2018-03-02 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ada / par-ch4.adb
blobfaa45e8cc4580f2e3c6274773701442f7548ee2b
1 -----------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- P A R . C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 pragma Style_Checks (All_Checks);
27 -- Turn off subprogram body ordering check. Subprograms are in order
28 -- by RM section rather than alphabetical
30 with Stringt; use Stringt;
32 separate (Par)
33 package body Ch4 is
35 -- Attributes that cannot have arguments
37 Is_Parameterless_Attribute : constant Attribute_Class_Array :=
38 (Attribute_Base => True,
39 Attribute_Body_Version => True,
40 Attribute_Class => True,
41 Attribute_External_Tag => True,
42 Attribute_Img => True,
43 Attribute_Loop_Entry => True,
44 Attribute_Old => True,
45 Attribute_Result => True,
46 Attribute_Stub_Type => True,
47 Attribute_Version => True,
48 Attribute_Type_Key => True,
49 others => False);
50 -- This map contains True for parameterless attributes that return a string
51 -- or a type. For those attributes, a left parenthesis after the attribute
52 -- should not be analyzed as the beginning of a parameters list because it
53 -- may denote a slice operation (X'Img (1 .. 2)) or a type conversion
54 -- (X'Class (Y)). The Ada 2012 attribute 'Old is in this category.
56 -- Note: Loop_Entry is in this list because, although it can take an
57 -- optional argument (the loop name), we can't distinguish that at parse
58 -- time from the case where no loop name is given and a legitimate index
59 -- expression is present. So we parse the argument as an indexed component
60 -- and the semantic analysis sorts out this syntactic ambiguity based on
61 -- the type and form of the expression.
63 -- Note that this map designates the minimum set of attributes where a
64 -- construct in parentheses that is not an argument can appear right
65 -- after the attribute. For attributes like 'Size, we do not put them
66 -- in the map. If someone writes X'Size (3), that's illegal in any case,
67 -- but we get a better error message by parsing the (3) as an illegal
68 -- argument to the attribute, rather than some meaningless junk that
69 -- follows the attribute.
71 -----------------------
72 -- Local Subprograms --
73 -----------------------
75 function P_Aggregate_Or_Paren_Expr return Node_Id;
76 function P_Allocator return Node_Id;
77 function P_Case_Expression_Alternative return Node_Id;
78 function P_Iterated_Component_Assoc_Or_Reduction return Node_Id;
79 function P_Reduction_Expression (Lparen : Boolean) return Node_Id;
80 function P_Record_Or_Array_Component_Association return Node_Id;
81 function P_Factor return Node_Id;
82 function P_Primary return Node_Id;
83 function P_Relation return Node_Id;
84 function P_Term return Node_Id;
86 function P_Binary_Adding_Operator return Node_Kind;
87 function P_Logical_Operator return Node_Kind;
88 function P_Multiplying_Operator return Node_Kind;
89 function P_Relational_Operator return Node_Kind;
90 function P_Unary_Adding_Operator return Node_Kind;
92 procedure Bad_Range_Attribute (Loc : Source_Ptr);
93 -- Called to place complaint about bad range attribute at the given
94 -- source location. Terminates by raising Error_Resync.
96 procedure Check_Bad_Exp;
97 -- Called after scanning a**b, posts error if ** detected
99 procedure P_Membership_Test (N : Node_Id);
100 -- N is the node for a N_In or N_Not_In node whose right operand has not
101 -- yet been processed. It is called just after scanning out the IN keyword.
102 -- On return, either Right_Opnd or Alternatives is set, as appropriate.
104 function P_Range_Attribute_Reference (Prefix_Node : Node_Id) return Node_Id;
105 -- Scan a range attribute reference. The caller has scanned out the
106 -- prefix. The current token is known to be an apostrophe and the
107 -- following token is known to be RANGE.
109 function P_Unparen_Cond_Case_Quant_Expression return Node_Id;
110 -- This function is called with Token pointing to IF, CASE, or FOR, in a
111 -- context that allows a case, conditional, or quantified expression if
112 -- it is surrounded by parentheses. If not surrounded by parentheses, the
113 -- expression is still returned, but an error message is issued.
115 -------------------------
116 -- Bad_Range_Attribute --
117 -------------------------
119 procedure Bad_Range_Attribute (Loc : Source_Ptr) is
120 begin
121 Error_Msg ("range attribute cannot be used in expression!", Loc);
122 Resync_Expression;
123 end Bad_Range_Attribute;
125 -------------------
126 -- Check_Bad_Exp --
127 -------------------
129 procedure Check_Bad_Exp is
130 begin
131 if Token = Tok_Double_Asterisk then
132 Error_Msg_SC ("parenthesization required for '*'*");
133 Scan; -- past **
134 Discard_Junk_Node (P_Primary);
135 Check_Bad_Exp;
136 end if;
137 end Check_Bad_Exp;
139 --------------------------
140 -- 4.1 Name (also 6.4) --
141 --------------------------
143 -- NAME ::=
144 -- DIRECT_NAME | EXPLICIT_DEREFERENCE
145 -- | INDEXED_COMPONENT | SLICE
146 -- | SELECTED_COMPONENT | ATTRIBUTE
147 -- | TYPE_CONVERSION | FUNCTION_CALL
148 -- | CHARACTER_LITERAL | TARGET_NAME
150 -- DIRECT_NAME ::= IDENTIFIER | OPERATOR_SYMBOL
152 -- PREFIX ::= NAME | IMPLICIT_DEREFERENCE
154 -- EXPLICIT_DEREFERENCE ::= NAME . all
156 -- IMPLICIT_DEREFERENCE ::= NAME
158 -- INDEXED_COMPONENT ::= PREFIX (EXPRESSION {, EXPRESSION})
160 -- SLICE ::= PREFIX (DISCRETE_RANGE)
162 -- SELECTED_COMPONENT ::= PREFIX . SELECTOR_NAME
164 -- SELECTOR_NAME ::= IDENTIFIER | CHARACTER_LITERAL | OPERATOR_SYMBOL
166 -- ATTRIBUTE_REFERENCE ::= PREFIX ' ATTRIBUTE_DESIGNATOR
168 -- ATTRIBUTE_DESIGNATOR ::=
169 -- IDENTIFIER [(static_EXPRESSION)]
170 -- | access | delta | digits
172 -- FUNCTION_CALL ::=
173 -- function_NAME
174 -- | function_PREFIX ACTUAL_PARAMETER_PART
176 -- ACTUAL_PARAMETER_PART ::=
177 -- (PARAMETER_ASSOCIATION {,PARAMETER_ASSOCIATION})
179 -- PARAMETER_ASSOCIATION ::=
180 -- [formal_parameter_SELECTOR_NAME =>] EXPLICIT_ACTUAL_PARAMETER
182 -- EXPLICIT_ACTUAL_PARAMETER ::= EXPRESSION | variable_NAME
184 -- TARGET_NAME ::= @ (AI12-0125-3: abbreviation for LHS)
186 -- Note: syntactically a procedure call looks just like a function call,
187 -- so this routine is in practice used to scan out procedure calls as well.
189 -- On return, Expr_Form is set to either EF_Name or EF_Simple_Name
191 -- Error recovery: can raise Error_Resync
193 -- Note: if on return Token = Tok_Apostrophe, then the apostrophe must be
194 -- followed by either a left paren (qualified expression case), or by
195 -- range (range attribute case). All other uses of apostrophe (i.e. all
196 -- other attributes) are handled in this routine.
198 -- Error recovery: can raise Error_Resync
200 function P_Name return Node_Id is
201 Scan_State : Saved_Scan_State;
202 Name_Node : Node_Id;
203 Prefix_Node : Node_Id;
204 Ident_Node : Node_Id;
205 Expr_Node : Node_Id;
206 Range_Node : Node_Id;
207 Arg_Node : Node_Id;
209 Arg_List : List_Id := No_List; -- kill junk warning
210 Attr_Name : Name_Id := No_Name; -- kill junk warning
212 begin
213 -- Case of not a name
215 if Token not in Token_Class_Name then
217 -- If it looks like start of expression, complain and scan expression
219 if Token in Token_Class_Literal
220 or else Token = Tok_Left_Paren
221 then
222 Error_Msg_SC ("name expected");
223 return P_Expression;
225 -- Otherwise some other junk, not much we can do
227 else
228 Error_Msg_AP ("name expected");
229 raise Error_Resync;
230 end if;
231 end if;
233 -- Loop through designators in qualified name
234 -- AI12-0125 : target_name
236 if Token = Tok_At_Sign then
237 Scan_Reserved_Identifier (Force_Msg => False);
239 if Present (Current_Assign_Node) then
240 Set_Has_Target_Names (Current_Assign_Node);
241 end if;
242 end if;
244 Name_Node := Token_Node;
246 loop
247 Scan; -- past designator
248 exit when Token /= Tok_Dot;
249 Save_Scan_State (Scan_State); -- at dot
250 Scan; -- past dot
252 -- If we do not have another designator after the dot, then join
253 -- the normal circuit to handle a dot extension (may be .all or
254 -- character literal case). Otherwise loop back to scan the next
255 -- designator.
257 if Token not in Token_Class_Desig then
258 goto Scan_Name_Extension_Dot;
259 else
260 Prefix_Node := Name_Node;
261 Name_Node := New_Node (N_Selected_Component, Prev_Token_Ptr);
262 Set_Prefix (Name_Node, Prefix_Node);
263 Set_Selector_Name (Name_Node, Token_Node);
264 end if;
265 end loop;
267 -- We have now scanned out a qualified designator. If the last token is
268 -- an operator symbol, then we certainly do not have the Snam case, so
269 -- we can just use the normal name extension check circuit
271 if Prev_Token = Tok_Operator_Symbol then
272 goto Scan_Name_Extension;
273 end if;
275 -- We have scanned out a qualified simple name, check for name extension
276 -- Note that we know there is no dot here at this stage, so the only
277 -- possible cases of name extension are apostrophe and left paren.
