE_EXPR:
572 STRIP_SIGN_NOPS (c0);
573 STRIP_SIGN_NOPS (c1);
574 ctype = TREE_TYPE (c0);
575 if (!useless_type_conversion_p (ctype, type))
576 return;
578 break;
580 case EQ_EXPR:
581 /* We could derive quite precise information from EQ_EXPR, however, such
582 a guard is unlikely to appear, so we do not bother with handling
583 it. */
584 return;
586 case NE_EXPR:
587 /* NE_EXPR comparisons do not contain much of useful information, except for
588 special case of comparing with the bounds of the type. */
589 if (TREE_CODE (c1) != INTEGER_CST
590 || !INTEGRAL_TYPE_P (type))
591 return;
593 /* Ensure that the condition speaks about an expression in the same type
594 as X and Y. */
595 ctype = TREE_TYPE (c0);
596 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
597 return;
598 c0 = fold_convert (type, c0);
599 c1 = fold_convert (type, c1);
601 if (TYPE_MIN_VALUE (type)
602 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
604 cmp = GT_EXPR;
605 break;
607 if (TYPE_MAX_VALUE (type)
608 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
610 cmp = LT_EXPR;
611 break;
614 return;
615 default:
616 return;
619 mpz_init (offc0);
620 mpz_init (offc1);
621 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
622 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
624 /* We are only interested in comparisons of expressions based on VARX and
625 VARY. TODO -- we might also be able to derive some bounds from
626 expressions containing just one of the variables. */
628 if (operand_equal_p (varx, varc1, 0))
630 std::swap (varc0, varc1);
631 mpz_swap (offc0, offc1);
632 cmp = swap_tree_comparison (cmp);
635 if (!operand_equal_p (varx, varc0, 0)
636 || !operand_equal_p (vary, varc1, 0))
637 goto end;
639 mpz_init_set (loffx, offx);
640 mpz_init_set (loffy, offy);
642 if (cmp == GT_EXPR || cmp == GE_EXPR)
644 std::swap (varx, vary);
645 mpz_swap (offc0, offc1);
646 mpz_swap (loffx, loffy);
647 cmp = swap_tree_comparison (cmp);
648 lbound = true;
651 /* If there is no overflow, the condition implies that
653 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
655 The overflows and underflows may complicate things a bit; each
656 overflow decreases the appropriate offset by M, and underflow
657 increases it by M. The above inequality would not necessarily be
658 true if
660 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
661 VARX + OFFC0 overflows, but VARX + OFFX does not.
662 This may only happen if OFFX < OFFC0.
663 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
664 VARY + OFFC1 underflows and VARY + OFFY does not.
665 This may only happen if OFFY > OFFC1. */
667 if (no_wrap)
669 x_ok = true;
670 y_ok = true;
672 else
674 x_ok = (integer_zerop (varx)
675 || mpz_cmp (loffx, offc0) >= 0);
676 y_ok = (integer_zerop (vary)
677 || mpz_cmp (loffy, offc1) <= 0);
680 if (x_ok && y_ok)
682 mpz_init (bnd);
683 mpz_sub (bnd, loffx, loffy);
684 mpz_add (bnd, bnd, offc1);
685 mpz_sub (bnd, bnd, offc0);
687 if (cmp == LT_EXPR)
688 mpz_sub_ui (bnd, bnd, 1);
690 if (lbound)
692 mpz_neg (bnd, bnd);
693 if (mpz_cmp (bnds->below, bnd) < 0)
694 mpz_set (bnds->below, bnd);
696 else
698 if (mpz_cmp (bnd, bnds->up) < 0)
699 mpz_set (bnds->up, bnd);
701 mpz_clear (bnd);
704 mpz_clear (loffx);
705 mpz_clear (loffy);
706 end:
707 mpz_clear (offc0);
708 mpz_clear (offc1);
711 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
712 The subtraction is considered to be performed in arbitrary precision,
713 without overflows.
715 We do not attempt to be too clever regarding the value ranges of X and
716 Y; most of the time, they are just integers or ssa names offsetted by
717 integer. However, we try to use the information contained in the
718 comparisons before the loop (usually created by loop header copying). */
720 static void
721 bound_difference (class loop *loop, tree x, tree y, bounds *bnds)
723 tree type = TREE_TYPE (x);
724 tree varx, vary;
725 mpz_t offx, offy;
726 int cnt = 0;
727 edge e;
728 basic_block bb;
729 tree c0, c1;
730 enum tree_code cmp;
732 /* Get rid of unnecessary casts, but preserve the value of
733 the expressions. */
734 STRIP_SIGN_NOPS (x);
735 STRIP_SIGN_NOPS (y);
737 mpz_init (bnds->below);
738 mpz_init (bnds->up);
739 mpz_init (offx);
740 mpz_init (offy);
741 split_to_var_and_offset (x, &varx, offx);
742 split_to_var_and_offset (y, &vary, offy);
744 if (!integer_zerop (varx)
745 && operand_equal_p (varx, vary, 0))
747 /* Special case VARX == VARY -- we just need to compare the
748 offsets. The matters are a bit more complicated in the
749 case addition of offsets may wrap. */
750 bound_difference_of_offsetted_base (type, offx, offy, bnds);
752 else
754 /* Otherwise, use the value ranges to determine the initial
755 estimates on below and up. */
756 auto_mpz minx, maxx, miny, maxy;
757 determine_value_range (loop, type, varx, offx, minx, maxx);
758 determine_value_range (loop, type, vary, offy, miny, maxy);
760 mpz_sub (bnds->below, minx, maxy);
761 mpz_sub (bnds->up, maxx, miny);
764 /* If both X and Y are constants, we cannot get any more precise. */
765 if (integer_zerop (varx) && integer_zerop (vary))
766 goto end;
768 /* Now walk the dominators of the loop header and use the entry
769 guards to refine the estimates. */
770 for (bb = loop->header;
771 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
772 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
774 if (!single_pred_p (bb))
775 continue;
776 e = single_pred_edge (bb);
778 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
779 continue;
781 gcond *cond = as_a <gcond *> (*gsi_last_bb (e->src));
782 c0 = gimple_cond_lhs (cond);
783 cmp = gimple_cond_code (cond);
784 c1 = gimple_cond_rhs (cond);
786 if (e->flags & EDGE_FALSE_VALUE)
787 cmp = invert_tree_comparison (cmp, false);
789 refine_bounds_using_guard (type, varx, offx, vary, offy,
790 c0, cmp, c1, bnds);
791 ++cnt;
794 end:
795 mpz_clear (offx);
796 mpz_clear (offy);
799 /* Update the bounds in BNDS that restrict the value of X to the bounds
800 that restrict the value of X + DELTA. X can be obtained as a
801 difference of two values in TYPE. */
803 static void
804 bounds_add (bounds *bnds, const widest_int &delta, tree type)
806 mpz_t mdelta, max;
808 mpz_init (mdelta);
809 wi::to_mpz (delta, mdelta, SIGNED);
811 mpz_init (max);
812 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
814 mpz_add (bnds->up, bnds->up, mdelta);
815 mpz_add (bnds->below, bnds->below, mdelta);
817 if (mpz_cmp (bnds->up, max) > 0)
818 mpz_set (bnds->up, max);
820 mpz_neg (max, max);
821 if (mpz_cmp (bnds->below, max) < 0)
822 mpz_set (bnds->below, max);
824 mpz_clear (mdelta);
825 mpz_clear (max);
828 /* Update the bounds in BNDS that restrict the value of X to the bounds
829 that restrict the value of -X. */
831 static void
832 bounds_negate (bounds *bnds)
834 mpz_t tmp;
836 mpz_init_set (tmp, bnds->up);
837 mpz_neg (bnds->up, bnds->below);
838 mpz_neg (bnds->below, tmp);
839 mpz_clear (tmp);
842 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
844 static tree
845 inverse (tree x, tree mask)
847 tree type = TREE_TYPE (x);
848 tree rslt;
849 unsigned ctr = tree_floor_log2 (mask);
851 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
853 unsigned HOST_WIDE_INT ix;
854 unsigned HOST_WIDE_INT imask;
855 unsigned HOST_WIDE_INT irslt = 1;
857 gcc_assert (cst_and_fits_in_hwi (x));
858 gcc_assert (cst_and_fits_in_hwi (mask));
860 ix = int_cst_value (x);
861 imask = int_cst_value (mask);
863 for (; ctr; ctr--)
865 irslt *= ix;
866 ix *= ix;
868 irslt &= imask;
870 rslt = build_int_cst_type (type, irslt);
872 else
874 rslt = build_int_cst (type, 1);
875 for (; ctr; ctr--)
877 rslt = int_const_binop (MULT_EXPR, rslt, x);
878 x = int_const_binop (MULT_EXPR, x, x);
880 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
883 return rslt;
886 /* Derives the upper bound BND on the number of executions of loop with exit
887 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
888 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
889 that the loop ends through this exit, i.e., the induction variable ever
890 reaches the value of C.
892 The value C is equal to final - base, where final and base are the final and
893 initial value of the actual induction variable in the analysed loop. BNDS
894 bounds the value of this difference when computed in signed type with
895 unbounded range, while the computation of C is performed in an unsigned
896 type with the range matching the range of the type of the induction variable.
897 In particular, BNDS.up contains an upper bound on C in the following cases:
898 -- if the iv must reach its final value without overflow, i.e., if
899 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
900 -- if final >= base, which we know to hold when BNDS.below >= 0. */
902 static void
903 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
904 bounds *bnds, bool exit_must_be_taken)
906 widest_int max;
907 mpz_t d;
908 tree type = TREE_TYPE (c);
909 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
910 || mpz_sgn (bnds->below) >= 0);
912 if (integer_onep (s)
913 || (TREE_CODE (c) == INTEGER_CST
914 && TREE_CODE (s) == INTEGER_CST
915 && wi::mod_trunc (wi::to_wide (c), wi::to_wide (s),
916 TYPE_SIGN (type)) == 0)
917 || (TYPE_OVERFLOW_UNDEFINED (type)
918 && multiple_of_p (type, c, s)))
920 /* If C is an exact multiple of S, then its value will be reached before
921 the induction variable overflows (unless the loop is exited in some
922 other way before). Note that the actual induction variable in the
923 loop (which ranges from base to final instead of from 0 to C) may
924 overflow, in which case BNDS.up will not be giving a correct upper
925 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
926 no_overflow = true;
927 exit_must_be_taken = true;
930 /* If the induction variable can overflow, the number of iterations is at
931 most the period of the control variable (or infinite, but in that case
932 the whole # of iterations analysis will fail). */
933 if (!no_overflow)
935 max = wi::mask <widest_int> (TYPE_PRECISION (type)
936 - wi::ctz (wi::to_wide (s)), false);
937 wi::to_mpz (max, bnd, UNSIGNED);
938 return;
941 /* Now we know that the induction variable does not overflow, so the loop
942 iterates at most (range of type / S) times. */
943 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
945 /* If the induction variable is guaranteed to reach the value of C before
946 overflow, ... */
947 if (exit_must_be_taken)
949 /* ... then we can strengthen this to C / S, and possibly we can use
950 the upper bound on C given by BNDS. */
951 if (TREE_CODE (c) == INTEGER_CST)
952 wi::to_mpz (wi::to_wide (c), bnd, UNSIGNED);
953 else if (bnds_u_valid)
954 mpz_set (bnd, bnds->up);
957 mpz_init (d);
958 wi::to_mpz (wi::to_wide (s), d, UNSIGNED);
959 mpz_fdiv_q (bnd, bnd, d);
960 mpz_clear (d);
963 /* Determines number of iterations of loop whose ending condition
964 is IV <> FINAL. TYPE is the type of the iv. The number of
965 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
966 we know that the exit must be taken eventually, i.e., that the IV
967 ever reaches the value FINAL (we derived this earlier, and possibly set
968 NITER->assumptions to make sure this is the case). BNDS contains the
969 bounds on the difference FINAL - IV->base. */
971 static bool
972 number_of_iterations_ne (class loop *loop, tree type, affine_iv *iv,
973 tree final, class tree_niter_desc *niter,
974 bool exit_must_be_taken, bounds *bnds)
976 tree niter_type = unsigned_type_for (type);
977 tree s, c, d, bits, assumption, tmp, bound;
979 niter->control = *iv;
980 niter->bound = final;
981 niter->cmp = NE_EXPR;
983 /* Rearrange the terms so that we get inequality S * i <> C, with S
984 positive. Also cast everything to the unsigned type. If IV does
985 not overflow, BNDS bounds the value of C. Also, this is the
986 case if the computation |FINAL - IV->base| does not overflow, i.e.,
987 if BNDS->below in the result is nonnegative. */
988 if (tree_int_cst_sign_bit (iv->step))
990 s = fold_convert (niter_type,
991 fold_build1 (NEGATE_EXPR, type, iv->step));
992 c = fold_build2 (MINUS_EXPR, niter_type,
993 fold_convert (niter_type, iv->base),
994 fold_convert (niter_type, final));
995 bounds_negate (bnds);
997 else
999 s = fold_convert (niter_type, iv->step);
1000 c = fold_build2 (MINUS_EXPR, niter_type,
1001 fold_convert (niter_type, final),
1002 fold_convert (niter_type, iv->base));
1005 auto_mpz max;
1006 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
1007 exit_must_be_taken);
1008 niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
1009 TYPE_SIGN (niter_type));
1011 /* Compute no-overflow information for the control iv. This can be
1012 proven when below two conditions are satisfied:
1014 1) IV evaluates toward FINAL at beginning, i.e:
1015 base <= FINAL ; step > 0
1016 base >= FINAL ; step < 0
1018 2) |FINAL - base| is an exact multiple of step.
1020 Unfortunately, it's hard to prove above conditions after pass loop-ch
1021 because loop with exit condition (IV != FINAL) usually will be guarded
1022 by initial-condition (IV.base - IV.step != FINAL). In this case, we
1023 can alternatively try to prove below conditions:
1025 1') IV evaluates toward FINAL at beginning, i.e:
1026 new_base = base - step < FINAL ; step > 0
1027 && base - step doesn't underflow
1028 new_base = base - step > FINAL ; step < 0
1029 && base - step doesn't overflow
1031 Please refer to PR34114 as an example of loop-ch's impact.
1033 Note, for NE_EXPR, base equals to FINAL is a special case, in
1034 which the loop exits immediately, and the iv does not overflow.
1036 Also note, we prove condition 2) by checking base and final seperately
1037 along with condition 1) or 1'). Since we ensure the difference
1038 computation of c does not wrap with cond below and the adjusted s
1039 will fit a signed type as well as an unsigned we can safely do
1040 this using the type of the IV if it is not pointer typed. */
1041 tree mtype = type;
1042 if (POINTER_TYPE_P (type))
1043 mtype = niter_type;
1044 if (!niter->control.no_overflow
1045 && (integer_onep (s)
1046 || (multiple_of_p (mtype, fold_convert (mtype, iv->base),
1047 fold_convert (mtype, s), false)
1048 && multiple_of_p (mtype, fold_convert (mtype, final),
1049 fold_convert (mtype, s), false))))
1051 tree t, cond, relaxed_cond = boolean_false_node;
1053 if (tree_int_cst_sign_bit (iv->step))
1055 cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
1056 if (TREE_CODE (type) == INTEGER_TYPE)
1058 /* Only when base - step doesn't overflow. */
1059 t = TYPE_MAX_VALUE (type);
1060 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1061 t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
1062 if (integer_nonzerop (t))
1064 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1065 relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node, t,
1066 final);
1070 else
1072 cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
1073 if (TREE_CODE (type) == INTEGER_TYPE)
1075 /* Only when base - step doesn't underflow. */
1076 t = TYPE_MIN_VALUE (type);
1077 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1078 t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
1079 if (integer_nonzerop (t))
1081 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1082 relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node, t,
1083 final);
1088 t = simplify_using_initial_conditions (loop, cond);
1089 if (!t || !integer_onep (t))
1090 t = simplify_using_initial_conditions (loop, relaxed_cond);
1092 if (t && integer_onep (t))
1094 niter->control.no_overflow = true;
1095 niter->niter = fold_build2 (EXACT_DIV_EXPR, niter_type, c, s);
1096 return true;
1100 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1101 is infinite. Otherwise, the number of iterations is
1102 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1103 bits = num_ending_zeros (s);
1104 bound = build_low_bits_mask (niter_type,
1105 (TYPE_PRECISION (niter_type)
1106 - tree_to_uhwi (bits)));
1108 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
1109 build_int_cst (niter_type, 1), bits);
1110 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
1112 if (!exit_must_be_taken)
1114 /* If we cannot assume that the exit is taken eventually, record the
1115 assumptions for divisibility of c. */
1116 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
1117 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
1118 assumption, build_int_cst (niter_type, 0));
1119 if (!integer_nonzerop (assumption))
1120 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1121 niter->assumptions, assumption);
1124 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
1125 if (integer_onep (s))
1127 niter->niter = c;
1129 else
1131 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
1132 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
1134 return true;
1137 /* Checks whether we can determine the final value of the control variable
1138 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1139 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1140 of the step. The assumptions necessary to ensure that the computation
1141 of the final value does not overflow are recorded in NITER. If we
1142 find the final value, we adjust DELTA and return TRUE. Otherwise
1143 we return false. BNDS bounds the value of IV1->base - IV0->base,
1144 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1145 true if we know that the exit must be taken eventually. */
1147 static bool
1148 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
1149 class tree_niter_desc *niter,
1150 tree *delta, tree step,
1151 bool exit_must_be_taken, bounds *bnds)
1153 tree niter_type = TREE_TYPE (step);
1154 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
1155 tree tmod;
1156 tree assumption = boolean_true_node, bound, noloop;
1157 bool fv_comp_no_overflow;
1158 tree type1 = type;
1159 if (POINTER_TYPE_P (type))
1160 type1 = sizetype;
1162 if (TREE_CODE (mod) != INTEGER_CST)
1163 return false;
1164 if (integer_nonzerop (mod))
1165 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
1166 tmod = fold_convert (type1, mod);
1168 auto_mpz mmod;
1169 wi::to_mpz (wi::to_wide (mod), mmod, UNSIGNED);
1170 mpz_neg (mmod, mmod);
1172 /* If the induction variable does not overflow and the exit is taken,
1173 then the computation of the final value does not overflow. This is
1174 also obviously the case if the new final value is equal to the
1175 current one. Finally, we postulate this for pointer type variables,
1176 as the code cannot rely on the object to that the pointer points being
1177 placed at the end of the address space (and more pragmatically,
1178 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
1179 if (integer_zerop (mod) || POINTER_TYPE_P (type))
1180 fv_comp_no_overflow = true;
1181 else if (!exit_must_be_taken)
1182 fv_comp_no_overflow = false;
1183 else
1184 fv_comp_no_overflow =
1185 (iv0->no_overflow && integer_nonzerop (iv0->step))
1186 || (iv1->no_overflow && integer_nonzerop (iv1->step));
1188 if (integer_nonzerop (iv0->step))
1190 /* The final value of the iv is iv1->base + MOD, assuming that this
1191 computation does not overflow, and that
1192 iv0->base <= iv1->base + MOD. */
1193 if (!fv_comp_no_overflow)
1195 bound = fold_build2 (MINUS_EXPR, type1,
1196 TYPE_MAX_VALUE (type1), tmod);
1197 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1198 iv1->base, bound);
1199 if (integer_zerop (assumption))
1200 return false;
1202 if (mpz_cmp (mmod, bnds->below) < 0)
1203 noloop = boolean_false_node;
1204 else if (POINTER_TYPE_P (type))
1205 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1206 iv0->base,
1207 fold_build_pointer_plus (iv1->base, tmod));
1208 else
1209 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1210 iv0->base,
1211 fold_build2 (PLUS_EXPR, type1,
1212 iv1->base, tmod));
1214 else
1216 /* The final value of the iv is iv0->base - MOD, assuming that this
1217 computation does not overflow, and that
1218 iv0->base - MOD <= iv1->base. */
1219 if (!fv_comp_no_overflow)
1221 bound = fold_build2 (PLUS_EXPR, type1,
1222 TYPE_MIN_VALUE (type1), tmod);
1223 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1224 iv0->base, bound);
1225 if (integer_zerop (assumption))
1226 return false;
1228 if (mpz_cmp (mmod, bnds->below) < 0)
1229 noloop = boolean_false_node;
1230 else if (POINTER_TYPE_P (type))
1231 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1232 fold_build_pointer_plus (iv0->base,
1233 fold_build1 (NEGATE_EXPR,
1234 type1, tmod)),
1235 iv1->base);
1236 else
1237 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1238 fold_build2 (MINUS_EXPR, type1,
1239 iv0->base, tmod),
1240 iv1->base);
1243 if (!integer_nonzerop (assumption))
1244 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1245 niter->assumptions,
1246 assumption);
1247 if (!integer_zerop (noloop))
1248 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1249 niter->may_be_zero,
1250 noloop);
1251 bounds_add (bnds, wi::to_widest (mod), type);
1252 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
1254 return true;
1257 /* Add assertions to NITER that ensure that the control variable of the loop
1258 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1259 are TYPE. Returns false if we can prove that there is an overflow, true
1260 otherwise. STEP is the absolute value of the step. */
1262 static bool
1263 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1264 class tree_niter_desc *niter, tree step)
1266 tree bound, d, assumption, diff;
1267 tree niter_type = TREE_TYPE (step);
1269 if (integer_nonzerop (iv0->step))
1271 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1272 if (iv0->no_overflow)
1273 return true;
1275 /* If iv0->base is a constant, we can determine the last value before
1276 overflow precisely; otherwise we conservatively assume
1277 MAX - STEP + 1. */
1279 if (TREE_CODE (iv0->base) == INTEGER_CST)
1281 d = fold_build2 (MINUS_EXPR, niter_type,
1282 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
1283 fold_convert (niter_type, iv0->base));
1284 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1286 else
1287 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1288 build_int_cst (niter_type, 1));
1289 bound = fold_build2 (MINUS_EXPR, type,
1290 TYPE_MAX_VALUE (type), fold_convert (type, diff));
1291 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1292 iv1->base, bound);
1294 else
1296 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1297 if (iv1->no_overflow)
1298 return true;
1300 if (TREE_CODE (iv1->base) == INTEGER_CST)
1302 d = fold_build2 (MINUS_EXPR, niter_type,
1303 fold_convert (niter_type, iv1->base),
1304 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
1305 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1307 else
1308 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1309 build_int_cst (niter_type, 1));
1310 bound = fold_build2 (PLUS_EXPR, type,
1311 TYPE_MIN_VALUE (type), fold_convert (type, diff));
1312 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1313 iv0->base, bound);
1316 if (integer_zerop (assumption))
1317 return false;
1318 if (!integer_nonzerop (assumption))
1319 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1320 niter->assumptions, assumption);
1322 iv0->no_overflow = true;
1323 iv1->no_overflow = true;
1324 return true;
1327 /* Add an assumption to NITER that a loop whose ending condition
1328 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1329 bounds the value of IV1->base - IV0->base. */
1331 static void
1332 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1333 class tree_niter_desc *niter, bounds *bnds)
1335 tree assumption = boolean_true_node, bound, diff;
1336 tree mbz, mbzl, mbzr, type1;
1337 bool rolls_p, no_overflow_p;
1338 widest_int dstep;
1339 mpz_t mstep, max;
1341 /* We are going to compute the number of iterations as
1342 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1343 variant of TYPE. This formula only works if
1345 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1347 (where MAX is the maximum value of the unsigned variant of TYPE, and
1348 the computations in this formula are performed in full precision,
1349 i.e., without overflows).
