2018-03-02 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ada / sem_res.adb
bloba4d6a26db17e6df2691139a0a70fab2dddc40849
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
121 -- N is the node for a logical operator. If the operator is predefined, and
122 -- the root type of the operands is Standard.Boolean, then a check is made
123 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
124 -- the style check for Style_Check_Boolean_And_Or.
126 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
127 -- N is either an indexed component or a selected component. This function
128 -- returns true if the prefix refers to an object that has an address
129 -- clause (the case in which we may want to issue a warning).
131 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
132 -- Determine whether E is an access type declared by an access declaration,
133 -- and not an (anonymous) allocator type.
135 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
136 -- Utility to check whether the entity for an operator is a predefined
137 -- operator, in which case the expression is left as an operator in the
138 -- tree (else it is rewritten into a call). An instance of an intrinsic
139 -- conversion operation may be given an operator name, but is not treated
140 -- like an operator. Note that an operator that is an imported back-end
141 -- builtin has convention Intrinsic, but is expected to be rewritten into
142 -- a call, so such an operator is not treated as predefined by this
143 -- predicate.
145 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
146 -- If a default expression in entry call N depends on the discriminants
147 -- of the task, it must be replaced with a reference to the discriminant
148 -- of the task being called.
150 procedure Resolve_Op_Concat_Arg
151 (N : Node_Id;
152 Arg : Node_Id;
153 Typ : Entity_Id;
154 Is_Comp : Boolean);
155 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
156 -- concatenation operator. The operand is either of the array type or of
157 -- the component type. If the operand is an aggregate, and the component
158 -- type is composite, this is ambiguous if component type has aggregates.
160 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
161 -- Does the first part of the work of Resolve_Op_Concat
163 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
164 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
165 -- has been resolved. See Resolve_Op_Concat for details.
167 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
168 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
169 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
170 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
171 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
172 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
173 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
174 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
204 function Operator_Kind
205 (Op_Name : Name_Id;
206 Is_Binary : Boolean) return Node_Kind;
207 -- Utility to map the name of an operator into the corresponding Node. Used
208 -- by other node rewriting procedures.
210 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
211 -- Resolve actuals of call, and add default expressions for missing ones.
212 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
213 -- called subprogram.
215 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
216 -- Called from Resolve_Call, when the prefix denotes an entry or element
217 -- of entry family. Actuals are resolved as for subprograms, and the node
218 -- is rebuilt as an entry call. Also called for protected operations. Typ
219 -- is the context type, which is used when the operation is a protected
220 -- function with no arguments, and the return value is indexed.
222 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
223 -- A call to a user-defined intrinsic operator is rewritten as a call to
224 -- the corresponding predefined operator, with suitable conversions. Note
225 -- that this applies only for intrinsic operators that denote predefined
226 -- operators, not ones that are intrinsic imports of back-end builtins.
228 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
229 -- Ditto, for arithmetic unary operators
231 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
232 -- If an operator node resolves to a call to a user-defined operator,
233 -- rewrite the node as a function call.
235 procedure Make_Call_Into_Operator
236 (N : Node_Id;
237 Typ : Entity_Id;
238 Op_Id : Entity_Id);
239 -- Inverse transformation: if an operator is given in functional notation,
240 -- then after resolving the node, transform into an operator node, so that
241 -- operands are resolved properly. Recall that predefined operators do not
242 -- have a full signature and special resolution rules apply.
244 procedure Rewrite_Renamed_Operator
245 (N : Node_Id;
246 Op : Entity_Id;
247 Typ : Entity_Id);
248 -- An operator can rename another, e.g. in an instantiation. In that
249 -- case, the proper operator node must be constructed and resolved.
251 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
252 -- The String_Literal_Subtype is built for all strings that are not
253 -- operands of a static concatenation operation. If the argument is not
254 -- a N_String_Literal node, then the call has no effect.
256 procedure Set_Slice_Subtype (N : Node_Id);
257 -- Build subtype of array type, with the range specified by the slice
259 procedure Simplify_Type_Conversion (N : Node_Id);
260 -- Called after N has been resolved and evaluated, but before range checks
261 -- have been applied. Currently simplifies a combination of floating-point
262 -- to integer conversion and Rounding or Truncation attribute.
264 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
265 -- A universal_fixed expression in an universal context is unambiguous if
266 -- there is only one applicable fixed point type. Determining whether there
267 -- is only one requires a search over all visible entities, and happens
268 -- only in very pathological cases (see 6115-006).
270 -------------------------
271 -- Ambiguous_Character --
272 -------------------------
274 procedure Ambiguous_Character (C : Node_Id) is
275 E : Entity_Id;
277 begin
278 if Nkind (C) = N_Character_Literal then
279 Error_Msg_N ("ambiguous character literal", C);
281 -- First the ones in Standard
283 Error_Msg_N ("\\possible interpretation: Character!", C);
284 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
286 -- Include Wide_Wide_Character in Ada 2005 mode
288 if Ada_Version >= Ada_2005 then
289 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
290 end if;
292 -- Now any other types that match
294 E := Current_Entity (C);
295 while Present (E) loop
296 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
297 E := Homonym (E);
298 end loop;
299 end if;
300 end Ambiguous_Character;
302 -------------------------
303 -- Analyze_And_Resolve --
304 -------------------------
306 procedure Analyze_And_Resolve (N : Node_Id) is
307 begin
308 Analyze (N);
309 Resolve (N);
310 end Analyze_And_Resolve;
312 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
313 begin
314 Analyze (N);
315 Resolve (N, Typ);
316 end Analyze_And_Resolve;
318 -- Versions with check(s) suppressed
320 procedure Analyze_And_Resolve
321 (N : Node_Id;
322 Typ : Entity_Id;
323 Suppress : Check_Id)
325 Scop : constant Entity_Id := Current_Scope;
327 begin
328 if Suppress = All_Checks then
329 declare
330 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
331 begin
332 Scope_Suppress.Suppress := (others => True);
333 Analyze_And_Resolve (N, Typ);
334 Scope_Suppress.Suppress := Sva;
335 end;
337 else
338 declare
339 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
340 begin
341 Scope_Suppress.Suppress (Suppress) := True;
342 Analyze_And_Resolve (N, Typ);
343 Scope_Suppress.Suppress (Suppress) := Svg;
344 end;
345 end if;
347 if Current_Scope /= Scop
348 and then Scope_Is_Transient
349 then
350 -- This can only happen if a transient scope was created for an inner
351 -- expression, which will be removed upon completion of the analysis
352 -- of an enclosing construct. The transient scope must have the
353 -- suppress status of the enclosing environment, not of this Analyze
354 -- call.
356 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
357 Scope_Suppress;
358 end if;
359 end Analyze_And_Resolve;
361 procedure Analyze_And_Resolve
362 (N : Node_Id;
363 Suppress : Check_Id)
365 Scop : constant Entity_Id := Current_Scope;
367 begin
368 if Suppress = All_Checks then
369 declare
370 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
371 begin
372 Scope_Suppress.Suppress := (others => True);
373 Analyze_And_Resolve (N);
374 Scope_Suppress.Suppress := Sva;
375 end;
377 else
378 declare
379 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
380 begin
381 Scope_Suppress.Suppress (Suppress) := True;
382 Analyze_And_Resolve (N);
383 Scope_Suppress.Suppress (Suppress) := Svg;
384 end;
385 end if;
387 if Current_Scope /= Scop and then Scope_Is_Transient then
388 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
389 Scope_Suppress;
390 end if;
391 end Analyze_And_Resolve;
393 ----------------------------
394 -- Check_Discriminant_Use --
395 ----------------------------
397 procedure Check_Discriminant_Use (N : Node_Id) is
398 PN : constant Node_Id := Parent (N);
399 Disc : constant Entity_Id := Entity (N);
400 P : Node_Id;
401 D : Node_Id;
403 begin
404 -- Any use in a spec-expression is legal
406 if In_Spec_Expression then
407 null;
409 elsif Nkind (PN) = N_Range then
411 -- Discriminant cannot be used to constrain a scalar type
413 P := Parent (PN);
415 if Nkind (P) = N_Range_Constraint
416 and then Nkind (Parent (P)) = N_Subtype_Indication
417 and then Nkind (Parent (Parent (P))) = N_Component_Definition
418 then
419 Error_Msg_N ("discriminant cannot constrain scalar type", N);
421 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
423 -- The following check catches the unusual case where a
424 -- discriminant appears within an index constraint that is part
425 -- of a larger expression within a constraint on a component,
426 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
427 -- check case of record components, and note that a similar check
428 -- should also apply in the case of discriminant constraints
429 -- below. ???
431 -- Note that the check for N_Subtype_Declaration below is to
432 -- detect the valid use of discriminants in the constraints of a
433 -- subtype declaration when this subtype declaration appears
434 -- inside the scope of a record type (which is syntactically
435 -- illegal, but which may be created as part of derived type
436 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
437 -- for more info.
439 if Ekind (Current_Scope) = E_Record_Type
440 and then Scope (Disc) = Current_Scope
441 and then not
442 (Nkind (Parent (P)) = N_Subtype_Indication
443 and then
444 Nkind_In (Parent (Parent (P)), N_Component_Definition,
445 N_Subtype_Declaration)
446 and then Paren_Count (N) = 0)
447 then
448 Error_Msg_N
449 ("discriminant must appear alone in component constraint", N);
450 return;
451 end if;
453 -- Detect a common error:
455 -- type R (D : Positive := 100) is record
456 -- Name : String (1 .. D);
457 -- end record;
459 -- The default value causes an object of type R to be allocated
460 -- with room for Positive'Last characters. The RM does not mandate
461 -- the allocation of the maximum size, but that is what GNAT does
462 -- so we should warn the programmer that there is a problem.
464 Check_Large : declare
465 SI : Node_Id;
466 T : Entity_Id;
467 TB : Node_Id;
468 CB : Entity_Id;
470 function Large_Storage_Type (T : Entity_Id) return Boolean;
471 -- Return True if type T has a large enough range that any
472 -- array whose index type covered the whole range of the type
473 -- would likely raise Storage_Error.
475 ------------------------
476 -- Large_Storage_Type --
477 ------------------------
479 function Large_Storage_Type (T : Entity_Id) return Boolean is
480 begin
481 -- The type is considered large if its bounds are known at
482 -- compile time and if it requires at least as many bits as
483 -- a Positive to store the possible values.
485 return Compile_Time_Known_Value (Type_Low_Bound (T))
486 and then Compile_Time_Known_Value (Type_High_Bound (T))
487 and then
488 Minimum_Size (T, Biased => True) >=
489 RM_Size (Standard_Positive);
490 end Large_Storage_Type;
492 -- Start of processing for Check_Large
494 begin
495 -- Check that the Disc has a large range
497 if not Large_Storage_Type (Etype (Disc)) then
498 goto No_Danger;
499 end if;
501 -- If the enclosing type is limited, we allocate only the
502 -- default value, not the maximum, and there is no need for
503 -- a warning.
505 if Is_Limited_Type (Scope (Disc)) then
506 goto No_Danger;
507 end if;
509 -- Check that it is the high bound
511 if N /= High_Bound (PN)
512 or else No (Discriminant_Default_Value (Disc))
513 then
514 goto No_Danger;
515 end if;
517 -- Check the array allows a large range at this bound. First
518 -- find the array
520 SI := Parent (P);
522 if Nkind (SI) /= N_Subtype_Indication then
523 goto No_Danger;
524 end if;
526 T := Entity (Subtype_Mark (SI));
528 if not Is_Array_Type (T) then
529 goto No_Danger;
530 end if;
532 -- Next, find the dimension
534 TB := First_Index (T);
535 CB := First (Constraints (P));
536 while True
537 and then Present (TB)
538 and then Present (CB)
539 and then CB /= PN
540 loop
541 Next_Index (TB);
542 Next (CB);
543 end loop;
545 if CB /= PN then
546 goto No_Danger;
547 end if;
549 -- Now, check the dimension has a large range
551 if not Large_Storage_Type (Etype (TB)) then
552 goto No_Danger;
553 end if;
555 -- Warn about the danger
557 Error_Msg_N
558 ("??creation of & object may raise Storage_Error!",
559 Scope (Disc));
561 <<No_Danger>>
562 null;
564 end Check_Large;
565 end if;
567 -- Legal case is in index or discriminant constraint
569 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
570 N_Discriminant_Association)
571 then
572 if Paren_Count (N) > 0 then
573 Error_Msg_N
574 ("discriminant in constraint must appear alone", N);
576 elsif Nkind (N) = N_Expanded_Name
577 and then Comes_From_Source (N)
578 then
579 Error_Msg_N
580 ("discriminant must appear alone as a direct name", N);
581 end if;
583 return;
585 -- Otherwise, context is an expression. It should not be within (i.e. a
586 -- subexpression of) a constraint for a component.
588 else
589 D := PN;
590 P := Parent (PN);
591 while not Nkind_In (P, N_Component_Declaration,
592 N_Subtype_Indication,
593 N_Entry_Declaration)
594 loop
595 D := P;
596 P := Parent (P);
597 exit when No (P);
598 end loop;
600 -- If the discriminant is used in an expression that is a bound of a
601 -- scalar type, an Itype is created and the bounds are attached to
602 -- its range, not to the original subtype indication. Such use is of
603 -- course a double fault.
605 if (Nkind (P) = N_Subtype_Indication
606 and then Nkind_In (Parent (P), N_Component_Definition,
607 N_Derived_Type_Definition)
608 and then D = Constraint (P))
610 -- The constraint itself may be given by a subtype indication,
611 -- rather than by a more common discrete range.
613 or else (Nkind (P) = N_Subtype_Indication
614 and then
615 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
616 or else Nkind (P) = N_Entry_Declaration
617 or else Nkind (D) = N_Defining_Identifier
618 then
619 Error_Msg_N
620 ("discriminant in constraint must appear alone", N);
621 end if;
622 end if;
623 end Check_Discriminant_Use;
625 --------------------------------
626 -- Check_For_Visible_Operator --
627 --------------------------------
629 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
630 begin
631 if Is_Invisible_Operator (N, T) then
632 Error_Msg_NE -- CODEFIX
633 ("operator for} is not directly visible!", N, First_Subtype (T));
634 Error_Msg_N -- CODEFIX
635 ("use clause would make operation legal!", N);
636 end if;
637 end Check_For_Visible_Operator;
639 ----------------------------------
640 -- Check_Fully_Declared_Prefix --
641 ----------------------------------
643 procedure Check_Fully_Declared_Prefix
644 (Typ : Entity_Id;
645 Pref : Node_Id)
647 begin
648 -- Check that the designated type of the prefix of a dereference is
649 -- not an incomplete type. This cannot be done unconditionally, because
650 -- dereferences of private types are legal in default expressions. This
651 -- case is taken care of in Check_Fully_Declared, called below. There
652 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
654 -- This consideration also applies to similar checks for allocators,
655 -- qualified expressions, and type conversions.
657 -- An additional exception concerns other per-object expressions that
658 -- are not directly related to component declarations, in particular
659 -- representation pragmas for tasks. These will be per-object
660 -- expressions if they depend on discriminants or some global entity.
661 -- If the task has access discriminants, the designated type may be
662 -- incomplete at the point the expression is resolved. This resolution
663 -- takes place within the body of the initialization procedure, where
664 -- the discriminant is replaced by its discriminal.
666 if Is_Entity_Name (Pref)
667 and then Ekind (Entity (Pref)) = E_In_Parameter
668 then
669 null;
671 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
672 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
673 -- Analyze_Object_Renaming, and Freeze_Entity.
675 elsif Ada_Version >= Ada_2005
676 and then Is_Entity_Name (Pref)
677 and then Is_Access_Type (Etype (Pref))
678 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
679 E_Incomplete_Type
680 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
681 then
682 null;
683 else
684 Check_Fully_Declared (Typ, Parent (Pref));
685 end if;
686 end Check_Fully_Declared_Prefix;
688 ------------------------------
689 -- Check_Infinite_Recursion --
690 ------------------------------
692 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
693 P : Node_Id;
694 C : Node_Id;
696 function Same_Argument_List return Boolean;
697 -- Check whether list of actuals is identical to list of formals of
698 -- called function (which is also the enclosing scope).
700 ------------------------
701 -- Same_Argument_List --
702 ------------------------
704 function Same_Argument_List return Boolean is
705 A : Node_Id;
706 F : Entity_Id;
707 Subp : Entity_Id;
709 begin
710 if not Is_Entity_Name (Name (N)) then
711 return False;
712 else
713 Subp := Entity (Name (N));
714 end if;
716 F := First_Formal (Subp);
717 A := First_Actual (N);
718 while Present (F) and then Present (A) loop
719 if not Is_Entity_Name (A) or else Entity (A) /= F then
720 return False;
721 end if;
723 Next_Actual (A);
724 Next_Formal (F);
725 end loop;
727 return True;
728 end Same_Argument_List;
730 -- Start of processing for Check_Infinite_Recursion
732 begin
733 -- Special case, if this is a procedure call and is a call to the
734 -- current procedure with the same argument list, then this is for
735 -- sure an infinite recursion and we insert a call to raise SE.
737 if Is_List_Member (N)
738 and then List_Length (List_Containing (N)) = 1
739 and then Same_Argument_List
740 then
741 declare
742 P : constant Node_Id := Parent (N);
743 begin
744 if Nkind (P) = N_Handled_Sequence_Of_Statements
745 and then Nkind (Parent (P)) = N_Subprogram_Body
746 and then Is_Empty_List (Declarations (Parent (P)))
747 then
748 Error_Msg_Warn := SPARK_Mode /= On;
749 Error_Msg_N ("!infinite recursion<<", N);
750 Error_Msg_N ("\!Storage_Error [<<", N);
751 Insert_Action (N,
752 Make_Raise_Storage_Error (Sloc (N),
753 Reason => SE_Infinite_Recursion));
754 return True;
755 end if;
756 end;
757 end if;
759 -- If not that special case, search up tree, quitting if we reach a
760 -- construct (e.g. a conditional) that tells us that this is not a
761 -- case for an infinite recursion warning.
763 C := N;
764 loop
765 P := Parent (C);
767 -- If no parent, then we were not inside a subprogram, this can for
768 -- example happen when processing certain pragmas in a spec. Just
769 -- return False in this case.
771 if No (P) then
772 return False;
773 end if;
775 -- Done if we get to subprogram body, this is definitely an infinite
776 -- recursion case if we did not find anything to stop us.
778 exit when Nkind (P) = N_Subprogram_Body;
780 -- If appearing in conditional, result is false
782 if Nkind_In (P, N_Or_Else,
783 N_And_Then,
784 N_Case_Expression,
785 N_Case_Statement,
786 N_If_Expression,
787 N_If_Statement)
788 then
789 return False;
791 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
792 and then C /= First (Statements (P))
793 then
794 -- If the call is the expression of a return statement and the
795 -- actuals are identical to the formals, it's worth a warning.
796 -- However, we skip this if there is an immediately preceding
797 -- raise statement, since the call is never executed.
799 -- Furthermore, this corresponds to a common idiom:
801 -- function F (L : Thing) return Boolean is
802 -- begin
803 -- raise Program_Error;
804 -- return F (L);
805 -- end F;
807 -- for generating a stub function
809 if Nkind (Parent (N)) = N_Simple_Return_Statement
810 and then Same_Argument_List
811 then
812 exit when not Is_List_Member (Parent (N));
814 -- OK, return statement is in a statement list, look for raise
816 declare
817 Nod : Node_Id;
819 begin
820 -- Skip past N_Freeze_Entity nodes generated by expansion
822 Nod := Prev (Parent (N));
823 while Present (Nod)
824 and then Nkind (Nod) = N_Freeze_Entity
825 loop
826 Prev (Nod);
827 end loop;
829 -- If no raise statement, give warning. We look at the
830 -- original node, because in the case of "raise ... with
831 -- ...", the node has been transformed into a call.
833 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
834 and then
835 (Nkind (Nod) not in N_Raise_xxx_Error
836 or else Present (Condition (Nod)));
837 end;
838 end if;
840 return False;
842 else
843 C := P;
844 end if;
845 end loop;
847 Error_Msg_Warn := SPARK_Mode /= On;
848 Error_Msg_N ("!possible infinite recursion<<", N);
849 Error_Msg_N ("\!??Storage_Error ]<<", N);
851 return True;
852 end Check_Infinite_Recursion;
854 ---------------------------------------
855 -- Check_No_Direct_Boolean_Operators --
856 ---------------------------------------
858 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
859 begin
860 if Scope (Entity (N)) = Standard_Standard
861 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
862 then
863 -- Restriction only applies to original source code
865 if Comes_From_Source (N) then
866 Check_Restriction (No_Direct_Boolean_Operators, N);
867 end if;
868 end if;
870 -- Do style check (but skip if in instance, error is on template)
872 if Style_Check then
873 if not In_Instance then
874 Check_Boolean_Operator (N);
875 end if;
876 end if;
877 end Check_No_Direct_Boolean_Operators;
879 ------------------------------
880 -- Check_Parameterless_Call --
881 ------------------------------
883 procedure Check_Parameterless_Call (N : Node_Id) is
884 Nam : Node_Id;
886 function Prefix_Is_Access_Subp return Boolean;
887 -- If the prefix is of an access_to_subprogram type, the node must be
888 -- rewritten as a call. Ditto if the prefix is overloaded and all its
889 -- interpretations are access to subprograms.
891 ---------------------------
892 -- Prefix_Is_Access_Subp --
893 ---------------------------
895 function Prefix_Is_Access_Subp return Boolean is
896 I : Interp_Index;
897 It : Interp;
899 begin
900 -- If the context is an attribute reference that can apply to
901 -- functions, this is never a parameterless call (RM 4.1.4(6)).
903 if Nkind (Parent (N)) = N_Attribute_Reference
904 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
905 Name_Code_Address,
906 Name_Access)
907 then
908 return False;
909 end if;
911 if not Is_Overloaded (N) then
912 return
913 Ekind (Etype (N)) = E_Subprogram_Type
914 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
915 else
916 Get_First_Interp (N, I, It);
917 while Present (It.Typ) loop
918 if Ekind (It.Typ) /= E_Subprogram_Type
919 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
920 then
921 return False;
922 end if;
924 Get_Next_Interp (I, It);
925 end loop;
927 return True;
928 end if;
929 end Prefix_Is_Access_Subp;
931 -- Start of processing for Check_Parameterless_Call
933 begin
934 -- Defend against junk stuff if errors already detected
936 if Total_Errors_Detected /= 0 then
937 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
938 return;
939 elsif Nkind (N) in N_Has_Chars
940 and then not Is_Valid_Name (Chars (N))
941 then
942 return;
943 end if;
945 Require_Entity (N);
946 end if;
948 -- If the context expects a value, and the name is a procedure, this is
949 -- most likely a missing 'Access. Don't try to resolve the parameterless
950 -- call, error will be caught when the outer call is analyzed.
952 if Is_Entity_Name (N)
953 and then Ekind (Entity (N)) = E_Procedure
954 and then not Is_Overloaded (N)
955 and then
956 Nkind_In (Parent (N), N_Parameter_Association,
957 N_Function_Call,
958 N_Procedure_Call_Statement)
959 then
960 return;
961 end if;
963 -- Rewrite as call if overloadable entity that is (or could be, in the
964 -- overloaded case) a function call. If we know for sure that the entity
965 -- is an enumeration literal, we do not rewrite it.
967 -- If the entity is the name of an operator, it cannot be a call because
968 -- operators cannot have default parameters. In this case, this must be
969 -- a string whose contents coincide with an operator name. Set the kind
970 -- of the node appropriately.
972 if (Is_Entity_Name (N)
973 and then Nkind (N) /= N_Operator_Symbol
974 and then Is_Overloadable (Entity (N))
975 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
976 or else Is_Overloaded (N)))
978 -- Rewrite as call if it is an explicit dereference of an expression of
979 -- a subprogram access type, and the subprogram type is not that of a
980 -- procedure or entry.
982 or else
983 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
985 -- Rewrite as call if it is a selected component which is a function,
986 -- this is the case of a call to a protected function (which may be
987 -- overloaded with other protected operations).
989 or else
990 (Nkind (N) = N_Selected_Component
991 and then (Ekind (Entity (Selector_Name (N))) = E_Function
992 or else
993 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
994 E_Procedure)
995 and then Is_Overloaded (Selector_Name (N)))))
997 -- If one of the above three conditions is met, rewrite as call. Apply
998 -- the rewriting only once.
1000 then
1001 if Nkind (Parent (N)) /= N_Function_Call
1002 or else N /= Name (Parent (N))
1003 then
1005 -- This may be a prefixed call that was not fully analyzed, e.g.
1006 -- an actual in an instance.
1008 if Ada_Version >= Ada_2005
1009 and then Nkind (N) = N_Selected_Component
1010 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1011 then
1012 Analyze_Selected_Component (N);
1014 if Nkind (N) /= N_Selected_Component then
1015 return;
1016 end if;
1017 end if;
1019 -- The node is the name of the parameterless call. Preserve its
1020 -- descendants, which may be complex expressions.
1022 Nam := Relocate_Node (N);
1024 -- If overloaded, overload set belongs to new copy
1026 Save_Interps (N, Nam);
1028 -- Change node to parameterless function call (note that the
1029 -- Parameter_Associations associations field is left set to Empty,
1030 -- its normal default value since there are no parameters)
1032 Change_Node (N, N_Function_Call);
1033 Set_Name (N, Nam);
1034 Set_Sloc (N, Sloc (Nam));
1035 Analyze_Call (N);
1036 end if;
1038 elsif Nkind (N) = N_Parameter_Association then
1039 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1041 elsif Nkind (N) = N_Operator_Symbol then
1042 Change_Operator_Symbol_To_String_Literal (N);
1043 Set_Is_Overloaded (N, False);
1044 Set_Etype (N, Any_String);
1045 end if;
1046 end Check_Parameterless_Call;
1048 --------------------------------
1049 -- Is_Atomic_Ref_With_Address --
1050 --------------------------------
1052 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1053 Pref : constant Node_Id := Prefix (N);
1055 begin
1056 if not Is_Entity_Name (Pref) then
1057 return False;
1059 else
1060 declare
1061 Pent : constant Entity_Id := Entity (Pref);
1062 Ptyp : constant Entity_Id := Etype (Pent);
1063 begin
1064 return not Is_Access_Type (Ptyp)
1065 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1066 and then Present (Address_Clause (Pent));
1067 end;
1068 end if;
1069 end Is_Atomic_Ref_With_Address;
1071 -----------------------------
1072 -- Is_Definite_Access_Type --
1073 -----------------------------
1075 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1076 Btyp : constant Entity_Id := Base_Type (E);
1077 begin
1078 return Ekind (Btyp) = E_Access_Type
1079 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1080 and then Comes_From_Source (Btyp));
1081 end Is_Definite_Access_Type;
1083 ----------------------
1084 -- Is_Predefined_Op --
1085 ----------------------
1087 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1088 begin
1089 -- Predefined operators are intrinsic subprograms
1091 if not Is_Intrinsic_Subprogram (Nam) then
1092 return False;
1093 end if;
1095 -- A call to a back-end builtin is never a predefined operator
1097 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1098 return False;
1099 end if;
1101 return not Is_Generic_Instance (Nam)
1102 and then Chars (Nam) in Any_Operator_Name
1103 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1104 end Is_Predefined_Op;
1106 -----------------------------
1107 -- Make_Call_Into_Operator --
1108 -----------------------------
1110 procedure Make_Call_Into_Operator
1111 (N : Node_Id;
1112 Typ : Entity_Id;
1113 Op_Id : Entity_Id)
1115 Op_Name : constant Name_Id := Chars (Op_Id);
1116 Act1 : Node_Id := First_Actual (N);
1117 Act2 : Node_Id := Next_Actual (Act1);
1118 Error : Boolean := False;
1119 Func : constant Entity_Id := Entity (Name (N));
1120 Is_Binary : constant Boolean := Present (Act2);
1121 Op_Node : Node_Id;
1122 Opnd_Type : Entity_Id := Empty;
1123 Orig_Type : Entity_Id := Empty;
1124 Pack : Entity_Id;
1126 type Kind_Test is access function (E : Entity_Id) return Boolean;
1128 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1129 -- If the operand is not universal, and the operator is given by an
1130 -- expanded name, verify that the operand has an interpretation with a
1131 -- type defined in the given scope of the operator.
1133 function Type_In_P (Test : Kind_Test) return Entity_Id;
1134 -- Find a type of the given class in package Pack that contains the
1135 -- operator.
1137 ---------------------------
1138 -- Operand_Type_In_Scope --
1139 ---------------------------
1141 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1142 Nod : constant Node_Id := Right_Opnd (Op_Node);
1143 I : Interp_Index;
1144 It : Interp;
1146 begin
1147 if not Is_Overloaded (Nod) then
1148 return Scope (Base_Type (Etype (Nod))) = S;
1150 else
1151 Get_First_Interp (Nod, I, It);
1152 while Present (It.Typ) loop
1153 if Scope (Base_Type (It.Typ)) = S then
1154 return True;
1155 end if;
1157 Get_Next_Interp (I, It);
1158 end loop;
1160 return False;
1161 end if;
1162 end Operand_Type_In_Scope;
1164 ---------------
1165 -- Type_In_P --
1166 ---------------
1168 function Type_In_P (Test : Kind_Test) return Entity_Id is
1169 E : Entity_Id;
1171 function In_Decl return Boolean;
1172 -- Verify that node is not part of the type declaration for the
1173 -- candidate type, which would otherwise be invisible.
1175 -------------
1176 -- In_Decl --
1177 -------------
1179 function In_Decl return Boolean is
1180 Decl_Node : constant Node_Id := Parent (E);
1181 N2 : Node_Id;
1183 begin
1184 N2 := N;
1186 if Etype (E) = Any_Type then
1187 return True;
1189 elsif No (Decl_Node) then
1190 return False;
1192 else
1193 while Present (N2)
1194 and then Nkind (N2) /= N_Compilation_Unit
1195 loop
1196 if N2 = Decl_Node then
1197 return True;
1198 else
1199 N2 := Parent (N2);
1200 end if;
1201 end loop;
1203 return False;
1204 end if;
1205 end In_Decl;
1207 -- Start of processing for Type_In_P
1209 begin
1210 -- If the context type is declared in the prefix package, this is the
1211 -- desired base type.
1213 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1214 return Base_Type (Typ);
1216 else
1217 E := First_Entity (Pack);
1218 while Present (E) loop
1219 if Test (E) and then not In_Decl then
1220 return E;
1221 end if;
1223 Next_Entity (E);
1224 end loop;
1226 return Empty;
1227 end if;
1228 end Type_In_P;
1230 -- Start of processing for Make_Call_Into_Operator
1232 begin
1233 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1235 -- Ensure that the corresponding operator has the same parent as the
1236 -- original call. This guarantees that parent traversals performed by
1237 -- the ABE mechanism succeed.
1239 Set_Parent (Op_Node, Parent (N));
1241 -- Binary operator
1243 if Is_Binary then
1244 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1245 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1246 Save_Interps (Act1, Left_Opnd (Op_Node));
1247 Save_Interps (Act2, Right_Opnd (Op_Node));
1248 Act1 := Left_Opnd (Op_Node);
1249 Act2 := Right_Opnd (Op_Node);
1251 -- Unary operator
1253 else
1254 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1255 Save_Interps (Act1, Right_Opnd (Op_Node));
1256 Act1 := Right_Opnd (Op_Node);
1257 end if;
1259 -- If the operator is denoted by an expanded name, and the prefix is
1260 -- not Standard, but the operator is a predefined one whose scope is
1261 -- Standard, then this is an implicit_operator, inserted as an
1262 -- interpretation by the procedure of the same name. This procedure
1263 -- overestimates the presence of implicit operators, because it does
1264 -- not examine the type of the operands. Verify now that the operand
1265 -- type appears in the given scope. If right operand is universal,
1266 -- check the other operand. In the case of concatenation, either
1267 -- argument can be the component type, so check the type of the result.
1268 -- If both arguments are literals, look for a type of the right kind
1269 -- defined in the given scope. This elaborate nonsense is brought to
1270 -- you courtesy of b33302a. The type itself must be frozen, so we must
1271 -- find the type of the proper class in the given scope.
1273 -- A final wrinkle is the multiplication operator for fixed point types,
1274 -- which is defined in Standard only, and not in the scope of the
1275 -- fixed point type itself.
1277 if Nkind (Name (N)) = N_Expanded_Name then
1278 Pack := Entity (Prefix (Name (N)));
1280 -- If this is a package renaming, get renamed entity, which will be
1281 -- the scope of the operands if operaton is type-correct.
1283 if Present (Renamed_Entity (Pack)) then
1284 Pack := Renamed_Entity (Pack);
1285 end if;
1287 -- If the entity being called is defined in the given package, it is
1288 -- a renaming of a predefined operator, and known to be legal.
1290 if Scope (Entity (Name (N))) = Pack
1291 and then Pack /= Standard_Standard
1292 then
1293 null;
1295 -- Visibility does not need to be checked in an instance: if the
1296 -- operator was not visible in the generic it has been diagnosed
1297 -- already, else there is an implicit copy of it in the instance.
1299 elsif In_Instance then
1300 null;
1302 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1303 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1304 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1305 then
1306 if Pack /= Standard_Standard then
1307 Error := True;
1308 end if;
1310 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1311 -- available.
1313 elsif Ada_Version >= Ada_2005
1314 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1315 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1316 then
1317 null;
1319 else
1320 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1322 if Op_Name = Name_Op_Concat then
1323 Opnd_Type := Base_Type (Typ);
1325 elsif (Scope (Opnd_Type) = Standard_Standard
1326 and then Is_Binary)
1327 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1328 and then Is_Binary
1329 and then not Comes_From_Source (Opnd_Type))
1330 then
1331 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1332 end if;
1334 if Scope (Opnd_Type) = Standard_Standard then
1336 -- Verify that the scope contains a type that corresponds to
1337 -- the given literal. Optimize the case where Pack is Standard.
1339 if Pack /= Standard_Standard then
1340 if Opnd_Type = Universal_Integer then
1341 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1343 elsif Opnd_Type = Universal_Real then
1344 Orig_Type := Type_In_P (Is_Real_Type'Access);
1346 elsif Opnd_Type = Any_String then
1347 Orig_Type := Type_In_P (Is_String_Type'Access);
1349 elsif Opnd_Type = Any_Access then
1350 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1352 elsif Opnd_Type = Any_Composite then
1353 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1355 if Present (Orig_Type) then
1356 if Has_Private_Component (Orig_Type) then
1357 Orig_Type := Empty;
1358 else
1359 Set_Etype (Act1, Orig_Type);
1361 if Is_Binary then
1362 Set_Etype (Act2, Orig_Type);
1363 end if;
1364 end if;
1365 end if;
1367 else
1368 Orig_Type := Empty;
1369 end if;
1371 Error := No (Orig_Type);
1372 end if;
1374 elsif Ekind (Opnd_Type) = E_Allocator_Type
1375 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1376 then
1377 Error := True;
1379 -- If the type is defined elsewhere, and the operator is not
1380 -- defined in the given scope (by a renaming declaration, e.g.)
1381 -- then this is an error as well. If an extension of System is
1382 -- present, and the type may be defined there, Pack must be
1383 -- System itself.
1385 elsif Scope (Opnd_Type) /= Pack
1386 and then Scope (Op_Id) /= Pack
1387 and then (No (System_Aux_Id)
1388 or else Scope (Opnd_Type) /= System_Aux_Id
1389 or else Pack /= Scope (System_Aux_Id))
1390 then
1391 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1392 Error := True;
1393 else
1394 Error := not Operand_Type_In_Scope (Pack);
1395 end if;
1397 elsif Pack = Standard_Standard
1398 and then not Operand_Type_In_Scope (Standard_Standard)
1399 then
1400 Error := True;
1401 end if;
1402 end if;
1404 if Error then
1405 Error_Msg_Node_2 := Pack;
1406 Error_Msg_NE
1407 ("& not declared in&", N, Selector_Name (Name (N)));
1408 Set_Etype (N, Any_Type);
1409 return;
1411 -- Detect a mismatch between the context type and the result type
1412 -- in the named package, which is otherwise not detected if the
1413 -- operands are universal. Check is only needed if source entity is
1414 -- an operator, not a function that renames an operator.
1416 elsif Nkind (Parent (N)) /= N_Type_Conversion
1417 and then Ekind (Entity (Name (N))) = E_Operator
1418 and then Is_Numeric_Type (Typ)
1419 and then not Is_Universal_Numeric_Type (Typ)
1420 and then Scope (Base_Type (Typ)) /= Pack
1421 and then not In_Instance
1422 then
1423 if Is_Fixed_Point_Type (Typ)
1424 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1425 then
1426 -- Already checked above
1428 null;
1430 -- Operator may be defined in an extension of System
1432 elsif Present (System_Aux_Id)
1433 and then Present (Opnd_Type)
1434 and then Scope (Opnd_Type) = System_Aux_Id
1435 then
1436 null;
1438 else
1439 -- Could we use Wrong_Type here??? (this would require setting
1440 -- Etype (N) to the actual type found where Typ was expected).
1442 Error_Msg_NE ("expect }", N, Typ);
1443 end if;
1444 end if;
1445 end if;
1447 Set_Chars (Op_Node, Op_Name);
1449 if not Is_Private_Type (Etype (N)) then
1450 Set_Etype (Op_Node, Base_Type (Etype (N)));
1451 else
1452 Set_Etype (Op_Node, Etype (N));
1453 end if;
1455 -- If this is a call to a function that renames a predefined equality,
1456 -- the renaming declaration provides a type that must be used to
1457 -- resolve the operands. This must be done now because resolution of
1458 -- the equality node will not resolve any remaining ambiguity, and it
1459 -- assumes that the first operand is not overloaded.
1461 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1462 and then Ekind (Func) = E_Function
1463 and then Is_Overloaded (Act1)
1464 then
1465 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1466 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1467 end if;
1469 Set_Entity (Op_Node, Op_Id);
1470 Generate_Reference (Op_Id, N, ' ');
1472 -- Do rewrite setting Comes_From_Source on the result if the original
1473 -- call came from source. Although it is not strictly the case that the
1474 -- operator as such comes from the source, logically it corresponds
1475 -- exactly to the function call in the source, so it should be marked
1476 -- this way (e.g. to make sure that validity checks work fine).
1478 declare
1479 CS : constant Boolean := Comes_From_Source (N);
1480 begin
1481 Rewrite (N, Op_Node);
1482 Set_Comes_From_Source (N, CS);
1483 end;
1485 -- If this is an arithmetic operator and the result type is private,
1486 -- the operands and the result must be wrapped in conversion to
1487 -- expose the underlying numeric type and expand the proper checks,
1488 -- e.g. on division.
1490 if Is_Private_Type (Typ) then
1491 case Nkind (N) is
1492 when N_Op_Add
1493 | N_Op_Divide
1494 | N_Op_Expon
1495 | N_Op_Mod
1496 | N_Op_Multiply
1497 | N_Op_Rem
1498 | N_Op_Subtract
1500 Resolve_Intrinsic_Operator (N, Typ);
1502 when N_Op_Abs
1503 | N_Op_Minus
1504 | N_Op_Plus
1506 Resolve_Intrinsic_Unary_Operator (N, Typ);
1508 when others =>
1509 Resolve (N, Typ);
1510 end case;
1511 else
1512 Resolve (N, Typ);
1513 end if;
1515 -- If in ASIS_Mode, propagate operand types to original actuals of
1516 -- function call, which would otherwise not be fully resolved. If
1517 -- the call has already been constant-folded, nothing to do. We
1518 -- relocate the operand nodes rather than copy them, to preserve
1519 -- original_node pointers, given that the operands themselves may
1520 -- have been rewritten. If the call was itself a rewriting of an
1521 -- operator node, nothing to do.
1523 if ASIS_Mode
1524 and then Nkind (N) in N_Op
1525 and then Nkind (Original_Node (N)) = N_Function_Call
1526 then
1527 declare
1528 L : Node_Id;
1529 R : constant Node_Id := Right_Opnd (N);
1531 Old_First : constant Node_Id :=
1532 First (Parameter_Associations (Original_Node (N)));
1533 Old_Sec : Node_Id;
1535 begin
1536 if Is_Binary then
1537 L := Left_Opnd (N);
1538 Old_Sec := Next (Old_First);
1540 -- If the original call has named associations, replace the
1541 -- explicit actual parameter in the association with the proper
1542 -- resolved operand.
1544 if Nkind (Old_First) = N_Parameter_Association then
1545 if Chars (Selector_Name (Old_First)) =
1546 Chars (First_Entity (Op_Id))
1547 then
1548 Rewrite (Explicit_Actual_Parameter (Old_First),
1549 Relocate_Node (L));
1550 else
1551 Rewrite (Explicit_Actual_Parameter (Old_First),
1552 Relocate_Node (R));
1553 end if;
1555 else
1556 Rewrite (Old_First, Relocate_Node (L));
1557 end if;
1559 if Nkind (Old_Sec) = N_Parameter_Association then
1560 if Chars (Selector_Name (Old_Sec)) =
1561 Chars (First_Entity (Op_Id))
1562 then
1563 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1564 Relocate_Node (L));
1565 else
1566 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1567 Relocate_Node (R));
1568 end if;
1570 else
1571 Rewrite (Old_Sec, Relocate_Node (R));
1572 end if;
1574 else
1575 if Nkind (Old_First) = N_Parameter_Association then
1576 Rewrite (Explicit_Actual_Parameter (Old_First),
1577 Relocate_Node (R));
1578 else
1579 Rewrite (Old_First, Relocate_Node (R));
1580 end if;
1581 end if;
1582 end;
1584 Set_Parent (Original_Node (N), Parent (N));
1585 end if;
1586 end Make_Call_Into_Operator;
1588 -------------------
1589 -- Operator_Kind --
1590 -------------------
1592 function Operator_Kind
1593 (Op_Name : Name_Id;
1594 Is_Binary : Boolean) return Node_Kind
1596 Kind : Node_Kind;
1598 begin
1599 -- Use CASE statement or array???
1601 if Is_Binary then
1602 if Op_Name = Name_Op_And then
1603 Kind := N_Op_And;
1604 elsif Op_Name = Name_Op_Or then
1605 Kind := N_Op_Or;
1606 elsif Op_Name = Name_Op_Xor then
1607 Kind := N_Op_Xor;
1608 elsif Op_Name = Name_Op_Eq then
1609 Kind := N_Op_Eq;
1610 elsif Op_Name = Name_Op_Ne then
1611 Kind := N_Op_Ne;
1612 elsif Op_Name = Name_Op_Lt then
1613 Kind := N_Op_Lt;
1614 elsif Op_Name = Name_Op_Le then
1615 Kind := N_Op_Le;
1616 elsif Op_Name = Name_Op_Gt then
1617 Kind := N_Op_Gt;
1618 elsif Op_Name = Name_Op_Ge then
1619 Kind := N_Op_Ge;
1620 elsif Op_Name = Name_Op_Add then
1621 Kind := N_Op_Add;
1622 elsif Op_Name = Name_Op_Subtract then
1623 Kind := N_Op_Subtract;
1624 elsif Op_Name = Name_Op_Concat then
1625 Kind := N_Op_Concat;
1626 elsif Op_Name = Name_Op_Multiply then
1627 Kind := N_Op_Multiply;
1628 elsif Op_Name = Name_Op_Divide then
1629 Kind := N_Op_Divide;
1630 elsif Op_Name = Name_Op_Mod then
1631 Kind := N_Op_Mod;
1632 elsif Op_Name = Name_Op_Rem then
1633 Kind := N_Op_Rem;
1634 elsif Op_Name = Name_Op_Expon then
1635 Kind := N_Op_Expon;
1636 else
1637 raise Program_Error;
1638 end if;
1640 -- Unary operators
1642 else
1643 if Op_Name = Name_Op_Add then
1644 Kind := N_Op_Plus;
1645 elsif Op_Name = Name_Op_Subtract then
1646 Kind := N_Op_Minus;
1647 elsif Op_Name = Name_Op_Abs then
1648 Kind := N_Op_Abs;
1649 elsif Op_Name = Name_Op_Not then
1650 Kind := N_Op_Not;
1651 else
1652 raise Program_Error;
1653 end if;
1654 end if;
1656 return Kind;
1657 end Operator_Kind;
1659 ----------------------------
1660 -- Preanalyze_And_Resolve --
1661 ----------------------------
1663 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1664 Save_Full_Analysis : constant Boolean := Full_Analysis;
1666 begin
1667 Full_Analysis := False;
1668 Expander_Mode_Save_And_Set (False);
1670 -- Normally, we suppress all checks for this preanalysis. There is no
1671 -- point in processing them now, since they will be applied properly
1672 -- and in the proper location when the default expressions reanalyzed
1673 -- and reexpanded later on. We will also have more information at that
1674 -- point for possible suppression of individual checks.
1676 -- However, in SPARK mode, most expansion is suppressed, and this
1677 -- later reanalysis and reexpansion may not occur. SPARK mode does
1678 -- require the setting of checking flags for proof purposes, so we
1679 -- do the SPARK preanalysis without suppressing checks.
1681 -- This special handling for SPARK mode is required for example in the
1682 -- case of Ada 2012 constructs such as quantified expressions, which are
1683 -- expanded in two separate steps.
1685 if GNATprove_Mode then
1686 Analyze_And_Resolve (N, T);
1687 else
1688 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1689 end if;
1691 Expander_Mode_Restore;
1692 Full_Analysis := Save_Full_Analysis;
1693 end Preanalyze_And_Resolve;
1695 -- Version without context type
1697 procedure Preanalyze_And_Resolve (N : Node_Id) is
1698 Save_Full_Analysis : constant Boolean := Full_Analysis;
1700 begin
1701 Full_Analysis := False;
1702 Expander_Mode_Save_And_Set (False);
1704 Analyze (N);
1705 Resolve (N, Etype (N), Suppress => All_Checks);
1707 Expander_Mode_Restore;
1708 Full_Analysis := Save_Full_Analysis;
1709 end Preanalyze_And_Resolve;
1711 ----------------------------------
1712 -- Replace_Actual_Discriminants --
1713 ----------------------------------
1715 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1716 Loc : constant Source_Ptr := Sloc (N);
1717 Tsk : Node_Id := Empty;
1719 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1720 -- Comment needed???
1722 -------------------
1723 -- Process_Discr --
1724 -------------------
1726 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1727 Ent : Entity_Id;
1729 begin
1730 if Nkind (Nod) = N_Identifier then
1731 Ent := Entity (Nod);
1733 if Present (Ent)
1734 and then Ekind (Ent) = E_Discriminant
1735 then
1736 Rewrite (Nod,
1737 Make_Selected_Component (Loc,
1738 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1739 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1741 Set_Etype (Nod, Etype (Ent));
1742 end if;
1744 end if;
1746 return OK;
1747 end Process_Discr;
1749 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1751 -- Start of processing for Replace_Actual_Discriminants
1753 begin
1754 if Expander_Active then
1755 null;
1757 -- Allow the replacement of concurrent discriminants in GNATprove even
1758 -- though this is a light expansion activity. Note that generic units
1759 -- are not modified.
1761 elsif GNATprove_Mode and not Inside_A_Generic then
1762 null;
1764 else
1765 return;
1766 end if;
1768 if Nkind (Name (N)) = N_Selected_Component then
1769 Tsk := Prefix (Name (N));
1771 elsif Nkind (Name (N)) = N_Indexed_Component then
1772 Tsk := Prefix (Prefix (Name (N)));
1773 end if;
1775 if Present (Tsk) then
1776 Replace_Discrs (Default);
1777 end if;
1778 end Replace_Actual_Discriminants;
1780 -------------
1781 -- Resolve --
1782 -------------
1784 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1785 Ambiguous : Boolean := False;
1786 Ctx_Type : Entity_Id := Typ;
1787 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1788 Err_Type : Entity_Id := Empty;
1789 Found : Boolean := False;
1790 From_Lib : Boolean;
1791 I : Interp_Index;
1792 I1 : Interp_Index := 0; -- prevent junk warning
1793 It : Interp;
1794 It1 : Interp;
1795 Seen : Entity_Id := Empty; -- prevent junk warning
1797 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1798 -- Determine whether a node comes from a predefined library unit or
1799 -- Standard.
1801 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1802 -- Try and fix up a literal so that it matches its expected type. New
1803 -- literals are manufactured if necessary to avoid cascaded errors.
1805 procedure Report_Ambiguous_Argument;
1806 -- Additional diagnostics when an ambiguous call has an ambiguous
1807 -- argument (typically a controlling actual).
1809 procedure Resolution_Failed;
1810 -- Called when attempt at resolving current expression fails
1812 ------------------------------------
1813 -- Comes_From_Predefined_Lib_Unit --
1814 -------------------------------------
1816 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1817 begin
1818 return
1819 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1820 end Comes_From_Predefined_Lib_Unit;
1822 --------------------
1823 -- Patch_Up_Value --
1824 --------------------
1826 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1827 begin
1828 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1829 Rewrite (N,
1830 Make_Real_Literal (Sloc (N),
1831 Realval => UR_From_Uint (Intval (N))));
1832 Set_Etype (N, Universal_Real);
1833 Set_Is_Static_Expression (N);
1835 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1836 Rewrite (N,
1837 Make_Integer_Literal (Sloc (N),
1838 Intval => UR_To_Uint (Realval (N))));
1839 Set_Etype (N, Universal_Integer);
1840 Set_Is_Static_Expression (N);
1842 elsif Nkind (N) = N_String_Literal
1843 and then Is_Character_Type (Typ)
1844 then
1845 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1846 Rewrite (N,
1847 Make_Character_Literal (Sloc (N),
1848 Chars => Name_Find,
1849 Char_Literal_Value =>
1850 UI_From_Int (Character'Pos ('A'))));
1851 Set_Etype (N, Any_Character);
1852 Set_Is_Static_Expression (N);
1854 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1855 Rewrite (N,
1856 Make_String_Literal (Sloc (N),
1857 Strval => End_String));
1859 elsif Nkind (N) = N_Range then
1860 Patch_Up_Value (Low_Bound (N), Typ);
1861 Patch_Up_Value (High_Bound (N), Typ);
1862 end if;
1863 end Patch_Up_Value;
1865 -------------------------------
1866 -- Report_Ambiguous_Argument --
1867 -------------------------------
1869 procedure Report_Ambiguous_Argument is
1870 Arg : constant Node_Id := First (Parameter_Associations (N));
1871 I : Interp_Index;
1872 It : Interp;
1874 begin
1875 if Nkind (Arg) = N_Function_Call
1876 and then Is_Entity_Name (Name (Arg))
1877 and then Is_Overloaded (Name (Arg))
1878 then
1879 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1881 -- Could use comments on what is going on here???