279 if Token = Tok_Apostrophe then
280 Save_Scan_State (Scan_State); -- at apostrophe
281 Scan; -- past apostrophe
283 -- Qualified expression in Ada 2012 mode (treated as a name)
285 if Ada_Version >= Ada_2012 and then Token = Tok_Left_Paren then
286 goto Scan_Name_Extension_Apostrophe;
288 -- If left paren not in Ada 2012, then it is not part of the name,
289 -- since qualified expressions are not names in prior versions of
290 -- Ada, so return with Token backed up to point to the apostrophe.
291 -- The treatment for the range attribute is similar (we do not
292 -- consider x'range to be a name in this grammar).
294 elsif Token = Tok_Left_Paren or else Token = Tok_Range then
295 Restore_Scan_State (Scan_State); -- to apostrophe
296 Expr_Form := EF_Simple_Name;
297 return Name_Node;
299 -- Otherwise we have the case of a name extended by an attribute
301 else
302 goto Scan_Name_Extension_Apostrophe;
303 end if;
305 -- Check case of qualified simple name extended by a left parenthesis
307 elsif Token = Tok_Left_Paren then
308 Scan; -- past left paren
309 goto Scan_Name_Extension_Left_Paren;
311 -- Otherwise the qualified simple name is not extended, so return
313 else
314 Expr_Form := EF_Simple_Name;
315 return Name_Node;
316 end if;
318 -- Loop scanning past name extensions. A label is used for control
319 -- transfer for this loop for ease of interfacing with the finite state
320 -- machine in the parenthesis scanning circuit, and also to allow for
321 -- passing in control to the appropriate point from the above code.
323 <<Scan_Name_Extension>>
325 -- Character literal used as name cannot be extended. Also this
326 -- cannot be a call, since the name for a call must be a designator.
327 -- Return in these cases, or if there is no name extension
329 if Token not in Token_Class_Namext
330 or else Prev_Token = Tok_Char_Literal
331 then
332 Expr_Form := EF_Name;
333 return Name_Node;
334 end if;
336 -- Merge here when we know there is a name extension
338 <<Scan_Name_Extension_OK>>
340 if Token = Tok_Left_Paren then
341 Scan; -- past left paren
342 goto Scan_Name_Extension_Left_Paren;
344 elsif Token = Tok_Apostrophe then
345 Save_Scan_State (Scan_State); -- at apostrophe
346 Scan; -- past apostrophe
347 goto Scan_Name_Extension_Apostrophe;
349 else -- Token = Tok_Dot
350 Save_Scan_State (Scan_State); -- at dot
351 Scan; -- past dot
352 goto Scan_Name_Extension_Dot;
353 end if;
355 -- Case of name extended by dot (selection), dot is already skipped
356 -- and the scan state at the point of the dot is saved in Scan_State.
358 <<Scan_Name_Extension_Dot>>
360 -- Explicit dereference case
362 if Token = Tok_All then
363 Prefix_Node := Name_Node;
364 Name_Node := New_Node (N_Explicit_Dereference, Token_Ptr);
365 Set_Prefix (Name_Node, Prefix_Node);
366 Scan; -- past ALL
367 goto Scan_Name_Extension;
369 -- Selected component case
371 elsif Token in Token_Class_Name then
372 Prefix_Node := Name_Node;
373 Name_Node := New_Node (N_Selected_Component, Prev_Token_Ptr);
374 Set_Prefix (Name_Node, Prefix_Node);
375 Set_Selector_Name (Name_Node, Token_Node);
376 Scan; -- past selector
377 goto Scan_Name_Extension;
379 -- Reserved identifier as selector
381 elsif Is_Reserved_Identifier then
382 Scan_Reserved_Identifier (Force_Msg => False);
383 Prefix_Node := Name_Node;
384 Name_Node := New_Node (N_Selected_Component, Prev_Token_Ptr);
385 Set_Prefix (Name_Node, Prefix_Node);
386 Set_Selector_Name (Name_Node, Token_Node);
387 Scan; -- past identifier used as selector
388 goto Scan_Name_Extension;
390 -- If dot is at end of line and followed by nothing legal,
391 -- then assume end of name and quit (dot will be taken as
392 -- an incorrect form of some other punctuation by our caller).
394 elsif Token_Is_At_Start_Of_Line then
395 Restore_Scan_State (Scan_State);
396 return Name_Node;
398 -- Here if nothing legal after the dot
400 else
401 Error_Msg_AP ("selector expected");
402 raise Error_Resync;
403 end if;
405 -- Here for an apostrophe as name extension. The scan position at the
406 -- apostrophe has already been saved, and the apostrophe scanned out.
408 <<Scan_Name_Extension_Apostrophe>>
410 Scan_Apostrophe : declare
411 function Apostrophe_Should_Be_Semicolon return Boolean;
412 -- Checks for case where apostrophe should probably be
413 -- a semicolon, and if so, gives appropriate message,
414 -- resets the scan pointer to the apostrophe, changes
415 -- the current token to Tok_Semicolon, and returns True.
416 -- Otherwise returns False.
418 ------------------------------------
419 -- Apostrophe_Should_Be_Semicolon --
420 ------------------------------------
422 function Apostrophe_Should_Be_Semicolon return Boolean is
423 begin
424 if Token_Is_At_Start_Of_Line then
425 Restore_Scan_State (Scan_State); -- to apostrophe
426 Error_Msg_SC ("|""''"" should be "";""");
427 Token := Tok_Semicolon;
428 return True;
429 else
430 return False;
431 end if;
432 end Apostrophe_Should_Be_Semicolon;
434 -- Start of processing for Scan_Apostrophe
436 begin
437 -- Check for qualified expression case in Ada 2012 mode
439 if Ada_Version >= Ada_2012 and then Token = Tok_Left_Paren then
440 Name_Node := P_Qualified_Expression (Name_Node);
441 goto Scan_Name_Extension;
443 -- If range attribute after apostrophe, then return with Token
444 -- pointing to the apostrophe. Note that in this case the prefix
445 -- need not be a simple name (cases like A.all'range). Similarly
446 -- if there is a left paren after the apostrophe, then we also
447 -- return with Token pointing to the apostrophe (this is the
448 -- aggregate case, or some error case).
450 elsif Token = Tok_Range or else Token = Tok_Left_Paren then
451 Restore_Scan_State (Scan_State); -- to apostrophe
452 Expr_Form := EF_Name;
453 return Name_Node;
455 -- Here for cases where attribute designator is an identifier
457 elsif Token = Tok_Identifier then
458 Attr_Name := Token_Name;
460 if not Is_Attribute_Name (Attr_Name) then
461 if Apostrophe_Should_Be_Semicolon then
462 Expr_Form := EF_Name;
463 return Name_Node;
465 -- Here for a bad attribute name
467 else
468 Signal_Bad_Attribute;
469 Scan; -- past bad identifier
471 if Token = Tok_Left_Paren then
472 Scan; -- past left paren
474 loop
475 Discard_Junk_Node (P_Expression_If_OK);
476 exit when not Comma_Present;
477 end loop;
479 T_Right_Paren;
480 end if;
482 return Error;
483 end if;
484 end if;
486 if Style_Check then
487 Style.Check_Attribute_Name (False);
488 end if;
490 -- Here for case of attribute designator is not an identifier
492 else
493 if Token = Tok_Delta then
494 Attr_Name := Name_Delta;
496 elsif Token = Tok_Digits then
497 Attr_Name := Name_Digits;
499 elsif Token = Tok_Access then
500 Attr_Name := Name_Access;
502 elsif Token = Tok_Mod and then Ada_Version >= Ada_95 then
503 Attr_Name := Name_Mod;
505 elsif Apostrophe_Should_Be_Semicolon then
506 Expr_Form := EF_Name;
507 return Name_Node;
509 else
510 Error_Msg_AP ("attribute designator expected");
511 raise Error_Resync;
512 end if;
514 if Style_Check then
515 Style.Check_Attribute_Name (True);
516 end if;
517 end if;
519 -- We come here with an OK attribute scanned, and corresponding
520 -- Attribute identifier node stored in Ident_Node.
522 Prefix_Node := Name_Node;
523 Name_Node := New_Node (N_Attribute_Reference, Prev_Token_Ptr);
524 Scan; -- past attribute designator
525 Set_Prefix (Name_Node, Prefix_Node);
526 Set_Attribute_Name (Name_Node, Attr_Name);
528 -- Scan attribute arguments/designator. We skip this if we know
529 -- that the attribute cannot have an argument (see documentation
530 -- of Is_Parameterless_Attribute for further details).
532 if Token = Tok_Left_Paren
533 and then not
534 Is_Parameterless_Attribute (Get_Attribute_Id (Attr_Name))
535 then
536 -- Attribute Update contains an array or record association
537 -- list which provides new values for various components or
538 -- elements. The list is parsed as an aggregate, and we get
539 -- better error handling by knowing that in the parser.
541 if Attr_Name = Name_Update then
542 Set_Expressions (Name_Node, New_List);
543 Append (P_Aggregate, Expressions (Name_Node));
545 -- All other cases of parsing attribute arguments
547 else
548 Set_Expressions (Name_Node, New_List);
549 Scan; -- past left paren
551 loop
552 declare
553 Expr : constant Node_Id := P_Expression_If_OK;
554 Rnam : Node_Id;
556 begin
557 -- Case of => for named notation
559 if Token = Tok_Arrow then
561 -- Named notation allowed only for the special
562 -- case of System'Restriction_Set (No_Dependence =>
563 -- unit_NAME), in which case construct a parameter
564 -- assocation node and append to the arguments.
