2018-03-02 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ada / sem_ch5.adb
blobb94c9e8c17ba3787e35fde57375250d53e8ce92e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Lib; use Lib;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Elab; use Sem_Elab;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Ch5 is
67 Current_Assignment : Node_Id := Empty;
68 -- This variable holds the node for an assignment that contains target
69 -- names. The corresponding flag has been set by the parser, and when
70 -- set the analysis of the RHS must be done with all expansion disabled,
71 -- because the assignment is reanalyzed after expansion has replaced all
72 -- occurrences of the target name appropriately.
74 Unblocked_Exit_Count : Nat := 0;
75 -- This variable is used when processing if statements, case statements,
76 -- and block statements. It counts the number of exit points that are not
77 -- blocked by unconditional transfer instructions: for IF and CASE, these
78 -- are the branches of the conditional; for a block, they are the statement
79 -- sequence of the block, and the statement sequences of any exception
80 -- handlers that are part of the block. When processing is complete, if
81 -- this count is zero, it means that control cannot fall through the IF,
82 -- CASE or block statement. This is used for the generation of warning
83 -- messages. This variable is recursively saved on entry to processing the
84 -- construct, and restored on exit.
86 procedure Preanalyze_Range (R_Copy : Node_Id);
87 -- Determine expected type of range or domain of iteration of Ada 2012
88 -- loop by analyzing separate copy. Do the analysis and resolution of the
89 -- copy of the bound(s) with expansion disabled, to prevent the generation
90 -- of finalization actions. This prevents memory leaks when the bounds
91 -- contain calls to functions returning controlled arrays or when the
92 -- domain of iteration is a container.
94 ------------------------
95 -- Analyze_Assignment --
96 ------------------------
98 -- WARNING: This routine manages Ghost regions. Return statements must be
99 -- replaced by gotos which jump to the end of the routine and restore the
100 -- Ghost mode.
102 procedure Analyze_Assignment (N : Node_Id) is
103 Lhs : constant Node_Id := Name (N);
104 Rhs : Node_Id := Expression (N);
106 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
107 -- N is the node for the left hand side of an assignment, and it is not
108 -- a variable. This routine issues an appropriate diagnostic.
110 function Is_Protected_Part_Of_Constituent
111 (Nod : Node_Id) return Boolean;
112 -- Determine whether arbitrary node Nod denotes a Part_Of constituent of
113 -- a single protected type.
115 procedure Kill_Lhs;
116 -- This is called to kill current value settings of a simple variable
117 -- on the left hand side. We call it if we find any error in analyzing
118 -- the assignment, and at the end of processing before setting any new
119 -- current values in place.
121 procedure Set_Assignment_Type
122 (Opnd : Node_Id;
123 Opnd_Type : in out Entity_Id);
124 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
125 -- nominal subtype. This procedure is used to deal with cases where the
126 -- nominal subtype must be replaced by the actual subtype.
128 procedure Transform_BIP_Assignment (Typ : Entity_Id);
129 function Should_Transform_BIP_Assignment
130 (Typ : Entity_Id) return Boolean;
131 -- If the right-hand side of an assignment statement is a build-in-place
132 -- call we cannot build in place, so we insert a temp initialized with
133 -- the call, and transform the assignment statement to copy the temp.
134 -- Transform_BIP_Assignment does the tranformation, and
135 -- Should_Transform_BIP_Assignment determines whether we should.
136 -- The same goes for qualified expressions and conversions whose
137 -- operand is such a call.
139 -- This is only for nonlimited types; assignment statements are illegal
140 -- for limited types, but are generated internally for aggregates and
141 -- init procs. These limited-type are not really assignment statements
142 -- -- conceptually, they are initializations, so should not be
143 -- transformed.
145 -- Similarly, for nonlimited types, aggregates and init procs generate
146 -- assignment statements that are really initializations. These are
147 -- marked No_Ctrl_Actions.
149 function Within_Function return Boolean;
150 -- Determine whether the current scope is a function or appears within
151 -- one.
153 -------------------------------
154 -- Diagnose_Non_Variable_Lhs --
155 -------------------------------
157 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
158 begin
159 -- Not worth posting another error if left hand side already flagged
160 -- as being illegal in some respect.
162 if Error_Posted (N) then
163 return;
165 -- Some special bad cases of entity names
167 elsif Is_Entity_Name (N) then
168 declare
169 Ent : constant Entity_Id := Entity (N);
171 begin
172 if Ekind (Ent) = E_In_Parameter then
173 Error_Msg_N
174 ("assignment to IN mode parameter not allowed", N);
175 return;
177 -- Renamings of protected private components are turned into
178 -- constants when compiling a protected function. In the case
179 -- of single protected types, the private component appears
180 -- directly.
182 elsif (Is_Prival (Ent) and then Within_Function)
183 or else
184 (Ekind (Ent) = E_Component
185 and then Is_Protected_Type (Scope (Ent)))
186 then
187 Error_Msg_N
188 ("protected function cannot modify protected object", N);
189 return;
191 elsif Ekind (Ent) = E_Loop_Parameter then
192 Error_Msg_N ("assignment to loop parameter not allowed", N);
193 return;
194 end if;
195 end;
197 -- For indexed components, test prefix if it is in array. We do not
198 -- want to recurse for cases where the prefix is a pointer, since we
199 -- may get a message confusing the pointer and what it references.
201 elsif Nkind (N) = N_Indexed_Component
202 and then Is_Array_Type (Etype (Prefix (N)))
203 then
204 Diagnose_Non_Variable_Lhs (Prefix (N));
205 return;
207 -- Another special case for assignment to discriminant
209 elsif Nkind (N) = N_Selected_Component then
210 if Present (Entity (Selector_Name (N)))
211 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
212 then
213 Error_Msg_N ("assignment to discriminant not allowed", N);
214 return;
216 -- For selection from record, diagnose prefix, but note that again
217 -- we only do this for a record, not e.g. for a pointer.
219 elsif Is_Record_Type (Etype (Prefix (N))) then
220 Diagnose_Non_Variable_Lhs (Prefix (N));
221 return;
222 end if;
223 end if;
225 -- If we fall through, we have no special message to issue
227 Error_Msg_N ("left hand side of assignment must be a variable", N);
228 end Diagnose_Non_Variable_Lhs;
230 --------------------------------------
231 -- Is_Protected_Part_Of_Constituent --
232 --------------------------------------
234 function Is_Protected_Part_Of_Constituent
235 (Nod : Node_Id) return Boolean
237 Encap_Id : Entity_Id;
238 Var_Id : Entity_Id;
240 begin
241 -- Abstract states and variables may act as Part_Of constituents of
242 -- single protected types, however only variables can be modified by
243 -- an assignment.
245 if Is_Entity_Name (Nod) then
246 Var_Id := Entity (Nod);
248 if Present (Var_Id) and then Ekind (Var_Id) = E_Variable then
249 Encap_Id := Encapsulating_State (Var_Id);
251 -- To qualify, the node must denote a reference to a variable
252 -- whose encapsulating state is a single protected object.
254 return
255 Present (Encap_Id)
256 and then Is_Single_Protected_Object (Encap_Id);
257 end if;
258 end if;
260 return False;
261 end Is_Protected_Part_Of_Constituent;
263 --------------
264 -- Kill_Lhs --
265 --------------
267 procedure Kill_Lhs is
268 begin
269 if Is_Entity_Name (Lhs) then
270 declare
271 Ent : constant Entity_Id := Entity (Lhs);
272 begin
273 if Present (Ent) then
274 Kill_Current_Values (Ent);
275 end if;
276 end;
277 end if;
278 end Kill_Lhs;
280 -------------------------
281 -- Set_Assignment_Type --
282 -------------------------
284 procedure Set_Assignment_Type
285 (Opnd : Node_Id;
286 Opnd_Type : in out Entity_Id)
288 Decl : Node_Id;
290 begin
291 Require_Entity (Opnd);
293 -- If the assignment operand is an in-out or out parameter, then we
294 -- get the actual subtype (needed for the unconstrained case). If the
295 -- operand is the actual in an entry declaration, then within the
296 -- accept statement it is replaced with a local renaming, which may
297 -- also have an actual subtype.
299 if Is_Entity_Name (Opnd)
300 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
301 or else Ekind_In (Entity (Opnd),
302 E_In_Out_Parameter,
303 E_Generic_In_Out_Parameter)
304 or else
305 (Ekind (Entity (Opnd)) = E_Variable
306 and then Nkind (Parent (Entity (Opnd))) =
307 N_Object_Renaming_Declaration
308 and then Nkind (Parent (Parent (Entity (Opnd)))) =
309 N_Accept_Statement))
310 then
311 Opnd_Type := Get_Actual_Subtype (Opnd);
313 -- If assignment operand is a component reference, then we get the
314 -- actual subtype of the component for the unconstrained case.
316 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
317 and then not Is_Unchecked_Union (Opnd_Type)
318 then
319 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
321 if Present (Decl) then
322 Insert_Action (N, Decl);
323 Mark_Rewrite_Insertion (Decl);
324 Analyze (Decl);
325 Opnd_Type := Defining_Identifier (Decl);
326 Set_Etype (Opnd, Opnd_Type);
327 Freeze_Itype (Opnd_Type, N);
329 elsif Is_Constrained (Etype (Opnd)) then
330 Opnd_Type := Etype (Opnd);
331 end if;
333 -- For slice, use the constrained subtype created for the slice
335 elsif Nkind (Opnd) = N_Slice then
336 Opnd_Type := Etype (Opnd);
337 end if;
338 end Set_Assignment_Type;
340 -------------------------------------
341 -- Should_Transform_BIP_Assignment --
342 -------------------------------------
344 function Should_Transform_BIP_Assignment
345 (Typ : Entity_Id) return Boolean
347 Result : Boolean;
349 begin
350 if Expander_Active
351 and then not Is_Limited_View (Typ)
352 and then Is_Build_In_Place_Result_Type (Typ)
353 and then not No_Ctrl_Actions (N)
354 then
355 -- This function is called early, before name resolution is
356 -- complete, so we have to deal with things that might turn into
357 -- function calls later. N_Function_Call and N_Op nodes are the
358 -- obvious case. An N_Identifier or N_Expanded_Name is a
359 -- parameterless function call if it denotes a function.
360 -- Finally, an attribute reference can be a function call.
362 case Nkind (Unqual_Conv (Rhs)) is
363 when N_Function_Call
364 | N_Op
366 Result := True;
368 when N_Expanded_Name
369 | N_Identifier
371 case Ekind (Entity (Unqual_Conv (Rhs))) is
372 when E_Function
373 | E_Operator
375 Result := True;
377 when others =>
378 Result := False;
379 end case;
381 when N_Attribute_Reference =>
382 Result := Attribute_Name (Unqual_Conv (Rhs)) = Name_Input;
383 -- T'Input will turn into a call whose result type is T
385 when others =>
386 Result := False;
387 end case;
388 else
389 Result := False;
390 end if;
392 return Result;
393 end Should_Transform_BIP_Assignment;
395 ------------------------------
396 -- Transform_BIP_Assignment --
397 ------------------------------
399 procedure Transform_BIP_Assignment (Typ : Entity_Id) is
401 -- Tranform "X : [constant] T := F (...);" into:
403 -- Temp : constant T := F (...);
404 -- X := Temp;
406 Loc : constant Source_Ptr := Sloc (N);
407 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'Y', Rhs);
408 Obj_Decl : constant Node_Id :=
409 Make_Object_Declaration (Loc,
410 Defining_Identifier => Def_Id,
411 Constant_Present => True,
412 Object_Definition => New_Occurrence_Of (Typ, Loc),
413 Expression => Rhs,
414 Has_Init_Expression => True);
416 begin
417 Set_Etype (Def_Id, Typ);
418 Set_Expression (N, New_Occurrence_Of (Def_Id, Loc));
420 -- At this point, Rhs is no longer equal to Expression (N), so:
422 Rhs := Expression (N);
424 Insert_Action (N, Obj_Decl);
425 end Transform_BIP_Assignment;
427 ---------------------
428 -- Within_Function --
429 ---------------------
431 function Within_Function return Boolean is
432 Scop_Id : constant Entity_Id := Current_Scope;
434 begin
435 if Ekind (Scop_Id) = E_Function then
436 return True;
438 elsif Ekind (Enclosing_Dynamic_Scope (Scop_Id)) = E_Function then
439 return True;
440 end if;
442 return False;
443 end Within_Function;
445 -- Local variables
447 T1 : Entity_Id;
448 T2 : Entity_Id;
450 Save_Full_Analysis : Boolean := False;
451 -- Force initialization to facilitate static analysis
453 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
454 -- Save the Ghost mode to restore on exit
456 -- Start of processing for Analyze_Assignment
458 begin
459 Mark_Coextensions (N, Rhs);
461 -- Preserve relevant elaboration-related attributes of the context which
462 -- are no longer available or very expensive to recompute once analysis,
463 -- resolution, and expansion are over.
465 Mark_Elaboration_Attributes
466 (N_Id => N,
467 Checks => True,
468 Modes => True);
470 -- Analyze the target of the assignment first in case the expression
471 -- contains references to Ghost entities. The checks that verify the
472 -- proper use of a Ghost entity need to know the enclosing context.
474 Analyze (Lhs);
476 -- An assignment statement is Ghost when the left hand side denotes a
477 -- Ghost entity. Set the mode now to ensure that any nodes generated
478 -- during analysis and expansion are properly marked as Ghost.
480 if Has_Target_Names (N) then
481 Current_Assignment := N;
482 Expander_Mode_Save_And_Set (False);
483 Save_Full_Analysis := Full_Analysis;
484 Full_Analysis := False;
485 else
486 Current_Assignment := Empty;
487 end if;
489 Mark_And_Set_Ghost_Assignment (N);
490 Analyze (Rhs);
492 -- Ensure that we never do an assignment on a variable marked as
493 -- Is_Safe_To_Reevaluate.
495 pragma Assert
496 (not Is_Entity_Name (Lhs)
497 or else Ekind (Entity (Lhs)) /= E_Variable
498 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
500 -- Start type analysis for assignment
502 T1 := Etype (Lhs);
504 -- In the most general case, both Lhs and Rhs can be overloaded, and we
505 -- must compute the intersection of the possible types on each side.
507 if Is_Overloaded (Lhs) then
508 declare
509 I : Interp_Index;
510 It : Interp;
512 begin
513 T1 := Any_Type;
514 Get_First_Interp (Lhs, I, It);
516 while Present (It.Typ) loop
518 -- An indexed component with generalized indexing is always
519 -- overloaded with the corresponding dereference. Discard the
520 -- interpretation that yields a reference type, which is not
521 -- assignable.
523 if Nkind (Lhs) = N_Indexed_Component
524 and then Present (Generalized_Indexing (Lhs))
525 and then Has_Implicit_Dereference (It.Typ)
526 then
527 null;
529 -- This may be a call to a parameterless function through an
530 -- implicit dereference, so discard interpretation as well.
532 elsif Is_Entity_Name (Lhs)
533 and then Has_Implicit_Dereference (It.Typ)
534 then
535 null;
537 elsif Has_Compatible_Type (Rhs, It.Typ) then
538 if T1 = Any_Type then
539 T1 := It.Typ;
540 else
541 -- An explicit dereference is overloaded if the prefix
542 -- is. Try to remove the ambiguity on the prefix, the
543 -- error will be posted there if the ambiguity is real.
545 if Nkind (Lhs) = N_Explicit_Dereference then
546 declare
547 PI : Interp_Index;
548 PI1 : Interp_Index := 0;
549 PIt : Interp;
550 Found : Boolean;
552 begin
553 Found := False;
554 Get_First_Interp (Prefix (Lhs), PI, PIt);
556 while Present (PIt.Typ) loop
557 if Is_Access_Type (PIt.Typ)
558 and then Has_Compatible_Type
559 (Rhs, Designated_Type (PIt.Typ))
560 then
561 if Found then
562 PIt :=
563 Disambiguate (Prefix (Lhs),
564 PI1, PI, Any_Type);
566 if PIt = No_Interp then
567 Error_Msg_N
568 ("ambiguous left-hand side in "
569 & "assignment", Lhs);
570 exit;
571 else
572 Resolve (Prefix (Lhs), PIt.Typ);
573 end if;
575 exit;
576 else
577 Found := True;
578 PI1 := PI;
579 end if;
580 end if;
582 Get_Next_Interp (PI, PIt);
583 end loop;
584 end;
586 else
587 Error_Msg_N
588 ("ambiguous left-hand side in assignment", Lhs);
589 exit;
590 end if;
591 end if;
592 end if;
594 Get_Next_Interp (I, It);
595 end loop;
596 end;
598 if T1 = Any_Type then
599 Error_Msg_N
600 ("no valid types for left-hand side for assignment", Lhs);
601 Kill_Lhs;
602 goto Leave;
603 end if;
604 end if;
606 -- Deal with build-in-place calls for nonlimited types. We don't do this
607 -- later, because resolving the rhs tranforms it incorrectly for build-
608 -- in-place.