1883 Get_First_Interp (Name (Arg), I, It);
1884 while Present (It.Nam) loop
1885 Error_Msg_Sloc := Sloc (It.Nam);
1887 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1888 Error_Msg_N ("interpretation (inherited) #!", Arg);
1889 else
1890 Error_Msg_N ("interpretation #!", Arg);
1891 end if;
1893 Get_Next_Interp (I, It);
1894 end loop;
1895 end if;
1896 end Report_Ambiguous_Argument;
1898 -----------------------
1899 -- Resolution_Failed --
1900 -----------------------
1902 procedure Resolution_Failed is
1903 begin
1904 Patch_Up_Value (N, Typ);
1906 -- Set the type to the desired one to minimize cascaded errors. Note
1907 -- that this is an approximation and does not work in all cases.
1909 Set_Etype (N, Typ);
1911 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1912 Set_Is_Overloaded (N, False);
1914 -- The caller will return without calling the expander, so we need
1915 -- to set the analyzed flag. Note that it is fine to set Analyzed
1916 -- to True even if we are in the middle of a shallow analysis,
1917 -- (see the spec of sem for more details) since this is an error
1918 -- situation anyway, and there is no point in repeating the
1919 -- analysis later (indeed it won't work to repeat it later, since
1920 -- we haven't got a clear resolution of which entity is being
1921 -- referenced.)
1923 Set_Analyzed (N, True);
1924 return;
1925 end Resolution_Failed;
1927 -- Start of processing for Resolve
1929 begin
1930 if N = Error then
1931 return;
1932 end if;
1934 -- Access attribute on remote subprogram cannot be used for a non-remote
1935 -- access-to-subprogram type.
1937 if Nkind (N) = N_Attribute_Reference
1938 and then Nam_In (Attribute_Name (N), Name_Access,
1939 Name_Unrestricted_Access,
1940 Name_Unchecked_Access)
1941 and then Comes_From_Source (N)
1942 and then Is_Entity_Name (Prefix (N))
1943 and then Is_Subprogram (Entity (Prefix (N)))
1944 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1945 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1946 then
1947 Error_Msg_N
1948 ("prefix must statically denote a non-remote subprogram", N);
1949 end if;
1951 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1953 -- If the context is a Remote_Access_To_Subprogram, access attributes
1954 -- must be resolved with the corresponding fat pointer. There is no need
1955 -- to check for the attribute name since the return type of an
1956 -- attribute is never a remote type.
1958 if Nkind (N) = N_Attribute_Reference
1959 and then Comes_From_Source (N)
1960 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
1961 then
1962 declare
1963 Attr : constant Attribute_Id :=
1964 Get_Attribute_Id (Attribute_Name (N));
1965 Pref : constant Node_Id := Prefix (N);
1966 Decl : Node_Id;
1967 Spec : Node_Id;
1968 Is_Remote : Boolean := True;
1970 begin
1971 -- Check that Typ is a remote access-to-subprogram type
1973 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1975 -- Prefix (N) must statically denote a remote subprogram
1976 -- declared in a package specification.
1978 if Attr = Attribute_Access or else
1979 Attr = Attribute_Unchecked_Access or else
1980 Attr = Attribute_Unrestricted_Access
1981 then
1982 Decl := Unit_Declaration_Node (Entity (Pref));
1984 if Nkind (Decl) = N_Subprogram_Body then
1985 Spec := Corresponding_Spec (Decl);
1987 if Present (Spec) then
1988 Decl := Unit_Declaration_Node (Spec);
1989 end if;
1990 end if;
1992 Spec := Parent (Decl);
1994 if not Is_Entity_Name (Prefix (N))
1995 or else Nkind (Spec) /= N_Package_Specification
1996 or else
1997 not Is_Remote_Call_Interface (Defining_Entity (Spec))
1998 then
1999 Is_Remote := False;
2000 Error_Msg_N
2001 ("prefix must statically denote a remote subprogram ",
2003 end if;
2005 -- If we are generating code in distributed mode, perform
2006 -- semantic checks against corresponding remote entities.
2008 if Expander_Active
2009 and then Get_PCS_Name /= Name_No_DSA
2010 then
2011 Check_Subtype_Conformant
2012 (New_Id => Entity (Prefix (N)),
2013 Old_Id => Designated_Type
2014 (Corresponding_Remote_Type (Typ)),
2015 Err_Loc => N);
2017 if Is_Remote then
2018 Process_Remote_AST_Attribute (N, Typ);
2019 end if;
2020 end if;
2021 end if;
2022 end if;
2023 end;
2024 end if;
2026 Debug_A_Entry ("resolving ", N);
2028 if Debug_Flag_V then
2029 Write_Overloads (N);
2030 end if;
2032 if Comes_From_Source (N) then
2033 if Is_Fixed_Point_Type (Typ) then
2034 Check_Restriction (No_Fixed_Point, N);
2036 elsif Is_Floating_Point_Type (Typ)
2037 and then Typ /= Universal_Real
2038 and then Typ /= Any_Real
2039 then
2040 Check_Restriction (No_Floating_Point, N);
2041 end if;
2042 end if;
2044 -- Return if already analyzed
2046 if Analyzed (N) then
2047 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2048 Analyze_Dimension (N);
2049 return;
2051 -- Any case of Any_Type as the Etype value means that we had a
2052 -- previous error.
2054 elsif Etype (N) = Any_Type then
2055 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2056 return;
2057 end if;
2059 Check_Parameterless_Call (N);
2061 -- The resolution of an Expression_With_Actions is determined by
2062 -- its Expression.
2064 if Nkind (N) = N_Expression_With_Actions then
2065 Resolve (Expression (N), Typ);
2067 Found := True;
2068 Expr_Type := Etype (Expression (N));
2070 -- If not overloaded, then we know the type, and all that needs doing
2071 -- is to check that this type is compatible with the context.
2073 elsif not Is_Overloaded (N) then
2074 Found := Covers (Typ, Etype (N));
2075 Expr_Type := Etype (N);
2077 -- In the overloaded case, we must select the interpretation that
2078 -- is compatible with the context (i.e. the type passed to Resolve)
2080 else
2081 -- Loop through possible interpretations
2083 Get_First_Interp (N, I, It);
2084 Interp_Loop : while Present (It.Typ) loop
2085 if Debug_Flag_V then
2086 Write_Str ("Interp: ");
2087 Write_Interp (It);
2088 end if;
2090 -- We are only interested in interpretations that are compatible
2091 -- with the expected type, any other interpretations are ignored.
2093 if not Covers (Typ, It.Typ) then
2094 if Debug_Flag_V then
2095 Write_Str (" interpretation incompatible with context");
2096 Write_Eol;
2097 end if;
2099 else
2100 -- Skip the current interpretation if it is disabled by an
2101 -- abstract operator. This action is performed only when the
2102 -- type against which we are resolving is the same as the
2103 -- type of the interpretation.
2105 if Ada_Version >= Ada_2005
2106 and then It.Typ = Typ
2107 and then Typ /= Universal_Integer
2108 and then Typ /= Universal_Real
2109 and then Present (It.Abstract_Op)
2110 then
2111 if Debug_Flag_V then
2112 Write_Line ("Skip.");
2113 end if;
2115 goto Continue;
2116 end if;
2118 -- First matching interpretation
2120 if not Found then
2121 Found := True;
2122 I1 := I;
2123 Seen := It.Nam;
2124 Expr_Type := It.Typ;
2126 -- Matching interpretation that is not the first, maybe an
2127 -- error, but there are some cases where preference rules are
2128 -- used to choose between the two possibilities. These and
2129 -- some more obscure cases are handled in Disambiguate.
2131 else
2132 -- If the current statement is part of a predefined library
2133 -- unit, then all interpretations which come from user level
2134 -- packages should not be considered. Check previous and
2135 -- current one.
2137 if From_Lib then
2138 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2139 goto Continue;
2141 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2143 -- Previous interpretation must be discarded
2145 I1 := I;
2146 Seen := It.Nam;
2147 Expr_Type := It.Typ;
2148 Set_Entity (N, Seen);
2149 goto Continue;
2150 end if;
2151 end if;
2153 -- Otherwise apply further disambiguation steps
2155 Error_Msg_Sloc := Sloc (Seen);
2156 It1 := Disambiguate (N, I1, I, Typ);
2158 -- Disambiguation has succeeded. Skip the remaining
2159 -- interpretations.
2161 if It1 /= No_Interp then
2162 Seen := It1.Nam;
2163 Expr_Type := It1.Typ;
2165 while Present (It.Typ) loop
2166 Get_Next_Interp (I, It);
2167 end loop;
2169 else
2170 -- Before we issue an ambiguity complaint, check for the
2171 -- case of a subprogram call where at least one of the
2172 -- arguments is Any_Type, and if so suppress the message,
2173 -- since it is a cascaded error. This can also happen for
2174 -- a generalized indexing operation.
2176 if Nkind (N) in N_Subprogram_Call
2177 or else (Nkind (N) = N_Indexed_Component
2178 and then Present (Generalized_Indexing (N)))
2179 then
2180 declare
2181 A : Node_Id;
2182 E : Node_Id;
2184 begin
2185 if Nkind (N) = N_Indexed_Component then
2186 Rewrite (N, Generalized_Indexing (N));
2187 end if;
2189 A := First_Actual (N);
2190 while Present (A) loop
2191 E := A;
2193 if Nkind (E) = N_Parameter_Association then
2194 E := Explicit_Actual_Parameter (E);
2195 end if;
2197 if Etype (E) = Any_Type then
2198 if Debug_Flag_V then
2199 Write_Str ("Any_Type in call");
2200 Write_Eol;
2201 end if;
2203 exit Interp_Loop;
2204 end if;
2206 Next_Actual (A);
2207 end loop;
2208 end;
2210 elsif Nkind (N) in N_Binary_Op
2211 and then (Etype (Left_Opnd (N)) = Any_Type
2212 or else Etype (Right_Opnd (N)) = Any_Type)
2213 then
2214 exit Interp_Loop;
2216 elsif Nkind (N) in N_Unary_Op
2217 and then Etype (Right_Opnd (N)) = Any_Type
2218 then
2219 exit Interp_Loop;
2220 end if;
2222 -- Not that special case, so issue message using the flag
2223 -- Ambiguous to control printing of the header message
2224 -- only at the start of an ambiguous set.
2226 if not Ambiguous then
2227 if Nkind (N) = N_Function_Call
2228 and then Nkind (Name (N)) = N_Explicit_Dereference
2229 then
2230 Error_Msg_N
2231 ("ambiguous expression (cannot resolve indirect "
2232 & "call)!", N);
2233 else
2234 Error_Msg_NE -- CODEFIX
2235 ("ambiguous expression (cannot resolve&)!",
2236 N, It.Nam);
2237 end if;
2239 Ambiguous := True;
2241 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2242 Error_Msg_N
2243 ("\\possible interpretation (inherited)#!", N);
2244 else
2245 Error_Msg_N -- CODEFIX
2246 ("\\possible interpretation#!", N);
2247 end if;
2249 if Nkind (N) in N_Subprogram_Call
2250 and then Present (Parameter_Associations (N))
2251 then
2252 Report_Ambiguous_Argument;
2253 end if;
2254 end if;
2256 Error_Msg_Sloc := Sloc (It.Nam);
2258 -- By default, the error message refers to the candidate
2259 -- interpretation. But if it is a predefined operator, it
2260 -- is implicitly declared at the declaration of the type
2261 -- of the operand. Recover the sloc of that declaration
2262 -- for the error message.
2264 if Nkind (N) in N_Op
2265 and then Scope (It.Nam) = Standard_Standard
2266 and then not Is_Overloaded (Right_Opnd (N))
2267 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2268 Standard_Standard
2269 then
2270 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2272 if Comes_From_Source (Err_Type)
2273 and then Present (Parent (Err_Type))
2274 then
2275 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2276 end if;
2278 elsif Nkind (N) in N_Binary_Op
2279 and then Scope (It.Nam) = Standard_Standard
2280 and then not Is_Overloaded (Left_Opnd (N))
2281 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2282 Standard_Standard
2283 then
2284 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2286 if Comes_From_Source (Err_Type)
2287 and then Present (Parent (Err_Type))
2288 then
2289 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2290 end if;
2292 -- If this is an indirect call, use the subprogram_type
2293 -- in the message, to have a meaningful location. Also
2294 -- indicate if this is an inherited operation, created
2295 -- by a type declaration.
2297 elsif Nkind (N) = N_Function_Call
2298 and then Nkind (Name (N)) = N_Explicit_Dereference
2299 and then Is_Type (It.Nam)
2300 then
2301 Err_Type := It.Nam;
2302 Error_Msg_Sloc :=
2303 Sloc (Associated_Node_For_Itype (Err_Type));
2304 else
2305 Err_Type := Empty;
2306 end if;
2308 if Nkind (N) in N_Op
2309 and then Scope (It.Nam) = Standard_Standard
2310 and then Present (Err_Type)
2311 then
2312 -- Special-case the message for universal_fixed
2313 -- operators, which are not declared with the type
2314 -- of the operand, but appear forever in Standard.
2316 if It.Typ = Universal_Fixed
2317 and then Scope (It.Nam) = Standard_Standard
2318 then
2319 Error_Msg_N
2320 ("\\possible interpretation as universal_fixed "
2321 & "operation (RM 4.5.5 (19))", N);
2322 else
2323 Error_Msg_N
2324 ("\\possible interpretation (predefined)#!", N);
2325 end if;
2327 elsif
2328 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2329 then
2330 Error_Msg_N
2331 ("\\possible interpretation (inherited)#!", N);
2332 else
2333 Error_Msg_N -- CODEFIX
2334 ("\\possible interpretation#!", N);
2335 end if;
2337 end if;
2338 end if;
2340 -- We have a matching interpretation, Expr_Type is the type
2341 -- from this interpretation, and Seen is the entity.
2343 -- For an operator, just set the entity name. The type will be
2344 -- set by the specific operator resolution routine.
2346 if Nkind (N) in N_Op then
2347 Set_Entity (N, Seen);
2348 Generate_Reference (Seen, N);
2350 elsif Nkind_In (N, N_Case_Expression,
2351 N_Character_Literal,
2352 N_Delta_Aggregate,
2353 N_If_Expression)
2354 then
2355 Set_Etype (N, Expr_Type);
2357 -- AI05-0139-2: Expression is overloaded because type has
2358 -- implicit dereference. If type matches context, no implicit
2359 -- dereference is involved. If the expression is an entity,
2360 -- generate a reference to it, as this is not done for an
2361 -- overloaded construct during analysis.
2363 elsif Has_Implicit_Dereference (Expr_Type) then
2364 Set_Etype (N, Expr_Type);
2365 Set_Is_Overloaded (N, False);
2367 if Is_Entity_Name (N) then
2368 Generate_Reference (Entity (N), N);
2369 end if;
2371 exit Interp_Loop;
2373 elsif Is_Overloaded (N)
2374 and then Present (It.Nam)
2375 and then Ekind (It.Nam) = E_Discriminant
2376 and then Has_Implicit_Dereference (It.Nam)
2377 then
2378 -- If the node is a general indexing, the dereference is
2379 -- is inserted when resolving the rewritten form, else
2380 -- insert it now.
2382 if Nkind (N) /= N_Indexed_Component
2383 or else No (Generalized_Indexing (N))
2384 then
2385 Build_Explicit_Dereference (N, It.Nam);
2386 end if;
2388 -- For an explicit dereference, attribute reference, range,
2389 -- short-circuit form (which is not an operator node), or call
2390 -- with a name that is an explicit dereference, there is
2391 -- nothing to be done at this point.
2393 elsif Nkind_In (N, N_Attribute_Reference,
2394 N_And_Then,
2395 N_Explicit_Dereference,
2396 N_Identifier,
2397 N_Indexed_Component,
2398 N_Or_Else,
2399 N_Range,
2400 N_Selected_Component,
2401 N_Slice)
2402 or else Nkind (Name (N)) = N_Explicit_Dereference
2403 then
2404 null;
2406 -- For procedure or function calls, set the type of the name,
2407 -- and also the entity pointer for the prefix.
2409 elsif Nkind (N) in N_Subprogram_Call
2410 and then Is_Entity_Name (Name (N))
2411 then
2412 Set_Etype (Name (N), Expr_Type);
2413 Set_Entity (Name (N), Seen);
2414 Generate_Reference (Seen, Name (N));
2416 elsif Nkind (N) = N_Function_Call
2417 and then Nkind (Name (N)) = N_Selected_Component
2418 then
2419 Set_Etype (Name (N), Expr_Type);
2420 Set_Entity (Selector_Name (Name (N)), Seen);
2421 Generate_Reference (Seen, Selector_Name (Name (N)));
2423 -- For all other cases, just set the type of the Name
2425 else
2426 Set_Etype (Name (N), Expr_Type);
2427 end if;
2429 end if;
2431 <<Continue>>
2433 -- Move to next interpretation
2435 exit Interp_Loop when No (It.Typ);
2437 Get_Next_Interp (I, It);
2438 end loop Interp_Loop;
2439 end if;
2441 -- At this stage Found indicates whether or not an acceptable
2442 -- interpretation exists. If not, then we have an error, except that if
2443 -- the context is Any_Type as a result of some other error, then we
2444 -- suppress the error report.
2446 if not Found then
2447 if Typ /= Any_Type then
2449 -- If type we are looking for is Void, then this is the procedure
2450 -- call case, and the error is simply that what we gave is not a
2451 -- procedure name (we think of procedure calls as expressions with
2452 -- types internally, but the user doesn't think of them this way).
2454 if Typ = Standard_Void_Type then
2456 -- Special case message if function used as a procedure
2458 if Nkind (N) = N_Procedure_Call_Statement
2459 and then Is_Entity_Name (Name (N))
2460 and then Ekind (Entity (Name (N))) = E_Function
2461 then
2462 Error_Msg_NE
2463 ("cannot use call to function & as a statement",
2464 Name (N), Entity (Name (N)));
2465 Error_Msg_N
2466 ("\return value of a function call cannot be ignored",
2467 Name (N));
2469 -- Otherwise give general message (not clear what cases this
2470 -- covers, but no harm in providing for them).
2472 else
2473 Error_Msg_N ("expect procedure name in procedure call", N);
2474 end if;
2476 Found := True;
2478 -- Otherwise we do have a subexpression with the wrong type
2480 -- Check for the case of an allocator which uses an access type
2481 -- instead of the designated type. This is a common error and we
2482 -- specialize the message, posting an error on the operand of the
2483 -- allocator, complaining that we expected the designated type of
2484 -- the allocator.
2486 elsif Nkind (N) = N_Allocator
2487 and then Is_Access_Type (Typ)
2488 and then Is_Access_Type (Etype (N))
2489 and then Designated_Type (Etype (N)) = Typ
2490 then
2491 Wrong_Type (Expression (N), Designated_Type (Typ));
2492 Found := True;
2494 -- Check for view mismatch on Null in instances, for which the
2495 -- view-swapping mechanism has no identifier.
2497 elsif (In_Instance or else In_Inlined_Body)
2498 and then (Nkind (N) = N_Null)
2499 and then Is_Private_Type (Typ)
2500 and then Is_Access_Type (Full_View (Typ))
2501 then
2502 Resolve (N, Full_View (Typ));
2503 Set_Etype (N, Typ);
2504 return;
2506 -- Check for an aggregate. Sometimes we can get bogus aggregates
2507 -- from misuse of parentheses, and we are about to complain about
2508 -- the aggregate without even looking inside it.
2510 -- Instead, if we have an aggregate of type Any_Composite, then
2511 -- analyze and resolve the component fields, and then only issue
2512 -- another message if we get no errors doing this (otherwise
2513 -- assume that the errors in the aggregate caused the problem).
2515 elsif Nkind (N) = N_Aggregate
2516 and then Etype (N) = Any_Composite
2517 then
2518 -- Disable expansion in any case. If there is a type mismatch
2519 -- it may be fatal to try to expand the aggregate. The flag
2520 -- would otherwise be set to false when the error is posted.
2522 Expander_Active := False;
2524 declare
2525 procedure Check_Aggr (Aggr : Node_Id);
2526 -- Check one aggregate, and set Found to True if we have a
2527 -- definite error in any of its elements
2529 procedure Check_Elmt (Aelmt : Node_Id);
2530 -- Check one element of aggregate and set Found to True if
2531 -- we definitely have an error in the element.
2533 ----------------
2534 -- Check_Aggr --
2535 ----------------
2537 procedure Check_Aggr (Aggr : Node_Id) is
2538 Elmt : Node_Id;
2540 begin
2541 if Present (Expressions (Aggr)) then
2542 Elmt := First (Expressions (Aggr));
2543 while Present (Elmt) loop
2544 Check_Elmt (Elmt);
2545 Next (Elmt);
2546 end loop;
2547 end if;
2549 if Present (Component_Associations (Aggr)) then
2550 Elmt := First (Component_Associations (Aggr));
2551 while Present (Elmt) loop
2553 -- If this is a default-initialized component, then
2554 -- there is nothing to check. The box will be
2555 -- replaced by the appropriate call during late
2556 -- expansion.
2558 if Nkind (Elmt) /= N_Iterated_Component_Association
2559 and then not Box_Present (Elmt)
2560 then
2561 Check_Elmt (Expression (Elmt));
2562 end if;
2564 Next (Elmt);
2565 end loop;
2566 end if;
2567 end Check_Aggr;
2569 ----------------
2570 -- Check_Elmt --
2571 ----------------
2573 procedure Check_Elmt (Aelmt : Node_Id) is
2574 begin
2575 -- If we have a nested aggregate, go inside it (to
2576 -- attempt a naked analyze-resolve of the aggregate can
2577 -- cause undesirable cascaded errors). Do not resolve
2578 -- expression if it needs a type from context, as for
2579 -- integer * fixed expression.
2581 if Nkind (Aelmt) = N_Aggregate then
2582 Check_Aggr (Aelmt);
2584 else
2585 Analyze (Aelmt);
2587 if not Is_Overloaded (Aelmt)
2588 and then Etype (Aelmt) /= Any_Fixed
2589 then
2590 Resolve (Aelmt);
2591 end if;
2593 if Etype (Aelmt) = Any_Type then
2594 Found := True;
2595 end if;
2596 end if;
2597 end Check_Elmt;
2599 begin
2600 Check_Aggr (N);
2601 end;
2602 end if;
2604 -- Looks like we have a type error, but check for special case
2605 -- of Address wanted, integer found, with the configuration pragma
2606 -- Allow_Integer_Address active. If we have this case, introduce
2607 -- an unchecked conversion to allow the integer expression to be
2608 -- treated as an Address. The reverse case of integer wanted,
2609 -- Address found, is treated in an analogous manner.
2611 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2612 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2613 Analyze_And_Resolve (N, Typ);
2614 return;
2616 -- Under relaxed RM semantics silently replace occurrences of null
2617 -- by System.Address_Null.
2619 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2620 Replace_Null_By_Null_Address (N);
2621 Analyze_And_Resolve (N, Typ);
2622 return;
2623 end if;
2625 -- That special Allow_Integer_Address check did not apply, so we
2626 -- have a real type error. If an error message was issued already,
2627 -- Found got reset to True, so if it's still False, issue standard
2628 -- Wrong_Type message.
2630 if not Found then
2631 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2632 declare
2633 Subp_Name : Node_Id;
2635 begin
2636 if Is_Entity_Name (Name (N)) then
2637 Subp_Name := Name (N);
2639 elsif Nkind (Name (N)) = N_Selected_Component then
2641 -- Protected operation: retrieve operation name
2643 Subp_Name := Selector_Name (Name (N));
2645 else
2646 raise Program_Error;
2647 end if;
2649 Error_Msg_Node_2 := Typ;
2650 Error_Msg_NE
2651 ("no visible interpretation of& matches expected type&",
2652 N, Subp_Name);
2653 end;
2655 if All_Errors_Mode then
2656 declare
2657 Index : Interp_Index;
2658 It : Interp;
2660 begin
2661 Error_Msg_N ("\\possible interpretations:", N);
2663 Get_First_Interp (Name (N), Index, It);
2664 while Present (It.Nam) loop
2665 Error_Msg_Sloc := Sloc (It.Nam);
2666 Error_Msg_Node_2 := It.Nam;
2667 Error_Msg_NE
2668 ("\\ type& for & declared#", N, It.Typ);
2669 Get_Next_Interp (Index, It);
2670 end loop;
2671 end;
2673 else
2674 Error_Msg_N ("\use -gnatf for details", N);
2675 end if;
2677 else
2678 Wrong_Type (N, Typ);
2679 end if;
2680 end if;
2681 end if;
2683 Resolution_Failed;
2684 return;
2686 -- Test if we have more than one interpretation for the context
2688 elsif Ambiguous then
2689 Resolution_Failed;
2690 return;
2692 -- Only one intepretation
2694 else
2695 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2696 -- the "+" on T is abstract, and the operands are of universal type,
2697 -- the above code will have (incorrectly) resolved the "+" to the
2698 -- universal one in Standard. Therefore check for this case and give
2699 -- an error. We can't do this earlier, because it would cause legal
2700 -- cases to get errors (when some other type has an abstract "+").
2702 if Ada_Version >= Ada_2005
2703 and then Nkind (N) in N_Op
2704 and then Is_Overloaded (N)
2705 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2706 then
2707 Get_First_Interp (N, I, It);
2708 while Present (It.Typ) loop
2709 if Present (It.Abstract_Op) and then
2710 Etype (It.Abstract_Op) = Typ
2711 then
2712 Error_Msg_NE
2713 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2714 return;
2715 end if;
2717 Get_Next_Interp (I, It);
2718 end loop;
2719 end if;
2721 -- Here we have an acceptable interpretation for the context
2723 -- Propagate type information and normalize tree for various
2724 -- predefined operations. If the context only imposes a class of
2725 -- types, rather than a specific type, propagate the actual type
2726 -- downward.
2728 if Typ = Any_Integer or else
2729 Typ = Any_Boolean or else
2730 Typ = Any_Modular or else
2731 Typ = Any_Real or else
2732 Typ = Any_Discrete
2733 then
2734 Ctx_Type := Expr_Type;
2736 -- Any_Fixed is legal in a real context only if a specific fixed-
2737 -- point type is imposed. If Norman Cohen can be confused by this,
2738 -- it deserves a separate message.
2740 if Typ = Any_Real
2741 and then Expr_Type = Any_Fixed
2742 then
2743 Error_Msg_N ("illegal context for mixed mode operation", N);
2744 Set_Etype (N, Universal_Real);
2745 Ctx_Type := Universal_Real;
2746 end if;
2747 end if;
2749 -- A user-defined operator is transformed into a function call at
2750 -- this point, so that further processing knows that operators are
2751 -- really operators (i.e. are predefined operators). User-defined
2752 -- operators that are intrinsic are just renamings of the predefined
2753 -- ones, and need not be turned into calls either, but if they rename
2754 -- a different operator, we must transform the node accordingly.
2755 -- Instantiations of Unchecked_Conversion are intrinsic but are
2756 -- treated as functions, even if given an operator designator.
2758 if Nkind (N) in N_Op
2759 and then Present (Entity (N))
2760 and then Ekind (Entity (N)) /= E_Operator
2761 then
2762 if not Is_Predefined_Op (Entity (N)) then
2763 Rewrite_Operator_As_Call (N, Entity (N));
2765 elsif Present (Alias (Entity (N)))
2766 and then
2767 Nkind (Parent (Parent (Entity (N)))) =
2768 N_Subprogram_Renaming_Declaration
2769 then
2770 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2772 -- If the node is rewritten, it will be fully resolved in
2773 -- Rewrite_Renamed_Operator.
2775 if Analyzed (N) then
2776 return;
2777 end if;
2778 end if;
2779 end if;
2781 case N_Subexpr'(Nkind (N)) is
2782 when N_Aggregate =>
2783 Resolve_Aggregate (N, Ctx_Type);
2785 when N_Allocator =>
2786 Resolve_Allocator (N, Ctx_Type);
2788 when N_Short_Circuit =>
2789 Resolve_Short_Circuit (N, Ctx_Type);
2791 when N_Attribute_Reference =>
2792 Resolve_Attribute (N, Ctx_Type);
2794 when N_Case_Expression =>
2795 Resolve_Case_Expression (N, Ctx_Type);
2797 when N_Character_Literal =>
2798 Resolve_Character_Literal (N, Ctx_Type);
2800 when N_Delta_Aggregate =>
2801 Resolve_Delta_Aggregate (N, Ctx_Type);
2803 when N_Expanded_Name =>
2804 Resolve_Entity_Name (N, Ctx_Type);
2806 when N_Explicit_Dereference =>
2807 Resolve_Explicit_Dereference (N, Ctx_Type);
2809 when N_Expression_With_Actions =>
2810 Resolve_Expression_With_Actions (N, Ctx_Type);
2812 when N_Extension_Aggregate =>
2813 Resolve_Extension_Aggregate (N, Ctx_Type);
2815 when N_Function_Call =>
2816 Resolve_Call (N, Ctx_Type);
2818 when N_Identifier =>
2819 Resolve_Entity_Name (N, Ctx_Type);
2821 when N_If_Expression =>
2822 Resolve_If_Expression (N, Ctx_Type);
2824 when N_Indexed_Component =>
2825 Resolve_Indexed_Component (N, Ctx_Type);
2827 when N_Integer_Literal =>
2828 Resolve_Integer_Literal (N, Ctx_Type);
2830 when N_Membership_Test =>
2831 Resolve_Membership_Op (N, Ctx_Type);
2833 when N_Null =>
2834 Resolve_Null (N, Ctx_Type);
2836 when N_Op_And
2837 | N_Op_Or
2838 | N_Op_Xor
2840 Resolve_Logical_Op (N, Ctx_Type);
2842 when N_Op_Eq
2843 | N_Op_Ne
2845 Resolve_Equality_Op (N, Ctx_Type);
2847 when N_Op_Ge
2848 | N_Op_Gt
2849 | N_Op_Le
2850 | N_Op_Lt
2852 Resolve_Comparison_Op (N, Ctx_Type);
2854 when N_Op_Not =>
2855 Resolve_Op_Not (N, Ctx_Type);
2857 when N_Op_Add
2858 | N_Op_Divide
2859 | N_Op_Mod
2860 | N_Op_Multiply
2861 | N_Op_Rem
2862 | N_Op_Subtract
2864 Resolve_Arithmetic_Op (N, Ctx_Type);
2866 when N_Op_Concat =>
2867 Resolve_Op_Concat (N, Ctx_Type);
2869 when N_Op_Expon =>
2870 Resolve_Op_Expon (N, Ctx_Type);
2872 when N_Op_Abs
2873 | N_Op_Minus
2874 | N_Op_Plus
2876 Resolve_Unary_Op (N, Ctx_Type);
2878 when N_Op_Shift =>
2879 Resolve_Shift (N, Ctx_Type);
2881 when N_Procedure_Call_Statement =>
2882 Resolve_Call (N, Ctx_Type);
2884 when N_Operator_Symbol =>
2885 Resolve_Operator_Symbol (N, Ctx_Type);
2887 when N_Qualified_Expression =>
2888 Resolve_Qualified_Expression (N, Ctx_Type);
2890 -- Why is the following null, needs a comment ???
2892 when N_Quantified_Expression =>
2893 null;
2895 when N_Raise_Expression =>
2896 Resolve_Raise_Expression (N, Ctx_Type);
2898 when N_Raise_xxx_Error =>
2899 Set_Etype (N, Ctx_Type);
2901 when N_Range =>
2902 Resolve_Range (N, Ctx_Type);
2904 when N_Real_Literal =>
2905 Resolve_Real_Literal (N, Ctx_Type);
2907 when N_Reduction_Expression =>
2908 null;
2909 -- Resolve (Expression (N), Ctx_Type);
2911 when N_Reduction_Expression_Parameter =>
2912 null;
2914 when N_Reference =>
2915 Resolve_Reference (N, Ctx_Type);
2917 when N_Selected_Component =>
2918 Resolve_Selected_Component (N, Ctx_Type);
2920 when N_Slice =>
2921 Resolve_Slice (N, Ctx_Type);
2923 when N_String_Literal =>
2924 Resolve_String_Literal (N, Ctx_Type);
2926 when N_Target_Name =>
2927 Resolve_Target_Name (N, Ctx_Type);
2929 when N_Type_Conversion =>
2930 Resolve_Type_Conversion (N, Ctx_Type);
2932 when N_Unchecked_Expression =>
2933 Resolve_Unchecked_Expression (N, Ctx_Type);
2935 when N_Unchecked_Type_Conversion =>
2936 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2937 end case;
2939 -- Mark relevant use-type and use-package clauses as effective using
2940 -- the original node because constant folding may have occured and
2941 -- removed references that need to be examined.
2943 if Nkind (Original_Node (N)) in N_Op then
2944 Mark_Use_Clauses (Original_Node (N));
2945 end if;
2947 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2948 -- expression of an anonymous access type that occurs in the context
2949 -- of a named general access type, except when the expression is that
2950 -- of a membership test. This ensures proper legality checking in
2951 -- terms of allowed conversions (expressions that would be illegal to
2952 -- convert implicitly are allowed in membership tests).
2954 if Ada_Version >= Ada_2012
2955 and then Ekind (Ctx_Type) = E_General_Access_Type
2956 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2957 and then Nkind (Parent (N)) not in N_Membership_Test
2958 then
2959 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2960 Analyze_And_Resolve (N, Ctx_Type);
2961 end if;
2963 -- If the subexpression was replaced by a non-subexpression, then
2964 -- all we do is to expand it. The only legitimate case we know of
2965 -- is converting procedure call statement to entry call statements,
2966 -- but there may be others, so we are making this test general.
2968 if Nkind (N) not in N_Subexpr then
2969 Debug_A_Exit ("resolving ", N, " (done)");
2970 Expand (N);
2971 return;
2972 end if;
2974 -- The expression is definitely NOT overloaded at this point, so
2975 -- we reset the Is_Overloaded flag to avoid any confusion when
2976 -- reanalyzing the node.
2978 Set_Is_Overloaded (N, False);
2980 -- Freeze expression type, entity if it is a name, and designated
2981 -- type if it is an allocator (RM 13.14(10,11,13)).
2983 -- Now that the resolution of the type of the node is complete, and
2984 -- we did not detect an error, we can expand this node. We skip the
2985 -- expand call if we are in a default expression, see section
2986 -- "Handling of Default Expressions" in Sem spec.
2988 Debug_A_Exit ("resolving ", N, " (done)");
2990 -- We unconditionally freeze the expression, even if we are in
2991 -- default expression mode (the Freeze_Expression routine tests this
2992 -- flag and only freezes static types if it is set).
2994 -- Ada 2012 (AI05-177): The declaration of an expression function
2995 -- does not cause freezing, but we never reach here in that case.
2996 -- Here we are resolving the corresponding expanded body, so we do
2997 -- need to perform normal freezing.
2999 -- As elsewhere we do not emit freeze node within a generic. We make
3000 -- an exception for entities that are expressions, only to detect
3001 -- misuses of deferred constants and preserve the output of various
3002 -- tests.
3004 if not Inside_A_Generic or else Is_Entity_Name (N) then
3005 Freeze_Expression (N);
3006 end if;
3008 -- Now we can do the expansion
3010 Expand (N);
3011 end if;
3012 end Resolve;
3014 -------------
3015 -- Resolve --
3016 -------------
3018 -- Version with check(s) suppressed
3020 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3021 begin
3022 if Suppress = All_Checks then
3023 declare
3024 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3025 begin
3026 Scope_Suppress.Suppress := (others => True);
3027 Resolve (N, Typ);
3028 Scope_Suppress.Suppress := Sva;
3029 end;
3031 else
3032 declare
3033 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3034 begin
3035 Scope_Suppress.Suppress (Suppress) := True;
3036 Resolve (N, Typ);
3037 Scope_Suppress.Suppress (Suppress) := Svg;
3038 end;
3039 end if;
3040 end Resolve;
3042 -------------
3043 -- Resolve --
3044 -------------
3046 -- Version with implicit type
3048 procedure Resolve (N : Node_Id) is
3049 begin
3050 Resolve (N, Etype (N));
3051 end Resolve;
3053 ---------------------
3054 -- Resolve_Actuals --
3055 ---------------------
3057 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3058 Loc : constant Source_Ptr := Sloc (N);
3059 A : Node_Id;
3060 A_Id : Entity_Id;
3061 A_Typ : Entity_Id := Empty; -- init to avoid warning
3062 F : Entity_Id;
3063 F_Typ : Entity_Id;
3064 Prev : Node_Id := Empty;
3065 Orig_A : Node_Id;
3066 Real_F : Entity_Id := Empty; -- init to avoid warning
3068 Real_Subp : Entity_Id;
3069 -- If the subprogram being called is an inherited operation for
3070 -- a formal derived type in an instance, Real_Subp is the subprogram
3071 -- that will be called. It may have different formal names than the
3072 -- operation of the formal in the generic, so after actual is resolved
3073 -- the name of the actual in a named association must carry the name
3074 -- of the actual of the subprogram being called.
3076 procedure Check_Aliased_Parameter;
3077 -- Check rules on aliased parameters and related accessibility rules
3078 -- in (RM 3.10.2 (10.2-10.4)).
3080 procedure Check_Argument_Order;
3081 -- Performs a check for the case where the actuals are all simple
3082 -- identifiers that correspond to the formal names, but in the wrong
3083 -- order, which is considered suspicious and cause for a warning.
3085 procedure Check_Prefixed_Call;
3086 -- If the original node is an overloaded call in prefix notation,
3087 -- insert an 'Access or a dereference as needed over the first actual.
3088 -- Try_Object_Operation has already verified that there is a valid
3089 -- interpretation, but the form of the actual can only be determined
3090 -- once the primitive operation is identified.
3092 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3093 -- Emit an error concerning the illegal usage of an effectively volatile
3094 -- object in interfering context (SPARK RM 7.13(12)).
3096 procedure Insert_Default;
3097 -- If the actual is missing in a call, insert in the actuals list
3098 -- an instance of the default expression. The insertion is always
3099 -- a named association.
3101 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3102 -- Check whether T1 and T2, or their full views, are derived from a
3103 -- common type. Used to enforce the restrictions on array conversions
3104 -- of AI95-00246.
3106 function Static_Concatenation (N : Node_Id) return Boolean;
3107 -- Predicate to determine whether an actual that is a concatenation
3108 -- will be evaluated statically and does not need a transient scope.
3109 -- This must be determined before the actual is resolved and expanded
3110 -- because if needed the transient scope must be introduced earlier.
3112 -----------------------------
3113 -- Check_Aliased_Parameter --
3114 -----------------------------
3116 procedure Check_Aliased_Parameter is
3117 Nominal_Subt : Entity_Id;
3119 begin
3120 if Is_Aliased (F) then
3121 if Is_Tagged_Type (A_Typ) then
3122 null;
3124 elsif Is_Aliased_View (A) then
3125 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3126 Nominal_Subt := Base_Type (A_Typ);
3127 else
3128 Nominal_Subt := A_Typ;
3129 end if;
3131 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3132 null;
3134 -- In a generic body assume the worst for generic formals:
3135 -- they can have a constrained partial view (AI05-041).
3137 elsif Has_Discriminants (F_Typ)
3138 and then not Is_Constrained (F_Typ)
3139 and then not Has_Constrained_Partial_View (F_Typ)
3140 and then not Is_Generic_Type (F_Typ)
3141 then
3142 null;
3144 else
3145 Error_Msg_NE ("untagged actual does not match "
3146 & "aliased formal&", A, F);
3147 end if;
3149 else
3150 Error_Msg_NE ("actual for aliased formal& must be "
3151 & "aliased object", A, F);
3152 end if;
3154 if Ekind (Nam) = E_Procedure then
3155 null;
3157 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3158 if Nkind (Parent (N)) = N_Type_Conversion
3159 and then Type_Access_Level (Etype (Parent (N))) <
3160 Object_Access_Level (A)
3161 then
3162 Error_Msg_N ("aliased actual has wrong accessibility", A);
3163 end if;
3165 elsif Nkind (Parent (N)) = N_Qualified_Expression
3166 and then Nkind (Parent (Parent (N))) = N_Allocator
3167 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3168 Object_Access_Level (A)
3169 then
3170 Error_Msg_N
3171 ("aliased actual in allocator has wrong accessibility", A);
3172 end if;
3173 end if;
3174 end Check_Aliased_Parameter;
3176 --------------------------
3177 -- Check_Argument_Order --
3178 --------------------------
3180 procedure Check_Argument_Order is
3181 begin
3182 -- Nothing to do if no parameters, or original node is neither a
3183 -- function call nor a procedure call statement (happens in the
3184 -- operator-transformed-to-function call case), or the call does
3185 -- not come from source, or this warning is off.
3187 if not Warn_On_Parameter_Order
3188 or else No (Parameter_Associations (N))
3189 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3190 or else not Comes_From_Source (N)
3191 then
3192 return;
3193 end if;
3195 declare
3196 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3198 begin
3199 -- Nothing to do if only one parameter
3201 if Nargs < 2 then
3202 return;
3203 end if;
3205 -- Here if at least two arguments
3207 declare
3208 Actuals : array (1 .. Nargs) of Node_Id;
3209 Actual : Node_Id;
3210 Formal : Node_Id;
3212 Wrong_Order : Boolean := False;
3213 -- Set True if an out of order case is found
3215 begin
3216 -- Collect identifier names of actuals, fail if any actual is
3217 -- not a simple identifier, and record max length of name.
3219 Actual := First (Parameter_Associations (N));
3220 for J in Actuals'Range loop
3221 if Nkind (Actual) /= N_Identifier then
3222 return;
3223 else
3224 Actuals (J) := Actual;
3225 Next (Actual);
3226 end if;
3227 end loop;
3229 -- If we got this far, all actuals are identifiers and the list
3230 -- of their names is stored in the Actuals array.
3232 Formal := First_Formal (Nam);
3233 for J in Actuals'Range loop
3235 -- If we ran out of formals, that's odd, probably an error
3236 -- which will be detected elsewhere, but abandon the search.
3238 if No (Formal) then
3239 return;
3240 end if;
3242 -- If name matches and is in order OK
3244 if Chars (Formal) = Chars (Actuals (J)) then
3245 null;
3247 else
3248 -- If no match, see if it is elsewhere in list and if so
3249 -- flag potential wrong order if type is compatible.
3251 for K in Actuals'Range loop
3252 if Chars (Formal) = Chars (Actuals (K))
3253 and then
3254 Has_Compatible_Type (Actuals (K), Etype (Formal))
3255 then
3256 Wrong_Order := True;
3257 goto Continue;
3258 end if;
3259 end loop;
3261 -- No match
3263 return;
3264 end if;
3266 <<Continue>> Next_Formal (Formal);
3267 end loop;
3269 -- If Formals left over, also probably an error, skip warning
3271 if Present (Formal) then
3272 return;
3273 end if;
3275 -- Here we give the warning if something was out of order
3277 if Wrong_Order then
3278 Error_Msg_N
3279 ("?P?actuals for this call may be in wrong order", N);
3280 end if;
3281 end;
3282 end;
3283 end Check_Argument_Order;
3285 -------------------------
3286 -- Check_Prefixed_Call --
3287 -------------------------
3289 procedure Check_Prefixed_Call is
3290 Act : constant Node_Id := First_Actual (N);
3291 A_Type : constant Entity_Id := Etype (Act);
3292 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3293 Orig : constant Node_Id := Original_Node (N);
3294 New_A : Node_Id;
3296 begin
3297 -- Check whether the call is a prefixed call, with or without
3298 -- additional actuals.
3300 if Nkind (Orig) = N_Selected_Component
3301 or else
3302 (Nkind (Orig) = N_Indexed_Component
3303 and then Nkind (Prefix (Orig)) = N_Selected_Component
3304 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3305 and then Is_Entity_Name (Act)
3306 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3307 then
3308 if Is_Access_Type (A_Type)
3309 and then not Is_Access_Type (F_Type)
3310 then
3311 -- Introduce dereference on object in prefix
3313 New_A :=
3314 Make_Explicit_Dereference (Sloc (Act),
3315 Prefix => Relocate_Node (Act));
3316 Rewrite (Act, New_A);
3317 Analyze (Act);
3319 elsif Is_Access_Type (F_Type)
3320 and then not Is_Access_Type (A_Type)
3321 then
3322 -- Introduce an implicit 'Access in prefix
3324 if not Is_Aliased_View (Act) then
3325 Error_Msg_NE
3326 ("object in prefixed call to& must be aliased "
3327 & "(RM 4.1.3 (13 1/2))",
3328 Prefix (Act), Nam);
3329 end if;
3331 Rewrite (Act,
3332 Make_Attribute_Reference (Loc,
3333 Attribute_Name => Name_Access,
3334 Prefix => Relocate_Node (Act)));
3335 end if;
3337 Analyze (Act);
3338 end if;
3339 end Check_Prefixed_Call;
3341 ---------------------------------------
3342 -- Flag_Effectively_Volatile_Objects --
3343 ---------------------------------------
3345 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3346 function Flag_Object (N : Node_Id) return Traverse_Result;
3347 -- Determine whether arbitrary node N denotes an effectively volatile
3348 -- object and if it does, emit an error.
3350 -----------------
3351 -- Flag_Object --
3352 -----------------
3354 function Flag_Object (N : Node_Id) return Traverse_Result is
3355 Id : Entity_Id;
3357 begin
3358 -- Do not consider nested function calls because they have already
3359 -- been processed during their own resolution.
3361 if Nkind (N) = N_Function_Call then
3362 return Skip;
3364 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3365 Id := Entity (N);
3367 if Is_Object (Id)
3368 and then Is_Effectively_Volatile (Id)
3369 and then (Async_Writers_Enabled (Id)
3370 or else Effective_Reads_Enabled (Id))
3371 then
3372 Error_Msg_N
3373 ("volatile object cannot appear in this context (SPARK "
3374 & "RM 7.1.3(11))", N);
3375 return Skip;
3376 end if;
3377 end if;
3379 return OK;
3380 end Flag_Object;
3382 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3384 -- Start of processing for Flag_Effectively_Volatile_Objects
3386 begin
3387 Flag_Objects (Expr);
3388 end Flag_Effectively_Volatile_Objects;
3390 --------------------
3391 -- Insert_Default --
3392 --------------------
3394 procedure Insert_Default is
3395 Actval : Node_Id;
3396 Assoc : Node_Id;
3398 begin
3399 -- Missing argument in call, nothing to insert
3401 if No (Default_Value (F)) then
3402 return;
3404 else
3405 -- Note that we do a full New_Copy_Tree, so that any associated
3406 -- Itypes are properly copied. This may not be needed any more,
3407 -- but it does no harm as a safety measure. Defaults of a generic
3408 -- formal may be out of bounds of the corresponding actual (see
3409 -- cc1311b) and an additional check may be required.
3411 Actval :=
3412 New_Copy_Tree
3413 (Default_Value (F),
3414 New_Scope => Current_Scope,
3415 New_Sloc => Loc);
3417 -- Propagate dimension information, if any.
3419 Copy_Dimensions (Default_Value (F), Actval);
3421 if Is_Concurrent_Type (Scope (Nam))
3422 and then Has_Discriminants (Scope (Nam))
3423 then
3424 Replace_Actual_Discriminants (N, Actval);
3425 end if;
3427 if Is_Overloadable (Nam)
3428 and then Present (Alias (Nam))
3429 then
3430 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3431 and then not Is_Tagged_Type (Etype (F))
3432 then
3433 -- If default is a real literal, do not introduce a
3434 -- conversion whose effect may depend on the run-time
3435 -- size of universal real.
3437 if Nkind (Actval) = N_Real_Literal then
3438 Set_Etype (Actval, Base_Type (Etype (F)));
3439 else
3440 Actval := Unchecked_Convert_To (Etype (F), Actval);
3441 end if;
3442 end if;
3444 if Is_Scalar_Type (Etype (F)) then
3445 Enable_Range_Check (Actval);
3446 end if;
3448 Set_Parent (Actval, N);
3450 -- Resolve aggregates with their base type, to avoid scope
3451 -- anomalies: the subtype was first built in the subprogram
3452 -- declaration, and the current call may be nested.
3454 if Nkind (Actval) = N_Aggregate then
3455 Analyze_And_Resolve (Actval, Etype (F));
3456 else
3457 Analyze_And_Resolve (Actval, Etype (Actval));
3458 end if;
3460 else
3461 Set_Parent (Actval, N);
3463 -- See note above concerning aggregates
3465 if Nkind (Actval) = N_Aggregate
3466 and then Has_Discriminants (Etype (Actval))
3467 then
3468 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3470 -- Resolve entities with their own type, which may differ from
3471 -- the type of a reference in a generic context (the view
3472 -- swapping mechanism did not anticipate the re-analysis of
3473 -- default values in calls).
3475 elsif Is_Entity_Name (Actval) then
3476 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3478 else
3479 Analyze_And_Resolve (Actval, Etype (Actval));
3480 end if;
3481 end if;
3483 -- If default is a tag indeterminate function call, propagate tag
3484 -- to obtain proper dispatching.