566 if Attr_Name = Name_Restriction_Set
567 and then Nkind (Expr) = N_Identifier
568 and then Chars (Expr) = Name_No_Dependence
569 then
570 Scan; -- past arrow
571 Rnam := P_Name;
572 Append_To (Expressions (Name_Node),
573 Make_Parameter_Association (Sloc (Rnam),
574 Selector_Name => Expr,
575 Explicit_Actual_Parameter => Rnam));
576 exit;
578 -- For all other cases named notation is illegal
580 else
581 Error_Msg_SC
582 ("named parameters not permitted "
583 & "for attributes");
584 Scan; -- past junk arrow
585 end if;
587 -- Here for normal case (not => for named parameter)
589 else
590 -- Special handling for 'Image in Ada 2012, where
591 -- the attribute can be parameterless and its value
592 -- can be the prefix of a slice. Rewrite name as a
593 -- slice, Expr is its low bound.
595 if Token = Tok_Dot_Dot
596 and then Attr_Name = Name_Image
597 and then Ada_Version >= Ada_2012
598 then
599 Set_Expressions (Name_Node, No_List);
600 Prefix_Node := Name_Node;
601 Name_Node :=
602 New_Node (N_Slice, Sloc (Prefix_Node));
603 Set_Prefix (Name_Node, Prefix_Node);
604 Range_Node := New_Node (N_Range, Token_Ptr);
605 Set_Low_Bound (Range_Node, Expr);
606 Scan; -- past ..
607 Expr_Node := P_Expression;
608 Check_Simple_Expression (Expr_Node);
609 Set_High_Bound (Range_Node, Expr_Node);
610 Set_Discrete_Range (Name_Node, Range_Node);
611 T_Right_Paren;
613 goto Scan_Name_Extension;
615 else
616 Append (Expr, Expressions (Name_Node));
617 exit when not Comma_Present;
618 end if;
619 end if;
620 end;
621 end loop;
623 T_Right_Paren;
624 end if;
625 end if;
627 goto Scan_Name_Extension;
628 end Scan_Apostrophe;
630 -- Here for left parenthesis extending name (left paren skipped)
632 <<Scan_Name_Extension_Left_Paren>>
634 -- We now have to scan through a list of items, terminated by a
635 -- right parenthesis. The scan is handled by a finite state
636 -- machine. The possibilities are:
638 -- (discrete_range)
640 -- This is a slice. This case is handled in LP_State_Init
642 -- (expression, expression, ..)
644 -- This is interpreted as an indexed component, i.e. as a
645 -- case of a name which can be extended in the normal manner.
646 -- This case is handled by LP_State_Name or LP_State_Expr.
648 -- (Ada 2020): the expression can be a reduction_expression_
649 -- parameter, i.e. a box or < Simple_Expression >.
651 -- Note: if and case expressions (without an extra level of
652 -- parentheses) are permitted in this context).
654 -- (..., identifier => expression , ...)
656 -- If there is at least one occurrence of identifier => (but
657 -- none of the other cases apply), then we have a call.
659 -- < simple_expression >
660 -- In Ada 2020 this is a reduction expression parameter that
661 -- specifies the initial value of the reduction.
663 -- Test for Id => case
665 if Token = Tok_Identifier then
666 Save_Scan_State (Scan_State); -- at Id
667 Scan; -- past Id
669 -- Test for => (allow := as an error substitute)
671 if Token = Tok_Arrow or else Token = Tok_Colon_Equal then
672 Restore_Scan_State (Scan_State); -- to Id
673 Arg_List := New_List;
674 goto LP_State_Call;
676 else
677 Restore_Scan_State (Scan_State); -- to Id
678 end if;
679 end if;
681 -- Here we have an expression after all, which may be a reduction
682 -- expression with a binary operator.
684 if Token = Tok_Less then
685 Scan; -- past <
687 Expr_Node :=
688 New_Node (N_Reduction_Expression_Parameter, Token_Ptr);
689 Set_Expression (Expr_Node, P_Simple_Expression);
691 if Token = Tok_Greater then
692 Scan;
693 else
694 Error_Msg_N
695 ("malformed reduction expression parameter", Expr_Node);
696 raise Error_Resync;
697 end if;
699 else
700 Expr_Node := P_Expression_Or_Range_Attribute_If_OK;
701 end if;
703 -- Check cases of discrete range for a slice
705 -- First possibility: Range_Attribute_Reference
707 if Expr_Form = EF_Range_Attr then
708 Range_Node := Expr_Node;
710 -- Second possibility: Simple_expression .. Simple_expression
712 elsif Token = Tok_Dot_Dot then
713 Check_Simple_Expression (Expr_Node);
714 Range_Node := New_Node (N_Range, Token_Ptr);
715 Set_Low_Bound (Range_Node, Expr_Node);
716 Scan; -- past ..
717 Expr_Node := P_Expression;
718 Check_Simple_Expression (Expr_Node);
719 Set_High_Bound (Range_Node, Expr_Node);
721 -- Third possibility: Type_name range Range
723 elsif Token = Tok_Range then
724 if Expr_Form /= EF_Simple_Name then
725 Error_Msg_SC ("subtype mark must precede RANGE");
726 raise Error_Resync;
727 end if;
729 Range_Node := P_Subtype_Indication (Expr_Node);
731 -- Otherwise we just have an expression. It is true that we might
732 -- have a subtype mark without a range constraint but this case
733 -- is syntactically indistinguishable from the expression case.
735 else
736 Arg_List := New_List;
737 goto LP_State_Expr;
738 end if;
740 -- Fall through here with unmistakable Discrete range scanned,
741 -- which means that we definitely have the case of a slice. The
742 -- Discrete range is in Range_Node.
744 if Token = Tok_Comma then
745 Error_Msg_SC ("slice cannot have more than one dimension");
746 raise Error_Resync;
748 elsif Token /= Tok_Right_Paren then
749 if Token = Tok_Arrow then
751 -- This may be an aggregate that is missing a qualification
753 Error_Msg_SC
754 ("context of aggregate must be a qualified expression");
755 raise Error_Resync;
757 else
758 T_Right_Paren;
759 raise Error_Resync;
760 end if;
762 else
763 Scan; -- past right paren
764 Prefix_Node := Name_Node;
765 Name_Node := New_Node (N_Slice, Sloc (Prefix_Node));
766 Set_Prefix (Name_Node, Prefix_Node);
767 Set_Discrete_Range (Name_Node, Range_Node);
769 -- An operator node is legal as a prefix to other names,
770 -- but not for a slice.
772 if Nkind (Prefix_Node) = N_Operator_Symbol then
773 Error_Msg_N ("illegal prefix for slice", Prefix_Node);
774 end if;
776 -- If we have a name extension, go scan it
778 if Token in Token_Class_Namext then
779 goto Scan_Name_Extension_OK;
781 -- Otherwise return (a slice is a name, but is not a call)
783 else
784 Expr_Form := EF_Name;
785 return Name_Node;
786 end if;
787 end if;
789 -- In LP_State_Expr, we have scanned one or more expressions, and
790 -- so we have a call or an indexed component which is a name. On
791 -- entry we have the expression just scanned in Expr_Node and
792 -- Arg_List contains the list of expressions encountered so far
794 <<LP_State_Expr>>
795 Append (Expr_Node, Arg_List);
797 if Token = Tok_Arrow then
798 Error_Msg
799 ("expect identifier in parameter association", Sloc (Expr_Node));
800 Scan; -- past arrow
802 elsif not Comma_Present then
803 T_Right_Paren;
805 Prefix_Node := Name_Node;
806 Name_Node := New_Node (N_Indexed_Component, Sloc (Prefix_Node));
807 Set_Prefix (Name_Node, Prefix_Node);
808 Set_Expressions (Name_Node, Arg_List);
810 goto Scan_Name_Extension;
811 end if;
813 -- Comma present (and scanned out), test for identifier => case
814 -- Test for identifier => case
816 if Token = Tok_Identifier then
817 Save_Scan_State (Scan_State); -- at Id
818 Scan; -- past Id
820 -- Test for => (allow := as error substitute)
822 if Token = Tok_Arrow or else Token = Tok_Colon_Equal then
823 Restore_Scan_State (Scan_State); -- to Id
824 goto LP_State_Call;
826 -- Otherwise it's just an expression after all, so backup
828 else
829 Restore_Scan_State (Scan_State); -- to Id
830 end if;
831 end if;
833 -- Here we have an expression after all, so stay in this state
835 Expr_Node := P_Expression_If_OK;
836 goto LP_State_Expr;
838 -- LP_State_Call corresponds to the situation in which at least one
839 -- instance of Id => Expression has been encountered, so we know that
840 -- we do not have a name, but rather a call. We enter it with the
841 -- scan pointer pointing to the next argument to scan, and Arg_List
842 -- containing the list of arguments scanned so far.