610 if Should_Transform_BIP_Assignment (Typ => T1) then
612 -- In certain cases involving user-defined concatenation operators,
613 -- we need to resolve the right-hand side before transforming the
614 -- assignment.
616 case Nkind (Unqual_Conv (Rhs)) is
617 when N_Function_Call =>
618 declare
619 Actual : Node_Id :=
620 First (Parameter_Associations (Unqual_Conv (Rhs)));
621 Actual_Exp : Node_Id;
623 begin
624 while Present (Actual) loop
625 if Nkind (Actual) = N_Parameter_Association then
626 Actual_Exp := Explicit_Actual_Parameter (Actual);
627 else
628 Actual_Exp := Actual;
629 end if;
631 if Nkind (Actual_Exp) = N_Op_Concat then
632 Resolve (Rhs, T1);
633 exit;
634 end if;
636 Next (Actual);
637 end loop;
638 end;
640 when N_Attribute_Reference
641 | N_Expanded_Name
642 | N_Identifier
643 | N_Op
645 null;
647 when others =>
648 raise Program_Error;
649 end case;
651 Transform_BIP_Assignment (Typ => T1);
652 end if;
654 pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));
656 -- The resulting assignment type is T1, so now we will resolve the left
657 -- hand side of the assignment using this determined type.
659 Resolve (Lhs, T1);
661 -- Cases where Lhs is not a variable. In an instance or an inlined body
662 -- no need for further check because assignment was legal in template.
664 if In_Inlined_Body then
665 null;
667 elsif not Is_Variable (Lhs) then
669 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
670 -- protected object.
672 declare
673 Ent : Entity_Id;
674 S : Entity_Id;
676 begin
677 if Ada_Version >= Ada_2005 then
679 -- Handle chains of renamings
681 Ent := Lhs;
682 while Nkind (Ent) in N_Has_Entity
683 and then Present (Entity (Ent))
684 and then Present (Renamed_Object (Entity (Ent)))
685 loop
686 Ent := Renamed_Object (Entity (Ent));
687 end loop;
689 if (Nkind (Ent) = N_Attribute_Reference
690 and then Attribute_Name (Ent) = Name_Priority)
692 -- Renamings of the attribute Priority applied to protected
693 -- objects have been previously expanded into calls to the
694 -- Get_Ceiling run-time subprogram.
696 or else Is_Expanded_Priority_Attribute (Ent)
697 then
698 -- The enclosing subprogram cannot be a protected function
700 S := Current_Scope;
701 while not (Is_Subprogram (S)
702 and then Convention (S) = Convention_Protected)
703 and then S /= Standard_Standard
704 loop
705 S := Scope (S);
706 end loop;
708 if Ekind (S) = E_Function
709 and then Convention (S) = Convention_Protected
710 then
711 Error_Msg_N
712 ("protected function cannot modify protected object",
713 Lhs);
714 end if;
716 -- Changes of the ceiling priority of the protected object
717 -- are only effective if the Ceiling_Locking policy is in
718 -- effect (AARM D.5.2 (5/2)).
720 if Locking_Policy /= 'C' then
721 Error_Msg_N
722 ("assignment to the attribute PRIORITY has no effect??",
723 Lhs);
724 Error_Msg_N
725 ("\since no Locking_Policy has been specified??", Lhs);
726 end if;
728 goto Leave;
729 end if;
730 end if;
731 end;
733 Diagnose_Non_Variable_Lhs (Lhs);
734 goto Leave;
736 -- Error of assigning to limited type. We do however allow this in
737 -- certain cases where the front end generates the assignments.
739 elsif Is_Limited_Type (T1)
740 and then not Assignment_OK (Lhs)
741 and then not Assignment_OK (Original_Node (Lhs))
742 then
743 -- CPP constructors can only be called in declarations
745 if Is_CPP_Constructor_Call (Rhs) then
746 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
747 else
748 Error_Msg_N
749 ("left hand of assignment must not be limited type", Lhs);
750 Explain_Limited_Type (T1, Lhs);
751 end if;
753 goto Leave;
755 -- A class-wide type may be a limited view. This illegal case is not
756 -- caught by previous checks.
758 elsif Ekind (T1) = E_Class_Wide_Type and then From_Limited_With (T1) then
759 Error_Msg_NE ("invalid use of limited view of&", Lhs, T1);
760 goto Leave;
762 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
763 -- abstract. This is only checked when the assignment Comes_From_Source,
764 -- because in some cases the expander generates such assignments (such
765 -- in the _assign operation for an abstract type).
767 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
768 Error_Msg_N
769 ("target of assignment operation must not be abstract", Lhs);
770 end if;
772 -- Variables which are Part_Of constituents of single protected types
773 -- behave in similar fashion to protected components. Such variables
774 -- cannot be modified by protected functions.
776 if Is_Protected_Part_Of_Constituent (Lhs) and then Within_Function then
777 Error_Msg_N
778 ("protected function cannot modify protected object", Lhs);
779 end if;
781 -- Resolution may have updated the subtype, in case the left-hand side
782 -- is a private protected component. Use the correct subtype to avoid
783 -- scoping issues in the back-end.
785 T1 := Etype (Lhs);
787 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
788 -- type. For example:
790 -- limited with P;
791 -- package Pkg is
792 -- type Acc is access P.T;
793 -- end Pkg;
795 -- with Pkg; use Acc;
796 -- procedure Example is
797 -- A, B : Acc;
798 -- begin
799 -- A.all := B.all; -- ERROR
800 -- end Example;
802 if Nkind (Lhs) = N_Explicit_Dereference
803 and then Ekind (T1) = E_Incomplete_Type
804 then
805 Error_Msg_N ("invalid use of incomplete type", Lhs);
806 Kill_Lhs;
807 goto Leave;
808 end if;
810 -- Now we can complete the resolution of the right hand side
812 Set_Assignment_Type (Lhs, T1);
814 -- If the target of the assignment is an entity of a mutable type and
815 -- the expression is a conditional expression, its alternatives can be
816 -- of different subtypes of the nominal type of the LHS, so they must be
817 -- resolved with the base type, given that their subtype may differ from
818 -- that of the target mutable object.
820 if Is_Entity_Name (Lhs)
821 and then Ekind_In (Entity (Lhs), E_In_Out_Parameter,
822 E_Out_Parameter,
823 E_Variable)
824 and then Is_Composite_Type (T1)
825 and then not Is_Constrained (Etype (Entity (Lhs)))
826 and then Nkind_In (Rhs, N_If_Expression, N_Case_Expression)
827 then
828 Resolve (Rhs, Base_Type (T1));
830 else
831 Resolve (Rhs, T1);
832 end if;
834 -- This is the point at which we check for an unset reference
836 Check_Unset_Reference (Rhs);
837 Check_Unprotected_Access (Lhs, Rhs);
839 -- Remaining steps are skipped if Rhs was syntactically in error
841 if Rhs = Error then
842 Kill_Lhs;
843 goto Leave;
844 end if;
846 T2 := Etype (Rhs);
848 if not Covers (T1, T2) then
849 Wrong_Type (Rhs, Etype (Lhs));
850 Kill_Lhs;
851 goto Leave;
852 end if;
854 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
855 -- types, use the non-limited view if available
857 if Nkind (Rhs) = N_Explicit_Dereference
858 and then Is_Tagged_Type (T2)
859 and then Has_Non_Limited_View (T2)
860 then
861 T2 := Non_Limited_View (T2);
862 end if;
864 Set_Assignment_Type (Rhs, T2);
866 if Total_Errors_Detected /= 0 then
867 if No (T1) then
868 T1 := Any_Type;
869 end if;
871 if No (T2) then
872 T2 := Any_Type;
873 end if;
874 end if;
876 if T1 = Any_Type or else T2 = Any_Type then
877 Kill_Lhs;
878 goto Leave;
879 end if;
881 -- If the rhs is class-wide or dynamically tagged, then require the lhs
882 -- to be class-wide. The case where the rhs is a dynamically tagged call
883 -- to a dispatching operation with a controlling access result is
884 -- excluded from this check, since the target has an access type (and
885 -- no tag propagation occurs in that case).
887 if (Is_Class_Wide_Type (T2)
888 or else (Is_Dynamically_Tagged (Rhs)
889 and then not Is_Access_Type (T1)))
890 and then not Is_Class_Wide_Type (T1)
891 then
892 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
894 elsif Is_Class_Wide_Type (T1)
895 and then not Is_Class_Wide_Type (T2)
896 and then not Is_Tag_Indeterminate (Rhs)
897 and then not Is_Dynamically_Tagged (Rhs)
898 then
899 Error_Msg_N ("dynamically tagged expression required!", Rhs);
900 end if;
902 -- Propagate the tag from a class-wide target to the rhs when the rhs
903 -- is a tag-indeterminate call.
905 if Is_Tag_Indeterminate (Rhs) then
906 if Is_Class_Wide_Type (T1) then
907 Propagate_Tag (Lhs, Rhs);
909 elsif Nkind (Rhs) = N_Function_Call
910 and then Is_Entity_Name (Name (Rhs))
911 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
912 then
913 Error_Msg_N
914 ("call to abstract function must be dispatching", Name (Rhs));
916 elsif Nkind (Rhs) = N_Qualified_Expression
917 and then Nkind (Expression (Rhs)) = N_Function_Call
918 and then Is_Entity_Name (Name (Expression (Rhs)))
919 and then
920 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
921 then
922 Error_Msg_N
923 ("call to abstract function must be dispatching",
924 Name (Expression (Rhs)));
925 end if;
926 end if;
928 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
929 -- apply an implicit conversion of the rhs to that type to force
930 -- appropriate static and run-time accessibility checks. This applies
931 -- as well to anonymous access-to-subprogram types that are component
932 -- subtypes or formal parameters.
934 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
935 if Is_Local_Anonymous_Access (T1)
936 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
938 -- Handle assignment to an Ada 2012 stand-alone object
939 -- of an anonymous access type.
941 or else (Ekind (T1) = E_Anonymous_Access_Type
942 and then Nkind (Associated_Node_For_Itype (T1)) =
943 N_Object_Declaration)
945 then
946 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
947 Analyze_And_Resolve (Rhs, T1);
948 end if;
949 end if;
951 -- Ada 2005 (AI-231): Assignment to not null variable
953 if Ada_Version >= Ada_2005
954 and then Can_Never_Be_Null (T1)
955 and then not Assignment_OK (Lhs)
956 then
957 -- Case where we know the right hand side is null
959 if Known_Null (Rhs) then
960 Apply_Compile_Time_Constraint_Error
961 (N => Rhs,
962 Msg =>
963 "(Ada 2005) null not allowed in null-excluding objects??",
964 Reason => CE_Null_Not_Allowed);
966 -- We still mark this as a possible modification, that's necessary
967 -- to reset Is_True_Constant, and desirable for xref purposes.
969 Note_Possible_Modification (Lhs, Sure => True);
970 goto Leave;
972 -- If we know the right hand side is non-null, then we convert to the
973 -- target type, since we don't need a run time check in that case.
975 elsif not Can_Never_Be_Null (T2) then
976 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
977 Analyze_And_Resolve (Rhs, T1);
978 end if;
979 end if;
981 if Is_Scalar_Type (T1) then
982 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
984 -- For array types, verify that lengths match. If the right hand side
985 -- is a function call that has been inlined, the assignment has been
986 -- rewritten as a block, and the constraint check will be applied to the
987 -- assignment within the block.
989 elsif Is_Array_Type (T1)
990 and then (Nkind (Rhs) /= N_Type_Conversion
991 or else Is_Constrained (Etype (Rhs)))
992 and then (Nkind (Rhs) /= N_Function_Call
993 or else Nkind (N) /= N_Block_Statement)
994 then
995 -- Assignment verifies that the length of the Lsh and Rhs are equal,
996 -- but of course the indexes do not have to match. If the right-hand
997 -- side is a type conversion to an unconstrained type, a length check
998 -- is performed on the expression itself during expansion. In rare
999 -- cases, the redundant length check is computed on an index type
1000 -- with a different representation, triggering incorrect code in the
1001 -- back end.
1003 Apply_Length_Check (Rhs, Etype (Lhs));
1005 else
1006 -- Discriminant checks are applied in the course of expansion
1008 null;
1009 end if;
1011 -- Note: modifications of the Lhs may only be recorded after
1012 -- checks have been applied.
1014 Note_Possible_Modification (Lhs, Sure => True);
1016 -- ??? a real accessibility check is needed when ???
1018 -- Post warning for redundant assignment or variable to itself
1020 if Warn_On_Redundant_Constructs
1022 -- We only warn for source constructs
1024 and then Comes_From_Source (N)
1026 -- Where the object is the same on both sides
1028 and then Same_Object (Lhs, Original_Node (Rhs))
1030 -- But exclude the case where the right side was an operation that
1031 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
1032 -- don't want to warn in such a case, since it is reasonable to write
1033 -- such expressions especially when K is defined symbolically in some
1034 -- other package.
1036 and then Nkind (Original_Node (Rhs)) not in N_Op
1037 then
1038 if Nkind (Lhs) in N_Has_Entity then
1039 Error_Msg_NE -- CODEFIX
1040 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
1041 else
1042 Error_Msg_N -- CODEFIX
1043 ("?r?useless assignment of object to itself!", N);
1044 end if;
1045 end if;
1047 -- Check for non-allowed composite assignment
1049 if not Support_Composite_Assign_On_Target
1050 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
1051 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
1052 then
1053 Error_Msg_CRT ("composite assignment", N);
1054 end if;
1056 -- Check elaboration warning for left side if not in elab code
1058 if Legacy_Elaboration_Checks
1059 and not In_Subprogram_Or_Concurrent_Unit
1060 then
1061 Check_Elab_Assign (Lhs);
1062 end if;
1064 -- Save the scenario for later examination by the ABE Processing phase
1066 Record_Elaboration_Scenario (N);
1068 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
1069 -- assignment is a source assignment in the extended main source unit.
1070 -- We are not interested in any reference information outside this
1071 -- context, or in compiler generated assignment statements.
1073 if Comes_From_Source (N)
1074 and then In_Extended_Main_Source_Unit (Lhs)
1075 then
1076 Set_Referenced_Modified (Lhs, Out_Param => False);
1077 end if;
1079 -- RM 7.3.2 (12/3): An assignment to a view conversion (from a type to
1080 -- one of its ancestors) requires an invariant check. Apply check only
1081 -- if expression comes from source, otherwise it will be applied when
1082 -- value is assigned to source entity. This is not done in GNATprove
1083 -- mode, as GNATprove handles invariant checks itself.
1085 if Nkind (Lhs) = N_Type_Conversion
1086 and then Has_Invariants (Etype (Expression (Lhs)))
1087 and then Comes_From_Source (Expression (Lhs))
1088 and then not GNATprove_Mode
1089 then
1090 Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
1091 end if;
1093 -- Final step. If left side is an entity, then we may be able to reset
1094 -- the current tracked values to new safe values. We only have something
1095 -- to do if the left side is an entity name, and expansion has not
1096 -- modified the node into something other than an assignment, and of
1097 -- course we only capture values if it is safe to do so.
1099 if Is_Entity_Name (Lhs)
1100 and then Nkind (N) = N_Assignment_Statement
1101 then
1102 declare
1103 Ent : constant Entity_Id := Entity (Lhs);
1105 begin
1106 if Safe_To_Capture_Value (N, Ent) then
1108 -- If simple variable on left side, warn if this assignment
1109 -- blots out another one (rendering it useless). We only do
1110 -- this for source assignments, otherwise we can generate bogus
1111 -- warnings when an assignment is rewritten as another
1112 -- assignment, and gets tied up with itself.