3486 if Is_Controlling_Formal (F)
3487 and then Nkind (Default_Value (F)) = N_Function_Call
3488 then
3489 Set_Is_Controlling_Actual (Actval);
3490 end if;
3491 end if;
3493 -- If the default expression raises constraint error, then just
3494 -- silently replace it with an N_Raise_Constraint_Error node, since
3495 -- we already gave the warning on the subprogram spec. If node is
3496 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3497 -- the warnings removal machinery.
3499 if Raises_Constraint_Error (Actval)
3500 and then Nkind (Actval) /= N_Raise_Constraint_Error
3501 then
3502 Rewrite (Actval,
3503 Make_Raise_Constraint_Error (Loc,
3504 Reason => CE_Range_Check_Failed));
3506 Set_Raises_Constraint_Error (Actval);
3507 Set_Etype (Actval, Etype (F));
3508 end if;
3510 Assoc :=
3511 Make_Parameter_Association (Loc,
3512 Explicit_Actual_Parameter => Actval,
3513 Selector_Name => Make_Identifier (Loc, Chars (F)));
3515 -- Case of insertion is first named actual
3517 if No (Prev)
3518 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3519 then
3520 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3521 Set_First_Named_Actual (N, Actval);
3523 if No (Prev) then
3524 if No (Parameter_Associations (N)) then
3525 Set_Parameter_Associations (N, New_List (Assoc));
3526 else
3527 Append (Assoc, Parameter_Associations (N));
3528 end if;
3530 else
3531 Insert_After (Prev, Assoc);
3532 end if;
3534 -- Case of insertion is not first named actual
3536 else
3537 Set_Next_Named_Actual
3538 (Assoc, Next_Named_Actual (Parent (Prev)));
3539 Set_Next_Named_Actual (Parent (Prev), Actval);
3540 Append (Assoc, Parameter_Associations (N));
3541 end if;
3543 Mark_Rewrite_Insertion (Assoc);
3544 Mark_Rewrite_Insertion (Actval);
3546 Prev := Actval;
3547 end Insert_Default;
3549 -------------------
3550 -- Same_Ancestor --
3551 -------------------
3553 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3554 FT1 : Entity_Id := T1;
3555 FT2 : Entity_Id := T2;
3557 begin
3558 if Is_Private_Type (T1)
3559 and then Present (Full_View (T1))
3560 then
3561 FT1 := Full_View (T1);
3562 end if;
3564 if Is_Private_Type (T2)
3565 and then Present (Full_View (T2))
3566 then
3567 FT2 := Full_View (T2);
3568 end if;
3570 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3571 end Same_Ancestor;
3573 --------------------------
3574 -- Static_Concatenation --
3575 --------------------------
3577 function Static_Concatenation (N : Node_Id) return Boolean is
3578 begin
3579 case Nkind (N) is
3580 when N_String_Literal =>
3581 return True;
3583 when N_Op_Concat =>
3585 -- Concatenation is static when both operands are static and
3586 -- the concatenation operator is a predefined one.
3588 return Scope (Entity (N)) = Standard_Standard
3589 and then
3590 Static_Concatenation (Left_Opnd (N))
3591 and then
3592 Static_Concatenation (Right_Opnd (N));
3594 when others =>
3595 if Is_Entity_Name (N) then
3596 declare
3597 Ent : constant Entity_Id := Entity (N);
3598 begin
3599 return Ekind (Ent) = E_Constant
3600 and then Present (Constant_Value (Ent))
3601 and then
3602 Is_OK_Static_Expression (Constant_Value (Ent));
3603 end;
3605 else
3606 return False;
3607 end if;
3608 end case;
3609 end Static_Concatenation;
3611 -- Start of processing for Resolve_Actuals
3613 begin
3614 Check_Argument_Order;
3616 if Is_Overloadable (Nam)
3617 and then Is_Inherited_Operation (Nam)
3618 and then In_Instance
3619 and then Present (Alias (Nam))
3620 and then Present (Overridden_Operation (Alias (Nam)))
3621 then
3622 Real_Subp := Alias (Nam);
3623 else
3624 Real_Subp := Empty;
3625 end if;
3627 if Present (First_Actual (N)) then
3628 Check_Prefixed_Call;
3629 end if;
3631 A := First_Actual (N);
3632 F := First_Formal (Nam);
3634 if Present (Real_Subp) then
3635 Real_F := First_Formal (Real_Subp);
3636 end if;
3638 while Present (F) loop
3639 if No (A) and then Needs_No_Actuals (Nam) then
3640 null;
3642 -- If we have an error in any actual or formal, indicated by a type
3643 -- of Any_Type, then abandon resolution attempt, and set result type
3644 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3645 -- type is imposed from context.
3647 elsif (Present (A) and then Etype (A) = Any_Type)
3648 or else Etype (F) = Any_Type
3649 then
3650 if Nkind (A) /= N_Raise_Expression then
3651 Set_Etype (N, Any_Type);
3652 return;
3653 end if;
3654 end if;
3656 -- Case where actual is present
3658 -- If the actual is an entity, generate a reference to it now. We
3659 -- do this before the actual is resolved, because a formal of some
3660 -- protected subprogram, or a task discriminant, will be rewritten
3661 -- during expansion, and the source entity reference may be lost.
3663 if Present (A)
3664 and then Is_Entity_Name (A)
3665 and then Comes_From_Source (A)
3666 then
3667 -- Annotate the tree by creating a variable reference marker when
3668 -- the actual denotes a variable reference, in case the reference
3669 -- is folded or optimized away. The variable reference marker is
3670 -- automatically saved for later examination by the ABE Processing
3671 -- phase. The status of the reference is set as follows:
3673 -- status mode
3674 -- read IN, IN OUT
3675 -- write IN OUT, OUT
3677 Build_Variable_Reference_Marker
3678 (N => A,
3679 Read => Ekind (F) /= E_Out_Parameter,
3680 Write => Ekind (F) /= E_In_Parameter);
3682 Orig_A := Entity (A);
3684 if Present (Orig_A) then
3685 if Is_Formal (Orig_A)
3686 and then Ekind (F) /= E_In_Parameter
3687 then
3688 Generate_Reference (Orig_A, A, 'm');
3690 elsif not Is_Overloaded (A) then
3691 if Ekind (F) /= E_Out_Parameter then
3692 Generate_Reference (Orig_A, A);
3694 -- RM 6.4.1(12): For an out parameter that is passed by
3695 -- copy, the formal parameter object is created, and:
3697 -- * For an access type, the formal parameter is initialized
3698 -- from the value of the actual, without checking that the
3699 -- value satisfies any constraint, any predicate, or any
3700 -- exclusion of the null value.
3702 -- * For a scalar type that has the Default_Value aspect
3703 -- specified, the formal parameter is initialized from the
3704 -- value of the actual, without checking that the value
3705 -- satisfies any constraint or any predicate.
3706 -- I do not understand why this case is included??? this is
3707 -- not a case where an OUT parameter is treated as IN OUT.
3709 -- * For a composite type with discriminants or that has
3710 -- implicit initial values for any subcomponents, the
3711 -- behavior is as for an in out parameter passed by copy.
3713 -- Hence for these cases we generate the read reference now
3714 -- (the write reference will be generated later by
3715 -- Note_Possible_Modification).
3717 elsif Is_By_Copy_Type (Etype (F))
3718 and then
3719 (Is_Access_Type (Etype (F))
3720 or else
3721 (Is_Scalar_Type (Etype (F))
3722 and then
3723 Present (Default_Aspect_Value (Etype (F))))
3724 or else
3725 (Is_Composite_Type (Etype (F))
3726 and then (Has_Discriminants (Etype (F))
3727 or else Is_Partially_Initialized_Type
3728 (Etype (F)))))
3729 then
3730 Generate_Reference (Orig_A, A);
3731 end if;
3732 end if;
3733 end if;
3734 end if;
3736 if Present (A)
3737 and then (Nkind (Parent (A)) /= N_Parameter_Association
3738 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3739 then
3740 -- If style checking mode on, check match of formal name
3742 if Style_Check then
3743 if Nkind (Parent (A)) = N_Parameter_Association then
3744 Check_Identifier (Selector_Name (Parent (A)), F);
3745 end if;
3746 end if;
3748 -- If the formal is Out or In_Out, do not resolve and expand the
3749 -- conversion, because it is subsequently expanded into explicit
3750 -- temporaries and assignments. However, the object of the
3751 -- conversion can be resolved. An exception is the case of tagged
3752 -- type conversion with a class-wide actual. In that case we want
3753 -- the tag check to occur and no temporary will be needed (no
3754 -- representation change can occur) and the parameter is passed by
3755 -- reference, so we go ahead and resolve the type conversion.
3756 -- Another exception is the case of reference to component or
3757 -- subcomponent of a bit-packed array, in which case we want to
3758 -- defer expansion to the point the in and out assignments are
3759 -- performed.
3761 if Ekind (F) /= E_In_Parameter
3762 and then Nkind (A) = N_Type_Conversion
3763 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3764 then
3765 if Ekind (F) = E_In_Out_Parameter
3766 and then Is_Array_Type (Etype (F))
3767 then
3768 -- In a view conversion, the conversion must be legal in
3769 -- both directions, and thus both component types must be
3770 -- aliased, or neither (4.6 (8)).
3772 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3773 -- the privacy requirement should not apply to generic
3774 -- types, and should be checked in an instance. ARG query
3775 -- is in order ???
3777 if Has_Aliased_Components (Etype (Expression (A))) /=
3778 Has_Aliased_Components (Etype (F))
3779 then
3780 Error_Msg_N
3781 ("both component types in a view conversion must be"
3782 & " aliased, or neither", A);
3784 -- Comment here??? what set of cases???
3786 elsif
3787 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3788 then
3789 -- Check view conv between unrelated by ref array types
3791 if Is_By_Reference_Type (Etype (F))
3792 or else Is_By_Reference_Type (Etype (Expression (A)))
3793 then
3794 Error_Msg_N
3795 ("view conversion between unrelated by reference "
3796 & "array types not allowed (\'A'I-00246)", A);
3798 -- In Ada 2005 mode, check view conversion component
3799 -- type cannot be private, tagged, or volatile. Note
3800 -- that we only apply this to source conversions. The
3801 -- generated code can contain conversions which are
3802 -- not subject to this test, and we cannot extract the
3803 -- component type in such cases since it is not present.
3805 elsif Comes_From_Source (A)
3806 and then Ada_Version >= Ada_2005
3807 then
3808 declare
3809 Comp_Type : constant Entity_Id :=
3810 Component_Type
3811 (Etype (Expression (A)));
3812 begin
3813 if (Is_Private_Type (Comp_Type)
3814 and then not Is_Generic_Type (Comp_Type))
3815 or else Is_Tagged_Type (Comp_Type)
3816 or else Is_Volatile (Comp_Type)
3817 then
3818 Error_Msg_N
3819 ("component type of a view conversion cannot"
3820 & " be private, tagged, or volatile"
3821 & " (RM 4.6 (24))",
3822 Expression (A));
3823 end if;
3824 end;
3825 end if;
3826 end if;
3827 end if;
3829 -- Resolve expression if conversion is all OK
3831 if (Conversion_OK (A)
3832 or else Valid_Conversion (A, Etype (A), Expression (A)))
3833 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3834 then
3835 Resolve (Expression (A));
3836 end if;
3838 -- If the actual is a function call that returns a limited
3839 -- unconstrained object that needs finalization, create a
3840 -- transient scope for it, so that it can receive the proper
3841 -- finalization list.
3843 elsif Expander_Active
3844 and then Nkind (A) = N_Function_Call
3845 and then Is_Limited_Record (Etype (F))
3846 and then not Is_Constrained (Etype (F))
3847 and then (Needs_Finalization (Etype (F))
3848 or else Has_Task (Etype (F)))
3849 then
3850 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3851 Resolve (A, Etype (F));
3853 -- A small optimization: if one of the actuals is a concatenation
3854 -- create a block around a procedure call to recover stack space.
3855 -- This alleviates stack usage when several procedure calls in
3856 -- the same statement list use concatenation. We do not perform
3857 -- this wrapping for code statements, where the argument is a
3858 -- static string, and we want to preserve warnings involving
3859 -- sequences of such statements.
3861 elsif Expander_Active
3862 and then Nkind (A) = N_Op_Concat
3863 and then Nkind (N) = N_Procedure_Call_Statement
3864 and then not (Is_Intrinsic_Subprogram (Nam)
3865 and then Chars (Nam) = Name_Asm)
3866 and then not Static_Concatenation (A)
3867 then
3868 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3869 Resolve (A, Etype (F));
3871 else
3872 if Nkind (A) = N_Type_Conversion
3873 and then Is_Array_Type (Etype (F))
3874 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3875 and then
3876 (Is_Limited_Type (Etype (F))
3877 or else Is_Limited_Type (Etype (Expression (A))))
3878 then
3879 Error_Msg_N
3880 ("conversion between unrelated limited array types not "
3881 & "allowed ('A'I-00246)", A);
3883 if Is_Limited_Type (Etype (F)) then
3884 Explain_Limited_Type (Etype (F), A);
3885 end if;
3887 if Is_Limited_Type (Etype (Expression (A))) then
3888 Explain_Limited_Type (Etype (Expression (A)), A);
3889 end if;
3890 end if;
3892 -- (Ada 2005: AI-251): If the actual is an allocator whose
3893 -- directly designated type is a class-wide interface, we build
3894 -- an anonymous access type to use it as the type of the
3895 -- allocator. Later, when the subprogram call is expanded, if
3896 -- the interface has a secondary dispatch table the expander
3897 -- will add a type conversion to force the correct displacement
3898 -- of the pointer.
3900 if Nkind (A) = N_Allocator then
3901 declare
3902 DDT : constant Entity_Id :=
3903 Directly_Designated_Type (Base_Type (Etype (F)));
3905 New_Itype : Entity_Id;
3907 begin
3908 if Is_Class_Wide_Type (DDT)
3909 and then Is_Interface (DDT)
3910 then
3911 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3912 Set_Etype (New_Itype, Etype (A));
3913 Set_Directly_Designated_Type
3914 (New_Itype, Directly_Designated_Type (Etype (A)));
3915 Set_Etype (A, New_Itype);
3916 end if;
3918 -- Ada 2005, AI-162:If the actual is an allocator, the
3919 -- innermost enclosing statement is the master of the
3920 -- created object. This needs to be done with expansion
3921 -- enabled only, otherwise the transient scope will not
3922 -- be removed in the expansion of the wrapped construct.
3924 if Expander_Active
3925 and then (Needs_Finalization (DDT)
3926 or else Has_Task (DDT))
3927 then
3928 Establish_Transient_Scope
3929 (A, Manage_Sec_Stack => False);
3930 end if;
3931 end;
3933 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3934 Check_Restriction (No_Access_Parameter_Allocators, A);
3935 end if;
3936 end if;
3938 -- (Ada 2005): The call may be to a primitive operation of a
3939 -- tagged synchronized type, declared outside of the type. In
3940 -- this case the controlling actual must be converted to its
3941 -- corresponding record type, which is the formal type. The
3942 -- actual may be a subtype, either because of a constraint or
3943 -- because it is a generic actual, so use base type to locate
3944 -- concurrent type.
3946 F_Typ := Base_Type (Etype (F));
3948 if Is_Tagged_Type (F_Typ)
3949 and then (Is_Concurrent_Type (F_Typ)
3950 or else Is_Concurrent_Record_Type (F_Typ))
3951 then
3952 -- If the actual is overloaded, look for an interpretation
3953 -- that has a synchronized type.
3955 if not Is_Overloaded (A) then
3956 A_Typ := Base_Type (Etype (A));
3958 else
3959 declare
3960 Index : Interp_Index;
3961 It : Interp;
3963 begin
3964 Get_First_Interp (A, Index, It);
3965 while Present (It.Typ) loop
3966 if Is_Concurrent_Type (It.Typ)
3967 or else Is_Concurrent_Record_Type (It.Typ)
3968 then
3969 A_Typ := Base_Type (It.Typ);
3970 exit;
3971 end if;
3973 Get_Next_Interp (Index, It);
3974 end loop;
3975 end;
3976 end if;
3978 declare
3979 Full_A_Typ : Entity_Id;
3981 begin
3982 if Present (Full_View (A_Typ)) then
3983 Full_A_Typ := Base_Type (Full_View (A_Typ));
3984 else
3985 Full_A_Typ := A_Typ;
3986 end if;
3988 -- Tagged synchronized type (case 1): the actual is a
3989 -- concurrent type.
3991 if Is_Concurrent_Type (A_Typ)
3992 and then Corresponding_Record_Type (A_Typ) = F_Typ
3993 then
3994 Rewrite (A,
3995 Unchecked_Convert_To
3996 (Corresponding_Record_Type (A_Typ), A));
3997 Resolve (A, Etype (F));
3999 -- Tagged synchronized type (case 2): the formal is a
4000 -- concurrent type.
4002 elsif Ekind (Full_A_Typ) = E_Record_Type
4003 and then Present
4004 (Corresponding_Concurrent_Type (Full_A_Typ))
4005 and then Is_Concurrent_Type (F_Typ)
4006 and then Present (Corresponding_Record_Type (F_Typ))
4007 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4008 then
4009 Resolve (A, Corresponding_Record_Type (F_Typ));
4011 -- Common case
4013 else
4014 Resolve (A, Etype (F));
4015 end if;
4016 end;
4018 -- Not a synchronized operation
4020 else
4021 Resolve (A, Etype (F));
4022 end if;
4023 end if;
4025 A_Typ := Etype (A);
4026 F_Typ := Etype (F);
4028 -- An actual cannot be an untagged formal incomplete type
4030 if Ekind (A_Typ) = E_Incomplete_Type
4031 and then not Is_Tagged_Type (A_Typ)
4032 and then Is_Generic_Type (A_Typ)
4033 then
4034 Error_Msg_N
4035 ("invalid use of untagged formal incomplete type", A);
4036 end if;
4038 if Comes_From_Source (Original_Node (N))
4039 and then Nkind_In (Original_Node (N), N_Function_Call,
4040 N_Procedure_Call_Statement)
4041 then
4042 -- In formal mode, check that actual parameters matching
4043 -- formals of tagged types are objects (or ancestor type
4044 -- conversions of objects), not general expressions.
4046 if Is_Actual_Tagged_Parameter (A) then
4047 if Is_SPARK_05_Object_Reference (A) then
4048 null;
4050 elsif Nkind (A) = N_Type_Conversion then
4051 declare
4052 Operand : constant Node_Id := Expression (A);
4053 Operand_Typ : constant Entity_Id := Etype (Operand);
4054 Target_Typ : constant Entity_Id := A_Typ;
4056 begin
4057 if not Is_SPARK_05_Object_Reference (Operand) then
4058 Check_SPARK_05_Restriction
4059 ("object required", Operand);
4061 -- In formal mode, the only view conversions are those
4062 -- involving ancestor conversion of an extended type.
4064 elsif not
4065 (Is_Tagged_Type (Target_Typ)
4066 and then not Is_Class_Wide_Type (Target_Typ)
4067 and then Is_Tagged_Type (Operand_Typ)
4068 and then not Is_Class_Wide_Type (Operand_Typ)
4069 and then Is_Ancestor (Target_Typ, Operand_Typ))
4070 then
4071 if Ekind_In
4072 (F, E_Out_Parameter, E_In_Out_Parameter)
4073 then
4074 Check_SPARK_05_Restriction
4075 ("ancestor conversion is the only permitted "
4076 & "view conversion", A);
4077 else
4078 Check_SPARK_05_Restriction
4079 ("ancestor conversion required", A);
4080 end if;
4082 else
4083 null;
4084 end if;
4085 end;
4087 else
4088 Check_SPARK_05_Restriction ("object required", A);
4089 end if;
4091 -- In formal mode, the only view conversions are those
4092 -- involving ancestor conversion of an extended type.
4094 elsif Nkind (A) = N_Type_Conversion
4095 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4096 then
4097 Check_SPARK_05_Restriction
4098 ("ancestor conversion is the only permitted view "
4099 & "conversion", A);
4100 end if;
4101 end if;
4103 -- has warnings suppressed, then we reset Never_Set_In_Source for
4104 -- the calling entity. The reason for this is to catch cases like
4105 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4106 -- uses trickery to modify an IN parameter.
4108 if Ekind (F) = E_In_Parameter
4109 and then Is_Entity_Name (A)
4110 and then Present (Entity (A))
4111 and then Ekind (Entity (A)) = E_Variable
4112 and then Has_Warnings_Off (F_Typ)
4113 then
4114 Set_Never_Set_In_Source (Entity (A), False);
4115 end if;
4117 -- Perform error checks for IN and IN OUT parameters
4119 if Ekind (F) /= E_Out_Parameter then
4121 -- Check unset reference. For scalar parameters, it is clearly
4122 -- wrong to pass an uninitialized value as either an IN or
4123 -- IN-OUT parameter. For composites, it is also clearly an
4124 -- error to pass a completely uninitialized value as an IN
4125 -- parameter, but the case of IN OUT is trickier. We prefer
4126 -- not to give a warning here. For example, suppose there is
4127 -- a routine that sets some component of a record to False.
4128 -- It is perfectly reasonable to make this IN-OUT and allow
4129 -- either initialized or uninitialized records to be passed
4130 -- in this case.
4132 -- For partially initialized composite values, we also avoid
4133 -- warnings, since it is quite likely that we are passing a
4134 -- partially initialized value and only the initialized fields
4135 -- will in fact be read in the subprogram.
4137 if Is_Scalar_Type (A_Typ)
4138 or else (Ekind (F) = E_In_Parameter
4139 and then not Is_Partially_Initialized_Type (A_Typ))
4140 then
4141 Check_Unset_Reference (A);
4142 end if;
4144 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4145 -- actual to a nested call, since this constitutes a reading of
4146 -- the parameter, which is not allowed.
4148 if Ada_Version = Ada_83
4149 and then Is_Entity_Name (A)
4150 and then Ekind (Entity (A)) = E_Out_Parameter
4151 then
4152 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4153 end if;
4154 end if;
4156 -- In -gnatd.q mode, forget that a given array is constant when
4157 -- it is passed as an IN parameter to a foreign-convention
4158 -- subprogram. This is in case the subprogram evilly modifies the
4159 -- object. Of course, correct code would use IN OUT.
4161 if Debug_Flag_Dot_Q
4162 and then Ekind (F) = E_In_Parameter
4163 and then Has_Foreign_Convention (Nam)
4164 and then Is_Array_Type (F_Typ)
4165 and then Nkind (A) in N_Has_Entity
4166 and then Present (Entity (A))
4167 then
4168 Set_Is_True_Constant (Entity (A), False);
4169 end if;
4171 -- Case of OUT or IN OUT parameter
4173 if Ekind (F) /= E_In_Parameter then
4175 -- For an Out parameter, check for useless assignment. Note
4176 -- that we can't set Last_Assignment this early, because we may
4177 -- kill current values in Resolve_Call, and that call would
4178 -- clobber the Last_Assignment field.
4180 -- Note: call Warn_On_Useless_Assignment before doing the check
4181 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4182 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4183 -- reflects the last assignment, not this one.
4185 if Ekind (F) = E_Out_Parameter then
4186 if Warn_On_Modified_As_Out_Parameter (F)
4187 and then Is_Entity_Name (A)
4188 and then Present (Entity (A))
4189 and then Comes_From_Source (N)
4190 then
4191 Warn_On_Useless_Assignment (Entity (A), A);
4192 end if;
4193 end if;
4195 -- Validate the form of the actual. Note that the call to
4196 -- Is_OK_Variable_For_Out_Formal generates the required
4197 -- reference in this case.
4199 -- A call to an initialization procedure for an aggregate
4200 -- component may initialize a nested component of a constant
4201 -- designated object. In this context the object is variable.
4203 if not Is_OK_Variable_For_Out_Formal (A)
4204 and then not Is_Init_Proc (Nam)
4205 then
4206 Error_Msg_NE ("actual for& must be a variable", A, F);
4208 if Is_Subprogram (Current_Scope) then
4209 if Is_Invariant_Procedure (Current_Scope)
4210 or else Is_Partial_Invariant_Procedure (Current_Scope)
4211 then
4212 Error_Msg_N
4213 ("function used in invariant cannot modify its "
4214 & "argument", F);
4216 elsif Is_Predicate_Function (Current_Scope) then
4217 Error_Msg_N
4218 ("function used in predicate cannot modify its "
4219 & "argument", F);
4220 end if;
4221 end if;
4222 end if;
4224 -- What's the following about???
4226 if Is_Entity_Name (A) then
4227 Kill_Checks (Entity (A));
4228 else
4229 Kill_All_Checks;
4230 end if;
4231 end if;
4233 if Etype (A) = Any_Type then
4234 Set_Etype (N, Any_Type);
4235 return;
4236 end if;
4238 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4240 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4242 -- Apply predicate tests except in certain special cases. Note
4243 -- that it might be more consistent to apply these only when
4244 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4245 -- for the outbound predicate tests ??? In any case indicate
4246 -- the function being called, for better warnings if the call
4247 -- leads to an infinite recursion.
4249 if Predicate_Tests_On_Arguments (Nam) then
4250 Apply_Predicate_Check (A, F_Typ, Nam);
4251 end if;
4253 -- Apply required constraint checks
4255 -- Gigi looks at the check flag and uses the appropriate types.
4256 -- For now since one flag is used there is an optimization
4257 -- which might not be done in the IN OUT case since Gigi does
4258 -- not do any analysis. More thought required about this ???
4260 -- In fact is this comment obsolete??? doesn't the expander now
4261 -- generate all these tests anyway???
4263 if Is_Scalar_Type (Etype (A)) then
4264 Apply_Scalar_Range_Check (A, F_Typ);
4266 elsif Is_Array_Type (Etype (A)) then
4267 Apply_Length_Check (A, F_Typ);
4269 elsif Is_Record_Type (F_Typ)
4270 and then Has_Discriminants (F_Typ)
4271 and then Is_Constrained (F_Typ)
4272 and then (not Is_Derived_Type (F_Typ)
4273 or else Comes_From_Source (Nam))
4274 then
4275 Apply_Discriminant_Check (A, F_Typ);
4277 -- For view conversions of a discriminated object, apply
4278 -- check to object itself, the conversion alreay has the
4279 -- proper type.
4281 if Nkind (A) = N_Type_Conversion
4282 and then Is_Constrained (Etype (Expression (A)))
4283 then
4284 Apply_Discriminant_Check (Expression (A), F_Typ);
4285 end if;
4287 elsif Is_Access_Type (F_Typ)
4288 and then Is_Array_Type (Designated_Type (F_Typ))
4289 and then Is_Constrained (Designated_Type (F_Typ))
4290 then
4291 Apply_Length_Check (A, F_Typ);
4293 elsif Is_Access_Type (F_Typ)
4294 and then Has_Discriminants (Designated_Type (F_Typ))
4295 and then Is_Constrained (Designated_Type (F_Typ))
4296 then
4297 Apply_Discriminant_Check (A, F_Typ);
4299 else
4300 Apply_Range_Check (A, F_Typ);
4301 end if;
4303 -- Ada 2005 (AI-231): Note that the controlling parameter case
4304 -- already existed in Ada 95, which is partially checked
4305 -- elsewhere (see Checks), and we don't want the warning
4306 -- message to differ.
4308 if Is_Access_Type (F_Typ)
4309 and then Can_Never_Be_Null (F_Typ)
4310 and then Known_Null (A)
4311 then
4312 if Is_Controlling_Formal (F) then
4313 Apply_Compile_Time_Constraint_Error
4314 (N => A,
4315 Msg => "null value not allowed here??",
4316 Reason => CE_Access_Check_Failed);
4318 elsif Ada_Version >= Ada_2005 then
4319 Apply_Compile_Time_Constraint_Error
4320 (N => A,
4321 Msg => "(Ada 2005) null not allowed in "
4322 & "null-excluding formal??",
4323 Reason => CE_Null_Not_Allowed);
4324 end if;
4325 end if;
4326 end if;
4328 -- Checks for OUT parameters and IN OUT parameters
4330 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4332 -- If there is a type conversion, make sure the return value
4333 -- meets the constraints of the variable before the conversion.
4335 if Nkind (A) = N_Type_Conversion then
4336 if Is_Scalar_Type (A_Typ) then
4337 Apply_Scalar_Range_Check
4338 (Expression (A), Etype (Expression (A)), A_Typ);
4340 -- In addition, the returned value of the parameter must
4341 -- satisfy the bounds of the object type (see comment
4342 -- below).
4344 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4346 else
4347 Apply_Range_Check
4348 (Expression (A), Etype (Expression (A)), A_Typ);
4349 end if;
4351 -- If no conversion, apply scalar range checks and length check
4352 -- based on the subtype of the actual (NOT that of the formal).
4353 -- This indicates that the check takes place on return from the
4354 -- call. During expansion the required constraint checks are
4355 -- inserted. In GNATprove mode, in the absence of expansion,
4356 -- the flag indicates that the returned value is valid.
4358 else
4359 if Is_Scalar_Type (F_Typ) then
4360 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4362 elsif Is_Array_Type (F_Typ)
4363 and then Ekind (F) = E_Out_Parameter
4364 then
4365 Apply_Length_Check (A, F_Typ);
4366 else
4367 Apply_Range_Check (A, A_Typ, F_Typ);
4368 end if;
4369 end if;
4371 -- Note: we do not apply the predicate checks for the case of
4372 -- OUT and IN OUT parameters. They are instead applied in the
4373 -- Expand_Actuals routine in Exp_Ch6.
4374 end if;
4376 -- An actual associated with an access parameter is implicitly
4377 -- converted to the anonymous access type of the formal and must
4378 -- satisfy the legality checks for access conversions.
4380 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4381 if not Valid_Conversion (A, F_Typ, A) then
4382 Error_Msg_N
4383 ("invalid implicit conversion for access parameter", A);
4384 end if;
4386 -- If the actual is an access selected component of a variable,
4387 -- the call may modify its designated object. It is reasonable
4388 -- to treat this as a potential modification of the enclosing
4389 -- record, to prevent spurious warnings that it should be
4390 -- declared as a constant, because intuitively programmers
4391 -- regard the designated subcomponent as part of the record.
4393 if Nkind (A) = N_Selected_Component
4394 and then Is_Entity_Name (Prefix (A))
4395 and then not Is_Constant_Object (Entity (Prefix (A)))
4396 then
4397 Note_Possible_Modification (A, Sure => False);
4398 end if;
4399 end if;
4401 -- Check bad case of atomic/volatile argument (RM C.6(12))
4403 if Is_By_Reference_Type (Etype (F))
4404 and then Comes_From_Source (N)
4405 then
4406 if Is_Atomic_Object (A)
4407 and then not Is_Atomic (Etype (F))
4408 then
4409 Error_Msg_NE
4410 ("cannot pass atomic argument to non-atomic formal&",
4411 A, F);
4413 elsif Is_Volatile_Object (A)
4414 and then not Is_Volatile (Etype (F))
4415 then
4416 Error_Msg_NE
4417 ("cannot pass volatile argument to non-volatile formal&",
4418 A, F);
4419 end if;
4420 end if;
4422 -- Check that subprograms don't have improper controlling
4423 -- arguments (RM 3.9.2 (9)).
4425 -- A primitive operation may have an access parameter of an
4426 -- incomplete tagged type, but a dispatching call is illegal
4427 -- if the type is still incomplete.
4429 if Is_Controlling_Formal (F) then
4430 Set_Is_Controlling_Actual (A);
4432 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4433 declare
4434 Desig : constant Entity_Id := Designated_Type (Etype (F));
4435 begin
4436 if Ekind (Desig) = E_Incomplete_Type
4437 and then No (Full_View (Desig))
4438 and then No (Non_Limited_View (Desig))
4439 then
4440 Error_Msg_NE
4441 ("premature use of incomplete type& "
4442 & "in dispatching call", A, Desig);
4443 end if;
4444 end;
4445 end if;
4447 elsif Nkind (A) = N_Explicit_Dereference then
4448 Validate_Remote_Access_To_Class_Wide_Type (A);
4449 end if;
4451 -- Apply legality rule 3.9.2 (9/1)
4453 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4454 and then not Is_Class_Wide_Type (F_Typ)
4455 and then not Is_Controlling_Formal (F)
4456 and then not In_Instance
4457 then
4458 Error_Msg_N ("class-wide argument not allowed here!", A);
4460 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4461 Error_Msg_Node_2 := F_Typ;
4462 Error_Msg_NE
4463 ("& is not a dispatching operation of &!", A, Nam);
4464 end if;
4466 -- Apply the checks described in 3.10.2(27): if the context is a
4467 -- specific access-to-object, the actual cannot be class-wide.
4468 -- Use base type to exclude access_to_subprogram cases.
4470 elsif Is_Access_Type (A_Typ)
4471 and then Is_Access_Type (F_Typ)
4472 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4473 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4474 or else (Nkind (A) = N_Attribute_Reference
4475 and then
4476 Is_Class_Wide_Type (Etype (Prefix (A)))))
4477 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4478 and then not Is_Controlling_Formal (F)
4480 -- Disable these checks for call to imported C++ subprograms
4482 and then not
4483 (Is_Entity_Name (Name (N))
4484 and then Is_Imported (Entity (Name (N)))
4485 and then Convention (Entity (Name (N))) = Convention_CPP)
4486 then
4487 Error_Msg_N
4488 ("access to class-wide argument not allowed here!", A);
4490 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4491 Error_Msg_Node_2 := Designated_Type (F_Typ);
4492 Error_Msg_NE
4493 ("& is not a dispatching operation of &!", A, Nam);
4494 end if;
4495 end if;
4497 Check_Aliased_Parameter;
4499 Eval_Actual (A);
4501 -- If it is a named association, treat the selector_name as a
4502 -- proper identifier, and mark the corresponding entity.
4504 if Nkind (Parent (A)) = N_Parameter_Association
4506 -- Ignore reference in SPARK mode, as it refers to an entity not
4507 -- in scope at the point of reference, so the reference should
4508 -- be ignored for computing effects of subprograms.
4510 and then not GNATprove_Mode
4511 then
4512 -- If subprogram is overridden, use name of formal that
4513 -- is being called.
4515 if Present (Real_Subp) then
4516 Set_Entity (Selector_Name (Parent (A)), Real_F);
4517 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4519 else
4520 Set_Entity (Selector_Name (Parent (A)), F);
4521 Generate_Reference (F, Selector_Name (Parent (A)));
4522 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4523 Generate_Reference (F_Typ, N, ' ');
4524 end if;
4525 end if;
4527 Prev := A;
4529 if Ekind (F) /= E_Out_Parameter then
4530 Check_Unset_Reference (A);
4531 end if;
4533 -- The following checks are only relevant when SPARK_Mode is on as
4534 -- they are not standard Ada legality rule. Internally generated
4535 -- temporaries are ignored.
4537 if SPARK_Mode = On and then Comes_From_Source (A) then
4539 -- An effectively volatile object may act as an actual when the
4540 -- corresponding formal is of a non-scalar effectively volatile
4541 -- type (SPARK RM 7.1.3(11)).
4543 if not Is_Scalar_Type (Etype (F))
4544 and then Is_Effectively_Volatile (Etype (F))
4545 then
4546 null;
4548 -- An effectively volatile object may act as an actual in a
4549 -- call to an instance of Unchecked_Conversion.
4550 -- (SPARK RM 7.1.3(11)).
4552 elsif Is_Unchecked_Conversion_Instance (Nam) then
4553 null;
4555 -- The actual denotes an object
4557 elsif Is_Effectively_Volatile_Object (A) then
4558 Error_Msg_N
4559 ("volatile object cannot act as actual in a call (SPARK "
4560 & "RM 7.1.3(11))", A);
4562 -- Otherwise the actual denotes an expression. Inspect the
4563 -- expression and flag each effectively volatile object with
4564 -- enabled property Async_Writers or Effective_Reads as illegal
4565 -- because it apprears within an interfering context. Note that
4566 -- this is usually done in Resolve_Entity_Name, but when the
4567 -- effectively volatile object appears as an actual in a call,
4568 -- the call must be resolved first.
4570 else
4571 Flag_Effectively_Volatile_Objects (A);
4572 end if;
4574 -- An effectively volatile variable cannot act as an actual
4575 -- parameter in a procedure call when the variable has enabled
4576 -- property Effective_Reads and the corresponding formal is of
4577 -- mode IN (SPARK RM 7.1.3(10)).
4579 if Ekind (Nam) = E_Procedure
4580 and then Ekind (F) = E_In_Parameter
4581 and then Is_Entity_Name (A)
4582 then
4583 A_Id := Entity (A);
4585 if Ekind (A_Id) = E_Variable
4586 and then Is_Effectively_Volatile (Etype (A_Id))
4587 and then Effective_Reads_Enabled (A_Id)
4588 then
4589 Error_Msg_NE
4590 ("effectively volatile variable & cannot appear as "
4591 & "actual in procedure call", A, A_Id);
4593 Error_Msg_Name_1 := Name_Effective_Reads;
4594 Error_Msg_N ("\\variable has enabled property %", A);
4595 Error_Msg_N ("\\corresponding formal has mode IN", A);
4596 end if;
4597 end if;
4598 end if;
4600 -- A formal parameter of a specific tagged type whose related
4601 -- subprogram is subject to pragma Extensions_Visible with value
4602 -- "False" cannot act as an actual in a subprogram with value
4603 -- "True" (SPARK RM 6.1.7(3)).
4605 if Is_EVF_Expression (A)
4606 and then Extensions_Visible_Status (Nam) =
4607 Extensions_Visible_True
4608 then
4609 Error_Msg_N
4610 ("formal parameter cannot act as actual parameter when "
4611 & "Extensions_Visible is False", A);
4612 Error_Msg_NE
4613 ("\subprogram & has Extensions_Visible True", A, Nam);
4614 end if;
4616 -- The actual parameter of a Ghost subprogram whose formal is of
4617 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4619 if Comes_From_Source (Nam)
4620 and then Is_Ghost_Entity (Nam)
4621 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4622 and then Is_Entity_Name (A)
4623 and then Present (Entity (A))
4624 and then not Is_Ghost_Entity (Entity (A))
4625 then
4626 Error_Msg_NE
4627 ("non-ghost variable & cannot appear as actual in call to "
4628 & "ghost procedure", A, Entity (A));
4630 if Ekind (F) = E_In_Out_Parameter then
4631 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4632 else
4633 Error_Msg_N ("\corresponding formal has mode OUT", A);
4634 end if;
4635 end if;
4637 Next_Actual (A);
4639 -- Case where actual is not present
4641 else
4642 Insert_Default;
4643 end if;
4645 Next_Formal (F);
4647 if Present (Real_Subp) then
4648 Next_Formal (Real_F);
4649 end if;
4650 end loop;
4651 end Resolve_Actuals;
4653 -----------------------
4654 -- Resolve_Allocator --
4655 -----------------------
4657 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4658 Desig_T : constant Entity_Id := Designated_Type (Typ);
4659 E : constant Node_Id := Expression (N);
4660 Subtyp : Entity_Id;
4661 Discrim : Entity_Id;
4662 Constr : Node_Id;
4663 Aggr : Node_Id;
4664 Assoc : Node_Id := Empty;
4665 Disc_Exp : Node_Id;
4667 procedure Check_Allocator_Discrim_Accessibility
4668 (Disc_Exp : Node_Id;
4669 Alloc_Typ : Entity_Id);
4670 -- Check that accessibility level associated with an access discriminant
4671 -- initialized in an allocator by the expression Disc_Exp is not deeper
4672 -- than the level of the allocator type Alloc_Typ. An error message is
4673 -- issued if this condition is violated. Specialized checks are done for
4674 -- the cases of a constraint expression which is an access attribute or
4675 -- an access discriminant.
4677 function In_Dispatching_Context return Boolean;
4678 -- If the allocator is an actual in a call, it is allowed to be class-
4679 -- wide when the context is not because it is a controlling actual.
4681 -------------------------------------------
4682 -- Check_Allocator_Discrim_Accessibility --
4683 -------------------------------------------
4685 procedure Check_Allocator_Discrim_Accessibility
4686 (Disc_Exp : Node_Id;
4687 Alloc_Typ : Entity_Id)
4689 begin
4690 if Type_Access_Level (Etype (Disc_Exp)) >
4691 Deepest_Type_Access_Level (Alloc_Typ)
4692 then
4693 Error_Msg_N
4694 ("operand type has deeper level than allocator type", Disc_Exp);
4696 -- When the expression is an Access attribute the level of the prefix
4697 -- object must not be deeper than that of the allocator's type.
4699 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4700 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4701 Attribute_Access
4702 and then Object_Access_Level (Prefix (Disc_Exp)) >
4703 Deepest_Type_Access_Level (Alloc_Typ)
4704 then
4705 Error_Msg_N
4706 ("prefix of attribute has deeper level than allocator type",
4707 Disc_Exp);
4709 -- When the expression is an access discriminant the check is against
4710 -- the level of the prefix object.
4712 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4713 and then Nkind (Disc_Exp) = N_Selected_Component
4714 and then Object_Access_Level (Prefix (Disc_Exp)) >
4715 Deepest_Type_Access_Level (Alloc_Typ)
4716 then
4717 Error_Msg_N
4718 ("access discriminant has deeper level than allocator type",
4719 Disc_Exp);
4721 -- All other cases are legal
4723 else
4724 null;
4725 end if;
4726 end Check_Allocator_Discrim_Accessibility;
4728 ----------------------------
4729 -- In_Dispatching_Context --
4730 ----------------------------
4732 function In_Dispatching_Context return Boolean is
4733 Par : constant Node_Id := Parent (N);
4735 begin
4736 return Nkind (Par) in N_Subprogram_Call
4737 and then Is_Entity_Name (Name (Par))
4738 and then Is_Dispatching_Operation (Entity (Name (Par)));
4739 end In_Dispatching_Context;
4741 -- Start of processing for Resolve_Allocator
4743 begin
4744 -- Replace general access with specific type
4746 if Ekind (Etype (N)) = E_Allocator_Type then
4747 Set_Etype (N, Base_Type (Typ));
4748 end if;
4750 if Is_Abstract_Type (Typ) then
4751 Error_Msg_N ("type of allocator cannot be abstract", N);
4752 end if;
4754 -- For qualified expression, resolve the expression using the given
4755 -- subtype (nothing to do for type mark, subtype indication)
4757 if Nkind (E) = N_Qualified_Expression then
4758 if Is_Class_Wide_Type (Etype (E))
4759 and then not Is_Class_Wide_Type (Desig_T)
4760 and then not In_Dispatching_Context
4761 then
4762 Error_Msg_N
4763 ("class-wide allocator not allowed for this access type", N);
4764 end if;
4766 Resolve (Expression (E), Etype (E));
4767 Check_Non_Static_Context (Expression (E));
4768 Check_Unset_Reference (Expression (E));
4770 -- Allocators generated by the build-in-place expansion mechanism
4771 -- are explicitly marked as coming from source but do not need to be
4772 -- checked for limited initialization. To exclude this case, ensure
4773 -- that the parent of the allocator is a source node.
4774 -- The return statement constructed for an Expression_Function does
4775 -- not come from source but requires a limited check.
4777 if Is_Limited_Type (Etype (E))
4778 and then Comes_From_Source (N)
4779 and then
4780 (Comes_From_Source (Parent (N))
4781 or else
4782 (Ekind (Current_Scope) = E_Function
4783 and then Nkind (Original_Node (Unit_Declaration_Node
4784 (Current_Scope))) = N_Expression_Function))
4785 and then not In_Instance_Body
4786 then
4787 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4788 if Nkind (Parent (N)) = N_Assignment_Statement then
4789 Error_Msg_N
4790 ("illegal expression for initialized allocator of a "
4791 & "limited type (RM 7.5 (2.7/2))", N);
4792 else
4793 Error_Msg_N
4794 ("initialization not allowed for limited types", N);
4795 end if;
4797 Explain_Limited_Type (Etype (E), N);
4798 end if;
4799 end if;
4801 -- A qualified expression requires an exact match of the type. Class-
4802 -- wide matching is not allowed.
4804 if (Is_Class_Wide_Type (Etype (Expression (E)))
4805 or else Is_Class_Wide_Type (Etype (E)))
4806 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4807 then
4808 Wrong_Type (Expression (E), Etype (E));
4809 end if;
4811 -- Calls to build-in-place functions are not currently supported in
4812 -- allocators for access types associated with a simple storage pool.
4813 -- Supporting such allocators may require passing additional implicit
4814 -- parameters to build-in-place functions (or a significant revision
4815 -- of the current b-i-p implementation to unify the handling for
4816 -- multiple kinds of storage pools). ???
4818 if Is_Limited_View (Desig_T)
4819 and then Nkind (Expression (E)) = N_Function_Call
4820 then
4821 declare
4822 Pool : constant Entity_Id :=
4823 Associated_Storage_Pool (Root_Type (Typ));
4824 begin
4825 if Present (Pool)
4826 and then
4827 Present (Get_Rep_Pragma
4828 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4829 then
4830 Error_Msg_N
4831 ("limited function calls not yet supported in simple "
4832 & "storage pool allocators", Expression (E));
4833 end if;
4834 end;
4835 end if;
4837 -- A special accessibility check is needed for allocators that
4838 -- constrain access discriminants. The level of the type of the
4839 -- expression used to constrain an access discriminant cannot be
4840 -- deeper than the type of the allocator (in contrast to access
4841 -- parameters, where the level of the actual can be arbitrary).
4843 -- We can't use Valid_Conversion to perform this check because in
4844 -- general the type of the allocator is unrelated to the type of
4845 -- the access discriminant.
4847 if Ekind (Typ) /= E_Anonymous_Access_Type
4848 or else Is_Local_Anonymous_Access (Typ)
4849 then
4850 Subtyp := Entity (Subtype_Mark (E));
4852 Aggr := Original_Node (Expression (E));
4854 if Has_Discriminants (Subtyp)
4855 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4856 then
4857 Discrim := First_Discriminant (Base_Type (Subtyp));
4859 -- Get the first component expression of the aggregate
4861 if Present (Expressions (Aggr)) then
4862 Disc_Exp := First (Expressions (Aggr));
4864 elsif Present (Component_Associations (Aggr)) then
4865 Assoc := First (Component_Associations (Aggr));
4867 if Present (Assoc) then
4868 Disc_Exp := Expression (Assoc);
4869 else
4870 Disc_Exp := Empty;
4871 end if;
4873 else
4874 Disc_Exp := Empty;
4875 end if;
4877 while Present (Discrim) and then Present (Disc_Exp) loop
4878 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4879 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4880 end if;
4882 Next_Discriminant (Discrim);
4884 if Present (Discrim) then
4885 if Present (Assoc) then
4886 Next (Assoc);
4887 Disc_Exp := Expression (Assoc);
4889 elsif Present (Next (Disc_Exp)) then
4890 Next (Disc_Exp);
4892 else
4893 Assoc := First (Component_Associations (Aggr));
4895 if Present (Assoc) then
4896 Disc_Exp := Expression (Assoc);
4897 else
4898 Disc_Exp := Empty;
4899 end if;
4900 end if;
4901 end if;
4902 end loop;
4903 end if;
4904 end if;
4906 -- For a subtype mark or subtype indication, freeze the subtype
4908 else
4909 Freeze_Expression (E);
4911 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4912 Error_Msg_N
4913 ("initialization required for access-to-constant allocator", N);
4914 end if;
4916 -- A special accessibility check is needed for allocators that
4917 -- constrain access discriminants. The level of the type of the
4918 -- expression used to constrain an access discriminant cannot be
4919 -- deeper than the type of the allocator (in contrast to access
4920 -- parameters, where the level of the actual can be arbitrary).
4921 -- We can't use Valid_Conversion to perform this check because
4922 -- in general the type of the allocator is unrelated to the type
4923 -- of the access discriminant.
4925 if Nkind (Original_Node (E)) = N_Subtype_Indication
4926 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4927 or else Is_Local_Anonymous_Access (Typ))
4928 then
4929 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4931 if Has_Discriminants (Subtyp) then
4932 Discrim := First_Discriminant (Base_Type (Subtyp));
4933 Constr := First (Constraints (Constraint (Original_Node (E))));
4934 while Present (Discrim) and then Present (Constr) loop
4935 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4936 if Nkind (Constr) = N_Discriminant_Association then
4937 Disc_Exp := Original_Node (Expression (Constr));
4938 else
4939 Disc_Exp := Original_Node (Constr);
4940 end if;
4942 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4943 end if;
4945 Next_Discriminant (Discrim);
4946 Next (Constr);
4947 end loop;
4948 end if;
4949 end if;
4950 end if;
4952 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4953 -- check that the level of the type of the created object is not deeper
4954 -- than the level of the allocator's access type, since extensions can
4955 -- now occur at deeper levels than their ancestor types. This is a
4956 -- static accessibility level check; a run-time check is also needed in
4957 -- the case of an initialized allocator with a class-wide argument (see
4958 -- Expand_Allocator_Expression).
4960 if Ada_Version >= Ada_2005
4961 and then Is_Class_Wide_Type (Desig_T)
4962 then
4963 declare
4964 Exp_Typ : Entity_Id;
4966 begin
4967 if Nkind (E) = N_Qualified_Expression then
4968 Exp_Typ := Etype (E);
4969 elsif Nkind (E) = N_Subtype_Indication then
4970 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4971 else
4972 Exp_Typ := Entity (E);
4973 end if;
4975 if Type_Access_Level (Exp_Typ) >
4976 Deepest_Type_Access_Level (Typ)
4977 then
4978 if In_Instance_Body then
4979 Error_Msg_Warn := SPARK_Mode /= On;
4980 Error_Msg_N
4981 ("type in allocator has deeper level than "
4982 & "designated class-wide type<<", E);
4983 Error_Msg_N ("\Program_Error [<<", E);
4984 Rewrite (N,
4985 Make_Raise_Program_Error (Sloc (N),
4986 Reason => PE_Accessibility_Check_Failed));
4987 Set_Etype (N, Typ);
4989 -- Do not apply Ada 2005 accessibility checks on a class-wide
4990 -- allocator if the type given in the allocator is a formal
4991 -- type. A run-time check will be performed in the instance.