844 <<LP_State_Call>>
846 -- Test for case of Id => Expression (named parameter)
848 if Token = Tok_Identifier then
849 Save_Scan_State (Scan_State); -- at Id
850 Ident_Node := Token_Node;
851 Scan; -- past Id
853 -- Deal with => (allow := as incorrect substitute)
855 if Token = Tok_Arrow or else Token = Tok_Colon_Equal then
856 Arg_Node := New_Node (N_Parameter_Association, Prev_Token_Ptr);
857 Set_Selector_Name (Arg_Node, Ident_Node);
858 T_Arrow;
859 Set_Explicit_Actual_Parameter (Arg_Node, P_Expression);
860 Append (Arg_Node, Arg_List);
862 -- If a comma follows, go back and scan next entry
864 if Comma_Present then
865 goto LP_State_Call;
867 -- Otherwise we have the end of a call
869 else
870 Prefix_Node := Name_Node;
871 Name_Node := New_Node (N_Function_Call, Sloc (Prefix_Node));
872 Set_Name (Name_Node, Prefix_Node);
873 Set_Parameter_Associations (Name_Node, Arg_List);
874 T_Right_Paren;
876 if Token in Token_Class_Namext then
877 goto Scan_Name_Extension_OK;
879 -- This is a case of a call which cannot be a name
881 else
882 Expr_Form := EF_Name;
883 return Name_Node;
884 end if;
885 end if;
887 -- Not named parameter: Id started an expression after all
889 else
890 Restore_Scan_State (Scan_State); -- to Id
891 end if;
892 end if;
894 -- Here if entry did not start with Id => which means that it
895 -- is a positional parameter, which is not allowed, since we
896 -- have seen at least one named parameter already.
898 Error_Msg_SC
899 ("positional parameter association " &
900 "not allowed after named one");
902 Expr_Node := P_Expression_If_OK;
904 -- Leaving the '>' in an association is not unusual, so suggest
905 -- a possible fix.
907 if Nkind (Expr_Node) = N_Op_Eq then
908 Error_Msg_N ("\maybe `='>` was intended", Expr_Node);
909 end if;
911 -- We go back to scanning out expressions, so that we do not get
912 -- multiple error messages when several positional parameters
913 -- follow a named parameter.
915 goto LP_State_Expr;
917 -- End of treatment for name extensions starting with left paren
919 -- End of loop through name extensions
921 end P_Name;
923 -- This function parses a restricted form of Names which are either
924 -- designators, or designators preceded by a sequence of prefixes
925 -- that are direct names.
927 -- Error recovery: cannot raise Error_Resync
929 function P_Function_Name return Node_Id is
930 Designator_Node : Node_Id;
931 Prefix_Node : Node_Id;
932 Selector_Node : Node_Id;
933 Dot_Sloc : Source_Ptr := No_Location;
935 begin
936 -- Prefix_Node is set to the gathered prefix so far, Empty means that
937 -- no prefix has been scanned. This allows us to build up the result
938 -- in the required right recursive manner.
940 Prefix_Node := Empty;
942 -- Loop through prefixes
944 loop
945 Designator_Node := Token_Node;
947 if Token not in Token_Class_Desig then
948 return P_Identifier; -- let P_Identifier issue the error message
950 else -- Token in Token_Class_Desig
951 Scan; -- past designator
952 exit when Token /= Tok_Dot;
953 end if;
955 -- Here at a dot, with token just before it in Designator_Node
957 if No (Prefix_Node) then
958 Prefix_Node := Designator_Node;
959 else
960 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
961 Set_Prefix (Selector_Node, Prefix_Node);
962 Set_Selector_Name (Selector_Node, Designator_Node);
963 Prefix_Node := Selector_Node;
964 end if;
966 Dot_Sloc := Token_Ptr;
967 Scan; -- past dot
968 end loop;
970 -- Fall out of the loop having just scanned a designator
972 if No (Prefix_Node) then
973 return Designator_Node;
974 else
975 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
976 Set_Prefix (Selector_Node, Prefix_Node);
977 Set_Selector_Name (Selector_Node, Designator_Node);
978 return Selector_Node;
979 end if;
981 exception
982 when Error_Resync =>
983 return Error;
984 end P_Function_Name;
986 -- This function parses a restricted form of Names which are either
987 -- identifiers, or identifiers preceded by a sequence of prefixes
988 -- that are direct names.
990 -- Error recovery: cannot raise Error_Resync
992 function P_Qualified_Simple_Name return Node_Id is
993 Designator_Node : Node_Id;
994 Prefix_Node : Node_Id;
995 Selector_Node : Node_Id;
996 Dot_Sloc : Source_Ptr := No_Location;
998 begin
999 -- Prefix node is set to the gathered prefix so far, Empty means that
1000 -- no prefix has been scanned. This allows us to build up the result
1001 -- in the required right recursive manner.
1003 Prefix_Node := Empty;
1005 -- Loop through prefixes
1007 loop
1008 Designator_Node := Token_Node;
1010 if Token = Tok_Identifier then
1011 Scan; -- past identifier
1012 exit when Token /= Tok_Dot;
1014 elsif Token not in Token_Class_Desig then
1015 return P_Identifier; -- let P_Identifier issue the error message
1017 else
1018 Scan; -- past designator
1020 if Token /= Tok_Dot then
1021 Error_Msg_SP ("identifier expected");
1022 return Error;
1023 end if;
1024 end if;
1026 -- Here at a dot, with token just before it in Designator_Node
1028 if No (Prefix_Node) then
1029 Prefix_Node := Designator_Node;
1030 else
1031 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1032 Set_Prefix (Selector_Node, Prefix_Node);
1033 Set_Selector_Name (Selector_Node, Designator_Node);
1034 Prefix_Node := Selector_Node;
1035 end if;
1037 Dot_Sloc := Token_Ptr;
1038 Scan; -- past dot
1039 end loop;
1041 -- Fall out of the loop having just scanned an identifier
1043 if No (Prefix_Node) then
1044 return Designator_Node;
1045 else
1046 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1047 Set_Prefix (Selector_Node, Prefix_Node);
1048 Set_Selector_Name (Selector_Node, Designator_Node);
1049 return Selector_Node;
1050 end if;
1052 exception
1053 when Error_Resync =>
1054 return Error;
1055 end P_Qualified_Simple_Name;
1057 -- This procedure differs from P_Qualified_Simple_Name only in that it
1058 -- raises Error_Resync if any error is encountered. It only returns after
1059 -- scanning a valid qualified simple name.
1061 -- Error recovery: can raise Error_Resync
1063 function P_Qualified_Simple_Name_Resync return Node_Id is
1064 Designator_Node : Node_Id;
1065 Prefix_Node : Node_Id;
1066 Selector_Node : Node_Id;
1067 Dot_Sloc : Source_Ptr := No_Location;
1069 begin
1070 Prefix_Node := Empty;
1072 -- Loop through prefixes
1074 loop
1075 Designator_Node := Token_Node;
1077 if Token = Tok_Identifier then
1078 Scan; -- past identifier
1079 exit when Token /= Tok_Dot;
1081 elsif Token not in Token_Class_Desig then
1082 Discard_Junk_Node (P_Identifier); -- to issue the error message
1083 raise Error_Resync;
1085 else
1086 Scan; -- past designator
1088 if Token /= Tok_Dot then
1089 Error_Msg_SP ("identifier expected");
1090 raise Error_Resync;
1091 end if;
1092 end if;
1094 -- Here at a dot, with token just before it in Designator_Node
1096 if No (Prefix_Node) then
1097 Prefix_Node := Designator_Node;
1098 else
1099 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1100 Set_Prefix (Selector_Node, Prefix_Node);
1101 Set_Selector_Name (Selector_Node, Designator_Node);
1102 Prefix_Node := Selector_Node;
1103 end if;
1105 Dot_Sloc := Token_Ptr;
1106 Scan; -- past period
1107 end loop;
1109 -- Fall out of the loop having just scanned an identifier
1111 if No (Prefix_Node) then
1112 return Designator_Node;
1113 else
1114 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1115 Set_Prefix (Selector_Node, Prefix_Node);
1116 Set_Selector_Name (Selector_Node, Designator_Node);
1117 return Selector_Node;
1118 end if;
1119 end P_Qualified_Simple_Name_Resync;
1121 ----------------------
1122 -- 4.1 Direct_Name --
1123 ----------------------
1125 -- Parsed by P_Name and other functions in section 4.1
1127 -----------------
1128 -- 4.1 Prefix --
1129 -----------------
1131 -- Parsed by P_Name (4.1)
1133 -------------------------------
1134 -- 4.1 Explicit Dereference --
1135 -------------------------------
1137 -- Parsed by P_Name (4.1)
1139 -------------------------------
1140 -- 4.1 Implicit_Dereference --
1141 -------------------------------
1143 -- Parsed by P_Name (4.1)
1145 ----------------------------
1146 -- 4.1 Indexed Component --
1147 ----------------------------
1149 -- Parsed by P_Name (4.1)
1151 ----------------
1152 -- 4.1 Slice --
1153 ----------------
1155 -- Parsed by P_Name (4.1)
1157 -----------------------------
1158 -- 4.1 Selected_Component --
1159 -----------------------------
1161 -- Parsed by P_Name (4.1)
1163 ------------------------
1164 -- 4.1 Selector Name --
1165 ------------------------
1167 -- Parsed by P_Name (4.1)
1169 ------------------------------
1170 -- 4.1 Attribute Reference --
1171 ------------------------------
1173 -- Parsed by P_Name (4.1)
1175 -------------------------------
1176 -- 4.1 Attribute Designator --
1177 -------------------------------
1179 -- Parsed by P_Name (4.1)
1181 --------------------------------------
1182 -- 4.1.4 Range Attribute Reference --
1183 --------------------------------------
1185 -- RANGE_ATTRIBUTE_REFERENCE ::= PREFIX ' RANGE_ATTRIBUTE_DESIGNATOR
1187 -- RANGE_ATTRIBUTE_DESIGNATOR ::= range [(static_EXPRESSION)]
1189 -- In the grammar, a RANGE attribute is simply a name, but its use is
1190 -- highly restricted, so in the parser, we do not regard it as a name.