1114 -- There may have been a previous reference to a component of
1115 -- the variable, which in general removes the Last_Assignment
1116 -- field of the variable to indicate a relevant use of the
1117 -- previous assignment. However, if the assignment is to a
1118 -- subcomponent the reference may not have registered, because
1119 -- it is not possible to determine whether the context is an
1120 -- assignment. In those cases we generate a Deferred_Reference,
1121 -- to be used at the end of compilation to generate the right
1122 -- kind of reference, and we suppress a potential warning for
1123 -- a useless assignment, which might be premature. This may
1124 -- lose a warning in rare cases, but seems preferable to a
1125 -- misleading warning.
1127 if Warn_On_Modified_Unread
1128 and then Is_Assignable (Ent)
1129 and then Comes_From_Source (N)
1130 and then In_Extended_Main_Source_Unit (Ent)
1131 and then not Has_Deferred_Reference (Ent)
1132 then
1133 Warn_On_Useless_Assignment (Ent, N);
1134 end if;
1136 -- If we are assigning an access type and the left side is an
1137 -- entity, then make sure that the Is_Known_[Non_]Null flags
1138 -- properly reflect the state of the entity after assignment.
1140 if Is_Access_Type (T1) then
1141 if Known_Non_Null (Rhs) then
1142 Set_Is_Known_Non_Null (Ent, True);
1144 elsif Known_Null (Rhs)
1145 and then not Can_Never_Be_Null (Ent)
1146 then
1147 Set_Is_Known_Null (Ent, True);
1149 else
1150 Set_Is_Known_Null (Ent, False);
1152 if not Can_Never_Be_Null (Ent) then
1153 Set_Is_Known_Non_Null (Ent, False);
1154 end if;
1155 end if;
1157 -- For discrete types, we may be able to set the current value
1158 -- if the value is known at compile time.
1160 elsif Is_Discrete_Type (T1)
1161 and then Compile_Time_Known_Value (Rhs)
1162 then
1163 Set_Current_Value (Ent, Rhs);
1164 else
1165 Set_Current_Value (Ent, Empty);
1166 end if;
1168 -- If not safe to capture values, kill them
1170 else
1171 Kill_Lhs;
1172 end if;
1173 end;
1174 end if;
1176 -- If assigning to an object in whole or in part, note location of
1177 -- assignment in case no one references value. We only do this for
1178 -- source assignments, otherwise we can generate bogus warnings when an
1179 -- assignment is rewritten as another assignment, and gets tied up with
1180 -- itself.
1182 declare
1183 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
1184 begin
1185 if Present (Ent)
1186 and then Safe_To_Capture_Value (N, Ent)
1187 and then Nkind (N) = N_Assignment_Statement
1188 and then Warn_On_Modified_Unread
1189 and then Is_Assignable (Ent)
1190 and then Comes_From_Source (N)
1191 and then In_Extended_Main_Source_Unit (Ent)
1192 then
1193 Set_Last_Assignment (Ent, Lhs);
1194 end if;
1195 end;
1197 Analyze_Dimension (N);
1199 <<Leave>>
1200 Restore_Ghost_Mode (Saved_GM);
1202 -- If the right-hand side contains target names, expansion has been
1203 -- disabled to prevent expansion that might move target names out of
1204 -- the context of the assignment statement. Restore the expander mode
1205 -- now so that assignment statement can be properly expanded.
1207 if Nkind (N) = N_Assignment_Statement then
1208 if Has_Target_Names (N) then
1209 Expander_Mode_Restore;
1210 Full_Analysis := Save_Full_Analysis;
1211 end if;
1213 pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));
1214 end if;
1215 end Analyze_Assignment;
1217 -----------------------------
1218 -- Analyze_Block_Statement --
1219 -----------------------------
1221 procedure Analyze_Block_Statement (N : Node_Id) is
1222 procedure Install_Return_Entities (Scop : Entity_Id);
1223 -- Install all entities of return statement scope Scop in the visibility
1224 -- chain except for the return object since its entity is reused in a
1225 -- renaming.
1227 -----------------------------
1228 -- Install_Return_Entities --
1229 -----------------------------
1231 procedure Install_Return_Entities (Scop : Entity_Id) is
1232 Id : Entity_Id;
1234 begin
1235 Id := First_Entity (Scop);
1236 while Present (Id) loop
1238 -- Do not install the return object
1240 if not Ekind_In (Id, E_Constant, E_Variable)
1241 or else not Is_Return_Object (Id)
1242 then
1243 Install_Entity (Id);
1244 end if;
1246 Next_Entity (Id);
1247 end loop;
1248 end Install_Return_Entities;
1250 -- Local constants and variables
1252 Decls : constant List_Id := Declarations (N);
1253 Id : constant Node_Id := Identifier (N);
1254 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1256 Is_BIP_Return_Statement : Boolean;
1258 -- Start of processing for Analyze_Block_Statement
1260 begin
1261 -- In SPARK mode, we reject block statements. Note that the case of
1262 -- block statements generated by the expander is fine.
1264 if Nkind (Original_Node (N)) = N_Block_Statement then
1265 Check_SPARK_05_Restriction ("block statement is not allowed", N);
1266 end if;
1268 -- If no handled statement sequence is present, things are really messed
1269 -- up, and we just return immediately (defence against previous errors).
1271 if No (HSS) then
1272 Check_Error_Detected;
1273 return;
1274 end if;
1276 -- Detect whether the block is actually a rewritten return statement of
1277 -- a build-in-place function.
1279 Is_BIP_Return_Statement :=
1280 Present (Id)
1281 and then Present (Entity (Id))
1282 and then Ekind (Entity (Id)) = E_Return_Statement
1283 and then Is_Build_In_Place_Function
1284 (Return_Applies_To (Entity (Id)));
1286 -- Normal processing with HSS present
1288 declare
1289 EH : constant List_Id := Exception_Handlers (HSS);
1290 Ent : Entity_Id := Empty;
1291 S : Entity_Id;
1293 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1294 -- Recursively save value of this global, will be restored on exit
1296 begin
1297 -- Initialize unblocked exit count for statements of begin block
1298 -- plus one for each exception handler that is present.
1300 Unblocked_Exit_Count := 1;
1302 if Present (EH) then
1303 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
1304 end if;
1306 -- If a label is present analyze it and mark it as referenced
1308 if Present (Id) then
1309 Analyze (Id);
1310 Ent := Entity (Id);
1312 -- An error defense. If we have an identifier, but no entity, then
1313 -- something is wrong. If previous errors, then just remove the
1314 -- identifier and continue, otherwise raise an exception.
1316 if No (Ent) then
1317 Check_Error_Detected;
1318 Set_Identifier (N, Empty);
1320 else
1321 Set_Ekind (Ent, E_Block);
1322 Generate_Reference (Ent, N, ' ');
1323 Generate_Definition (Ent);
1325 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1326 Set_Label_Construct (Parent (Ent), N);
1327 end if;
1328 end if;
1329 end if;
1331 -- If no entity set, create a label entity
1333 if No (Ent) then
1334 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
1335 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
1336 Set_Parent (Ent, N);
1337 end if;
1339 Set_Etype (Ent, Standard_Void_Type);
1340 Set_Block_Node (Ent, Identifier (N));
1341 Push_Scope (Ent);
1343 -- The block served as an extended return statement. Ensure that any
1344 -- entities created during the analysis and expansion of the return
1345 -- object declaration are once again visible.
1347 if Is_BIP_Return_Statement then
1348 Install_Return_Entities (Ent);
1349 end if;
1351 if Present (Decls) then
1352 Analyze_Declarations (Decls);
1353 Check_Completion;
1354 Inspect_Deferred_Constant_Completion (Decls);
1355 end if;
1357 Analyze (HSS);
1358 Process_End_Label (HSS, 'e', Ent);
1360 -- If exception handlers are present, then we indicate that enclosing
1361 -- scopes contain a block with handlers. We only need to mark non-
1362 -- generic scopes.
1364 if Present (EH) then
1365 S := Scope (Ent);
1366 loop
1367 Set_Has_Nested_Block_With_Handler (S);
1368 exit when Is_Overloadable (S)
1369 or else Ekind (S) = E_Package
1370 or else Is_Generic_Unit (S);
1371 S := Scope (S);
1372 end loop;
1373 end if;
1375 Check_References (Ent);
1376 Update_Use_Clause_Chain;
1377 End_Scope;
1379 if Unblocked_Exit_Count = 0 then
1380 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1381 Check_Unreachable_Code (N);
1382 else
1383 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1384 end if;
1385 end;
1386 end Analyze_Block_Statement;
1388 --------------------------------
1389 -- Analyze_Compound_Statement --
1390 --------------------------------
1392 procedure Analyze_Compound_Statement (N : Node_Id) is
1393 begin
1394 Analyze_List (Actions (N));
1395 end Analyze_Compound_Statement;
1397 ----------------------------
1398 -- Analyze_Case_Statement --
1399 ----------------------------
1401 procedure Analyze_Case_Statement (N : Node_Id) is
1402 Exp : Node_Id;
1403 Exp_Type : Entity_Id;
1404 Exp_Btype : Entity_Id;
1405 Last_Choice : Nat;
1407 Others_Present : Boolean;
1408 -- Indicates if Others was present
1410 pragma Warnings (Off, Last_Choice);
1411 -- Don't care about assigned value
1413 Statements_Analyzed : Boolean := False;
1414 -- Set True if at least some statement sequences get analyzed. If False
1415 -- on exit, means we had a serious error that prevented full analysis of
1416 -- the case statement, and as a result it is not a good idea to output
1417 -- warning messages about unreachable code.
1419 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1420 -- Recursively save value of this global, will be restored on exit
1422 procedure Non_Static_Choice_Error (Choice : Node_Id);
1423 -- Error routine invoked by the generic instantiation below when the
1424 -- case statement has a non static choice.
1426 procedure Process_Statements (Alternative : Node_Id);
1427 -- Analyzes the statements associated with a case alternative. Needed
1428 -- by instantiation below.
1430 package Analyze_Case_Choices is new
1431 Generic_Analyze_Choices
1432 (Process_Associated_Node => Process_Statements);
1433 use Analyze_Case_Choices;
1434 -- Instantiation of the generic choice analysis package
1436 package Check_Case_Choices is new
1437 Generic_Check_Choices
1438 (Process_Empty_Choice => No_OP,
1439 Process_Non_Static_Choice => Non_Static_Choice_Error,
1440 Process_Associated_Node => No_OP);
1441 use Check_Case_Choices;
1442 -- Instantiation of the generic choice processing package
1444 -----------------------------
1445 -- Non_Static_Choice_Error --
1446 -----------------------------
1448 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1449 begin
1450 Flag_Non_Static_Expr
1451 ("choice given in case statement is not static!", Choice);
1452 end Non_Static_Choice_Error;
1454 ------------------------
1455 -- Process_Statements --
1456 ------------------------
1458 procedure Process_Statements (Alternative : Node_Id) is
1459 Choices : constant List_Id := Discrete_Choices (Alternative);
1460 Ent : Entity_Id;
1462 begin
1463 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1464 Statements_Analyzed := True;
1466 -- An interesting optimization. If the case statement expression
1467 -- is a simple entity, then we can set the current value within an
1468 -- alternative if the alternative has one possible value.
1470 -- case N is
1471 -- when 1 => alpha
1472 -- when 2 | 3 => beta
1473 -- when others => gamma
1475 -- Here we know that N is initially 1 within alpha, but for beta and
1476 -- gamma, we do not know anything more about the initial value.
1478 if Is_Entity_Name (Exp) then
1479 Ent := Entity (Exp);
1481 if Ekind_In (Ent, E_Variable,
1482 E_In_Out_Parameter,
1483 E_Out_Parameter)
1484 then
1485 if List_Length (Choices) = 1
1486 and then Nkind (First (Choices)) in N_Subexpr
1487 and then Compile_Time_Known_Value (First (Choices))
1488 then
1489 Set_Current_Value (Entity (Exp), First (Choices));
1490 end if;
1492 Analyze_Statements (Statements (Alternative));
1494 -- After analyzing the case, set the current value to empty
1495 -- since we won't know what it is for the next alternative
1496 -- (unless reset by this same circuit), or after the case.
1498 Set_Current_Value (Entity (Exp), Empty);
1499 return;
1500 end if;
1501 end if;
1503 -- Case where expression is not an entity name of a variable
1505 Analyze_Statements (Statements (Alternative));
1506 end Process_Statements;
1508 -- Start of processing for Analyze_Case_Statement
1510 begin
1511 Unblocked_Exit_Count := 0;
1512 Exp := Expression (N);
1513 Analyze (Exp);
1515 -- The expression must be of any discrete type. In rare cases, the
1516 -- expander constructs a case statement whose expression has a private
1517 -- type whose full view is discrete. This can happen when generating
1518 -- a stream operation for a variant type after the type is frozen,
1519 -- when the partial of view of the type of the discriminant is private.
1520 -- In that case, use the full view to analyze case alternatives.
1522 if not Is_Overloaded (Exp)
1523 and then not Comes_From_Source (N)
1524 and then Is_Private_Type (Etype (Exp))
1525 and then Present (Full_View (Etype (Exp)))
1526 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1527 then
1528 Resolve (Exp, Etype (Exp));
1529 Exp_Type := Full_View (Etype (Exp));
1531 else
1532 Analyze_And_Resolve (Exp, Any_Discrete);
1533 Exp_Type := Etype (Exp);
1534 end if;
1536 Check_Unset_Reference (Exp);
1537 Exp_Btype := Base_Type (Exp_Type);
1539 -- The expression must be of a discrete type which must be determinable
1540 -- independently of the context in which the expression occurs, but
1541 -- using the fact that the expression must be of a discrete type.
1542 -- Moreover, the type this expression must not be a character literal
1543 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1545 -- If error already reported by Resolve, nothing more to do
1547 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1548 return;
1550 elsif Exp_Btype = Any_Character then
1551 Error_Msg_N
1552 ("character literal as case expression is ambiguous", Exp);
1553 return;
1555 elsif Ada_Version = Ada_83
1556 and then (Is_Generic_Type (Exp_Btype)
1557 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1558 then
1559 Error_Msg_N
1560 ("(Ada 83) case expression cannot be of a generic type", Exp);
1561 return;
1562 end if;
1564 -- If the case expression is a formal object of mode in out, then treat
1565 -- it as having a nonstatic subtype by forcing use of the base type
1566 -- (which has to get passed to Check_Case_Choices below). Also use base
1567 -- type when the case expression is parenthesized.
1569 if Paren_Count (Exp) > 0
1570 or else (Is_Entity_Name (Exp)
1571 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1572 then
1573 Exp_Type := Exp_Btype;
1574 end if;
1576 -- Call instantiated procedures to analyzwe and check discrete choices
1578 Analyze_Choices (Alternatives (N), Exp_Type);
1579 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1581 -- Case statement with single OTHERS alternative not allowed in SPARK
1583 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1584 Check_SPARK_05_Restriction
1585 ("OTHERS as unique case alternative is not allowed", N);
1586 end if;
1588 if Exp_Type = Universal_Integer and then not Others_Present then
1589 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1590 end if;
1592 -- If all our exits were blocked by unconditional transfers of control,
1593 -- then the entire CASE statement acts as an unconditional transfer of
1594 -- control, so treat it like one, and check unreachable code. Skip this
1595 -- test if we had serious errors preventing any statement analysis.
1597 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1598 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1599 Check_Unreachable_Code (N);
1600 else
1601 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1602 end if;
1604 -- If the expander is active it will detect the case of a statically
1605 -- determined single alternative and remove warnings for the case, but
1606 -- if we are not doing expansion, that circuit won't be active. Here we
1607 -- duplicate the effect of removing warnings in the same way, so that
1608 -- we will get the same set of warnings in -gnatc mode.