4993 elsif not Is_Generic_Type (Exp_Typ) then
4994 Error_Msg_N ("type in allocator has deeper level than "
4995 & "designated class-wide type", E);
4996 end if;
4997 end if;
4998 end;
4999 end if;
5001 -- Check for allocation from an empty storage pool
5003 if No_Pool_Assigned (Typ) then
5004 Error_Msg_N ("allocation from empty storage pool!", N);
5006 -- If the context is an unchecked conversion, as may happen within an
5007 -- inlined subprogram, the allocator is being resolved with its own
5008 -- anonymous type. In that case, if the target type has a specific
5009 -- storage pool, it must be inherited explicitly by the allocator type.
5011 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5012 and then No (Associated_Storage_Pool (Typ))
5013 then
5014 Set_Associated_Storage_Pool
5015 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5016 end if;
5018 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5019 Check_Restriction (No_Anonymous_Allocators, N);
5020 end if;
5022 -- Check that an allocator with task parts isn't for a nested access
5023 -- type when restriction No_Task_Hierarchy applies.
5025 if not Is_Library_Level_Entity (Base_Type (Typ))
5026 and then Has_Task (Base_Type (Desig_T))
5027 then
5028 Check_Restriction (No_Task_Hierarchy, N);
5029 end if;
5031 -- An illegal allocator may be rewritten as a raise Program_Error
5032 -- statement.
5034 if Nkind (N) = N_Allocator then
5036 -- Avoid coextension processing for an allocator that is the
5037 -- expansion of a build-in-place function call.
5039 if Nkind (Original_Node (N)) = N_Allocator
5040 and then Nkind (Expression (Original_Node (N))) =
5041 N_Qualified_Expression
5042 and then Nkind (Expression (Expression (Original_Node (N)))) =
5043 N_Function_Call
5044 and then Is_Expanded_Build_In_Place_Call
5045 (Expression (Expression (Original_Node (N))))
5046 then
5047 null; -- b-i-p function call case
5049 else
5050 -- An anonymous access discriminant is the definition of a
5051 -- coextension.
5053 if Ekind (Typ) = E_Anonymous_Access_Type
5054 and then Nkind (Associated_Node_For_Itype (Typ)) =
5055 N_Discriminant_Specification
5056 then
5057 declare
5058 Discr : constant Entity_Id :=
5059 Defining_Identifier (Associated_Node_For_Itype (Typ));
5061 begin
5062 Check_Restriction (No_Coextensions, N);
5064 -- Ada 2012 AI05-0052: If the designated type of the
5065 -- allocator is limited, then the allocator shall not
5066 -- be used to define the value of an access discriminant
5067 -- unless the discriminated type is immutably limited.
5069 if Ada_Version >= Ada_2012
5070 and then Is_Limited_Type (Desig_T)
5071 and then not Is_Limited_View (Scope (Discr))
5072 then
5073 Error_Msg_N
5074 ("only immutably limited types can have anonymous "
5075 & "access discriminants designating a limited type",
5077 end if;
5078 end;
5080 -- Avoid marking an allocator as a dynamic coextension if it is
5081 -- within a static construct.
5083 if not Is_Static_Coextension (N) then
5084 Set_Is_Dynamic_Coextension (N);
5086 -- Finalization and deallocation of coextensions utilizes an
5087 -- approximate implementation which does not directly adhere
5088 -- to the semantic rules. Warn on potential issues involving
5089 -- coextensions.
5091 if Is_Controlled (Desig_T) then
5092 Error_Msg_N
5093 ("??coextension will not be finalized when its "
5094 & "associated owner is deallocated or finalized", N);
5095 else
5096 Error_Msg_N
5097 ("??coextension will not be deallocated when its "
5098 & "associated owner is deallocated", N);
5099 end if;
5100 end if;
5102 -- Cleanup for potential static coextensions
5104 else
5105 Set_Is_Dynamic_Coextension (N, False);
5106 Set_Is_Static_Coextension (N, False);
5108 -- Anonymous access-to-controlled objects are not finalized on
5109 -- time because this involves run-time ownership and currently
5110 -- this property is not available. In rare cases the object may
5111 -- not be finalized at all. Warn on potential issues involving
5112 -- anonymous access-to-controlled objects.
5114 if Ekind (Typ) = E_Anonymous_Access_Type
5115 and then Is_Controlled_Active (Desig_T)
5116 then
5117 Error_Msg_N
5118 ("??object designated by anonymous access object might "
5119 & "not be finalized until its enclosing library unit "
5120 & "goes out of scope", N);
5121 Error_Msg_N ("\use named access type instead", N);
5122 end if;
5123 end if;
5124 end if;
5125 end if;
5127 -- Report a simple error: if the designated object is a local task,
5128 -- its body has not been seen yet, and its activation will fail an
5129 -- elaboration check.
5131 if Is_Task_Type (Desig_T)
5132 and then Scope (Base_Type (Desig_T)) = Current_Scope
5133 and then Is_Compilation_Unit (Current_Scope)
5134 and then Ekind (Current_Scope) = E_Package
5135 and then not In_Package_Body (Current_Scope)
5136 then
5137 Error_Msg_Warn := SPARK_Mode /= On;
5138 Error_Msg_N ("cannot activate task before body seen<<", N);
5139 Error_Msg_N ("\Program_Error [<<", N);
5140 end if;
5142 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5143 -- type with a task component on a subpool. This action must raise
5144 -- Program_Error at runtime.
5146 if Ada_Version >= Ada_2012
5147 and then Nkind (N) = N_Allocator
5148 and then Present (Subpool_Handle_Name (N))
5149 and then Has_Task (Desig_T)
5150 then
5151 Error_Msg_Warn := SPARK_Mode /= On;
5152 Error_Msg_N ("cannot allocate task on subpool<<", N);
5153 Error_Msg_N ("\Program_Error [<<", N);
5155 Rewrite (N,
5156 Make_Raise_Program_Error (Sloc (N),
5157 Reason => PE_Explicit_Raise));
5158 Set_Etype (N, Typ);
5159 end if;
5160 end Resolve_Allocator;
5162 ---------------------------
5163 -- Resolve_Arithmetic_Op --
5164 ---------------------------
5166 -- Used for resolving all arithmetic operators except exponentiation
5168 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5169 L : constant Node_Id := Left_Opnd (N);
5170 R : constant Node_Id := Right_Opnd (N);
5171 TL : constant Entity_Id := Base_Type (Etype (L));
5172 TR : constant Entity_Id := Base_Type (Etype (R));
5173 T : Entity_Id;
5174 Rop : Node_Id;
5176 B_Typ : constant Entity_Id := Base_Type (Typ);
5177 -- We do the resolution using the base type, because intermediate values
5178 -- in expressions always are of the base type, not a subtype of it.
5180 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5181 -- Returns True if N is in a context that expects "any real type"
5183 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5184 -- Return True iff given type is Integer or universal real/integer
5186 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5187 -- Choose type of integer literal in fixed-point operation to conform
5188 -- to available fixed-point type. T is the type of the other operand,
5189 -- which is needed to determine the expected type of N.
5191 procedure Set_Operand_Type (N : Node_Id);
5192 -- Set operand type to T if universal
5194 -------------------------------
5195 -- Expected_Type_Is_Any_Real --
5196 -------------------------------
5198 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5199 begin
5200 -- N is the expression after "delta" in a fixed_point_definition;
5201 -- see RM-3.5.9(6):
5203 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5204 N_Decimal_Fixed_Point_Definition,
5206 -- N is one of the bounds in a real_range_specification;
5207 -- see RM-3.5.7(5):
5209 N_Real_Range_Specification,
5211 -- N is the expression of a delta_constraint;
5212 -- see RM-J.3(3):
5214 N_Delta_Constraint);
5215 end Expected_Type_Is_Any_Real;
5217 -----------------------------
5218 -- Is_Integer_Or_Universal --
5219 -----------------------------
5221 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5222 T : Entity_Id;
5223 Index : Interp_Index;
5224 It : Interp;
5226 begin
5227 if not Is_Overloaded (N) then
5228 T := Etype (N);
5229 return Base_Type (T) = Base_Type (Standard_Integer)
5230 or else T = Universal_Integer
5231 or else T = Universal_Real;
5232 else
5233 Get_First_Interp (N, Index, It);
5234 while Present (It.Typ) loop
5235 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5236 or else It.Typ = Universal_Integer
5237 or else It.Typ = Universal_Real
5238 then
5239 return True;
5240 end if;
5242 Get_Next_Interp (Index, It);
5243 end loop;
5244 end if;
5246 return False;
5247 end Is_Integer_Or_Universal;
5249 ----------------------------
5250 -- Set_Mixed_Mode_Operand --
5251 ----------------------------
5253 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5254 Index : Interp_Index;
5255 It : Interp;
5257 begin
5258 if Universal_Interpretation (N) = Universal_Integer then
5260 -- A universal integer literal is resolved as standard integer
5261 -- except in the case of a fixed-point result, where we leave it
5262 -- as universal (to be handled by Exp_Fixd later on)
5264 if Is_Fixed_Point_Type (T) then
5265 Resolve (N, Universal_Integer);
5266 else
5267 Resolve (N, Standard_Integer);
5268 end if;
5270 elsif Universal_Interpretation (N) = Universal_Real
5271 and then (T = Base_Type (Standard_Integer)
5272 or else T = Universal_Integer
5273 or else T = Universal_Real)
5274 then
5275 -- A universal real can appear in a fixed-type context. We resolve
5276 -- the literal with that context, even though this might raise an
5277 -- exception prematurely (the other operand may be zero).
5279 Resolve (N, B_Typ);
5281 elsif Etype (N) = Base_Type (Standard_Integer)
5282 and then T = Universal_Real
5283 and then Is_Overloaded (N)
5284 then
5285 -- Integer arg in mixed-mode operation. Resolve with universal
5286 -- type, in case preference rule must be applied.
5288 Resolve (N, Universal_Integer);
5290 elsif Etype (N) = T
5291 and then B_Typ /= Universal_Fixed
5292 then
5293 -- Not a mixed-mode operation, resolve with context
5295 Resolve (N, B_Typ);
5297 elsif Etype (N) = Any_Fixed then
5299 -- N may itself be a mixed-mode operation, so use context type
5301 Resolve (N, B_Typ);
5303 elsif Is_Fixed_Point_Type (T)
5304 and then B_Typ = Universal_Fixed
5305 and then Is_Overloaded (N)
5306 then
5307 -- Must be (fixed * fixed) operation, operand must have one
5308 -- compatible interpretation.
5310 Resolve (N, Any_Fixed);
5312 elsif Is_Fixed_Point_Type (B_Typ)
5313 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5314 and then Is_Overloaded (N)
5315 then
5316 -- C * F(X) in a fixed context, where C is a real literal or a
5317 -- fixed-point expression. F must have either a fixed type
5318 -- interpretation or an integer interpretation, but not both.
5320 Get_First_Interp (N, Index, It);
5321 while Present (It.Typ) loop
5322 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5323 if Analyzed (N) then
5324 Error_Msg_N ("ambiguous operand in fixed operation", N);
5325 else
5326 Resolve (N, Standard_Integer);
5327 end if;
5329 elsif Is_Fixed_Point_Type (It.Typ) then
5330 if Analyzed (N) then
5331 Error_Msg_N ("ambiguous operand in fixed operation", N);
5332 else
5333 Resolve (N, It.Typ);
5334 end if;
5335 end if;
5337 Get_Next_Interp (Index, It);
5338 end loop;
5340 -- Reanalyze the literal with the fixed type of the context. If
5341 -- context is Universal_Fixed, we are within a conversion, leave
5342 -- the literal as a universal real because there is no usable
5343 -- fixed type, and the target of the conversion plays no role in
5344 -- the resolution.
5346 declare
5347 Op2 : Node_Id;
5348 T2 : Entity_Id;
5350 begin
5351 if N = L then
5352 Op2 := R;
5353 else
5354 Op2 := L;
5355 end if;
5357 if B_Typ = Universal_Fixed
5358 and then Nkind (Op2) = N_Real_Literal
5359 then
5360 T2 := Universal_Real;
5361 else
5362 T2 := B_Typ;
5363 end if;
5365 Set_Analyzed (Op2, False);
5366 Resolve (Op2, T2);
5367 end;
5369 -- A universal real conditional expression can appear in a fixed-type
5370 -- context and must be resolved with that context to facilitate the
5371 -- code generation to the backend.
5373 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5374 and then Etype (N) = Universal_Real
5375 and then Is_Fixed_Point_Type (B_Typ)
5376 then
5377 Resolve (N, B_Typ);
5379 else
5380 Resolve (N);
5381 end if;
5382 end Set_Mixed_Mode_Operand;
5384 ----------------------
5385 -- Set_Operand_Type --
5386 ----------------------
5388 procedure Set_Operand_Type (N : Node_Id) is
5389 begin
5390 if Etype (N) = Universal_Integer
5391 or else Etype (N) = Universal_Real
5392 then
5393 Set_Etype (N, T);
5394 end if;
5395 end Set_Operand_Type;
5397 -- Start of processing for Resolve_Arithmetic_Op
5399 begin
5400 if Comes_From_Source (N)
5401 and then Ekind (Entity (N)) = E_Function
5402 and then Is_Imported (Entity (N))
5403 and then Is_Intrinsic_Subprogram (Entity (N))
5404 then
5405 Resolve_Intrinsic_Operator (N, Typ);
5406 return;
5408 -- Special-case for mixed-mode universal expressions or fixed point type
5409 -- operation: each argument is resolved separately. The same treatment
5410 -- is required if one of the operands of a fixed point operation is
5411 -- universal real, since in this case we don't do a conversion to a
5412 -- specific fixed-point type (instead the expander handles the case).
5414 -- Set the type of the node to its universal interpretation because
5415 -- legality checks on an exponentiation operand need the context.
5417 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5418 and then Present (Universal_Interpretation (L))
5419 and then Present (Universal_Interpretation (R))
5420 then
5421 Set_Etype (N, B_Typ);
5422 Resolve (L, Universal_Interpretation (L));
5423 Resolve (R, Universal_Interpretation (R));
5425 elsif (B_Typ = Universal_Real
5426 or else Etype (N) = Universal_Fixed
5427 or else (Etype (N) = Any_Fixed
5428 and then Is_Fixed_Point_Type (B_Typ))
5429 or else (Is_Fixed_Point_Type (B_Typ)
5430 and then (Is_Integer_Or_Universal (L)
5431 or else
5432 Is_Integer_Or_Universal (R))))
5433 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5434 then
5435 if TL = Universal_Integer or else TR = Universal_Integer then
5436 Check_For_Visible_Operator (N, B_Typ);
5437 end if;
5439 -- If context is a fixed type and one operand is integer, the other
5440 -- is resolved with the type of the context.
5442 if Is_Fixed_Point_Type (B_Typ)
5443 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5444 or else TL = Universal_Integer)
5445 then
5446 Resolve (R, B_Typ);
5447 Resolve (L, TL);
5449 elsif Is_Fixed_Point_Type (B_Typ)
5450 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5451 or else TR = Universal_Integer)
5452 then
5453 Resolve (L, B_Typ);
5454 Resolve (R, TR);
5456 -- If both operands are universal and the context is a floating
5457 -- point type, the operands are resolved to the type of the context.
5459 elsif Is_Floating_Point_Type (B_Typ) then
5460 Resolve (L, B_Typ);
5461 Resolve (R, B_Typ);
5463 else
5464 Set_Mixed_Mode_Operand (L, TR);
5465 Set_Mixed_Mode_Operand (R, TL);
5466 end if;
5468 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5469 -- multiplying operators from being used when the expected type is
5470 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5471 -- some cases where the expected type is actually Any_Real;
5472 -- Expected_Type_Is_Any_Real takes care of that case.
5474 if Etype (N) = Universal_Fixed
5475 or else Etype (N) = Any_Fixed
5476 then
5477 if B_Typ = Universal_Fixed
5478 and then not Expected_Type_Is_Any_Real (N)
5479 and then not Nkind_In (Parent (N), N_Type_Conversion,
5480 N_Unchecked_Type_Conversion)
5481 then
5482 Error_Msg_N ("type cannot be determined from context!", N);
5483 Error_Msg_N ("\explicit conversion to result type required", N);
5485 Set_Etype (L, Any_Type);
5486 Set_Etype (R, Any_Type);
5488 else
5489 if Ada_Version = Ada_83
5490 and then Etype (N) = Universal_Fixed
5491 and then not
5492 Nkind_In (Parent (N), N_Type_Conversion,
5493 N_Unchecked_Type_Conversion)
5494 then
5495 Error_Msg_N
5496 ("(Ada 83) fixed-point operation needs explicit "
5497 & "conversion", N);
5498 end if;
5500 -- The expected type is "any real type" in contexts like
5502 -- type T is delta <universal_fixed-expression> ...
5504 -- in which case we need to set the type to Universal_Real
5505 -- so that static expression evaluation will work properly.
5507 if Expected_Type_Is_Any_Real (N) then
5508 Set_Etype (N, Universal_Real);
5509 else
5510 Set_Etype (N, B_Typ);
5511 end if;
5512 end if;
5514 elsif Is_Fixed_Point_Type (B_Typ)
5515 and then (Is_Integer_Or_Universal (L)
5516 or else Nkind (L) = N_Real_Literal
5517 or else Nkind (R) = N_Real_Literal
5518 or else Is_Integer_Or_Universal (R))
5519 then
5520 Set_Etype (N, B_Typ);
5522 elsif Etype (N) = Any_Fixed then
5524 -- If no previous errors, this is only possible if one operand is
5525 -- overloaded and the context is universal. Resolve as such.
5527 Set_Etype (N, B_Typ);
5528 end if;
5530 else
5531 if (TL = Universal_Integer or else TL = Universal_Real)
5532 and then
5533 (TR = Universal_Integer or else TR = Universal_Real)
5534 then
5535 Check_For_Visible_Operator (N, B_Typ);
5536 end if;
5538 -- If the context is Universal_Fixed and the operands are also
5539 -- universal fixed, this is an error, unless there is only one
5540 -- applicable fixed_point type (usually Duration).
5542 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5543 T := Unique_Fixed_Point_Type (N);
5545 if T = Any_Type then
5546 Set_Etype (N, T);
5547 return;
5548 else
5549 Resolve (L, T);
5550 Resolve (R, T);
5551 end if;
5553 else
5554 Resolve (L, B_Typ);
5555 Resolve (R, B_Typ);
5556 end if;
5558 -- If one of the arguments was resolved to a non-universal type.
5559 -- label the result of the operation itself with the same type.
5560 -- Do the same for the universal argument, if any.
5562 T := Intersect_Types (L, R);
5563 Set_Etype (N, Base_Type (T));
5564 Set_Operand_Type (L);
5565 Set_Operand_Type (R);
5566 end if;
5568 Generate_Operator_Reference (N, Typ);
5569 Analyze_Dimension (N);
5570 Eval_Arithmetic_Op (N);
5572 -- In SPARK, a multiplication or division with operands of fixed point
5573 -- types must be qualified or explicitly converted to identify the
5574 -- result type.
5576 if (Is_Fixed_Point_Type (Etype (L))
5577 or else Is_Fixed_Point_Type (Etype (R)))
5578 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5579 and then
5580 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5581 then
5582 Check_SPARK_05_Restriction
5583 ("operation should be qualified or explicitly converted", N);
5584 end if;
5586 -- Set overflow and division checking bit
5588 if Nkind (N) in N_Op then
5589 if not Overflow_Checks_Suppressed (Etype (N)) then
5590 Enable_Overflow_Check (N);
5591 end if;
5593 -- Give warning if explicit division by zero
5595 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5596 and then not Division_Checks_Suppressed (Etype (N))
5597 then
5598 Rop := Right_Opnd (N);
5600 if Compile_Time_Known_Value (Rop)
5601 and then ((Is_Integer_Type (Etype (Rop))
5602 and then Expr_Value (Rop) = Uint_0)
5603 or else
5604 (Is_Real_Type (Etype (Rop))
5605 and then Expr_Value_R (Rop) = Ureal_0))
5606 then
5607 -- Specialize the warning message according to the operation.
5608 -- When SPARK_Mode is On, force a warning instead of an error
5609 -- in that case, as this likely corresponds to deactivated
5610 -- code. The following warnings are for the case
5612 case Nkind (N) is
5613 when N_Op_Divide =>
5615 -- For division, we have two cases, for float division
5616 -- of an unconstrained float type, on a machine where
5617 -- Machine_Overflows is false, we don't get an exception
5618 -- at run-time, but rather an infinity or Nan. The Nan
5619 -- case is pretty obscure, so just warn about infinities.
5621 if Is_Floating_Point_Type (Typ)
5622 and then not Is_Constrained (Typ)
5623 and then not Machine_Overflows_On_Target
5624 then
5625 Error_Msg_N
5626 ("float division by zero, may generate "
5627 & "'+'/'- infinity??", Right_Opnd (N));
5629 -- For all other cases, we get a Constraint_Error
5631 else
5632 Apply_Compile_Time_Constraint_Error
5633 (N, "division by zero??", CE_Divide_By_Zero,
5634 Loc => Sloc (Right_Opnd (N)),
5635 Warn => SPARK_Mode = On);
5636 end if;
5638 when N_Op_Rem =>
5639 Apply_Compile_Time_Constraint_Error
5640 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5641 Loc => Sloc (Right_Opnd (N)),
5642 Warn => SPARK_Mode = On);
5644 when N_Op_Mod =>
5645 Apply_Compile_Time_Constraint_Error
5646 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5647 Loc => Sloc (Right_Opnd (N)),
5648 Warn => SPARK_Mode = On);
5650 -- Division by zero can only happen with division, rem,
5651 -- and mod operations.
5653 when others =>
5654 raise Program_Error;
5655 end case;
5657 -- In GNATprove mode, we enable the division check so that
5658 -- GNATprove will issue a message if it cannot be proved.
5660 if GNATprove_Mode then
5661 Activate_Division_Check (N);
5662 end if;
5664 -- Otherwise just set the flag to check at run time
5666 else
5667 Activate_Division_Check (N);
5668 end if;
5669 end if;
5671 -- If Restriction No_Implicit_Conditionals is active, then it is
5672 -- violated if either operand can be negative for mod, or for rem
5673 -- if both operands can be negative.
5675 if Restriction_Check_Required (No_Implicit_Conditionals)
5676 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5677 then
5678 declare
5679 Lo : Uint;
5680 Hi : Uint;
5681 OK : Boolean;
5683 LNeg : Boolean;
5684 RNeg : Boolean;
5685 -- Set if corresponding operand might be negative
5687 begin
5688 Determine_Range
5689 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5690 LNeg := (not OK) or else Lo < 0;
5692 Determine_Range
5693 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5694 RNeg := (not OK) or else Lo < 0;
5696 -- Check if we will be generating conditionals. There are two
5697 -- cases where that can happen, first for REM, the only case
5698 -- is largest negative integer mod -1, where the division can
5699 -- overflow, but we still have to give the right result. The
5700 -- front end generates a test for this annoying case. Here we
5701 -- just test if both operands can be negative (that's what the
5702 -- expander does, so we match its logic here).
5704 -- The second case is mod where either operand can be negative.
5705 -- In this case, the back end has to generate additional tests.
5707 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5708 or else
5709 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5710 then
5711 Check_Restriction (No_Implicit_Conditionals, N);
5712 end if;
5713 end;
5714 end if;
5715 end if;
5717 Check_Unset_Reference (L);
5718 Check_Unset_Reference (R);
5719 end Resolve_Arithmetic_Op;
5721 ------------------
5722 -- Resolve_Call --
5723 ------------------
5725 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5726 function Same_Or_Aliased_Subprograms
5727 (S : Entity_Id;
5728 E : Entity_Id) return Boolean;
5729 -- Returns True if the subprogram entity S is the same as E or else
5730 -- S is an alias of E.
5732 ---------------------------------
5733 -- Same_Or_Aliased_Subprograms --
5734 ---------------------------------
5736 function Same_Or_Aliased_Subprograms
5737 (S : Entity_Id;
5738 E : Entity_Id) return Boolean
5740 Subp_Alias : constant Entity_Id := Alias (S);
5741 begin
5742 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5743 end Same_Or_Aliased_Subprograms;
5745 -- Local variables
5747 Loc : constant Source_Ptr := Sloc (N);
5748 Subp : constant Node_Id := Name (N);
5749 Body_Id : Entity_Id;
5750 I : Interp_Index;
5751 It : Interp;
5752 Nam : Entity_Id;
5753 Nam_Decl : Node_Id;
5754 Nam_UA : Entity_Id;
5755 Norm_OK : Boolean;
5756 Rtype : Entity_Id;
5757 Scop : Entity_Id;
5759 -- Start of processing for Resolve_Call
5761 begin
5762 -- Preserve relevant elaboration-related attributes of the context which
5763 -- are no longer available or very expensive to recompute once analysis,
5764 -- resolution, and expansion are over.
5766 Mark_Elaboration_Attributes
5767 (N_Id => N,
5768 Checks => True,
5769 Modes => True,
5770 Warnings => True);
5772 -- The context imposes a unique interpretation with type Typ on a
5773 -- procedure or function call. Find the entity of the subprogram that
5774 -- yields the expected type, and propagate the corresponding formal
5775 -- constraints on the actuals. The caller has established that an
5776 -- interpretation exists, and emitted an error if not unique.
5778 -- First deal with the case of a call to an access-to-subprogram,
5779 -- dereference made explicit in Analyze_Call.
5781 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5782 if not Is_Overloaded (Subp) then
5783 Nam := Etype (Subp);
5785 else
5786 -- Find the interpretation whose type (a subprogram type) has a
5787 -- return type that is compatible with the context. Analysis of
5788 -- the node has established that one exists.
5790 Nam := Empty;
5792 Get_First_Interp (Subp, I, It);
5793 while Present (It.Typ) loop
5794 if Covers (Typ, Etype (It.Typ)) then
5795 Nam := It.Typ;
5796 exit;
5797 end if;
5799 Get_Next_Interp (I, It);
5800 end loop;
5802 if No (Nam) then
5803 raise Program_Error;
5804 end if;
5805 end if;
5807 -- If the prefix is not an entity, then resolve it
5809 if not Is_Entity_Name (Subp) then
5810 Resolve (Subp, Nam);
5811 end if;
5813 -- For an indirect call, we always invalidate checks, since we do not
5814 -- know whether the subprogram is local or global. Yes we could do
5815 -- better here, e.g. by knowing that there are no local subprograms,
5816 -- but it does not seem worth the effort. Similarly, we kill all
5817 -- knowledge of current constant values.
5819 Kill_Current_Values;
5821 -- If this is a procedure call which is really an entry call, do
5822 -- the conversion of the procedure call to an entry call. Protected
5823 -- operations use the same circuitry because the name in the call
5824 -- can be an arbitrary expression with special resolution rules.
5826 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5827 or else (Is_Entity_Name (Subp)
5828 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5829 then
5830 Resolve_Entry_Call (N, Typ);
5832 if Legacy_Elaboration_Checks then
5833 Check_Elab_Call (N);
5834 end if;
5836 -- Annotate the tree by creating a call marker in case the original
5837 -- call is transformed by expansion. The call marker is automatically
5838 -- saved for later examination by the ABE Processing phase.
5840 Build_Call_Marker (N);
5842 -- Kill checks and constant values, as above for indirect case
5843 -- Who knows what happens when another task is activated?
5845 Kill_Current_Values;
5846 return;
5848 -- Normal subprogram call with name established in Resolve
5850 elsif not (Is_Type (Entity (Subp))) then
5851 Nam := Entity (Subp);
5852 Set_Entity_With_Checks (Subp, Nam);
5854 -- Otherwise we must have the case of an overloaded call
5856 else
5857 pragma Assert (Is_Overloaded (Subp));
5859 -- Initialize Nam to prevent warning (we know it will be assigned
5860 -- in the loop below, but the compiler does not know that).
5862 Nam := Empty;
5864 Get_First_Interp (Subp, I, It);
5865 while Present (It.Typ) loop
5866 if Covers (Typ, It.Typ) then
5867 Nam := It.Nam;
5868 Set_Entity_With_Checks (Subp, Nam);
5869 exit;
5870 end if;
5872 Get_Next_Interp (I, It);
5873 end loop;
5874 end if;
5876 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5877 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5878 and then Nkind (Subp) /= N_Explicit_Dereference
5879 and then Present (Parameter_Associations (N))
5880 then
5881 -- The prefix is a parameterless function call that returns an access
5882 -- to subprogram. If parameters are present in the current call, add
5883 -- add an explicit dereference. We use the base type here because
5884 -- within an instance these may be subtypes.
5886 -- The dereference is added either in Analyze_Call or here. Should
5887 -- be consolidated ???
5889 Set_Is_Overloaded (Subp, False);
5890 Set_Etype (Subp, Etype (Nam));
5891 Insert_Explicit_Dereference (Subp);
5892 Nam := Designated_Type (Etype (Nam));
5893 Resolve (Subp, Nam);
5894 end if;
5896 -- Check that a call to Current_Task does not occur in an entry body
5898 if Is_RTE (Nam, RE_Current_Task) then
5899 declare
5900 P : Node_Id;
5902 begin
5903 P := N;
5904 loop
5905 P := Parent (P);
5907 -- Exclude calls that occur within the default of a formal
5908 -- parameter of the entry, since those are evaluated outside
5909 -- of the body.
5911 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5913 if Nkind (P) = N_Entry_Body
5914 or else (Nkind (P) = N_Subprogram_Body
5915 and then Is_Entry_Barrier_Function (P))
5916 then
5917 Rtype := Etype (N);
5918 Error_Msg_Warn := SPARK_Mode /= On;
5919 Error_Msg_NE
5920 ("& should not be used in entry body (RM C.7(17))<<",
5921 N, Nam);
5922 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5923 Rewrite (N,
5924 Make_Raise_Program_Error (Loc,
5925 Reason => PE_Current_Task_In_Entry_Body));
5926 Set_Etype (N, Rtype);
5927 return;
5928 end if;
5929 end loop;
5930 end;
5931 end if;
5933 -- Check that a procedure call does not occur in the context of the
5934 -- entry call statement of a conditional or timed entry call. Note that
5935 -- the case of a call to a subprogram renaming of an entry will also be
5936 -- rejected. The test for N not being an N_Entry_Call_Statement is
5937 -- defensive, covering the possibility that the processing of entry
5938 -- calls might reach this point due to later modifications of the code
5939 -- above.
5941 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5942 and then Nkind (N) /= N_Entry_Call_Statement
5943 and then Entry_Call_Statement (Parent (N)) = N
5944 then
5945 if Ada_Version < Ada_2005 then
5946 Error_Msg_N ("entry call required in select statement", N);
5948 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5949 -- for a procedure_or_entry_call, the procedure_name or
5950 -- procedure_prefix of the procedure_call_statement shall denote
5951 -- an entry renamed by a procedure, or (a view of) a primitive
5952 -- subprogram of a limited interface whose first parameter is
5953 -- a controlling parameter.
5955 elsif Nkind (N) = N_Procedure_Call_Statement
5956 and then not Is_Renamed_Entry (Nam)
5957 and then not Is_Controlling_Limited_Procedure (Nam)
5958 then
5959 Error_Msg_N
5960 ("entry call or dispatching primitive of interface required", N);
5961 end if;
5962 end if;
5964 -- If the SPARK_05 restriction is active, we are not allowed
5965 -- to have a call to a subprogram before we see its completion.
5967 if not Has_Completion (Nam)
5968 and then Restriction_Check_Required (SPARK_05)
5970 -- Don't flag strange internal calls
5972 and then Comes_From_Source (N)
5973 and then Comes_From_Source (Nam)
5975 -- Only flag calls in extended main source
5977 and then In_Extended_Main_Source_Unit (Nam)
5978 and then In_Extended_Main_Source_Unit (N)
5980 -- Exclude enumeration literals from this processing
5982 and then Ekind (Nam) /= E_Enumeration_Literal
5983 then
5984 Check_SPARK_05_Restriction
5985 ("call to subprogram cannot appear before its body", N);
5986 end if;
5988 -- Check that this is not a call to a protected procedure or entry from
5989 -- within a protected function.
5991 Check_Internal_Protected_Use (N, Nam);
5993 -- Freeze the subprogram name if not in a spec-expression. Note that
5994 -- we freeze procedure calls as well as function calls. Procedure calls
5995 -- are not frozen according to the rules (RM 13.14(14)) because it is
5996 -- impossible to have a procedure call to a non-frozen procedure in
5997 -- pure Ada, but in the code that we generate in the expander, this
5998 -- rule needs extending because we can generate procedure calls that
5999 -- need freezing.
6001 -- In Ada 2012, expression functions may be called within pre/post
6002 -- conditions of subsequent functions or expression functions. Such
6003 -- calls do not freeze when they appear within generated bodies,
6004 -- (including the body of another expression function) which would
6005 -- place the freeze node in the wrong scope. An expression function
6006 -- is frozen in the usual fashion, by the appearance of a real body,
6007 -- or at the end of a declarative part.
6009 if Is_Entity_Name (Subp)
6010 and then not In_Spec_Expression
6011 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6012 and then
6013 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6014 or else Scope (Entity (Subp)) = Current_Scope)
6015 then
6016 Freeze_Expression (Subp);
6017 end if;
6019 -- For a predefined operator, the type of the result is the type imposed
6020 -- by context, except for a predefined operation on universal fixed.
6021 -- Otherwise The type of the call is the type returned by the subprogram
6022 -- being called.
6024 if Is_Predefined_Op (Nam) then
6025 if Etype (N) /= Universal_Fixed then
6026 Set_Etype (N, Typ);
6027 end if;
6029 -- If the subprogram returns an array type, and the context requires the
6030 -- component type of that array type, the node is really an indexing of
6031 -- the parameterless call. Resolve as such. A pathological case occurs
6032 -- when the type of the component is an access to the array type. In
6033 -- this case the call is truly ambiguous. If the call is to an intrinsic
6034 -- subprogram, it can't be an indexed component. This check is necessary
6035 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6036 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6037 -- pointers to the same array), the compiler gets confused and does an
6038 -- infinite recursion.
6040 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6041 and then
6042 ((Is_Array_Type (Etype (Nam))
6043 and then Covers (Typ, Component_Type (Etype (Nam))))
6044 or else
6045 (Is_Access_Type (Etype (Nam))
6046 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6047 and then
6048 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6049 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6050 then
6051 declare
6052 Index_Node : Node_Id;
6053 New_Subp : Node_Id;
6054 Ret_Type : constant Entity_Id := Etype (Nam);
6056 begin
6057 if Is_Access_Type (Ret_Type)
6058 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6059 then
6060 Error_Msg_N
6061 ("cannot disambiguate function call and indexing", N);
6062 else
6063 New_Subp := Relocate_Node (Subp);
6065 -- The called entity may be an explicit dereference, in which
6066 -- case there is no entity to set.
6068 if Nkind (New_Subp) /= N_Explicit_Dereference then
6069 Set_Entity (Subp, Nam);
6070 end if;
6072 if (Is_Array_Type (Ret_Type)
6073 and then Component_Type (Ret_Type) /= Any_Type)
6074 or else
6075 (Is_Access_Type (Ret_Type)
6076 and then
6077 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6078 then
6079 if Needs_No_Actuals (Nam) then
6081 -- Indexed call to a parameterless function
6083 Index_Node :=
6084 Make_Indexed_Component (Loc,
6085 Prefix =>
6086 Make_Function_Call (Loc, Name => New_Subp),
6087 Expressions => Parameter_Associations (N));
6088 else
6089 -- An Ada 2005 prefixed call to a primitive operation
6090 -- whose first parameter is the prefix. This prefix was
6091 -- prepended to the parameter list, which is actually a
6092 -- list of indexes. Remove the prefix in order to build
6093 -- the proper indexed component.
6095 Index_Node :=
6096 Make_Indexed_Component (Loc,
6097 Prefix =>
6098 Make_Function_Call (Loc,
6099 Name => New_Subp,
6100 Parameter_Associations =>
6101 New_List
6102 (Remove_Head (Parameter_Associations (N)))),
6103 Expressions => Parameter_Associations (N));
6104 end if;
6106 -- Preserve the parenthesis count of the node
6108 Set_Paren_Count (Index_Node, Paren_Count (N));
6110 -- Since we are correcting a node classification error made
6111 -- by the parser, we call Replace rather than Rewrite.
6113 Replace (N, Index_Node);
6115 Set_Etype (Prefix (N), Ret_Type);
6116 Set_Etype (N, Typ);
6117 Resolve_Indexed_Component (N, Typ);
6119 if Legacy_Elaboration_Checks then
6120 Check_Elab_Call (Prefix (N));
6121 end if;
6123 -- Annotate the tree by creating a call marker in case
6124 -- the original call is transformed by expansion. The call
6125 -- marker is automatically saved for later examination by
6126 -- the ABE Processing phase.
6128 Build_Call_Marker (Prefix (N));
6129 end if;
6130 end if;
6132 return;
6133 end;
6135 else
6136 -- If the called function is not declared in the main unit and it
6137 -- returns the limited view of type then use the available view (as
6138 -- is done in Try_Object_Operation) to prevent back-end confusion;
6139 -- for the function entity itself. The call must appear in a context
6140 -- where the nonlimited view is available. If the function entity is
6141 -- in the extended main unit then no action is needed, because the
6142 -- back end handles this case. In either case the type of the call
6143 -- is the nonlimited view.
6145 if From_Limited_With (Etype (Nam))
6146 and then Present (Available_View (Etype (Nam)))
6147 then
6148 Set_Etype (N, Available_View (Etype (Nam)));
6150 if not In_Extended_Main_Code_Unit (Nam) then
6151 Set_Etype (Nam, Available_View (Etype (Nam)));
6152 end if;
6154 else
6155 Set_Etype (N, Etype (Nam));
6156 end if;
6157 end if;
6159 -- In the case where the call is to an overloaded subprogram, Analyze
6160 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6161 -- such a case Normalize_Actuals needs to be called once more to order
6162 -- the actuals correctly. Otherwise the call will have the ordering
6163 -- given by the last overloaded subprogram whether this is the correct
6164 -- one being called or not.
6166 if Is_Overloaded (Subp) then
6167 Normalize_Actuals (N, Nam, False, Norm_OK);
6168 pragma Assert (Norm_OK);
6169 end if;
6171 -- In any case, call is fully resolved now. Reset Overload flag, to
6172 -- prevent subsequent overload resolution if node is analyzed again
6174 Set_Is_Overloaded (Subp, False);
6175 Set_Is_Overloaded (N, False);
6177 -- A Ghost entity must appear in a specific context
6179 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6180 Check_Ghost_Context (Nam, N);
6181 end if;
6183 -- If we are calling the current subprogram from immediately within its
6184 -- body, then that is the case where we can sometimes detect cases of
6185 -- infinite recursion statically. Do not try this in case restriction
6186 -- No_Recursion is in effect anyway, and do it only for source calls.
6188 if Comes_From_Source (N) then
6189 Scop := Current_Scope;
6191 -- Check violation of SPARK_05 restriction which does not permit
6192 -- a subprogram body to contain a call to the subprogram directly.
6194 if Restriction_Check_Required (SPARK_05)
6195 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6196 then
6197 Check_SPARK_05_Restriction
6198 ("subprogram may not contain direct call to itself", N);
6199 end if;
6201 -- Issue warning for possible infinite recursion in the absence
6202 -- of the No_Recursion restriction.
6204 if Same_Or_Aliased_Subprograms (Nam, Scop)
6205 and then not Restriction_Active (No_Recursion)
6206 and then Check_Infinite_Recursion (N)
6207 then
6208 -- Here we detected and flagged an infinite recursion, so we do
6209 -- not need to test the case below for further warnings. Also we
6210 -- are all done if we now have a raise SE node.
6212 if Nkind (N) = N_Raise_Storage_Error then
6213 return;
6214 end if;
6216 -- If call is to immediately containing subprogram, then check for
6217 -- the case of a possible run-time detectable infinite recursion.
6219 else
6220 Scope_Loop : while Scop /= Standard_Standard loop
6221 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6223 -- Although in general case, recursion is not statically
6224 -- checkable, the case of calling an immediately containing
6225 -- subprogram is easy to catch.
6227 Check_Restriction (No_Recursion, N);
6229 -- If the recursive call is to a parameterless subprogram,
6230 -- then even if we can't statically detect infinite
6231 -- recursion, this is pretty suspicious, and we output a
6232 -- warning. Furthermore, we will try later to detect some
6233 -- cases here at run time by expanding checking code (see
6234 -- Detect_Infinite_Recursion in package Exp_Ch6).
6236 -- If the recursive call is within a handler, do not emit a
6237 -- warning, because this is a common idiom: loop until input
6238 -- is correct, catch illegal input in handler and restart.
6240 if No (First_Formal (Nam))
6241 and then Etype (Nam) = Standard_Void_Type
6242 and then not Error_Posted (N)
6243 and then Nkind (Parent (N)) /= N_Exception_Handler
6244 then
6245 -- For the case of a procedure call. We give the message
6246 -- only if the call is the first statement in a sequence
6247 -- of statements, or if all previous statements are
6248 -- simple assignments. This is simply a heuristic to
6249 -- decrease false positives, without losing too many good
6250 -- warnings. The idea is that these previous statements
6251 -- may affect global variables the procedure depends on.
6252 -- We also exclude raise statements, that may arise from
6253 -- constraint checks and are probably unrelated to the
6254 -- intended control flow.
6256 if Nkind (N) = N_Procedure_Call_Statement
6257 and then Is_List_Member (N)
6258 then
6259 declare
6260 P : Node_Id;
6261 begin
6262 P := Prev (N);
6263 while Present (P) loop
6264 if not Nkind_In (P, N_Assignment_Statement,
6265 N_Raise_Constraint_Error)
6266 then
6267 exit Scope_Loop;
6268 end if;
6270 Prev (P);
6271 end loop;
6272 end;
6273 end if;
6275 -- Do not give warning if we are in a conditional context
6277 declare
6278 K : constant Node_Kind := Nkind (Parent (N));
6279 begin
6280 if (K = N_Loop_Statement
6281 and then Present (Iteration_Scheme (Parent (N))))
6282 or else K = N_If_Statement
6283 or else K = N_Elsif_Part
6284 or else K = N_Case_Statement_Alternative
6285 then
6286 exit Scope_Loop;
6287 end if;
6288 end;
6290 -- Here warning is to be issued
6292 Set_Has_Recursive_Call (Nam);
6293 Error_Msg_Warn := SPARK_Mode /= On;
6294 Error_Msg_N ("possible infinite recursion<<!", N);
6295 Error_Msg_N ("\Storage_Error ]<<!", N);
6296 end if;
6298 exit Scope_Loop;
6299 end if;
6301 Scop := Scope (Scop);
6302 end loop Scope_Loop;
6303 end if;
6304 end if;
6306 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6308 Check_Obsolescent_2005_Entity (Nam, Subp);
6310 -- If subprogram name is a predefined operator, it was given in
6311 -- functional notation. Replace call node with operator node, so
6312 -- that actuals can be resolved appropriately.
6314 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6315 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6316 return;
6318 elsif Present (Alias (Nam))
6319 and then Is_Predefined_Op (Alias (Nam))
6320 then
6321 Resolve_Actuals (N, Nam);
6322 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6323 return;
6324 end if;
6326 -- Create a transient scope if the resulting type requires it
6328 -- There are several notable exceptions:
6330 -- a) In init procs, the transient scope overhead is not needed, and is
6331 -- even incorrect when the call is a nested initialization call for a
6332 -- component whose expansion may generate adjust calls. However, if the
6333 -- call is some other procedure call within an initialization procedure
6334 -- (for example a call to Create_Task in the init_proc of the task
6335 -- run-time record) a transient scope must be created around this call.
6337 -- b) Enumeration literal pseudo-calls need no transient scope
6339 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6340 -- functions) do not use the secondary stack even though the return
6341 -- type may be unconstrained.
6343 -- d) Calls to a build-in-place function, since such functions may
6344 -- allocate their result directly in a target object, and cases where
6345 -- the result does get allocated in the secondary stack are checked for
6346 -- within the specialized Exp_Ch6 procedures for expanding those
6347 -- build-in-place calls.
6349 -- e) Calls to inlinable expression functions do not use the secondary
6350 -- stack (since the call will be replaced by its returned object).
6352 -- f) If the subprogram is marked Inline_Always, then even if it returns
6353 -- an unconstrained type the call does not require use of the secondary
6354 -- stack. However, inlining will only take place if the body to inline
6355 -- is already present. It may not be available if e.g. the subprogram is
6356 -- declared in a child instance.
6358 if Is_Inlined (Nam)
6359 and then Has_Pragma_Inline (Nam)
6360 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6361 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6362 then
6363 null;
6365 elsif Ekind (Nam) = E_Enumeration_Literal
6366 or else Is_Build_In_Place_Function (Nam)
6367 or else Is_Intrinsic_Subprogram (Nam)
6368 or else Is_Inlinable_Expression_Function (Nam)
6369 then
6370 null;
6372 elsif Expander_Active
6373 and then Ekind (Nam) = E_Function
6374 and then Requires_Transient_Scope (Etype (Nam))
6375 then
6376 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6378 -- If the call appears within the bounds of a loop, it will be
6379 -- rewritten and reanalyzed, nothing left to do here.
6381 if Nkind (N) /= N_Function_Call then
6382 return;
6383 end if;
6384 end if;
6386 -- A protected function cannot be called within the definition of the
6387 -- enclosing protected type, unless it is part of a pre/postcondition
6388 -- on another protected operation. This may appear in the entry wrapper
6389 -- created for an entry with preconditions.
6391 if Is_Protected_Type (Scope (Nam))
6392 and then In_Open_Scopes (Scope (Nam))
6393 and then not Has_Completion (Scope (Nam))
6394 and then not In_Spec_Expression
6395 and then not Is_Entry_Wrapper (Current_Scope)
6396 then
6397 Error_Msg_NE
6398 ("& cannot be called before end of protected definition", N, Nam);
6399 end if;
6401 -- Propagate interpretation to actuals, and add default expressions
6402 -- where needed.
6404 if Present (First_Formal (Nam)) then
6405 Resolve_Actuals (N, Nam);
6407 -- Overloaded literals are rewritten as function calls, for purpose of
6408 -- resolution. After resolution, we can replace the call with the
6409 -- literal itself.
6411 elsif Ekind (Nam) = E_Enumeration_Literal then
6412 Copy_Node (Subp, N);
6413 Resolve_Entity_Name (N, Typ);
6415 -- Avoid validation, since it is a static function call
6417 Generate_Reference (Nam, Subp);
6418 return;
6419 end if;
6421 -- If the subprogram is not global, then kill all saved values and
6422 -- checks. This is a bit conservative, since in many cases we could do
6423 -- better, but it is not worth the effort. Similarly, we kill constant
6424 -- values. However we do not need to do this for internal entities
6425 -- (unless they are inherited user-defined subprograms), since they
6426 -- are not in the business of molesting local values.
6428 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6429 -- kill all checks and values for calls to global subprograms. This
6430 -- takes care of the case where an access to a local subprogram is
6431 -- taken, and could be passed directly or indirectly and then called
6432 -- from almost any context.
6434 -- Note: we do not do this step till after resolving the actuals. That
6435 -- way we still take advantage of the current value information while
6436 -- scanning the actuals.
6438 -- We suppress killing values if we are processing the nodes associated
6439 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6440 -- type kills all the values as part of analyzing the code that
6441 -- initializes the dispatch tables.
6443 if Inside_Freezing_Actions = 0
6444 and then (not Is_Library_Level_Entity (Nam)
6445 or else Suppress_Value_Tracking_On_Call
6446 (Nearest_Dynamic_Scope (Current_Scope)))
6447 and then (Comes_From_Source (Nam)
6448 or else (Present (Alias (Nam))
6449 and then Comes_From_Source (Alias (Nam))))
6450 then
6451 Kill_Current_Values;
6452 end if;
6454 -- If we are warning about unread OUT parameters, this is the place to
6455 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6456 -- after the above call to Kill_Current_Values (since that call clears
6457 -- the Last_Assignment field of all local variables).
6459 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6460 and then Comes_From_Source (N)
6461 and then In_Extended_Main_Source_Unit (N)
6462 then
6463 declare
6464 F : Entity_Id;
6465 A : Node_Id;
6467 begin
6468 F := First_Formal (Nam);
6469 A := First_Actual (N);
6470 while Present (F) and then Present (A) loop
6471 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6472 and then Warn_On_Modified_As_Out_Parameter (F)
6473 and then Is_Entity_Name (A)
6474 and then Present (Entity (A))
6475 and then Comes_From_Source (N)
6476 and then Safe_To_Capture_Value (N, Entity (A))
6477 then
6478 Set_Last_Assignment (Entity (A), A);
6479 end if;
6481 Next_Formal (F);
6482 Next_Actual (A);
6483 end loop;
6484 end;
6485 end if;
6487 -- If the subprogram is a primitive operation, check whether or not
6488 -- it is a correct dispatching call.
6490 if Is_Overloadable (Nam)
6491 and then Is_Dispatching_Operation (Nam)
6492 then
6493 Check_Dispatching_Call (N);
6495 elsif Ekind (Nam) /= E_Subprogram_Type
6496 and then Is_Abstract_Subprogram (Nam)
6497 and then not In_Instance
6498 then
6499 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6500 end if;
6502 -- If this is a dispatching call, generate the appropriate reference,
6503 -- for better source navigation in GPS.
6505 if Is_Overloadable (Nam)
6506 and then Present (Controlling_Argument (N))
6507 then
6508 Generate_Reference (Nam, Subp, 'R');
6510 -- Normal case, not a dispatching call: generate a call reference
6512 else
6513 Generate_Reference (Nam, Subp, 's');
6514 end if;
6516 if Is_Intrinsic_Subprogram (Nam) then
6517 Check_Intrinsic_Call (N);
6518 end if;
6520 -- Check for violation of restriction No_Specific_Termination_Handlers
6521 -- and warn on a potentially blocking call to Abort_Task.