1351 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1352 we have a condition of the form iv0->base - step < iv1->base before the loop,
1353 and for loops iv0->base < iv1->base - step * i the condition
1354 iv0->base < iv1->base + step, due to loop header copying, which enable us
1355 to prove the lower bound.
1357 The upper bound is more complicated. Unless the expressions for initial
1358 and final value themselves contain enough information, we usually cannot
1359 derive it from the context. */
1361 /* First check whether the answer does not follow from the bounds we gathered
1362 before. */
1363 if (integer_nonzerop (iv0->step))
1364 dstep = wi::to_widest (iv0->step);
1365 else
1367 dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
1368 dstep = -dstep;
1371 mpz_init (mstep);
1372 wi::to_mpz (dstep, mstep, UNSIGNED);
1373 mpz_neg (mstep, mstep);
1374 mpz_add_ui (mstep, mstep, 1);
1376 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1378 mpz_init (max);
1379 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
1380 mpz_add (max, max, mstep);
1381 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1382 /* For pointers, only values lying inside a single object
1383 can be compared or manipulated by pointer arithmetics.
1384 Gcc in general does not allow or handle objects larger
1385 than half of the address space, hence the upper bound
1386 is satisfied for pointers. */
1387 || POINTER_TYPE_P (type));
1388 mpz_clear (mstep);
1389 mpz_clear (max);
1391 if (rolls_p && no_overflow_p)
1392 return;
1394 type1 = type;
1395 if (POINTER_TYPE_P (type))
1396 type1 = sizetype;
1398 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1399 we must be careful not to introduce overflow. */
1401 if (integer_nonzerop (iv0->step))
1403 diff = fold_build2 (MINUS_EXPR, type1,
1404 iv0->step, build_int_cst (type1, 1));
1406 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1407 0 address never belongs to any object, we can assume this for
1408 pointers. */
1409 if (!POINTER_TYPE_P (type))
1411 bound = fold_build2 (PLUS_EXPR, type1,
1412 TYPE_MIN_VALUE (type), diff);
1413 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1414 iv0->base, bound);
1417 /* And then we can compute iv0->base - diff, and compare it with
1418 iv1->base. */
1419 mbzl = fold_build2 (MINUS_EXPR, type1,
1420 fold_convert (type1, iv0->base), diff);
1421 mbzr = fold_convert (type1, iv1->base);
1423 else
1425 diff = fold_build2 (PLUS_EXPR, type1,
1426 iv1->step, build_int_cst (type1, 1));
1428 if (!POINTER_TYPE_P (type))
1430 bound = fold_build2 (PLUS_EXPR, type1,
1431 TYPE_MAX_VALUE (type), diff);
1432 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1433 iv1->base, bound);
1436 mbzl = fold_convert (type1, iv0->base);
1437 mbzr = fold_build2 (MINUS_EXPR, type1,
1438 fold_convert (type1, iv1->base), diff);
1441 if (!integer_nonzerop (assumption))
1442 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1443 niter->assumptions, assumption);
1444 if (!rolls_p)
1446 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1447 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1448 niter->may_be_zero, mbz);
1452 /* Determines number of iterations of loop whose ending condition
1453 is IV0 < IV1 which likes: {base, -C} < n, or n < {base, C}.
1454 The number of iterations is stored to NITER. */
1456 static bool
1457 number_of_iterations_until_wrap (class loop *loop, tree type, affine_iv *iv0,
1458 affine_iv *iv1, class tree_niter_desc *niter)
1460 tree niter_type = unsigned_type_for (type);
1461 tree step, num, assumptions, may_be_zero, span;
1462 wide_int high, low, max, min;
1464 may_be_zero = fold_build2 (LE_EXPR, boolean_type_node, iv1->base, iv0->base);
1465 if (integer_onep (may_be_zero))
1466 return false;
1468 int prec = TYPE_PRECISION (type);
1469 signop sgn = TYPE_SIGN (type);
1470 min = wi::min_value (prec, sgn);
1471 max = wi::max_value (prec, sgn);
1473 /* n < {base, C}. */
1474 if (integer_zerop (iv0->step) && !tree_int_cst_sign_bit (iv1->step))
1476 step = iv1->step;
1477 /* MIN + C - 1 <= n. */
1478 tree last = wide_int_to_tree (type, min + wi::to_wide (step) - 1);
1479 assumptions = fold_build2 (LE_EXPR, boolean_type_node, last, iv0->base);
1480 if (integer_zerop (assumptions))
1481 return false;
1483 num = fold_build2 (MINUS_EXPR, niter_type,
1484 wide_int_to_tree (niter_type, max),
1485 fold_convert (niter_type, iv1->base));
1487 /* When base has the form iv + 1, if we know iv >= n, then iv + 1 < n
1488 only when iv + 1 overflows, i.e. when iv == TYPE_VALUE_MAX. */
1489 if (sgn == UNSIGNED
1490 && integer_onep (step)
1491 && TREE_CODE (iv1->base) == PLUS_EXPR
1492 && integer_onep (TREE_OPERAND (iv1->base, 1)))
1494 tree cond = fold_build2 (GE_EXPR, boolean_type_node,
1495 TREE_OPERAND (iv1->base, 0), iv0->base);
1496 cond = simplify_using_initial_conditions (loop, cond);
1497 if (integer_onep (cond))
1498 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node,
1499 TREE_OPERAND (iv1->base, 0),
1500 TYPE_MAX_VALUE (type));
1503 high = max;
1504 if (TREE_CODE (iv1->base) == INTEGER_CST)
1505 low = wi::to_wide (iv1->base) - 1;
1506 else if (TREE_CODE (iv0->base) == INTEGER_CST)
1507 low = wi::to_wide (iv0->base);
1508 else
1509 low = min;
1511 /* {base, -C} < n. */
1512 else if (tree_int_cst_sign_bit (iv0->step) && integer_zerop (iv1->step))
1514 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv0->step), iv0->step);
1515 /* MAX - C + 1 >= n. */
1516 tree last = wide_int_to_tree (type, max - wi::to_wide (step) + 1);
1517 assumptions = fold_build2 (GE_EXPR, boolean_type_node, last, iv1->base);
1518 if (integer_zerop (assumptions))
1519 return false;
1521 num = fold_build2 (MINUS_EXPR, niter_type,
1522 fold_convert (niter_type, iv0->base),
1523 wide_int_to_tree (niter_type, min));
1524 low = min;
1525 if (TREE_CODE (iv0->base) == INTEGER_CST)
1526 high = wi::to_wide (iv0->base) + 1;
1527 else if (TREE_CODE (iv1->base) == INTEGER_CST)
1528 high = wi::to_wide (iv1->base);
1529 else
1530 high = max;
1532 else
1533 return false;
1535 /* (delta + step - 1) / step */
1536 step = fold_convert (niter_type, step);
1537 num = fold_build2 (PLUS_EXPR, niter_type, num, step);
1538 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, num, step);
1540 widest_int delta, s;
1541 delta = widest_int::from (high, sgn) - widest_int::from (low, sgn);
1542 s = wi::to_widest (step);
1543 delta = delta + s - 1;
1544 niter->max = wi::udiv_floor (delta, s);
1546 niter->may_be_zero = may_be_zero;
1548 if (!integer_nonzerop (assumptions))
1549 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1550 niter->assumptions, assumptions);
1552 niter->control.no_overflow = false;
1554 /* Update bound and exit condition as:
1555 bound = niter * STEP + (IVbase - STEP).
1556 { IVbase - STEP, +, STEP } != bound
1557 Here, biasing IVbase by 1 step makes 'bound' be the value before wrap.
1559 tree base_type = TREE_TYPE (niter->control.base);
1560 if (POINTER_TYPE_P (base_type))
1562 tree utype = unsigned_type_for (base_type);
1563 niter->control.base
1564 = fold_build2 (MINUS_EXPR, utype,
1565 fold_convert (utype, niter->control.base),
1566 fold_convert (utype, niter->control.step));
1567 niter->control.base = fold_convert (base_type, niter->control.base);
1569 else
1570 niter->control.base
1571 = fold_build2 (MINUS_EXPR, base_type, niter->control.base,
1572 niter->control.step);
1574 span = fold_build2 (MULT_EXPR, niter_type, niter->niter,
1575 fold_convert (niter_type, niter->control.step));
1576 niter->bound = fold_build2 (PLUS_EXPR, niter_type, span,
1577 fold_convert (niter_type, niter->control.base));
1578 niter->bound = fold_convert (type, niter->bound);
1579 niter->cmp = NE_EXPR;
1581 return true;
1584 /* Determines number of iterations of loop whose ending condition
1585 is IV0 < IV1. TYPE is the type of the iv. The number of
1586 iterations is stored to NITER. BNDS bounds the difference
1587 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1588 that the exit must be taken eventually. */
1590 static bool
1591 number_of_iterations_lt (class loop *loop, tree type, affine_iv *iv0,
1592 affine_iv *iv1, class tree_niter_desc *niter,
1593 bool exit_must_be_taken, bounds *bnds)
1595 tree niter_type = unsigned_type_for (type);
1596 tree delta, step, s;
1597 mpz_t mstep, tmp;
1599 if (integer_nonzerop (iv0->step))
1601 niter->control = *iv0;
1602 niter->cmp = LT_EXPR;
1603 niter->bound = iv1->base;
1605 else
1607 niter->control = *iv1;
1608 niter->cmp = GT_EXPR;
1609 niter->bound = iv0->base;
1612 /* {base, -C} < n, or n < {base, C} */
1613 if (tree_int_cst_sign_bit (iv0->step)
1614 || (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step)))
1615 return number_of_iterations_until_wrap (loop, type, iv0, iv1, niter);
1617 delta = fold_build2 (MINUS_EXPR, niter_type,
1618 fold_convert (niter_type, iv1->base),
1619 fold_convert (niter_type, iv0->base));
1621 /* First handle the special case that the step is +-1. */
1622 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1623 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1625 /* for (i = iv0->base; i < iv1->base; i++)
1629 for (i = iv1->base; i > iv0->base; i--).
1631 In both cases # of iterations is iv1->base - iv0->base, assuming that
1632 iv1->base >= iv0->base.
1634 First try to derive a lower bound on the value of
1635 iv1->base - iv0->base, computed in full precision. If the difference
1636 is nonnegative, we are done, otherwise we must record the
1637 condition. */
1639 if (mpz_sgn (bnds->below) < 0)
1640 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1641 iv1->base, iv0->base);
1642 niter->niter = delta;
1643 niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
1644 TYPE_SIGN (niter_type));
1645 niter->control.no_overflow = true;
1646 return true;
1649 if (integer_nonzerop (iv0->step))
1650 step = fold_convert (niter_type, iv0->step);
1651 else
1652 step = fold_convert (niter_type,
1653 fold_build1 (NEGATE_EXPR, type, iv1->step));
1655 /* If we can determine the final value of the control iv exactly, we can
1656 transform the condition to != comparison. In particular, this will be
1657 the case if DELTA is constant. */
1658 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1659 exit_must_be_taken, bnds))
1661 affine_iv zps;
1663 zps.base = build_int_cst (niter_type, 0);
1664 zps.step = step;
1665 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1666 zps does not overflow. */
1667 zps.no_overflow = true;
1669 return number_of_iterations_ne (loop, type, &zps,
1670 delta, niter, true, bnds);
1673 /* Make sure that the control iv does not overflow. */
1674 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1675 return false;
1677 /* We determine the number of iterations as (delta + step - 1) / step. For
1678 this to work, we must know that iv1->base >= iv0->base - step + 1,
1679 otherwise the loop does not roll. */
1680 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1682 s = fold_build2 (MINUS_EXPR, niter_type,
1683 step, build_int_cst (niter_type, 1));
1684 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1685 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1687 mpz_init (mstep);
1688 mpz_init (tmp);
1689 wi::to_mpz (wi::to_wide (step), mstep, UNSIGNED);
1690 mpz_add (tmp, bnds->up, mstep);
1691 mpz_sub_ui (tmp, tmp, 1);
1692 mpz_fdiv_q (tmp, tmp, mstep);
1693 niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
1694 TYPE_SIGN (niter_type));
1695 mpz_clear (mstep);
1696 mpz_clear (tmp);
1698 return true;
1701 /* Determines number of iterations of loop whose ending condition
1702 is IV0 <= IV1. TYPE is the type of the iv. The number of
1703 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1704 we know that this condition must eventually become false (we derived this
1705 earlier, and possibly set NITER->assumptions to make sure this
1706 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1708 static bool
1709 number_of_iterations_le (class loop *loop, tree type, affine_iv *iv0,
1710 affine_iv *iv1, class tree_niter_desc *niter,
1711 bool exit_must_be_taken, bounds *bnds)
1713 tree assumption;
1714 tree type1 = type;
1715 if (POINTER_TYPE_P (type))
1716 type1 = sizetype;
1718 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1719 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1720 value of the type. This we must know anyway, since if it is
1721 equal to this value, the loop rolls forever. We do not check
1722 this condition for pointer type ivs, as the code cannot rely on
1723 the object to that the pointer points being placed at the end of
1724 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1725 not defined for pointers). */
1727 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1729 if (integer_nonzerop (iv0->step))
1730 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1731 iv1->base, TYPE_MAX_VALUE (type));
1732 else
1733 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1734 iv0->base, TYPE_MIN_VALUE (type));
1736 if (integer_zerop (assumption))
1737 return false;
1738 if (!integer_nonzerop (assumption))
1739 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1740 niter->assumptions, assumption);
1743 if (integer_nonzerop (iv0->step))
1745 if (POINTER_TYPE_P (type))
1746 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1747 else
1748 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1749 build_int_cst (type1, 1));
1751 else if (POINTER_TYPE_P (type))
1752 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1753 else
1754 iv0->base = fold_build2 (MINUS_EXPR, type1,
1755 iv0->base, build_int_cst (type1, 1));
1757 bounds_add (bnds, 1, type1);
1759 return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
1760 bnds);
1763 /* Dumps description of affine induction variable IV to FILE. */
1765 static void
1766 dump_affine_iv (FILE *file, affine_iv *iv)
1768 if (!integer_zerop (iv->step))
1769 fprintf (file, "[");
1771 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1773 if (!integer_zerop (iv->step))
1775 fprintf (file, ", + , ");
1776 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1777 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1781 /* Determine the number of iterations according to condition (for staying
1782 inside loop) which compares two induction variables using comparison
1783 operator CODE. The induction variable on left side of the comparison
1784 is IV0, the right-hand side is IV1. Both induction variables must have
1785 type TYPE, which must be an integer or pointer type. The steps of the
1786 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1788 LOOP is the loop whose number of iterations we are determining.
1790 ONLY_EXIT is true if we are sure this is the only way the loop could be
1791 exited (including possibly non-returning function calls, exceptions, etc.)
1792 -- in this case we can use the information whether the control induction
1793 variables can overflow or not in a more efficient way.
1795 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1797 The results (number of iterations and assumptions as described in
1798 comments at class tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1799 Returns false if it fails to determine number of iterations, true if it
1800 was determined (possibly with some assumptions). */
1802 static bool
1803 number_of_iterations_cond (class loop *loop,
1804 tree type, affine_iv *iv0, enum tree_code code,
1805 affine_iv *iv1, class tree_niter_desc *niter,
1806 bool only_exit, bool every_iteration)
1808 bool exit_must_be_taken = false, ret;
1809 bounds bnds;
1811 /* If the test is not executed every iteration, wrapping may make the test
1812 to pass again.