1610 if not Expander_Active
1611 and then Compile_Time_Known_Value (Expression (N))
1612 and then Serious_Errors_Detected = 0
1613 then
1614 declare
1615 Chosen : constant Node_Id := Find_Static_Alternative (N);
1616 Alt : Node_Id;
1618 begin
1619 Alt := First (Alternatives (N));
1620 while Present (Alt) loop
1621 if Alt /= Chosen then
1622 Remove_Warning_Messages (Statements (Alt));
1623 end if;
1625 Next (Alt);
1626 end loop;
1627 end;
1628 end if;
1629 end Analyze_Case_Statement;
1631 ----------------------------
1632 -- Analyze_Exit_Statement --
1633 ----------------------------
1635 -- If the exit includes a name, it must be the name of a currently open
1636 -- loop. Otherwise there must be an innermost open loop on the stack, to
1637 -- which the statement implicitly refers.
1639 -- Additionally, in SPARK mode:
1641 -- The exit can only name the closest enclosing loop;
1643 -- An exit with a when clause must be directly contained in a loop;
1645 -- An exit without a when clause must be directly contained in an
1646 -- if-statement with no elsif or else, which is itself directly contained
1647 -- in a loop. The exit must be the last statement in the if-statement.
1649 procedure Analyze_Exit_Statement (N : Node_Id) is
1650 Target : constant Node_Id := Name (N);
1651 Cond : constant Node_Id := Condition (N);
1652 Scope_Id : Entity_Id := Empty; -- initialize to prevent warning
1653 U_Name : Entity_Id;
1654 Kind : Entity_Kind;
1656 begin
1657 if No (Cond) then
1658 Check_Unreachable_Code (N);
1659 end if;
1661 if Present (Target) then
1662 Analyze (Target);
1663 U_Name := Entity (Target);
1665 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1666 Error_Msg_N ("invalid loop name in exit statement", N);
1667 return;
1669 else
1670 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1671 Check_SPARK_05_Restriction
1672 ("exit label must name the closest enclosing loop", N);
1673 end if;
1675 Set_Has_Exit (U_Name);
1676 end if;
1678 else
1679 U_Name := Empty;
1680 end if;
1682 for J in reverse 0 .. Scope_Stack.Last loop
1683 Scope_Id := Scope_Stack.Table (J).Entity;
1684 Kind := Ekind (Scope_Id);
1686 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1687 Set_Has_Exit (Scope_Id);
1688 exit;
1690 elsif Kind = E_Block
1691 or else Kind = E_Loop
1692 or else Kind = E_Return_Statement
1693 then
1694 null;
1696 else
1697 Error_Msg_N
1698 ("cannot exit from program unit or accept statement", N);
1699 return;
1700 end if;
1701 end loop;
1703 -- Verify that if present the condition is a Boolean expression
1705 if Present (Cond) then
1706 Analyze_And_Resolve (Cond, Any_Boolean);
1707 Check_Unset_Reference (Cond);
1708 end if;
1710 -- In SPARK mode, verify that the exit statement respects the SPARK
1711 -- restrictions.
1713 if Present (Cond) then
1714 if Nkind (Parent (N)) /= N_Loop_Statement then
1715 Check_SPARK_05_Restriction
1716 ("exit with when clause must be directly in loop", N);
1717 end if;
1719 else
1720 if Nkind (Parent (N)) /= N_If_Statement then
1721 if Nkind (Parent (N)) = N_Elsif_Part then
1722 Check_SPARK_05_Restriction
1723 ("exit must be in IF without ELSIF", N);
1724 else
1725 Check_SPARK_05_Restriction ("exit must be directly in IF", N);
1726 end if;
1728 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1729 Check_SPARK_05_Restriction
1730 ("exit must be in IF directly in loop", N);
1732 -- First test the presence of ELSE, so that an exit in an ELSE leads
1733 -- to an error mentioning the ELSE.
1735 elsif Present (Else_Statements (Parent (N))) then
1736 Check_SPARK_05_Restriction ("exit must be in IF without ELSE", N);
1738 -- An exit in an ELSIF does not reach here, as it would have been
1739 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1741 elsif Present (Elsif_Parts (Parent (N))) then
1742 Check_SPARK_05_Restriction ("exit must be in IF without ELSIF", N);
1743 end if;
1744 end if;
1746 -- Chain exit statement to associated loop entity
1748 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1749 Set_First_Exit_Statement (Scope_Id, N);
1751 -- Since the exit may take us out of a loop, any previous assignment
1752 -- statement is not useless, so clear last assignment indications. It
1753 -- is OK to keep other current values, since if the exit statement
1754 -- does not exit, then the current values are still valid.
1756 Kill_Current_Values (Last_Assignment_Only => True);
1757 end Analyze_Exit_Statement;
1759 ----------------------------
1760 -- Analyze_Goto_Statement --
1761 ----------------------------
1763 procedure Analyze_Goto_Statement (N : Node_Id) is
1764 Label : constant Node_Id := Name (N);
1765 Scope_Id : Entity_Id;
1766 Label_Scope : Entity_Id;
1767 Label_Ent : Entity_Id;
1769 begin
1770 Check_SPARK_05_Restriction ("goto statement is not allowed", N);
1772 -- Actual semantic checks
1774 Check_Unreachable_Code (N);
1775 Kill_Current_Values (Last_Assignment_Only => True);
1777 Analyze (Label);
1778 Label_Ent := Entity (Label);
1780 -- Ignore previous error
1782 if Label_Ent = Any_Id then
1783 Check_Error_Detected;
1784 return;
1786 -- We just have a label as the target of a goto
1788 elsif Ekind (Label_Ent) /= E_Label then
1789 Error_Msg_N ("target of goto statement must be a label", Label);
1790 return;
1792 -- Check that the target of the goto is reachable according to Ada
1793 -- scoping rules. Note: the special gotos we generate for optimizing
1794 -- local handling of exceptions would violate these rules, but we mark
1795 -- such gotos as analyzed when built, so this code is never entered.
1797 elsif not Reachable (Label_Ent) then
1798 Error_Msg_N ("target of goto statement is not reachable", Label);
1799 return;
1800 end if;
1802 -- Here if goto passes initial validity checks
1804 Label_Scope := Enclosing_Scope (Label_Ent);
1806 for J in reverse 0 .. Scope_Stack.Last loop
1807 Scope_Id := Scope_Stack.Table (J).Entity;
1809 if Label_Scope = Scope_Id
1810 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1811 then
1812 if Scope_Id /= Label_Scope then
1813 Error_Msg_N
1814 ("cannot exit from program unit or accept statement", N);
1815 end if;
1817 return;
1818 end if;
1819 end loop;
1821 raise Program_Error;
1822 end Analyze_Goto_Statement;
1824 --------------------------
1825 -- Analyze_If_Statement --
1826 --------------------------
1828 -- A special complication arises in the analysis of if statements
1830 -- The expander has circuitry to completely delete code that it can tell
1831 -- will not be executed (as a result of compile time known conditions). In
1832 -- the analyzer, we ensure that code that will be deleted in this manner
1833 -- is analyzed but not expanded. This is obviously more efficient, but
1834 -- more significantly, difficulties arise if code is expanded and then
1835 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1836 -- generated in deleted code must be frozen from start, because the nodes
1837 -- on which they depend will not be available at the freeze point.
1839 procedure Analyze_If_Statement (N : Node_Id) is
1840 E : Node_Id;
1842 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1843 -- Recursively save value of this global, will be restored on exit
1845 Save_In_Deleted_Code : Boolean;
1847 Del : Boolean := False;
1848 -- This flag gets set True if a True condition has been found, which
1849 -- means that remaining ELSE/ELSIF parts are deleted.
1851 procedure Analyze_Cond_Then (Cnode : Node_Id);
1852 -- This is applied to either the N_If_Statement node itself or to an
1853 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1854 -- statements associated with it.
1856 -----------------------
1857 -- Analyze_Cond_Then --
1858 -----------------------
1860 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1861 Cond : constant Node_Id := Condition (Cnode);
1862 Tstm : constant List_Id := Then_Statements (Cnode);
1864 begin
1865 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1866 Analyze_And_Resolve (Cond, Any_Boolean);
1867 Check_Unset_Reference (Cond);
1868 Set_Current_Value_Condition (Cnode);
1870 -- If already deleting, then just analyze then statements
1872 if Del then
1873 Analyze_Statements (Tstm);
1875 -- Compile time known value, not deleting yet
1877 elsif Compile_Time_Known_Value (Cond) then
1878 Save_In_Deleted_Code := In_Deleted_Code;
1880 -- If condition is True, then analyze the THEN statements and set
1881 -- no expansion for ELSE and ELSIF parts.
1883 if Is_True (Expr_Value (Cond)) then
1884 Analyze_Statements (Tstm);
1885 Del := True;
1886 Expander_Mode_Save_And_Set (False);
1887 In_Deleted_Code := True;
1889 -- If condition is False, analyze THEN with expansion off
1891 else -- Is_False (Expr_Value (Cond))
1892 Expander_Mode_Save_And_Set (False);
1893 In_Deleted_Code := True;
1894 Analyze_Statements (Tstm);
1895 Expander_Mode_Restore;
1896 In_Deleted_Code := Save_In_Deleted_Code;
1897 end if;
1899 -- Not known at compile time, not deleting, normal analysis
1901 else
1902 Analyze_Statements (Tstm);
1903 end if;
1904 end Analyze_Cond_Then;
1906 -- Start of processing for Analyze_If_Statement
1908 begin
1909 -- Initialize exit count for else statements. If there is no else part,
1910 -- this count will stay non-zero reflecting the fact that the uncovered
1911 -- else case is an unblocked exit.
1913 Unblocked_Exit_Count := 1;
1914 Analyze_Cond_Then (N);
1916 -- Now to analyze the elsif parts if any are present
1918 if Present (Elsif_Parts (N)) then
1919 E := First (Elsif_Parts (N));
1920 while Present (E) loop
1921 Analyze_Cond_Then (E);
1922 Next (E);
1923 end loop;
1924 end if;
1926 if Present (Else_Statements (N)) then
1927 Analyze_Statements (Else_Statements (N));
1928 end if;
1930 -- If all our exits were blocked by unconditional transfers of control,
1931 -- then the entire IF statement acts as an unconditional transfer of
1932 -- control, so treat it like one, and check unreachable code.
1934 if Unblocked_Exit_Count = 0 then
1935 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1936 Check_Unreachable_Code (N);
1937 else
1938 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1939 end if;
1941 if Del then
1942 Expander_Mode_Restore;
1943 In_Deleted_Code := Save_In_Deleted_Code;
1944 end if;
1946 if not Expander_Active
1947 and then Compile_Time_Known_Value (Condition (N))
1948 and then Serious_Errors_Detected = 0
1949 then
1950 if Is_True (Expr_Value (Condition (N))) then
1951 Remove_Warning_Messages (Else_Statements (N));
1953 if Present (Elsif_Parts (N)) then
1954 E := First (Elsif_Parts (N));
1955 while Present (E) loop
1956 Remove_Warning_Messages (Then_Statements (E));
1957 Next (E);
1958 end loop;
1959 end if;
1961 else
1962 Remove_Warning_Messages (Then_Statements (N));
1963 end if;
1964 end if;
1966 -- Warn on redundant if statement that has no effect
1968 -- Note, we could also check empty ELSIF parts ???
1970 if Warn_On_Redundant_Constructs
1972 -- If statement must be from source
1974 and then Comes_From_Source (N)
1976 -- Condition must not have obvious side effect
1978 and then Has_No_Obvious_Side_Effects (Condition (N))
1980 -- No elsif parts of else part
1982 and then No (Elsif_Parts (N))
1983 and then No (Else_Statements (N))
1985 -- Then must be a single null statement
1987 and then List_Length (Then_Statements (N)) = 1
1988 then
1989 -- Go to original node, since we may have rewritten something as
1990 -- a null statement (e.g. a case we could figure the outcome of).
1992 declare
1993 T : constant Node_Id := First (Then_Statements (N));
1994 S : constant Node_Id := Original_Node (T);
1996 begin
1997 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
1998 Error_Msg_N ("if statement has no effect?r?", N);
1999 end if;
2000 end;
2001 end if;
2002 end Analyze_If_Statement;
2004 ----------------------------------------
2005 -- Analyze_Implicit_Label_Declaration --
2006 ----------------------------------------
2008 -- An implicit label declaration is generated in the innermost enclosing
2009 -- declarative part. This is done for labels, and block and loop names.
2011 -- Note: any changes in this routine may need to be reflected in
2012 -- Analyze_Label_Entity.
2014 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
2015 Id : constant Node_Id := Defining_Identifier (N);
2016 begin
2017 Enter_Name (Id);
2018 Set_Ekind (Id, E_Label);
2019 Set_Etype (Id, Standard_Void_Type);
2020 Set_Enclosing_Scope (Id, Current_Scope);
2021 end Analyze_Implicit_Label_Declaration;
2023 ------------------------------
2024 -- Analyze_Iteration_Scheme --
2025 ------------------------------
2027 procedure Analyze_Iteration_Scheme (N : Node_Id) is
2028 Cond : Node_Id;
2029 Iter_Spec : Node_Id;
2030 Loop_Spec : Node_Id;
2032 begin
2033 -- For an infinite loop, there is no iteration scheme
2035 if No (N) then
2036 return;
2037 end if;
2039 Cond := Condition (N);
2040 Iter_Spec := Iterator_Specification (N);
2041 Loop_Spec := Loop_Parameter_Specification (N);
2043 if Present (Cond) then
2044 Analyze_And_Resolve (Cond, Any_Boolean);
2045 Check_Unset_Reference (Cond);
2046 Set_Current_Value_Condition (N);
2048 elsif Present (Iter_Spec) then
2049 Analyze_Iterator_Specification (Iter_Spec);
2051 else
2052 Analyze_Loop_Parameter_Specification (Loop_Spec);
2053 end if;
2054 end Analyze_Iteration_Scheme;
2056 ------------------------------------
2057 -- Analyze_Iterator_Specification --
2058 ------------------------------------
2060 procedure Analyze_Iterator_Specification (N : Node_Id) is
2061 procedure Check_Reverse_Iteration (Typ : Entity_Id);
2062 -- For an iteration over a container, if the loop carries the Reverse
2063 -- indicator, verify that the container type has an Iterate aspect that
2064 -- implements the reversible iterator interface.
2066 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
2067 -- For containers with Iterator and related aspects, the cursor is
2068 -- obtained by locating an entity with the proper name in the scope
2069 -- of the type.
2071 -----------------------------
2072 -- Check_Reverse_Iteration --
2073 -----------------------------
2075 procedure Check_Reverse_Iteration (Typ : Entity_Id) is
2076 begin
2077 if Reverse_Present (N) then
2078 if Is_Array_Type (Typ)
2079 or else Is_Reversible_Iterator (Typ)
2080 or else
2081 (Present (Find_Aspect (Typ, Aspect_Iterable))
2082 and then
2083 Present
2084 (Get_Iterable_Type_Primitive (Typ, Name_Previous)))
2085 then
2086 null;
2087 else
2088 Error_Msg_NE
2089 ("container type does not support reverse iteration", N, Typ);
2090 end if;
2091 end if;
2092 end Check_Reverse_Iteration;
2094 ---------------------
2095 -- Get_Cursor_Type --
2096 ---------------------
2098 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
2099 Ent : Entity_Id;
2101 begin
2102 -- If iterator type is derived, the cursor is declared in the scope
2103 -- of the parent type.
2105 if Is_Derived_Type (Typ) then
2106 Ent := First_Entity (Scope (Etype (Typ)));
2107 else
2108 Ent := First_Entity (Scope (Typ));
2109 end if;
2111 while Present (Ent) loop
2112 exit when Chars (Ent) = Name_Cursor;
2113 Next_Entity (Ent);
2114 end loop;
2116 if No (Ent) then
2117 return Any_Type;
2118 end if;
2120 -- The cursor is the target of generated assignments in the
2121 -- loop, and cannot have a limited type.
2123 if Is_Limited_Type (Etype (Ent)) then
2124 Error_Msg_N ("cursor type cannot be limited", N);
2125 end if;
2127 return Etype (Ent);
2128 end Get_Cursor_Type;
2130 -- Local variables
2132 Def_Id : constant Node_Id := Defining_Identifier (N);
2133 Iter_Name : constant Node_Id := Name (N);
2134 Loc : constant Source_Ptr := Sloc (N);
2135 Subt : constant Node_Id := Subtype_Indication (N);
2137 Bas : Entity_Id := Empty; -- initialize to prevent warning
2138 Typ : Entity_Id;
2140 -- Start of processing for Analyze_Iterator_Specification
2142 begin
2143 Enter_Name (Def_Id);
2145 -- AI12-0151 specifies that when the subtype indication is present, it
2146 -- must statically match the type of the array or container element.