6523 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6524 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6525 or else
6526 Is_RTE (Nam, RE_Specific_Handler))
6527 then
6528 Check_Restriction (No_Specific_Termination_Handlers, N);
6530 elsif Is_RTE (Nam, RE_Abort_Task) then
6531 Check_Potentially_Blocking_Operation (N);
6532 end if;
6534 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6535 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6536 -- need to check the second argument to determine whether it is an
6537 -- absolute or relative timing event.
6539 if Restriction_Check_Required (No_Relative_Delay)
6540 and then Is_RTE (Nam, RE_Set_Handler)
6541 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6542 then
6543 Check_Restriction (No_Relative_Delay, N);
6544 end if;
6546 -- Issue an error for a call to an eliminated subprogram. This routine
6547 -- will not perform the check if the call appears within a default
6548 -- expression.
6550 Check_For_Eliminated_Subprogram (Subp, Nam);
6552 -- In formal mode, the primitive operations of a tagged type or type
6553 -- extension do not include functions that return the tagged type.
6555 if Nkind (N) = N_Function_Call
6556 and then Is_Tagged_Type (Etype (N))
6557 and then Is_Entity_Name (Name (N))
6558 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6559 then
6560 Check_SPARK_05_Restriction ("function not inherited", N);
6561 end if;
6563 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6564 -- class-wide and the call dispatches on result in a context that does
6565 -- not provide a tag, the call raises Program_Error.
6567 if Nkind (N) = N_Function_Call
6568 and then In_Instance
6569 and then Is_Generic_Actual_Type (Typ)
6570 and then Is_Class_Wide_Type (Typ)
6571 and then Has_Controlling_Result (Nam)
6572 and then Nkind (Parent (N)) = N_Object_Declaration
6573 then
6574 -- Verify that none of the formals are controlling
6576 declare
6577 Call_OK : Boolean := False;
6578 F : Entity_Id;
6580 begin
6581 F := First_Formal (Nam);
6582 while Present (F) loop
6583 if Is_Controlling_Formal (F) then
6584 Call_OK := True;
6585 exit;
6586 end if;
6588 Next_Formal (F);
6589 end loop;
6591 if not Call_OK then
6592 Error_Msg_Warn := SPARK_Mode /= On;
6593 Error_Msg_N ("!cannot determine tag of result<<", N);
6594 Error_Msg_N ("\Program_Error [<<!", N);
6595 Insert_Action (N,
6596 Make_Raise_Program_Error (Sloc (N),
6597 Reason => PE_Explicit_Raise));
6598 end if;
6599 end;
6600 end if;
6602 -- Check for calling a function with OUT or IN OUT parameter when the
6603 -- calling context (us right now) is not Ada 2012, so does not allow
6604 -- OUT or IN OUT parameters in function calls. Functions declared in
6605 -- a predefined unit are OK, as they may be called indirectly from a
6606 -- user-declared instantiation.
6608 if Ada_Version < Ada_2012
6609 and then Ekind (Nam) = E_Function
6610 and then Has_Out_Or_In_Out_Parameter (Nam)
6611 and then not In_Predefined_Unit (Nam)
6612 then
6613 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6614 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6615 end if;
6617 -- Check the dimensions of the actuals in the call. For function calls,
6618 -- propagate the dimensions from the returned type to N.
6620 Analyze_Dimension_Call (N, Nam);
6622 -- All done, evaluate call and deal with elaboration issues
6624 Eval_Call (N);
6626 if Legacy_Elaboration_Checks then
6627 Check_Elab_Call (N);
6628 end if;
6630 -- Annotate the tree by creating a call marker in case the original call
6631 -- is transformed by expansion. The call marker is automatically saved
6632 -- for later examination by the ABE Processing phase.
6634 Build_Call_Marker (N);
6636 -- In GNATprove mode, expansion is disabled, but we want to inline some
6637 -- subprograms to facilitate formal verification. Indirect calls through
6638 -- a subprogram type or within a generic cannot be inlined. Inlining is
6639 -- performed only for calls subject to SPARK_Mode on.
6641 if GNATprove_Mode
6642 and then SPARK_Mode = On
6643 and then Is_Overloadable (Nam)
6644 and then not Inside_A_Generic
6645 then
6646 Nam_UA := Ultimate_Alias (Nam);
6647 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6649 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6650 Body_Id := Corresponding_Body (Nam_Decl);
6652 -- Nothing to do if the subprogram is not eligible for inlining in
6653 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6655 if not Is_Inlined_Always (Nam_UA)
6656 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6657 or else Debug_Flag_M
6658 then
6659 null;
6661 -- Calls cannot be inlined inside assertions, as GNATprove treats
6662 -- assertions as logic expressions. Only issue a message when the
6663 -- body has been seen, otherwise this leads to spurious messages
6664 -- on expression functions.
6666 elsif In_Assertion_Expr /= 0 then
6667 if Present (Body_Id) then
6668 Cannot_Inline
6669 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6670 end if;
6672 -- Calls cannot be inlined inside default expressions
6674 elsif In_Default_Expr then
6675 Cannot_Inline
6676 ("cannot inline & (in default expression)?", N, Nam_UA);
6678 -- Inlining should not be performed during pre-analysis
6680 elsif Full_Analysis then
6682 -- Do not inline calls inside expression functions, as this
6683 -- would prevent interpreting them as logical formulas in
6684 -- GNATprove. Only issue a message when the body has been seen,
6685 -- otherwise this leads to spurious messages on callees that
6686 -- are themselves expression functions.
6688 if Present (Current_Subprogram)
6689 and then Is_Expression_Function_Or_Completion
6690 (Current_Subprogram)
6691 then
6692 if Present (Body_Id)
6693 and then Present (Body_To_Inline (Nam_Decl))
6694 then
6695 Cannot_Inline
6696 ("cannot inline & (inside expression function)?",
6697 N, Nam_UA);
6698 end if;
6700 -- With the one-pass inlining technique, a call cannot be
6701 -- inlined if the corresponding body has not been seen yet.
6703 elsif No (Body_Id) then
6704 Cannot_Inline
6705 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6707 -- Nothing to do if there is no body to inline, indicating that
6708 -- the subprogram is not suitable for inlining in GNATprove
6709 -- mode.
6711 elsif No (Body_To_Inline (Nam_Decl)) then
6712 null;
6714 -- Calls cannot be inlined inside potentially unevaluated
6715 -- expressions, as this would create complex actions inside
6716 -- expressions, that are not handled by GNATprove.
6718 elsif Is_Potentially_Unevaluated (N) then
6719 Cannot_Inline
6720 ("cannot inline & (in potentially unevaluated context)?",
6721 N, Nam_UA);
6723 -- Do not inline calls which would possibly lead to missing a
6724 -- type conversion check on an input parameter.
6726 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6727 Cannot_Inline
6728 ("cannot inline & (possible check on input parameters)?",
6729 N, Nam_UA);
6731 -- Otherwise, inline the call
6733 else
6734 Expand_Inlined_Call (N, Nam_UA, Nam);
6735 end if;
6736 end if;
6737 end if;
6738 end if;
6740 Mark_Use_Clauses (Subp);
6742 Warn_On_Overlapping_Actuals (Nam, N);
6743 end Resolve_Call;
6745 -----------------------------
6746 -- Resolve_Case_Expression --
6747 -----------------------------
6749 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6750 Alt : Node_Id;
6751 Alt_Expr : Node_Id;
6752 Alt_Typ : Entity_Id;
6753 Is_Dyn : Boolean;
6755 begin
6756 Alt := First (Alternatives (N));
6757 while Present (Alt) loop
6758 Alt_Expr := Expression (Alt);
6760 if Error_Posted (Alt_Expr) then
6761 return;
6762 end if;
6764 Resolve (Alt_Expr, Typ);
6765 Alt_Typ := Etype (Alt_Expr);
6767 -- When the expression is of a scalar subtype different from the
6768 -- result subtype, then insert a conversion to ensure the generation
6769 -- of a constraint check.
6771 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6772 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6773 Analyze_And_Resolve (Alt_Expr, Typ);
6774 end if;
6776 Next (Alt);
6777 end loop;
6779 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6780 -- dynamically tagged must be known statically.
6782 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6783 Alt := First (Alternatives (N));
6784 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6786 while Present (Alt) loop
6787 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6788 Error_Msg_N
6789 ("all or none of the dependent expressions can be "
6790 & "dynamically tagged", N);
6791 end if;
6793 Next (Alt);
6794 end loop;
6795 end if;
6797 Set_Etype (N, Typ);
6798 Eval_Case_Expression (N);
6799 Analyze_Dimension (N);
6800 end Resolve_Case_Expression;
6802 -------------------------------
6803 -- Resolve_Character_Literal --
6804 -------------------------------
6806 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6807 B_Typ : constant Entity_Id := Base_Type (Typ);
6808 C : Entity_Id;
6810 begin
6811 -- Verify that the character does belong to the type of the context
6813 Set_Etype (N, B_Typ);
6814 Eval_Character_Literal (N);
6816 -- Wide_Wide_Character literals must always be defined, since the set
6817 -- of wide wide character literals is complete, i.e. if a character
6818 -- literal is accepted by the parser, then it is OK for wide wide
6819 -- character (out of range character literals are rejected).
6821 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6822 return;
6824 -- Always accept character literal for type Any_Character, which
6825 -- occurs in error situations and in comparisons of literals, both
6826 -- of which should accept all literals.
6828 elsif B_Typ = Any_Character then
6829 return;
6831 -- For Standard.Character or a type derived from it, check that the
6832 -- literal is in range.
6834 elsif Root_Type (B_Typ) = Standard_Character then
6835 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6836 return;
6837 end if;
6839 -- For Standard.Wide_Character or a type derived from it, check that the
6840 -- literal is in range.
6842 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6843 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6844 return;
6845 end if;
6847 -- If the entity is already set, this has already been resolved in a
6848 -- generic context, or comes from expansion. Nothing else to do.
6850 elsif Present (Entity (N)) then
6851 return;
6853 -- Otherwise we have a user defined character type, and we can use the
6854 -- standard visibility mechanisms to locate the referenced entity.
6856 else
6857 C := Current_Entity (N);
6858 while Present (C) loop
6859 if Etype (C) = B_Typ then
6860 Set_Entity_With_Checks (N, C);
6861 Generate_Reference (C, N);
6862 return;
6863 end if;
6865 C := Homonym (C);
6866 end loop;
6867 end if;
6869 -- If we fall through, then the literal does not match any of the
6870 -- entries of the enumeration type. This isn't just a constraint error
6871 -- situation, it is an illegality (see RM 4.2).
6873 Error_Msg_NE
6874 ("character not defined for }", N, First_Subtype (B_Typ));
6875 end Resolve_Character_Literal;
6877 ---------------------------
6878 -- Resolve_Comparison_Op --
6879 ---------------------------
6881 -- Context requires a boolean type, and plays no role in resolution.
6882 -- Processing identical to that for equality operators. The result type is
6883 -- the base type, which matters when pathological subtypes of booleans with
6884 -- limited ranges are used.
6886 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6887 L : constant Node_Id := Left_Opnd (N);
6888 R : constant Node_Id := Right_Opnd (N);
6889 T : Entity_Id;
6891 begin
6892 -- If this is an intrinsic operation which is not predefined, use the
6893 -- types of its declared arguments to resolve the possibly overloaded
6894 -- operands. Otherwise the operands are unambiguous and specify the
6895 -- expected type.
6897 if Scope (Entity (N)) /= Standard_Standard then
6898 T := Etype (First_Entity (Entity (N)));
6900 else
6901 T := Find_Unique_Type (L, R);
6903 if T = Any_Fixed then
6904 T := Unique_Fixed_Point_Type (L);
6905 end if;
6906 end if;
6908 Set_Etype (N, Base_Type (Typ));
6909 Generate_Reference (T, N, ' ');
6911 -- Skip remaining processing if already set to Any_Type
6913 if T = Any_Type then
6914 return;
6915 end if;
6917 -- Deal with other error cases
6919 if T = Any_String or else
6920 T = Any_Composite or else
6921 T = Any_Character
6922 then
6923 if T = Any_Character then
6924 Ambiguous_Character (L);
6925 else
6926 Error_Msg_N ("ambiguous operands for comparison", N);
6927 end if;
6929 Set_Etype (N, Any_Type);
6930 return;
6931 end if;
6933 -- Resolve the operands if types OK
6935 Resolve (L, T);
6936 Resolve (R, T);
6937 Check_Unset_Reference (L);
6938 Check_Unset_Reference (R);
6939 Generate_Operator_Reference (N, T);
6940 Check_Low_Bound_Tested (N);
6942 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6943 -- types or array types except String.
6945 if Is_Boolean_Type (T) then
6946 Check_SPARK_05_Restriction
6947 ("comparison is not defined on Boolean type", N);
6949 elsif Is_Array_Type (T)
6950 and then Base_Type (T) /= Standard_String
6951 then
6952 Check_SPARK_05_Restriction
6953 ("comparison is not defined on array types other than String", N);
6954 end if;
6956 -- Check comparison on unordered enumeration
6958 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6959 Error_Msg_Sloc := Sloc (Etype (L));
6960 Error_Msg_NE
6961 ("comparison on unordered enumeration type& declared#?U?",
6962 N, Etype (L));
6963 end if;
6965 Analyze_Dimension (N);
6967 -- Evaluate the relation (note we do this after the above check since
6968 -- this Eval call may change N to True/False. Skip this evaluation
6969 -- inside assertions, in order to keep assertions as written by users
6970 -- for tools that rely on these, e.g. GNATprove for loop invariants.
6971 -- Except evaluation is still performed even inside assertions for
6972 -- comparisons between values of universal type, which are useless
6973 -- for static analysis tools, and not supported even by GNATprove.
6975 if In_Assertion_Expr = 0
6976 or else (Is_Universal_Numeric_Type (Etype (L))
6977 and then
6978 Is_Universal_Numeric_Type (Etype (R)))
6979 then
6980 Eval_Relational_Op (N);
6981 end if;
6982 end Resolve_Comparison_Op;
6984 -----------------------------------------
6985 -- Resolve_Discrete_Subtype_Indication --
6986 -----------------------------------------
6988 procedure Resolve_Discrete_Subtype_Indication
6989 (N : Node_Id;
6990 Typ : Entity_Id)
6992 R : Node_Id;
6993 S : Entity_Id;
6995 begin
6996 Analyze (Subtype_Mark (N));
6997 S := Entity (Subtype_Mark (N));
6999 if Nkind (Constraint (N)) /= N_Range_Constraint then
7000 Error_Msg_N ("expect range constraint for discrete type", N);
7001 Set_Etype (N, Any_Type);
7003 else
7004 R := Range_Expression (Constraint (N));
7006 if R = Error then
7007 return;
7008 end if;
7010 Analyze (R);
7012 if Base_Type (S) /= Base_Type (Typ) then
7013 Error_Msg_NE
7014 ("expect subtype of }", N, First_Subtype (Typ));
7016 -- Rewrite the constraint as a range of Typ
7017 -- to allow compilation to proceed further.
7019 Set_Etype (N, Typ);
7020 Rewrite (Low_Bound (R),
7021 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7022 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7023 Attribute_Name => Name_First));
7024 Rewrite (High_Bound (R),
7025 Make_Attribute_Reference (Sloc (High_Bound (R)),
7026 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7027 Attribute_Name => Name_First));
7029 else
7030 Resolve (R, Typ);
7031 Set_Etype (N, Etype (R));
7033 -- Additionally, we must check that the bounds are compatible
7034 -- with the given subtype, which might be different from the
7035 -- type of the context.
7037 Apply_Range_Check (R, S);
7039 -- ??? If the above check statically detects a Constraint_Error
7040 -- it replaces the offending bound(s) of the range R with a
7041 -- Constraint_Error node. When the itype which uses these bounds
7042 -- is frozen the resulting call to Duplicate_Subexpr generates
7043 -- a new temporary for the bounds.
7045 -- Unfortunately there are other itypes that are also made depend
7046 -- on these bounds, so when Duplicate_Subexpr is called they get
7047 -- a forward reference to the newly created temporaries and Gigi
7048 -- aborts on such forward references. This is probably sign of a
7049 -- more fundamental problem somewhere else in either the order of
7050 -- itype freezing or the way certain itypes are constructed.
7052 -- To get around this problem we call Remove_Side_Effects right
7053 -- away if either bounds of R are a Constraint_Error.
7055 declare
7056 L : constant Node_Id := Low_Bound (R);
7057 H : constant Node_Id := High_Bound (R);
7059 begin
7060 if Nkind (L) = N_Raise_Constraint_Error then
7061 Remove_Side_Effects (L);
7062 end if;
7064 if Nkind (H) = N_Raise_Constraint_Error then
7065 Remove_Side_Effects (H);
7066 end if;
7067 end;
7069 Check_Unset_Reference (Low_Bound (R));
7070 Check_Unset_Reference (High_Bound (R));
7071 end if;
7072 end if;
7073 end Resolve_Discrete_Subtype_Indication;
7075 -------------------------
7076 -- Resolve_Entity_Name --
7077 -------------------------
7079 -- Used to resolve identifiers and expanded names
7081 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7082 function Is_Assignment_Or_Object_Expression
7083 (Context : Node_Id;
7084 Expr : Node_Id) return Boolean;
7085 -- Determine whether node Context denotes an assignment statement or an
7086 -- object declaration whose expression is node Expr.
7088 ----------------------------------------
7089 -- Is_Assignment_Or_Object_Expression --
7090 ----------------------------------------
7092 function Is_Assignment_Or_Object_Expression
7093 (Context : Node_Id;
7094 Expr : Node_Id) return Boolean
7096 begin
7097 if Nkind_In (Context, N_Assignment_Statement,
7098 N_Object_Declaration)
7099 and then Expression (Context) = Expr
7100 then
7101 return True;
7103 -- Check whether a construct that yields a name is the expression of
7104 -- an assignment statement or an object declaration.
7106 elsif (Nkind_In (Context, N_Attribute_Reference,
7107 N_Explicit_Dereference,
7108 N_Indexed_Component,
7109 N_Selected_Component,
7110 N_Slice)
7111 and then Prefix (Context) = Expr)
7112 or else
7113 (Nkind_In (Context, N_Type_Conversion,
7114 N_Unchecked_Type_Conversion)
7115 and then Expression (Context) = Expr)
7116 then
7117 return
7118 Is_Assignment_Or_Object_Expression
7119 (Context => Parent (Context),
7120 Expr => Context);
7122 -- Otherwise the context is not an assignment statement or an object
7123 -- declaration.
7125 else
7126 return False;
7127 end if;
7128 end Is_Assignment_Or_Object_Expression;
7130 -- Local variables
7132 E : constant Entity_Id := Entity (N);
7133 Par : Node_Id;
7135 -- Start of processing for Resolve_Entity_Name
7137 begin
7138 -- If garbage from errors, set to Any_Type and return
7140 if No (E) and then Total_Errors_Detected /= 0 then
7141 Set_Etype (N, Any_Type);
7142 return;
7143 end if;
7145 -- Replace named numbers by corresponding literals. Note that this is
7146 -- the one case where Resolve_Entity_Name must reset the Etype, since
7147 -- it is currently marked as universal.
7149 if Ekind (E) = E_Named_Integer then
7150 Set_Etype (N, Typ);
7151 Eval_Named_Integer (N);
7153 elsif Ekind (E) = E_Named_Real then
7154 Set_Etype (N, Typ);
7155 Eval_Named_Real (N);
7157 -- For enumeration literals, we need to make sure that a proper style
7158 -- check is done, since such literals are overloaded, and thus we did
7159 -- not do a style check during the first phase of analysis.
7161 elsif Ekind (E) = E_Enumeration_Literal then
7162 Set_Entity_With_Checks (N, E);
7163 Eval_Entity_Name (N);
7165 -- Case of (sub)type name appearing in a context where an expression
7166 -- is expected. This is legal if occurrence is a current instance.
7167 -- See RM 8.6 (17/3).
7169 elsif Is_Type (E) then
7170 if Is_Current_Instance (N) then
7171 null;
7173 -- Any other use is an error
7175 else
7176 Error_Msg_N
7177 ("invalid use of subtype mark in expression or call", N);
7178 end if;
7180 -- Check discriminant use if entity is discriminant in current scope,
7181 -- i.e. discriminant of record or concurrent type currently being
7182 -- analyzed. Uses in corresponding body are unrestricted.
7184 elsif Ekind (E) = E_Discriminant
7185 and then Scope (E) = Current_Scope
7186 and then not Has_Completion (Current_Scope)
7187 then
7188 Check_Discriminant_Use (N);
7190 -- A parameterless generic function cannot appear in a context that
7191 -- requires resolution.
7193 elsif Ekind (E) = E_Generic_Function then
7194 Error_Msg_N ("illegal use of generic function", N);
7196 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7197 -- array types (i.e. bounds and length) are legal.
7199 elsif Ekind (E) = E_Out_Parameter
7200 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7201 or else Is_Scalar_Type (Etype (E)))
7203 and then (Nkind (Parent (N)) in N_Op
7204 or else Nkind (Parent (N)) = N_Explicit_Dereference
7205 or else Is_Assignment_Or_Object_Expression
7206 (Context => Parent (N),
7207 Expr => N))
7208 then
7209 if Ada_Version = Ada_83 then
7210 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7211 end if;
7213 -- In all other cases, just do the possible static evaluation
7215 else
7216 -- A deferred constant that appears in an expression must have a
7217 -- completion, unless it has been removed by in-place expansion of
7218 -- an aggregate. A constant that is a renaming does not need
7219 -- initialization.
7221 if Ekind (E) = E_Constant
7222 and then Comes_From_Source (E)
7223 and then No (Constant_Value (E))
7224 and then Is_Frozen (Etype (E))
7225 and then not In_Spec_Expression
7226 and then not Is_Imported (E)
7227 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7228 then
7229 if No_Initialization (Parent (E))
7230 or else (Present (Full_View (E))
7231 and then No_Initialization (Parent (Full_View (E))))
7232 then
7233 null;
7234 else
7235 Error_Msg_N
7236 ("deferred constant is frozen before completion", N);
7237 end if;
7238 end if;
7240 Eval_Entity_Name (N);
7241 end if;
7243 Par := Parent (N);
7245 -- When the entity appears in a parameter association, retrieve the
7246 -- related subprogram call.
7248 if Nkind (Par) = N_Parameter_Association then
7249 Par := Parent (Par);
7250 end if;
7252 if Comes_From_Source (N) then
7254 -- The following checks are only relevant when SPARK_Mode is on as
7255 -- they are not standard Ada legality rules.
7257 if SPARK_Mode = On then
7259 -- An effectively volatile object subject to enabled properties
7260 -- Async_Writers or Effective_Reads must appear in non-interfering
7261 -- context (SPARK RM 7.1.3(12)).
7263 if Is_Object (E)
7264 and then Is_Effectively_Volatile (E)
7265 and then (Async_Writers_Enabled (E)
7266 or else Effective_Reads_Enabled (E))
7267 and then not Is_OK_Volatile_Context (Par, N)
7268 then
7269 SPARK_Msg_N
7270 ("volatile object cannot appear in this context "
7271 & "(SPARK RM 7.1.3(12))", N);
7272 end if;
7274 -- Check for possible elaboration issues with respect to reads of
7275 -- variables. The act of renaming the variable is not considered a
7276 -- read as it simply establishes an alias.
7278 if Legacy_Elaboration_Checks
7279 and then Ekind (E) = E_Variable
7280 and then Dynamic_Elaboration_Checks
7281 and then Nkind (Par) /= N_Object_Renaming_Declaration
7282 then
7283 Check_Elab_Call (N);
7284 end if;
7285 end if;
7287 -- The variable may eventually become a constituent of a single
7288 -- protected/task type. Record the reference now and verify its
7289 -- legality when analyzing the contract of the variable
7290 -- (SPARK RM 9.3).
7292 if Ekind (E) = E_Variable then
7293 Record_Possible_Part_Of_Reference (E, N);
7294 end if;
7296 -- A Ghost entity must appear in a specific context
7298 if Is_Ghost_Entity (E) then
7299 Check_Ghost_Context (E, N);
7300 end if;
7301 end if;
7303 Mark_Use_Clauses (E);
7304 end Resolve_Entity_Name;
7306 -------------------
7307 -- Resolve_Entry --
7308 -------------------
7310 procedure Resolve_Entry (Entry_Name : Node_Id) is
7311 Loc : constant Source_Ptr := Sloc (Entry_Name);
7312 Nam : Entity_Id;
7313 New_N : Node_Id;
7314 S : Entity_Id;
7315 Tsk : Entity_Id;
7316 E_Name : Node_Id;
7317 Index : Node_Id;
7319 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7320 -- If the bounds of the entry family being called depend on task
7321 -- discriminants, build a new index subtype where a discriminant is
7322 -- replaced with the value of the discriminant of the target task.
7323 -- The target task is the prefix of the entry name in the call.
7325 -----------------------
7326 -- Actual_Index_Type --
7327 -----------------------
7329 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7330 Typ : constant Entity_Id := Entry_Index_Type (E);
7331 Tsk : constant Entity_Id := Scope (E);
7332 Lo : constant Node_Id := Type_Low_Bound (Typ);
7333 Hi : constant Node_Id := Type_High_Bound (Typ);
7334 New_T : Entity_Id;
7336 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7337 -- If the bound is given by a discriminant, replace with a reference
7338 -- to the discriminant of the same name in the target task. If the
7339 -- entry name is the target of a requeue statement and the entry is
7340 -- in the current protected object, the bound to be used is the
7341 -- discriminal of the object (see Apply_Range_Checks for details of
7342 -- the transformation).
7344 -----------------------------
7345 -- Actual_Discriminant_Ref --
7346 -----------------------------
7348 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7349 Typ : constant Entity_Id := Etype (Bound);
7350 Ref : Node_Id;
7352 begin
7353 Remove_Side_Effects (Bound);
7355 if not Is_Entity_Name (Bound)
7356 or else Ekind (Entity (Bound)) /= E_Discriminant
7357 then
7358 return Bound;
7360 elsif Is_Protected_Type (Tsk)
7361 and then In_Open_Scopes (Tsk)
7362 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7363 then
7364 -- Note: here Bound denotes a discriminant of the corresponding
7365 -- record type tskV, whose discriminal is a formal of the
7366 -- init-proc tskVIP. What we want is the body discriminal,
7367 -- which is associated to the discriminant of the original
7368 -- concurrent type tsk.
7370 return New_Occurrence_Of
7371 (Find_Body_Discriminal (Entity (Bound)), Loc);
7373 else
7374 Ref :=
7375 Make_Selected_Component (Loc,
7376 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7377 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7378 Analyze (Ref);
7379 Resolve (Ref, Typ);
7380 return Ref;
7381 end if;
7382 end Actual_Discriminant_Ref;
7384 -- Start of processing for Actual_Index_Type
7386 begin
7387 if not Has_Discriminants (Tsk)
7388 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7389 then
7390 return Entry_Index_Type (E);
7392 else
7393 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7394 Set_Etype (New_T, Base_Type (Typ));
7395 Set_Size_Info (New_T, Typ);
7396 Set_RM_Size (New_T, RM_Size (Typ));
7397 Set_Scalar_Range (New_T,
7398 Make_Range (Sloc (Entry_Name),
7399 Low_Bound => Actual_Discriminant_Ref (Lo),
7400 High_Bound => Actual_Discriminant_Ref (Hi)));
7402 return New_T;
7403 end if;
7404 end Actual_Index_Type;
7406 -- Start of processing for Resolve_Entry
7408 begin
7409 -- Find name of entry being called, and resolve prefix of name with its
7410 -- own type. The prefix can be overloaded, and the name and signature of
7411 -- the entry must be taken into account.
7413 if Nkind (Entry_Name) = N_Indexed_Component then
7415 -- Case of dealing with entry family within the current tasks
7417 E_Name := Prefix (Entry_Name);
7419 else
7420 E_Name := Entry_Name;
7421 end if;
7423 if Is_Entity_Name (E_Name) then
7425 -- Entry call to an entry (or entry family) in the current task. This
7426 -- is legal even though the task will deadlock. Rewrite as call to
7427 -- current task.
7429 -- This can also be a call to an entry in an enclosing task. If this
7430 -- is a single task, we have to retrieve its name, because the scope
7431 -- of the entry is the task type, not the object. If the enclosing
7432 -- task is a task type, the identity of the task is given by its own
7433 -- self variable.
7435 -- Finally this can be a requeue on an entry of the same task or
7436 -- protected object.
7438 S := Scope (Entity (E_Name));
7440 for J in reverse 0 .. Scope_Stack.Last loop
7441 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7442 and then not Comes_From_Source (S)
7443 then
7444 -- S is an enclosing task or protected object. The concurrent
7445 -- declaration has been converted into a type declaration, and
7446 -- the object itself has an object declaration that follows
7447 -- the type in the same declarative part.
7449 Tsk := Next_Entity (S);
7450 while Etype (Tsk) /= S loop
7451 Next_Entity (Tsk);
7452 end loop;
7454 S := Tsk;
7455 exit;
7457 elsif S = Scope_Stack.Table (J).Entity then
7459 -- Call to current task. Will be transformed into call to Self
7461 exit;
7463 end if;
7464 end loop;
7466 New_N :=
7467 Make_Selected_Component (Loc,
7468 Prefix => New_Occurrence_Of (S, Loc),
7469 Selector_Name =>
7470 New_Occurrence_Of (Entity (E_Name), Loc));
7471 Rewrite (E_Name, New_N);
7472 Analyze (E_Name);
7474 elsif Nkind (Entry_Name) = N_Selected_Component
7475 and then Is_Overloaded (Prefix (Entry_Name))
7476 then
7477 -- Use the entry name (which must be unique at this point) to find
7478 -- the prefix that returns the corresponding task/protected type.
7480 declare
7481 Pref : constant Node_Id := Prefix (Entry_Name);
7482 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7483 I : Interp_Index;
7484 It : Interp;
7486 begin
7487 Get_First_Interp (Pref, I, It);
7488 while Present (It.Typ) loop
7489 if Scope (Ent) = It.Typ then
7490 Set_Etype (Pref, It.Typ);
7491 exit;
7492 end if;
7494 Get_Next_Interp (I, It);
7495 end loop;
7496 end;
7497 end if;
7499 if Nkind (Entry_Name) = N_Selected_Component then
7500 Resolve (Prefix (Entry_Name));
7502 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7503 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7504 Resolve (Prefix (Prefix (Entry_Name)));
7505 Index := First (Expressions (Entry_Name));
7506 Resolve (Index, Entry_Index_Type (Nam));
7508 -- Generate a reference for the index when it denotes an entity
7510 if Is_Entity_Name (Index) then
7511 Generate_Reference (Entity (Index), Nam);
7512 end if;
7514 -- Up to this point the expression could have been the actual in a
7515 -- simple entry call, and be given by a named association.
7517 if Nkind (Index) = N_Parameter_Association then
7518 Error_Msg_N ("expect expression for entry index", Index);
7519 else
7520 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7521 end if;
7522 end if;
7523 end Resolve_Entry;
7525 ------------------------
7526 -- Resolve_Entry_Call --
7527 ------------------------
7529 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7530 Entry_Name : constant Node_Id := Name (N);
7531 Loc : constant Source_Ptr := Sloc (Entry_Name);
7533 Nam : Entity_Id;
7534 Norm_OK : Boolean;
7535 Obj : Node_Id;
7536 Was_Over : Boolean;
7538 begin
7539 -- We kill all checks here, because it does not seem worth the effort to
7540 -- do anything better, an entry call is a big operation.
7542 Kill_All_Checks;
7544 -- Processing of the name is similar for entry calls and protected
7545 -- operation calls. Once the entity is determined, we can complete
7546 -- the resolution of the actuals.
7548 -- The selector may be overloaded, in the case of a protected object
7549 -- with overloaded functions. The type of the context is used for
7550 -- resolution.
7552 if Nkind (Entry_Name) = N_Selected_Component
7553 and then Is_Overloaded (Selector_Name (Entry_Name))
7554 and then Typ /= Standard_Void_Type
7555 then
7556 declare
7557 I : Interp_Index;
7558 It : Interp;
7560 begin
7561 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7562 while Present (It.Typ) loop
7563 if Covers (Typ, It.Typ) then
7564 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7565 Set_Etype (Entry_Name, It.Typ);
7567 Generate_Reference (It.Typ, N, ' ');
7568 end if;
7570 Get_Next_Interp (I, It);
7571 end loop;
7572 end;
7573 end if;
7575 Resolve_Entry (Entry_Name);
7577 if Nkind (Entry_Name) = N_Selected_Component then
7579 -- Simple entry or protected operation call
7581 Nam := Entity (Selector_Name (Entry_Name));
7582 Obj := Prefix (Entry_Name);
7584 if Is_Subprogram (Nam) then
7585 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7586 end if;
7588 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7590 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7592 -- Call to member of entry family
7594 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7595 Obj := Prefix (Prefix (Entry_Name));
7596 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7597 end if;
7599 -- We cannot in general check the maximum depth of protected entry calls
7600 -- at compile time. But we can tell that any protected entry call at all
7601 -- violates a specified nesting depth of zero.
7603 if Is_Protected_Type (Scope (Nam)) then
7604 Check_Restriction (Max_Entry_Queue_Length, N);
7605 end if;
7607 -- Use context type to disambiguate a protected function that can be
7608 -- called without actuals and that returns an array type, and where the
7609 -- argument list may be an indexing of the returned value.
7611 if Ekind (Nam) = E_Function
7612 and then Needs_No_Actuals (Nam)
7613 and then Present (Parameter_Associations (N))
7614 and then
7615 ((Is_Array_Type (Etype (Nam))
7616 and then Covers (Typ, Component_Type (Etype (Nam))))
7618 or else (Is_Access_Type (Etype (Nam))
7619 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7620 and then
7621 Covers
7622 (Typ,
7623 Component_Type (Designated_Type (Etype (Nam))))))
7624 then
7625 declare
7626 Index_Node : Node_Id;
7628 begin
7629 Index_Node :=
7630 Make_Indexed_Component (Loc,
7631 Prefix =>
7632 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7633 Expressions => Parameter_Associations (N));
7635 -- Since we are correcting a node classification error made by the
7636 -- parser, we call Replace rather than Rewrite.
7638 Replace (N, Index_Node);
7639 Set_Etype (Prefix (N), Etype (Nam));
7640 Set_Etype (N, Typ);
7641 Resolve_Indexed_Component (N, Typ);
7642 return;
7643 end;
7644 end if;
7646 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7647 and then Present (Contract_Wrapper (Nam))
7648 and then Current_Scope /= Contract_Wrapper (Nam)
7649 then
7650 -- Note the entity being called before rewriting the call, so that
7651 -- it appears used at this point.
7653 Generate_Reference (Nam, Entry_Name, 'r');
7655 -- Rewrite as call to the precondition wrapper, adding the task
7656 -- object to the list of actuals. If the call is to a member of an
7657 -- entry family, include the index as well.
7659 declare
7660 New_Call : Node_Id;
7661 New_Actuals : List_Id;
7663 begin
7664 New_Actuals := New_List (Obj);
7666 if Nkind (Entry_Name) = N_Indexed_Component then
7667 Append_To (New_Actuals,
7668 New_Copy_Tree (First (Expressions (Entry_Name))));
7669 end if;
7671 Append_List (Parameter_Associations (N), New_Actuals);
7672 New_Call :=
7673 Make_Procedure_Call_Statement (Loc,
7674 Name =>
7675 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7676 Parameter_Associations => New_Actuals);
7677 Rewrite (N, New_Call);
7679 -- Preanalyze and resolve new call. Current procedure is called
7680 -- from Resolve_Call, after which expansion will take place.
7682 Preanalyze_And_Resolve (N);
7683 return;
7684 end;
7685 end if;
7687 -- The operation name may have been overloaded. Order the actuals
7688 -- according to the formals of the resolved entity, and set the return
7689 -- type to that of the operation.
7691 if Was_Over then
7692 Normalize_Actuals (N, Nam, False, Norm_OK);
7693 pragma Assert (Norm_OK);
7694 Set_Etype (N, Etype (Nam));
7696 -- Reset the Is_Overloaded flag, since resolution is now completed
7698 -- Simple entry call
7700 if Nkind (Entry_Name) = N_Selected_Component then
7701 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7703 -- Call to a member of an entry family
7705 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7706 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7707 end if;
7708 end if;
7710 Resolve_Actuals (N, Nam);
7711 Check_Internal_Protected_Use (N, Nam);
7713 -- Create a call reference to the entry
7715 Generate_Reference (Nam, Entry_Name, 's');
7717 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7718 Check_Potentially_Blocking_Operation (N);
7719 end if;
7721 -- Verify that a procedure call cannot masquerade as an entry
7722 -- call where an entry call is expected.
7724 if Ekind (Nam) = E_Procedure then
7725 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7726 and then N = Entry_Call_Statement (Parent (N))
7727 then
7728 Error_Msg_N ("entry call required in select statement", N);
7730 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7731 and then N = Triggering_Statement (Parent (N))
7732 then
7733 Error_Msg_N ("triggering statement cannot be procedure call", N);
7735 elsif Ekind (Scope (Nam)) = E_Task_Type
7736 and then not In_Open_Scopes (Scope (Nam))
7737 then
7738 Error_Msg_N ("task has no entry with this name", Entry_Name);
7739 end if;
7740 end if;
7742 -- After resolution, entry calls and protected procedure calls are
7743 -- changed into entry calls, for expansion. The structure of the node
7744 -- does not change, so it can safely be done in place. Protected
7745 -- function calls must keep their structure because they are
7746 -- subexpressions.
7748 if Ekind (Nam) /= E_Function then
7750 -- A protected operation that is not a function may modify the
7751 -- corresponding object, and cannot apply to a constant. If this
7752 -- is an internal call, the prefix is the type itself.
7754 if Is_Protected_Type (Scope (Nam))
7755 and then not Is_Variable (Obj)
7756 and then (not Is_Entity_Name (Obj)
7757 or else not Is_Type (Entity (Obj)))
7758 then
7759 Error_Msg_N
7760 ("prefix of protected procedure or entry call must be variable",
7761 Entry_Name);
7762 end if;
7764 declare
7765 Entry_Call : Node_Id;
7767 begin
7768 Entry_Call :=
7769 Make_Entry_Call_Statement (Loc,
7770 Name => Entry_Name,
7771 Parameter_Associations => Parameter_Associations (N));
7773 -- Inherit relevant attributes from the original call
7775 Set_First_Named_Actual
7776 (Entry_Call, First_Named_Actual (N));
7778 Set_Is_Elaboration_Checks_OK_Node
7779 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7781 Set_Is_Elaboration_Warnings_OK_Node
7782 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
7784 Set_Is_SPARK_Mode_On_Node
7785 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7787 Rewrite (N, Entry_Call);
7788 Set_Analyzed (N, True);
7789 end;
7791 -- Protected functions can return on the secondary stack, in which case
7792 -- we must trigger the transient scope mechanism.
7794 elsif Expander_Active
7795 and then Requires_Transient_Scope (Etype (Nam))
7796 then
7797 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
7798 end if;
7799 end Resolve_Entry_Call;
7801 -------------------------
7802 -- Resolve_Equality_Op --
7803 -------------------------
7805 -- Both arguments must have the same type, and the boolean context does
7806 -- not participate in the resolution. The first pass verifies that the
7807 -- interpretation is not ambiguous, and the type of the left argument is
7808 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7809 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7810 -- though they carry a single (universal) type. Diagnose this case here.
7812 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7813 L : constant Node_Id := Left_Opnd (N);
7814 R : constant Node_Id := Right_Opnd (N);
7815 T : Entity_Id := Find_Unique_Type (L, R);
7817 procedure Check_If_Expression (Cond : Node_Id);
7818 -- The resolution rule for if expressions requires that each such must
7819 -- have a unique type. This means that if several dependent expressions
7820 -- are of a non-null anonymous access type, and the context does not
7821 -- impose an expected type (as can be the case in an equality operation)
7822 -- the expression must be rejected.
7824 procedure Explain_Redundancy (N : Node_Id);
7825 -- Attempt to explain the nature of a redundant comparison with True. If
7826 -- the expression N is too complex, this routine issues a general error
7827 -- message.
7829 function Find_Unique_Access_Type return Entity_Id;
7830 -- In the case of allocators and access attributes, the context must
7831 -- provide an indication of the specific access type to be used. If
7832 -- one operand is of such a "generic" access type, check whether there
7833 -- is a specific visible access type that has the same designated type.
7834 -- This is semantically dubious, and of no interest to any real code,
7835 -- but c48008a makes it all worthwhile.
7837 -------------------------
7838 -- Check_If_Expression --
7839 -------------------------
7841 procedure Check_If_Expression (Cond : Node_Id) is
7842 Then_Expr : Node_Id;
7843 Else_Expr : Node_Id;
7845 begin
7846 if Nkind (Cond) = N_If_Expression then
7847 Then_Expr := Next (First (Expressions (Cond)));
7848 Else_Expr := Next (Then_Expr);
7850 if Nkind (Then_Expr) /= N_Null
7851 and then Nkind (Else_Expr) /= N_Null
7852 then
7853 Error_Msg_N ("cannot determine type of if expression", Cond);
7854 end if;
7855 end if;
7856 end Check_If_Expression;
7858 ------------------------
7859 -- Explain_Redundancy --
7860 ------------------------
7862 procedure Explain_Redundancy (N : Node_Id) is
7863 Error : Name_Id;
7864 Val : Node_Id;
7865 Val_Id : Entity_Id;
7867 begin
7868 Val := N;
7870 -- Strip the operand down to an entity
7872 loop
7873 if Nkind (Val) = N_Selected_Component then
7874 Val := Selector_Name (Val);
7875 else
7876 exit;
7877 end if;
7878 end loop;
7880 -- The construct denotes an entity
7882 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7883 Val_Id := Entity (Val);
7885 -- Do not generate an error message when the comparison is done
7886 -- against the enumeration literal Standard.True.
7888 if Ekind (Val_Id) /= E_Enumeration_Literal then
7890 -- Build a customized error message
7892 Name_Len := 0;
7893 Add_Str_To_Name_Buffer ("?r?");
7895 if Ekind (Val_Id) = E_Component then
7896 Add_Str_To_Name_Buffer ("component ");
7898 elsif Ekind (Val_Id) = E_Constant then
7899 Add_Str_To_Name_Buffer ("constant ");
7901 elsif Ekind (Val_Id) = E_Discriminant then
7902 Add_Str_To_Name_Buffer ("discriminant ");
7904 elsif Is_Formal (Val_Id) then
7905 Add_Str_To_Name_Buffer ("parameter ");
7907 elsif Ekind (Val_Id) = E_Variable then
7908 Add_Str_To_Name_Buffer ("variable ");
7909 end if;
7911 Add_Str_To_Name_Buffer ("& is always True!");
7912 Error := Name_Find;
7914 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7915 end if;
7917 -- The construct is too complex to disect, issue a general message
7919 else
7920 Error_Msg_N ("?r?expression is always True!", Val);
7921 end if;
7922 end Explain_Redundancy;
7924 -----------------------------
7925 -- Find_Unique_Access_Type --
7926 -----------------------------
7928 function Find_Unique_Access_Type return Entity_Id is
7929 Acc : Entity_Id;
7930 E : Entity_Id;
7931 S : Entity_Id;
7933 begin
7934 if Ekind_In (Etype (R), E_Allocator_Type,
7935 E_Access_Attribute_Type)
7936 then
7937 Acc := Designated_Type (Etype (R));
7939 elsif Ekind_In (Etype (L), E_Allocator_Type,
7940 E_Access_Attribute_Type)
7941 then
7942 Acc := Designated_Type (Etype (L));
7943 else
7944 return Empty;
7945 end if;
7947 S := Current_Scope;
7948 while S /= Standard_Standard loop
7949 E := First_Entity (S);
7950 while Present (E) loop
7951 if Is_Type (E)
7952 and then Is_Access_Type (E)
7953 and then Ekind (E) /= E_Allocator_Type
7954 and then Designated_Type (E) = Base_Type (Acc)
7955 then
7956 return E;
7957 end if;
7959 Next_Entity (E);
7960 end loop;
7962 S := Scope (S);
7963 end loop;
7965 return Empty;
7966 end Find_Unique_Access_Type;
7968 -- Start of processing for Resolve_Equality_Op
7970 begin
7971 Set_Etype (N, Base_Type (Typ));
7972 Generate_Reference (T, N, ' ');
7974 if T = Any_Fixed then
7975 T := Unique_Fixed_Point_Type (L);
7976 end if;
7978 if T /= Any_Type then
7979 if T = Any_String or else
7980 T = Any_Composite or else
7981 T = Any_Character
7982 then
7983 if T = Any_Character then
7984 Ambiguous_Character (L);
7985 else
7986 Error_Msg_N ("ambiguous operands for equality", N);
7987 end if;
7989 Set_Etype (N, Any_Type);
7990 return;
7992 elsif T = Any_Access
7993 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7994 then
7995 T := Find_Unique_Access_Type;
7997 if No (T) then
7998 Error_Msg_N ("ambiguous operands for equality", N);
7999 Set_Etype (N, Any_Type);
8000 return;
8001 end if;
8003 -- If expressions must have a single type, and if the context does
8004 -- not impose one the dependent expressions cannot be anonymous
8005 -- access types.
8007 -- Why no similar processing for case expressions???
8009 elsif Ada_Version >= Ada_2012
8010 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8011 E_Anonymous_Access_Subprogram_Type)
8012 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8013 E_Anonymous_Access_Subprogram_Type)
8014 then
8015 Check_If_Expression (L);
8016 Check_If_Expression (R);
8017 end if;
8019 Resolve (L, T);
8020 Resolve (R, T);
8022 -- In SPARK, equality operators = and /= for array types other than
8023 -- String are only defined when, for each index position, the
8024 -- operands have equal static bounds.
8026 if Is_Array_Type (T) then
8028 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8029 -- operation if not needed.
8031 if Restriction_Check_Required (SPARK_05)
8032 and then Base_Type (T) /= Standard_String
8033 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8034 and then Etype (L) /= Any_Composite -- or else L in error
8035 and then Etype (R) /= Any_Composite -- or else R in error
8036 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8037 then
8038 Check_SPARK_05_Restriction
8039 ("array types should have matching static bounds", N);
8040 end if;
8041 end if;
8043 -- If the unique type is a class-wide type then it will be expanded
8044 -- into a dispatching call to the predefined primitive. Therefore we
8045 -- check here for potential violation of such restriction.
8047 if Is_Class_Wide_Type (T) then
8048 Check_Restriction (No_Dispatching_Calls, N);
8049 end if;
8051 -- Only warn for redundant equality comparison to True for objects
8052 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8053 -- other expressions, it may be a matter of preference to write
8054 -- "Expr = True" or "Expr".
8056 if Warn_On_Redundant_Constructs
8057 and then Comes_From_Source (N)
8058 and then Comes_From_Source (R)
8059 and then Is_Entity_Name (R)
8060 and then Entity (R) = Standard_True
8061 and then
8062 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8063 or else
8064 Nkind (L) in N_Op)
8065 then
8066 Error_Msg_N -- CODEFIX
8067 ("?r?comparison with True is redundant!", N);
8068 Explain_Redundancy (Original_Node (R));
8069 end if;
8071 Check_Unset_Reference (L);
8072 Check_Unset_Reference (R);
8073 Generate_Operator_Reference (N, T);
8074 Check_Low_Bound_Tested (N);
8076 -- If this is an inequality, it may be the implicit inequality
8077 -- created for a user-defined operation, in which case the corres-
8078 -- ponding equality operation is not intrinsic, and the operation
8079 -- cannot be constant-folded. Else fold.
8081 if Nkind (N) = N_Op_Eq
8082 or else Comes_From_Source (Entity (N))
8083 or else Ekind (Entity (N)) = E_Operator
8084 or else Is_Intrinsic_Subprogram
8085 (Corresponding_Equality (Entity (N)))
8086 then
8087 Analyze_Dimension (N);
8088 Eval_Relational_Op (N);
8090 elsif Nkind (N) = N_Op_Ne
8091 and then Is_Abstract_Subprogram (Entity (N))
8092 then
8093 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8094 end if;
8096 -- Ada 2005: If one operand is an anonymous access type, convert the
8097 -- other operand to it, to ensure that the underlying types match in
8098 -- the back-end. Same for access_to_subprogram, and the conversion
8099 -- verifies that the types are subtype conformant.
8101 -- We apply the same conversion in the case one of the operands is a
8102 -- private subtype of the type of the other.
8104 -- Why the Expander_Active test here ???
8106 if Expander_Active
8107 and then
8108 (Ekind_In (T, E_Anonymous_Access_Type,
8109 E_Anonymous_Access_Subprogram_Type)
8110 or else Is_Private_Type (T))
8111 then
8112 if Etype (L) /= T then
8113 Rewrite (L,
8114 Make_Unchecked_Type_Conversion (Sloc (L),
8115 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8116 Expression => Relocate_Node (L)));
8117 Analyze_And_Resolve (L, T);
8118 end if;
8120 if (Etype (R)) /= T then
8121 Rewrite (R,
8122 Make_Unchecked_Type_Conversion (Sloc (R),
8123 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8124 Expression => Relocate_Node (R)));
8125 Analyze_And_Resolve (R, T);
8126 end if;
8127 end if;
8128 end if;
8129 end Resolve_Equality_Op;
8131 ----------------------------------
8132 -- Resolve_Explicit_Dereference --
8133 ----------------------------------
8135 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8136 Loc : constant Source_Ptr := Sloc (N);
8137 New_N : Node_Id;
8138 P : constant Node_Id := Prefix (N);
8140 P_Typ : Entity_Id;
8141 -- The candidate prefix type, if overloaded
8143 I : Interp_Index;
8144 It : Interp;
8146 begin
8147 Check_Fully_Declared_Prefix (Typ, P);
8148 P_Typ := Empty;
8150 -- A useful optimization: check whether the dereference denotes an
8151 -- element of a container, and if so rewrite it as a call to the
8152 -- corresponding Element function.