1813 TODO: the overflow case can be still used as unreliable estimate of upper
1814 bound. But we have no API to pass it down to number of iterations code
1815 and, at present, it will not use it anyway. */
1816 if (!every_iteration
1817 && (!iv0->no_overflow || !iv1->no_overflow
1818 || code == NE_EXPR || code == EQ_EXPR))
1819 return false;
1821 /* The meaning of these assumptions is this:
1822 if !assumptions
1823 then the rest of information does not have to be valid
1824 if may_be_zero then the loop does not roll, even if
1825 niter != 0. */
1826 niter->assumptions = boolean_true_node;
1827 niter->may_be_zero = boolean_false_node;
1828 niter->niter = NULL_TREE;
1829 niter->max = 0;
1830 niter->bound = NULL_TREE;
1831 niter->cmp = ERROR_MARK;
1833 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1834 the control variable is on lhs. */
1835 if (code == GE_EXPR || code == GT_EXPR
1836 || (code == NE_EXPR && integer_zerop (iv0->step)))
1838 std::swap (iv0, iv1);
1839 code = swap_tree_comparison (code);
1842 if (POINTER_TYPE_P (type))
1844 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1845 to the same object. If they do, the control variable cannot wrap
1846 (as wrap around the bounds of memory will never return a pointer
1847 that would be guaranteed to point to the same object, even if we
1848 avoid undefined behavior by casting to size_t and back). */
1849 iv0->no_overflow = true;
1850 iv1->no_overflow = true;
1853 /* If the control induction variable does not overflow and the only exit
1854 from the loop is the one that we analyze, we know it must be taken
1855 eventually. */
1856 if (only_exit)
1858 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1859 exit_must_be_taken = true;
1860 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1861 exit_must_be_taken = true;
1864 /* We can handle cases which neither of the sides of the comparison is
1865 invariant:
1867 {iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
1868 as if:
1869 {iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}
1871 provided that either below condition is satisfied:
1873 a) the test is NE_EXPR;
1874 b) iv0 and iv1 do not overflow and iv0.step - iv1.step is of
1875 the same sign and of less or equal magnitude than iv0.step
1877 This rarely occurs in practice, but it is simple enough to manage. */
1878 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1880 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1881 tree step = fold_binary_to_constant (MINUS_EXPR, step_type,
1882 iv0->step, iv1->step);
1884 /* For code other than NE_EXPR we have to ensure moving the evolution
1885 of IV1 to that of IV0 does not introduce overflow. */
1886 if (TREE_CODE (step) != INTEGER_CST
1887 || !iv0->no_overflow || !iv1->no_overflow)
1889 if (code != NE_EXPR)
1890 return false;
1891 iv0->no_overflow = false;
1893 /* If the new step of IV0 has changed sign or is of greater
1894 magnitude then we do not know whether IV0 does overflow
1895 and thus the transform is not valid for code other than NE_EXPR. */
1896 else if (tree_int_cst_sign_bit (step) != tree_int_cst_sign_bit (iv0->step)
1897 || wi::gtu_p (wi::abs (wi::to_widest (step)),
1898 wi::abs (wi::to_widest (iv0->step))))
1900 if (POINTER_TYPE_P (type) && code != NE_EXPR)
1901 /* For relational pointer compares we have further guarantees
1902 that the pointers always point to the same object (or one
1903 after it) and that objects do not cross the zero page. So
1904 not only is the transform always valid for relational
1905 pointer compares, we also know the resulting IV does not
1906 overflow. */
1908 else if (code != NE_EXPR)
1909 return false;
1910 else
1911 iv0->no_overflow = false;
1914 iv0->step = step;
1915 iv1->step = build_int_cst (step_type, 0);
1916 iv1->no_overflow = true;
1919 /* If the result of the comparison is a constant, the loop is weird. More
1920 precise handling would be possible, but the situation is not common enough
1921 to waste time on it. */
1922 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1923 return false;
1925 /* If the loop exits immediately, there is nothing to do. */
1926 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1927 if (tem && integer_zerop (tem))
1929 if (!every_iteration)
1930 return false;
1931 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1932 niter->max = 0;
1933 return true;
1936 /* OK, now we know we have a senseful loop. Handle several cases, depending
1937 on what comparison operator is used. */
1938 bound_difference (loop, iv1->base, iv0->base, &bnds);
1940 if (dump_file && (dump_flags & TDF_DETAILS))
1942 fprintf (dump_file,
1943 "Analyzing # of iterations of loop %d\n", loop->num);
1945 fprintf (dump_file, " exit condition ");
1946 dump_affine_iv (dump_file, iv0);
1947 fprintf (dump_file, " %s ",
1948 code == NE_EXPR ? "!="
1949 : code == LT_EXPR ? "<"
1950 : "<=");
1951 dump_affine_iv (dump_file, iv1);
1952 fprintf (dump_file, "\n");
1954 fprintf (dump_file, " bounds on difference of bases: ");
1955 mpz_out_str (dump_file, 10, bnds.below);
1956 fprintf (dump_file, " ... ");
1957 mpz_out_str (dump_file, 10, bnds.up);
1958 fprintf (dump_file, "\n");
1961 switch (code)
1963 case NE_EXPR:
1964 gcc_assert (integer_zerop (iv1->step));
1965 ret = number_of_iterations_ne (loop, type, iv0, iv1->base, niter,
1966 exit_must_be_taken, &bnds);
1967 break;
1969 case LT_EXPR:
1970 ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
1971 exit_must_be_taken, &bnds);
1972 break;
1974 case LE_EXPR:
1975 ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
1976 exit_must_be_taken, &bnds);
1977 break;
1979 default:
1980 gcc_unreachable ();
1983 mpz_clear (bnds.up);
1984 mpz_clear (bnds.below);
1986 if (dump_file && (dump_flags & TDF_DETAILS))
1988 if (ret)
1990 fprintf (dump_file, " result:\n");
1991 if (!integer_nonzerop (niter->assumptions))
1993 fprintf (dump_file, " under assumptions ");
1994 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1995 fprintf (dump_file, "\n");
1998 if (!integer_zerop (niter->may_be_zero))
2000 fprintf (dump_file, " zero if ");
2001 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
2002 fprintf (dump_file, "\n");
2005 fprintf (dump_file, " # of iterations ");
2006 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
2007 fprintf (dump_file, ", bounded by ");
2008 print_decu (niter->max, dump_file);
2009 fprintf (dump_file, "\n");
2011 else
2012 fprintf (dump_file, " failed\n\n");
2014 return ret;
2017 /* Return an expression that computes the popcount of src. */
2019 static tree
2020 build_popcount_expr (tree src)
2022 tree fn;
2023 bool use_ifn = false;
2024 int prec = TYPE_PRECISION (TREE_TYPE (src));
2025 int i_prec = TYPE_PRECISION (integer_type_node);
2026 int li_prec = TYPE_PRECISION (long_integer_type_node);
2027 int lli_prec = TYPE_PRECISION (long_long_integer_type_node);
2029 tree utype = unsigned_type_for (TREE_TYPE (src));
2030 src = fold_convert (utype, src);
2032 if (direct_internal_fn_supported_p (IFN_POPCOUNT, utype, OPTIMIZE_FOR_BOTH))
2033 use_ifn = true;
2034 else if (prec <= i_prec)
2035 fn = builtin_decl_implicit (BUILT_IN_POPCOUNT);
2036 else if (prec == li_prec)
2037 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTL);
2038 else if (prec == lli_prec || prec == 2 * lli_prec)
2039 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTLL);
2040 else
2041 return NULL_TREE;
2043 tree call;
2044 if (use_ifn)
2045 call = build_call_expr_internal_loc (UNKNOWN_LOCATION, IFN_POPCOUNT,
2046 integer_type_node, 1, src);
2047 else if (prec == 2 * lli_prec)
2049 tree src1 = fold_convert (long_long_unsigned_type_node,
2050 fold_build2 (RSHIFT_EXPR, TREE_TYPE (src),
2051 unshare_expr (src),
2052 build_int_cst (integer_type_node,
2053 lli_prec)));
2054 tree src2 = fold_convert (long_long_unsigned_type_node, src);
2055 tree call1 = build_call_expr (fn, 1, src1);
2056 tree call2 = build_call_expr (fn, 1, src2);
2057 call = fold_build2 (PLUS_EXPR, integer_type_node, call1, call2);
2059 else
2061 if (prec < i_prec)
2062 src = fold_convert (unsigned_type_node, src);
2064 call = build_call_expr (fn, 1, src);
2067 return call;
2070 /* Utility function to check if OP is defined by a stmt
2071 that is a val - 1. */
2073 static bool
2074 ssa_defined_by_minus_one_stmt_p (tree op, tree val)
2076 gimple *stmt;
2077 return (TREE_CODE (op) == SSA_NAME
2078 && (stmt = SSA_NAME_DEF_STMT (op))
2079 && is_gimple_assign (stmt)
2080 && (gimple_assign_rhs_code (stmt) == PLUS_EXPR)
2081 && val == gimple_assign_rhs1 (stmt)
2082 && integer_minus_onep (gimple_assign_rhs2 (stmt)));
2085 /* See comment below for number_of_iterations_bitcount.
2086 For popcount, we have:
2088 modify:
2089 _1 = iv_1 + -1
2090 iv_2 = iv_1 & _1
2092 test:
2093 if (iv != 0)
2095 modification count:
2096 popcount (src)
2100 static bool
2101 number_of_iterations_popcount (loop_p loop, edge exit,
2102 enum tree_code code,
2103 class tree_niter_desc *niter)
2105 bool modify_before_test = true;
2106 HOST_WIDE_INT max;
2108 /* Check that condition for staying inside the loop is like
2109 if (iv != 0). */
2110 gcond *cond_stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (exit->src));
2111 if (!cond_stmt
2112 || code != NE_EXPR
2113 || !integer_zerop (gimple_cond_rhs (cond_stmt))
2114 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2115 return false;
2117 tree iv_2 = gimple_cond_lhs (cond_stmt);
2118 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2120 /* If the test comes before the iv modification, then these will actually be
2121 iv_1 and a phi node. */
2122 if (gimple_code (iv_2_stmt) == GIMPLE_PHI
2123 && gimple_bb (iv_2_stmt) == loop->header
2124 && gimple_phi_num_args (iv_2_stmt) == 2
2125 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2126 loop_latch_edge (loop)->dest_idx))
2127 == SSA_NAME))
2129 /* iv_2 is actually one of the inputs to the phi. */
2130 iv_2 = gimple_phi_arg_def (iv_2_stmt, loop_latch_edge (loop)->dest_idx);
2131 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2132 modify_before_test = false;
2135 /* Make sure iv_2_stmt is an and stmt (iv_2 = _1 & iv_1). */
2136 if (!is_gimple_assign (iv_2_stmt)
2137 || gimple_assign_rhs_code (iv_2_stmt) != BIT_AND_EXPR)
2138 return false;
2140 tree iv_1 = gimple_assign_rhs1 (iv_2_stmt);
2141 tree _1 = gimple_assign_rhs2 (iv_2_stmt);
2143 /* Check that _1 is defined by (_1 = iv_1 + -1).
2144 Also make sure that _1 is the same in and_stmt and _1 defining stmt.
2145 Also canonicalize if _1 and _b11 are revrsed. */
2146 if (ssa_defined_by_minus_one_stmt_p (iv_1, _1))
2147 std::swap (iv_1, _1);
2148 else if (ssa_defined_by_minus_one_stmt_p (_1, iv_1))
2150 else
2151 return false;
2153 /* Check the recurrence. */
2154 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2155 if (gimple_code (phi) != GIMPLE_PHI
2156 || (gimple_bb (phi) != loop_latch_edge (loop)->dest)
2157 || (iv_2 != gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
2158 return false;
2160 /* We found a match. */
2161 tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
2162 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2164 /* Get the corresponding popcount builtin. */
2165 tree expr = build_popcount_expr (src);
2167 if (!expr)
2168 return false;
2170 max = src_precision;
2172 tree may_be_zero = boolean_false_node;
2174 if (modify_before_test)
2176 expr = fold_build2 (MINUS_EXPR, integer_type_node, expr,
2177 integer_one_node);
2178 max = max - 1;
2179 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2180 build_zero_cst (TREE_TYPE (src)));
2183 expr = fold_convert (unsigned_type_node, expr);
2185 niter->assumptions = boolean_true_node;
2186 niter->may_be_zero = simplify_using_initial_conditions (loop, may_be_zero);
2187 niter->niter = simplify_using_initial_conditions(loop, expr);
2189 if (TREE_CODE (niter->niter) == INTEGER_CST)
2190 niter->max = tree_to_uhwi (niter->niter);
2191 else
2192 niter->max = max;
2194 niter->bound = NULL_TREE;
2195 niter->cmp = ERROR_MARK;
2196 return true;
2199 /* Return an expression that counts the leading/trailing zeroes of src.
2201 If define_at_zero is true, then the built expression will be defined to
2202 return the precision of src when src == 0 (using either a conditional
2203 expression or a suitable internal function).
2204 Otherwise, we can elide the conditional expression and let src = 0 invoke
2205 undefined behaviour. */
2207 static tree
2208 build_cltz_expr (tree src, bool leading, bool define_at_zero)
2210 tree fn;
2211 internal_fn ifn = leading ? IFN_CLZ : IFN_CTZ;
2212 bool use_ifn = false;
2213 int prec = TYPE_PRECISION (TREE_TYPE (src));
2214 int i_prec = TYPE_PRECISION (integer_type_node);
2215 int li_prec = TYPE_PRECISION (long_integer_type_node);
2216 int lli_prec = TYPE_PRECISION (long_long_integer_type_node);
2218 tree utype = unsigned_type_for (TREE_TYPE (src));
2219 src = fold_convert (utype, src);
2221 if (direct_internal_fn_supported_p (ifn, utype, OPTIMIZE_FOR_BOTH))
2222 use_ifn = true;
2223 else if (prec <= i_prec)
2224 fn = leading ? builtin_decl_implicit (BUILT_IN_CLZ)
2225 : builtin_decl_implicit (BUILT_IN_CTZ);
2226 else if (prec == li_prec)
2227 fn = leading ? builtin_decl_implicit (BUILT_IN_CLZL)
2228 : builtin_decl_implicit (BUILT_IN_CTZL);
2229 else if (prec == lli_prec || prec == 2 * lli_prec)
2230 fn = leading ? builtin_decl_implicit (BUILT_IN_CLZLL)
2231 : builtin_decl_implicit (BUILT_IN_CTZLL);
2232 else
2233 return NULL_TREE;
2235 tree call;
2236 if (use_ifn)
2238 call = build_call_expr_internal_loc (UNKNOWN_LOCATION, ifn,
2239 integer_type_node, 1, src);
2240 int val;
2241 int optab_defined_at_zero
2242 = (leading
2243 ? CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (utype), val)
2244 : CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (utype), val));
2245 if (define_at_zero && !(optab_defined_at_zero == 2 && val == prec))
2247 tree is_zero = fold_build2 (NE_EXPR, boolean_type_node, src,
2248 build_zero_cst (TREE_TYPE (src)));
2249 call = fold_build3 (COND_EXPR, integer_type_node, is_zero, call,
2250 build_int_cst (integer_type_node, prec));
2253 else if (prec == 2 * lli_prec)
2255 tree src1 = fold_convert (long_long_unsigned_type_node,
2256 fold_build2 (RSHIFT_EXPR, TREE_TYPE (src),
2257 unshare_expr (src),
2258 build_int_cst (integer_type_node,
2259 lli_prec)));
2260 tree src2 = fold_convert (long_long_unsigned_type_node, src);
2261 /* We count the zeroes in src1, and add the number in src2 when src1
2262 is 0. */
2263 if (!leading)
2264 std::swap (src1, src2);
2265 tree call1 = build_call_expr (fn, 1, src1);
2266 tree call2 = build_call_expr (fn, 1, src2);
2267 if (define_at_zero)
2269 tree is_zero2 = fold_build2 (NE_EXPR, boolean_type_node, src2,
2270 build_zero_cst (TREE_TYPE (src2)));
2271 call2 = fold_build3 (COND_EXPR, integer_type_node, is_zero2, call2,
2272 build_int_cst (integer_type_node, lli_prec));
2274 tree is_zero1 = fold_build2 (NE_EXPR, boolean_type_node, src1,
2275 build_zero_cst (TREE_TYPE (src1)));
2276 call = fold_build3 (COND_EXPR, integer_type_node, is_zero1, call1,
2277 fold_build2 (PLUS_EXPR, integer_type_node, call2,
2278 build_int_cst (integer_type_node,
2279 lli_prec)));
2281 else
2283 if (prec < i_prec)
2284 src = fold_convert (unsigned_type_node, src);
2286 call = build_call_expr (fn, 1, src);
2287 if (define_at_zero)
2289 tree is_zero = fold_build2 (NE_EXPR, boolean_type_node, src,
2290 build_zero_cst (TREE_TYPE (src)));
2291 call = fold_build3 (COND_EXPR, integer_type_node, is_zero, call,
2292 build_int_cst (integer_type_node, prec));
2295 if (leading && prec < i_prec)
2296 call = fold_build2 (MINUS_EXPR, integer_type_node, call,
2297 build_int_cst (integer_type_node, i_prec - prec));
2300 return call;
2303 /* See comment below for number_of_iterations_bitcount.