2147 -- To simplify this check, we introduce a subtype declaration with the
2148 -- given subtype indication when it carries a constraint, and rewrite
2149 -- the original as a reference to the created subtype entity.
2151 if Present (Subt) then
2152 if Nkind (Subt) = N_Subtype_Indication then
2153 declare
2154 S : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
2155 Decl : constant Node_Id :=
2156 Make_Subtype_Declaration (Loc,
2157 Defining_Identifier => S,
2158 Subtype_Indication => New_Copy_Tree (Subt));
2159 begin
2160 Insert_Before (Parent (Parent (N)), Decl);
2161 Analyze (Decl);
2162 Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
2163 end;
2164 else
2165 Analyze (Subt);
2166 end if;
2168 -- Save entity of subtype indication for subsequent check
2170 Bas := Entity (Subt);
2171 end if;
2173 Preanalyze_Range (Iter_Name);
2175 -- Set the kind of the loop variable, which is not visible within the
2176 -- iterator name.
2178 Set_Ekind (Def_Id, E_Variable);
2180 -- Provide a link between the iterator variable and the container, for
2181 -- subsequent use in cross-reference and modification information.
2183 if Of_Present (N) then
2184 Set_Related_Expression (Def_Id, Iter_Name);
2186 -- For a container, the iterator is specified through the aspect
2188 if not Is_Array_Type (Etype (Iter_Name)) then
2189 declare
2190 Iterator : constant Entity_Id :=
2191 Find_Value_Of_Aspect
2192 (Etype (Iter_Name), Aspect_Default_Iterator);
2194 I : Interp_Index;
2195 It : Interp;
2197 begin
2198 if No (Iterator) then
2199 null; -- error reported below
2201 elsif not Is_Overloaded (Iterator) then
2202 Check_Reverse_Iteration (Etype (Iterator));
2204 -- If Iterator is overloaded, use reversible iterator if one is
2205 -- available.
2207 elsif Is_Overloaded (Iterator) then
2208 Get_First_Interp (Iterator, I, It);
2209 while Present (It.Nam) loop
2210 if Ekind (It.Nam) = E_Function
2211 and then Is_Reversible_Iterator (Etype (It.Nam))
2212 then
2213 Set_Etype (Iterator, It.Typ);
2214 Set_Entity (Iterator, It.Nam);
2215 exit;
2216 end if;
2218 Get_Next_Interp (I, It);
2219 end loop;
2221 Check_Reverse_Iteration (Etype (Iterator));
2222 end if;
2223 end;
2224 end if;
2225 end if;
2227 -- If the domain of iteration is an expression, create a declaration for
2228 -- it, so that finalization actions are introduced outside of the loop.
2229 -- The declaration must be a renaming because the body of the loop may
2230 -- assign to elements.
2232 if not Is_Entity_Name (Iter_Name)
2234 -- When the context is a quantified expression, the renaming
2235 -- declaration is delayed until the expansion phase if we are
2236 -- doing expansion.
2238 and then (Nkind (Parent (N)) /= N_Quantified_Expression
2239 or else Operating_Mode = Check_Semantics)
2241 -- Do not perform this expansion for ASIS and when expansion is
2242 -- disabled, where the temporary may hide the transformation of a
2243 -- selected component into a prefixed function call, and references
2244 -- need to see the original expression.
2246 and then Expander_Active
2247 then
2248 declare
2249 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
2250 Decl : Node_Id;
2251 Act_S : Node_Id;
2253 begin
2255 -- If the domain of iteration is an array component that depends
2256 -- on a discriminant, create actual subtype for it. Pre-analysis
2257 -- does not generate the actual subtype of a selected component.
2259 if Nkind (Iter_Name) = N_Selected_Component
2260 and then Is_Array_Type (Etype (Iter_Name))
2261 then
2262 Act_S :=
2263 Build_Actual_Subtype_Of_Component
2264 (Etype (Selector_Name (Iter_Name)), Iter_Name);
2265 Insert_Action (N, Act_S);
2267 if Present (Act_S) then
2268 Typ := Defining_Identifier (Act_S);
2269 else
2270 Typ := Etype (Iter_Name);
2271 end if;
2273 else
2274 Typ := Etype (Iter_Name);
2276 -- Verify that the expression produces an iterator
2278 if not Of_Present (N) and then not Is_Iterator (Typ)
2279 and then not Is_Array_Type (Typ)
2280 and then No (Find_Aspect (Typ, Aspect_Iterable))
2281 then
2282 Error_Msg_N
2283 ("expect object that implements iterator interface",
2284 Iter_Name);
2285 end if;
2286 end if;
2288 -- Protect against malformed iterator
2290 if Typ = Any_Type then
2291 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
2292 return;
2293 end if;
2295 if not Of_Present (N) then
2296 Check_Reverse_Iteration (Typ);
2297 end if;
2299 -- The name in the renaming declaration may be a function call.
2300 -- Indicate that it does not come from source, to suppress
2301 -- spurious warnings on renamings of parameterless functions,
2302 -- a common enough idiom in user-defined iterators.
2304 Decl :=
2305 Make_Object_Renaming_Declaration (Loc,
2306 Defining_Identifier => Id,
2307 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2308 Name =>
2309 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
2311 Insert_Actions (Parent (Parent (N)), New_List (Decl));
2312 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
2313 Set_Etype (Id, Typ);
2314 Set_Etype (Name (N), Typ);
2315 end;
2317 -- Container is an entity or an array with uncontrolled components, or
2318 -- else it is a container iterator given by a function call, typically
2319 -- called Iterate in the case of predefined containers, even though
2320 -- Iterate is not a reserved name. What matters is that the return type
2321 -- of the function is an iterator type.
2323 elsif Is_Entity_Name (Iter_Name) then
2324 Analyze (Iter_Name);
2326 if Nkind (Iter_Name) = N_Function_Call then
2327 declare
2328 C : constant Node_Id := Name (Iter_Name);
2329 I : Interp_Index;
2330 It : Interp;
2332 begin
2333 if not Is_Overloaded (Iter_Name) then
2334 Resolve (Iter_Name, Etype (C));
2336 else
2337 Get_First_Interp (C, I, It);
2338 while It.Typ /= Empty loop
2339 if Reverse_Present (N) then
2340 if Is_Reversible_Iterator (It.Typ) then
2341 Resolve (Iter_Name, It.Typ);
2342 exit;
2343 end if;
2345 elsif Is_Iterator (It.Typ) then
2346 Resolve (Iter_Name, It.Typ);
2347 exit;
2348 end if;
2350 Get_Next_Interp (I, It);
2351 end loop;
2352 end if;
2353 end;
2355 -- Domain of iteration is not overloaded
2357 else
2358 Resolve (Iter_Name, Etype (Iter_Name));
2359 end if;
2361 if not Of_Present (N) then
2362 Check_Reverse_Iteration (Etype (Iter_Name));
2363 end if;
2364 end if;
2366 -- Get base type of container, for proper retrieval of Cursor type
2367 -- and primitive operations.
2369 Typ := Base_Type (Etype (Iter_Name));
2371 if Is_Array_Type (Typ) then
2372 if Of_Present (N) then
2373 Set_Etype (Def_Id, Component_Type (Typ));
2375 -- The loop variable is aliased if the array components are
2376 -- aliased.
2378 Set_Is_Aliased (Def_Id, Has_Aliased_Components (Typ));
2380 -- AI12-0047 stipulates that the domain (array or container)
2381 -- cannot be a component that depends on a discriminant if the
2382 -- enclosing object is mutable, to prevent a modification of the
2383 -- dowmain of iteration in the course of an iteration.
2385 -- If the object is an expression it has been captured in a
2386 -- temporary, so examine original node.
2388 if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
2389 and then Is_Dependent_Component_Of_Mutable_Object
2390 (Original_Node (Iter_Name))
2391 then
2392 Error_Msg_N
2393 ("iterable name cannot be a discriminant-dependent "
2394 & "component of a mutable object", N);
2395 end if;
2397 if Present (Subt)
2398 and then
2399 (Base_Type (Bas) /= Base_Type (Component_Type (Typ))
2400 or else
2401 not Subtypes_Statically_Match (Bas, Component_Type (Typ)))
2402 then
2403 Error_Msg_N
2404 ("subtype indication does not match component type", Subt);
2405 end if;
2407 -- Here we have a missing Range attribute
2409 else
2410 Error_Msg_N
2411 ("missing Range attribute in iteration over an array", N);
2413 -- In Ada 2012 mode, this may be an attempt at an iterator
2415 if Ada_Version >= Ada_2012 then
2416 Error_Msg_NE
2417 ("\if& is meant to designate an element of the array, use OF",
2418 N, Def_Id);
2419 end if;
2421 -- Prevent cascaded errors
2423 Set_Ekind (Def_Id, E_Loop_Parameter);
2424 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2425 end if;
2427 -- Check for type error in iterator
2429 elsif Typ = Any_Type then
2430 return;
2432 -- Iteration over a container
2434 else
2435 Set_Ekind (Def_Id, E_Loop_Parameter);
2436 Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
2438 -- OF present
2440 if Of_Present (N) then
2441 if Has_Aspect (Typ, Aspect_Iterable) then
2442 declare
2443 Elt : constant Entity_Id :=
2444 Get_Iterable_Type_Primitive (Typ, Name_Element);
2445 begin
2446 if No (Elt) then
2447 Error_Msg_N
2448 ("missing Element primitive for iteration", N);
2449 else
2450 Set_Etype (Def_Id, Etype (Elt));
2451 Check_Reverse_Iteration (Typ);
2452 end if;
2453 end;
2455 -- For a predefined container, The type of the loop variable is
2456 -- the Iterator_Element aspect of the container type.
2458 else
2459 declare
2460 Element : constant Entity_Id :=
2461 Find_Value_Of_Aspect
2462 (Typ, Aspect_Iterator_Element);
2463 Iterator : constant Entity_Id :=
2464 Find_Value_Of_Aspect
2465 (Typ, Aspect_Default_Iterator);
2466 Orig_Iter_Name : constant Node_Id :=
2467 Original_Node (Iter_Name);
2468 Cursor_Type : Entity_Id;
2470 begin
2471 if No (Element) then
2472 Error_Msg_NE ("cannot iterate over&", N, Typ);
2473 return;
2475 else
2476 Set_Etype (Def_Id, Entity (Element));
2477 Cursor_Type := Get_Cursor_Type (Typ);
2478 pragma Assert (Present (Cursor_Type));
2480 -- If subtype indication was given, verify that it covers
2481 -- the element type of the container.
2483 if Present (Subt)
2484 and then (not Covers (Bas, Etype (Def_Id))
2485 or else not Subtypes_Statically_Match
2486 (Bas, Etype (Def_Id)))
2487 then
2488 Error_Msg_N
2489 ("subtype indication does not match element type",
2490 Subt);
2491 end if;
2493 -- If the container has a variable indexing aspect, the
2494 -- element is a variable and is modifiable in the loop.
2496 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
2497 Set_Ekind (Def_Id, E_Variable);
2498 end if;
2500 -- If the container is a constant, iterating over it
2501 -- requires a Constant_Indexing operation.
2503 if not Is_Variable (Iter_Name)
2504 and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
2505 then
2506 Error_Msg_N
2507 ("iteration over constant container require "
2508 & "constant_indexing aspect", N);
2510 -- The Iterate function may have an in_out parameter,
2511 -- and a constant container is thus illegal.
2513 elsif Present (Iterator)
2514 and then Ekind (Entity (Iterator)) = E_Function
2515 and then Ekind (First_Formal (Entity (Iterator))) /=
2516 E_In_Parameter
2517 and then not Is_Variable (Iter_Name)
2518 then
2519 Error_Msg_N ("variable container expected", N);
2520 end if;
2522 -- Detect a case where the iterator denotes a component
2523 -- of a mutable object which depends on a discriminant.
2524 -- Note that the iterator may denote a function call in
2525 -- qualified form, in which case this check should not
2526 -- be performed.
2528 if Nkind (Orig_Iter_Name) = N_Selected_Component
2529 and then
2530 Present (Entity (Selector_Name (Orig_Iter_Name)))
2531 and then Ekind_In
2532 (Entity (Selector_Name (Orig_Iter_Name)),
2533 E_Component,
2534 E_Discriminant)
2535 and then Is_Dependent_Component_Of_Mutable_Object
2536 (Orig_Iter_Name)
2537 then
2538 Error_Msg_N
2539 ("container cannot be a discriminant-dependent "
2540 & "component of a mutable object", N);
2541 end if;
2542 end if;
2543 end;
2544 end if;
2546 -- IN iterator, domain is a range, or a call to Iterate function
2548 else
2549 -- For an iteration of the form IN, the name must denote an
2550 -- iterator, typically the result of a call to Iterate. Give a
2551 -- useful error message when the name is a container by itself.
2553 -- The type may be a formal container type, which has to have
2554 -- an Iterable aspect detailing the required primitives.
2556 if Is_Entity_Name (Original_Node (Name (N)))
2557 and then not Is_Iterator (Typ)
2558 then
2559 if Has_Aspect (Typ, Aspect_Iterable) then
2560 null;
2562 elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
2563 Error_Msg_NE
2564 ("cannot iterate over&", Name (N), Typ);
2565 else
2566 Error_Msg_N
2567 ("name must be an iterator, not a container", Name (N));
2568 end if;
2570 if Has_Aspect (Typ, Aspect_Iterable) then
2571 null;
2572 else
2573 Error_Msg_NE
2574 ("\to iterate directly over the elements of a container, "
2575 & "write `of &`", Name (N), Original_Node (Name (N)));
2577 -- No point in continuing analysis of iterator spec
2579 return;
2580 end if;
2581 end if;
2583 -- If the name is a call (typically prefixed) to some Iterate
2584 -- function, it has been rewritten as an object declaration.
2585 -- If that object is a selected component, verify that it is not
2586 -- a component of an unconstrained mutable object.
2588 if Nkind (Iter_Name) = N_Identifier
2589 or else (not Expander_Active and Comes_From_Source (Iter_Name))
2590 then
2591 declare
2592 Orig_Node : constant Node_Id := Original_Node (Iter_Name);
2593 Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
2594 Obj : Node_Id;
2596 begin
2597 if Iter_Kind = N_Selected_Component then
2598 Obj := Prefix (Orig_Node);
2600 elsif Iter_Kind = N_Function_Call then
2601 Obj := First_Actual (Orig_Node);
2603 -- If neither, the name comes from source
2605 else
2606 Obj := Iter_Name;
2607 end if;
2609 if Nkind (Obj) = N_Selected_Component
2610 and then Is_Dependent_Component_Of_Mutable_Object (Obj)
2611 then
2612 Error_Msg_N
2613 ("container cannot be a discriminant-dependent "
2614 & "component of a mutable object", N);
2615 end if;
2616 end;
2617 end if;
2619 -- The result type of Iterate function is the classwide type of
2620 -- the interface parent. We need the specific Cursor type defined
2621 -- in the container package. We obtain it by name for a predefined
2622 -- container, or through the Iterable aspect for a formal one.
2624 if Has_Aspect (Typ, Aspect_Iterable) then
2625 Set_Etype (Def_Id,
2626 Get_Cursor_Type
2627 (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
2628 Typ));
2630 else
2631 Set_Etype (Def_Id, Get_Cursor_Type (Typ));
2632 Check_Reverse_Iteration (Etype (Iter_Name));
2633 end if;
2635 end if;
2636 end if;
2637 end Analyze_Iterator_Specification;
2639 -------------------
2640 -- Analyze_Label --
2641 -------------------
2643 -- Note: the semantic work required for analyzing labels (setting them as
2644 -- reachable) was done in a prepass through the statements in the block,
2645 -- so that forward gotos would be properly handled. See Analyze_Statements
2646 -- for further details. The only processing required here is to deal with
2647 -- optimizations that depend on an assumption of sequential control flow,
2648 -- since of course the occurrence of a label breaks this assumption.