1191 -- Instead, P_Name returns without scanning the 'RANGE part of the
1192 -- attribute, and the caller uses the following function to construct
1193 -- a range attribute in places where it is appropriate.
1195 -- Note that RANGE here is treated essentially as an identifier,
1196 -- rather than a reserved word.
1198 -- The caller has parsed the prefix, i.e. a name, and Token points to
1199 -- the apostrophe. The token after the apostrophe is known to be RANGE
1200 -- at this point. The prefix node becomes the prefix of the attribute.
1202 -- Error_Recovery: Cannot raise Error_Resync
1204 function P_Range_Attribute_Reference
1205 (Prefix_Node : Node_Id)
1206 return Node_Id
1208 Attr_Node : Node_Id;
1210 begin
1211 Attr_Node := New_Node (N_Attribute_Reference, Token_Ptr);
1212 Set_Prefix (Attr_Node, Prefix_Node);
1213 Scan; -- past apostrophe
1215 if Style_Check then
1216 Style.Check_Attribute_Name (True);
1217 end if;
1219 Set_Attribute_Name (Attr_Node, Name_Range);
1220 Scan; -- past RANGE
1222 if Token = Tok_Left_Paren then
1223 Scan; -- past left paren
1224 Set_Expressions (Attr_Node, New_List (P_Expression_If_OK));
1225 T_Right_Paren;
1226 end if;
1228 return Attr_Node;
1229 end P_Range_Attribute_Reference;
1231 ---------------------------------------
1232 -- 4.1.4 Range Attribute Designator --
1233 ---------------------------------------
1235 -- Parsed by P_Range_Attribute_Reference (4.4)
1237 --------------------
1238 -- 4.3 Aggregate --
1239 --------------------
1241 -- AGGREGATE ::= RECORD_AGGREGATE | EXTENSION_AGGREGATE | ARRAY_AGGREGATE
1243 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3), except in the case where
1244 -- an aggregate is known to be required (code statement, extension
1245 -- aggregate), in which cases this routine performs the necessary check
1246 -- that we have an aggregate rather than a parenthesized expression
1248 -- Error recovery: can raise Error_Resync
1250 function P_Aggregate return Node_Id is
1251 Aggr_Sloc : constant Source_Ptr := Token_Ptr;
1252 Aggr_Node : constant Node_Id := P_Aggregate_Or_Paren_Expr;
1254 begin
1255 if Nkind (Aggr_Node) /= N_Aggregate
1256 and then
1257 Nkind (Aggr_Node) /= N_Extension_Aggregate
1258 then
1259 Error_Msg
1260 ("aggregate may not have single positional component", Aggr_Sloc);
1261 return Error;
1262 else
1263 return Aggr_Node;
1264 end if;
1265 end P_Aggregate;
1267 ------------------------------------------------
1268 -- 4.3 Aggregate or Parenthesized Expression --
1269 ------------------------------------------------
1271 -- This procedure parses out either an aggregate or a parenthesized
1272 -- expression (these two constructs are closely related, since a
1273 -- parenthesized expression looks like an aggregate with a single
1274 -- positional component).
1276 -- AGGREGATE ::=
1277 -- RECORD_AGGREGATE | EXTENSION_AGGREGATE | ARRAY_AGGREGATE
1279 -- RECORD_AGGREGATE ::= (RECORD_COMPONENT_ASSOCIATION_LIST)
1281 -- RECORD_COMPONENT_ASSOCIATION_LIST ::=
1282 -- RECORD_COMPONENT_ASSOCIATION {, RECORD_COMPONENT_ASSOCIATION}
1283 -- | null record
1285 -- RECORD_COMPONENT_ASSOCIATION ::=
1286 -- [COMPONENT_CHOICE_LIST =>] EXPRESSION
1288 -- COMPONENT_CHOICE_LIST ::=
1289 -- component_SELECTOR_NAME {| component_SELECTOR_NAME}
1290 -- | others
1292 -- EXTENSION_AGGREGATE ::=
1293 -- (ANCESTOR_PART with RECORD_COMPONENT_ASSOCIATION_LIST)
1295 -- ANCESTOR_PART ::= EXPRESSION | SUBTYPE_MARK
1297 -- ARRAY_AGGREGATE ::=
1298 -- POSITIONAL_ARRAY_AGGREGATE | NAMED_ARRAY_AGGREGATE
1300 -- POSITIONAL_ARRAY_AGGREGATE ::=
1301 -- (EXPRESSION, EXPRESSION {, EXPRESSION})
1302 -- | (EXPRESSION {, EXPRESSION}, others => EXPRESSION)
1303 -- | (EXPRESSION {, EXPRESSION}, others => <>)
1305 -- NAMED_ARRAY_AGGREGATE ::=
1306 -- (ARRAY_COMPONENT_ASSOCIATION {, ARRAY_COMPONENT_ASSOCIATION})
1308 -- PRIMARY ::= (EXPRESSION);
1310 -- Error recovery: can raise Error_Resync
1312 -- Note: POSITIONAL_ARRAY_AGGREGATE rule has been extended to give support
1313 -- to Ada 2005 limited aggregates (AI-287)
1315 function P_Aggregate_Or_Paren_Expr return Node_Id is
1316 Aggregate_Node : Node_Id;
1317 Expr_List : List_Id;
1318 Assoc_List : List_Id;
1319 Expr_Node : Node_Id;
1320 Lparen_Sloc : Source_Ptr;
1321 Scan_State : Saved_Scan_State;
1323 procedure Box_Error;
1324 -- Called if <> is encountered as positional aggregate element. Issues
1325 -- error message and sets Expr_Node to Error.
1327 function Is_Quantified_Expression return Boolean;
1328 -- The presence of iterated component associations requires a one
1329 -- token lookahead to distinguish it from quantified expressions.
1331 ---------------
1332 -- Box_Error --
1333 ---------------
1335 procedure Box_Error is
1336 begin
1337 if Ada_Version < Ada_2005 then
1338 Error_Msg_SC ("box in aggregate is an Ada 2005 extension");
1339 end if;
1341 -- Ada 2005 (AI-287): The box notation is allowed only with named
1342 -- notation because positional notation might be error prone. For
1343 -- example, in "(X, <>, Y, <>)", there is no type associated with
1344 -- the boxes, so you might not be leaving out the components you
1345 -- thought you were leaving out.
1347 Error_Msg_SC ("(Ada 2005) box only allowed with named notation");
1348 Scan; -- past box
1349 Expr_Node := Error;
1350 end Box_Error;
1352 ------------------------------
1353 -- Is_Quantified_Expression --
1354 ------------------------------
1356 function Is_Quantified_Expression return Boolean is
1357 Maybe : Boolean;
1358 Scan_State : Saved_Scan_State;
1360 begin
1361 Save_Scan_State (Scan_State);
1362 Scan; -- past FOR
1363 Maybe := Token = Tok_All or else Token = Tok_Some;
1364 Restore_Scan_State (Scan_State); -- to FOR
1365 return Maybe;
1366 end Is_Quantified_Expression;
1368 -- Start of processing for P_Aggregate_Or_Paren_Expr
1370 begin
1371 Lparen_Sloc := Token_Ptr;
1372 T_Left_Paren;
1374 -- Note on parentheses count. For cases like an if expression, the
1375 -- parens here really count as real parentheses for the paren count,
1376 -- so we adjust the paren count accordingly after scanning the expr.
1378 -- If expression
1380 if Token = Tok_If then
1381 Expr_Node := P_If_Expression;
1382 T_Right_Paren;
1383 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1384 return Expr_Node;
1386 -- Case expression
1388 elsif Token = Tok_Case then
1389 Expr_Node := P_Case_Expression;
1390 T_Right_Paren;
1391 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1392 return Expr_Node;
1394 -- Quantified expression
1396 elsif Token = Tok_For and then Is_Quantified_Expression then
1397 Expr_Node := P_Quantified_Expression;
1398 T_Right_Paren;
1399 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1400 return Expr_Node;
1402 -- Note: the mechanism used here of rescanning the initial expression
1403 -- is distinctly unpleasant, but it saves a lot of fiddling in scanning
1404 -- out the discrete choice list.