2304 For c[lt]z, we have:
2306 modify:
2307 iv_2 = iv_1 << 1 OR iv_1 >> 1
2309 test:
2310 if (iv & 1 << (prec-1)) OR (iv & 1)
2312 modification count:
2313 src precision - c[lt]z (src)
2317 static bool
2318 number_of_iterations_cltz (loop_p loop, edge exit,
2319 enum tree_code code,
2320 class tree_niter_desc *niter)
2322 bool modify_before_test = true;
2323 HOST_WIDE_INT max;
2324 int checked_bit;
2325 tree iv_2;
2327 /* Check that condition for staying inside the loop is like
2328 if (iv == 0). */
2329 gcond *cond_stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (exit->src));
2330 if (!cond_stmt
2331 || (code != EQ_EXPR && code != GE_EXPR)
2332 || !integer_zerop (gimple_cond_rhs (cond_stmt))
2333 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2334 return false;
2336 if (code == EQ_EXPR)
2338 /* Make sure we check a bitwise and with a suitable constant */
2339 gimple *and_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond_stmt));
2340 if (!is_gimple_assign (and_stmt)
2341 || gimple_assign_rhs_code (and_stmt) != BIT_AND_EXPR
2342 || !integer_pow2p (gimple_assign_rhs2 (and_stmt))
2343 || TREE_CODE (gimple_assign_rhs1 (and_stmt)) != SSA_NAME)
2344 return false;
2346 checked_bit = tree_log2 (gimple_assign_rhs2 (and_stmt));
2348 iv_2 = gimple_assign_rhs1 (and_stmt);
2350 else
2352 /* We have a GE_EXPR - a signed comparison with zero is equivalent to
2353 testing the leading bit, so check for this pattern too. */
2355 iv_2 = gimple_cond_lhs (cond_stmt);
2356 tree test_value_type = TREE_TYPE (iv_2);
2358 if (TYPE_UNSIGNED (test_value_type))
2359 return false;
2361 gimple *test_value_stmt = SSA_NAME_DEF_STMT (iv_2);
2363 if (is_gimple_assign (test_value_stmt)
2364 && gimple_assign_rhs_code (test_value_stmt) == NOP_EXPR)
2366 /* If the test value comes from a NOP_EXPR, then we need to unwrap
2367 this. We conservatively require that both types have the same
2368 precision. */
2369 iv_2 = gimple_assign_rhs1 (test_value_stmt);
2370 tree rhs_type = TREE_TYPE (iv_2);
2371 if (TREE_CODE (iv_2) != SSA_NAME
2372 || TREE_CODE (rhs_type) != INTEGER_TYPE
2373 || (TYPE_PRECISION (rhs_type)
2374 != TYPE_PRECISION (test_value_type)))
2375 return false;
2378 checked_bit = TYPE_PRECISION (test_value_type) - 1;
2381 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2383 /* If the test comes before the iv modification, then these will actually be
2384 iv_1 and a phi node. */
2385 if (gimple_code (iv_2_stmt) == GIMPLE_PHI
2386 && gimple_bb (iv_2_stmt) == loop->header
2387 && gimple_phi_num_args (iv_2_stmt) == 2
2388 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2389 loop_latch_edge (loop)->dest_idx))
2390 == SSA_NAME))
2392 /* iv_2 is actually one of the inputs to the phi. */
2393 iv_2 = gimple_phi_arg_def (iv_2_stmt, loop_latch_edge (loop)->dest_idx);
2394 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2395 modify_before_test = false;
2398 /* Make sure iv_2_stmt is a logical shift by one stmt:
2399 iv_2 = iv_1 {<<|>>} 1 */
2400 if (!is_gimple_assign (iv_2_stmt)
2401 || (gimple_assign_rhs_code (iv_2_stmt) != LSHIFT_EXPR
2402 && (gimple_assign_rhs_code (iv_2_stmt) != RSHIFT_EXPR
2403 || !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_lhs (iv_2_stmt)))))
2404 || !integer_onep (gimple_assign_rhs2 (iv_2_stmt)))
2405 return false;
2407 bool left_shift = (gimple_assign_rhs_code (iv_2_stmt) == LSHIFT_EXPR);
2409 tree iv_1 = gimple_assign_rhs1 (iv_2_stmt);
2411 /* Check the recurrence. */
2412 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2413 if (gimple_code (phi) != GIMPLE_PHI
2414 || (gimple_bb (phi) != loop_latch_edge (loop)->dest)
2415 || (iv_2 != gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
2416 return false;
2418 /* We found a match. */
2419 tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
2420 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2422 /* Apply any needed preprocessing to src. */
2423 int num_ignored_bits;
2424 if (left_shift)
2425 num_ignored_bits = src_precision - checked_bit - 1;
2426 else
2427 num_ignored_bits = checked_bit;
2429 if (modify_before_test)
2430 num_ignored_bits++;
2432 if (num_ignored_bits != 0)
2433 src = fold_build2 (left_shift ? LSHIFT_EXPR : RSHIFT_EXPR,
2434 TREE_TYPE (src), src,
2435 build_int_cst (integer_type_node, num_ignored_bits));
2437 /* Get the corresponding c[lt]z builtin. */
2438 tree expr = build_cltz_expr (src, left_shift, false);
2440 if (!expr)
2441 return false;
2443 max = src_precision - num_ignored_bits - 1;
2445 expr = fold_convert (unsigned_type_node, expr);
2447 tree assumptions = fold_build2 (NE_EXPR, boolean_type_node, src,
2448 build_zero_cst (TREE_TYPE (src)));
2450 niter->assumptions = simplify_using_initial_conditions (loop, assumptions);
2451 niter->may_be_zero = boolean_false_node;
2452 niter->niter = simplify_using_initial_conditions (loop, expr);
2454 if (TREE_CODE (niter->niter) == INTEGER_CST)
2455 niter->max = tree_to_uhwi (niter->niter);
2456 else
2457 niter->max = max;
2459 niter->bound = NULL_TREE;
2460 niter->cmp = ERROR_MARK;
2462 return true;
2465 /* See comment below for number_of_iterations_bitcount.
2466 For c[lt]z complement, we have:
2468 modify:
2469 iv_2 = iv_1 >> 1 OR iv_1 << 1
2471 test:
2472 if (iv != 0)
2474 modification count:
2475 src precision - c[lt]z (src)
2479 static bool
2480 number_of_iterations_cltz_complement (loop_p loop, edge exit,
2481 enum tree_code code,
2482 class tree_niter_desc *niter)
2484 bool modify_before_test = true;
2485 HOST_WIDE_INT max;
2487 /* Check that condition for staying inside the loop is like
2488 if (iv != 0). */
2489 gcond *cond_stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (exit->src));
2490 if (!cond_stmt
2491 || code != NE_EXPR
2492 || !integer_zerop (gimple_cond_rhs (cond_stmt))
2493 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2494 return false;
2496 tree iv_2 = gimple_cond_lhs (cond_stmt);
2497 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2499 /* If the test comes before the iv modification, then these will actually be
2500 iv_1 and a phi node. */
2501 if (gimple_code (iv_2_stmt) == GIMPLE_PHI
2502 && gimple_bb (iv_2_stmt) == loop->header
2503 && gimple_phi_num_args (iv_2_stmt) == 2
2504 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2505 loop_latch_edge (loop)->dest_idx))
2506 == SSA_NAME))
2508 /* iv_2 is actually one of the inputs to the phi. */
2509 iv_2 = gimple_phi_arg_def (iv_2_stmt, loop_latch_edge (loop)->dest_idx);
2510 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2511 modify_before_test = false;
2514 /* Make sure iv_2_stmt is a logical shift by one stmt:
2515 iv_2 = iv_1 {>>|<<} 1 */
2516 if (!is_gimple_assign (iv_2_stmt)
2517 || (gimple_assign_rhs_code (iv_2_stmt) != LSHIFT_EXPR
2518 && (gimple_assign_rhs_code (iv_2_stmt) != RSHIFT_EXPR
2519 || !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_lhs (iv_2_stmt)))))
2520 || !integer_onep (gimple_assign_rhs2 (iv_2_stmt)))
2521 return false;
2523 bool left_shift = (gimple_assign_rhs_code (iv_2_stmt) == LSHIFT_EXPR);
2525 tree iv_1 = gimple_assign_rhs1 (iv_2_stmt);
2527 /* Check the recurrence. */
2528 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2529 if (gimple_code (phi) != GIMPLE_PHI
2530 || (gimple_bb (phi) != loop_latch_edge (loop)->dest)
2531 || (iv_2 != gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
2532 return false;
2534 /* We found a match. */
2535 tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
2536 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2538 /* Get the corresponding c[lt]z builtin. */
2539 tree expr = build_cltz_expr (src, !left_shift, true);
2541 if (!expr)
2542 return false;
2544 expr = fold_build2 (MINUS_EXPR, integer_type_node,
2545 build_int_cst (integer_type_node, src_precision),
2546 expr);
2548 max = src_precision;
2550 tree may_be_zero = boolean_false_node;
2552 if (modify_before_test)
2554 expr = fold_build2 (MINUS_EXPR, integer_type_node, expr,
2555 integer_one_node);
2556 max = max - 1;
2557 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2558 build_zero_cst (TREE_TYPE (src)));
2561 expr = fold_convert (unsigned_type_node, expr);
2563 niter->assumptions = boolean_true_node;
2564 niter->may_be_zero = simplify_using_initial_conditions (loop, may_be_zero);
2565 niter->niter = simplify_using_initial_conditions (loop, expr);
2567 if (TREE_CODE (niter->niter) == INTEGER_CST)
2568 niter->max = tree_to_uhwi (niter->niter);
2569 else
2570 niter->max = max;
2572 niter->bound = NULL_TREE;
2573 niter->cmp = ERROR_MARK;
2574 return true;
2577 /* See if LOOP contains a bit counting idiom. The idiom consists of two parts:
2578 1. A modification to the induction variabler;.
2579 2. A test to determine whether or not to exit the loop.
2581 These can come in either order - i.e.:
2583 <bb 3>
2584 iv_1 = PHI <src(2), iv_2(4)>
2585 if (test (iv_1))
2586 goto <bb 4>
2587 else
2588 goto <bb 5>
2590 <bb 4>
2591 iv_2 = modify (iv_1)
2592 goto <bb 3>
2596 <bb 3>
2597 iv_1 = PHI <src(2), iv_2(4)>
2598 iv_2 = modify (iv_1)
2600 <bb 4>
2601 if (test (iv_2))
2602 goto <bb 3>
2603 else
2604 goto <bb 5>
2606 The second form can be generated by copying the loop header out of the loop.
2608 In the first case, the number of latch executions will be equal to the
2609 number of induction variable modifications required before the test fails.
2611 In the second case (modify_before_test), if we assume that the number of
2612 modifications required before the test fails is nonzero, then the number of
2613 latch executions will be one less than this number.
2615 If we recognise the pattern, then we update niter accordingly, and return
2616 true. */
2618 static bool
2619 number_of_iterations_bitcount (loop_p loop, edge exit,
2620 enum tree_code code,
2621 class tree_niter_desc *niter)
2623 return (number_of_iterations_popcount (loop, exit, code, niter)
2624 || number_of_iterations_cltz (loop, exit, code, niter)
2625 || number_of_iterations_cltz_complement (loop, exit, code, niter));
2628 /* Substitute NEW_TREE for OLD in EXPR and fold the result.
2629 If VALUEIZE is non-NULL then OLD and NEW_TREE are ignored and instead
2630 all SSA names are replaced with the result of calling the VALUEIZE
2631 function with the SSA name as argument. */
2633 tree
2634 simplify_replace_tree (tree expr, tree old, tree new_tree,
2635 tree (*valueize) (tree, void*), void *context,
2636 bool do_fold)
2638 unsigned i, n;
2639 tree ret = NULL_TREE, e, se;
2641 if (!expr)
2642 return NULL_TREE;
2644 /* Do not bother to replace constants. */
2645 if (CONSTANT_CLASS_P (expr))
2646 return expr;
2648 if (valueize)
2650 if (TREE_CODE (expr) == SSA_NAME)
2652 new_tree = valueize (expr, context);
2653 if (new_tree != expr)
2654 return new_tree;
2657 else if (expr == old
2658 || operand_equal_p (expr, old, 0))
2659 return unshare_expr (new_tree);
2661 if (!EXPR_P (expr))
2662 return expr;
2664 n = TREE_OPERAND_LENGTH (expr);
2665 for (i = 0; i < n; i++)
2667 e = TREE_OPERAND (expr, i);
2668 se = simplify_replace_tree (e, old, new_tree, valueize, context, do_fold);
2669 if (e == se)
2670 continue;
2672 if (!ret)
2673 ret = copy_node (expr);
2675 TREE_OPERAND (ret, i) = se;
2678 return (ret ? (do_fold ? fold (ret) : ret) : expr);
2681 /* Expand definitions of ssa names in EXPR as long as they are simple
2682 enough, and return the new expression. If STOP is specified, stop
2683 expanding if EXPR equals to it. */
2685 static tree
2686 expand_simple_operations (tree expr, tree stop, hash_map<tree, tree> &cache)
2688 unsigned i, n;
2689 tree ret = NULL_TREE, e, ee, e1;
2690 enum tree_code code;
2691 gimple *stmt;
2693 if (expr == NULL_TREE)
2694 return expr;
2696 if (is_gimple_min_invariant (expr))
2697 return expr;
2699 code = TREE_CODE (expr);
2700 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
2702 n = TREE_OPERAND_LENGTH (expr);
2703 for (i = 0; i < n; i++)
2705 e = TREE_OPERAND (expr, i);
2706 if (!e)
2707 continue;
2708 /* SCEV analysis feeds us with a proper expression
2709 graph matching the SSA graph. Avoid turning it
2710 into a tree here, thus handle tree sharing
2711 properly.
2712 ??? The SSA walk below still turns the SSA graph
2713 into a tree but until we find a testcase do not
2714 introduce additional tree sharing here. */
2715 bool existed_p;
2716 tree &cee = cache.get_or_insert (e, &existed_p);
2717 if (existed_p)
2718 ee = cee;
2719 else
2721 cee = e;
2722 ee = expand_simple_operations (e, stop, cache);
2723 if (ee != e)
2724 *cache.get (e) = ee;
2726 if (e == ee)
2727 continue;
2729 if (!ret)
2730 ret = copy_node (expr);
2732 TREE_OPERAND (ret, i) = ee;
2735 if (!ret)
2736 return expr;
2738 fold_defer_overflow_warnings ();
2739 ret = fold (ret);
2740 fold_undefer_and_ignore_overflow_warnings ();
2741 return ret;
2744 /* Stop if it's not ssa name or the one we don't want to expand. */
2745 if (TREE_CODE (expr) != SSA_NAME || expr == stop)
2746 return expr;
2748 stmt = SSA_NAME_DEF_STMT (expr);
2749 if (gimple_code (stmt) == GIMPLE_PHI)
2751 basic_block src, dest;
2753 if (gimple_phi_num_args (stmt) != 1)
2754 return expr;
2755 e = PHI_ARG_DEF (stmt, 0);
2757 /* Avoid propagating through loop exit phi nodes, which
2758 could break loop-closed SSA form restrictions. */
2759 dest = gimple_bb (stmt);
2760 src = single_pred (dest);
2761 if (TREE_CODE (e) == SSA_NAME
2762 && src->loop_father != dest->loop_father)
2763 return expr;
2765 return expand_simple_operations (e, stop, cache);
2767 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2768 return expr;
2770 /* Avoid expanding to expressions that contain SSA names that need
2771 to take part in abnormal coalescing. */
2772 ssa_op_iter iter;
2773 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
2774 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
2775 return expr;
2777 e = gimple_assign_rhs1 (stmt);
2778 code = gimple_assign_rhs_code (stmt);
2779 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2781 if (is_gimple_min_invariant (e))
2782 return e;
2784 if (code == SSA_NAME)
2785 return expand_simple_operations (e, stop, cache);
2786 else if (code == ADDR_EXPR)
2788 poly_int64 offset;
2789 tree base = get_addr_base_and_unit_offset (TREE_OPERAND (e, 0),
2790 &offset);
2791 if (base
2792 && TREE_CODE (base) == MEM_REF)
2794 ee = expand_simple_operations (TREE_OPERAND (base, 0), stop,
2795 cache);
2796 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (expr), ee,
2797 wide_int_to_tree (sizetype,
2798 mem_ref_offset (base)
2799 + offset));
2803 return expr;
2806 switch (code)
2808 CASE_CONVERT:
2809 /* Casts are simple. */
2810 ee = expand_simple_operations (e, stop, cache);
2811 return fold_build1 (code, TREE_TYPE (expr), ee);
2813 case PLUS_EXPR:
2814 case MINUS_EXPR:
2815 case MULT_EXPR:
2816 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
2817 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
2818 return expr;
2819 /* Fallthru. */
2820 case POINTER_PLUS_EXPR:
2821 /* And increments and decrements by a constant are simple. */
2822 e1 = gimple_assign_rhs2 (stmt);
2823 if (!is_gimple_min_invariant (e1))
2824 return expr;
2826 ee = expand_simple_operations (e, stop, cache);
2827 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
2829 default:
2830 return expr;
2834 tree
2835 expand_simple_operations (tree expr, tree stop)
2837 hash_map<tree, tree> cache;
2838 return expand_simple_operations (expr, stop, cache);
2841 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2842 expression (or EXPR unchanged, if no simplification was possible). */
2844 static tree
2845 tree_simplify_using_condition_1 (tree cond, tree expr)
2847 bool changed;
2848 tree e, e0, e1, e2, notcond;
2849 enum tree_code code = TREE_CODE (expr);
2851 if (code == INTEGER_CST)
2852 return expr;
2854 if (code == TRUTH_OR_EXPR
2855 || code == TRUTH_AND_EXPR
2856 || code == COND_EXPR)
2858 changed = false;
2860 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
2861 if (TREE_OPERAND (expr, 0) != e0)
2862 changed = true;
2864 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
2865 if (TREE_OPERAND (expr, 1) != e1)
2866 changed = true;
2868 if (code == COND_EXPR)
2870 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
2871 if (TREE_OPERAND (expr, 2) != e2)
2872 changed = true;
2874 else
2875 e2 = NULL_TREE;
2877 if (changed)
2879 if (code == COND_EXPR)
2880 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2881 else
2882 expr = fold_build2 (code, boolean_type_node, e0, e1);
2885 return expr;
2888 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
2889 propagation, and vice versa. Fold does not handle this, since it is
2890 considered too expensive. */
2891 if (TREE_CODE (cond) == EQ_EXPR)
2893 e0 = TREE_OPERAND (cond, 0);
2894 e1 = TREE_OPERAND (cond, 1);
2896 /* We know that e0 == e1. Check whether we cannot simplify expr
2897 using this fact. */
2898 e = simplify_replace_tree (expr, e0, e1);
2899 if (integer_zerop (e) || integer_nonzerop (e))
2900 return e;
2902 e = simplify_replace_tree (expr, e1, e0);
2903 if (integer_zerop (e) || integer_nonzerop (e))
2904 return e;
2906 if (TREE_CODE (expr) == EQ_EXPR)
2908 e0 = TREE_OPERAND (expr, 0);
2909 e1 = TREE_OPERAND (expr, 1);
2911 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
2912 e = simplify_replace_tree (cond, e0, e1);
2913 if (integer_zerop (e))
2914 return e;
2915 e = simplify_replace_tree (cond, e1, e0);
2916 if (integer_zerop (e))
2917 return e;
2919 if (TREE_CODE (expr) == NE_EXPR)
2921 e0 = TREE_OPERAND (expr, 0);
2922 e1 = TREE_OPERAND (expr, 1);
2924 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2925 e = simplify_replace_tree (cond, e0, e1);
2926 if (integer_zerop (e))
2927 return boolean_true_node;
2928 e = simplify_replace_tree (cond, e1, e0);
2929 if (integer_zerop (e))
2930 return boolean_true_node;
2933 /* Check whether COND ==> EXPR. */
2934 notcond = invert_truthvalue (cond);
2935 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, expr);
2936 if (e && integer_nonzerop (e))
2937 return e;
2939 /* Check whether COND ==> not EXPR. */
2940 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, expr);
2941 if (e && integer_zerop (e))
2942 return e;
2944 return expr;
2947 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2948 expression (or EXPR unchanged, if no simplification was possible).
2949 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2950 of simple operations in definitions of ssa names in COND are expanded,
2951 so that things like casts or incrementing the value of the bound before
2952 the loop do not cause us to fail. */
2954 static tree
2955 tree_simplify_using_condition (tree cond, tree expr)
2957 cond = expand_simple_operations (cond);
2959 return tree_simplify_using_condition_1 (cond, expr);
2962 /* Tries to simplify EXPR using the conditions on entry to LOOP.