2650 procedure Analyze_Label (N : Node_Id) is
2651 pragma Warnings (Off, N);
2652 begin
2653 Kill_Current_Values;
2654 end Analyze_Label;
2656 --------------------------
2657 -- Analyze_Label_Entity --
2658 --------------------------
2660 procedure Analyze_Label_Entity (E : Entity_Id) is
2661 begin
2662 Set_Ekind (E, E_Label);
2663 Set_Etype (E, Standard_Void_Type);
2664 Set_Enclosing_Scope (E, Current_Scope);
2665 Set_Reachable (E, True);
2666 end Analyze_Label_Entity;
2668 ------------------------------------------
2669 -- Analyze_Loop_Parameter_Specification --
2670 ------------------------------------------
2672 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
2673 Loop_Nod : constant Node_Id := Parent (Parent (N));
2675 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
2676 -- If the bounds are given by a 'Range reference on a function call
2677 -- that returns a controlled array, introduce an explicit declaration
2678 -- to capture the bounds, so that the function result can be finalized
2679 -- in timely fashion.
2681 procedure Check_Predicate_Use (T : Entity_Id);
2682 -- Diagnose Attempt to iterate through non-static predicate. Note that
2683 -- a type with inherited predicates may have both static and dynamic
2684 -- forms. In this case it is not sufficent to check the static predicate
2685 -- function only, look for a dynamic predicate aspect as well.
2687 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
2688 -- N is the node for an arbitrary construct. This function searches the
2689 -- construct N to see if any expressions within it contain function
2690 -- calls that use the secondary stack, returning True if any such call
2691 -- is found, and False otherwise.
2693 procedure Process_Bounds (R : Node_Id);
2694 -- If the iteration is given by a range, create temporaries and
2695 -- assignment statements block to capture the bounds and perform
2696 -- required finalization actions in case a bound includes a function
2697 -- call that uses the temporary stack. We first pre-analyze a copy of
2698 -- the range in order to determine the expected type, and analyze and
2699 -- resolve the original bounds.
2701 --------------------------------------
2702 -- Check_Controlled_Array_Attribute --
2703 --------------------------------------
2705 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
2706 begin
2707 if Nkind (DS) = N_Attribute_Reference
2708 and then Is_Entity_Name (Prefix (DS))
2709 and then Ekind (Entity (Prefix (DS))) = E_Function
2710 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
2711 and then
2712 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
2713 and then Expander_Active
2714 then
2715 declare
2716 Loc : constant Source_Ptr := Sloc (N);
2717 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
2718 Indx : constant Entity_Id :=
2719 Base_Type (Etype (First_Index (Arr)));
2720 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
2721 Decl : Node_Id;
2723 begin
2724 Decl :=
2725 Make_Subtype_Declaration (Loc,
2726 Defining_Identifier => Subt,
2727 Subtype_Indication =>
2728 Make_Subtype_Indication (Loc,
2729 Subtype_Mark => New_Occurrence_Of (Indx, Loc),
2730 Constraint =>
2731 Make_Range_Constraint (Loc, Relocate_Node (DS))));
2732 Insert_Before (Loop_Nod, Decl);
2733 Analyze (Decl);
2735 Rewrite (DS,
2736 Make_Attribute_Reference (Loc,
2737 Prefix => New_Occurrence_Of (Subt, Loc),
2738 Attribute_Name => Attribute_Name (DS)));
2740 Analyze (DS);
2741 end;
2742 end if;
2743 end Check_Controlled_Array_Attribute;
2745 -------------------------
2746 -- Check_Predicate_Use --
2747 -------------------------
2749 procedure Check_Predicate_Use (T : Entity_Id) is
2750 begin
2751 -- A predicated subtype is illegal in loops and related constructs
2752 -- if the predicate is not static, or if it is a non-static subtype
2753 -- of a statically predicated subtype.
2755 if Is_Discrete_Type (T)
2756 and then Has_Predicates (T)
2757 and then (not Has_Static_Predicate (T)
2758 or else not Is_Static_Subtype (T)
2759 or else Has_Dynamic_Predicate_Aspect (T))
2760 then
2761 -- Seems a confusing message for the case of a static predicate
2762 -- with a non-static subtype???
2764 Bad_Predicated_Subtype_Use
2765 ("cannot use subtype& with non-static predicate for loop "
2766 & "iteration", Discrete_Subtype_Definition (N),
2767 T, Suggest_Static => True);
2769 elsif Inside_A_Generic
2770 and then Is_Generic_Formal (T)
2771 and then Is_Discrete_Type (T)
2772 then
2773 Set_No_Dynamic_Predicate_On_Actual (T);
2774 end if;
2775 end Check_Predicate_Use;
2777 ------------------------------------
2778 -- Has_Call_Using_Secondary_Stack --
2779 ------------------------------------
2781 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
2783 function Check_Call (N : Node_Id) return Traverse_Result;
2784 -- Check if N is a function call which uses the secondary stack
2786 ----------------
2787 -- Check_Call --
2788 ----------------
2790 function Check_Call (N : Node_Id) return Traverse_Result is
2791 Nam : Node_Id;
2792 Subp : Entity_Id;
2793 Return_Typ : Entity_Id;
2795 begin
2796 if Nkind (N) = N_Function_Call then
2797 Nam := Name (N);
2799 -- Call using access to subprogram with explicit dereference
2801 if Nkind (Nam) = N_Explicit_Dereference then
2802 Subp := Etype (Nam);
2804 -- Call using a selected component notation or Ada 2005 object
2805 -- operation notation
2807 elsif Nkind (Nam) = N_Selected_Component then
2808 Subp := Entity (Selector_Name (Nam));
2810 -- Common case
2812 else
2813 Subp := Entity (Nam);
2814 end if;
2816 Return_Typ := Etype (Subp);
2818 if Is_Composite_Type (Return_Typ)
2819 and then not Is_Constrained (Return_Typ)
2820 then
2821 return Abandon;
2823 elsif Sec_Stack_Needed_For_Return (Subp) then
2824 return Abandon;
2825 end if;
2826 end if;
2828 -- Continue traversing the tree
2830 return OK;
2831 end Check_Call;
2833 function Check_Calls is new Traverse_Func (Check_Call);
2835 -- Start of processing for Has_Call_Using_Secondary_Stack
2837 begin
2838 return Check_Calls (N) = Abandon;
2839 end Has_Call_Using_Secondary_Stack;
2841 --------------------
2842 -- Process_Bounds --
2843 --------------------
2845 procedure Process_Bounds (R : Node_Id) is
2846 Loc : constant Source_Ptr := Sloc (N);
2848 function One_Bound
2849 (Original_Bound : Node_Id;
2850 Analyzed_Bound : Node_Id;
2851 Typ : Entity_Id) return Node_Id;
2852 -- Capture value of bound and return captured value
2854 ---------------
2855 -- One_Bound --
2856 ---------------
2858 function One_Bound
2859 (Original_Bound : Node_Id;
2860 Analyzed_Bound : Node_Id;
2861 Typ : Entity_Id) return Node_Id
2863 Assign : Node_Id;
2864 Decl : Node_Id;
2865 Id : Entity_Id;
2867 begin
2868 -- If the bound is a constant or an object, no need for a separate
2869 -- declaration. If the bound is the result of previous expansion
2870 -- it is already analyzed and should not be modified. Note that
2871 -- the Bound will be resolved later, if needed, as part of the
2872 -- call to Make_Index (literal bounds may need to be resolved to
2873 -- type Integer).
2875 if Analyzed (Original_Bound) then
2876 return Original_Bound;
2878 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2879 N_Character_Literal)
2880 or else Is_Entity_Name (Analyzed_Bound)
2881 then
2882 Analyze_And_Resolve (Original_Bound, Typ);
2883 return Original_Bound;
2884 end if;
2886 -- Normally, the best approach is simply to generate a constant
2887 -- declaration that captures the bound. However, there is a nasty
2888 -- case where this is wrong. If the bound is complex, and has a
2889 -- possible use of the secondary stack, we need to generate a
2890 -- separate assignment statement to ensure the creation of a block
2891 -- which will release the secondary stack.
2893 -- We prefer the constant declaration, since it leaves us with a
2894 -- proper trace of the value, useful in optimizations that get rid
2895 -- of junk range checks.
2897 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2898 Analyze_And_Resolve (Original_Bound, Typ);
2900 -- Ensure that the bound is valid. This check should not be
2901 -- generated when the range belongs to a quantified expression
2902 -- as the construct is still not expanded into its final form.
2904 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
2905 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
2906 then
2907 Ensure_Valid (Original_Bound);
2908 end if;
2910 Force_Evaluation (Original_Bound);
2911 return Original_Bound;
2912 end if;
2914 Id := Make_Temporary (Loc, 'R', Original_Bound);
2916 -- Here we make a declaration with a separate assignment
2917 -- statement, and insert before loop header.
2919 Decl :=
2920 Make_Object_Declaration (Loc,
2921 Defining_Identifier => Id,
2922 Object_Definition => New_Occurrence_Of (Typ, Loc));
2924 Assign :=
2925 Make_Assignment_Statement (Loc,
2926 Name => New_Occurrence_Of (Id, Loc),
2927 Expression => Relocate_Node (Original_Bound));
2929 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2931 -- Now that this temporary variable is initialized we decorate it
2932 -- as safe-to-reevaluate to inform to the backend that no further
2933 -- asignment will be issued and hence it can be handled as side
2934 -- effect free. Note that this decoration must be done when the
2935 -- assignment has been analyzed because otherwise it will be
2936 -- rejected (see Analyze_Assignment).
2938 Set_Is_Safe_To_Reevaluate (Id);
2940 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2942 if Nkind (Assign) = N_Assignment_Statement then
2943 return Expression (Assign);
2944 else
2945 return Original_Bound;
2946 end if;
2947 end One_Bound;
2949 Hi : constant Node_Id := High_Bound (R);
2950 Lo : constant Node_Id := Low_Bound (R);
2951 R_Copy : constant Node_Id := New_Copy_Tree (R);
2952 New_Hi : Node_Id;
2953 New_Lo : Node_Id;
2954 Typ : Entity_Id;
2956 -- Start of processing for Process_Bounds
2958 begin
2959 Set_Parent (R_Copy, Parent (R));
2960 Preanalyze_Range (R_Copy);
2961 Typ := Etype (R_Copy);
2963 -- If the type of the discrete range is Universal_Integer, then the
2964 -- bound's type must be resolved to Integer, and any object used to
2965 -- hold the bound must also have type Integer, unless the literal
2966 -- bounds are constant-folded expressions with a user-defined type.
2968 if Typ = Universal_Integer then
2969 if Nkind (Lo) = N_Integer_Literal
2970 and then Present (Etype (Lo))
2971 and then Scope (Etype (Lo)) /= Standard_Standard
2972 then
2973 Typ := Etype (Lo);
2975 elsif Nkind (Hi) = N_Integer_Literal
2976 and then Present (Etype (Hi))
2977 and then Scope (Etype (Hi)) /= Standard_Standard
2978 then
2979 Typ := Etype (Hi);
2981 else
2982 Typ := Standard_Integer;
2983 end if;
2984 end if;
2986 Set_Etype (R, Typ);
2988 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2989 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2991 -- Propagate staticness to loop range itself, in case the
2992 -- corresponding subtype is static.
2994 if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
2995 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2996 end if;
2998 if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
2999 Rewrite (High_Bound (R), New_Copy (New_Hi));
3000 end if;
3001 end Process_Bounds;
3003 -- Local variables
3005 DS : constant Node_Id := Discrete_Subtype_Definition (N);
3006 Id : constant Entity_Id := Defining_Identifier (N);
3008 DS_Copy : Node_Id;
3010 -- Start of processing for Analyze_Loop_Parameter_Specification
3012 begin
3013 Enter_Name (Id);
3015 -- We always consider the loop variable to be referenced, since the loop
3016 -- may be used just for counting purposes.
3018 Generate_Reference (Id, N, ' ');
3020 -- Check for the case of loop variable hiding a local variable (used
3021 -- later on to give a nice warning if the hidden variable is never
3022 -- assigned).
3024 declare
3025 H : constant Entity_Id := Homonym (Id);
3026 begin
3027 if Present (H)
3028 and then Ekind (H) = E_Variable
3029 and then Is_Discrete_Type (Etype (H))
3030 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
3031 then
3032 Set_Hiding_Loop_Variable (H, Id);
3033 end if;
3034 end;
3036 -- Loop parameter specification must include subtype mark in SPARK
3038 if Nkind (DS) = N_Range then
3039 Check_SPARK_05_Restriction
3040 ("loop parameter specification must include subtype mark", N);
3041 end if;
3043 -- Analyze the subtype definition and create temporaries for the bounds.
3044 -- Do not evaluate the range when preanalyzing a quantified expression
3045 -- because bounds expressed as function calls with side effects will be
3046 -- incorrectly replicated.
3048 if Nkind (DS) = N_Range
3049 and then Expander_Active
3050 and then Nkind (Parent (N)) /= N_Quantified_Expression
3051 then
3052 Process_Bounds (DS);
3054 -- Either the expander not active or the range of iteration is a subtype
3055 -- indication, an entity, or a function call that yields an aggregate or
3056 -- a container.
3058 else
3059 DS_Copy := New_Copy_Tree (DS);
3060 Set_Parent (DS_Copy, Parent (DS));
3061 Preanalyze_Range (DS_Copy);
3063 -- Ada 2012: If the domain of iteration is:
3065 -- a) a function call,
3066 -- b) an identifier that is not a type,
3067 -- c) an attribute reference 'Old (within a postcondition),
3068 -- d) an unchecked conversion or a qualified expression with
3069 -- the proper iterator type.
3071 -- then it is an iteration over a container. It was classified as
3072 -- a loop specification by the parser, and must be rewritten now
3073 -- to activate container iteration. The last case will occur within
3074 -- an expanded inlined call, where the expansion wraps an actual in
3075 -- an unchecked conversion when needed. The expression of the
3076 -- conversion is always an object.
3078 if Nkind (DS_Copy) = N_Function_Call
3080 or else (Is_Entity_Name (DS_Copy)
3081 and then not Is_Type (Entity (DS_Copy)))
3083 or else (Nkind (DS_Copy) = N_Attribute_Reference
3084 and then Nam_In (Attribute_Name (DS_Copy),
3085 Name_Loop_Entry, Name_Old))
3087 or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
3089 or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
3090 or else (Nkind (DS_Copy) = N_Qualified_Expression
3091 and then Is_Iterator (Etype (DS_Copy)))
3092 then
3093 -- This is an iterator specification. Rewrite it as such and
3094 -- analyze it to capture function calls that may require
3095 -- finalization actions.
3097 declare
3098 I_Spec : constant Node_Id :=
3099 Make_Iterator_Specification (Sloc (N),
3100 Defining_Identifier => Relocate_Node (Id),
3101 Name => DS_Copy,
3102 Subtype_Indication => Empty,
3103 Reverse_Present => Reverse_Present (N));
3104 Scheme : constant Node_Id := Parent (N);
3106 begin
3107 Set_Iterator_Specification (Scheme, I_Spec);
3108 Set_Loop_Parameter_Specification (Scheme, Empty);
3109 Analyze_Iterator_Specification (I_Spec);
3111 -- In a generic context, analyze the original domain of
3112 -- iteration, for name capture.
3114 if not Expander_Active then
3115 Analyze (DS);
3116 end if;
3118 -- Set kind of loop parameter, which may be used in the
3119 -- subsequent analysis of the condition in a quantified
3120 -- expression.
3122 Set_Ekind (Id, E_Loop_Parameter);
3123 return;
3124 end;
3126 -- Domain of iteration is not a function call, and is side-effect
3127 -- free.
3129 else
3130 -- A quantified expression that appears in a pre/post condition
3131 -- is pre-analyzed several times. If the range is given by an
3132 -- attribute reference it is rewritten as a range, and this is
3133 -- done even with expansion disabled. If the type is already set
3134 -- do not reanalyze, because a range with static bounds may be
3135 -- typed Integer by default.
3137 if Nkind (Parent (N)) = N_Quantified_Expression
3138 and then Present (Etype (DS))
3139 then
3140 null;
3141 else
3142 Analyze (DS);
3143 end if;
3144 end if;
3145 end if;
3147 if DS = Error then
3148 return;
3149 end if;
3151 -- Some additional checks if we are iterating through a type
3153 if Is_Entity_Name (DS)
3154 and then Present (Entity (DS))
3155 and then Is_Type (Entity (DS))
3156 then
3157 -- The subtype indication may denote the completion of an incomplete
3158 -- type declaration.