1406 -- Deal with expression and extension aggregates first
1408 elsif Token /= Tok_Others then
1409 Save_Scan_State (Scan_State); -- at start of expression
1411 -- Deal with (NULL RECORD)
1413 if Token = Tok_Null then
1414 Scan; -- past NULL
1416 if Token = Tok_Record then
1417 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1418 Set_Null_Record_Present (Aggregate_Node, True);
1419 Scan; -- past RECORD
1420 T_Right_Paren;
1421 return Aggregate_Node;
1422 else
1423 Restore_Scan_State (Scan_State); -- to NULL that must be expr
1424 end if;
1426 elsif Token = Tok_For then
1427 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1428 Expr_Node := P_Iterated_Component_Assoc_Or_Reduction;
1430 if Nkind (Expr_Node) = N_Reduction_Expression then
1431 return Expr_Node;
1432 else
1433 goto Aggregate;
1434 end if;
1435 end if;
1437 -- Scan expression, handling box appearing as positional argument
1439 if Token = Tok_Box then
1440 Box_Error;
1441 else
1442 Expr_Node := P_Expression_Or_Range_Attribute_If_OK;
1443 end if;
1445 -- Extension or Delta aggregate
1447 if Token = Tok_With then
1448 if Nkind (Expr_Node) = N_Attribute_Reference
1449 and then Attribute_Name (Expr_Node) = Name_Range
1450 then
1451 Bad_Range_Attribute (Sloc (Expr_Node));
1452 return Error;
1453 end if;
1455 if Ada_Version = Ada_83 then
1456 Error_Msg_SC ("(Ada 83) extension aggregate not allowed");
1457 end if;
1459 Scan; -- past WITH
1460 if Token = Tok_Delta then
1461 Scan; -- past DELTA
1462 Aggregate_Node := New_Node (N_Delta_Aggregate, Lparen_Sloc);
1463 Set_Expression (Aggregate_Node, Expr_Node);
1464 Expr_Node := Empty;
1466 if Nkind (Aggregate_Node) = N_Delta_Aggregate
1467 and then (Token = Tok_Arrow or else Token = Tok_Others)
1468 then
1469 Error_Msg_SC
1470 ("expect record component association in delta aggregate");
1471 raise Error_Resync;
1472 end if;
1474 goto Aggregate;
1476 else
1477 Aggregate_Node := New_Node (N_Extension_Aggregate, Lparen_Sloc);
1478 Set_Ancestor_Part (Aggregate_Node, Expr_Node);
1479 end if;
1481 -- Deal with WITH NULL RECORD case
1483 if Token = Tok_Null then
1484 Save_Scan_State (Scan_State); -- at NULL
1485 Scan; -- past NULL
1487 if Token = Tok_Record then
1488 Scan; -- past RECORD
1489 Set_Null_Record_Present (Aggregate_Node, True);
1490 T_Right_Paren;
1491 return Aggregate_Node;
1493 else
1494 Restore_Scan_State (Scan_State); -- to NULL that must be expr
1495 end if;
1496 end if;
1498 if Token /= Tok_Others then
1499 Save_Scan_State (Scan_State);
1500 Expr_Node := P_Expression;
1501 else
1502 Expr_Node := Empty;
1503 end if;
1505 -- Expression
1507 elsif Token = Tok_Right_Paren or else Token in Token_Class_Eterm then
1508 if Nkind (Expr_Node) = N_Attribute_Reference
1509 and then Attribute_Name (Expr_Node) = Name_Range
1510 then
1511 Error_Msg
1512 ("|parentheses not allowed for range attribute", Lparen_Sloc);
1513 Scan; -- past right paren
1514 return Expr_Node;
1515 end if;
1517 -- Bump paren count of expression
1519 if Expr_Node /= Error then
1520 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1521 end if;
1523 T_Right_Paren; -- past right paren (error message if none)
1524 return Expr_Node;
1526 -- Normal aggregate
1528 else
1529 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1530 end if;
1532 -- Others
1534 else
1535 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1536 Expr_Node := Empty;
1537 end if;
1539 -- Prepare to scan list of component associations
1540 <<Aggregate>>
1541 Expr_List := No_List; -- don't set yet, maybe all named entries
1542 Assoc_List := No_List; -- don't set yet, maybe all positional entries
1544 -- This loop scans through component associations. On entry to the
1545 -- loop, an expression has been scanned at the start of the current
1546 -- association unless initial token was OTHERS, in which case
1547 -- Expr_Node is set to Empty.
1549 loop
1550 -- Deal with others association first. This is a named association
1552 if No (Expr_Node) then
1553 if No (Assoc_List) then
1554 Assoc_List := New_List;
1555 end if;
1557 Append (P_Record_Or_Array_Component_Association, Assoc_List);
1559 -- Improper use of WITH
1561 elsif Token = Tok_With then
1562 Error_Msg_SC ("WITH must be preceded by single expression in " &
1563 "extension aggregate");
1564 raise Error_Resync;
1566 -- Range attribute can only appear as part of a discrete choice list
1568 elsif Nkind (Expr_Node) = N_Attribute_Reference
1569 and then Attribute_Name (Expr_Node) = Name_Range
1570 and then Token /= Tok_Arrow
1571 and then Token /= Tok_Vertical_Bar
1572 then
1573 Bad_Range_Attribute (Sloc (Expr_Node));
1574 return Error;
1576 -- Assume positional case if comma, right paren, or literal or
1577 -- identifier or OTHERS follows (the latter cases are missing
1578 -- comma cases). Also assume positional if a semicolon follows,
1579 -- which can happen if there are missing parens.
1581 elsif Nkind (Expr_Node) = N_Iterated_Component_Association then
1582 if No (Assoc_List) then
1583 Assoc_List := New_List (Expr_Node);
1584 else
1585 Append_To (Assoc_List, Expr_Node);
1586 end if;
1588 elsif Token = Tok_Comma
1589 or else Token = Tok_Right_Paren
1590 or else Token = Tok_Others
1591 or else Token in Token_Class_Lit_Or_Name
1592 or else Token = Tok_Semicolon
1593 then
1594 if Present (Assoc_List) then
1595 Error_Msg_BC -- CODEFIX
1596 ("""='>"" expected (positional association cannot follow "
1597 & "named association)");
1598 end if;
1600 if No (Expr_List) then
1601 Expr_List := New_List;
1602 end if;
1604 Append (Expr_Node, Expr_List);
1606 -- Check for aggregate followed by left parent, maybe missing comma
1608 elsif Nkind (Expr_Node) = N_Aggregate
1609 and then Token = Tok_Left_Paren
1610 then
1611 T_Comma;
1613 if No (Expr_List) then
1614 Expr_List := New_List;
1615 end if;
1617 Append (Expr_Node, Expr_List);
1619 -- Anything else is assumed to be a named association
1621 else
1622 Restore_Scan_State (Scan_State); -- to start of expression
1624 if No (Assoc_List) then
1625 Assoc_List := New_List;
1626 end if;
1628 Append (P_Record_Or_Array_Component_Association, Assoc_List);
1629 end if;
1631 exit when not Comma_Present;
1633 -- If we are at an expression terminator, something is seriously
1634 -- wrong, so let's get out now, before we start eating up stuff
1635 -- that doesn't belong to us.
1637 if Token in Token_Class_Eterm and then Token /= Tok_For then
1638 Error_Msg_AP
1639 ("expecting expression or component association");
1640 exit;
1641 end if;
1643 -- Deal with misused box
1645 if Token = Tok_Box then
1646 Box_Error;
1648 -- Otherwise initiate for reentry to top of loop by scanning an
1649 -- initial expression, unless the first token is OTHERS or FOR,
1650 -- which indicates an iterated component association.
1652 elsif Token = Tok_Others then
1653 Expr_Node := Empty;
1655 elsif Token = Tok_For then
1656 Expr_Node := P_Iterated_Component_Assoc_Or_Reduction;
1658 else
1659 Save_Scan_State (Scan_State); -- at start of expression
1660 Expr_Node := P_Expression_Or_Range_Attribute_If_OK;
1662 end if;
1663 end loop;
1665 -- All component associations (positional and named) have been scanned
1667 T_Right_Paren;
1669 if Nkind (Aggregate_Node) /= N_Delta_Aggregate then
1670 Set_Expressions (Aggregate_Node, Expr_List);
1671 end if;
1673 Set_Component_Associations (Aggregate_Node, Assoc_List);
1674 return Aggregate_Node;
1675 end P_Aggregate_Or_Paren_Expr;
1677 ------------------------------------------------
1678 -- 4.3 Record or Array Component Association --
1679 ------------------------------------------------
1681 -- RECORD_COMPONENT_ASSOCIATION ::=
1682 -- [COMPONENT_CHOICE_LIST =>] EXPRESSION
1683 -- | COMPONENT_CHOICE_LIST => <>
1685 -- COMPONENT_CHOICE_LIST =>
1686 -- component_SELECTOR_NAME {| component_SELECTOR_NAME}
1687 -- | others
1689 -- ARRAY_COMPONENT_ASSOCIATION ::=
1690 -- DISCRETE_CHOICE_LIST => EXPRESSION
1691 -- | DISCRETE_CHOICE_LIST => <>
1692 -- | ITERATED_COMPONENT_ASSOCIATION
1694 -- Note: this routine only handles the named cases, including others.
1695 -- Cases where the component choice list is not present have already
1696 -- been handled directly.
1698 -- Error recovery: can raise Error_Resync
1700 -- Note: RECORD_COMPONENT_ASSOCIATION and ARRAY_COMPONENT_ASSOCIATION
1701 -- rules have been extended to give support to Ada 2005 limited
1702 -- aggregates (AI-287)
1704 function P_Record_Or_Array_Component_Association return Node_Id is
1705 Assoc_Node : Node_Id;
1707 begin
1708 if Token = Tok_For then
1709 return P_Iterated_Component_Assoc_Or_Reduction;
1710 end if;
1712 Assoc_Node := New_Node (N_Component_Association, Token_Ptr);
1713 Set_Choices (Assoc_Node, P_Discrete_Choice_List);
1714 Set_Sloc (Assoc_Node, Token_Ptr);
1715 TF_Arrow;
1717 if Token = Tok_Box then
1719 -- Ada 2005(AI-287): The box notation is used to indicate the
1720 -- default initialization of aggregate components
1722 if Ada_Version < Ada_2005 then
1723 Error_Msg_SP
1724 ("component association with '<'> is an Ada 2005 extension");
1725 Error_Msg_SP ("\unit must be compiled with -gnat05 switch");
1726 end if;
1728 Set_Box_Present (Assoc_Node);
1729 Scan; -- Past box
1730 else
1731 Set_Expression (Assoc_Node, P_Expression);
1732 end if;
1734 return Assoc_Node;
1735 end P_Record_Or_Array_Component_Association;
1737 -----------------------------
1738 -- 4.3.1 Record Aggregate --
1739 -----------------------------
1741 -- Case of enumeration aggregate is parsed by P_Aggregate (4.3)
1742 -- All other cases are parsed by P_Aggregate_Or_Paren_Expr (4.3)
1744 ----------------------------------------------
1745 -- 4.3.1 Record Component Association List --
1746 ----------------------------------------------
1748 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1750 ----------------------------------
1751 -- 4.3.1 Component Choice List --
1752 ----------------------------------
1754 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1756 --------------------------------
1757 -- 4.3.1 Extension Aggregate --
1758 --------------------------------
1760 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1762 --------------------------
1763 -- 4.3.1 Ancestor Part --
1764 --------------------------
1766 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1768 ----------------------------
1769 -- 4.3.1 Array Aggregate --
1770 ----------------------------
1772 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1774 ---------------------------------------
1775 -- 4.3.1 Positional Array Aggregate --
1776 ---------------------------------------
1778 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1780 ----------------------------------
1781 -- 4.3.1 Named Array Aggregate --
1782 ----------------------------------
1784 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1786 ----------------------------------------
1787 -- 4.3.1 Array Component Association --
1788 ----------------------------------------
1790 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1792 ---------------------
1793 -- 4.4 Expression --
1794 ---------------------
1796 -- This procedure parses EXPRESSION or CHOICE_EXPRESSION
1798 -- EXPRESSION ::=
1799 -- RELATION {LOGICAL_OPERATOR RELATION}
1801 -- CHOICE_EXPRESSION ::=
1802 -- CHOICE_RELATION {LOGICAL_OPERATOR CHOICE_RELATION}
1804 -- LOGICAL_OPERATOR ::= and | and then | or | or else | xor
1806 -- On return, Expr_Form indicates the categorization of the expression
1807 -- EF_Range_Attr is not a possible value (if a range attribute is found,
1808 -- an error message is given, and Error is returned).