8154 -- Disabled for now, on advice of ARG. A more restricted form of the
8155 -- predicate might be acceptable ???
8157 -- if Is_Container_Element (N) then
8158 -- return;
8159 -- end if;
8161 if Is_Overloaded (P) then
8163 -- Use the context type to select the prefix that has the correct
8164 -- designated type. Keep the first match, which will be the inner-
8165 -- most.
8167 Get_First_Interp (P, I, It);
8169 while Present (It.Typ) loop
8170 if Is_Access_Type (It.Typ)
8171 and then Covers (Typ, Designated_Type (It.Typ))
8172 then
8173 if No (P_Typ) then
8174 P_Typ := It.Typ;
8175 end if;
8177 -- Remove access types that do not match, but preserve access
8178 -- to subprogram interpretations, in case a further dereference
8179 -- is needed (see below).
8181 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8182 Remove_Interp (I);
8183 end if;
8185 Get_Next_Interp (I, It);
8186 end loop;
8188 if Present (P_Typ) then
8189 Resolve (P, P_Typ);
8190 Set_Etype (N, Designated_Type (P_Typ));
8192 else
8193 -- If no interpretation covers the designated type of the prefix,
8194 -- this is the pathological case where not all implementations of
8195 -- the prefix allow the interpretation of the node as a call. Now
8196 -- that the expected type is known, Remove other interpretations
8197 -- from prefix, rewrite it as a call, and resolve again, so that
8198 -- the proper call node is generated.
8200 Get_First_Interp (P, I, It);
8201 while Present (It.Typ) loop
8202 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8203 Remove_Interp (I);
8204 end if;
8206 Get_Next_Interp (I, It);
8207 end loop;
8209 New_N :=
8210 Make_Function_Call (Loc,
8211 Name =>
8212 Make_Explicit_Dereference (Loc,
8213 Prefix => P),
8214 Parameter_Associations => New_List);
8216 Save_Interps (N, New_N);
8217 Rewrite (N, New_N);
8218 Analyze_And_Resolve (N, Typ);
8219 return;
8220 end if;
8222 -- If not overloaded, resolve P with its own type
8224 else
8225 Resolve (P);
8226 end if;
8228 -- If the prefix might be null, add an access check
8230 if Is_Access_Type (Etype (P))
8231 and then not Can_Never_Be_Null (Etype (P))
8232 then
8233 Apply_Access_Check (N);
8234 end if;
8236 -- If the designated type is a packed unconstrained array type, and the
8237 -- explicit dereference is not in the context of an attribute reference,
8238 -- then we must compute and set the actual subtype, since it is needed
8239 -- by Gigi. The reason we exclude the attribute case is that this is
8240 -- handled fine by Gigi, and in fact we use such attributes to build the
8241 -- actual subtype. We also exclude generated code (which builds actual
8242 -- subtypes directly if they are needed).
8244 if Is_Array_Type (Etype (N))
8245 and then Is_Packed (Etype (N))
8246 and then not Is_Constrained (Etype (N))
8247 and then Nkind (Parent (N)) /= N_Attribute_Reference
8248 and then Comes_From_Source (N)
8249 then
8250 Set_Etype (N, Get_Actual_Subtype (N));
8251 end if;
8253 Analyze_Dimension (N);
8255 -- Note: No Eval processing is required for an explicit dereference,
8256 -- because such a name can never be static.
8258 end Resolve_Explicit_Dereference;
8260 -------------------------------------
8261 -- Resolve_Expression_With_Actions --
8262 -------------------------------------
8264 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8265 begin
8266 Set_Etype (N, Typ);
8268 -- If N has no actions, and its expression has been constant folded,
8269 -- then rewrite N as just its expression. Note, we can't do this in
8270 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8271 -- Expression (N) to be expanded again.
8273 if Is_Empty_List (Actions (N))
8274 and then Compile_Time_Known_Value (Expression (N))
8275 then
8276 Rewrite (N, Expression (N));
8277 end if;
8278 end Resolve_Expression_With_Actions;
8280 ----------------------------------
8281 -- Resolve_Generalized_Indexing --
8282 ----------------------------------
8284 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8285 Indexing : constant Node_Id := Generalized_Indexing (N);
8286 Call : Node_Id;
8287 Indexes : List_Id;
8288 Pref : Node_Id;
8290 begin
8291 -- In ASIS mode, propagate the information about the indexes back to
8292 -- to the original indexing node. The generalized indexing is either
8293 -- a function call, or a dereference of one. The actuals include the
8294 -- prefix of the original node, which is the container expression.
8296 if ASIS_Mode then
8297 Resolve (Indexing, Typ);
8298 Set_Etype (N, Etype (Indexing));
8299 Set_Is_Overloaded (N, False);
8301 Call := Indexing;
8302 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8303 loop
8304 Call := Prefix (Call);
8305 end loop;
8307 if Nkind (Call) = N_Function_Call then
8308 Indexes := New_Copy_List (Parameter_Associations (Call));
8309 Pref := Remove_Head (Indexes);
8310 Set_Expressions (N, Indexes);
8312 -- If expression is to be reanalyzed, reset Generalized_Indexing
8313 -- to recreate call node, as is the case when the expression is
8314 -- part of an expression function.
8316 if In_Spec_Expression then
8317 Set_Generalized_Indexing (N, Empty);
8318 end if;
8320 Set_Prefix (N, Pref);
8321 end if;
8323 else
8324 Rewrite (N, Indexing);
8325 Resolve (N, Typ);
8326 end if;
8327 end Resolve_Generalized_Indexing;
8329 ---------------------------
8330 -- Resolve_If_Expression --
8331 ---------------------------
8333 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8334 Condition : constant Node_Id := First (Expressions (N));
8335 Then_Expr : Node_Id;
8336 Else_Expr : Node_Id;
8337 Else_Typ : Entity_Id;
8338 Then_Typ : Entity_Id;
8340 begin
8341 -- Defend against malformed expressions
8343 if No (Condition) then
8344 return;
8345 end if;
8347 Then_Expr := Next (Condition);
8349 if No (Then_Expr) then
8350 return;
8351 end if;
8353 Else_Expr := Next (Then_Expr);
8355 Resolve (Condition, Any_Boolean);
8356 Resolve (Then_Expr, Typ);
8357 Then_Typ := Etype (Then_Expr);
8359 -- When the "then" expression is of a scalar subtype different from the
8360 -- result subtype, then insert a conversion to ensure the generation of
8361 -- a constraint check. The same is done for the else part below, again
8362 -- comparing subtypes rather than base types.
8364 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8365 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8366 Analyze_And_Resolve (Then_Expr, Typ);
8367 end if;
8369 -- If ELSE expression present, just resolve using the determined type
8370 -- If type is universal, resolve to any member of the class.
8372 if Present (Else_Expr) then
8373 if Typ = Universal_Integer then
8374 Resolve (Else_Expr, Any_Integer);
8376 elsif Typ = Universal_Real then
8377 Resolve (Else_Expr, Any_Real);
8379 else
8380 Resolve (Else_Expr, Typ);
8381 end if;
8383 Else_Typ := Etype (Else_Expr);
8385 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8386 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8387 Analyze_And_Resolve (Else_Expr, Typ);
8389 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8390 -- dynamically tagged must be known statically.
8392 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8393 if Is_Dynamically_Tagged (Then_Expr) /=
8394 Is_Dynamically_Tagged (Else_Expr)
8395 then
8396 Error_Msg_N ("all or none of the dependent expressions "
8397 & "can be dynamically tagged", N);
8398 end if;
8399 end if;
8401 -- If no ELSE expression is present, root type must be Standard.Boolean
8402 -- and we provide a Standard.True result converted to the appropriate
8403 -- Boolean type (in case it is a derived boolean type).
8405 elsif Root_Type (Typ) = Standard_Boolean then
8406 Else_Expr :=
8407 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8408 Analyze_And_Resolve (Else_Expr, Typ);
8409 Append_To (Expressions (N), Else_Expr);
8411 else
8412 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8413 Append_To (Expressions (N), Error);
8414 end if;
8416 Set_Etype (N, Typ);
8418 if not Error_Posted (N) then
8419 Eval_If_Expression (N);
8420 end if;
8422 Analyze_Dimension (N);
8423 end Resolve_If_Expression;
8425 -------------------------------
8426 -- Resolve_Indexed_Component --
8427 -------------------------------
8429 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8430 Name : constant Node_Id := Prefix (N);
8431 Expr : Node_Id;
8432 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8433 Index : Node_Id;
8435 begin
8436 if Present (Generalized_Indexing (N)) then
8437 Resolve_Generalized_Indexing (N, Typ);
8438 return;
8439 end if;
8441 if Is_Overloaded (Name) then
8443 -- Use the context type to select the prefix that yields the correct
8444 -- component type.
8446 declare
8447 I : Interp_Index;
8448 It : Interp;
8449 I1 : Interp_Index := 0;
8450 P : constant Node_Id := Prefix (N);
8451 Found : Boolean := False;
8453 begin
8454 Get_First_Interp (P, I, It);
8455 while Present (It.Typ) loop
8456 if (Is_Array_Type (It.Typ)
8457 and then Covers (Typ, Component_Type (It.Typ)))
8458 or else (Is_Access_Type (It.Typ)
8459 and then Is_Array_Type (Designated_Type (It.Typ))
8460 and then
8461 Covers
8462 (Typ,
8463 Component_Type (Designated_Type (It.Typ))))
8464 then
8465 if Found then
8466 It := Disambiguate (P, I1, I, Any_Type);
8468 if It = No_Interp then
8469 Error_Msg_N ("ambiguous prefix for indexing", N);
8470 Set_Etype (N, Typ);
8471 return;
8473 else
8474 Found := True;
8475 Array_Type := It.Typ;
8476 I1 := I;
8477 end if;
8479 else
8480 Found := True;
8481 Array_Type := It.Typ;
8482 I1 := I;
8483 end if;
8484 end if;
8486 Get_Next_Interp (I, It);
8487 end loop;
8488 end;
8490 else
8491 Array_Type := Etype (Name);
8492 end if;
8494 Resolve (Name, Array_Type);
8495 Array_Type := Get_Actual_Subtype_If_Available (Name);
8497 -- If prefix is access type, dereference to get real array type.
8498 -- Note: we do not apply an access check because the expander always
8499 -- introduces an explicit dereference, and the check will happen there.
8501 if Is_Access_Type (Array_Type) then
8502 Array_Type := Designated_Type (Array_Type);
8503 end if;
8505 -- If name was overloaded, set component type correctly now
8506 -- If a misplaced call to an entry family (which has no index types)
8507 -- return. Error will be diagnosed from calling context.
8509 if Is_Array_Type (Array_Type) then
8510 Set_Etype (N, Component_Type (Array_Type));
8511 else
8512 return;
8513 end if;
8515 Index := First_Index (Array_Type);
8516 Expr := First (Expressions (N));
8518 -- The prefix may have resolved to a string literal, in which case its
8519 -- etype has a special representation. This is only possible currently
8520 -- if the prefix is a static concatenation, written in functional
8521 -- notation.
8523 if Ekind (Array_Type) = E_String_Literal_Subtype then
8524 Resolve (Expr, Standard_Positive);
8526 else
8527 while Present (Index) and Present (Expr) loop
8528 Resolve (Expr, Etype (Index));
8529 Check_Unset_Reference (Expr);
8531 if Is_Scalar_Type (Etype (Expr)) then
8532 Apply_Scalar_Range_Check (Expr, Etype (Index));
8533 else
8534 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8535 end if;
8537 Next_Index (Index);
8538 Next (Expr);
8539 end loop;
8540 end if;
8542 Analyze_Dimension (N);
8544 -- Do not generate the warning on suspicious index if we are analyzing
8545 -- package Ada.Tags; otherwise we will report the warning with the
8546 -- Prims_Ptr field of the dispatch table.
8548 if Scope (Etype (Prefix (N))) = Standard_Standard
8549 or else not
8550 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8551 Ada_Tags)
8552 then
8553 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8554 Eval_Indexed_Component (N);
8555 end if;
8557 -- If the array type is atomic, and the component is not atomic, then
8558 -- this is worth a warning, since we have a situation where the access
8559 -- to the component may cause extra read/writes of the atomic array
8560 -- object, or partial word accesses, which could be unexpected.
8562 if Nkind (N) = N_Indexed_Component
8563 and then Is_Atomic_Ref_With_Address (N)
8564 and then not (Has_Atomic_Components (Array_Type)
8565 or else (Is_Entity_Name (Prefix (N))
8566 and then Has_Atomic_Components
8567 (Entity (Prefix (N)))))
8568 and then not Is_Atomic (Component_Type (Array_Type))
8569 then
8570 Error_Msg_N
8571 ("??access to non-atomic component of atomic array", Prefix (N));
8572 Error_Msg_N
8573 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8574 end if;
8575 end Resolve_Indexed_Component;
8577 -----------------------------
8578 -- Resolve_Integer_Literal --
8579 -----------------------------
8581 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8582 begin
8583 Set_Etype (N, Typ);
8584 Eval_Integer_Literal (N);
8585 end Resolve_Integer_Literal;
8587 --------------------------------
8588 -- Resolve_Intrinsic_Operator --
8589 --------------------------------
8591 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8592 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8593 Op : Entity_Id;
8594 Arg1 : Node_Id;
8595 Arg2 : Node_Id;
8597 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8598 -- If the operand is a literal, it cannot be the expression in a
8599 -- conversion. Use a qualified expression instead.
8601 ---------------------
8602 -- Convert_Operand --
8603 ---------------------
8605 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8606 Loc : constant Source_Ptr := Sloc (Opnd);
8607 Res : Node_Id;
8609 begin
8610 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8611 Res :=
8612 Make_Qualified_Expression (Loc,
8613 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8614 Expression => Relocate_Node (Opnd));
8615 Analyze (Res);
8617 else
8618 Res := Unchecked_Convert_To (Btyp, Opnd);
8619 end if;
8621 return Res;
8622 end Convert_Operand;
8624 -- Start of processing for Resolve_Intrinsic_Operator
8626 begin
8627 -- We must preserve the original entity in a generic setting, so that
8628 -- the legality of the operation can be verified in an instance.
8630 if not Expander_Active then
8631 return;
8632 end if;
8634 Op := Entity (N);
8635 while Scope (Op) /= Standard_Standard loop
8636 Op := Homonym (Op);
8637 pragma Assert (Present (Op));
8638 end loop;
8640 Set_Entity (N, Op);
8641 Set_Is_Overloaded (N, False);
8643 -- If the result or operand types are private, rewrite with unchecked
8644 -- conversions on the operands and the result, to expose the proper
8645 -- underlying numeric type.
8647 if Is_Private_Type (Typ)
8648 or else Is_Private_Type (Etype (Left_Opnd (N)))
8649 or else Is_Private_Type (Etype (Right_Opnd (N)))
8650 then
8651 Arg1 := Convert_Operand (Left_Opnd (N));
8653 if Nkind (N) = N_Op_Expon then
8654 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8655 else
8656 Arg2 := Convert_Operand (Right_Opnd (N));
8657 end if;
8659 if Nkind (Arg1) = N_Type_Conversion then
8660 Save_Interps (Left_Opnd (N), Expression (Arg1));
8661 end if;
8663 if Nkind (Arg2) = N_Type_Conversion then
8664 Save_Interps (Right_Opnd (N), Expression (Arg2));
8665 end if;
8667 Set_Left_Opnd (N, Arg1);
8668 Set_Right_Opnd (N, Arg2);
8670 Set_Etype (N, Btyp);
8671 Rewrite (N, Unchecked_Convert_To (Typ, N));
8672 Resolve (N, Typ);
8674 elsif Typ /= Etype (Left_Opnd (N))
8675 or else Typ /= Etype (Right_Opnd (N))
8676 then
8677 -- Add explicit conversion where needed, and save interpretations in
8678 -- case operands are overloaded.
8680 Arg1 := Convert_To (Typ, Left_Opnd (N));
8681 Arg2 := Convert_To (Typ, Right_Opnd (N));
8683 if Nkind (Arg1) = N_Type_Conversion then
8684 Save_Interps (Left_Opnd (N), Expression (Arg1));
8685 else
8686 Save_Interps (Left_Opnd (N), Arg1);
8687 end if;
8689 if Nkind (Arg2) = N_Type_Conversion then
8690 Save_Interps (Right_Opnd (N), Expression (Arg2));
8691 else
8692 Save_Interps (Right_Opnd (N), Arg2);
8693 end if;
8695 Rewrite (Left_Opnd (N), Arg1);
8696 Rewrite (Right_Opnd (N), Arg2);
8697 Analyze (Arg1);
8698 Analyze (Arg2);
8699 Resolve_Arithmetic_Op (N, Typ);
8701 else
8702 Resolve_Arithmetic_Op (N, Typ);
8703 end if;
8704 end Resolve_Intrinsic_Operator;
8706 --------------------------------------
8707 -- Resolve_Intrinsic_Unary_Operator --
8708 --------------------------------------
8710 procedure Resolve_Intrinsic_Unary_Operator
8711 (N : Node_Id;
8712 Typ : Entity_Id)
8714 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8715 Op : Entity_Id;
8716 Arg2 : Node_Id;
8718 begin
8719 Op := Entity (N);
8720 while Scope (Op) /= Standard_Standard loop
8721 Op := Homonym (Op);
8722 pragma Assert (Present (Op));
8723 end loop;
8725 Set_Entity (N, Op);
8727 if Is_Private_Type (Typ) then
8728 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8729 Save_Interps (Right_Opnd (N), Expression (Arg2));
8731 Set_Right_Opnd (N, Arg2);
8733 Set_Etype (N, Btyp);
8734 Rewrite (N, Unchecked_Convert_To (Typ, N));
8735 Resolve (N, Typ);
8737 else
8738 Resolve_Unary_Op (N, Typ);
8739 end if;
8740 end Resolve_Intrinsic_Unary_Operator;
8742 ------------------------
8743 -- Resolve_Logical_Op --
8744 ------------------------
8746 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8747 B_Typ : Entity_Id;
8749 begin
8750 Check_No_Direct_Boolean_Operators (N);
8752 -- Predefined operations on scalar types yield the base type. On the
8753 -- other hand, logical operations on arrays yield the type of the
8754 -- arguments (and the context).
8756 if Is_Array_Type (Typ) then
8757 B_Typ := Typ;
8758 else
8759 B_Typ := Base_Type (Typ);
8760 end if;
8762 -- The following test is required because the operands of the operation
8763 -- may be literals, in which case the resulting type appears to be
8764 -- compatible with a signed integer type, when in fact it is compatible
8765 -- only with modular types. If the context itself is universal, the
8766 -- operation is illegal.
8768 if not Valid_Boolean_Arg (Typ) then
8769 Error_Msg_N ("invalid context for logical operation", N);
8770 Set_Etype (N, Any_Type);
8771 return;
8773 elsif Typ = Any_Modular then
8774 Error_Msg_N
8775 ("no modular type available in this context", N);
8776 Set_Etype (N, Any_Type);
8777 return;
8779 elsif Is_Modular_Integer_Type (Typ)
8780 and then Etype (Left_Opnd (N)) = Universal_Integer
8781 and then Etype (Right_Opnd (N)) = Universal_Integer
8782 then
8783 Check_For_Visible_Operator (N, B_Typ);
8784 end if;
8786 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8787 -- is active and the result type is standard Boolean (do not mess with
8788 -- ops that return a nonstandard Boolean type, because something strange
8789 -- is going on).
8791 -- Note: you might expect this replacement to be done during expansion,
8792 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8793 -- is used, no part of the right operand of an "and" or "or" operator
8794 -- should be executed if the left operand would short-circuit the
8795 -- evaluation of the corresponding "and then" or "or else". If we left
8796 -- the replacement to expansion time, then run-time checks associated
8797 -- with such operands would be evaluated unconditionally, due to being
8798 -- before the condition prior to the rewriting as short-circuit forms
8799 -- during expansion.
8801 if Short_Circuit_And_Or
8802 and then B_Typ = Standard_Boolean
8803 and then Nkind_In (N, N_Op_And, N_Op_Or)
8804 then
8805 -- Mark the corresponding putative SCO operator as truly a logical
8806 -- (and short-circuit) operator.
8808 if Generate_SCO and then Comes_From_Source (N) then
8809 Set_SCO_Logical_Operator (N);
8810 end if;
8812 if Nkind (N) = N_Op_And then
8813 Rewrite (N,
8814 Make_And_Then (Sloc (N),
8815 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8816 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8817 Analyze_And_Resolve (N, B_Typ);
8819 -- Case of OR changed to OR ELSE
8821 else
8822 Rewrite (N,
8823 Make_Or_Else (Sloc (N),
8824 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8825 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8826 Analyze_And_Resolve (N, B_Typ);
8827 end if;
8829 -- Return now, since analysis of the rewritten ops will take care of
8830 -- other reference bookkeeping and expression folding.
8832 return;
8833 end if;
8835 Resolve (Left_Opnd (N), B_Typ);
8836 Resolve (Right_Opnd (N), B_Typ);
8838 Check_Unset_Reference (Left_Opnd (N));
8839 Check_Unset_Reference (Right_Opnd (N));
8841 Set_Etype (N, B_Typ);
8842 Generate_Operator_Reference (N, B_Typ);
8843 Eval_Logical_Op (N);
8845 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8846 -- only when both operands have same static lower and higher bounds. Of
8847 -- course the types have to match, so only check if operands are
8848 -- compatible and the node itself has no errors.
8850 if Is_Array_Type (B_Typ)
8851 and then Nkind (N) in N_Binary_Op
8852 then
8853 declare
8854 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8855 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8857 begin
8858 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8859 -- operation if not needed.
8861 if Restriction_Check_Required (SPARK_05)
8862 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8863 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8864 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8865 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8866 then
8867 Check_SPARK_05_Restriction
8868 ("array types should have matching static bounds", N);
8869 end if;
8870 end;
8871 end if;
8872 end Resolve_Logical_Op;
8874 ---------------------------
8875 -- Resolve_Membership_Op --
8876 ---------------------------
8878 -- The context can only be a boolean type, and does not determine the
8879 -- arguments. Arguments should be unambiguous, but the preference rule for
8880 -- universal types applies.
8882 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8883 pragma Warnings (Off, Typ);
8885 L : constant Node_Id := Left_Opnd (N);
8886 R : constant Node_Id := Right_Opnd (N);
8887 T : Entity_Id;
8889 procedure Resolve_Set_Membership;
8890 -- Analysis has determined a unique type for the left operand. Use it to
8891 -- resolve the disjuncts.
8893 ----------------------------
8894 -- Resolve_Set_Membership --
8895 ----------------------------
8897 procedure Resolve_Set_Membership is
8898 Alt : Node_Id;
8899 Ltyp : Entity_Id;
8901 begin
8902 -- If the left operand is overloaded, find type compatible with not
8903 -- overloaded alternative of the right operand.
8905 if Is_Overloaded (L) then
8906 Ltyp := Empty;
8907 Alt := First (Alternatives (N));
8908 while Present (Alt) loop
8909 if not Is_Overloaded (Alt) then
8910 Ltyp := Intersect_Types (L, Alt);
8911 exit;
8912 else
8913 Next (Alt);
8914 end if;
8915 end loop;
8917 -- Unclear how to resolve expression if all alternatives are also
8918 -- overloaded.
8920 if No (Ltyp) then
8921 Error_Msg_N ("ambiguous expression", N);
8922 end if;
8924 else
8925 Ltyp := Etype (L);
8926 end if;
8928 Resolve (L, Ltyp);
8930 Alt := First (Alternatives (N));
8931 while Present (Alt) loop
8933 -- Alternative is an expression, a range
8934 -- or a subtype mark.
8936 if not Is_Entity_Name (Alt)
8937 or else not Is_Type (Entity (Alt))
8938 then
8939 Resolve (Alt, Ltyp);
8940 end if;
8942 Next (Alt);
8943 end loop;
8945 -- Check for duplicates for discrete case
8947 if Is_Discrete_Type (Ltyp) then
8948 declare
8949 type Ent is record
8950 Alt : Node_Id;
8951 Val : Uint;
8952 end record;
8954 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8955 Nalts : Nat;
8957 begin
8958 -- Loop checking duplicates. This is quadratic, but giant sets
8959 -- are unlikely in this context so it's a reasonable choice.
8961 Nalts := 0;
8962 Alt := First (Alternatives (N));
8963 while Present (Alt) loop
8964 if Is_OK_Static_Expression (Alt)
8965 and then (Nkind_In (Alt, N_Integer_Literal,
8966 N_Character_Literal)
8967 or else Nkind (Alt) in N_Has_Entity)
8968 then
8969 Nalts := Nalts + 1;
8970 Alts (Nalts) := (Alt, Expr_Value (Alt));
8972 for J in 1 .. Nalts - 1 loop
8973 if Alts (J).Val = Alts (Nalts).Val then
8974 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8975 Error_Msg_N ("duplicate of value given#??", Alt);
8976 end if;
8977 end loop;
8978 end if;
8980 Alt := Next (Alt);
8981 end loop;
8982 end;
8983 end if;
8985 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
8986 -- limited types, evaluation of a membership test uses the predefined
8987 -- equality for the type. This may be confusing to users, and the
8988 -- following warning appears useful for the most common case.
8990 if Is_Scalar_Type (Ltyp)
8991 and then Present (Get_User_Defined_Eq (Ltyp))
8992 then
8993 Error_Msg_NE
8994 ("membership test on& uses predefined equality?", N, Ltyp);
8995 Error_Msg_N
8996 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
8997 end if;
8998 end Resolve_Set_Membership;
9000 -- Start of processing for Resolve_Membership_Op
9002 begin
9003 if L = Error or else R = Error then
9004 return;
9005 end if;
9007 if Present (Alternatives (N)) then
9008 Resolve_Set_Membership;
9009 goto SM_Exit;
9011 elsif not Is_Overloaded (R)
9012 and then
9013 (Etype (R) = Universal_Integer
9014 or else
9015 Etype (R) = Universal_Real)
9016 and then Is_Overloaded (L)
9017 then
9018 T := Etype (R);
9020 -- Ada 2005 (AI-251): Support the following case:
9022 -- type I is interface;
9023 -- type T is tagged ...
9025 -- function Test (O : I'Class) is
9026 -- begin
9027 -- return O in T'Class.
9028 -- end Test;
9030 -- In this case we have nothing else to do. The membership test will be
9031 -- done at run time.
9033 elsif Ada_Version >= Ada_2005
9034 and then Is_Class_Wide_Type (Etype (L))
9035 and then Is_Interface (Etype (L))
9036 and then Is_Class_Wide_Type (Etype (R))
9037 and then not Is_Interface (Etype (R))
9038 then
9039 return;
9040 else
9041 T := Intersect_Types (L, R);
9042 end if;
9044 -- If mixed-mode operations are present and operands are all literal,
9045 -- the only interpretation involves Duration, which is probably not
9046 -- the intention of the programmer.
9048 if T = Any_Fixed then
9049 T := Unique_Fixed_Point_Type (N);
9051 if T = Any_Type then
9052 return;
9053 end if;
9054 end if;
9056 Resolve (L, T);
9057 Check_Unset_Reference (L);
9059 if Nkind (R) = N_Range
9060 and then not Is_Scalar_Type (T)
9061 then
9062 Error_Msg_N ("scalar type required for range", R);
9063 end if;
9065 if Is_Entity_Name (R) then
9066 Freeze_Expression (R);
9067 else
9068 Resolve (R, T);
9069 Check_Unset_Reference (R);
9070 end if;
9072 -- Here after resolving membership operation
9074 <<SM_Exit>>
9076 Eval_Membership_Op (N);
9077 end Resolve_Membership_Op;
9079 ------------------
9080 -- Resolve_Null --
9081 ------------------
9083 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9084 Loc : constant Source_Ptr := Sloc (N);
9086 begin
9087 -- Handle restriction against anonymous null access values This
9088 -- restriction can be turned off using -gnatdj.
9090 -- Ada 2005 (AI-231): Remove restriction
9092 if Ada_Version < Ada_2005
9093 and then not Debug_Flag_J
9094 and then Ekind (Typ) = E_Anonymous_Access_Type
9095 and then Comes_From_Source (N)
9096 then
9097 -- In the common case of a call which uses an explicitly null value
9098 -- for an access parameter, give specialized error message.
9100 if Nkind (Parent (N)) in N_Subprogram_Call then
9101 Error_Msg_N
9102 ("null is not allowed as argument for an access parameter", N);
9104 -- Standard message for all other cases (are there any?)
9106 else
9107 Error_Msg_N
9108 ("null cannot be of an anonymous access type", N);
9109 end if;
9110 end if;
9112 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9113 -- assignment to a null-excluding object
9115 if Ada_Version >= Ada_2005
9116 and then Can_Never_Be_Null (Typ)
9117 and then Nkind (Parent (N)) = N_Assignment_Statement
9118 then
9119 if not Inside_Init_Proc then
9120 Insert_Action
9121 (Compile_Time_Constraint_Error (N,
9122 "(Ada 2005) null not allowed in null-excluding objects??"),
9123 Make_Raise_Constraint_Error (Loc,
9124 Reason => CE_Access_Check_Failed));
9125 else
9126 Insert_Action (N,
9127 Make_Raise_Constraint_Error (Loc,
9128 Reason => CE_Access_Check_Failed));
9129 end if;
9130 end if;
9132 -- In a distributed context, null for a remote access to subprogram may
9133 -- need to be replaced with a special record aggregate. In this case,
9134 -- return after having done the transformation.
9136 if (Ekind (Typ) = E_Record_Type
9137 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9138 and then Remote_AST_Null_Value (N, Typ)
9139 then
9140 return;
9141 end if;
9143 -- The null literal takes its type from the context
9145 Set_Etype (N, Typ);
9146 end Resolve_Null;
9148 -----------------------
9149 -- Resolve_Op_Concat --
9150 -----------------------
9152 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9154 -- We wish to avoid deep recursion, because concatenations are often
9155 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9156 -- operands nonrecursively until we find something that is not a simple
9157 -- concatenation (A in this case). We resolve that, and then walk back
9158 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9159 -- to do the rest of the work at each level. The Parent pointers allow
9160 -- us to avoid recursion, and thus avoid running out of memory. See also
9161 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9163 NN : Node_Id := N;
9164 Op1 : Node_Id;
9166 begin
9167 -- The following code is equivalent to:
9169 -- Resolve_Op_Concat_First (NN, Typ);
9170 -- Resolve_Op_Concat_Arg (N, ...);
9171 -- Resolve_Op_Concat_Rest (N, Typ);
9173 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9174 -- operand is a concatenation.
9176 -- Walk down left operands
9178 loop
9179 Resolve_Op_Concat_First (NN, Typ);
9180 Op1 := Left_Opnd (NN);
9181 exit when not (Nkind (Op1) = N_Op_Concat
9182 and then not Is_Array_Type (Component_Type (Typ))
9183 and then Entity (Op1) = Entity (NN));
9184 NN := Op1;
9185 end loop;
9187 -- Now (given the above example) NN is A&B and Op1 is A
9189 -- First resolve Op1 ...
9191 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9193 -- ... then walk NN back up until we reach N (where we started), calling
9194 -- Resolve_Op_Concat_Rest along the way.
9196 loop
9197 Resolve_Op_Concat_Rest (NN, Typ);
9198 exit when NN = N;
9199 NN := Parent (NN);
9200 end loop;
9202 if Base_Type (Etype (N)) /= Standard_String then
9203 Check_SPARK_05_Restriction
9204 ("result of concatenation should have type String", N);
9205 end if;
9206 end Resolve_Op_Concat;
9208 ---------------------------
9209 -- Resolve_Op_Concat_Arg --
9210 ---------------------------
9212 procedure Resolve_Op_Concat_Arg
9213 (N : Node_Id;
9214 Arg : Node_Id;
9215 Typ : Entity_Id;
9216 Is_Comp : Boolean)
9218 Btyp : constant Entity_Id := Base_Type (Typ);
9219 Ctyp : constant Entity_Id := Component_Type (Typ);
9221 begin
9222 if In_Instance then
9223 if Is_Comp
9224 or else (not Is_Overloaded (Arg)
9225 and then Etype (Arg) /= Any_Composite
9226 and then Covers (Ctyp, Etype (Arg)))
9227 then
9228 Resolve (Arg, Ctyp);
9229 else
9230 Resolve (Arg, Btyp);
9231 end if;
9233 -- If both Array & Array and Array & Component are visible, there is a
9234 -- potential ambiguity that must be reported.
9236 elsif Has_Compatible_Type (Arg, Ctyp) then
9237 if Nkind (Arg) = N_Aggregate
9238 and then Is_Composite_Type (Ctyp)
9239 then
9240 if Is_Private_Type (Ctyp) then
9241 Resolve (Arg, Btyp);
9243 -- If the operation is user-defined and not overloaded use its
9244 -- profile. The operation may be a renaming, in which case it has
9245 -- been rewritten, and we want the original profile.
9247 elsif not Is_Overloaded (N)
9248 and then Comes_From_Source (Entity (Original_Node (N)))
9249 and then Ekind (Entity (Original_Node (N))) = E_Function
9250 then
9251 Resolve (Arg,
9252 Etype
9253 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9254 return;
9256 -- Otherwise an aggregate may match both the array type and the
9257 -- component type.
9259 else
9260 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9261 Set_Etype (Arg, Any_Type);
9262 end if;
9264 else
9265 if Is_Overloaded (Arg)
9266 and then Has_Compatible_Type (Arg, Typ)
9267 and then Etype (Arg) /= Any_Type
9268 then
9269 declare
9270 I : Interp_Index;
9271 It : Interp;
9272 Func : Entity_Id;
9274 begin
9275 Get_First_Interp (Arg, I, It);
9276 Func := It.Nam;
9277 Get_Next_Interp (I, It);
9279 -- Special-case the error message when the overloading is
9280 -- caused by a function that yields an array and can be
9281 -- called without parameters.
9283 if It.Nam = Func then
9284 Error_Msg_Sloc := Sloc (Func);
9285 Error_Msg_N ("ambiguous call to function#", Arg);
9286 Error_Msg_NE
9287 ("\\interpretation as call yields&", Arg, Typ);
9288 Error_Msg_NE
9289 ("\\interpretation as indexing of call yields&",
9290 Arg, Component_Type (Typ));
9292 else
9293 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9295 Get_First_Interp (Arg, I, It);
9296 while Present (It.Nam) loop
9297 Error_Msg_Sloc := Sloc (It.Nam);
9299 if Base_Type (It.Typ) = Btyp
9300 or else
9301 Base_Type (It.Typ) = Base_Type (Ctyp)
9302 then
9303 Error_Msg_N -- CODEFIX
9304 ("\\possible interpretation#", Arg);
9305 end if;
9307 Get_Next_Interp (I, It);
9308 end loop;
9309 end if;
9310 end;
9311 end if;
9313 Resolve (Arg, Component_Type (Typ));
9315 if Nkind (Arg) = N_String_Literal then
9316 Set_Etype (Arg, Component_Type (Typ));
9317 end if;
9319 if Arg = Left_Opnd (N) then
9320 Set_Is_Component_Left_Opnd (N);
9321 else
9322 Set_Is_Component_Right_Opnd (N);
9323 end if;
9324 end if;
9326 else
9327 Resolve (Arg, Btyp);
9328 end if;
9330 -- Concatenation is restricted in SPARK: each operand must be either a
9331 -- string literal, the name of a string constant, a static character or
9332 -- string expression, or another concatenation. Arg cannot be a
9333 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9334 -- separately on each final operand, past concatenation operations.
9336 if Is_Character_Type (Etype (Arg)) then
9337 if not Is_OK_Static_Expression (Arg) then
9338 Check_SPARK_05_Restriction
9339 ("character operand for concatenation should be static", Arg);
9340 end if;
9342 elsif Is_String_Type (Etype (Arg)) then
9343 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9344 and then Is_Constant_Object (Entity (Arg)))
9345 and then not Is_OK_Static_Expression (Arg)
9346 then
9347 Check_SPARK_05_Restriction
9348 ("string operand for concatenation should be static", Arg);
9349 end if;
9351 -- Do not issue error on an operand that is neither a character nor a
9352 -- string, as the error is issued in Resolve_Op_Concat.
9354 else
9355 null;
9356 end if;
9358 Check_Unset_Reference (Arg);
9359 end Resolve_Op_Concat_Arg;
9361 -----------------------------
9362 -- Resolve_Op_Concat_First --
9363 -----------------------------
9365 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9366 Btyp : constant Entity_Id := Base_Type (Typ);
9367 Op1 : constant Node_Id := Left_Opnd (N);
9368 Op2 : constant Node_Id := Right_Opnd (N);
9370 begin
9371 -- The parser folds an enormous sequence of concatenations of string
9372 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9373 -- in the right operand. If the expression resolves to a predefined "&"
9374 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9375 -- we give an error. See P_Simple_Expression in Par.Ch4.
9377 if Nkind (Op2) = N_String_Literal
9378 and then Is_Folded_In_Parser (Op2)
9379 and then Ekind (Entity (N)) = E_Function
9380 then
9381 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9382 and then String_Length (Strval (Op1)) = 0);
9383 Error_Msg_N ("too many user-defined concatenations", N);
9384 return;
9385 end if;
9387 Set_Etype (N, Btyp);
9389 if Is_Limited_Composite (Btyp) then
9390 Error_Msg_N ("concatenation not available for limited array", N);
9391 Explain_Limited_Type (Btyp, N);
9392 end if;
9393 end Resolve_Op_Concat_First;
9395 ----------------------------
9396 -- Resolve_Op_Concat_Rest --
9397 ----------------------------
9399 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9400 Op1 : constant Node_Id := Left_Opnd (N);
9401 Op2 : constant Node_Id := Right_Opnd (N);
9403 begin
9404 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9406 Generate_Operator_Reference (N, Typ);
9408 if Is_String_Type (Typ) then
9409 Eval_Concatenation (N);
9410 end if;
9412 -- If this is not a static concatenation, but the result is a string
9413 -- type (and not an array of strings) ensure that static string operands
9414 -- have their subtypes properly constructed.
9416 if Nkind (N) /= N_String_Literal
9417 and then Is_Character_Type (Component_Type (Typ))
9418 then
9419 Set_String_Literal_Subtype (Op1, Typ);
9420 Set_String_Literal_Subtype (Op2, Typ);
9421 end if;
9422 end Resolve_Op_Concat_Rest;
9424 ----------------------
9425 -- Resolve_Op_Expon --
9426 ----------------------
9428 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9429 B_Typ : constant Entity_Id := Base_Type (Typ);
9431 begin
9432 -- Catch attempts to do fixed-point exponentiation with universal
9433 -- operands, which is a case where the illegality is not caught during
9434 -- normal operator analysis. This is not done in preanalysis mode
9435 -- since the tree is not fully decorated during preanalysis.
9437 if Full_Analysis then
9438 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9439 Error_Msg_N ("exponentiation not available for fixed point", N);
9440 return;
9442 elsif Nkind (Parent (N)) in N_Op
9443 and then Present (Etype (Parent (N)))
9444 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9445 and then Etype (N) = Universal_Real
9446 and then Comes_From_Source (N)
9447 then
9448 Error_Msg_N ("exponentiation not available for fixed point", N);
9449 return;
9450 end if;
9451 end if;
9453 if Comes_From_Source (N)
9454 and then Ekind (Entity (N)) = E_Function
9455 and then Is_Imported (Entity (N))
9456 and then Is_Intrinsic_Subprogram (Entity (N))
9457 then
9458 Resolve_Intrinsic_Operator (N, Typ);
9459 return;
9460 end if;
9462 if Etype (Left_Opnd (N)) = Universal_Integer
9463 or else Etype (Left_Opnd (N)) = Universal_Real
9464 then
9465 Check_For_Visible_Operator (N, B_Typ);
9466 end if;
9468 -- We do the resolution using the base type, because intermediate values
9469 -- in expressions are always of the base type, not a subtype of it.
9471 Resolve (Left_Opnd (N), B_Typ);
9472 Resolve (Right_Opnd (N), Standard_Integer);
9474 -- For integer types, right argument must be in Natural range
9476 if Is_Integer_Type (Typ) then
9477 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9478 end if;
9480 Check_Unset_Reference (Left_Opnd (N));
9481 Check_Unset_Reference (Right_Opnd (N));
9483 Set_Etype (N, B_Typ);
9484 Generate_Operator_Reference (N, B_Typ);
9486 Analyze_Dimension (N);
9488 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9489 -- Evaluate the exponentiation operator for dimensioned type
9491 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9492 else
9493 Eval_Op_Expon (N);
9494 end if;
9496 -- Set overflow checking bit. Much cleverer code needed here eventually
9497 -- and perhaps the Resolve routines should be separated for the various
9498 -- arithmetic operations, since they will need different processing. ???
9500 if Nkind (N) in N_Op then
9501 if not Overflow_Checks_Suppressed (Etype (N)) then
9502 Enable_Overflow_Check (N);
9503 end if;
9504 end if;
9505 end Resolve_Op_Expon;
9507 --------------------
9508 -- Resolve_Op_Not --
9509 --------------------
9511 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9512 B_Typ : Entity_Id;
9514 function Parent_Is_Boolean return Boolean;
9515 -- This function determines if the parent node is a boolean operator or
9516 -- operation (comparison op, membership test, or short circuit form) and
9517 -- the not in question is the left operand of this operation. Note that
9518 -- if the not is in parens, then false is returned.
9520 -----------------------
9521 -- Parent_Is_Boolean --
9522 -----------------------
9524 function Parent_Is_Boolean return Boolean is
9525 begin
9526 if Paren_Count (N) /= 0 then
9527 return False;
9529 else
9530 case Nkind (Parent (N)) is
9531 when N_And_Then
9532 | N_In
9533 | N_Not_In
9534 | N_Op_And
9535 | N_Op_Eq
9536 | N_Op_Ge
9537 | N_Op_Gt
9538 | N_Op_Le
9539 | N_Op_Lt
9540 | N_Op_Ne
9541 | N_Op_Or
9542 | N_Op_Xor
9543 | N_Or_Else
9545 return Left_Opnd (Parent (N)) = N;
9547 when others =>
9548 return False;
9549 end case;
9550 end if;
9551 end Parent_Is_Boolean;
9553 -- Start of processing for Resolve_Op_Not
9555 begin
9556 -- Predefined operations on scalar types yield the base type. On the
9557 -- other hand, logical operations on arrays yield the type of the
9558 -- arguments (and the context).
9560 if Is_Array_Type (Typ) then
9561 B_Typ := Typ;
9562 else
9563 B_Typ := Base_Type (Typ);
9564 end if;
9566 -- Straightforward case of incorrect arguments
9568 if not Valid_Boolean_Arg (Typ) then
9569 Error_Msg_N ("invalid operand type for operator&", N);
9570 Set_Etype (N, Any_Type);
9571 return;
9573 -- Special case of probable missing parens
9575 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9576 if Parent_Is_Boolean then
9577 Error_Msg_N
9578 ("operand of not must be enclosed in parentheses",
9579 Right_Opnd (N));
9580 else
9581 Error_Msg_N
9582 ("no modular type available in this context", N);
9583 end if;
9585 Set_Etype (N, Any_Type);
9586 return;
9588 -- OK resolution of NOT
9590 else
9591 -- Warn if non-boolean types involved. This is a case like not a < b
9592 -- where a and b are modular, where we will get (not a) < b and most
9593 -- likely not (a < b) was intended.
9595 if Warn_On_Questionable_Missing_Parens
9596 and then not Is_Boolean_Type (Typ)
9597 and then Parent_Is_Boolean
9598 then
9599 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9600 end if;
9602 -- Warn on double negation if checking redundant constructs
9604 if Warn_On_Redundant_Constructs
9605 and then Comes_From_Source (N)
9606 and then Comes_From_Source (Right_Opnd (N))
9607 and then Root_Type (Typ) = Standard_Boolean
9608 and then Nkind (Right_Opnd (N)) = N_Op_Not
9609 then
9610 Error_Msg_N ("redundant double negation?r?", N);
9611 end if;
9613 -- Complete resolution and evaluation of NOT
9615 Resolve (Right_Opnd (N), B_Typ);
9616 Check_Unset_Reference (Right_Opnd (N));
9617 Set_Etype (N, B_Typ);
9618 Generate_Operator_Reference (N, B_Typ);
9619 Eval_Op_Not (N);
9620 end if;
9621 end Resolve_Op_Not;
9623 -----------------------------
9624 -- Resolve_Operator_Symbol --
9625 -----------------------------
9627 -- Nothing to be done, all resolved already
9629 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9630 pragma Warnings (Off, N);
9631 pragma Warnings (Off, Typ);
9633 begin
9634 null;
9635 end Resolve_Operator_Symbol;
9637 ----------------------------------
9638 -- Resolve_Qualified_Expression --
9639 ----------------------------------
9641 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9642 pragma Warnings (Off, Typ);
9644 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9645 Expr : constant Node_Id := Expression (N);
9647 begin
9648 Resolve (Expr, Target_Typ);
9650 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9651 -- operation if not needed.
9653 if Restriction_Check_Required (SPARK_05)
9654 and then Is_Array_Type (Target_Typ)
9655 and then Is_Array_Type (Etype (Expr))
9656 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9657 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9658 then
9659 Check_SPARK_05_Restriction
9660 ("array types should have matching static bounds", N);
9661 end if;
9663 -- A qualified expression requires an exact match of the type, class-
9664 -- wide matching is not allowed. However, if the qualifying type is
9665 -- specific and the expression has a class-wide type, it may still be
9666 -- okay, since it can be the result of the expansion of a call to a
9667 -- dispatching function, so we also have to check class-wideness of the
9668 -- type of the expression's original node.
9670 if (Is_Class_Wide_Type (Target_Typ)
9671 or else
9672 (Is_Class_Wide_Type (Etype (Expr))
9673 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9674 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9675 then
9676 Wrong_Type (Expr, Target_Typ);
9677 end if;
9679 -- If the target type is unconstrained, then we reset the type of the
9680 -- result from the type of the expression. For other cases, the actual
9681 -- subtype of the expression is the target type.
9683 if Is_Composite_Type (Target_Typ)
9684 and then not Is_Constrained (Target_Typ)
9685 then
9686 Set_Etype (N, Etype (Expr));
9687 end if;
9689 Analyze_Dimension (N);
9690 Eval_Qualified_Expression (N);
9692 -- If we still have a qualified expression after the static evaluation,
9693 -- then apply a scalar range check if needed. The reason that we do this
9694 -- after the Eval call is that otherwise, the application of the range
9695 -- check may convert an illegal static expression and result in warning
9696 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9698 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9699 Apply_Scalar_Range_Check (Expr, Typ);
9700 end if;
9702 -- Finally, check whether a predicate applies to the target type. This
9703 -- comes from AI12-0100. As for type conversions, check the enclosing
9704 -- context to prevent an infinite expansion.
9706 if Has_Predicates (Target_Typ) then
9707 if Nkind (Parent (N)) = N_Function_Call
9708 and then Present (Name (Parent (N)))
9709 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9710 or else
9711 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9712 then
9713 null;
9715 -- In the case of a qualified expression in an allocator, the check
9716 -- is applied when expanding the allocator, so avoid redundant check.
9718 elsif Nkind (N) = N_Qualified_Expression
9719 and then Nkind (Parent (N)) /= N_Allocator
9720 then
9721 Apply_Predicate_Check (N, Target_Typ);
9722 end if;
9723 end if;
9724 end Resolve_Qualified_Expression;
9726 ------------------------------
9727 -- Resolve_Raise_Expression --
9728 ------------------------------
9730 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9731 begin
9732 if Typ = Raise_Type then
9733 Error_Msg_N ("cannot find unique type for raise expression", N);
9734 Set_Etype (N, Any_Type);
9735 else
9736 Set_Etype (N, Typ);
9737 end if;
9738 end Resolve_Raise_Expression;
9740 -------------------
9741 -- Resolve_Range --
9742 -------------------
9744 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9745 L : constant Node_Id := Low_Bound (N);
9746 H : constant Node_Id := High_Bound (N);
9748 function First_Last_Ref return Boolean;
9749 -- Returns True if N is of the form X'First .. X'Last where X is the
9750 -- same entity for both attributes.
9752 --------------------
9753 -- First_Last_Ref --
9754 --------------------
9756 function First_Last_Ref return Boolean is
9757 Lorig : constant Node_Id := Original_Node (L);
9758 Horig : constant Node_Id := Original_Node (H);
9760 begin
9761 if Nkind (Lorig) = N_Attribute_Reference
9762 and then Nkind (Horig) = N_Attribute_Reference
9763 and then Attribute_Name (Lorig) = Name_First
9764 and then Attribute_Name (Horig) = Name_Last
9765 then
9766 declare
9767 PL : constant Node_Id := Prefix (Lorig);
9768 PH : constant Node_Id := Prefix (Horig);
9769 begin
9770 if Is_Entity_Name (PL)
9771 and then Is_Entity_Name (PH)
9772 and then Entity (PL) = Entity (PH)
9773 then
9774 return True;
9775 end if;
9776 end;
9777 end if;
9779 return False;
9780 end First_Last_Ref;
9782 -- Start of processing for Resolve_Range
9784 begin
9785 Set_Etype (N, Typ);
9787 -- The lower bound should be in Typ. The higher bound can be in Typ's
9788 -- base type if the range is null. It may still be invalid if it is
9789 -- higher than the lower bound. This is checked later in the context in
9790 -- which the range appears.