3160 if Ekind (Entity (DS)) = E_Incomplete_Type then
3161 Set_Entity (DS, Get_Full_View (Entity (DS)));
3162 Set_Etype (DS, Entity (DS));
3163 end if;
3165 Check_Predicate_Use (Entity (DS));
3166 end if;
3168 -- Error if not discrete type
3170 if not Is_Discrete_Type (Etype (DS)) then
3171 Wrong_Type (DS, Any_Discrete);
3172 Set_Etype (DS, Any_Type);
3173 end if;
3175 Check_Controlled_Array_Attribute (DS);
3177 if Nkind (DS) = N_Subtype_Indication then
3178 Check_Predicate_Use (Entity (Subtype_Mark (DS)));
3179 end if;
3181 Make_Index (DS, N, In_Iter_Schm => True);
3182 Set_Ekind (Id, E_Loop_Parameter);
3184 -- A quantified expression which appears in a pre- or post-condition may
3185 -- be analyzed multiple times. The analysis of the range creates several
3186 -- itypes which reside in different scopes depending on whether the pre-
3187 -- or post-condition has been expanded. Update the type of the loop
3188 -- variable to reflect the proper itype at each stage of analysis.
3190 if No (Etype (Id))
3191 or else Etype (Id) = Any_Type
3192 or else
3193 (Present (Etype (Id))
3194 and then Is_Itype (Etype (Id))
3195 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
3196 and then Nkind (Original_Node (Parent (Loop_Nod))) =
3197 N_Quantified_Expression)
3198 then
3199 Set_Etype (Id, Etype (DS));
3200 end if;
3202 -- Treat a range as an implicit reference to the type, to inhibit
3203 -- spurious warnings.
3205 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
3206 Set_Is_Known_Valid (Id, True);
3208 -- The loop is not a declarative part, so the loop variable must be
3209 -- frozen explicitly. Do not freeze while preanalyzing a quantified
3210 -- expression because the freeze node will not be inserted into the
3211 -- tree due to flag Is_Spec_Expression being set.
3213 if Nkind (Parent (N)) /= N_Quantified_Expression then
3214 declare
3215 Flist : constant List_Id := Freeze_Entity (Id, N);
3216 begin
3217 if Is_Non_Empty_List (Flist) then
3218 Insert_Actions (N, Flist);
3219 end if;
3220 end;
3221 end if;
3223 -- Case where we have a range or a subtype, get type bounds
3225 if Nkind_In (DS, N_Range, N_Subtype_Indication)
3226 and then not Error_Posted (DS)
3227 and then Etype (DS) /= Any_Type
3228 and then Is_Discrete_Type (Etype (DS))
3229 then
3230 declare
3231 L : Node_Id;
3232 H : Node_Id;
3234 begin
3235 if Nkind (DS) = N_Range then
3236 L := Low_Bound (DS);
3237 H := High_Bound (DS);
3238 else
3239 L :=
3240 Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
3241 H :=
3242 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
3243 end if;
3245 -- Check for null or possibly null range and issue warning. We
3246 -- suppress such messages in generic templates and instances,
3247 -- because in practice they tend to be dubious in these cases. The
3248 -- check applies as well to rewritten array element loops where a
3249 -- null range may be detected statically.
3251 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
3253 -- Suppress the warning if inside a generic template or
3254 -- instance, since in practice they tend to be dubious in these
3255 -- cases since they can result from intended parameterization.
3257 if not Inside_A_Generic and then not In_Instance then
3259 -- Specialize msg if invalid values could make the loop
3260 -- non-null after all.
3262 if Compile_Time_Compare
3263 (L, H, Assume_Valid => False) = GT
3264 then
3265 -- Since we know the range of the loop is null, set the
3266 -- appropriate flag to remove the loop entirely during
3267 -- expansion.
3269 Set_Is_Null_Loop (Loop_Nod);
3271 if Comes_From_Source (N) then
3272 Error_Msg_N
3273 ("??loop range is null, loop will not execute", DS);
3274 end if;
3276 -- Here is where the loop could execute because of
3277 -- invalid values, so issue appropriate message and in
3278 -- this case we do not set the Is_Null_Loop flag since
3279 -- the loop may execute.
3281 elsif Comes_From_Source (N) then
3282 Error_Msg_N
3283 ("??loop range may be null, loop may not execute",
3284 DS);
3285 Error_Msg_N
3286 ("??can only execute if invalid values are present",
3287 DS);
3288 end if;
3289 end if;
3291 -- In either case, suppress warnings in the body of the loop,
3292 -- since it is likely that these warnings will be inappropriate
3293 -- if the loop never actually executes, which is likely.
3295 Set_Suppress_Loop_Warnings (Loop_Nod);
3297 -- The other case for a warning is a reverse loop where the
3298 -- upper bound is the integer literal zero or one, and the
3299 -- lower bound may exceed this value.
3301 -- For example, we have
3303 -- for J in reverse N .. 1 loop
3305 -- In practice, this is very likely to be a case of reversing
3306 -- the bounds incorrectly in the range.
3308 elsif Reverse_Present (N)
3309 and then Nkind (Original_Node (H)) = N_Integer_Literal
3310 and then
3311 (Intval (Original_Node (H)) = Uint_0
3312 or else
3313 Intval (Original_Node (H)) = Uint_1)
3314 then
3315 -- Lower bound may in fact be known and known not to exceed
3316 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
3318 if Compile_Time_Known_Value (L)
3319 and then Expr_Value (L) <= Expr_Value (H)
3320 then
3321 null;
3323 -- Otherwise warning is warranted
3325 else
3326 Error_Msg_N ("??loop range may be null", DS);
3327 Error_Msg_N ("\??bounds may be wrong way round", DS);
3328 end if;
3329 end if;
3331 -- Check if either bound is known to be outside the range of the
3332 -- loop parameter type, this is e.g. the case of a loop from
3333 -- 20..X where the type is 1..19.
3335 -- Such a loop is dubious since either it raises CE or it executes
3336 -- zero times, and that cannot be useful!
3338 if Etype (DS) /= Any_Type
3339 and then not Error_Posted (DS)
3340 and then Nkind (DS) = N_Subtype_Indication
3341 and then Nkind (Constraint (DS)) = N_Range_Constraint
3342 then
3343 declare
3344 LLo : constant Node_Id :=
3345 Low_Bound (Range_Expression (Constraint (DS)));
3346 LHi : constant Node_Id :=
3347 High_Bound (Range_Expression (Constraint (DS)));
3349 Bad_Bound : Node_Id := Empty;
3350 -- Suspicious loop bound
3352 begin
3353 -- At this stage L, H are the bounds of the type, and LLo
3354 -- Lhi are the low bound and high bound of the loop.
3356 if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
3357 or else
3358 Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
3359 then
3360 Bad_Bound := LLo;
3361 end if;
3363 if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
3364 or else
3365 Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
3366 then
3367 Bad_Bound := LHi;
3368 end if;
3370 if Present (Bad_Bound) then
3371 Error_Msg_N
3372 ("suspicious loop bound out of range of "
3373 & "loop subtype??", Bad_Bound);
3374 Error_Msg_N
3375 ("\loop executes zero times or raises "
3376 & "Constraint_Error??", Bad_Bound);
3377 end if;
3378 end;
3379 end if;
3381 -- This declare block is about warnings, if we get an exception while
3382 -- testing for warnings, we simply abandon the attempt silently. This
3383 -- most likely occurs as the result of a previous error, but might
3384 -- just be an obscure case we have missed. In either case, not giving
3385 -- the warning is perfectly acceptable.
3387 exception
3388 when others => null;
3389 end;
3390 end if;
3392 -- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
3393 -- This check is relevant only when SPARK_Mode is on as it is not a
3394 -- standard Ada legality check.
3396 if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
3397 Error_Msg_N ("loop parameter cannot be volatile", Id);
3398 end if;
3399 end Analyze_Loop_Parameter_Specification;
3401 ----------------------------
3402 -- Analyze_Loop_Statement --
3403 ----------------------------
3405 procedure Analyze_Loop_Statement (N : Node_Id) is
3407 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
3408 -- Given a loop iteration scheme, determine whether it is an Ada 2012
3409 -- container iteration.
3411 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
3412 -- Determine whether loop statement N has been wrapped in a block to
3413 -- capture finalization actions that may be generated for container
3414 -- iterators. Prevents infinite recursion when block is analyzed.
3415 -- Routine is a noop if loop is single statement within source block.
3417 ---------------------------
3418 -- Is_Container_Iterator --
3419 ---------------------------
3421 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
3422 begin
3423 -- Infinite loop
3425 if No (Iter) then
3426 return False;
3428 -- While loop
3430 elsif Present (Condition (Iter)) then
3431 return False;
3433 -- for Def_Id in [reverse] Name loop
3434 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
3436 elsif Present (Iterator_Specification (Iter)) then
3437 declare
3438 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
3439 Nam_Copy : Node_Id;
3441 begin
3442 Nam_Copy := New_Copy_Tree (Nam);
3443 Set_Parent (Nam_Copy, Parent (Nam));
3444 Preanalyze_Range (Nam_Copy);
3446 -- The only two options here are iteration over a container or
3447 -- an array.
3449 return not Is_Array_Type (Etype (Nam_Copy));
3450 end;
3452 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
3454 else
3455 declare
3456 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
3457 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
3458 DS_Copy : Node_Id;
3460 begin
3461 DS_Copy := New_Copy_Tree (DS);
3462 Set_Parent (DS_Copy, Parent (DS));
3463 Preanalyze_Range (DS_Copy);
3465 -- Check for a call to Iterate () or an expression with
3466 -- an iterator type.
3468 return
3469 (Nkind (DS_Copy) = N_Function_Call
3470 and then Needs_Finalization (Etype (DS_Copy)))
3471 or else Is_Iterator (Etype (DS_Copy));
3472 end;
3473 end if;
3474 end Is_Container_Iterator;
3476 -------------------------
3477 -- Is_Wrapped_In_Block --
3478 -------------------------
3480 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
3481 HSS : Node_Id;
3482 Stat : Node_Id;
3484 begin
3486 -- Check if current scope is a block that is not a transient block.
3488 if Ekind (Current_Scope) /= E_Block
3489 or else No (Block_Node (Current_Scope))
3490 then
3491 return False;
3493 else
3494 HSS :=
3495 Handled_Statement_Sequence (Parent (Block_Node (Current_Scope)));
3497 -- Skip leading pragmas that may be introduced for invariant and
3498 -- predicate checks.
3500 Stat := First (Statements (HSS));
3501 while Present (Stat) and then Nkind (Stat) = N_Pragma loop
3502 Stat := Next (Stat);
3503 end loop;
3505 return Stat = N and then No (Next (Stat));
3506 end if;
3507 end Is_Wrapped_In_Block;
3509 -- Local declarations
3511 Id : constant Node_Id := Identifier (N);
3512 Iter : constant Node_Id := Iteration_Scheme (N);
3513 Loc : constant Source_Ptr := Sloc (N);
3514 Ent : Entity_Id;
3515 Stmt : Node_Id;
3517 -- Start of processing for Analyze_Loop_Statement
3519 begin
3520 if Present (Id) then
3522 -- Make name visible, e.g. for use in exit statements. Loop labels
3523 -- are always considered to be referenced.
3525 Analyze (Id);
3526 Ent := Entity (Id);
3528 -- Guard against serious error (typically, a scope mismatch when
3529 -- semantic analysis is requested) by creating loop entity to
3530 -- continue analysis.
3532 if No (Ent) then
3533 if Total_Errors_Detected /= 0 then
3534 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3535 else
3536 raise Program_Error;
3537 end if;
3539 -- Verify that the loop name is hot hidden by an unrelated
3540 -- declaration in an inner scope.
3542 elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
3543 Error_Msg_Sloc := Sloc (Ent);
3544 Error_Msg_N ("implicit label declaration for & is hidden#", Id);
3546 if Present (Homonym (Ent))
3547 and then Ekind (Homonym (Ent)) = E_Label
3548 then
3549 Set_Entity (Id, Ent);
3550 Set_Ekind (Ent, E_Loop);
3551 end if;
3553 else
3554 Generate_Reference (Ent, N, ' ');
3555 Generate_Definition (Ent);
3557 -- If we found a label, mark its type. If not, ignore it, since it
3558 -- means we have a conflicting declaration, which would already
3559 -- have been diagnosed at declaration time. Set Label_Construct
3560 -- of the implicit label declaration, which is not created by the
3561 -- parser for generic units.
3563 if Ekind (Ent) = E_Label then
3564 Set_Ekind (Ent, E_Loop);
3566 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
3567 Set_Label_Construct (Parent (Ent), N);
3568 end if;
3569 end if;
3570 end if;
3572 -- Case of no identifier present. Create one and attach it to the
3573 -- loop statement for use as a scope and as a reference for later
3574 -- expansions. Indicate that the label does not come from source,
3575 -- and attach it to the loop statement so it is part of the tree,
3576 -- even without a full declaration.
3578 else
3579 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3580 Set_Etype (Ent, Standard_Void_Type);
3581 Set_Identifier (N, New_Occurrence_Of (Ent, Loc));
3582 Set_Parent (Ent, N);
3583 Set_Has_Created_Identifier (N);
3584 end if;
3586 -- If the iterator specification has a syntactic error, transform
3587 -- construct into an infinite loop to prevent a crash and perform
3588 -- some analysis.
3590 if Present (Iter)
3591 and then Present (Iterator_Specification (Iter))
3592 and then Error_Posted (Iterator_Specification (Iter))
3593 then
3594 Set_Iteration_Scheme (N, Empty);
3595 Analyze (N);
3596 return;
3597 end if;
3599 -- Iteration over a container in Ada 2012 involves the creation of a
3600 -- controlled iterator object. Wrap the loop in a block to ensure the
3601 -- timely finalization of the iterator and release of container locks.
3602 -- The same applies to the use of secondary stack when obtaining an
3603 -- iterator.
3605 if Ada_Version >= Ada_2012
3606 and then Is_Container_Iterator (Iter)
3607 and then not Is_Wrapped_In_Block (N)
3608 then
3609 declare
3610 Block_Nod : Node_Id;
3611 Block_Id : Entity_Id;
3613 begin
3614 Block_Nod :=
3615 Make_Block_Statement (Loc,
3616 Declarations => New_List,
3617 Handled_Statement_Sequence =>
3618 Make_Handled_Sequence_Of_Statements (Loc,
3619 Statements => New_List (Relocate_Node (N))));
3621 Add_Block_Identifier (Block_Nod, Block_Id);
3623 -- The expansion of iterator loops generates an iterator in order
3624 -- to traverse the elements of a container:
3626 -- Iter : <iterator type> := Iterate (Container)'reference;
3628 -- The iterator is controlled and returned on the secondary stack.
3629 -- The analysis of the call to Iterate establishes a transient
3630 -- scope to deal with the secondary stack management, but never
3631 -- really creates a physical block as this would kill the iterator
3632 -- too early (see Wrap_Transient_Declaration). To address this
3633 -- case, mark the generated block as needing secondary stack
3634 -- management.
3636 Set_Uses_Sec_Stack (Block_Id);
3638 Rewrite (N, Block_Nod);
3639 Analyze (N);
3640 return;
3641 end;
3642 end if;
3644 -- Kill current values on entry to loop, since statements in the body of
3645 -- the loop may have been executed before the loop is entered. Similarly
3646 -- we kill values after the loop, since we do not know that the body of
3647 -- the loop was executed.
3649 Kill_Current_Values;
3650 Push_Scope (Ent);
3651 Analyze_Iteration_Scheme (Iter);
3653 -- Check for following case which merits a warning if the type E of is
3654 -- a multi-dimensional array (and no explicit subscript ranges present).