1810 -- Error recovery: cannot raise Error_Resync
1812 function P_Expression return Node_Id is
1813 Logical_Op : Node_Kind;
1814 Prev_Logical_Op : Node_Kind;
1815 Op_Location : Source_Ptr;
1816 Node1 : Node_Id;
1817 Node2 : Node_Id;
1819 begin
1820 Node1 := P_Relation;
1822 if Token in Token_Class_Logop then
1823 Prev_Logical_Op := N_Empty;
1825 loop
1826 Op_Location := Token_Ptr;
1827 Logical_Op := P_Logical_Operator;
1829 if Prev_Logical_Op /= N_Empty and then
1830 Logical_Op /= Prev_Logical_Op
1831 then
1832 Error_Msg
1833 ("mixed logical operators in expression", Op_Location);
1834 Prev_Logical_Op := N_Empty;
1835 else
1836 Prev_Logical_Op := Logical_Op;
1837 end if;
1839 Node2 := Node1;
1840 Node1 := New_Op_Node (Logical_Op, Op_Location);
1841 Set_Left_Opnd (Node1, Node2);
1842 Set_Right_Opnd (Node1, P_Relation);
1844 -- Check for case of errant comma or semicolon
1846 if Token = Tok_Comma or else Token = Tok_Semicolon then
1847 declare
1848 Com : constant Boolean := Token = Tok_Comma;
1849 Scan_State : Saved_Scan_State;
1850 Logop : Node_Kind;
1852 begin
1853 Save_Scan_State (Scan_State); -- at comma/semicolon
1854 Scan; -- past comma/semicolon
1856 -- Check for AND THEN or OR ELSE after comma/semicolon. We
1857 -- do not deal with AND/OR because those cases get mixed up
1858 -- with the select alternatives case.
1860 if Token = Tok_And or else Token = Tok_Or then
1861 Logop := P_Logical_Operator;
1862 Restore_Scan_State (Scan_State); -- to comma/semicolon
1864 if Nkind_In (Logop, N_And_Then, N_Or_Else) then
1865 Scan; -- past comma/semicolon
1867 if Com then
1868 Error_Msg_SP -- CODEFIX
1869 ("|extra "","" ignored");
1870 else
1871 Error_Msg_SP -- CODEFIX
1872 ("|extra "";"" ignored");
1873 end if;
1875 else
1876 Restore_Scan_State (Scan_State); -- to comma/semicolon
1877 end if;
1879 else
1880 Restore_Scan_State (Scan_State); -- to comma/semicolon
1881 end if;
1882 end;
1883 end if;
1885 exit when Token not in Token_Class_Logop;
1886 end loop;
1888 Expr_Form := EF_Non_Simple;
1889 end if;
1891 if Token = Tok_Apostrophe then
1892 Bad_Range_Attribute (Token_Ptr);
1893 return Error;
1894 else
1895 return Node1;
1896 end if;
1897 end P_Expression;
1899 -- This function is identical to the normal P_Expression, except that it
1900 -- also permits the appearance of a case, conditional, or quantified
1901 -- expression if the call immediately follows a left paren, and followed
1902 -- by a right parenthesis. These forms are allowed if these conditions
1903 -- are not met, but an error message will be issued.
1905 function P_Expression_If_OK return Node_Id is
1906 begin
1907 -- Case of conditional, case or quantified expression
1909 if Token = Tok_Case or else Token = Tok_If or else Token = Tok_For then
1910 return P_Unparen_Cond_Case_Quant_Expression;
1912 -- Normal case, not case/conditional/quantified expression
1914 else
1915 return P_Expression;
1916 end if;
1917 end P_Expression_If_OK;
1919 -- This function is identical to the normal P_Expression, except that it
1920 -- checks that the expression scan did not stop on a right paren. It is
1921 -- called in all contexts where a right parenthesis cannot legitimately
1922 -- follow an expression.
1924 -- Error recovery: can not raise Error_Resync
1926 function P_Expression_No_Right_Paren return Node_Id is
1927 Expr : constant Node_Id := P_Expression;
1928 begin
1929 Ignore (Tok_Right_Paren);
1930 return Expr;
1931 end P_Expression_No_Right_Paren;
1933 ----------------------------------------
1934 -- 4.4 Expression_Or_Range_Attribute --
1935 ----------------------------------------
1937 -- EXPRESSION ::=
1938 -- RELATION {and RELATION} | RELATION {and then RELATION}
1939 -- | RELATION {or RELATION} | RELATION {or else RELATION}
1940 -- | RELATION {xor RELATION}
1942 -- RANGE_ATTRIBUTE_REFERENCE ::= PREFIX ' RANGE_ATTRIBUTE_DESIGNATOR
1944 -- RANGE_ATTRIBUTE_DESIGNATOR ::= range [(static_EXPRESSION)]
1946 -- On return, Expr_Form indicates the categorization of the expression
1947 -- and EF_Range_Attr is one of the possibilities.
1949 -- Error recovery: cannot raise Error_Resync
1951 -- In the grammar, a RANGE attribute is simply a name, but its use is
1952 -- highly restricted, so in the parser, we do not regard it as a name.
1953 -- Instead, P_Name returns without scanning the 'RANGE part of the
1954 -- attribute, and P_Expression_Or_Range_Attribute handles the range
1955 -- attribute reference. In the normal case where a range attribute is
1956 -- not allowed, an error message is issued by P_Expression.
1958 function P_Expression_Or_Range_Attribute return Node_Id is
1959 Logical_Op : Node_Kind;
1960 Prev_Logical_Op : Node_Kind;
1961 Op_Location : Source_Ptr;
1962 Node1 : Node_Id;
1963 Node2 : Node_Id;
1964 Attr_Node : Node_Id;
1966 begin
1967 Node1 := P_Relation;
1969 if Token = Tok_Apostrophe then
1970 Attr_Node := P_Range_Attribute_Reference (Node1);
1971 Expr_Form := EF_Range_Attr;
1972 return Attr_Node;
1974 elsif Token in Token_Class_Logop then
1975 Prev_Logical_Op := N_Empty;
1977 loop
1978 Op_Location := Token_Ptr;
1979 Logical_Op := P_Logical_Operator;
1981 if Prev_Logical_Op /= N_Empty and then
1982 Logical_Op /= Prev_Logical_Op
1983 then
1984 Error_Msg
1985 ("mixed logical operators in expression", Op_Location);
1986 Prev_Logical_Op := N_Empty;
1987 else
1988 Prev_Logical_Op := Logical_Op;
1989 end if;
1991 Node2 := Node1;
1992 Node1 := New_Op_Node (Logical_Op, Op_Location);
1993 Set_Left_Opnd (Node1, Node2);
1994 Set_Right_Opnd (Node1, P_Relation);
1995 exit when Token not in Token_Class_Logop;
1996 end loop;
1998 Expr_Form := EF_Non_Simple;
1999 end if;
2001 if Token = Tok_Apostrophe then
2002 Bad_Range_Attribute (Token_Ptr);
2003 return Error;
2004 else
2005 return Node1;
2006 end if;
2007 end P_Expression_Or_Range_Attribute;
2009 -- Version that allows a non-parenthesized case, conditional, or quantified
2010 -- expression if the call immediately follows a left paren, and followed
2011 -- by a right parenthesis. These forms are allowed if these conditions
2012 -- are not met, but an error message will be issued.
2014 function P_Expression_Or_Range_Attribute_If_OK return Node_Id is
2015 begin
2016 -- Case of conditional, case or quantified expression
2018 if Token = Tok_Case or else Token = Tok_If or else Token = Tok_For then
2019 return P_Unparen_Cond_Case_Quant_Expression;
2021 -- Normal case, not one of the above expression types
2023 else
2024 return P_Expression_Or_Range_Attribute;
2025 end if;
2026 end P_Expression_Or_Range_Attribute_If_OK;
2028 -------------------
2029 -- 4.4 Relation --
2030 -------------------
2032 -- This procedure scans both relations and choice relations
2034 -- CHOICE_RELATION ::=
2035 -- SIMPLE_EXPRESSION [RELATIONAL_OPERATOR SIMPLE_EXPRESSION]
2037 -- RELATION ::=
2038 -- SIMPLE_EXPRESSION [not] in MEMBERSHIP_CHOICE_LIST
2039 -- | RAISE_EXPRESSION
2041 -- MEMBERSHIP_CHOICE_LIST ::=
2042 -- MEMBERSHIP_CHOICE {'|' MEMBERSHIP CHOICE}
2044 -- MEMBERSHIP_CHOICE ::=
2045 -- CHOICE_EXPRESSION | RANGE | SUBTYPE_MARK
2047 -- RAISE_EXPRESSION ::= raise exception_NAME [with string_EXPRESSION]
2049 -- On return, Expr_Form indicates the categorization of the expression
2051 -- Note: if Token = Tok_Apostrophe on return, then Expr_Form is set to
2052 -- EF_Simple_Name and the following token is RANGE (range attribute case).