2963 Returns the simplified expression (or EXPR unchanged, if no
2964 simplification was possible). */
2966 tree
2967 simplify_using_initial_conditions (class loop *loop, tree expr)
2969 edge e;
2970 basic_block bb;
2971 tree cond, expanded, backup;
2972 int cnt = 0;
2974 if (TREE_CODE (expr) == INTEGER_CST)
2975 return expr;
2977 backup = expanded = expand_simple_operations (expr);
2979 /* Limit walking the dominators to avoid quadraticness in
2980 the number of BBs times the number of loops in degenerate
2981 cases. */
2982 for (bb = loop->header;
2983 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
2984 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
2986 if (!single_pred_p (bb))
2987 continue;
2988 e = single_pred_edge (bb);
2990 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2991 continue;
2993 gcond *stmt = as_a <gcond *> (*gsi_last_bb (e->src));
2994 cond = fold_build2 (gimple_cond_code (stmt),
2995 boolean_type_node,
2996 gimple_cond_lhs (stmt),
2997 gimple_cond_rhs (stmt));
2998 if (e->flags & EDGE_FALSE_VALUE)
2999 cond = invert_truthvalue (cond);
3000 expanded = tree_simplify_using_condition (cond, expanded);
3001 /* Break if EXPR is simplified to const values. */
3002 if (expanded
3003 && (integer_zerop (expanded) || integer_nonzerop (expanded)))
3004 return expanded;
3006 ++cnt;
3009 /* Return the original expression if no simplification is done. */
3010 return operand_equal_p (backup, expanded, 0) ? expr : expanded;
3013 /* Tries to simplify EXPR using the evolutions of the loop invariants
3014 in the superloops of LOOP. Returns the simplified expression
3015 (or EXPR unchanged, if no simplification was possible). */
3017 static tree
3018 simplify_using_outer_evolutions (class loop *loop, tree expr)
3020 enum tree_code code = TREE_CODE (expr);
3021 bool changed;
3022 tree e, e0, e1, e2;
3024 if (is_gimple_min_invariant (expr))
3025 return expr;
3027 if (code == TRUTH_OR_EXPR
3028 || code == TRUTH_AND_EXPR
3029 || code == COND_EXPR)
3031 changed = false;
3033 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
3034 if (TREE_OPERAND (expr, 0) != e0)
3035 changed = true;
3037 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
3038 if (TREE_OPERAND (expr, 1) != e1)
3039 changed = true;
3041 if (code == COND_EXPR)
3043 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
3044 if (TREE_OPERAND (expr, 2) != e2)
3045 changed = true;
3047 else
3048 e2 = NULL_TREE;
3050 if (changed)
3052 if (code == COND_EXPR)
3053 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
3054 else
3055 expr = fold_build2 (code, boolean_type_node, e0, e1);
3058 return expr;
3061 e = instantiate_parameters (loop, expr);
3062 if (is_gimple_min_invariant (e))
3063 return e;
3065 return expr;
3068 /* Returns true if EXIT is the only possible exit from LOOP. */
3070 bool
3071 loop_only_exit_p (const class loop *loop, basic_block *body, const_edge exit)
3073 gimple_stmt_iterator bsi;
3074 unsigned i;
3076 if (exit != single_exit (loop))
3077 return false;
3079 for (i = 0; i < loop->num_nodes; i++)
3080 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
3081 if (stmt_can_terminate_bb_p (gsi_stmt (bsi)))
3082 return false;
3084 return true;
3087 /* Stores description of number of iterations of LOOP derived from
3088 EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
3089 information could be derived (and fields of NITER have meaning described
3090 in comments at class tree_niter_desc declaration), false otherwise.
3091 When EVERY_ITERATION is true, only tests that are known to be executed
3092 every iteration are considered (i.e. only test that alone bounds the loop).
3093 If AT_STMT is not NULL, this function stores LOOP's condition statement in
3094 it when returning true. */
3096 bool
3097 number_of_iterations_exit_assumptions (class loop *loop, edge exit,
3098 class tree_niter_desc *niter,
3099 gcond **at_stmt, bool every_iteration,
3100 basic_block *body)
3102 tree type;
3103 tree op0, op1;
3104 enum tree_code code;
3105 affine_iv iv0, iv1;
3106 bool safe;
3108 /* The condition at a fake exit (if it exists) does not control its
3109 execution. */
3110 if (exit->flags & EDGE_FAKE)
3111 return false;
3113 /* Nothing to analyze if the loop is known to be infinite. */
3114 if (loop_constraint_set_p (loop, LOOP_C_INFINITE))
3115 return false;
3117 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
3119 if (every_iteration && !safe)
3120 return false;
3122 niter->assumptions = boolean_false_node;
3123 niter->control.base = NULL_TREE;
3124 niter->control.step = NULL_TREE;
3125 niter->control.no_overflow = false;
3126 gcond *stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (exit->src));
3127 if (!stmt)
3128 return false;
3130 if (at_stmt)
3131 *at_stmt = stmt;
3133 /* We want the condition for staying inside loop. */
3134 code = gimple_cond_code (stmt);
3135 if (exit->flags & EDGE_TRUE_VALUE)
3136 code = invert_tree_comparison (code, false);
3138 switch (code)
3140 case GT_EXPR:
3141 case GE_EXPR:
3142 case LT_EXPR:
3143 case LE_EXPR:
3144 case NE_EXPR:
3145 break;
3147 case EQ_EXPR:
3148 return number_of_iterations_cltz (loop, exit, code, niter);
3150 default:
3151 return false;
3154 op0 = gimple_cond_lhs (stmt);
3155 op1 = gimple_cond_rhs (stmt);
3156 type = TREE_TYPE (op0);
3158 if (TREE_CODE (type) != INTEGER_TYPE
3159 && !POINTER_TYPE_P (type))
3160 return false;
3162 tree iv0_niters = NULL_TREE;
3163 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
3164 op0, &iv0, safe ? &iv0_niters : NULL, false))
3165 return number_of_iterations_bitcount (loop, exit, code, niter);
3166 tree iv1_niters = NULL_TREE;
3167 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
3168 op1, &iv1, safe ? &iv1_niters : NULL, false))
3169 return false;
3170 /* Give up on complicated case. */
3171 if (iv0_niters && iv1_niters)
3172 return false;
3174 /* We don't want to see undefined signed overflow warnings while
3175 computing the number of iterations. */
3176 fold_defer_overflow_warnings ();
3178 iv0.base = expand_simple_operations (iv0.base);
3179 iv1.base = expand_simple_operations (iv1.base);
3180 bool body_from_caller = true;
3181 if (!body)
3183 body = get_loop_body (loop);
3184 body_from_caller = false;
3186 bool only_exit_p = loop_only_exit_p (loop, body, exit);
3187 if (!body_from_caller)
3188 free (body);
3189 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
3190 only_exit_p, safe))
3192 fold_undefer_and_ignore_overflow_warnings ();
3193 return false;
3196 /* Incorporate additional assumption implied by control iv. */
3197 tree iv_niters = iv0_niters ? iv0_niters : iv1_niters;
3198 if (iv_niters)
3200 tree assumption = fold_build2 (LE_EXPR, boolean_type_node, niter->niter,
3201 fold_convert (TREE_TYPE (niter->niter),
3202 iv_niters));
3204 if (!integer_nonzerop (assumption))
3205 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3206 niter->assumptions, assumption);
3208 /* Refine upper bound if possible. */
3209 if (TREE_CODE (iv_niters) == INTEGER_CST
3210 && niter->max > wi::to_widest (iv_niters))
3211 niter->max = wi::to_widest (iv_niters);
3214 /* There is no assumptions if the loop is known to be finite. */
3215 if (!integer_zerop (niter->assumptions)
3216 && loop_constraint_set_p (loop, LOOP_C_FINITE))
3217 niter->assumptions = boolean_true_node;
3219 if (optimize >= 3)
3221 niter->assumptions = simplify_using_outer_evolutions (loop,
3222 niter->assumptions);
3223 niter->may_be_zero = simplify_using_outer_evolutions (loop,
3224 niter->may_be_zero);
3225 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
3228 niter->assumptions
3229 = simplify_using_initial_conditions (loop,
3230 niter->assumptions);
3231 niter->may_be_zero
3232 = simplify_using_initial_conditions (loop,
3233 niter->may_be_zero);
3235 fold_undefer_and_ignore_overflow_warnings ();
3237 /* If NITER has simplified into a constant, update MAX. */
3238 if (TREE_CODE (niter->niter) == INTEGER_CST)
3239 niter->max = wi::to_widest (niter->niter);
3241 return (!integer_zerop (niter->assumptions));
3244 /* Like number_of_iterations_exit_assumptions, but return TRUE only if
3245 the niter information holds unconditionally. */
3247 bool
3248 number_of_iterations_exit (class loop *loop, edge exit,
3249 class tree_niter_desc *niter,
3250 bool warn, bool every_iteration,
3251 basic_block *body)
3253 gcond *stmt;
3254 if (!number_of_iterations_exit_assumptions (loop, exit, niter,
3255 &stmt, every_iteration, body))
3256 return false;
3258 if (integer_nonzerop (niter->assumptions))
3259 return true;
3261 if (warn && dump_enabled_p ())
3262 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmt,
3263 "missed loop optimization: niters analysis ends up "
3264 "with assumptions.\n");
3266 return false;
3269 /* Try to determine the number of iterations of LOOP. If we succeed,
3270 expression giving number of iterations is returned and *EXIT is
3271 set to the edge from that the information is obtained. Otherwise
3272 chrec_dont_know is returned. */
3274 tree
3275 find_loop_niter (class loop *loop, edge *exit)
3277 unsigned i;
3278 auto_vec<edge> exits = get_loop_exit_edges (loop);
3279 edge ex;
3280 tree niter = NULL_TREE, aniter;
3281 class tree_niter_desc desc;
3283 *exit = NULL;
3284 FOR_EACH_VEC_ELT (exits, i, ex)
3286 if (!number_of_iterations_exit (loop, ex, &desc, false))
3287 continue;
3289 if (integer_nonzerop (desc.may_be_zero))
3291 /* We exit in the first iteration through this exit.
3292 We won't find anything better. */
3293 niter = build_int_cst (unsigned_type_node, 0);
3294 *exit = ex;
3295 break;
3298 if (!integer_zerop (desc.may_be_zero))
3299 continue;
3301 aniter = desc.niter;
3303 if (!niter)
3305 /* Nothing recorded yet. */
3306 niter = aniter;
3307 *exit = ex;
3308 continue;
3311 /* Prefer constants, the lower the better. */
3312 if (TREE_CODE (aniter) != INTEGER_CST)
3313 continue;
3315 if (TREE_CODE (niter) != INTEGER_CST)
3317 niter = aniter;
3318 *exit = ex;
3319 continue;
3322 if (tree_int_cst_lt (aniter, niter))
3324 niter = aniter;
3325 *exit = ex;
3326 continue;
3330 return niter ? niter : chrec_dont_know;
3333 /* Return true if loop is known to have bounded number of iterations. */
3335 bool
3336 finite_loop_p (class loop *loop)
3338 widest_int nit;
3339 int flags;
3341 if (loop->finite_p)
3343 unsigned i;
3344 auto_vec<edge> exits = get_loop_exit_edges (loop);
3345 edge ex;
3347 /* If the loop has a normal exit, we can assume it will terminate. */
3348 FOR_EACH_VEC_ELT (exits, i, ex)
3349 if (!(ex->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_FAKE)))
3351 if (dump_file)
3352 fprintf (dump_file, "Assume loop %i to be finite: it has an exit "
3353 "and -ffinite-loops is on or loop was "
3354 "previously finite.\n",
3355 loop->num);
3356 return true;
3360 flags = flags_from_decl_or_type (current_function_decl);
3361 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
3363 if (dump_file && (dump_flags & TDF_DETAILS))
3364 fprintf (dump_file,
3365 "Found loop %i to be finite: it is within "
3366 "pure or const function.\n",
3367 loop->num);
3368 loop->finite_p = true;
3369 return true;
3372 if (loop->any_upper_bound
3373 /* Loop with no normal exit will not pass max_loop_iterations. */
3374 || (!loop->finite_p && max_loop_iterations (loop, &nit)))
3376 if (dump_file && (dump_flags & TDF_DETAILS))
3377 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
3378 loop->num);
3379 loop->finite_p = true;
3380 return true;
3383 return false;
3388 Analysis of a number of iterations of a loop by a brute-force evaluation.
3392 /* Bound on the number of iterations we try to evaluate. */
3394 #define MAX_ITERATIONS_TO_TRACK \
3395 ((unsigned) param_max_iterations_to_track)
3397 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
3398 result by a chain of operations such that all but exactly one of their
3399 operands are constants. */
3401 static gphi *
3402 chain_of_csts_start (class loop *loop, tree x)
3404 gimple *stmt = SSA_NAME_DEF_STMT (x);
3405 tree use;
3406 basic_block bb = gimple_bb (stmt);
3407 enum tree_code code;
3409 if (!bb
3410 || !flow_bb_inside_loop_p (loop, bb))
3411 return NULL;
3413 if (gimple_code (stmt) == GIMPLE_PHI)
3415 if (bb == loop->header)
3416 return as_a <gphi *> (stmt);
3418 return NULL;
3421 if (gimple_code (stmt) != GIMPLE_ASSIGN
3422 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
3423 return NULL;
3425 code = gimple_assign_rhs_code (stmt);
3426 if (gimple_references_memory_p (stmt)
3427 || TREE_CODE_CLASS (code) == tcc_reference
3428 || (code == ADDR_EXPR
3429 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
3430 return NULL;
3432 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
3433 if (use == NULL_TREE)
3434 return NULL;
3436 return chain_of_csts_start (loop, use);
3439 /* Determines whether the expression X is derived from a result of a phi node
3440 in header of LOOP such that
3442 * the derivation of X consists only from operations with constants
3443 * the initial value of the phi node is constant
3444 * the value of the phi node in the next iteration can be derived from the
3445 value in the current iteration by a chain of operations with constants,
3446 or is also a constant
3448 If such phi node exists, it is returned, otherwise NULL is returned. */
3450 static gphi *
3451 get_base_for (class loop *loop, tree x)
3453 gphi *phi;
3454 tree init, next;
3456 if (is_gimple_min_invariant (x))
3457 return NULL;
3459 phi = chain_of_csts_start (loop, x);
3460 if (!phi)
3461 return NULL;
3463 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3464 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3466 if (!is_gimple_min_invariant (init))
3467 return NULL;
3469 if (TREE_CODE (next) == SSA_NAME
3470 && chain_of_csts_start (loop, next) != phi)
3471 return NULL;
3473 return phi;
3476 /* Given an expression X, then
3478 * if X is NULL_TREE, we return the constant BASE.
3479 * if X is a constant, we return the constant X.
3480 * otherwise X is a SSA name, whose value in the considered loop is derived
3481 by a chain of operations with constant from a result of a phi node in
3482 the header of the loop. Then we return value of X when the value of the
3483 result of this phi node is given by the constant BASE. */
3485 static tree
3486 get_val_for (tree x, tree base)
3488 gimple *stmt;
3490 gcc_checking_assert (is_gimple_min_invariant (base));
3492 if (!x)
3493 return base;
3494 else if (is_gimple_min_invariant (x))
3495 return x;
3497 stmt = SSA_NAME_DEF_STMT (x);
3498 if (gimple_code (stmt) == GIMPLE_PHI)
3499 return base;
3501 gcc_checking_assert (is_gimple_assign (stmt));
3503 /* STMT must be either an assignment of a single SSA name or an
3504 expression involving an SSA name and a constant. Try to fold that
3505 expression using the value for the SSA name. */
3506 if (gimple_assign_ssa_name_copy_p (stmt))
3507 return get_val_for (gimple_assign_rhs1 (stmt), base);
3508 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
3509 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
3510 return fold_build1 (gimple_assign_rhs_code (stmt),
3511 TREE_TYPE (gimple_assign_lhs (stmt)),
3512 get_val_for (gimple_assign_rhs1 (stmt), base));
3513 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
3515 tree rhs1 = gimple_assign_rhs1 (stmt);
3516 tree rhs2 = gimple_assign_rhs2 (stmt);
3517 if (TREE_CODE (rhs1) == SSA_NAME)
3518 rhs1 = get_val_for (rhs1, base);
3519 else if (TREE_CODE (rhs2) == SSA_NAME)
3520 rhs2 = get_val_for (rhs2, base);
3521 else
3522 gcc_unreachable ();
3523 return fold_build2 (gimple_assign_rhs_code (stmt),
3524 TREE_TYPE (gimple_assign_lhs (stmt)), rhs1, rhs2);
3526 else
3527 gcc_unreachable ();
3531 /* Tries to count the number of iterations of LOOP till it exits by EXIT
3532 by brute force -- i.e. by determining the value of the operands of the
3533 condition at EXIT in first few iterations of the loop (assuming that
3534 these values are constant) and determining the first one in that the
3535 condition is not satisfied. Returns the constant giving the number
3536 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
3538 tree
3539 loop_niter_by_eval (class loop *loop, edge exit)
3541 tree acnd;
3542 tree op[2], val[2], next[2], aval[2];
3543 gphi *phi;
3544 unsigned i, j;
3545 enum tree_code cmp;
3547 gcond *cond = safe_dyn_cast <gcond *> (*gsi_last_bb (exit->src));
3548 if (!cond)
3549 return chrec_dont_know;
3551 cmp = gimple_cond_code (cond);
3552 if (exit->flags & EDGE_TRUE_VALUE)
3553 cmp = invert_tree_comparison (cmp, false);
3555 switch (cmp)
3557 case EQ_EXPR:
3558 case NE_EXPR:
3559 case GT_EXPR:
3560 case GE_EXPR:
3561 case LT_EXPR:
3562 case LE_EXPR:
3563 op[0] = gimple_cond_lhs (cond);
3564 op[1] = gimple_cond_rhs (cond);
3565 break;
3567 default:
3568 return chrec_dont_know;
3571 for (j = 0; j < 2; j++)
3573 if (is_gimple_min_invariant (op[j]))
3575 val[j] = op[j];
3576 next[j] = NULL_TREE;
3577 op[j] = NULL_TREE;
3579 else
3581 phi = get_base_for (loop, op[j]);
3582 if (!phi)
3583 return chrec_dont_know;
3584 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3585 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3589 /* Don't issue signed overflow warnings. */
3590 fold_defer_overflow_warnings ();
3592 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
3594 for (j = 0; j < 2; j++)
3595 aval[j] = get_val_for (op[j], val[j]);
3597 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
3598 if (acnd && integer_zerop (acnd))
3600 fold_undefer_and_ignore_overflow_warnings ();
3601 if (dump_file && (dump_flags & TDF_DETAILS))
3602 fprintf (dump_file,
3603 "Proved that loop %d iterates %d times using brute force.\n",
3604 loop->num, i);
3605 return build_int_cst (unsigned_type_node, i);
3608 for (j = 0; j < 2; j++)
3610 aval[j] = val[j];
3611 val[j] = get_val_for (next[j], val[j]);
3612 if (!is_gimple_min_invariant (val[j]))
3614 fold_undefer_and_ignore_overflow_warnings ();
3615 return chrec_dont_know;
3619 /* If the next iteration would use the same base values
3620 as the current one, there is no point looping further,
3621 all following iterations will be the same as this one. */
3622 if (val[0] == aval[0] && val[1] == aval[1])
3623 break;
3626 fold_undefer_and_ignore_overflow_warnings ();
3628 return chrec_dont_know;
3631 /* Finds the exit of the LOOP by that the loop exits after a constant
3632 number of iterations and stores the exit edge to *EXIT. The constant
3633 giving the number of iterations of LOOP is returned. The number of
3634 iterations is determined using loop_niter_by_eval (i.e. by brute force
3635 evaluation). If we are unable to find the exit for that loop_niter_by_eval
3636 determines the number of iterations, chrec_dont_know is returned. */
3638 tree
3639 find_loop_niter_by_eval (class loop *loop, edge *exit)
3641 unsigned i;
3642 auto_vec<edge> exits = get_loop_exit_edges (loop);
3643 edge ex;
3644 tree niter = NULL_TREE, aniter;
3646 *exit = NULL;
3648 /* Loops with multiple exits are expensive to handle and less important. */
3649 if (!flag_expensive_optimizations
3650 && exits.length () > 1)
3651 return chrec_dont_know;
3653 FOR_EACH_VEC_ELT (exits, i, ex)
3655 if (!just_once_each_iteration_p (loop, ex->src))
3656 continue;
3658 aniter = loop_niter_by_eval (loop, ex);
3659 if (chrec_contains_undetermined (aniter))
3660 continue;
3662 if (niter
3663 && !tree_int_cst_lt (aniter, niter))
3664 continue;
3666 niter = aniter;
3667 *exit = ex;
3670 return niter ? niter : chrec_dont_know;