3656 -- for J in E'Range
3657 -- for K in E'Range
3659 if Present (Iter)
3660 and then Present (Loop_Parameter_Specification (Iter))
3661 then
3662 declare
3663 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
3664 DSD : constant Node_Id :=
3665 Original_Node (Discrete_Subtype_Definition (LPS));
3666 begin
3667 if Nkind (DSD) = N_Attribute_Reference
3668 and then Attribute_Name (DSD) = Name_Range
3669 and then No (Expressions (DSD))
3670 then
3671 declare
3672 Typ : constant Entity_Id := Etype (Prefix (DSD));
3673 begin
3674 if Is_Array_Type (Typ)
3675 and then Number_Dimensions (Typ) > 1
3676 and then Nkind (Parent (N)) = N_Loop_Statement
3677 and then Present (Iteration_Scheme (Parent (N)))
3678 then
3679 declare
3680 OIter : constant Node_Id :=
3681 Iteration_Scheme (Parent (N));
3682 OLPS : constant Node_Id :=
3683 Loop_Parameter_Specification (OIter);
3684 ODSD : constant Node_Id :=
3685 Original_Node (Discrete_Subtype_Definition (OLPS));
3686 begin
3687 if Nkind (ODSD) = N_Attribute_Reference
3688 and then Attribute_Name (ODSD) = Name_Range
3689 and then No (Expressions (ODSD))
3690 and then Etype (Prefix (ODSD)) = Typ
3691 then
3692 Error_Msg_Sloc := Sloc (ODSD);
3693 Error_Msg_N
3694 ("inner range same as outer range#??", DSD);
3695 end if;
3696 end;
3697 end if;
3698 end;
3699 end if;
3700 end;
3701 end if;
3703 -- Analyze the statements of the body except in the case of an Ada 2012
3704 -- iterator with the expander active. In this case the expander will do
3705 -- a rewrite of the loop into a while loop. We will then analyze the
3706 -- loop body when we analyze this while loop.
3708 -- We need to do this delay because if the container is for indefinite
3709 -- types the actual subtype of the components will only be determined
3710 -- when the cursor declaration is analyzed.
3712 -- If the expander is not active then we want to analyze the loop body
3713 -- now even in the Ada 2012 iterator case, since the rewriting will not
3714 -- be done. Insert the loop variable in the current scope, if not done
3715 -- when analysing the iteration scheme. Set its kind properly to detect
3716 -- improper uses in the loop body.
3718 -- In GNATprove mode, we do one of the above depending on the kind of
3719 -- loop. If it is an iterator over an array, then we do not analyze the
3720 -- loop now. We will analyze it after it has been rewritten by the
3721 -- special SPARK expansion which is activated in GNATprove mode. We need
3722 -- to do this so that other expansions that should occur in GNATprove
3723 -- mode take into account the specificities of the rewritten loop, in
3724 -- particular the introduction of a renaming (which needs to be
3725 -- expanded).
3727 -- In other cases in GNATprove mode then we want to analyze the loop
3728 -- body now, since no rewriting will occur. Within a generic the
3729 -- GNATprove mode is irrelevant, we must analyze the generic for
3730 -- non-local name capture.
3732 if Present (Iter)
3733 and then Present (Iterator_Specification (Iter))
3734 then
3735 if GNATprove_Mode
3736 and then Is_Iterator_Over_Array (Iterator_Specification (Iter))
3737 and then not Inside_A_Generic
3738 then
3739 null;
3741 elsif not Expander_Active then
3742 declare
3743 I_Spec : constant Node_Id := Iterator_Specification (Iter);
3744 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3746 begin
3747 if Scope (Id) /= Current_Scope then
3748 Enter_Name (Id);
3749 end if;
3751 -- In an element iterator, The loop parameter is a variable if
3752 -- the domain of iteration (container or array) is a variable.
3754 if not Of_Present (I_Spec)
3755 or else not Is_Variable (Name (I_Spec))
3756 then
3757 Set_Ekind (Id, E_Loop_Parameter);
3758 end if;
3759 end;
3761 Analyze_Statements (Statements (N));
3762 end if;
3764 else
3765 -- Pre-Ada2012 for-loops and while loops
3767 Analyze_Statements (Statements (N));
3768 end if;
3770 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3771 -- the loop is transformed into a conditional block. Retrieve the loop.
3773 Stmt := N;
3775 if Subject_To_Loop_Entry_Attributes (Stmt) then
3776 Stmt := Find_Loop_In_Conditional_Block (Stmt);
3777 end if;
3779 -- Finish up processing for the loop. We kill all current values, since
3780 -- in general we don't know if the statements in the loop have been
3781 -- executed. We could do a bit better than this with a loop that we
3782 -- know will execute at least once, but it's not worth the trouble and
3783 -- the front end is not in the business of flow tracing.
3785 Process_End_Label (Stmt, 'e', Ent);
3786 End_Scope;
3787 Kill_Current_Values;
3789 -- Check for infinite loop. Skip check for generated code, since it
3790 -- justs waste time and makes debugging the routine called harder.
3792 -- Note that we have to wait till the body of the loop is fully analyzed
3793 -- before making this call, since Check_Infinite_Loop_Warning relies on
3794 -- being able to use semantic visibility information to find references.
3796 if Comes_From_Source (Stmt) then
3797 Check_Infinite_Loop_Warning (Stmt);
3798 end if;
3800 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3801 -- contains no EXIT statements within the body of the loop.
3803 if No (Iter) and then not Has_Exit (Ent) then
3804 Check_Unreachable_Code (Stmt);
3805 end if;
3806 end Analyze_Loop_Statement;
3808 ----------------------------
3809 -- Analyze_Null_Statement --
3810 ----------------------------
3812 -- Note: the semantics of the null statement is implemented by a single
3813 -- null statement, too bad everything isn't as simple as this.
3815 procedure Analyze_Null_Statement (N : Node_Id) is
3816 pragma Warnings (Off, N);
3817 begin
3818 null;
3819 end Analyze_Null_Statement;
3821 -------------------------
3822 -- Analyze_Target_Name --
3823 -------------------------
3825 procedure Analyze_Target_Name (N : Node_Id) is
3826 begin
3827 -- A target name has the type of the left-hand side of the enclosing
3828 -- assignment.
3830 Set_Etype (N, Etype (Name (Current_Assignment)));
3831 end Analyze_Target_Name;
3833 ------------------------
3834 -- Analyze_Statements --
3835 ------------------------
3837 procedure Analyze_Statements (L : List_Id) is
3838 Lab : Entity_Id;
3839 S : Node_Id;
3841 begin
3842 -- The labels declared in the statement list are reachable from
3843 -- statements in the list. We do this as a prepass so that any goto
3844 -- statement will be properly flagged if its target is not reachable.
3845 -- This is not required, but is nice behavior.
3847 S := First (L);
3848 while Present (S) loop
3849 if Nkind (S) = N_Label then
3850 Analyze (Identifier (S));
3851 Lab := Entity (Identifier (S));
3853 -- If we found a label mark it as reachable
3855 if Ekind (Lab) = E_Label then
3856 Generate_Definition (Lab);
3857 Set_Reachable (Lab);
3859 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
3860 Set_Label_Construct (Parent (Lab), S);
3861 end if;
3863 -- If we failed to find a label, it means the implicit declaration
3864 -- of the label was hidden. A for-loop parameter can do this to
3865 -- a label with the same name inside the loop, since the implicit
3866 -- label declaration is in the innermost enclosing body or block
3867 -- statement.
3869 else
3870 Error_Msg_Sloc := Sloc (Lab);
3871 Error_Msg_N
3872 ("implicit label declaration for & is hidden#",
3873 Identifier (S));
3874 end if;
3875 end if;
3877 Next (S);
3878 end loop;
3880 -- Perform semantic analysis on all statements
3882 Conditional_Statements_Begin;
3884 S := First (L);
3885 while Present (S) loop
3886 Analyze (S);
3888 -- Remove dimension in all statements
3890 Remove_Dimension_In_Statement (S);
3891 Next (S);
3892 end loop;
3894 Conditional_Statements_End;
3896 -- Make labels unreachable. Visibility is not sufficient, because labels
3897 -- in one if-branch for example are not reachable from the other branch,
3898 -- even though their declarations are in the enclosing declarative part.
3900 S := First (L);
3901 while Present (S) loop
3902 if Nkind (S) = N_Label then
3903 Set_Reachable (Entity (Identifier (S)), False);
3904 end if;
3906 Next (S);
3907 end loop;
3908 end Analyze_Statements;
3910 ----------------------------
3911 -- Check_Unreachable_Code --
3912 ----------------------------
3914 procedure Check_Unreachable_Code (N : Node_Id) is
3915 Error_Node : Node_Id;
3916 P : Node_Id;
3918 begin
3919 if Is_List_Member (N) and then Comes_From_Source (N) then
3920 declare
3921 Nxt : Node_Id;
3923 begin
3924 Nxt := Original_Node (Next (N));
3926 -- Skip past pragmas
3928 while Nkind (Nxt) = N_Pragma loop
3929 Nxt := Original_Node (Next (Nxt));
3930 end loop;
3932 -- If a label follows us, then we never have dead code, since
3933 -- someone could branch to the label, so we just ignore it, unless
3934 -- we are in formal mode where goto statements are not allowed.
3936 if Nkind (Nxt) = N_Label
3937 and then not Restriction_Check_Required (SPARK_05)
3938 then
3939 return;
3941 -- Otherwise see if we have a real statement following us
3943 elsif Present (Nxt)
3944 and then Comes_From_Source (Nxt)
3945 and then Is_Statement (Nxt)
3946 then
3947 -- Special very annoying exception. If we have a return that
3948 -- follows a raise, then we allow it without a warning, since
3949 -- the Ada RM annoyingly requires a useless return here.
3951 if Nkind (Original_Node (N)) /= N_Raise_Statement
3952 or else Nkind (Nxt) /= N_Simple_Return_Statement
3953 then
3954 -- The rather strange shenanigans with the warning message
3955 -- here reflects the fact that Kill_Dead_Code is very good
3956 -- at removing warnings in deleted code, and this is one
3957 -- warning we would prefer NOT to have removed.
3959 Error_Node := Nxt;
3961 -- If we have unreachable code, analyze and remove the
3962 -- unreachable code, since it is useless and we don't
3963 -- want to generate junk warnings.
3965 -- We skip this step if we are not in code generation mode
3966 -- or CodePeer mode.
3968 -- This is the one case where we remove dead code in the
3969 -- semantics as opposed to the expander, and we do not want
3970 -- to remove code if we are not in code generation mode,
3971 -- since this messes up the ASIS trees or loses useful
3972 -- information in the CodePeer tree.
3974 -- Note that one might react by moving the whole circuit to
3975 -- exp_ch5, but then we lose the warning in -gnatc mode.
3977 if Operating_Mode = Generate_Code
3978 and then not CodePeer_Mode
3979 then
3980 loop
3981 Nxt := Next (N);
3983 -- Quit deleting when we have nothing more to delete
3984 -- or if we hit a label (since someone could transfer
3985 -- control to a label, so we should not delete it).
3987 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
3989 -- Statement/declaration is to be deleted
3991 Analyze (Nxt);
3992 Remove (Nxt);
3993 Kill_Dead_Code (Nxt);
3994 end loop;
3995 end if;
3997 -- Now issue the warning (or error in formal mode)
3999 if Restriction_Check_Required (SPARK_05) then
4000 Check_SPARK_05_Restriction
4001 ("unreachable code is not allowed", Error_Node);
4002 else
4003 Error_Msg
4004 ("??unreachable code!", Sloc (Error_Node), Error_Node);
4005 end if;
4006 end if;
4008 -- If the unconditional transfer of control instruction is the
4009 -- last statement of a sequence, then see if our parent is one of
4010 -- the constructs for which we count unblocked exits, and if so,
4011 -- adjust the count.
4013 else
4014 P := Parent (N);
4016 -- Statements in THEN part or ELSE part of IF statement
4018 if Nkind (P) = N_If_Statement then
4019 null;
4021 -- Statements in ELSIF part of an IF statement
4023 elsif Nkind (P) = N_Elsif_Part then
4024 P := Parent (P);
4025 pragma Assert (Nkind (P) = N_If_Statement);
4027 -- Statements in CASE statement alternative
4029 elsif Nkind (P) = N_Case_Statement_Alternative then
4030 P := Parent (P);
4031 pragma Assert (Nkind (P) = N_Case_Statement);
4033 -- Statements in body of block
4035 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
4036 and then Nkind (Parent (P)) = N_Block_Statement
4037 then
4038 -- The original loop is now placed inside a block statement
4039 -- due to the expansion of attribute 'Loop_Entry. Return as
4040 -- this is not a "real" block for the purposes of exit
4041 -- counting.
4043 if Nkind (N) = N_Loop_Statement
4044 and then Subject_To_Loop_Entry_Attributes (N)
4045 then
4046 return;
4047 end if;
4049 -- Statements in exception handler in a block
4051 elsif Nkind (P) = N_Exception_Handler
4052 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
4053 and then Nkind (Parent (Parent (P))) = N_Block_Statement
4054 then
4055 null;
4057 -- None of these cases, so return
4059 else
4060 return;
4061 end if;
4063 -- This was one of the cases we are looking for (i.e. the
4064 -- parent construct was IF, CASE or block) so decrement count.
4066 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
4067 end if;
4068 end;
4069 end if;
4070 end Check_Unreachable_Code;
4072 ----------------------
4073 -- Preanalyze_Range --
4074 ----------------------
4076 procedure Preanalyze_Range (R_Copy : Node_Id) is
4077 Save_Analysis : constant Boolean := Full_Analysis;
4078 Typ : Entity_Id;
4080 begin
4081 Full_Analysis := False;
4082 Expander_Mode_Save_And_Set (False);
4084 Analyze (R_Copy);
4086 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
4088 -- Apply preference rules for range of predefined integer types, or
4089 -- check for array or iterable construct for "of" iterator, or
4090 -- diagnose true ambiguity.
4092 declare
4093 I : Interp_Index;
4094 It : Interp;
4095 Found : Entity_Id := Empty;
4097 begin
4098 Get_First_Interp (R_Copy, I, It);
4099 while Present (It.Typ) loop
4100 if Is_Discrete_Type (It.Typ) then
4101 if No (Found) then
4102 Found := It.Typ;
4103 else
4104 if Scope (Found) = Standard_Standard then
4105 null;
4107 elsif Scope (It.Typ) = Standard_Standard then
4108 Found := It.Typ;
4110 else
4111 -- Both of them are user-defined
4113 Error_Msg_N
4114 ("ambiguous bounds in range of iteration", R_Copy);
4115 Error_Msg_N ("\possible interpretations:", R_Copy);
4116 Error_Msg_NE ("\\} ", R_Copy, Found);
4117 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
4118 exit;
4119 end if;
4120 end if;
4122 elsif Nkind (Parent (R_Copy)) = N_Iterator_Specification
4123 and then Of_Present (Parent (R_Copy))
4124 then
4125 if Is_Array_Type (It.Typ)
4126 or else Has_Aspect (It.Typ, Aspect_Iterator_Element)
4127 or else Has_Aspect (It.Typ, Aspect_Constant_Indexing)
4128 or else Has_Aspect (It.Typ, Aspect_Variable_Indexing)
4129 then
4130 if No (Found) then
4131 Found := It.Typ;
4132 Set_Etype (R_Copy, It.Typ);
4134 else
4135 Error_Msg_N ("ambiguous domain of iteration", R_Copy);
4136 end if;
4137 end if;
4138 end if;
4140 Get_Next_Interp (I, It);
4141 end loop;
4142 end;
4143 end if;
4145 -- Subtype mark in iteration scheme
4147 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
4148 null;
4150 -- Expression in range, or Ada 2012 iterator
4152 elsif Nkind (R_Copy) in N_Subexpr then
4153 Resolve (R_Copy);
4154 Typ := Etype (R_Copy);
4156 if Is_Discrete_Type (Typ) then
4157 null;
4159 -- Check that the resulting object is an iterable container
4161 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
4162 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
4163 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
4164 then
4165 null;
4167 -- The expression may yield an implicit reference to an iterable
4168 -- container. Insert explicit dereference so that proper type is
4169 -- visible in the loop.
4171 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
4172 declare
4173 Disc : Entity_Id;
4175 begin
4176 Disc := First_Discriminant (Typ);
4177 while Present (Disc) loop
4178 if Has_Implicit_Dereference (Disc) then
4179 Build_Explicit_Dereference (R_Copy, Disc);
4180 exit;
4181 end if;
4183 Next_Discriminant (Disc);
4184 end loop;
4185 end;
4187 end if;
4188 end if;
4190 Expander_Mode_Restore;
4191 Full_Analysis := Save_Analysis;
4192 end Preanalyze_Range;
4194 end Sem_Ch5;