9792 Resolve (L, Typ);
9793 Resolve (H, Base_Type (Typ));
9795 -- Check for inappropriate range on unordered enumeration type
9797 if Bad_Unordered_Enumeration_Reference (N, Typ)
9799 -- Exclude X'First .. X'Last if X is the same entity for both
9801 and then not First_Last_Ref
9802 then
9803 Error_Msg_Sloc := Sloc (Typ);
9804 Error_Msg_NE
9805 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9806 end if;
9808 Check_Unset_Reference (L);
9809 Check_Unset_Reference (H);
9811 -- We have to check the bounds for being within the base range as
9812 -- required for a non-static context. Normally this is automatic and
9813 -- done as part of evaluating expressions, but the N_Range node is an
9814 -- exception, since in GNAT we consider this node to be a subexpression,
9815 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9816 -- this, but that would put the test on the main evaluation path for
9817 -- expressions.
9819 Check_Non_Static_Context (L);
9820 Check_Non_Static_Context (H);
9822 -- Check for an ambiguous range over character literals. This will
9823 -- happen with a membership test involving only literals.
9825 if Typ = Any_Character then
9826 Ambiguous_Character (L);
9827 Set_Etype (N, Any_Type);
9828 return;
9829 end if;
9831 -- If bounds are static, constant-fold them, so size computations are
9832 -- identical between front-end and back-end. Do not perform this
9833 -- transformation while analyzing generic units, as type information
9834 -- would be lost when reanalyzing the constant node in the instance.
9836 if Is_Discrete_Type (Typ) and then Expander_Active then
9837 if Is_OK_Static_Expression (L) then
9838 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9839 end if;
9841 if Is_OK_Static_Expression (H) then
9842 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9843 end if;
9844 end if;
9845 end Resolve_Range;
9847 --------------------------
9848 -- Resolve_Real_Literal --
9849 --------------------------
9851 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9852 Actual_Typ : constant Entity_Id := Etype (N);
9854 begin
9855 -- Special processing for fixed-point literals to make sure that the
9856 -- value is an exact multiple of small where this is required. We skip
9857 -- this for the universal real case, and also for generic types.
9859 if Is_Fixed_Point_Type (Typ)
9860 and then Typ /= Universal_Fixed
9861 and then Typ /= Any_Fixed
9862 and then not Is_Generic_Type (Typ)
9863 then
9864 declare
9865 Val : constant Ureal := Realval (N);
9866 Cintr : constant Ureal := Val / Small_Value (Typ);
9867 Cint : constant Uint := UR_Trunc (Cintr);
9868 Den : constant Uint := Norm_Den (Cintr);
9869 Stat : Boolean;
9871 begin
9872 -- Case of literal is not an exact multiple of the Small
9874 if Den /= 1 then
9876 -- For a source program literal for a decimal fixed-point type,
9877 -- this is statically illegal (RM 4.9(36)).
9879 if Is_Decimal_Fixed_Point_Type (Typ)
9880 and then Actual_Typ = Universal_Real
9881 and then Comes_From_Source (N)
9882 then
9883 Error_Msg_N ("value has extraneous low order digits", N);
9884 end if;
9886 -- Generate a warning if literal from source
9888 if Is_OK_Static_Expression (N)
9889 and then Warn_On_Bad_Fixed_Value
9890 then
9891 Error_Msg_N
9892 ("?b?static fixed-point value is not a multiple of Small!",
9894 end if;
9896 -- Replace literal by a value that is the exact representation
9897 -- of a value of the type, i.e. a multiple of the small value,
9898 -- by truncation, since Machine_Rounds is false for all GNAT
9899 -- fixed-point types (RM 4.9(38)).
9901 Stat := Is_OK_Static_Expression (N);
9902 Rewrite (N,
9903 Make_Real_Literal (Sloc (N),
9904 Realval => Small_Value (Typ) * Cint));
9906 Set_Is_Static_Expression (N, Stat);
9907 end if;
9909 -- In all cases, set the corresponding integer field
9911 Set_Corresponding_Integer_Value (N, Cint);
9912 end;
9913 end if;
9915 -- Now replace the actual type by the expected type as usual
9917 Set_Etype (N, Typ);
9918 Eval_Real_Literal (N);
9919 end Resolve_Real_Literal;
9921 -----------------------
9922 -- Resolve_Reference --
9923 -----------------------
9925 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9926 P : constant Node_Id := Prefix (N);
9928 begin
9929 -- Replace general access with specific type
9931 if Ekind (Etype (N)) = E_Allocator_Type then
9932 Set_Etype (N, Base_Type (Typ));
9933 end if;
9935 Resolve (P, Designated_Type (Etype (N)));
9937 -- If we are taking the reference of a volatile entity, then treat it as
9938 -- a potential modification of this entity. This is too conservative,
9939 -- but necessary because remove side effects can cause transformations
9940 -- of normal assignments into reference sequences that otherwise fail to
9941 -- notice the modification.
9943 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9944 Note_Possible_Modification (P, Sure => False);
9945 end if;
9946 end Resolve_Reference;
9948 --------------------------------
9949 -- Resolve_Selected_Component --
9950 --------------------------------
9952 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9953 Comp : Entity_Id;
9954 Comp1 : Entity_Id := Empty; -- prevent junk warning
9955 P : constant Node_Id := Prefix (N);
9956 S : constant Node_Id := Selector_Name (N);
9957 T : Entity_Id := Etype (P);
9958 I : Interp_Index;
9959 I1 : Interp_Index := 0; -- prevent junk warning
9960 It : Interp;
9961 It1 : Interp;
9962 Found : Boolean;
9964 function Init_Component return Boolean;
9965 -- Check whether this is the initialization of a component within an
9966 -- init proc (by assignment or call to another init proc). If true,
9967 -- there is no need for a discriminant check.
9969 --------------------
9970 -- Init_Component --
9971 --------------------
9973 function Init_Component return Boolean is
9974 begin
9975 return Inside_Init_Proc
9976 and then Nkind (Prefix (N)) = N_Identifier
9977 and then Chars (Prefix (N)) = Name_uInit
9978 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9979 end Init_Component;
9981 -- Start of processing for Resolve_Selected_Component
9983 begin
9984 if Is_Overloaded (P) then
9986 -- Use the context type to select the prefix that has a selector
9987 -- of the correct name and type.
9989 Found := False;
9990 Get_First_Interp (P, I, It);
9992 Search : while Present (It.Typ) loop
9993 if Is_Access_Type (It.Typ) then
9994 T := Designated_Type (It.Typ);
9995 else
9996 T := It.Typ;
9997 end if;
9999 -- Locate selected component. For a private prefix the selector
10000 -- can denote a discriminant.
10002 if Is_Record_Type (T) or else Is_Private_Type (T) then
10004 -- The visible components of a class-wide type are those of
10005 -- the root type.
10007 if Is_Class_Wide_Type (T) then
10008 T := Etype (T);
10009 end if;
10011 Comp := First_Entity (T);
10012 while Present (Comp) loop
10013 if Chars (Comp) = Chars (S)
10014 and then Covers (Typ, Etype (Comp))
10015 then
10016 if not Found then
10017 Found := True;
10018 I1 := I;
10019 It1 := It;
10020 Comp1 := Comp;
10022 else
10023 It := Disambiguate (P, I1, I, Any_Type);
10025 if It = No_Interp then
10026 Error_Msg_N
10027 ("ambiguous prefix for selected component", N);
10028 Set_Etype (N, Typ);
10029 return;
10031 else
10032 It1 := It;
10034 -- There may be an implicit dereference. Retrieve
10035 -- designated record type.
10037 if Is_Access_Type (It1.Typ) then
10038 T := Designated_Type (It1.Typ);
10039 else
10040 T := It1.Typ;
10041 end if;
10043 if Scope (Comp1) /= T then
10045 -- Resolution chooses the new interpretation.
10046 -- Find the component with the right name.
10048 Comp1 := First_Entity (T);
10049 while Present (Comp1)
10050 and then Chars (Comp1) /= Chars (S)
10051 loop
10052 Comp1 := Next_Entity (Comp1);
10053 end loop;
10054 end if;
10056 exit Search;
10057 end if;
10058 end if;
10059 end if;
10061 Comp := Next_Entity (Comp);
10062 end loop;
10063 end if;
10065 Get_Next_Interp (I, It);
10066 end loop Search;
10068 -- There must be a legal interpretation at this point
10070 pragma Assert (Found);
10071 Resolve (P, It1.Typ);
10072 Set_Etype (N, Typ);
10073 Set_Entity_With_Checks (S, Comp1);
10075 else
10076 -- Resolve prefix with its type
10078 Resolve (P, T);
10079 end if;
10081 -- Generate cross-reference. We needed to wait until full overloading
10082 -- resolution was complete to do this, since otherwise we can't tell if
10083 -- we are an lvalue or not.
10085 if May_Be_Lvalue (N) then
10086 Generate_Reference (Entity (S), S, 'm');
10087 else
10088 Generate_Reference (Entity (S), S, 'r');
10089 end if;
10091 -- If prefix is an access type, the node will be transformed into an
10092 -- explicit dereference during expansion. The type of the node is the
10093 -- designated type of that of the prefix.
10095 if Is_Access_Type (Etype (P)) then
10096 T := Designated_Type (Etype (P));
10097 Check_Fully_Declared_Prefix (T, P);
10098 else
10099 T := Etype (P);
10100 end if;
10102 -- Set flag for expander if discriminant check required on a component
10103 -- appearing within a variant.
10105 if Has_Discriminants (T)
10106 and then Ekind (Entity (S)) = E_Component
10107 and then Present (Original_Record_Component (Entity (S)))
10108 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10109 and then
10110 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10111 and then not Discriminant_Checks_Suppressed (T)
10112 and then not Init_Component
10113 then
10114 Set_Do_Discriminant_Check (N);
10115 end if;
10117 if Ekind (Entity (S)) = E_Void then
10118 Error_Msg_N ("premature use of component", S);
10119 end if;
10121 -- If the prefix is a record conversion, this may be a renamed
10122 -- discriminant whose bounds differ from those of the original
10123 -- one, so we must ensure that a range check is performed.
10125 if Nkind (P) = N_Type_Conversion
10126 and then Ekind (Entity (S)) = E_Discriminant
10127 and then Is_Discrete_Type (Typ)
10128 then
10129 Set_Etype (N, Base_Type (Typ));
10130 end if;
10132 -- Note: No Eval processing is required, because the prefix is of a
10133 -- record type, or protected type, and neither can possibly be static.
10135 -- If the record type is atomic, and the component is non-atomic, then
10136 -- this is worth a warning, since we have a situation where the access
10137 -- to the component may cause extra read/writes of the atomic array
10138 -- object, or partial word accesses, both of which may be unexpected.
10140 if Nkind (N) = N_Selected_Component
10141 and then Is_Atomic_Ref_With_Address (N)
10142 and then not Is_Atomic (Entity (S))
10143 and then not Is_Atomic (Etype (Entity (S)))
10144 then
10145 Error_Msg_N
10146 ("??access to non-atomic component of atomic record",
10147 Prefix (N));
10148 Error_Msg_N
10149 ("\??may cause unexpected accesses to atomic object",
10150 Prefix (N));
10151 end if;
10153 Analyze_Dimension (N);
10154 end Resolve_Selected_Component;
10156 -------------------
10157 -- Resolve_Shift --
10158 -------------------
10160 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10161 B_Typ : constant Entity_Id := Base_Type (Typ);
10162 L : constant Node_Id := Left_Opnd (N);
10163 R : constant Node_Id := Right_Opnd (N);
10165 begin
10166 -- We do the resolution using the base type, because intermediate values
10167 -- in expressions always are of the base type, not a subtype of it.
10169 Resolve (L, B_Typ);
10170 Resolve (R, Standard_Natural);
10172 Check_Unset_Reference (L);
10173 Check_Unset_Reference (R);
10175 Set_Etype (N, B_Typ);
10176 Generate_Operator_Reference (N, B_Typ);
10177 Eval_Shift (N);
10178 end Resolve_Shift;
10180 ---------------------------
10181 -- Resolve_Short_Circuit --
10182 ---------------------------
10184 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10185 B_Typ : constant Entity_Id := Base_Type (Typ);
10186 L : constant Node_Id := Left_Opnd (N);
10187 R : constant Node_Id := Right_Opnd (N);
10189 begin
10190 -- Ensure all actions associated with the left operand (e.g.
10191 -- finalization of transient objects) are fully evaluated locally within
10192 -- an expression with actions. This is particularly helpful for coverage
10193 -- analysis. However this should not happen in generics or if option
10194 -- Minimize_Expression_With_Actions is set.
10196 if Expander_Active and not Minimize_Expression_With_Actions then
10197 declare
10198 Reloc_L : constant Node_Id := Relocate_Node (L);
10199 begin
10200 Save_Interps (Old_N => L, New_N => Reloc_L);
10202 Rewrite (L,
10203 Make_Expression_With_Actions (Sloc (L),
10204 Actions => New_List,
10205 Expression => Reloc_L));
10207 -- Set Comes_From_Source on L to preserve warnings for unset
10208 -- reference.
10210 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10211 end;
10212 end if;
10214 Resolve (L, B_Typ);
10215 Resolve (R, B_Typ);
10217 -- Check for issuing warning for always False assert/check, this happens
10218 -- when assertions are turned off, in which case the pragma Assert/Check
10219 -- was transformed into:
10221 -- if False and then <condition> then ...
10223 -- and we detect this pattern
10225 if Warn_On_Assertion_Failure
10226 and then Is_Entity_Name (R)
10227 and then Entity (R) = Standard_False
10228 and then Nkind (Parent (N)) = N_If_Statement
10229 and then Nkind (N) = N_And_Then
10230 and then Is_Entity_Name (L)
10231 and then Entity (L) = Standard_False
10232 then
10233 declare
10234 Orig : constant Node_Id := Original_Node (Parent (N));
10236 begin
10237 -- Special handling of Asssert pragma
10239 if Nkind (Orig) = N_Pragma
10240 and then Pragma_Name (Orig) = Name_Assert
10241 then
10242 declare
10243 Expr : constant Node_Id :=
10244 Original_Node
10245 (Expression
10246 (First (Pragma_Argument_Associations (Orig))));
10248 begin
10249 -- Don't warn if original condition is explicit False,
10250 -- since obviously the failure is expected in this case.
10252 if Is_Entity_Name (Expr)
10253 and then Entity (Expr) = Standard_False
10254 then
10255 null;
10257 -- Issue warning. We do not want the deletion of the
10258 -- IF/AND-THEN to take this message with it. We achieve this
10259 -- by making sure that the expanded code points to the Sloc
10260 -- of the expression, not the original pragma.
10262 else
10263 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10264 -- The source location of the expression is not usually
10265 -- the best choice here. For example, it gets located on
10266 -- the last AND keyword in a chain of boolean expressiond
10267 -- AND'ed together. It is best to put the message on the
10268 -- first character of the assertion, which is the effect
10269 -- of the First_Node call here.
10271 Error_Msg_F
10272 ("?A?assertion would fail at run time!",
10273 Expression
10274 (First (Pragma_Argument_Associations (Orig))));
10275 end if;
10276 end;
10278 -- Similar processing for Check pragma
10280 elsif Nkind (Orig) = N_Pragma
10281 and then Pragma_Name (Orig) = Name_Check
10282 then
10283 -- Don't want to warn if original condition is explicit False
10285 declare
10286 Expr : constant Node_Id :=
10287 Original_Node
10288 (Expression
10289 (Next (First (Pragma_Argument_Associations (Orig)))));
10290 begin
10291 if Is_Entity_Name (Expr)
10292 and then Entity (Expr) = Standard_False
10293 then
10294 null;
10296 -- Post warning
10298 else
10299 -- Again use Error_Msg_F rather than Error_Msg_N, see
10300 -- comment above for an explanation of why we do this.
10302 Error_Msg_F
10303 ("?A?check would fail at run time!",
10304 Expression
10305 (Last (Pragma_Argument_Associations (Orig))));
10306 end if;
10307 end;
10308 end if;
10309 end;
10310 end if;
10312 -- Continue with processing of short circuit
10314 Check_Unset_Reference (L);
10315 Check_Unset_Reference (R);
10317 Set_Etype (N, B_Typ);
10318 Eval_Short_Circuit (N);
10319 end Resolve_Short_Circuit;
10321 -------------------
10322 -- Resolve_Slice --
10323 -------------------
10325 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10326 Drange : constant Node_Id := Discrete_Range (N);
10327 Name : constant Node_Id := Prefix (N);
10328 Array_Type : Entity_Id := Empty;
10329 Dexpr : Node_Id := Empty;
10330 Index_Type : Entity_Id;
10332 begin
10333 if Is_Overloaded (Name) then
10335 -- Use the context type to select the prefix that yields the correct
10336 -- array type.
10338 declare
10339 I : Interp_Index;
10340 I1 : Interp_Index := 0;
10341 It : Interp;
10342 P : constant Node_Id := Prefix (N);
10343 Found : Boolean := False;
10345 begin
10346 Get_First_Interp (P, I, It);
10347 while Present (It.Typ) loop
10348 if (Is_Array_Type (It.Typ)
10349 and then Covers (Typ, It.Typ))
10350 or else (Is_Access_Type (It.Typ)
10351 and then Is_Array_Type (Designated_Type (It.Typ))
10352 and then Covers (Typ, Designated_Type (It.Typ)))
10353 then
10354 if Found then
10355 It := Disambiguate (P, I1, I, Any_Type);
10357 if It = No_Interp then
10358 Error_Msg_N ("ambiguous prefix for slicing", N);
10359 Set_Etype (N, Typ);
10360 return;
10361 else
10362 Found := True;
10363 Array_Type := It.Typ;
10364 I1 := I;
10365 end if;
10366 else
10367 Found := True;
10368 Array_Type := It.Typ;
10369 I1 := I;
10370 end if;
10371 end if;
10373 Get_Next_Interp (I, It);
10374 end loop;
10375 end;
10377 else
10378 Array_Type := Etype (Name);
10379 end if;
10381 Resolve (Name, Array_Type);
10383 if Is_Access_Type (Array_Type) then
10384 Apply_Access_Check (N);
10385 Array_Type := Designated_Type (Array_Type);
10387 -- If the prefix is an access to an unconstrained array, we must use
10388 -- the actual subtype of the object to perform the index checks. The
10389 -- object denoted by the prefix is implicit in the node, so we build
10390 -- an explicit representation for it in order to compute the actual
10391 -- subtype.
10393 if not Is_Constrained (Array_Type) then
10394 Remove_Side_Effects (Prefix (N));
10396 declare
10397 Obj : constant Node_Id :=
10398 Make_Explicit_Dereference (Sloc (N),
10399 Prefix => New_Copy_Tree (Prefix (N)));
10400 begin
10401 Set_Etype (Obj, Array_Type);
10402 Set_Parent (Obj, Parent (N));
10403 Array_Type := Get_Actual_Subtype (Obj);
10404 end;
10405 end if;
10407 elsif Is_Entity_Name (Name)
10408 or else Nkind (Name) = N_Explicit_Dereference
10409 or else (Nkind (Name) = N_Function_Call
10410 and then not Is_Constrained (Etype (Name)))
10411 then
10412 Array_Type := Get_Actual_Subtype (Name);
10414 -- If the name is a selected component that depends on discriminants,
10415 -- build an actual subtype for it. This can happen only when the name
10416 -- itself is overloaded; otherwise the actual subtype is created when
10417 -- the selected component is analyzed.
10419 elsif Nkind (Name) = N_Selected_Component
10420 and then Full_Analysis
10421 and then Depends_On_Discriminant (First_Index (Array_Type))
10422 then
10423 declare
10424 Act_Decl : constant Node_Id :=
10425 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10426 begin
10427 Insert_Action (N, Act_Decl);
10428 Array_Type := Defining_Identifier (Act_Decl);
10429 end;
10431 -- Maybe this should just be "else", instead of checking for the
10432 -- specific case of slice??? This is needed for the case where the
10433 -- prefix is an Image attribute, which gets expanded to a slice, and so
10434 -- has a constrained subtype which we want to use for the slice range
10435 -- check applied below (the range check won't get done if the
10436 -- unconstrained subtype of the 'Image is used).
10438 elsif Nkind (Name) = N_Slice then
10439 Array_Type := Etype (Name);
10440 end if;
10442 -- Obtain the type of the array index
10444 if Ekind (Array_Type) = E_String_Literal_Subtype then
10445 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10446 else
10447 Index_Type := Etype (First_Index (Array_Type));
10448 end if;
10450 -- If name was overloaded, set slice type correctly now
10452 Set_Etype (N, Array_Type);
10454 -- Handle the generation of a range check that compares the array index
10455 -- against the discrete_range. The check is not applied to internally
10456 -- built nodes associated with the expansion of dispatch tables. Check
10457 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10458 -- the unit.
10460 if Tagged_Type_Expansion
10461 and then RTU_Loaded (Ada_Tags)
10462 and then Nkind (Prefix (N)) = N_Selected_Component
10463 and then Present (Entity (Selector_Name (Prefix (N))))
10464 and then Entity (Selector_Name (Prefix (N))) =
10465 RTE_Record_Component (RE_Prims_Ptr)
10466 then
10467 null;
10469 -- The discrete_range is specified by a subtype indication. Create a
10470 -- shallow copy and inherit the type, parent and source location from
10471 -- the discrete_range. This ensures that the range check is inserted
10472 -- relative to the slice and that the runtime exception points to the
10473 -- proper construct.
10475 elsif Is_Entity_Name (Drange) then
10476 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10478 Set_Etype (Dexpr, Etype (Drange));
10479 Set_Parent (Dexpr, Parent (Drange));
10480 Set_Sloc (Dexpr, Sloc (Drange));
10482 -- The discrete_range is a regular range. Resolve the bounds and remove
10483 -- their side effects.
10485 else
10486 Resolve (Drange, Base_Type (Index_Type));
10488 if Nkind (Drange) = N_Range then
10489 Force_Evaluation (Low_Bound (Drange));
10490 Force_Evaluation (High_Bound (Drange));
10492 Dexpr := Drange;
10493 end if;
10494 end if;
10496 if Present (Dexpr) then
10497 Apply_Range_Check (Dexpr, Index_Type);
10498 end if;
10500 Set_Slice_Subtype (N);
10502 -- Check bad use of type with predicates
10504 declare
10505 Subt : Entity_Id;
10507 begin
10508 if Nkind (Drange) = N_Subtype_Indication
10509 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10510 then
10511 Subt := Entity (Subtype_Mark (Drange));
10512 else
10513 Subt := Etype (Drange);
10514 end if;
10516 if Has_Predicates (Subt) then
10517 Bad_Predicated_Subtype_Use
10518 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10519 end if;
10520 end;
10522 -- Otherwise here is where we check suspicious indexes
10524 if Nkind (Drange) = N_Range then
10525 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10526 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10527 end if;
10529 Analyze_Dimension (N);
10530 Eval_Slice (N);
10531 end Resolve_Slice;
10533 ----------------------------
10534 -- Resolve_String_Literal --
10535 ----------------------------
10537 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10538 C_Typ : constant Entity_Id := Component_Type (Typ);
10539 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10540 Loc : constant Source_Ptr := Sloc (N);
10541 Str : constant String_Id := Strval (N);
10542 Strlen : constant Nat := String_Length (Str);
10543 Subtype_Id : Entity_Id;
10544 Need_Check : Boolean;
10546 begin
10547 -- For a string appearing in a concatenation, defer creation of the
10548 -- string_literal_subtype until the end of the resolution of the
10549 -- concatenation, because the literal may be constant-folded away. This
10550 -- is a useful optimization for long concatenation expressions.
10552 -- If the string is an aggregate built for a single character (which
10553 -- happens in a non-static context) or a is null string to which special
10554 -- checks may apply, we build the subtype. Wide strings must also get a
10555 -- string subtype if they come from a one character aggregate. Strings
10556 -- generated by attributes might be static, but it is often hard to
10557 -- determine whether the enclosing context is static, so we generate
10558 -- subtypes for them as well, thus losing some rarer optimizations ???
10559 -- Same for strings that come from a static conversion.
10561 Need_Check :=
10562 (Strlen = 0 and then Typ /= Standard_String)
10563 or else Nkind (Parent (N)) /= N_Op_Concat
10564 or else (N /= Left_Opnd (Parent (N))
10565 and then N /= Right_Opnd (Parent (N)))
10566 or else ((Typ = Standard_Wide_String
10567 or else Typ = Standard_Wide_Wide_String)
10568 and then Nkind (Original_Node (N)) /= N_String_Literal);
10570 -- If the resolving type is itself a string literal subtype, we can just
10571 -- reuse it, since there is no point in creating another.
10573 if Ekind (Typ) = E_String_Literal_Subtype then
10574 Subtype_Id := Typ;
10576 elsif Nkind (Parent (N)) = N_Op_Concat
10577 and then not Need_Check
10578 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10579 N_Attribute_Reference,
10580 N_Qualified_Expression,
10581 N_Type_Conversion)
10582 then
10583 Subtype_Id := Typ;
10585 -- Do not generate a string literal subtype for the default expression
10586 -- of a formal parameter in GNATprove mode. This is because the string
10587 -- subtype is associated with the freezing actions of the subprogram,
10588 -- however freezing is disabled in GNATprove mode and as a result the
10589 -- subtype is unavailable.
10591 elsif GNATprove_Mode
10592 and then Nkind (Parent (N)) = N_Parameter_Specification
10593 then
10594 Subtype_Id := Typ;
10596 -- Otherwise we must create a string literal subtype. Note that the
10597 -- whole idea of string literal subtypes is simply to avoid the need
10598 -- for building a full fledged array subtype for each literal.
10600 else
10601 Set_String_Literal_Subtype (N, Typ);
10602 Subtype_Id := Etype (N);
10603 end if;
10605 if Nkind (Parent (N)) /= N_Op_Concat
10606 or else Need_Check
10607 then
10608 Set_Etype (N, Subtype_Id);
10609 Eval_String_Literal (N);
10610 end if;
10612 if Is_Limited_Composite (Typ)
10613 or else Is_Private_Composite (Typ)
10614 then
10615 Error_Msg_N ("string literal not available for private array", N);
10616 Set_Etype (N, Any_Type);
10617 return;
10618 end if;
10620 -- The validity of a null string has been checked in the call to
10621 -- Eval_String_Literal.
10623 if Strlen = 0 then
10624 return;
10626 -- Always accept string literal with component type Any_Character, which
10627 -- occurs in error situations and in comparisons of literals, both of
10628 -- which should accept all literals.
10630 elsif R_Typ = Any_Character then
10631 return;
10633 -- If the type is bit-packed, then we always transform the string
10634 -- literal into a full fledged aggregate.
10636 elsif Is_Bit_Packed_Array (Typ) then
10637 null;
10639 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10641 else
10642 -- For Standard.Wide_Wide_String, or any other type whose component
10643 -- type is Standard.Wide_Wide_Character, we know that all the
10644 -- characters in the string must be acceptable, since the parser
10645 -- accepted the characters as valid character literals.
10647 if R_Typ = Standard_Wide_Wide_Character then
10648 null;
10650 -- For the case of Standard.String, or any other type whose component
10651 -- type is Standard.Character, we must make sure that there are no
10652 -- wide characters in the string, i.e. that it is entirely composed
10653 -- of characters in range of type Character.
10655 -- If the string literal is the result of a static concatenation, the
10656 -- test has already been performed on the components, and need not be
10657 -- repeated.
10659 elsif R_Typ = Standard_Character
10660 and then Nkind (Original_Node (N)) /= N_Op_Concat
10661 then
10662 for J in 1 .. Strlen loop
10663 if not In_Character_Range (Get_String_Char (Str, J)) then
10665 -- If we are out of range, post error. This is one of the
10666 -- very few places that we place the flag in the middle of
10667 -- a token, right under the offending wide character. Not
10668 -- quite clear if this is right wrt wide character encoding
10669 -- sequences, but it's only an error message.
10671 Error_Msg
10672 ("literal out of range of type Standard.Character",
10673 Source_Ptr (Int (Loc) + J));
10674 return;
10675 end if;
10676 end loop;
10678 -- For the case of Standard.Wide_String, or any other type whose
10679 -- component type is Standard.Wide_Character, we must make sure that
10680 -- there are no wide characters in the string, i.e. that it is
10681 -- entirely composed of characters in range of type Wide_Character.
10683 -- If the string literal is the result of a static concatenation,
10684 -- the test has already been performed on the components, and need
10685 -- not be repeated.
10687 elsif R_Typ = Standard_Wide_Character
10688 and then Nkind (Original_Node (N)) /= N_Op_Concat
10689 then
10690 for J in 1 .. Strlen loop
10691 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10693 -- If we are out of range, post error. This is one of the
10694 -- very few places that we place the flag in the middle of
10695 -- a token, right under the offending wide character.
10697 -- This is not quite right, because characters in general
10698 -- will take more than one character position ???
10700 Error_Msg
10701 ("literal out of range of type Standard.Wide_Character",
10702 Source_Ptr (Int (Loc) + J));
10703 return;
10704 end if;
10705 end loop;
10707 -- If the root type is not a standard character, then we will convert
10708 -- the string into an aggregate and will let the aggregate code do
10709 -- the checking. Standard Wide_Wide_Character is also OK here.
10711 else
10712 null;
10713 end if;
10715 -- See if the component type of the array corresponding to the string
10716 -- has compile time known bounds. If yes we can directly check
10717 -- whether the evaluation of the string will raise constraint error.
10718 -- Otherwise we need to transform the string literal into the
10719 -- corresponding character aggregate and let the aggregate code do
10720 -- the checking.
10722 if Is_Standard_Character_Type (R_Typ) then
10724 -- Check for the case of full range, where we are definitely OK
10726 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10727 return;
10728 end if;
10730 -- Here the range is not the complete base type range, so check
10732 declare
10733 Comp_Typ_Lo : constant Node_Id :=
10734 Type_Low_Bound (Component_Type (Typ));
10735 Comp_Typ_Hi : constant Node_Id :=
10736 Type_High_Bound (Component_Type (Typ));
10738 Char_Val : Uint;
10740 begin
10741 if Compile_Time_Known_Value (Comp_Typ_Lo)
10742 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10743 then
10744 for J in 1 .. Strlen loop
10745 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10747 if Char_Val < Expr_Value (Comp_Typ_Lo)
10748 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10749 then
10750 Apply_Compile_Time_Constraint_Error
10751 (N, "character out of range??",
10752 CE_Range_Check_Failed,
10753 Loc => Source_Ptr (Int (Loc) + J));
10754 end if;
10755 end loop;
10757 return;
10758 end if;
10759 end;
10760 end if;
10761 end if;
10763 -- If we got here we meed to transform the string literal into the
10764 -- equivalent qualified positional array aggregate. This is rather
10765 -- heavy artillery for this situation, but it is hard work to avoid.
10767 declare
10768 Lits : constant List_Id := New_List;
10769 P : Source_Ptr := Loc + 1;
10770 C : Char_Code;
10772 begin
10773 -- Build the character literals, we give them source locations that
10774 -- correspond to the string positions, which is a bit tricky given
10775 -- the possible presence of wide character escape sequences.
10777 for J in 1 .. Strlen loop
10778 C := Get_String_Char (Str, J);
10779 Set_Character_Literal_Name (C);
10781 Append_To (Lits,
10782 Make_Character_Literal (P,
10783 Chars => Name_Find,
10784 Char_Literal_Value => UI_From_CC (C)));
10786 if In_Character_Range (C) then
10787 P := P + 1;
10789 -- Should we have a call to Skip_Wide here ???
10791 -- ??? else
10792 -- Skip_Wide (P);
10794 end if;
10795 end loop;
10797 Rewrite (N,
10798 Make_Qualified_Expression (Loc,
10799 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10800 Expression =>
10801 Make_Aggregate (Loc, Expressions => Lits)));
10803 Analyze_And_Resolve (N, Typ);
10804 end;
10805 end Resolve_String_Literal;
10807 -------------------------
10808 -- Resolve_Target_Name --
10809 -------------------------
10811 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10812 begin
10813 Set_Etype (N, Typ);
10814 end Resolve_Target_Name;
10816 -----------------------------
10817 -- Resolve_Type_Conversion --
10818 -----------------------------
10820 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10821 Conv_OK : constant Boolean := Conversion_OK (N);
10822 Operand : constant Node_Id := Expression (N);
10823 Operand_Typ : constant Entity_Id := Etype (Operand);
10824 Target_Typ : constant Entity_Id := Etype (N);
10825 Rop : Node_Id;
10826 Orig_N : Node_Id;
10827 Orig_T : Node_Id;
10829 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10830 -- Set to False to suppress cases where we want to suppress the test
10831 -- for redundancy to avoid possible false positives on this warning.
10833 begin
10834 if not Conv_OK
10835 and then not Valid_Conversion (N, Target_Typ, Operand)
10836 then
10837 return;
10838 end if;
10840 -- If the Operand Etype is Universal_Fixed, then the conversion is
10841 -- never redundant. We need this check because by the time we have
10842 -- finished the rather complex transformation, the conversion looks
10843 -- redundant when it is not.
10845 if Operand_Typ = Universal_Fixed then
10846 Test_Redundant := False;
10848 -- If the operand is marked as Any_Fixed, then special processing is
10849 -- required. This is also a case where we suppress the test for a
10850 -- redundant conversion, since most certainly it is not redundant.
10852 elsif Operand_Typ = Any_Fixed then
10853 Test_Redundant := False;
10855 -- Mixed-mode operation involving a literal. Context must be a fixed
10856 -- type which is applied to the literal subsequently.
10858 -- Multiplication and division involving two fixed type operands must
10859 -- yield a universal real because the result is computed in arbitrary
10860 -- precision.
10862 if Is_Fixed_Point_Type (Typ)
10863 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10864 and then Etype (Left_Opnd (Operand)) = Any_Fixed
10865 and then Etype (Right_Opnd (Operand)) = Any_Fixed
10866 then
10867 Set_Etype (Operand, Universal_Real);
10869 elsif Is_Numeric_Type (Typ)
10870 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10871 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10872 or else
10873 Etype (Left_Opnd (Operand)) = Universal_Real)
10874 then
10875 -- Return if expression is ambiguous
10877 if Unique_Fixed_Point_Type (N) = Any_Type then
10878 return;
10880 -- If nothing else, the available fixed type is Duration
10882 else
10883 Set_Etype (Operand, Standard_Duration);
10884 end if;
10886 -- Resolve the real operand with largest available precision
10888 if Etype (Right_Opnd (Operand)) = Universal_Real then
10889 Rop := New_Copy_Tree (Right_Opnd (Operand));
10890 else
10891 Rop := New_Copy_Tree (Left_Opnd (Operand));
10892 end if;
10894 Resolve (Rop, Universal_Real);
10896 -- If the operand is a literal (it could be a non-static and
10897 -- illegal exponentiation) check whether the use of Duration
10898 -- is potentially inaccurate.
10900 if Nkind (Rop) = N_Real_Literal
10901 and then Realval (Rop) /= Ureal_0
10902 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10903 then
10904 Error_Msg_N
10905 ("??universal real operand can only "
10906 & "be interpreted as Duration!", Rop);
10907 Error_Msg_N
10908 ("\??precision will be lost in the conversion!", Rop);
10909 end if;
10911 elsif Is_Numeric_Type (Typ)
10912 and then Nkind (Operand) in N_Op
10913 and then Unique_Fixed_Point_Type (N) /= Any_Type
10914 then
10915 Set_Etype (Operand, Standard_Duration);
10917 else
10918 Error_Msg_N ("invalid context for mixed mode operation", N);
10919 Set_Etype (Operand, Any_Type);
10920 return;
10921 end if;
10922 end if;
10924 Resolve (Operand);
10926 -- In SPARK, a type conversion between array types should be restricted
10927 -- to types which have matching static bounds.
10929 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10930 -- operation if not needed.
10932 if Restriction_Check_Required (SPARK_05)
10933 and then Is_Array_Type (Target_Typ)
10934 and then Is_Array_Type (Operand_Typ)
10935 and then Operand_Typ /= Any_Composite -- or else Operand in error
10936 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10937 then
10938 Check_SPARK_05_Restriction
10939 ("array types should have matching static bounds", N);
10940 end if;
10942 -- In formal mode, the operand of an ancestor type conversion must be an
10943 -- object (not an expression).
10945 if Is_Tagged_Type (Target_Typ)
10946 and then not Is_Class_Wide_Type (Target_Typ)
10947 and then Is_Tagged_Type (Operand_Typ)
10948 and then not Is_Class_Wide_Type (Operand_Typ)
10949 and then Is_Ancestor (Target_Typ, Operand_Typ)
10950 and then not Is_SPARK_05_Object_Reference (Operand)
10951 then
10952 Check_SPARK_05_Restriction ("object required", Operand);
10953 end if;
10955 Analyze_Dimension (N);
10957 -- Note: we do the Eval_Type_Conversion call before applying the
10958 -- required checks for a subtype conversion. This is important, since
10959 -- both are prepared under certain circumstances to change the type
10960 -- conversion to a constraint error node, but in the case of
10961 -- Eval_Type_Conversion this may reflect an illegality in the static
10962 -- case, and we would miss the illegality (getting only a warning
10963 -- message), if we applied the type conversion checks first.
10965 Eval_Type_Conversion (N);
10967 -- Even when evaluation is not possible, we may be able to simplify the
10968 -- conversion or its expression. This needs to be done before applying
10969 -- checks, since otherwise the checks may use the original expression
10970 -- and defeat the simplifications. This is specifically the case for
10971 -- elimination of the floating-point Truncation attribute in
10972 -- float-to-int conversions.
10974 Simplify_Type_Conversion (N);
10976 -- If after evaluation we still have a type conversion, then we may need
10977 -- to apply checks required for a subtype conversion.
10979 -- Skip these type conversion checks if universal fixed operands
10980 -- operands involved, since range checks are handled separately for
10981 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10983 if Nkind (N) = N_Type_Conversion
10984 and then not Is_Generic_Type (Root_Type (Target_Typ))
10985 and then Target_Typ /= Universal_Fixed
10986 and then Operand_Typ /= Universal_Fixed
10987 then
10988 Apply_Type_Conversion_Checks (N);
10989 end if;
10991 -- Issue warning for conversion of simple object to its own type. We
10992 -- have to test the original nodes, since they may have been rewritten
10993 -- by various optimizations.
10995 Orig_N := Original_Node (N);
10997 -- Here we test for a redundant conversion if the warning mode is
10998 -- active (and was not locally reset), and we have a type conversion
10999 -- from source not appearing in a generic instance.
11001 if Test_Redundant
11002 and then Nkind (Orig_N) = N_Type_Conversion
11003 and then Comes_From_Source (Orig_N)
11004 and then not In_Instance
11005 then
11006 Orig_N := Original_Node (Expression (Orig_N));
11007 Orig_T := Target_Typ;
11009 -- If the node is part of a larger expression, the Target_Type
11010 -- may not be the original type of the node if the context is a
11011 -- condition. Recover original type to see if conversion is needed.
11013 if Is_Boolean_Type (Orig_T)
11014 and then Nkind (Parent (N)) in N_Op
11015 then
11016 Orig_T := Etype (Parent (N));
11017 end if;
11019 -- If we have an entity name, then give the warning if the entity
11020 -- is the right type, or if it is a loop parameter covered by the
11021 -- original type (that's needed because loop parameters have an
11022 -- odd subtype coming from the bounds).
11024 if (Is_Entity_Name (Orig_N)
11025 and then
11026 (Etype (Entity (Orig_N)) = Orig_T
11027 or else
11028 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11029 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11031 -- If not an entity, then type of expression must match
11033 or else Etype (Orig_N) = Orig_T
11034 then
11035 -- One more check, do not give warning if the analyzed conversion
11036 -- has an expression with non-static bounds, and the bounds of the
11037 -- target are static. This avoids junk warnings in cases where the
11038 -- conversion is necessary to establish staticness, for example in
11039 -- a case statement.
11041 if not Is_OK_Static_Subtype (Operand_Typ)
11042 and then Is_OK_Static_Subtype (Target_Typ)
11043 then
11044 null;
11046 -- Finally, if this type conversion occurs in a context requiring
11047 -- a prefix, and the expression is a qualified expression then the
11048 -- type conversion is not redundant, since a qualified expression
11049 -- is not a prefix, whereas a type conversion is. For example, "X
11050 -- := T'(Funx(...)).Y;" is illegal because a selected component
11051 -- requires a prefix, but a type conversion makes it legal: "X :=
11052 -- T(T'(Funx(...))).Y;"
11054 -- In Ada 2012, a qualified expression is a name, so this idiom is
11055 -- no longer needed, but we still suppress the warning because it
11056 -- seems unfriendly for warnings to pop up when you switch to the
11057 -- newer language version.
11059 elsif Nkind (Orig_N) = N_Qualified_Expression
11060 and then Nkind_In (Parent (N), N_Attribute_Reference,
11061 N_Indexed_Component,
11062 N_Selected_Component,
11063 N_Slice,
11064 N_Explicit_Dereference)
11065 then
11066 null;
11068 -- Never warn on conversion to Long_Long_Integer'Base since
11069 -- that is most likely an artifact of the extended overflow
11070 -- checking and comes from complex expanded code.
11072 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11073 null;
11075 -- Here we give the redundant conversion warning. If it is an
11076 -- entity, give the name of the entity in the message. If not,
11077 -- just mention the expression.
11079 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11081 else
11082 if Is_Entity_Name (Orig_N) then
11083 Error_Msg_Node_2 := Orig_T;
11084 Error_Msg_NE -- CODEFIX
11085 ("??redundant conversion, & is of type &!",
11086 N, Entity (Orig_N));
11087 else
11088 Error_Msg_NE
11089 ("??redundant conversion, expression is of type&!",
11090 N, Orig_T);
11091 end if;
11092 end if;
11093 end if;
11094 end if;
11096 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11097 -- No need to perform any interface conversion if the type of the
11098 -- expression coincides with the target type.
11100 if Ada_Version >= Ada_2005
11101 and then Expander_Active
11102 and then Operand_Typ /= Target_Typ
11103 then
11104 declare
11105 Opnd : Entity_Id := Operand_Typ;
11106 Target : Entity_Id := Target_Typ;
11108 begin
11109 -- If the type of the operand is a limited view, use nonlimited
11110 -- view when available. If it is a class-wide type, recover the
11111 -- class-wide type of the nonlimited view.
11113 if From_Limited_With (Opnd)
11114 and then Has_Non_Limited_View (Opnd)
11115 then
11116 Opnd := Non_Limited_View (Opnd);
11117 Set_Etype (Expression (N), Opnd);
11118 end if;
11120 if Is_Access_Type (Opnd) then
11121 Opnd := Designated_Type (Opnd);
11122 end if;
11124 if Is_Access_Type (Target_Typ) then
11125 Target := Designated_Type (Target);
11126 end if;
11128 if Opnd = Target then
11129 null;
11131 -- Conversion from interface type
11133 elsif Is_Interface (Opnd) then
11135 -- Ada 2005 (AI-217): Handle entities from limited views
11137 if From_Limited_With (Opnd) then
11138 Error_Msg_Qual_Level := 99;
11139 Error_Msg_NE -- CODEFIX
11140 ("missing WITH clause on package &", N,
11141 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11142 Error_Msg_N
11143 ("type conversions require visibility of the full view",
11146 elsif From_Limited_With (Target)
11147 and then not
11148 (Is_Access_Type (Target_Typ)
11149 and then Present (Non_Limited_View (Etype (Target))))
11150 then
11151 Error_Msg_Qual_Level := 99;
11152 Error_Msg_NE -- CODEFIX
11153 ("missing WITH clause on package &", N,
11154 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11155 Error_Msg_N
11156 ("type conversions require visibility of the full view",
11159 else
11160 Expand_Interface_Conversion (N);
11161 end if;
11163 -- Conversion to interface type
11165 elsif Is_Interface (Target) then
11167 -- Handle subtypes
11169 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11170 Opnd := Etype (Opnd);
11171 end if;
11173 if Is_Class_Wide_Type (Opnd)
11174 or else Interface_Present_In_Ancestor
11175 (Typ => Opnd,
11176 Iface => Target)
11177 then
11178 Expand_Interface_Conversion (N);
11179 else
11180 Error_Msg_Name_1 := Chars (Etype (Target));
11181 Error_Msg_Name_2 := Chars (Opnd);
11182 Error_Msg_N
11183 ("wrong interface conversion (% is not a progenitor "
11184 & "of %)", N);
11185 end if;
11186 end if;
11187 end;
11188 end if;
11190 -- Ada 2012: once the type conversion is resolved, check whether the
11191 -- operand statisfies the static predicate of the target type.
11193 if Has_Predicates (Target_Typ) then
11194 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11195 end if;
11197 -- If at this stage we have a real to integer conversion, make sure that
11198 -- the Do_Range_Check flag is set, because such conversions in general
11199 -- need a range check. We only need this if expansion is off.
11200 -- In GNATprove mode, we only do that when converting from fixed-point
11201 -- (as floating-point to integer conversions are now handled in
11202 -- GNATprove mode).
11204 if Nkind (N) = N_Type_Conversion
11205 and then not Expander_Active
11206 and then Is_Integer_Type (Target_Typ)
11207 and then (Is_Fixed_Point_Type (Operand_Typ)
11208 or else (not GNATprove_Mode
11209 and then Is_Floating_Point_Type (Operand_Typ)))
11210 then
11211 Set_Do_Range_Check (Operand);
11212 end if;
11214 -- Generating C code a type conversion of an access to constrained
11215 -- array type to access to unconstrained array type involves building
11216 -- a fat pointer which in general cannot be generated on the fly. We
11217 -- remove side effects in order to store the result of the conversion
11218 -- into a temporary.
11220 if Modify_Tree_For_C
11221 and then Nkind (N) = N_Type_Conversion
11222 and then Nkind (Parent (N)) /= N_Object_Declaration
11223 and then Is_Access_Type (Etype (N))
11224 and then Is_Array_Type (Designated_Type (Etype (N)))
11225 and then not Is_Constrained (Designated_Type (Etype (N)))
11226 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11227 then
11228 Remove_Side_Effects (N);
11229 end if;
11230 end Resolve_Type_Conversion;
11232 ----------------------
11233 -- Resolve_Unary_Op --
11234 ----------------------
11236 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11237 B_Typ : constant Entity_Id := Base_Type (Typ);
11238 R : constant Node_Id := Right_Opnd (N);
11239 OK : Boolean;
11240 Lo : Uint;
11241 Hi : Uint;
11243 begin
11244 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11245 Error_Msg_Name_1 := Chars (Typ);
11246 Check_SPARK_05_Restriction
11247 ("unary operator not defined for modular type%", N);
11248 end if;
11250 -- Deal with intrinsic unary operators
11252 if Comes_From_Source (N)
11253 and then Ekind (Entity (N)) = E_Function
11254 and then Is_Imported (Entity (N))
11255 and then Is_Intrinsic_Subprogram (Entity (N))
11256 then
11257 Resolve_Intrinsic_Unary_Operator (N, Typ);
11258 return;
11259 end if;
11261 -- Deal with universal cases
11263 if Etype (R) = Universal_Integer
11264 or else
11265 Etype (R) = Universal_Real
11266 then
11267 Check_For_Visible_Operator (N, B_Typ);
11268 end if;
11270 Set_Etype (N, B_Typ);
11271 Resolve (R, B_Typ);
11273 -- Generate warning for expressions like abs (x mod 2)
11275 if Warn_On_Redundant_Constructs
11276 and then Nkind (N) = N_Op_Abs
11277 then
11278 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11280 if OK and then Hi >= Lo and then Lo >= 0 then
11281 Error_Msg_N -- CODEFIX
11282 ("?r?abs applied to known non-negative value has no effect", N);
11283 end if;
11284 end if;
11286 -- Deal with reference generation
11288 Check_Unset_Reference (R);
11289 Generate_Operator_Reference (N, B_Typ);
11290 Analyze_Dimension (N);
11291 Eval_Unary_Op (N);
11293 -- Set overflow checking bit. Much cleverer code needed here eventually
11294 -- and perhaps the Resolve routines should be separated for the various
11295 -- arithmetic operations, since they will need different processing ???
11297 if Nkind (N) in N_Op then
11298 if not Overflow_Checks_Suppressed (Etype (N)) then
11299 Enable_Overflow_Check (N);
11300 end if;
11301 end if;
11303 -- Generate warning for expressions like -5 mod 3 for integers. No need
11304 -- to worry in the floating-point case, since parens do not affect the
11305 -- result so there is no point in giving in a warning.
11307 declare
11308 Norig : constant Node_Id := Original_Node (N);
11309 Rorig : Node_Id;
11310 Val : Uint;
11311 HB : Uint;
11312 LB : Uint;
11313 Lval : Uint;
11314 Opnd : Node_Id;
11316 begin
11317 if Warn_On_Questionable_Missing_Parens
11318 and then Comes_From_Source (Norig)
11319 and then Is_Integer_Type (Typ)
11320 and then Nkind (Norig) = N_Op_Minus
11321 then
11322 Rorig := Original_Node (Right_Opnd (Norig));
11324 -- We are looking for cases where the right operand is not
11325 -- parenthesized, and is a binary operator, multiply, divide, or
11326 -- mod. These are the cases where the grouping can affect results.
11328 if Paren_Count (Rorig) = 0
11329 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11330 then
11331 -- For mod, we always give the warning, since the value is
11332 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11333 -- -(5 mod 315)). But for the other cases, the only concern is
11334 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11335 -- overflows, but (-2) * 64 does not). So we try to give the
11336 -- message only when overflow is possible.
11338 if Nkind (Rorig) /= N_Op_Mod
11339 and then Compile_Time_Known_Value (R)
11340 then
11341 Val := Expr_Value (R);
11343 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11344 HB := Expr_Value (Type_High_Bound (Typ));
11345 else
11346 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11347 end if;
11349 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11350 LB := Expr_Value (Type_Low_Bound (Typ));
11351 else
11352 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11353 end if;
11355 -- Note that the test below is deliberately excluding the
11356 -- largest negative number, since that is a potentially
11357 -- troublesome case (e.g. -2 * x, where the result is the
11358 -- largest negative integer has an overflow with 2 * x).