3675 Analysis of upper bounds on number of iterations of a loop.
3679 static widest_int derive_constant_upper_bound_ops (tree, tree,
3680 enum tree_code, tree);
3682 /* Returns a constant upper bound on the value of the right-hand side of
3683 an assignment statement STMT. */
3685 static widest_int
3686 derive_constant_upper_bound_assign (gimple *stmt)
3688 enum tree_code code = gimple_assign_rhs_code (stmt);
3689 tree op0 = gimple_assign_rhs1 (stmt);
3690 tree op1 = gimple_assign_rhs2 (stmt);
3692 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
3693 op0, code, op1);
3696 /* Returns a constant upper bound on the value of expression VAL. VAL
3697 is considered to be unsigned. If its type is signed, its value must
3698 be nonnegative. */
3700 static widest_int
3701 derive_constant_upper_bound (tree val)
3703 enum tree_code code;
3704 tree op0, op1, op2;
3706 extract_ops_from_tree (val, &code, &op0, &op1, &op2);
3707 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
3710 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
3711 whose type is TYPE. The expression is considered to be unsigned. If
3712 its type is signed, its value must be nonnegative. */
3714 static widest_int
3715 derive_constant_upper_bound_ops (tree type, tree op0,
3716 enum tree_code code, tree op1)
3718 tree subtype, maxt;
3719 widest_int bnd, max, cst;
3720 gimple *stmt;
3722 if (INTEGRAL_TYPE_P (type))
3723 maxt = TYPE_MAX_VALUE (type);
3724 else
3725 maxt = upper_bound_in_type (type, type);
3727 max = wi::to_widest (maxt);
3729 switch (code)
3731 case INTEGER_CST:
3732 return wi::to_widest (op0);
3734 CASE_CONVERT:
3735 subtype = TREE_TYPE (op0);
3736 if (!TYPE_UNSIGNED (subtype)
3737 /* If TYPE is also signed, the fact that VAL is nonnegative implies
3738 that OP0 is nonnegative. */
3739 && TYPE_UNSIGNED (type)
3740 && !tree_expr_nonnegative_p (op0))
3742 /* If we cannot prove that the casted expression is nonnegative,
3743 we cannot establish more useful upper bound than the precision
3744 of the type gives us. */
3745 return max;
3748 /* We now know that op0 is an nonnegative value. Try deriving an upper
3749 bound for it. */
3750 bnd = derive_constant_upper_bound (op0);
3752 /* If the bound does not fit in TYPE, max. value of TYPE could be
3753 attained. */
3754 if (wi::ltu_p (max, bnd))
3755 return max;
3757 return bnd;
3759 case PLUS_EXPR:
3760 case POINTER_PLUS_EXPR:
3761 case MINUS_EXPR:
3762 if (TREE_CODE (op1) != INTEGER_CST
3763 || !tree_expr_nonnegative_p (op0))
3764 return max;
3766 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
3767 choose the most logical way how to treat this constant regardless
3768 of the signedness of the type. */
3769 cst = wi::sext (wi::to_widest (op1), TYPE_PRECISION (type));
3770 if (code != MINUS_EXPR)
3771 cst = -cst;
3773 bnd = derive_constant_upper_bound (op0);
3775 if (wi::neg_p (cst))
3777 cst = -cst;
3778 /* Avoid CST == 0x80000... */
3779 if (wi::neg_p (cst))
3780 return max;
3782 /* OP0 + CST. We need to check that
3783 BND <= MAX (type) - CST. */
3785 widest_int mmax = max - cst;
3786 if (wi::leu_p (bnd, mmax))
3787 return max;
3789 return bnd + cst;
3791 else
3793 /* OP0 - CST, where CST >= 0.
3795 If TYPE is signed, we have already verified that OP0 >= 0, and we
3796 know that the result is nonnegative. This implies that
3797 VAL <= BND - CST.
3799 If TYPE is unsigned, we must additionally know that OP0 >= CST,
3800 otherwise the operation underflows.
3803 /* This should only happen if the type is unsigned; however, for
3804 buggy programs that use overflowing signed arithmetics even with
3805 -fno-wrapv, this condition may also be true for signed values. */
3806 if (wi::ltu_p (bnd, cst))
3807 return max;
3809 if (TYPE_UNSIGNED (type))
3811 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
3812 wide_int_to_tree (type, cst));
3813 if (!tem || integer_nonzerop (tem))
3814 return max;
3817 bnd -= cst;
3820 return bnd;
3822 case FLOOR_DIV_EXPR:
3823 case EXACT_DIV_EXPR:
3824 if (TREE_CODE (op1) != INTEGER_CST
3825 || tree_int_cst_sign_bit (op1))
3826 return max;
3828 bnd = derive_constant_upper_bound (op0);
3829 return wi::udiv_floor (bnd, wi::to_widest (op1));
3831 case BIT_AND_EXPR:
3832 if (TREE_CODE (op1) != INTEGER_CST
3833 || tree_int_cst_sign_bit (op1))
3834 return max;
3835 return wi::to_widest (op1);
3837 case SSA_NAME:
3838 stmt = SSA_NAME_DEF_STMT (op0);
3839 if (gimple_code (stmt) != GIMPLE_ASSIGN
3840 || gimple_assign_lhs (stmt) != op0)
3841 return max;
3842 return derive_constant_upper_bound_assign (stmt);
3844 default:
3845 return max;
3849 /* Emit a -Waggressive-loop-optimizations warning if needed. */
3851 static void
3852 do_warn_aggressive_loop_optimizations (class loop *loop,
3853 widest_int i_bound, gimple *stmt)
3855 /* Don't warn if the loop doesn't have known constant bound. */
3856 if (!loop->nb_iterations
3857 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
3858 || !warn_aggressive_loop_optimizations
3859 /* To avoid warning multiple times for the same loop,
3860 only start warning when we preserve loops. */
3861 || (cfun->curr_properties & PROP_loops) == 0
3862 /* Only warn once per loop. */
3863 || loop->warned_aggressive_loop_optimizations
3864 /* Only warn if undefined behavior gives us lower estimate than the
3865 known constant bound. */
3866 || wi::cmpu (i_bound, wi::to_widest (loop->nb_iterations)) >= 0
3867 /* And undefined behavior happens unconditionally. */
3868 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
3869 return;
3871 edge e = single_exit (loop);
3872 if (e == NULL)
3873 return;
3875 gimple *estmt = last_nondebug_stmt (e->src);
3876 char buf[WIDE_INT_PRINT_BUFFER_SIZE];
3877 print_dec (i_bound, buf, TYPE_UNSIGNED (TREE_TYPE (loop->nb_iterations))
3878 ? UNSIGNED : SIGNED);
3879 auto_diagnostic_group d;
3880 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
3881 "iteration %s invokes undefined behavior", buf))
3882 inform (gimple_location (estmt), "within this loop");
3883 loop->warned_aggressive_loop_optimizations = true;
3886 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
3887 is true if the loop is exited immediately after STMT, and this exit
3888 is taken at last when the STMT is executed BOUND + 1 times.
3889 REALISTIC is true if BOUND is expected to be close to the real number
3890 of iterations. UPPER is true if we are sure the loop iterates at most
3891 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
3893 static void
3894 record_estimate (class loop *loop, tree bound, const widest_int &i_bound,
3895 gimple *at_stmt, bool is_exit, bool realistic, bool upper)
3897 widest_int delta;
3899 if (dump_file && (dump_flags & TDF_DETAILS))
3901 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
3902 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
3903 fprintf (dump_file, " is %sexecuted at most ",
3904 upper ? "" : "probably ");
3905 print_generic_expr (dump_file, bound, TDF_SLIM);
3906 fprintf (dump_file, " (bounded by ");
3907 print_decu (i_bound, dump_file);
3908 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
3911 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
3912 real number of iterations. */
3913 if (TREE_CODE (bound) != INTEGER_CST)
3914 realistic = false;
3915 else
3916 gcc_checking_assert (i_bound == wi::to_widest (bound));
3918 /* If we have a guaranteed upper bound, record it in the appropriate
3919 list, unless this is an !is_exit bound (i.e. undefined behavior in
3920 at_stmt) in a loop with known constant number of iterations. */
3921 if (upper
3922 && (is_exit
3923 || loop->nb_iterations == NULL_TREE
3924 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
3926 class nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
3928 elt->bound = i_bound;
3929 elt->stmt = at_stmt;
3930 elt->is_exit = is_exit;
3931 elt->next = loop->bounds;
3932 loop->bounds = elt;
3935 /* If statement is executed on every path to the loop latch, we can directly
3936 infer the upper bound on the # of iterations of the loop. */
3937 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
3938 upper = false;
3940 /* Update the number of iteration estimates according to the bound.
3941 If at_stmt is an exit then the loop latch is executed at most BOUND times,
3942 otherwise it can be executed BOUND + 1 times. We will lower the estimate
3943 later if such statement must be executed on last iteration */
3944 if (is_exit)
3945 delta = 0;
3946 else
3947 delta = 1;
3948 widest_int new_i_bound = i_bound + delta;
3950 /* If an overflow occurred, ignore the result. */
3951 if (wi::ltu_p (new_i_bound, delta))
3952 return;
3954 if (upper && !is_exit)
3955 do_warn_aggressive_loop_optimizations (loop, new_i_bound, at_stmt);
3956 record_niter_bound (loop, new_i_bound, realistic, upper);
3959 /* Records the control iv analyzed in NITER for LOOP if the iv is valid
3960 and doesn't overflow. */
3962 static void
3963 record_control_iv (class loop *loop, class tree_niter_desc *niter)
3965 struct control_iv *iv;
3967 if (!niter->control.base || !niter->control.step)
3968 return;
3970 if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
3971 return;
3973 iv = ggc_alloc<control_iv> ();
3974 iv->base = niter->control.base;
3975 iv->step = niter->control.step;
3976 iv->next = loop->control_ivs;
3977 loop->control_ivs = iv;
3979 return;
3982 /* This function returns TRUE if below conditions are satisfied:
3983 1) VAR is SSA variable.
3984 2) VAR is an IV:{base, step} in its defining loop.
3985 3) IV doesn't overflow.
3986 4) Both base and step are integer constants.
3987 5) Base is the MIN/MAX value depends on IS_MIN.
3988 Store value of base to INIT correspondingly. */
3990 static bool
3991 get_cst_init_from_scev (tree var, wide_int *init, bool is_min)
3993 if (TREE_CODE (var) != SSA_NAME)
3994 return false;
3996 gimple *def_stmt = SSA_NAME_DEF_STMT (var);
3997 class loop *loop = loop_containing_stmt (def_stmt);
3999 if (loop == NULL)
4000 return false;
4002 affine_iv iv;
4003 if (!simple_iv (loop, loop, var, &iv, false))
4004 return false;
4006 if (!iv.no_overflow)
4007 return false;
4009 if (TREE_CODE (iv.base) != INTEGER_CST || TREE_CODE (iv.step) != INTEGER_CST)
4010 return false;
4012 if (is_min == tree_int_cst_sign_bit (iv.step))
4013 return false;
4015 *init = wi::to_wide (iv.base);
4016 return true;
4019 /* Record the estimate on number of iterations of LOOP based on the fact that
4020 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
4021 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
4022 estimated number of iterations is expected to be close to the real one.
4023 UPPER is true if we are sure the induction variable does not wrap. */
4025 static void
4026 record_nonwrapping_iv (class loop *loop, tree base, tree step, gimple *stmt,
4027 tree low, tree high, bool realistic, bool upper)
4029 tree niter_bound, extreme, delta;
4030 tree type = TREE_TYPE (base), unsigned_type;
4031 tree orig_base = base;
4033 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
4034 return;
4036 if (dump_file && (dump_flags & TDF_DETAILS))
4038 fprintf (dump_file, "Induction variable (");
4039 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
4040 fprintf (dump_file, ") ");
4041 print_generic_expr (dump_file, base, TDF_SLIM);
4042 fprintf (dump_file, " + ");
4043 print_generic_expr (dump_file, step, TDF_SLIM);
4044 fprintf (dump_file, " * iteration does not wrap in statement ");
4045 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
4046 fprintf (dump_file, " in loop %d.\n", loop->num);
4049 unsigned_type = unsigned_type_for (type);
4050 base = fold_convert (unsigned_type, base);
4051 step = fold_convert (unsigned_type, step);
4053 if (tree_int_cst_sign_bit (step))
4055 wide_int max;
4056 Value_Range base_range (TREE_TYPE (orig_base));
4057 if (get_range_query (cfun)->range_of_expr (base_range, orig_base)
4058 && !base_range.undefined_p ())
4059 max = base_range.upper_bound ();
4060 extreme = fold_convert (unsigned_type, low);
4061 if (TREE_CODE (orig_base) == SSA_NAME
4062 && TREE_CODE (high) == INTEGER_CST
4063 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
4064 && ((!base_range.varying_p ()
4065 && !base_range.undefined_p ())
4066 || get_cst_init_from_scev (orig_base, &max, false))
4067 && wi::gts_p (wi::to_wide (high), max))
4068 base = wide_int_to_tree (unsigned_type, max);
4069 else if (TREE_CODE (base) != INTEGER_CST
4070 && dominated_by_p (CDI_DOMINATORS,
4071 loop->latch, gimple_bb (stmt)))
4072 base = fold_convert (unsigned_type, high);
4073 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
4074 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
4076 else
4078 wide_int min;
4079 Value_Range base_range (TREE_TYPE (orig_base));
4080 if (get_range_query (cfun)->range_of_expr (base_range, orig_base)
4081 && !base_range.undefined_p ())
4082 min = base_range.lower_bound ();
4083 extreme = fold_convert (unsigned_type, high);
4084 if (TREE_CODE (orig_base) == SSA_NAME
4085 && TREE_CODE (low) == INTEGER_CST
4086 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
4087 && ((!base_range.varying_p ()
4088 && !base_range.undefined_p ())
4089 || get_cst_init_from_scev (orig_base, &min, true))
4090 && wi::gts_p (min, wi::to_wide (low)))
4091 base = wide_int_to_tree (unsigned_type, min);
4092 else if (TREE_CODE (base) != INTEGER_CST
4093 && dominated_by_p (CDI_DOMINATORS,
4094 loop->latch, gimple_bb (stmt)))
4095 base = fold_convert (unsigned_type, low);
4096 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
4099 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
4100 would get out of the range. */
4101 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
4102 widest_int max = derive_constant_upper_bound (niter_bound);
4103 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
4106 /* Determine information about number of iterations a LOOP from the index
4107 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
4108 guaranteed to be executed in every iteration of LOOP. Callback for
4109 for_each_index. */
4111 struct ilb_data
4113 class loop *loop;
4114 gimple *stmt;
4117 static bool
4118 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
4120 struct ilb_data *data = (struct ilb_data *) dta;
4121 tree ev, init, step;
4122 tree low, high, type, next;
4123 bool sign, upper = true, has_flexible_size = false;
4124 class loop *loop = data->loop;
4126 if (TREE_CODE (base) != ARRAY_REF)
4127 return true;
4129 /* For arrays that might have flexible sizes, it is not guaranteed that they
4130 do not really extend over their declared size. */
4131 if (array_ref_flexible_size_p (base))
4133 has_flexible_size = true;
4134 upper = false;
4137 class loop *dloop = loop_containing_stmt (data->stmt);
4138 if (!dloop)
4139 return true;
4141 ev = analyze_scalar_evolution (dloop, *idx);
4142 ev = instantiate_parameters (loop, ev);
4143 init = initial_condition (ev);
4144 step = evolution_part_in_loop_num (ev, loop->num);
4146 if (!init
4147 || !step
4148 || TREE_CODE (step) != INTEGER_CST
4149 || integer_zerop (step)
4150 || tree_contains_chrecs (init, NULL)
4151 || chrec_contains_symbols_defined_in_loop (init, loop->num))
4152 return true;
4154 low = array_ref_low_bound (base);
4155 high = array_ref_up_bound (base);
4157 /* The case of nonconstant bounds could be handled, but it would be
4158 complicated. */
4159 if (TREE_CODE (low) != INTEGER_CST
4160 || !high
4161 || TREE_CODE (high) != INTEGER_CST)
4162 return true;
4163 sign = tree_int_cst_sign_bit (step);
4164 type = TREE_TYPE (step);
4166 /* The array that might have flexible size most likely extends
4167 beyond its bounds. */
4168 if (has_flexible_size
4169 && operand_equal_p (low, high, 0))
4170 return true;
4172 /* In case the relevant bound of the array does not fit in type, or
4173 it does, but bound + step (in type) still belongs into the range of the
4174 array, the index may wrap and still stay within the range of the array
4175 (consider e.g. if the array is indexed by the full range of
4176 unsigned char).
4178 To make things simpler, we require both bounds to fit into type, although
4179 there are cases where this would not be strictly necessary. */
4180 if (!int_fits_type_p (high, type)
4181 || !int_fits_type_p (low, type))
4182 return true;
4183 low = fold_convert (type, low);
4184 high = fold_convert (type, high);
4186 if (sign)
4187 next = fold_binary (PLUS_EXPR, type, low, step);
4188 else
4189 next = fold_binary (PLUS_EXPR, type, high, step);
4191 if (tree_int_cst_compare (low, next) <= 0
4192 && tree_int_cst_compare (next, high) <= 0)
4193 return true;
4195 /* If access is not executed on every iteration, we must ensure that overlow
4196 may not make the access valid later. */
4197 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
4198 && scev_probably_wraps_p (NULL_TREE,
4199 initial_condition_in_loop_num (ev, loop->num),
4200 step, data->stmt, loop, true))
4201 upper = false;
4203 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, false, upper);
4204 return true;
4207 /* Determine information about number of iterations a LOOP from the bounds
4208 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
4209 STMT is guaranteed to be executed in every iteration of LOOP.*/
4211 static void
4212 infer_loop_bounds_from_ref (class loop *loop, gimple *stmt, tree ref)
4214 struct ilb_data data;
4216 data.loop = loop;
4217 data.stmt = stmt;
4218 for_each_index (&ref, idx_infer_loop_bounds, &data);
4221 /* Determine information about number of iterations of a LOOP from the way
4222 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
4223 executed in every iteration of LOOP. */
4225 static void
4226 infer_loop_bounds_from_array (class loop *loop, gimple *stmt)
4228 if (is_gimple_assign (stmt))
4230 tree op0 = gimple_assign_lhs (stmt);
4231 tree op1 = gimple_assign_rhs1 (stmt);
4233 /* For each memory access, analyze its access function
4234 and record a bound on the loop iteration domain. */
4235 if (REFERENCE_CLASS_P (op0))
4236 infer_loop_bounds_from_ref (loop, stmt, op0);
4238 if (REFERENCE_CLASS_P (op1))
4239 infer_loop_bounds_from_ref (loop, stmt, op1);
4241 else if (is_gimple_call (stmt))
4243 tree arg, lhs;
4244 unsigned i, n = gimple_call_num_args (stmt);
4246 lhs = gimple_call_lhs (stmt);
4247 if (lhs && REFERENCE_CLASS_P (lhs))
4248 infer_loop_bounds_from_ref (loop, stmt, lhs);
4250 for (i = 0; i < n; i++)
4252 arg = gimple_call_arg (stmt, i);
4253 if (REFERENCE_CLASS_P (arg))
4254 infer_loop_bounds_from_ref (loop, stmt, arg);
4259 /* Determine information about number of iterations of a LOOP from the fact
4260 that pointer arithmetics in STMT does not overflow. */
4262 static void
4263 infer_loop_bounds_from_pointer_arith (class loop *loop, gimple *stmt)
4265 tree def, base, step, scev, type, low, high;
4266 tree var, ptr;
4268 if (!is_gimple_assign (stmt)
4269 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
4270 return;
4272 def = gimple_assign_lhs (stmt);
4273 if (TREE_CODE (def) != SSA_NAME)
4274 return;
4276 type = TREE_TYPE (def);
4277 if (!nowrap_type_p (type))
4278 return;
4280 ptr = gimple_assign_rhs1 (stmt);
4281 if (!expr_invariant_in_loop_p (loop, ptr))
4282 return;
4284 var = gimple_assign_rhs2 (stmt);
4285 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
4286 return;
4288 class loop *uloop = loop_containing_stmt (stmt);
4289 scev = instantiate_parameters (loop, analyze_scalar_evolution (uloop, def));
4290 if (chrec_contains_undetermined (scev))
4291 return;
4293 base = initial_condition_in_loop_num (scev, loop->num);
4294 step = evolution_part_in_loop_num (scev, loop->num);
4296 if (!base || !step
4297 || TREE_CODE (step) != INTEGER_CST
4298 || tree_contains_chrecs (base, NULL)
4299 || chrec_contains_symbols_defined_in_loop (base, loop->num))
4300 return;
4302 low = lower_bound_in_type (type, type);
4303 high = upper_bound_in_type (type, type);
4305 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
4306 produce a NULL pointer. The contrary would mean NULL points to an object,
4307 while NULL is supposed to compare unequal with the address of all objects.
4308 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
4309 NULL pointer since that would mean wrapping, which we assume here not to
4310 happen. So, we can exclude NULL from the valid range of pointer
4311 arithmetic. */
4312 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
4313 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
4315 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
4318 /* Determine information about number of iterations of a LOOP from the fact
4319 that signed arithmetics in STMT does not overflow. */
4321 static void
4322 infer_loop_bounds_from_signedness (class loop *loop, gimple *stmt)
4324 tree def, base, step, scev, type, low, high;
4326 if (gimple_code (stmt) != GIMPLE_ASSIGN)
4327 return;
4329 def = gimple_assign_lhs (stmt);
4331 if (TREE_CODE (def) != SSA_NAME)
4332 return;
4334 type = TREE_TYPE (def);
4335 if (!INTEGRAL_TYPE_P (type)
4336 || !TYPE_OVERFLOW_UNDEFINED (type))
4337 return;
4339 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
4340 if (chrec_contains_undetermined (scev))
4341 return;
4343 base = initial_condition_in_loop_num (scev, loop->num);
4344 step = evolution_part_in_loop_num (scev, loop->num);
4346 if (!base || !step
4347 || TREE_CODE (step) != INTEGER_CST
4348 || tree_contains_chrecs (base, NULL)
4349 || chrec_contains_symbols_defined_in_loop (base, loop->num))
4350 return;
4352 low = lower_bound_in_type (type, type);
4353 high = upper_bound_in_type (type, type);
4354 Value_Range r (TREE_TYPE (def));
4355 get_range_query (cfun)->range_of_expr (r, def);
4356 if (!r.varying_p () && !r.undefined_p ())
4358 low = wide_int_to_tree (type, r.lower_bound ());
4359 high = wide_int_to_tree (type, r.upper_bound ());
4362 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
4365 /* The following analyzers are extracting informations on the bounds
4366 of LOOP from the following undefined behaviors:
4368 - data references should not access elements over the statically
4369 allocated size,
4371 - signed variables should not overflow when flag_wrapv is not set.
4374 static void
4375 infer_loop_bounds_from_undefined (class loop *loop, basic_block *bbs)
4377 unsigned i;
4378 gimple_stmt_iterator bsi;
4379 basic_block bb;
4380 bool reliable;
4382 for (i = 0; i < loop->num_nodes; i++)
4384 bb = bbs[i];
4386 /* If BB is not executed in each iteration of the loop, we cannot
4387 use the operations in it to infer reliable upper bound on the
4388 # of iterations of the loop. However, we can use it as a guess.
4389 Reliable guesses come only from array bounds. */
4390 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
4392 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
4394 gimple *stmt = gsi_stmt (bsi);
4396 infer_loop_bounds_from_array (loop, stmt);
4398 if (reliable)
4400 infer_loop_bounds_from_signedness (loop, stmt);
4401 infer_loop_bounds_from_pointer_arith (loop, stmt);
4408 /* Compare wide ints, callback for qsort. */
4410 static int
4411 wide_int_cmp (const void *p1, const void *p2)
4413 const widest_int *d1 = (const widest_int *) p1;
4414 const widest_int *d2 = (const widest_int *) p2;
4415 return wi::cmpu (*d1, *d2);
4418 /* Return index of BOUND in BOUNDS array sorted in increasing order.
4419 Lookup by binary search. */
4421 static int
4422 bound_index (const vec<widest_int> &bounds, const widest_int &bound)
4424 unsigned int end = bounds.length ();
4425 unsigned int begin = 0;
4427 /* Find a matching index by means of a binary search. */
4428 while (begin != end)
4430 unsigned int middle = (begin + end) / 2;
4431 widest_int index = bounds[middle];
4433 if (index == bound)
4434 return middle;
4435 else if (wi::ltu_p (index, bound))
4436 begin = middle + 1;
4437 else
4438 end = middle;
4440 gcc_unreachable ();
4443 /* We recorded loop bounds only for statements dominating loop latch (and thus
4444 executed each loop iteration). If there are any bounds on statements not
4445 dominating the loop latch we can improve the estimate by walking the loop
4446 body and seeing if every path from loop header to loop latch contains
4447 some bounded statement. */
4449 static void
4450 discover_iteration_bound_by_body_walk (class loop *loop)
4452 class nb_iter_bound *elt;
4453 auto_vec<widest_int> bounds;
4454 vec<vec<basic_block> > queues = vNULL;
4455 vec<basic_block> queue = vNULL;
4456 ptrdiff_t queue_index;
4457 ptrdiff_t latch_index = 0;
4459 /* Discover what bounds may interest us. */
4460 for (elt = loop->bounds; elt; elt = elt->next)
4462 widest_int bound = elt->bound;
4464 /* Exit terminates loop at given iteration, while non-exits produce undefined
4465 effect on the next iteration. */
4466 if (!elt->is_exit)
4468 bound += 1;
4469 /* If an overflow occurred, ignore the result. */
4470 if (bound == 0)
4471 continue;
4474 if (!loop->any_upper_bound
4475 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
4476 bounds.safe_push (bound);
4479 /* Exit early if there is nothing to do. */
4480 if (!bounds.exists ())
4481 return;
4483 if (dump_file && (dump_flags & TDF_DETAILS))
4484 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
4486 /* Sort the bounds in decreasing order. */
4487 bounds.qsort (wide_int_cmp);
4489 /* For every basic block record the lowest bound that is guaranteed to
4490 terminate the loop. */
4492 hash_map<basic_block, ptrdiff_t> bb_bounds;
4493 for (elt = loop->bounds; elt; elt = elt->next)
4495 widest_int bound = elt->bound;
4496 if (!elt->is_exit)
4498 bound += 1;
4499 /* If an overflow occurred, ignore the result. */
4500 if (bound == 0)
4501 continue;
4504 if (!loop->any_upper_bound
4505 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
4507 ptrdiff_t index = bound_index (bounds, bound);
4508 ptrdiff_t *entry = bb_bounds.get (gimple_bb (elt->stmt));
4509 if (!entry)
4510 bb_bounds.put (gimple_bb (elt->stmt), index);
4511 else if ((ptrdiff_t)*entry > index)
4512 *entry = index;
4516 hash_map<basic_block, ptrdiff_t> block_priority;
4518 /* Perform shortest path discovery loop->header ... loop->latch.
4520 The "distance" is given by the smallest loop bound of basic block
4521 present in the path and we look for path with largest smallest bound
4522 on it.
4524 To avoid the need for fibonacci heap on double ints we simply compress
4525 double ints into indexes to BOUNDS array and then represent the queue
4526 as arrays of queues for every index.
4527 Index of BOUNDS.length() means that the execution of given BB has
4528 no bounds determined.
4530 VISITED is a pointer map translating basic block into smallest index
4531 it was inserted into the priority queue with. */
4532 latch_index = -1;
4534 /* Start walk in loop header with index set to infinite bound. */
4535 queue_index = bounds.length ();
4536 queues.safe_grow_cleared (queue_index + 1, true);
4537 queue.safe_push (loop->header);
4538 queues[queue_index] = queue;
4539 block_priority.put (loop->header, queue_index);
4541 for (; queue_index >= 0; queue_index--)
4543 if (latch_index < queue_index)
4545 while (queues[queue_index].length ())
4547 basic_block bb;
4548 ptrdiff_t bound_index = queue_index;
4549 edge e;
4550 edge_iterator ei;
4552 queue = queues[queue_index];
4553 bb = queue.pop ();
4555 /* OK, we later inserted the BB with lower priority, skip it. */
4556 if (*block_priority.get (bb) > queue_index)
4557 continue;
4559 /* See if we can improve the bound. */
4560 ptrdiff_t *entry = bb_bounds.get (bb);
4561 if (entry && *entry < bound_index)
4562 bound_index = *entry;
4564 /* Insert succesors into the queue, watch for latch edge
4565 and record greatest index we saw. */
4566 FOR_EACH_EDGE (e, ei, bb->succs)
4568 bool insert = false;
4570 if (loop_exit_edge_p (loop, e))
4571 continue;
4573 if (e == loop_latch_edge (loop)
4574 && latch_index < bound_index)
4575 latch_index = bound_index;
4576 else if (!(entry = block_priority.get (e->dest)))
4578 insert = true;
4579 block_priority.put (e->dest, bound_index);
4581 else if (*entry < bound_index)
4583 insert = true;
4584 *entry = bound_index;
4587 if (insert)
4588 queues[bound_index].safe_push (e->dest);
4592 queues[queue_index].release ();
4595 gcc_assert (latch_index >= 0);
4596 if ((unsigned)latch_index < bounds.length ())
4598 if (dump_file && (dump_flags & TDF_DETAILS))
4600 fprintf (dump_file, "Found better loop bound ");
4601 print_decu (bounds[latch_index], dump_file);
4602 fprintf (dump_file, "\n");
4604 record_niter_bound (loop, bounds[latch_index], false, true);
4607 queues.release ();
4610 /* See if every path cross the loop goes through a statement that is known
4611 to not execute at the last iteration. In that case we can decrese iteration
4612 count by 1. */
4614 static void
4615 maybe_lower_iteration_bound (class loop *loop)
4617 hash_set<gimple *> *not_executed_last_iteration = NULL;
4618 class nb_iter_bound *elt;
4619 bool found_exit = false;
4620 auto_vec<basic_block> queue;
4621 bitmap visited;
4623 /* Collect all statements with interesting (i.e. lower than
4624 nb_iterations_upper_bound) bound on them.
4626 TODO: Due to the way record_estimate choose estimates to store, the bounds
4627 will be always nb_iterations_upper_bound-1. We can change this to record
4628 also statements not dominating the loop latch and update the walk bellow
4629 to the shortest path algorithm. */
4630 for (elt = loop->bounds; elt; elt = elt->next)
4632 if (!elt->is_exit
4633 && wi::ltu_p (elt->bound, loop->nb_iterations_upper_bound))
4635 if (!not_executed_last_iteration)
4636 not_executed_last_iteration = new hash_set<gimple *>;
4637 not_executed_last_iteration->add (elt->stmt);
4640 if (!not_executed_last_iteration)
4641 return;
4643 /* Start DFS walk in the loop header and see if we can reach the
4644 loop latch or any of the exits (including statements with side
4645 effects that may terminate the loop otherwise) without visiting
4646 any of the statements known to have undefined effect on the last
4647 iteration. */
4648 queue.safe_push (loop->header);
4649 visited = BITMAP_ALLOC (NULL);
4650 bitmap_set_bit (visited, loop->header->index);
4651 found_exit = false;
4655 basic_block bb = queue.pop ();
4656 gimple_stmt_iterator gsi;
4657 bool stmt_found = false;
4659 /* Loop for possible exits and statements bounding the execution. */
4660 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4662 gimple *stmt = gsi_stmt (gsi);
4663 if (not_executed_last_iteration->contains (stmt))
4665 stmt_found = true;
4666 break;
4668 if (gimple_has_side_effects (stmt))
4670 found_exit = true;
4671 break;
4674 if (found_exit)
4675 break;
4677 /* If no bounding statement is found, continue the walk. */
4678 if (!stmt_found)
4680 edge e;
4681 edge_iterator ei;
4683 FOR_EACH_EDGE (e, ei, bb->succs)
4685 if (loop_exit_edge_p (loop, e)
4686 || e == loop_latch_edge (loop))
4688 found_exit = true;
4689 break;
4691 if (bitmap_set_bit (visited, e->dest->index))
4692 queue.safe_push (e->dest);
4696 while (queue.length () && !found_exit);
4698 /* If every path through the loop reach bounding statement before exit,
4699 then we know the last iteration of the loop will have undefined effect
4700 and we can decrease number of iterations. */
4702 if (!found_exit)
4704 if (dump_file && (dump_flags & TDF_DETAILS))
4705 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
4706 "undefined statement must be executed at the last iteration.\n");
4707 record_niter_bound (loop, loop->nb_iterations_upper_bound - 1,
4708 false, true);
4711 BITMAP_FREE (visited);
4712 delete not_executed_last_iteration;
4715 /* Get expected upper bound for number of loop iterations for
4716 BUILT_IN_EXPECT_WITH_PROBABILITY for a condition COND. */
4718 static tree
4719 get_upper_bound_based_on_builtin_expr_with_prob (gcond *cond)
4721 if (cond == NULL)
4722 return NULL_TREE;
4724 tree lhs = gimple_cond_lhs (cond);
4725 if (TREE_CODE (lhs) != SSA_NAME)
4726 return NULL_TREE;
4728 gimple *stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
4729 gcall *def = dyn_cast<gcall *> (stmt);
4730 if (def == NULL)
4731 return NULL_TREE;
4733 tree decl = gimple_call_fndecl (def);
4734 if (!decl
4735 || !fndecl_built_in_p (decl, BUILT_IN_EXPECT_WITH_PROBABILITY)
4736 || gimple_call_num_args (stmt) != 3)
4737 return NULL_TREE;
4739 tree c = gimple_call_arg (def, 1);
4740 tree condt = TREE_TYPE (lhs);
4741 tree res = fold_build2 (gimple_cond_code (cond),
4742 condt, c,
4743 gimple_cond_rhs (cond));
4744 if (TREE_CODE (res) != INTEGER_CST)
4745 return NULL_TREE;
4748 tree prob = gimple_call_arg (def, 2);
4749 tree t = TREE_TYPE (prob);
4750 tree one
4751 = build_real_from_int_cst (t,
4752 integer_one_node);
4753 if (integer_zerop (res))
4754 prob = fold_build2 (MINUS_EXPR, t, one, prob);
4755 tree r = fold_build2 (RDIV_EXPR, t, one, prob);
4756 if (TREE_CODE (r) != REAL_CST)
4757 return NULL_TREE;
4759 HOST_WIDE_INT probi
4760 = real_to_integer (TREE_REAL_CST_PTR (r));
4761 return build_int_cst (condt, probi);
4764 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
4765 is true also use estimates derived from undefined behavior. */
4767 void
4768 estimate_numbers_of_iterations (class loop *loop)
4770 tree niter, type;
4771 unsigned i;
4772 class tree_niter_desc niter_desc;
4773 edge ex;
4774 widest_int bound;
4775 edge likely_exit;
4777 /* Give up if we already have tried to compute an estimation. */
4778 if (loop->estimate_state != EST_NOT_COMPUTED)
4779 return;
4781 if (dump_file && (dump_flags & TDF_DETAILS))
4782 fprintf (dump_file, "Estimating # of iterations of loop %d\n", loop->num);
4784 loop->estimate_state = EST_AVAILABLE;
4786 sreal nit;
4787 bool reliable;
4789 /* If we have a measured profile, use it to estimate the number of
4790 iterations. Normally this is recorded by branch_prob right after
4791 reading the profile. In case we however found a new loop, record the
4792 information here.
4794 Explicitly check for profile status so we do not report
4795 wrong prediction hitrates for guessed loop iterations heuristics.