11360 if Val > LB and then Val <= HB then
11361 return;
11362 end if;
11363 end if;
11365 -- For the multiplication case, the only case we have to worry
11366 -- about is when (-a)*b is exactly the largest negative number
11367 -- so that -(a*b) can cause overflow. This can only happen if
11368 -- a is a power of 2, and more generally if any operand is a
11369 -- constant that is not a power of 2, then the parentheses
11370 -- cannot affect whether overflow occurs. We only bother to
11371 -- test the left most operand
11373 -- Loop looking at left operands for one that has known value
11375 Opnd := Rorig;
11376 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11377 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11378 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11380 -- Operand value of 0 or 1 skips warning
11382 if Lval <= 1 then
11383 return;
11385 -- Otherwise check power of 2, if power of 2, warn, if
11386 -- anything else, skip warning.
11388 else
11389 while Lval /= 2 loop
11390 if Lval mod 2 = 1 then
11391 return;
11392 else
11393 Lval := Lval / 2;
11394 end if;
11395 end loop;
11397 exit Opnd_Loop;
11398 end if;
11399 end if;
11401 -- Keep looking at left operands
11403 Opnd := Left_Opnd (Opnd);
11404 end loop Opnd_Loop;
11406 -- For rem or "/" we can only have a problematic situation
11407 -- if the divisor has a value of minus one or one. Otherwise
11408 -- overflow is impossible (divisor > 1) or we have a case of
11409 -- division by zero in any case.
11411 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11412 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11413 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11414 then
11415 return;
11416 end if;
11418 -- If we fall through warning should be issued
11420 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11422 Error_Msg_N
11423 ("??unary minus expression should be parenthesized here!", N);
11424 end if;
11425 end if;
11426 end;
11427 end Resolve_Unary_Op;
11429 ----------------------------------
11430 -- Resolve_Unchecked_Expression --
11431 ----------------------------------
11433 procedure Resolve_Unchecked_Expression
11434 (N : Node_Id;
11435 Typ : Entity_Id)
11437 begin
11438 Resolve (Expression (N), Typ, Suppress => All_Checks);
11439 Set_Etype (N, Typ);
11440 end Resolve_Unchecked_Expression;
11442 ---------------------------------------
11443 -- Resolve_Unchecked_Type_Conversion --
11444 ---------------------------------------
11446 procedure Resolve_Unchecked_Type_Conversion
11447 (N : Node_Id;
11448 Typ : Entity_Id)
11450 pragma Warnings (Off, Typ);
11452 Operand : constant Node_Id := Expression (N);
11453 Opnd_Type : constant Entity_Id := Etype (Operand);
11455 begin
11456 -- Resolve operand using its own type
11458 Resolve (Operand, Opnd_Type);
11460 -- In an inlined context, the unchecked conversion may be applied
11461 -- to a literal, in which case its type is the type of the context.
11462 -- (In other contexts conversions cannot apply to literals).
11464 if In_Inlined_Body
11465 and then (Opnd_Type = Any_Character or else
11466 Opnd_Type = Any_Integer or else
11467 Opnd_Type = Any_Real)
11468 then
11469 Set_Etype (Operand, Typ);
11470 end if;
11472 Analyze_Dimension (N);
11473 Eval_Unchecked_Conversion (N);
11474 end Resolve_Unchecked_Type_Conversion;
11476 ------------------------------
11477 -- Rewrite_Operator_As_Call --
11478 ------------------------------
11480 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11481 Loc : constant Source_Ptr := Sloc (N);
11482 Actuals : constant List_Id := New_List;
11483 New_N : Node_Id;
11485 begin
11486 if Nkind (N) in N_Binary_Op then
11487 Append (Left_Opnd (N), Actuals);
11488 end if;
11490 Append (Right_Opnd (N), Actuals);
11492 New_N :=
11493 Make_Function_Call (Sloc => Loc,
11494 Name => New_Occurrence_Of (Nam, Loc),
11495 Parameter_Associations => Actuals);
11497 Preserve_Comes_From_Source (New_N, N);
11498 Preserve_Comes_From_Source (Name (New_N), N);
11499 Rewrite (N, New_N);
11500 Set_Etype (N, Etype (Nam));
11501 end Rewrite_Operator_As_Call;
11503 ------------------------------
11504 -- Rewrite_Renamed_Operator --
11505 ------------------------------
11507 procedure Rewrite_Renamed_Operator
11508 (N : Node_Id;
11509 Op : Entity_Id;
11510 Typ : Entity_Id)
11512 Nam : constant Name_Id := Chars (Op);
11513 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11514 Op_Node : Node_Id;
11516 begin
11517 -- Do not perform this transformation within a pre/postcondition,
11518 -- because the expression will be reanalyzed, and the transformation
11519 -- might affect the visibility of the operator, e.g. in an instance.
11520 -- Note that fully analyzed and expanded pre/postconditions appear as
11521 -- pragma Check equivalents.
11523 if In_Pre_Post_Condition (N) then
11524 return;
11525 end if;
11527 -- Likewise when an expression function is being preanalyzed, since the
11528 -- expression will be reanalyzed as part of the generated body.
11530 if In_Spec_Expression then
11531 declare
11532 S : constant Entity_Id := Current_Scope_No_Loops;
11533 begin
11534 if Ekind (S) = E_Function
11535 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11536 N_Expression_Function
11537 then
11538 return;
11539 end if;
11540 end;
11541 end if;
11543 -- Rewrite the operator node using the real operator, not its renaming.
11544 -- Exclude user-defined intrinsic operations of the same name, which are
11545 -- treated separately and rewritten as calls.
11547 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11548 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11549 Set_Chars (Op_Node, Nam);
11550 Set_Etype (Op_Node, Etype (N));
11551 Set_Entity (Op_Node, Op);
11552 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11554 -- Indicate that both the original entity and its renaming are
11555 -- referenced at this point.
11557 Generate_Reference (Entity (N), N);
11558 Generate_Reference (Op, N);
11560 if Is_Binary then
11561 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11562 end if;
11564 Rewrite (N, Op_Node);
11566 -- If the context type is private, add the appropriate conversions so
11567 -- that the operator is applied to the full view. This is done in the
11568 -- routines that resolve intrinsic operators.
11570 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11571 case Nkind (N) is
11572 when N_Op_Add
11573 | N_Op_Divide
11574 | N_Op_Expon
11575 | N_Op_Mod
11576 | N_Op_Multiply
11577 | N_Op_Rem
11578 | N_Op_Subtract
11580 Resolve_Intrinsic_Operator (N, Typ);
11582 when N_Op_Abs
11583 | N_Op_Minus
11584 | N_Op_Plus
11586 Resolve_Intrinsic_Unary_Operator (N, Typ);
11588 when others =>
11589 Resolve (N, Typ);
11590 end case;
11591 end if;
11593 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11595 -- Operator renames a user-defined operator of the same name. Use the
11596 -- original operator in the node, which is the one Gigi knows about.
11598 Set_Entity (N, Op);
11599 Set_Is_Overloaded (N, False);
11600 end if;
11601 end Rewrite_Renamed_Operator;
11603 -----------------------
11604 -- Set_Slice_Subtype --
11605 -----------------------
11607 -- Build an implicit subtype declaration to represent the type delivered by
11608 -- the slice. This is an abbreviated version of an array subtype. We define
11609 -- an index subtype for the slice, using either the subtype name or the
11610 -- discrete range of the slice. To be consistent with index usage elsewhere
11611 -- we create a list header to hold the single index. This list is not
11612 -- otherwise attached to the syntax tree.
11614 procedure Set_Slice_Subtype (N : Node_Id) is
11615 Loc : constant Source_Ptr := Sloc (N);
11616 Index_List : constant List_Id := New_List;
11617 Index : Node_Id;
11618 Index_Subtype : Entity_Id;
11619 Index_Type : Entity_Id;
11620 Slice_Subtype : Entity_Id;
11621 Drange : constant Node_Id := Discrete_Range (N);
11623 begin
11624 Index_Type := Base_Type (Etype (Drange));
11626 if Is_Entity_Name (Drange) then
11627 Index_Subtype := Entity (Drange);
11629 else
11630 -- We force the evaluation of a range. This is definitely needed in
11631 -- the renamed case, and seems safer to do unconditionally. Note in
11632 -- any case that since we will create and insert an Itype referring
11633 -- to this range, we must make sure any side effect removal actions
11634 -- are inserted before the Itype definition.
11636 if Nkind (Drange) = N_Range then
11637 Force_Evaluation (Low_Bound (Drange));
11638 Force_Evaluation (High_Bound (Drange));
11640 -- If the discrete range is given by a subtype indication, the
11641 -- type of the slice is the base of the subtype mark.
11643 elsif Nkind (Drange) = N_Subtype_Indication then
11644 declare
11645 R : constant Node_Id := Range_Expression (Constraint (Drange));
11646 begin
11647 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11648 Force_Evaluation (Low_Bound (R));
11649 Force_Evaluation (High_Bound (R));
11650 end;
11651 end if;
11653 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11655 -- Take a new copy of Drange (where bounds have been rewritten to
11656 -- reference side-effect-free names). Using a separate tree ensures
11657 -- that further expansion (e.g. while rewriting a slice assignment
11658 -- into a FOR loop) does not attempt to remove side effects on the
11659 -- bounds again (which would cause the bounds in the index subtype
11660 -- definition to refer to temporaries before they are defined) (the
11661 -- reason is that some names are considered side effect free here
11662 -- for the subtype, but not in the context of a loop iteration
11663 -- scheme).
11665 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11666 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11667 Set_Etype (Index_Subtype, Index_Type);
11668 Set_Size_Info (Index_Subtype, Index_Type);
11669 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11670 end if;
11672 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11674 Index := New_Occurrence_Of (Index_Subtype, Loc);
11675 Set_Etype (Index, Index_Subtype);
11676 Append (Index, Index_List);
11678 Set_First_Index (Slice_Subtype, Index);
11679 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11680 Set_Is_Constrained (Slice_Subtype, True);
11682 Check_Compile_Time_Size (Slice_Subtype);
11684 -- The Etype of the existing Slice node is reset to this slice subtype.
11685 -- Its bounds are obtained from its first index.
11687 Set_Etype (N, Slice_Subtype);
11689 -- For bit-packed slice subtypes, freeze immediately (except in the case
11690 -- of being in a "spec expression" where we never freeze when we first
11691 -- see the expression).
11693 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11694 Freeze_Itype (Slice_Subtype, N);
11696 -- For all other cases insert an itype reference in the slice's actions
11697 -- so that the itype is frozen at the proper place in the tree (i.e. at
11698 -- the point where actions for the slice are analyzed). Note that this
11699 -- is different from freezing the itype immediately, which might be
11700 -- premature (e.g. if the slice is within a transient scope). This needs
11701 -- to be done only if expansion is enabled.
11703 elsif Expander_Active then
11704 Ensure_Defined (Typ => Slice_Subtype, N => N);
11705 end if;
11706 end Set_Slice_Subtype;
11708 --------------------------------
11709 -- Set_String_Literal_Subtype --
11710 --------------------------------
11712 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11713 Loc : constant Source_Ptr := Sloc (N);
11714 Low_Bound : constant Node_Id :=
11715 Type_Low_Bound (Etype (First_Index (Typ)));
11716 Subtype_Id : Entity_Id;
11718 begin
11719 if Nkind (N) /= N_String_Literal then
11720 return;
11721 end if;
11723 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11724 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11725 (String_Length (Strval (N))));
11726 Set_Etype (Subtype_Id, Base_Type (Typ));
11727 Set_Is_Constrained (Subtype_Id);
11728 Set_Etype (N, Subtype_Id);
11730 -- The low bound is set from the low bound of the corresponding index
11731 -- type. Note that we do not store the high bound in the string literal
11732 -- subtype, but it can be deduced if necessary from the length and the
11733 -- low bound.
11735 if Is_OK_Static_Expression (Low_Bound) then
11736 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11738 -- If the lower bound is not static we create a range for the string
11739 -- literal, using the index type and the known length of the literal.
11740 -- The index type is not necessarily Positive, so the upper bound is
11741 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11743 else
11744 declare
11745 Index_List : constant List_Id := New_List;
11746 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11747 High_Bound : constant Node_Id :=
11748 Make_Attribute_Reference (Loc,
11749 Attribute_Name => Name_Val,
11750 Prefix =>
11751 New_Occurrence_Of (Index_Type, Loc),
11752 Expressions => New_List (
11753 Make_Op_Add (Loc,
11754 Left_Opnd =>
11755 Make_Attribute_Reference (Loc,
11756 Attribute_Name => Name_Pos,
11757 Prefix =>
11758 New_Occurrence_Of (Index_Type, Loc),
11759 Expressions =>
11760 New_List (New_Copy_Tree (Low_Bound))),
11761 Right_Opnd =>
11762 Make_Integer_Literal (Loc,
11763 String_Length (Strval (N)) - 1))));
11765 Array_Subtype : Entity_Id;
11766 Drange : Node_Id;
11767 Index : Node_Id;
11768 Index_Subtype : Entity_Id;
11770 begin
11771 if Is_Integer_Type (Index_Type) then
11772 Set_String_Literal_Low_Bound
11773 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11775 else
11776 -- If the index type is an enumeration type, build bounds
11777 -- expression with attributes.
11779 Set_String_Literal_Low_Bound
11780 (Subtype_Id,
11781 Make_Attribute_Reference (Loc,
11782 Attribute_Name => Name_First,
11783 Prefix =>
11784 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11785 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11786 end if;
11788 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11790 -- Build bona fide subtype for the string, and wrap it in an
11791 -- unchecked conversion, because the backend expects the
11792 -- String_Literal_Subtype to have a static lower bound.
11794 Index_Subtype :=
11795 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11796 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11797 Set_Scalar_Range (Index_Subtype, Drange);
11798 Set_Parent (Drange, N);
11799 Analyze_And_Resolve (Drange, Index_Type);
11801 -- In the context, the Index_Type may already have a constraint,
11802 -- so use common base type on string subtype. The base type may
11803 -- be used when generating attributes of the string, for example
11804 -- in the context of a slice assignment.
11806 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11807 Set_Size_Info (Index_Subtype, Index_Type);
11808 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11810 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11812 Index := New_Occurrence_Of (Index_Subtype, Loc);
11813 Set_Etype (Index, Index_Subtype);
11814 Append (Index, Index_List);
11816 Set_First_Index (Array_Subtype, Index);
11817 Set_Etype (Array_Subtype, Base_Type (Typ));
11818 Set_Is_Constrained (Array_Subtype, True);
11820 Rewrite (N,
11821 Make_Unchecked_Type_Conversion (Loc,
11822 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11823 Expression => Relocate_Node (N)));
11824 Set_Etype (N, Array_Subtype);
11825 end;
11826 end if;
11827 end Set_String_Literal_Subtype;
11829 ------------------------------
11830 -- Simplify_Type_Conversion --
11831 ------------------------------
11833 procedure Simplify_Type_Conversion (N : Node_Id) is
11834 begin
11835 if Nkind (N) = N_Type_Conversion then
11836 declare
11837 Operand : constant Node_Id := Expression (N);
11838 Target_Typ : constant Entity_Id := Etype (N);
11839 Opnd_Typ : constant Entity_Id := Etype (Operand);
11841 begin
11842 -- Special processing if the conversion is the expression of a
11843 -- Rounding or Truncation attribute reference. In this case we
11844 -- replace:
11846 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11848 -- by
11850 -- ityp (x)
11852 -- with the Float_Truncate flag set to False or True respectively,
11853 -- which is more efficient.
11855 if Is_Floating_Point_Type (Opnd_Typ)
11856 and then
11857 (Is_Integer_Type (Target_Typ)
11858 or else (Is_Fixed_Point_Type (Target_Typ)
11859 and then Conversion_OK (N)))
11860 and then Nkind (Operand) = N_Attribute_Reference
11861 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11862 Name_Truncation)
11863 then
11864 declare
11865 Truncate : constant Boolean :=
11866 Attribute_Name (Operand) = Name_Truncation;
11867 begin
11868 Rewrite (Operand,
11869 Relocate_Node (First (Expressions (Operand))));
11870 Set_Float_Truncate (N, Truncate);
11871 end;
11872 end if;
11873 end;
11874 end if;
11875 end Simplify_Type_Conversion;
11877 -----------------------------
11878 -- Unique_Fixed_Point_Type --
11879 -----------------------------
11881 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11882 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
11883 -- Give error messages for true ambiguity. Messages are posted on node
11884 -- N, and entities T1, T2 are the possible interpretations.
11886 -----------------------
11887 -- Fixed_Point_Error --
11888 -----------------------
11890 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
11891 begin
11892 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11893 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11894 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11895 end Fixed_Point_Error;
11897 -- Local variables
11899 ErrN : Node_Id;
11900 Item : Node_Id;
11901 Scop : Entity_Id;
11902 T1 : Entity_Id;
11903 T2 : Entity_Id;
11905 -- Start of processing for Unique_Fixed_Point_Type
11907 begin
11908 -- The operations on Duration are visible, so Duration is always a
11909 -- possible interpretation.
11911 T1 := Standard_Duration;
11913 -- Look for fixed-point types in enclosing scopes
11915 Scop := Current_Scope;
11916 while Scop /= Standard_Standard loop
11917 T2 := First_Entity (Scop);
11918 while Present (T2) loop
11919 if Is_Fixed_Point_Type (T2)
11920 and then Current_Entity (T2) = T2
11921 and then Scope (Base_Type (T2)) = Scop
11922 then
11923 if Present (T1) then
11924 Fixed_Point_Error (T1, T2);
11925 return Any_Type;
11926 else
11927 T1 := T2;
11928 end if;
11929 end if;
11931 Next_Entity (T2);
11932 end loop;
11934 Scop := Scope (Scop);
11935 end loop;
11937 -- Look for visible fixed type declarations in the context
11939 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11940 while Present (Item) loop
11941 if Nkind (Item) = N_With_Clause then
11942 Scop := Entity (Name (Item));
11943 T2 := First_Entity (Scop);
11944 while Present (T2) loop
11945 if Is_Fixed_Point_Type (T2)
11946 and then Scope (Base_Type (T2)) = Scop
11947 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11948 then
11949 if Present (T1) then
11950 Fixed_Point_Error (T1, T2);
11951 return Any_Type;
11952 else
11953 T1 := T2;
11954 end if;
11955 end if;
11957 Next_Entity (T2);
11958 end loop;
11959 end if;
11961 Next (Item);
11962 end loop;
11964 if Nkind (N) = N_Real_Literal then
11965 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
11967 else
11968 -- When the context is a type conversion, issue the warning on the
11969 -- expression of the conversion because it is the actual operation.
11971 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
11972 ErrN := Expression (N);
11973 else
11974 ErrN := N;
11975 end if;
11977 Error_Msg_NE
11978 ("??universal_fixed expression interpreted as }!", ErrN, T1);
11979 end if;
11981 return T1;
11982 end Unique_Fixed_Point_Type;
11984 ----------------------
11985 -- Valid_Conversion --
11986 ----------------------
11988 function Valid_Conversion
11989 (N : Node_Id;
11990 Target : Entity_Id;
11991 Operand : Node_Id;
11992 Report_Errs : Boolean := True) return Boolean
11994 Target_Type : constant Entity_Id := Base_Type (Target);
11995 Opnd_Type : Entity_Id := Etype (Operand);
11996 Inc_Ancestor : Entity_Id;
11998 function Conversion_Check
11999 (Valid : Boolean;
12000 Msg : String) return Boolean;
12001 -- Little routine to post Msg if Valid is False, returns Valid value
12003 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12004 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12006 procedure Conversion_Error_NE
12007 (Msg : String;
12008 N : Node_Or_Entity_Id;
12009 E : Node_Or_Entity_Id);
12010 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12012 function In_Instance_Code return Boolean;
12013 -- Return True if expression is within an instance but is not in one of
12014 -- the actuals of the instantiation. Type conversions within an instance
12015 -- are not rechecked because type visbility may lead to spurious errors,
12016 -- but conversions in an actual for a formal object must be checked.
12018 function Valid_Tagged_Conversion
12019 (Target_Type : Entity_Id;
12020 Opnd_Type : Entity_Id) return Boolean;
12021 -- Specifically test for validity of tagged conversions
12023 function Valid_Array_Conversion return Boolean;
12024 -- Check index and component conformance, and accessibility levels if
12025 -- the component types are anonymous access types (Ada 2005).
12027 ----------------------
12028 -- Conversion_Check --
12029 ----------------------
12031 function Conversion_Check
12032 (Valid : Boolean;
12033 Msg : String) return Boolean
12035 begin
12036 if not Valid
12038 -- A generic unit has already been analyzed and we have verified
12039 -- that a particular conversion is OK in that context. Since the
12040 -- instance is reanalyzed without relying on the relationships
12041 -- established during the analysis of the generic, it is possible
12042 -- to end up with inconsistent views of private types. Do not emit
12043 -- the error message in such cases. The rest of the machinery in
12044 -- Valid_Conversion still ensures the proper compatibility of
12045 -- target and operand types.
12047 and then not In_Instance_Code
12048 then
12049 Conversion_Error_N (Msg, Operand);
12050 end if;
12052 return Valid;
12053 end Conversion_Check;
12055 ------------------------
12056 -- Conversion_Error_N --
12057 ------------------------
12059 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12060 begin
12061 if Report_Errs then
12062 Error_Msg_N (Msg, N);
12063 end if;
12064 end Conversion_Error_N;
12066 -------------------------
12067 -- Conversion_Error_NE --
12068 -------------------------
12070 procedure Conversion_Error_NE
12071 (Msg : String;
12072 N : Node_Or_Entity_Id;
12073 E : Node_Or_Entity_Id)
12075 begin
12076 if Report_Errs then
12077 Error_Msg_NE (Msg, N, E);
12078 end if;
12079 end Conversion_Error_NE;
12081 ----------------------
12082 -- In_Instance_Code --
12083 ----------------------
12085 function In_Instance_Code return Boolean is
12086 Par : Node_Id;
12088 begin
12089 if not In_Instance then
12090 return False;
12092 else
12093 Par := Parent (N);
12094 while Present (Par) loop
12096 -- The expression is part of an actual object if it appears in
12097 -- the generated object declaration in the instance.
12099 if Nkind (Par) = N_Object_Declaration
12100 and then Present (Corresponding_Generic_Association (Par))
12101 then
12102 return False;
12104 else
12105 exit when
12106 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12107 or else Nkind (Par) in N_Subprogram_Call
12108 or else Nkind (Par) in N_Declaration;
12109 end if;
12111 Par := Parent (Par);
12112 end loop;
12114 -- Otherwise the expression appears within the instantiated unit
12116 return True;
12117 end if;
12118 end In_Instance_Code;
12120 ----------------------------
12121 -- Valid_Array_Conversion --
12122 ----------------------------
12124 function Valid_Array_Conversion return Boolean is
12125 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12126 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12128 Opnd_Index : Node_Id;
12129 Opnd_Index_Type : Entity_Id;
12131 Target_Comp_Type : constant Entity_Id :=
12132 Component_Type (Target_Type);
12133 Target_Comp_Base : constant Entity_Id :=
12134 Base_Type (Target_Comp_Type);
12136 Target_Index : Node_Id;
12137 Target_Index_Type : Entity_Id;
12139 begin
12140 -- Error if wrong number of dimensions
12143 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12144 then
12145 Conversion_Error_N
12146 ("incompatible number of dimensions for conversion", Operand);
12147 return False;
12149 -- Number of dimensions matches
12151 else
12152 -- Loop through indexes of the two arrays
12154 Target_Index := First_Index (Target_Type);
12155 Opnd_Index := First_Index (Opnd_Type);
12156 while Present (Target_Index) and then Present (Opnd_Index) loop
12157 Target_Index_Type := Etype (Target_Index);
12158 Opnd_Index_Type := Etype (Opnd_Index);
12160 -- Error if index types are incompatible
12162 if not (Is_Integer_Type (Target_Index_Type)
12163 and then Is_Integer_Type (Opnd_Index_Type))
12164 and then (Root_Type (Target_Index_Type)
12165 /= Root_Type (Opnd_Index_Type))
12166 then
12167 Conversion_Error_N
12168 ("incompatible index types for array conversion",
12169 Operand);
12170 return False;
12171 end if;
12173 Next_Index (Target_Index);
12174 Next_Index (Opnd_Index);
12175 end loop;
12177 -- If component types have same base type, all set
12179 if Target_Comp_Base = Opnd_Comp_Base then
12180 null;
12182 -- Here if base types of components are not the same. The only
12183 -- time this is allowed is if we have anonymous access types.
12185 -- The conversion of arrays of anonymous access types can lead
12186 -- to dangling pointers. AI-392 formalizes the accessibility
12187 -- checks that must be applied to such conversions to prevent
12188 -- out-of-scope references.
12190 elsif Ekind_In
12191 (Target_Comp_Base, E_Anonymous_Access_Type,
12192 E_Anonymous_Access_Subprogram_Type)
12193 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12194 and then
12195 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12196 then
12197 if Type_Access_Level (Target_Type) <
12198 Deepest_Type_Access_Level (Opnd_Type)
12199 then
12200 if In_Instance_Body then
12201 Error_Msg_Warn := SPARK_Mode /= On;
12202 Conversion_Error_N
12203 ("source array type has deeper accessibility "
12204 & "level than target<<", Operand);
12205 Conversion_Error_N ("\Program_Error [<<", Operand);
12206 Rewrite (N,
12207 Make_Raise_Program_Error (Sloc (N),
12208 Reason => PE_Accessibility_Check_Failed));
12209 Set_Etype (N, Target_Type);
12210 return False;
12212 -- Conversion not allowed because of accessibility levels
12214 else
12215 Conversion_Error_N
12216 ("source array type has deeper accessibility "
12217 & "level than target", Operand);
12218 return False;
12219 end if;
12221 else
12222 null;
12223 end if;
12225 -- All other cases where component base types do not match
12227 else
12228 Conversion_Error_N
12229 ("incompatible component types for array conversion",
12230 Operand);
12231 return False;
12232 end if;
12234 -- Check that component subtypes statically match. For numeric
12235 -- types this means that both must be either constrained or
12236 -- unconstrained. For enumeration types the bounds must match.
12237 -- All of this is checked in Subtypes_Statically_Match.
12239 if not Subtypes_Statically_Match
12240 (Target_Comp_Type, Opnd_Comp_Type)
12241 then
12242 Conversion_Error_N
12243 ("component subtypes must statically match", Operand);
12244 return False;
12245 end if;
12246 end if;
12248 return True;
12249 end Valid_Array_Conversion;
12251 -----------------------------
12252 -- Valid_Tagged_Conversion --
12253 -----------------------------
12255 function Valid_Tagged_Conversion
12256 (Target_Type : Entity_Id;
12257 Opnd_Type : Entity_Id) return Boolean
12259 begin
12260 -- Upward conversions are allowed (RM 4.6(22))
12262 if Covers (Target_Type, Opnd_Type)
12263 or else Is_Ancestor (Target_Type, Opnd_Type)
12264 then
12265 return True;
12267 -- Downward conversion are allowed if the operand is class-wide
12268 -- (RM 4.6(23)).
12270 elsif Is_Class_Wide_Type (Opnd_Type)
12271 and then Covers (Opnd_Type, Target_Type)
12272 then
12273 return True;
12275 elsif Covers (Opnd_Type, Target_Type)
12276 or else Is_Ancestor (Opnd_Type, Target_Type)
12277 then
12278 return
12279 Conversion_Check (False,
12280 "downward conversion of tagged objects not allowed");
12282 -- Ada 2005 (AI-251): The conversion to/from interface types is
12283 -- always valid. The types involved may be class-wide (sub)types.
12285 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12286 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12287 then
12288 return True;
12290 -- If the operand is a class-wide type obtained through a limited_
12291 -- with clause, and the context includes the nonlimited view, use
12292 -- it to determine whether the conversion is legal.
12294 elsif Is_Class_Wide_Type (Opnd_Type)
12295 and then From_Limited_With (Opnd_Type)
12296 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12297 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12298 then
12299 return True;
12301 elsif Is_Access_Type (Opnd_Type)
12302 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12303 then
12304 return True;
12306 else
12307 Conversion_Error_NE
12308 ("invalid tagged conversion, not compatible with}",
12309 N, First_Subtype (Opnd_Type));
12310 return False;
12311 end if;
12312 end Valid_Tagged_Conversion;
12314 -- Start of processing for Valid_Conversion
12316 begin
12317 Check_Parameterless_Call (Operand);
12319 if Is_Overloaded (Operand) then
12320 declare
12321 I : Interp_Index;
12322 I1 : Interp_Index;
12323 It : Interp;
12324 It1 : Interp;
12325 N1 : Entity_Id;
12326 T1 : Entity_Id;
12328 begin
12329 -- Remove procedure calls, which syntactically cannot appear in
12330 -- this context, but which cannot be removed by type checking,
12331 -- because the context does not impose a type.
12333 -- The node may be labelled overloaded, but still contain only one
12334 -- interpretation because others were discarded earlier. If this
12335 -- is the case, retain the single interpretation if legal.
12337 Get_First_Interp (Operand, I, It);
12338 Opnd_Type := It.Typ;
12339 Get_Next_Interp (I, It);
12341 if Present (It.Typ)
12342 and then Opnd_Type /= Standard_Void_Type
12343 then
12344 -- More than one candidate interpretation is available
12346 Get_First_Interp (Operand, I, It);
12347 while Present (It.Typ) loop
12348 if It.Typ = Standard_Void_Type then
12349 Remove_Interp (I);
12350 end if;
12352 -- When compiling for a system where Address is of a visible
12353 -- integer type, spurious ambiguities can be produced when
12354 -- arithmetic operations have a literal operand and return
12355 -- System.Address or a descendant of it. These ambiguities
12356 -- are usually resolved by the context, but for conversions
12357 -- there is no context type and the removal of the spurious
12358 -- operations must be done explicitly here.
12360 if not Address_Is_Private
12361 and then Is_Descendant_Of_Address (It.Typ)
12362 then
12363 Remove_Interp (I);
12364 end if;
12366 Get_Next_Interp (I, It);
12367 end loop;
12368 end if;
12370 Get_First_Interp (Operand, I, It);
12371 I1 := I;
12372 It1 := It;
12374 if No (It.Typ) then
12375 Conversion_Error_N ("illegal operand in conversion", Operand);
12376 return False;
12377 end if;
12379 Get_Next_Interp (I, It);
12381 if Present (It.Typ) then
12382 N1 := It1.Nam;
12383 T1 := It1.Typ;
12384 It1 := Disambiguate (Operand, I1, I, Any_Type);
12386 if It1 = No_Interp then
12387 Conversion_Error_N
12388 ("ambiguous operand in conversion", Operand);
12390 -- If the interpretation involves a standard operator, use
12391 -- the location of the type, which may be user-defined.
12393 if Sloc (It.Nam) = Standard_Location then
12394 Error_Msg_Sloc := Sloc (It.Typ);
12395 else
12396 Error_Msg_Sloc := Sloc (It.Nam);
12397 end if;
12399 Conversion_Error_N -- CODEFIX
12400 ("\\possible interpretation#!", Operand);
12402 if Sloc (N1) = Standard_Location then
12403 Error_Msg_Sloc := Sloc (T1);
12404 else
12405 Error_Msg_Sloc := Sloc (N1);
12406 end if;
12408 Conversion_Error_N -- CODEFIX
12409 ("\\possible interpretation#!", Operand);
12411 return False;
12412 end if;
12413 end if;
12415 Set_Etype (Operand, It1.Typ);
12416 Opnd_Type := It1.Typ;
12417 end;
12418 end if;
12420 -- Deal with conversion of integer type to address if the pragma
12421 -- Allow_Integer_Address is in effect. We convert the conversion to
12422 -- an unchecked conversion in this case and we are all done.
12424 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12425 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12426 Analyze_And_Resolve (N, Target_Type);
12427 return True;
12428 end if;
12430 -- If we are within a child unit, check whether the type of the
12431 -- expression has an ancestor in a parent unit, in which case it
12432 -- belongs to its derivation class even if the ancestor is private.
12433 -- See RM 7.3.1 (5.2/3).
12435 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12437 -- Numeric types
12439 if Is_Numeric_Type (Target_Type) then
12441 -- A universal fixed expression can be converted to any numeric type
12443 if Opnd_Type = Universal_Fixed then
12444 return True;
12446 -- Also no need to check when in an instance or inlined body, because
12447 -- the legality has been established when the template was analyzed.
12448 -- Furthermore, numeric conversions may occur where only a private
12449 -- view of the operand type is visible at the instantiation point.
12450 -- This results in a spurious error if we check that the operand type
12451 -- is a numeric type.
12453 -- Note: in a previous version of this unit, the following tests were
12454 -- applied only for generated code (Comes_From_Source set to False),
12455 -- but in fact the test is required for source code as well, since
12456 -- this situation can arise in source code.
12458 elsif In_Instance_Code or else In_Inlined_Body then
12459 return True;
12461 -- Otherwise we need the conversion check
12463 else
12464 return Conversion_Check
12465 (Is_Numeric_Type (Opnd_Type)
12466 or else
12467 (Present (Inc_Ancestor)
12468 and then Is_Numeric_Type (Inc_Ancestor)),
12469 "illegal operand for numeric conversion");
12470 end if;
12472 -- Array types
12474 elsif Is_Array_Type (Target_Type) then
12475 if not Is_Array_Type (Opnd_Type)
12476 or else Opnd_Type = Any_Composite
12477 or else Opnd_Type = Any_String
12478 then
12479 Conversion_Error_N
12480 ("illegal operand for array conversion", Operand);
12481 return False;
12483 else
12484 return Valid_Array_Conversion;
12485 end if;
12487 -- Ada 2005 (AI-251): Internally generated conversions of access to
12488 -- interface types added to force the displacement of the pointer to
12489 -- reference the corresponding dispatch table.
12491 elsif not Comes_From_Source (N)
12492 and then Is_Access_Type (Target_Type)
12493 and then Is_Interface (Designated_Type (Target_Type))
12494 then
12495 return True;
12497 -- Ada 2005 (AI-251): Anonymous access types where target references an
12498 -- interface type.
12500 elsif Is_Access_Type (Opnd_Type)
12501 and then Ekind_In (Target_Type, E_General_Access_Type,
12502 E_Anonymous_Access_Type)
12503 and then Is_Interface (Directly_Designated_Type (Target_Type))
12504 then
12505 -- Check the static accessibility rule of 4.6(17). Note that the
12506 -- check is not enforced when within an instance body, since the
12507 -- RM requires such cases to be caught at run time.
12509 -- If the operand is a rewriting of an allocator no check is needed
12510 -- because there are no accessibility issues.
12512 if Nkind (Original_Node (N)) = N_Allocator then
12513 null;
12515 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12516 if Type_Access_Level (Opnd_Type) >
12517 Deepest_Type_Access_Level (Target_Type)
12518 then
12519 -- In an instance, this is a run-time check, but one we know
12520 -- will fail, so generate an appropriate warning. The raise
12521 -- will be generated by Expand_N_Type_Conversion.
12523 if In_Instance_Body then
12524 Error_Msg_Warn := SPARK_Mode /= On;
12525 Conversion_Error_N
12526 ("cannot convert local pointer to non-local access type<<",
12527 Operand);
12528 Conversion_Error_N ("\Program_Error [<<", Operand);
12530 else
12531 Conversion_Error_N
12532 ("cannot convert local pointer to non-local access type",
12533 Operand);
12534 return False;
12535 end if;
12537 -- Special accessibility checks are needed in the case of access
12538 -- discriminants declared for a limited type.
12540 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12541 and then not Is_Local_Anonymous_Access (Opnd_Type)
12542 then
12543 -- When the operand is a selected access discriminant the check
12544 -- needs to be made against the level of the object denoted by
12545 -- the prefix of the selected name (Object_Access_Level handles
12546 -- checking the prefix of the operand for this case).
12548 if Nkind (Operand) = N_Selected_Component
12549 and then Object_Access_Level (Operand) >
12550 Deepest_Type_Access_Level (Target_Type)
12551 then
12552 -- In an instance, this is a run-time check, but one we know
12553 -- will fail, so generate an appropriate warning. The raise
12554 -- will be generated by Expand_N_Type_Conversion.
12556 if In_Instance_Body then
12557 Error_Msg_Warn := SPARK_Mode /= On;
12558 Conversion_Error_N
12559 ("cannot convert access discriminant to non-local "
12560 & "access type<<", Operand);
12561 Conversion_Error_N ("\Program_Error [<<", Operand);
12563 -- Real error if not in instance body
12565 else
12566 Conversion_Error_N
12567 ("cannot convert access discriminant to non-local "
12568 & "access type", Operand);
12569 return False;
12570 end if;
12571 end if;
12573 -- The case of a reference to an access discriminant from
12574 -- within a limited type declaration (which will appear as
12575 -- a discriminal) is always illegal because the level of the
12576 -- discriminant is considered to be deeper than any (nameable)
12577 -- access type.
12579 if Is_Entity_Name (Operand)
12580 and then not Is_Local_Anonymous_Access (Opnd_Type)
12581 and then
12582 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12583 and then Present (Discriminal_Link (Entity (Operand)))
12584 then
12585 Conversion_Error_N
12586 ("discriminant has deeper accessibility level than target",
12587 Operand);
12588 return False;
12589 end if;
12590 end if;
12591 end if;
12593 return True;
12595 -- General and anonymous access types
12597 elsif Ekind_In (Target_Type, E_General_Access_Type,
12598 E_Anonymous_Access_Type)
12599 and then
12600 Conversion_Check
12601 (Is_Access_Type (Opnd_Type)
12602 and then not
12603 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12604 E_Access_Protected_Subprogram_Type),
12605 "must be an access-to-object type")
12606 then
12607 if Is_Access_Constant (Opnd_Type)
12608 and then not Is_Access_Constant (Target_Type)
12609 then
12610 Conversion_Error_N
12611 ("access-to-constant operand type not allowed", Operand);
12612 return False;
12613 end if;
12615 -- Check the static accessibility rule of 4.6(17). Note that the
12616 -- check is not enforced when within an instance body, since the RM
12617 -- requires such cases to be caught at run time.
12619 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12620 or else Is_Local_Anonymous_Access (Target_Type)
12621 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12622 N_Object_Declaration
12623 then
12624 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12625 -- conversions from an anonymous access type to a named general
12626 -- access type. Such conversions are not allowed in the case of
12627 -- access parameters and stand-alone objects of an anonymous
12628 -- access type. The implicit conversion case is recognized by
12629 -- testing that Comes_From_Source is False and that it's been
12630 -- rewritten. The Comes_From_Source test isn't sufficient because
12631 -- nodes in inlined calls to predefined library routines can have
12632 -- Comes_From_Source set to False. (Is there a better way to test
12633 -- for implicit conversions???)
12635 if Ada_Version >= Ada_2012
12636 and then not Comes_From_Source (N)
12637 and then N /= Original_Node (N)
12638 and then Ekind (Target_Type) = E_General_Access_Type
12639 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12640 then
12641 if Is_Itype (Opnd_Type) then
12643 -- Implicit conversions aren't allowed for objects of an
12644 -- anonymous access type, since such objects have nonstatic
12645 -- levels in Ada 2012.
12647 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12648 N_Object_Declaration
12649 then
12650 Conversion_Error_N
12651 ("implicit conversion of stand-alone anonymous "
12652 & "access object not allowed", Operand);
12653 return False;
12655 -- Implicit conversions aren't allowed for anonymous access
12656 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12657 -- is done to exclude anonymous access results.
12659 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12660 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12661 N_Function_Specification,
12662 N_Procedure_Specification)
12663 then
12664 Conversion_Error_N
12665 ("implicit conversion of anonymous access formal "
12666 & "not allowed", Operand);
12667 return False;
12669 -- This is a case where there's an enclosing object whose
12670 -- to which the "statically deeper than" relationship does
12671 -- not apply (such as an access discriminant selected from
12672 -- a dereference of an access parameter).
12674 elsif Object_Access_Level (Operand)
12675 = Scope_Depth (Standard_Standard)
12676 then
12677 Conversion_Error_N
12678 ("implicit conversion of anonymous access value "
12679 & "not allowed", Operand);
12680 return False;
12682 -- In other cases, the level of the operand's type must be
12683 -- statically less deep than that of the target type, else
12684 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12686 elsif Type_Access_Level (Opnd_Type) >
12687 Deepest_Type_Access_Level (Target_Type)
12688 then
12689 Conversion_Error_N
12690 ("implicit conversion of anonymous access value "
12691 & "violates accessibility", Operand);
12692 return False;
12693 end if;
12694 end if;
12696 elsif Type_Access_Level (Opnd_Type) >
12697 Deepest_Type_Access_Level (Target_Type)
12698 then
12699 -- In an instance, this is a run-time check, but one we know
12700 -- will fail, so generate an appropriate warning. The raise
12701 -- will be generated by Expand_N_Type_Conversion.
12703 if In_Instance_Body then
12704 Error_Msg_Warn := SPARK_Mode /= On;
12705 Conversion_Error_N
12706 ("cannot convert local pointer to non-local access type<<",
12707 Operand);
12708 Conversion_Error_N ("\Program_Error [<<", Operand);
12710 -- If not in an instance body, this is a real error
12712 else
12713 -- Avoid generation of spurious error message
12715 if not Error_Posted (N) then
12716 Conversion_Error_N
12717 ("cannot convert local pointer to non-local access type",
12718 Operand);
12719 end if;
12721 return False;
12722 end if;
12724 -- Special accessibility checks are needed in the case of access
12725 -- discriminants declared for a limited type.
12727 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12728 and then not Is_Local_Anonymous_Access (Opnd_Type)
12729 then
12730 -- When the operand is a selected access discriminant the check
12731 -- needs to be made against the level of the object denoted by
12732 -- the prefix of the selected name (Object_Access_Level handles
12733 -- checking the prefix of the operand for this case).
12735 if Nkind (Operand) = N_Selected_Component
12736 and then Object_Access_Level (Operand) >
12737 Deepest_Type_Access_Level (Target_Type)
12738 then
12739 -- In an instance, this is a run-time check, but one we know
12740 -- will fail, so generate an appropriate warning. The raise
12741 -- will be generated by Expand_N_Type_Conversion.
12743 if In_Instance_Body then
12744 Error_Msg_Warn := SPARK_Mode /= On;
12745 Conversion_Error_N
12746 ("cannot convert access discriminant to non-local "
12747 & "access type<<", Operand);
12748 Conversion_Error_N ("\Program_Error [<<", Operand);
12750 -- If not in an instance body, this is a real error
12752 else
12753 Conversion_Error_N
12754 ("cannot convert access discriminant to non-local "
12755 & "access type", Operand);
12756 return False;
12757 end if;
12758 end if;
12760 -- The case of a reference to an access discriminant from
12761 -- within a limited type declaration (which will appear as
12762 -- a discriminal) is always illegal because the level of the
12763 -- discriminant is considered to be deeper than any (nameable)
12764 -- access type.
12766 if Is_Entity_Name (Operand)
12767 and then
12768 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12769 and then Present (Discriminal_Link (Entity (Operand)))
12770 then
12771 Conversion_Error_N
12772 ("discriminant has deeper accessibility level than target",
12773 Operand);
12774 return False;
12775 end if;
12776 end if;
12777 end if;
12779 -- In the presence of limited_with clauses we have to use nonlimited
12780 -- views, if available.
12782 Check_Limited : declare
12783 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12784 -- Helper function to handle limited views
12786 --------------------------
12787 -- Full_Designated_Type --
12788 --------------------------
12790 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12791 Desig : constant Entity_Id := Designated_Type (T);
12793 begin
12794 -- Handle the limited view of a type
12796 if From_Limited_With (Desig)
12797 and then Has_Non_Limited_View (Desig)
12798 then
12799 return Available_View (Desig);
12800 else
12801 return Desig;
12802 end if;
12803 end Full_Designated_Type;
12805 -- Local Declarations
12807 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12808 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12810 Same_Base : constant Boolean :=
12811 Base_Type (Target) = Base_Type (Opnd);
12813 -- Start of processing for Check_Limited
12815 begin
12816 if Is_Tagged_Type (Target) then
12817 return Valid_Tagged_Conversion (Target, Opnd);
12819 else
12820 if not Same_Base then
12821 Conversion_Error_NE
12822 ("target designated type not compatible with }",
12823 N, Base_Type (Opnd));
12824 return False;
12826 -- Ada 2005 AI-384: legality rule is symmetric in both
12827 -- designated types. The conversion is legal (with possible
12828 -- constraint check) if either designated type is
12829 -- unconstrained.
12831 elsif Subtypes_Statically_Match (Target, Opnd)
12832 or else
12833 (Has_Discriminants (Target)
12834 and then
12835 (not Is_Constrained (Opnd)
12836 or else not Is_Constrained (Target)))
12837 then
12838 -- Special case, if Value_Size has been used to make the
12839 -- sizes different, the conversion is not allowed even
12840 -- though the subtypes statically match.
12842 if Known_Static_RM_Size (Target)
12843 and then Known_Static_RM_Size (Opnd)
12844 and then RM_Size (Target) /= RM_Size (Opnd)
12845 then
12846 Conversion_Error_NE
12847 ("target designated subtype not compatible with }",
12848 N, Opnd);
12849 Conversion_Error_NE
12850 ("\because sizes of the two designated subtypes differ",
12851 N, Opnd);
12852 return False;
12854 -- Normal case where conversion is allowed
12856 else
12857 return True;
12858 end if;
12860 else
12861 Error_Msg_NE
12862 ("target designated subtype not compatible with }",
12863 N, Opnd);
12864 return False;
12865 end if;
12866 end if;
12867 end Check_Limited;
12869 -- Access to subprogram types. If the operand is an access parameter,
12870 -- the type has a deeper accessibility that any master, and cannot be
12871 -- assigned. We must make an exception if the conversion is part of an
12872 -- assignment and the target is the return object of an extended return
12873 -- statement, because in that case the accessibility check takes place
12874 -- after the return.
12876 elsif Is_Access_Subprogram_Type (Target_Type)
12878 -- Note: this test of Opnd_Type is there to prevent entering this
12879 -- branch in the case of a remote access to subprogram type, which
12880 -- is internally represented as an E_Record_Type.
12882 and then Is_Access_Type (Opnd_Type)
12883 then
12884 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12885 and then Is_Entity_Name (Operand)
12886 and then Ekind (Entity (Operand)) = E_In_Parameter
12887 and then
12888 (Nkind (Parent (N)) /= N_Assignment_Statement
12889 or else not Is_Entity_Name (Name (Parent (N)))
12890 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12891 then
12892 Conversion_Error_N
12893 ("illegal attempt to store anonymous access to subprogram",
12894 Operand);
12895 Conversion_Error_N
12896 ("\value has deeper accessibility than any master "
12897 & "(RM 3.10.2 (13))",
12898 Operand);
12900 Error_Msg_NE
12901 ("\use named access type for& instead of access parameter",
12902 Operand, Entity (Operand));
12903 end if;
12905 -- Check that the designated types are subtype conformant
12907 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12908 Old_Id => Designated_Type (Opnd_Type),
12909 Err_Loc => N);
12911 -- Check the static accessibility rule of 4.6(20)
12913 if Type_Access_Level (Opnd_Type) >
12914 Deepest_Type_Access_Level (Target_Type)
12915 then
12916 Conversion_Error_N
12917 ("operand type has deeper accessibility level than target",
12918 Operand);
12920 -- Check that if the operand type is declared in a generic body,
12921 -- then the target type must be declared within that same body
12922 -- (enforces last sentence of 4.6(20)).
12924 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12925 declare
12926 O_Gen : constant Node_Id :=
12927 Enclosing_Generic_Body (Opnd_Type);
12929 T_Gen : Node_Id;
12931 begin
12932 T_Gen := Enclosing_Generic_Body (Target_Type);
12933 while Present (T_Gen) and then T_Gen /= O_Gen loop
12934 T_Gen := Enclosing_Generic_Body (T_Gen);
12935 end loop;
12937 if T_Gen /= O_Gen then
12938 Conversion_Error_N
12939 ("target type must be declared in same generic body "
12940 & "as operand type", N);
12941 end if;
12942 end;
12943 end if;
12945 return True;
12947 -- Remote access to subprogram types
12949 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12950 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12951 then
12952 -- It is valid to convert from one RAS type to another provided
12953 -- that their specification statically match.
12955 -- Note: at this point, remote access to subprogram types have been
12956 -- expanded to their E_Record_Type representation, and we need to
12957 -- go back to the original access type definition using the
12958 -- Corresponding_Remote_Type attribute in order to check that the
12959 -- designated profiles match.
12961 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12962 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12964 Check_Subtype_Conformant
12965 (New_Id =>
12966 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12967 Old_Id =>
12968 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12969 Err_Loc =>
12971 return True;
12973 -- If it was legal in the generic, it's legal in the instance
12975 elsif In_Instance_Body then
12976 return True;
12978 -- If both are tagged types, check legality of view conversions
12980 elsif Is_Tagged_Type (Target_Type)
12981 and then
12982 Is_Tagged_Type (Opnd_Type)
12983 then
12984 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12986 -- Types derived from the same root type are convertible
12988 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12989 return True;
12991 -- In an instance or an inlined body, there may be inconsistent views of
12992 -- the same type, or of types derived from a common root.
12994 elsif (In_Instance or In_Inlined_Body)
12995 and then
12996 Root_Type (Underlying_Type (Target_Type)) =
12997 Root_Type (Underlying_Type (Opnd_Type))
12998 then
12999 return True;
13001 -- Special check for common access type error case
13003 elsif Ekind (Target_Type) = E_Access_Type
13004 and then Is_Access_Type (Opnd_Type)
13005 then
13006 Conversion_Error_N ("target type must be general access type!", N);
13007 Conversion_Error_NE -- CODEFIX
13008 ("add ALL to }!", N, Target_Type);
13009 return False;
13011 -- Here we have a real conversion error
13013 else
13014 Conversion_Error_NE
13015 ("invalid conversion, not compatible with }", N, Opnd_Type);
13016 return False;
13017 end if;
13018 end Valid_Conversion;
13020 end Sem_Res;