4796 Do not recompute already recorded bounds - we ought to be better on
4797 updating iteration bounds than updating profile in general and thus
4798 recomputing iteration bounds later in the compilation process will just
4799 introduce random roundoff errors. */
4800 if (!loop->any_estimate
4801 && expected_loop_iterations_by_profile (loop, &nit, &reliable)
4802 && reliable)
4804 bound = nit.to_nearest_int ();
4805 record_niter_bound (loop, bound, true, false);
4808 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
4809 to be constant, we avoid undefined behavior implied bounds and instead
4810 diagnose those loops with -Waggressive-loop-optimizations. */
4811 number_of_latch_executions (loop);
4813 basic_block *body = get_loop_body (loop);
4814 auto_vec<edge> exits = get_loop_exit_edges (loop, body);
4815 likely_exit = single_likely_exit (loop, exits);
4816 FOR_EACH_VEC_ELT (exits, i, ex)
4818 if (ex == likely_exit)
4820 gimple *stmt = *gsi_last_bb (ex->src);
4821 if (stmt != NULL)
4823 gcond *cond = dyn_cast<gcond *> (stmt);
4824 tree niter_bound
4825 = get_upper_bound_based_on_builtin_expr_with_prob (cond);
4826 if (niter_bound != NULL_TREE)
4828 widest_int max = derive_constant_upper_bound (niter_bound);
4829 record_estimate (loop, niter_bound, max, cond,
4830 true, true, false);
4835 if (!number_of_iterations_exit (loop, ex, &niter_desc,
4836 false, false, body))
4837 continue;
4839 niter = niter_desc.niter;
4840 type = TREE_TYPE (niter);
4841 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
4842 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
4843 build_int_cst (type, 0),
4844 niter);
4845 record_estimate (loop, niter, niter_desc.max,
4846 last_nondebug_stmt (ex->src),
4847 true, ex == likely_exit, true);
4848 record_control_iv (loop, &niter_desc);
4851 if (flag_aggressive_loop_optimizations)
4852 infer_loop_bounds_from_undefined (loop, body);
4853 free (body);
4855 discover_iteration_bound_by_body_walk (loop);
4857 maybe_lower_iteration_bound (loop);
4859 /* If we know the exact number of iterations of this loop, try to
4860 not break code with undefined behavior by not recording smaller
4861 maximum number of iterations. */
4862 if (loop->nb_iterations
4863 && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
4865 loop->any_upper_bound = true;
4866 loop->nb_iterations_upper_bound = wi::to_widest (loop->nb_iterations);
4870 /* Sets NIT to the estimated number of executions of the latch of the
4871 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
4872 large as the number of iterations. If we have no reliable estimate,
4873 the function returns false, otherwise returns true. */
4875 bool
4876 estimated_loop_iterations (class loop *loop, widest_int *nit)
4878 /* When SCEV information is available, try to update loop iterations
4879 estimate. Otherwise just return whatever we recorded earlier. */
4880 if (scev_initialized_p ())
4881 estimate_numbers_of_iterations (loop);
4883 return (get_estimated_loop_iterations (loop, nit));
4886 /* Similar to estimated_loop_iterations, but returns the estimate only
4887 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4888 on the number of iterations of LOOP could not be derived, returns -1. */
4890 HOST_WIDE_INT
4891 estimated_loop_iterations_int (class loop *loop)
4893 widest_int nit;
4894 HOST_WIDE_INT hwi_nit;
4896 if (!estimated_loop_iterations (loop, &nit))
4897 return -1;
4899 if (!wi::fits_shwi_p (nit))
4900 return -1;
4901 hwi_nit = nit.to_shwi ();
4903 return hwi_nit < 0 ? -1 : hwi_nit;
4907 /* Sets NIT to an upper bound for the maximum number of executions of the
4908 latch of the LOOP. If we have no reliable estimate, the function returns
4909 false, otherwise returns true. */
4911 bool
4912 max_loop_iterations (class loop *loop, widest_int *nit)
4914 /* When SCEV information is available, try to update loop iterations
4915 estimate. Otherwise just return whatever we recorded earlier. */
4916 if (scev_initialized_p ())
4917 estimate_numbers_of_iterations (loop);
4919 return get_max_loop_iterations (loop, nit);
4922 /* Similar to max_loop_iterations, but returns the estimate only
4923 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4924 on the number of iterations of LOOP could not be derived, returns -1. */
4926 HOST_WIDE_INT
4927 max_loop_iterations_int (class loop *loop)
4929 widest_int nit;
4930 HOST_WIDE_INT hwi_nit;
4932 if (!max_loop_iterations (loop, &nit))
4933 return -1;
4935 if (!wi::fits_shwi_p (nit))
4936 return -1;
4937 hwi_nit = nit.to_shwi ();
4939 return hwi_nit < 0 ? -1 : hwi_nit;
4942 /* Sets NIT to an likely upper bound for the maximum number of executions of the
4943 latch of the LOOP. If we have no reliable estimate, the function returns
4944 false, otherwise returns true. */
4946 bool
4947 likely_max_loop_iterations (class loop *loop, widest_int *nit)
4949 /* When SCEV information is available, try to update loop iterations
4950 estimate. Otherwise just return whatever we recorded earlier. */
4951 if (scev_initialized_p ())
4952 estimate_numbers_of_iterations (loop);
4954 return get_likely_max_loop_iterations (loop, nit);
4957 /* Similar to max_loop_iterations, but returns the estimate only
4958 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4959 on the number of iterations of LOOP could not be derived, returns -1. */
4961 HOST_WIDE_INT
4962 likely_max_loop_iterations_int (class loop *loop)
4964 widest_int nit;
4965 HOST_WIDE_INT hwi_nit;
4967 if (!likely_max_loop_iterations (loop, &nit))
4968 return -1;
4970 if (!wi::fits_shwi_p (nit))
4971 return -1;
4972 hwi_nit = nit.to_shwi ();
4974 return hwi_nit < 0 ? -1 : hwi_nit;
4977 /* Returns an estimate for the number of executions of statements
4978 in the LOOP. For statements before the loop exit, this exceeds
4979 the number of execution of the latch by one. */
4981 HOST_WIDE_INT
4982 estimated_stmt_executions_int (class loop *loop)
4984 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
4985 HOST_WIDE_INT snit;
4987 if (nit == -1)
4988 return -1;
4990 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
4992 /* If the computation overflows, return -1. */
4993 return snit < 0 ? -1 : snit;
4996 /* Sets NIT to the maximum number of executions of the latch of the
4997 LOOP, plus one. If we have no reliable estimate, the function returns
4998 false, otherwise returns true. */
5000 bool
5001 max_stmt_executions (class loop *loop, widest_int *nit)
5003 widest_int nit_minus_one;
5005 if (!max_loop_iterations (loop, nit))
5006 return false;
5008 nit_minus_one = *nit;
5010 *nit += 1;
5012 return wi::gtu_p (*nit, nit_minus_one);
5015 /* Sets NIT to the estimated maximum number of executions of the latch of the
5016 LOOP, plus one. If we have no likely estimate, the function returns
5017 false, otherwise returns true. */
5019 bool
5020 likely_max_stmt_executions (class loop *loop, widest_int *nit)
5022 widest_int nit_minus_one;
5024 if (!likely_max_loop_iterations (loop, nit))
5025 return false;
5027 nit_minus_one = *nit;
5029 *nit += 1;
5031 return wi::gtu_p (*nit, nit_minus_one);
5034 /* Sets NIT to the estimated number of executions of the latch of the
5035 LOOP, plus one. If we have no reliable estimate, the function returns
5036 false, otherwise returns true. */
5038 bool
5039 estimated_stmt_executions (class loop *loop, widest_int *nit)
5041 widest_int nit_minus_one;
5043 if (!estimated_loop_iterations (loop, nit))
5044 return false;
5046 nit_minus_one = *nit;
5048 *nit += 1;
5050 return wi::gtu_p (*nit, nit_minus_one);
5053 /* Records estimates on numbers of iterations of loops. */
5055 void
5056 estimate_numbers_of_iterations (function *fn)
5058 /* We don't want to issue signed overflow warnings while getting
5059 loop iteration estimates. */
5060 fold_defer_overflow_warnings ();
5062 for (auto loop : loops_list (fn, 0))
5063 estimate_numbers_of_iterations (loop);
5065 fold_undefer_and_ignore_overflow_warnings ();
5068 /* Returns true if statement S1 dominates statement S2. */
5070 bool
5071 stmt_dominates_stmt_p (gimple *s1, gimple *s2)
5073 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
5075 if (!bb1
5076 || s1 == s2)
5077 return true;
5079 if (bb1 == bb2)
5081 gimple_stmt_iterator bsi;
5083 if (gimple_code (s2) == GIMPLE_PHI)
5084 return false;
5086 if (gimple_code (s1) == GIMPLE_PHI)
5087 return true;
5089 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
5090 if (gsi_stmt (bsi) == s1)
5091 return true;
5093 return false;
5096 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
5099 /* Returns true when we can prove that the number of executions of
5100 STMT in the loop is at most NITER, according to the bound on
5101 the number of executions of the statement NITER_BOUND->stmt recorded in
5102 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
5104 ??? This code can become quite a CPU hog - we can have many bounds,
5105 and large basic block forcing stmt_dominates_stmt_p to be queried
5106 many times on a large basic blocks, so the whole thing is O(n^2)
5107 for scev_probably_wraps_p invocation (that can be done n times).
5109 It would make more sense (and give better answers) to remember BB
5110 bounds computed by discover_iteration_bound_by_body_walk. */
5112 static bool
5113 n_of_executions_at_most (gimple *stmt,
5114 class nb_iter_bound *niter_bound,
5115 tree niter)
5117 widest_int bound = niter_bound->bound;
5118 tree nit_type = TREE_TYPE (niter), e;
5119 enum tree_code cmp;
5121 gcc_assert (TYPE_UNSIGNED (nit_type));
5123 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
5124 the number of iterations is small. */
5125 if (!wi::fits_to_tree_p (bound, nit_type))
5126 return false;
5128 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
5129 times. This means that:
5131 -- if NITER_BOUND->is_exit is true, then everything after
5132 it at most NITER_BOUND->bound times.
5134 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
5135 is executed, then NITER_BOUND->stmt is executed as well in the same
5136 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
5138 If we can determine that NITER_BOUND->stmt is always executed
5139 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
5140 We conclude that if both statements belong to the same
5141 basic block and STMT is before NITER_BOUND->stmt and there are no
5142 statements with side effects in between. */
5144 if (niter_bound->is_exit)
5146 if (stmt == niter_bound->stmt
5147 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
5148 return false;
5149 cmp = GE_EXPR;
5151 else
5153 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
5155 gimple_stmt_iterator bsi;
5156 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
5157 || gimple_code (stmt) == GIMPLE_PHI
5158 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
5159 return false;
5161 /* By stmt_dominates_stmt_p we already know that STMT appears
5162 before NITER_BOUND->STMT. Still need to test that the loop
5163 cannot be terinated by a side effect in between. */
5164 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
5165 gsi_next (&bsi))
5166 if (gimple_has_side_effects (gsi_stmt (bsi)))
5167 return false;
5168 bound += 1;
5169 if (bound == 0
5170 || !wi::fits_to_tree_p (bound, nit_type))
5171 return false;
5173 cmp = GT_EXPR;
5176 e = fold_binary (cmp, boolean_type_node,
5177 niter, wide_int_to_tree (nit_type, bound));
5178 return e && integer_nonzerop (e);
5181 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
5183 bool
5184 nowrap_type_p (tree type)
5186 if (ANY_INTEGRAL_TYPE_P (type)
5187 && TYPE_OVERFLOW_UNDEFINED (type))
5188 return true;
5190 if (POINTER_TYPE_P (type))
5191 return true;
5193 return false;
5196 /* Return true if we can prove LOOP is exited before evolution of induction
5197 variable {BASE, STEP} overflows with respect to its type bound. */
5199 static bool
5200 loop_exits_before_overflow (tree base, tree step,
5201 gimple *at_stmt, class loop *loop)
5203 widest_int niter;
5204 struct control_iv *civ;
5205 class nb_iter_bound *bound;
5206 tree e, delta, step_abs, unsigned_base;
5207 tree type = TREE_TYPE (step);
5208 tree unsigned_type, valid_niter;
5210 /* Don't issue signed overflow warnings. */
5211 fold_defer_overflow_warnings ();
5213 /* Compute the number of iterations before we reach the bound of the
5214 type, and verify that the loop is exited before this occurs. */
5215 unsigned_type = unsigned_type_for (type);
5216 unsigned_base = fold_convert (unsigned_type, base);
5218 if (tree_int_cst_sign_bit (step))
5220 tree extreme = fold_convert (unsigned_type,
5221 lower_bound_in_type (type, type));
5222 delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
5223 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
5224 fold_convert (unsigned_type, step));
5226 else
5228 tree extreme = fold_convert (unsigned_type,
5229 upper_bound_in_type (type, type));
5230 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
5231 step_abs = fold_convert (unsigned_type, step);
5234 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
5236 estimate_numbers_of_iterations (loop);
5238 if (max_loop_iterations (loop, &niter)
5239 && wi::fits_to_tree_p (niter, TREE_TYPE (valid_niter))
5240 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
5241 wide_int_to_tree (TREE_TYPE (valid_niter),
5242 niter))) != NULL
5243 && integer_nonzerop (e))
5245 fold_undefer_and_ignore_overflow_warnings ();
5246 return true;
5248 if (at_stmt)
5249 for (bound = loop->bounds; bound; bound = bound->next)
5251 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
5253 fold_undefer_and_ignore_overflow_warnings ();
5254 return true;
5257 fold_undefer_and_ignore_overflow_warnings ();
5259 /* Try to prove loop is exited before {base, step} overflows with the
5260 help of analyzed loop control IV. This is done only for IVs with
5261 constant step because otherwise we don't have the information. */
5262 if (TREE_CODE (step) == INTEGER_CST)
5264 for (civ = loop->control_ivs; civ; civ = civ->next)
5266 enum tree_code code;
5267 tree civ_type = TREE_TYPE (civ->step);
5269 /* Have to consider type difference because operand_equal_p ignores
5270 that for constants. */
5271 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
5272 || element_precision (type) != element_precision (civ_type))
5273 continue;
5275 /* Only consider control IV with same step. */
5276 if (!operand_equal_p (step, civ->step, 0))
5277 continue;
5279 /* Done proving if this is a no-overflow control IV. */
5280 if (operand_equal_p (base, civ->base, 0))
5281 return true;
5283 /* Control IV is recorded after expanding simple operations,
5284 Here we expand base and compare it too. */
5285 tree expanded_base = expand_simple_operations (base);
5286 if (operand_equal_p (expanded_base, civ->base, 0))
5287 return true;
5289 /* If this is a before stepping control IV, in other words, we have
5291 {civ_base, step} = {base + step, step}
5293 Because civ {base + step, step} doesn't overflow during loop
5294 iterations, {base, step} will not overflow if we can prove the
5295 operation "base + step" does not overflow. Specifically, we try
5296 to prove below conditions are satisfied:
5298 base <= UPPER_BOUND (type) - step ;;step > 0
5299 base >= LOWER_BOUND (type) - step ;;step < 0
5301 by proving the reverse conditions are false using loop's initial
5302 condition. */
5303 if (POINTER_TYPE_P (TREE_TYPE (base)))
5304 code = POINTER_PLUS_EXPR;
5305 else
5306 code = PLUS_EXPR;
5308 tree stepped = fold_build2 (code, TREE_TYPE (base), base, step);
5309 tree expanded_stepped = fold_build2 (code, TREE_TYPE (base),
5310 expanded_base, step);
5311 if (operand_equal_p (stepped, civ->base, 0)
5312 || operand_equal_p (expanded_stepped, civ->base, 0))
5314 tree extreme;
5316 if (tree_int_cst_sign_bit (step))
5318 code = LT_EXPR;
5319 extreme = lower_bound_in_type (type, type);
5321 else
5323 code = GT_EXPR;
5324 extreme = upper_bound_in_type (type, type);
5326 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
5327 e = fold_build2 (code, boolean_type_node, base, extreme);
5328 e = simplify_using_initial_conditions (loop, e);
5329 if (integer_zerop (e))
5330 return true;
5335 return false;
5338 /* VAR is scev variable whose evolution part is constant STEP, this function
5339 proves that VAR can't overflow by using value range info. If VAR's value
5340 range is [MIN, MAX], it can be proven by:
5341 MAX + step doesn't overflow ; if step > 0
5343 MIN + step doesn't underflow ; if step < 0.
5345 We can only do this if var is computed in every loop iteration, i.e, var's
5346 definition has to dominate loop latch. Consider below example:
5349 unsigned int i;
5351 <bb 3>:
5353 <bb 4>:
5354 # RANGE [0, 4294967294] NONZERO 65535
5355 # i_21 = PHI <0(3), i_18(9)>
5356 if (i_21 != 0)
5357 goto <bb 6>;
5358 else
5359 goto <bb 8>;
5361 <bb 6>:
5362 # RANGE [0, 65533] NONZERO 65535
5363 _6 = i_21 + 4294967295;
5364 # RANGE [0, 65533] NONZERO 65535
5365 _7 = (long unsigned int) _6;
5366 # RANGE [0, 524264] NONZERO 524280
5367 _8 = _7 * 8;
5368 # PT = nonlocal escaped
5369 _9 = a_14 + _8;
5370 *_9 = 0;
5372 <bb 8>:
5373 # RANGE [1, 65535] NONZERO 65535
5374 i_18 = i_21 + 1;
5375 if (i_18 >= 65535)
5376 goto <bb 10>;
5377 else
5378 goto <bb 9>;
5380 <bb 9>:
5381 goto <bb 4>;
5383 <bb 10>:
5384 return;
5387 VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
5388 can't use _6 to prove no-overlfow for _7. In fact, var _7 takes value
5389 sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
5390 (4294967295, 4294967296, ...). */
5392 static bool
5393 scev_var_range_cant_overflow (tree var, tree step, class loop *loop)
5395 tree type;
5396 wide_int minv, maxv, diff, step_wi;
5398 if (TREE_CODE (step) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (var)))
5399 return false;
5401 /* Check if VAR evaluates in every loop iteration. It's not the case
5402 if VAR is default definition or does not dominate loop's latch. */
5403 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
5404 if (!def_bb || !dominated_by_p (CDI_DOMINATORS, loop->latch, def_bb))
5405 return false;
5407 Value_Range r (TREE_TYPE (var));
5408 get_range_query (cfun)->range_of_expr (r, var);
5409 if (r.varying_p () || r.undefined_p ())
5410 return false;
5412 /* VAR is a scev whose evolution part is STEP and value range info
5413 is [MIN, MAX], we can prove its no-overflowness by conditions:
5415 type_MAX - MAX >= step ; if step > 0
5416 MIN - type_MIN >= |step| ; if step < 0.
5418 Or VAR must take value outside of value range, which is not true. */
5419 step_wi = wi::to_wide (step);
5420 type = TREE_TYPE (var);
5421 if (tree_int_cst_sign_bit (step))
5423 diff = r.lower_bound () - wi::to_wide (lower_bound_in_type (type, type));
5424 step_wi = - step_wi;
5426 else
5427 diff = wi::to_wide (upper_bound_in_type (type, type)) - r.upper_bound ();
5429 return (wi::geu_p (diff, step_wi));
5432 /* Return false only when the induction variable BASE + STEP * I is
5433 known to not overflow: i.e. when the number of iterations is small
5434 enough with respect to the step and initial condition in order to
5435 keep the evolution confined in TYPEs bounds. Return true when the
5436 iv is known to overflow or when the property is not computable.
5438 USE_OVERFLOW_SEMANTICS is true if this function should assume that
5439 the rules for overflow of the given language apply (e.g., that signed
5440 arithmetics in C does not overflow).
5442 If VAR is a ssa variable, this function also returns false if VAR can
5443 be proven not overflow with value range info. */
5445 bool
5446 scev_probably_wraps_p (tree var, tree base, tree step,
5447 gimple *at_stmt, class loop *loop,
5448 bool use_overflow_semantics)
5450 /* FIXME: We really need something like
5451 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
5453 We used to test for the following situation that frequently appears
5454 during address arithmetics:
5456 D.1621_13 = (long unsigned intD.4) D.1620_12;
5457 D.1622_14 = D.1621_13 * 8;
5458 D.1623_15 = (doubleD.29 *) D.1622_14;
5460 And derived that the sequence corresponding to D_14
5461 can be proved to not wrap because it is used for computing a
5462 memory access; however, this is not really the case -- for example,
5463 if D_12 = (unsigned char) [254,+,1], then D_14 has values
5464 2032, 2040, 0, 8, ..., but the code is still legal. */
5466 if (chrec_contains_undetermined (base)
5467 || chrec_contains_undetermined (step))
5468 return true;
5470 if (integer_zerop (step))
5471 return false;
5473 /* If we can use the fact that signed and pointer arithmetics does not
5474 wrap, we are done. */
5475 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
5476 return false;
5478 /* To be able to use estimates on number of iterations of the loop,
5479 we must have an upper bound on the absolute value of the step. */
5480 if (TREE_CODE (step) != INTEGER_CST)
5481 return true;
5483 /* Check if var can be proven not overflow with value range info. */
5484 if (var && TREE_CODE (var) == SSA_NAME
5485 && scev_var_range_cant_overflow (var, step, loop))
5486 return false;
5488 if (loop_exits_before_overflow (base, step, at_stmt, loop))
5489 return false;
5491 /* At this point we still don't have a proof that the iv does not
5492 overflow: give up. */
5493 return true;
5496 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
5498 void
5499 free_numbers_of_iterations_estimates (class loop *loop)
5501 struct control_iv *civ;
5502 class nb_iter_bound *bound;
5504 loop->nb_iterations = NULL;
5505 loop->estimate_state = EST_NOT_COMPUTED;
5506 for (bound = loop->bounds; bound;)
5508 class nb_iter_bound *next = bound->next;
5509 ggc_free (bound);
5510 bound = next;
5512 loop->bounds = NULL;
5514 for (civ = loop->control_ivs; civ;)
5516 struct control_iv *next = civ->next;
5517 ggc_free (civ);
5518 civ = next;
5520 loop->control_ivs = NULL;
5523 /* Frees the information on upper bounds on numbers of iterations of loops. */
5525 void
5526 free_numbers_of_iterations_estimates (function *fn)
5528 for (auto loop : loops_list (fn, 0))
5529 free_numbers_of_iterations_estimates (loop);
5532 /* Substitute value VAL for ssa name NAME inside expressions held
5533 at LOOP. */
5535 void
5536 substitute_in_loop_info (class loop *loop, tree name, tree val)
5538 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);