2054 -- Error recovery: cannot raise Error_Resync. If an error occurs within an
2055 -- expression, then tokens are scanned until either a non-expression token,
2056 -- a right paren (not matched by a left paren) or a comma, is encountered.
2058 function P_Relation return Node_Id is
2059 Node1, Node2 : Node_Id;
2060 Optok : Source_Ptr;
2062 begin
2063 -- First check for raise expression
2065 if Token = Tok_Raise then
2066 Expr_Form := EF_Non_Simple;
2067 return P_Raise_Expression;
2068 end if;
2070 -- All other cases
2072 Node1 := P_Simple_Expression;
2074 if Token not in Token_Class_Relop then
2075 return Node1;
2077 else
2078 -- Here we have a relational operator following. If so then scan it
2079 -- out. Note that the assignment symbol := is treated as a relational
2080 -- operator to improve the error recovery when it is misused for =.
2081 -- P_Relational_Operator also parses the IN and NOT IN operations.
2083 Optok := Token_Ptr;
2084 Node2 := New_Op_Node (P_Relational_Operator, Optok);
2085 Set_Left_Opnd (Node2, Node1);
2087 -- Case of IN or NOT IN
2089 if Prev_Token = Tok_In then
2090 P_Membership_Test (Node2);
2092 -- Case of relational operator (= /= < <= > >=)
2094 else
2095 Set_Right_Opnd (Node2, P_Simple_Expression);
2096 end if;
2098 Expr_Form := EF_Non_Simple;
2100 if Token in Token_Class_Relop then
2101 Error_Msg_SC ("unexpected relational operator");
2102 raise Error_Resync;
2103 end if;
2105 return Node2;
2106 end if;
2108 -- If any error occurs, then scan to the next expression terminator symbol
2109 -- or comma or right paren at the outer (i.e. current) parentheses level.
2110 -- The flags are set to indicate a normal simple expression.
2112 exception
2113 when Error_Resync =>
2114 Resync_Expression;
2115 Expr_Form := EF_Simple;
2116 return Error;
2117 end P_Relation;
2119 ----------------------------
2120 -- 4.4 Simple Expression --
2121 ----------------------------
2123 -- SIMPLE_EXPRESSION ::=
2124 -- [UNARY_ADDING_OPERATOR] TERM {BINARY_ADDING_OPERATOR TERM}
2126 -- On return, Expr_Form indicates the categorization of the expression
2128 -- Note: if Token = Tok_Apostrophe on return, then Expr_Form is set to
2129 -- EF_Simple_Name and the following token is RANGE (range attribute case).
2131 -- Error recovery: cannot raise Error_Resync. If an error occurs within an
2132 -- expression, then tokens are scanned until either a non-expression token,
2133 -- a right paren (not matched by a left paren) or a comma, is encountered.
2135 -- Note: P_Simple_Expression is called only internally by higher level
2136 -- expression routines. In cases in the grammar where a simple expression
2137 -- is required, the approach is to scan an expression, and then post an
2138 -- appropriate error message if the expression obtained is not simple. This
2139 -- gives better error recovery and treatment.
2141 function P_Simple_Expression return Node_Id is
2142 Scan_State : Saved_Scan_State;
2143 Node1 : Node_Id;
2144 Node2 : Node_Id;
2145 Tokptr : Source_Ptr;
2147 function At_Start_Of_Attribute return Boolean;
2148 -- Tests if we have quote followed by attribute name, if so, return True
2149 -- otherwise return False.
2151 ---------------------------
2152 -- At_Start_Of_Attribute --
2153 ---------------------------
2155 function At_Start_Of_Attribute return Boolean is
2156 begin
2157 if Token /= Tok_Apostrophe then
2158 return False;
2160 else
2161 declare
2162 Scan_State : Saved_Scan_State;
2164 begin
2165 Save_Scan_State (Scan_State);
2166 Scan; -- past quote
2168 if Token = Tok_Identifier
2169 and then Is_Attribute_Name (Chars (Token_Node))
2170 then
2171 Restore_Scan_State (Scan_State);
2172 return True;
2173 else
2174 Restore_Scan_State (Scan_State);
2175 return False;
2176 end if;
2177 end;
2178 end if;
2179 end At_Start_Of_Attribute;
2181 -- Start of processing for P_Simple_Expression
2183 begin
2184 -- Check for cases starting with a name. There are two reasons for
2185 -- special casing. First speed things up by catching a common case
2186 -- without going through several routine layers. Second the caller must
2187 -- be informed via Expr_Form when the simple expression is a name.
2189 if Token in Token_Class_Name then
2190 Node1 := P_Name;
2192 -- Deal with apostrophe cases
2194 if Token = Tok_Apostrophe then
2195 Save_Scan_State (Scan_State); -- at apostrophe
2196 Scan; -- past apostrophe
2198 -- If qualified expression, scan it out and fall through
2200 if Token = Tok_Left_Paren then
2201 Node1 := P_Qualified_Expression (Node1);
2202 Expr_Form := EF_Simple;
2204 -- If range attribute, then we return with Token pointing to the
2205 -- apostrophe. Note: avoid the normal error check on exit. We
2206 -- know that the expression really is complete in this case.
2208 else -- Token = Tok_Range then
2209 Restore_Scan_State (Scan_State); -- to apostrophe
2210 Expr_Form := EF_Simple_Name;
2211 return Node1;
2212 end if;
2213 end if;
2215 -- If an expression terminator follows, the previous processing
2216 -- completely scanned out the expression (a common case), and
2217 -- left Expr_Form set appropriately for returning to our caller.
2219 if Token in Token_Class_Sterm then
2220 null;
2222 -- If we do not have an expression terminator, then complete the
2223 -- scan of a simple expression. This code duplicates the code
2224 -- found in P_Term and P_Factor.
2226 else
2227 if Token = Tok_Double_Asterisk then
2228 if Style_Check then
2229 Style.Check_Exponentiation_Operator;
2230 end if;
2232 Node2 := New_Op_Node (N_Op_Expon, Token_Ptr);
2233 Scan; -- past **
2234 Set_Left_Opnd (Node2, Node1);
2235 Set_Right_Opnd (Node2, P_Primary);
2236 Check_Bad_Exp;
2237 Node1 := Node2;
2238 end if;
2240 loop
2241 exit when Token not in Token_Class_Mulop;
2242 Tokptr := Token_Ptr;
2243 Node2 := New_Op_Node (P_Multiplying_Operator, Tokptr);
2245 if Style_Check then
2246 Style.Check_Binary_Operator;
2247 end if;
2249 Scan; -- past operator
2250 Set_Left_Opnd (Node2, Node1);
2251 Set_Right_Opnd (Node2, P_Factor);
2252 Node1 := Node2;
2253 end loop;
2255 loop
2256 exit when Token not in Token_Class_Binary_Addop;
2257 Tokptr := Token_Ptr;
2258 Node2 := New_Op_Node (P_Binary_Adding_Operator, Tokptr);
2260 if Style_Check then
2261 Style.Check_Binary_Operator;
2262 end if;
2264 Scan; -- past operator
2265 Set_Left_Opnd (Node2, Node1);
2266 Set_Right_Opnd (Node2, P_Term);
2267 Node1 := Node2;
2268 end loop;
2270 Expr_Form := EF_Simple;
2271 end if;
2273 -- Cases where simple expression does not start with a name
2275 else
2276 -- Scan initial sign and initial Term
2278 if Token in Token_Class_Unary_Addop then
2279 Tokptr := Token_Ptr;
2280 Node1 := New_Op_Node (P_Unary_Adding_Operator, Tokptr);
2282 if Style_Check then
2283 Style.Check_Unary_Plus_Or_Minus (Inside_Depends);
2284 end if;
2286 Scan; -- past operator
2287 Set_Right_Opnd (Node1, P_Term);
2288 else
2289 Node1 := P_Term;
2290 end if;
2292 -- In the following, we special-case a sequence of concatenations of
2293 -- string literals, such as "aaa" & "bbb" & ... & "ccc", with nothing
2294 -- else mixed in. For such a sequence, we return a tree representing
2295 -- "" & "aaabbb...ccc" (a single concatenation). This is done only if
2296 -- the number of concatenations is large. If semantic analysis
2297 -- resolves the "&" to a predefined one, then this folding gives the
2298 -- right answer. Otherwise, semantic analysis will complain about a
2299 -- capacity-exceeded error. The purpose of this trick is to avoid
2300 -- creating a deeply nested tree, which would cause deep recursion
2301 -- during semantics, causing stack overflow. This way, we can handle
2302 -- enormous concatenations in the normal case of predefined "&". We
2303 -- first build up the normal tree, and then rewrite it if
2304 -- appropriate.
2306 declare
2307 Num_Concats_Threshold : constant Positive := 1000;
2308 -- Arbitrary threshold value to enable optimization
2310 First_Node : constant Node_Id := Node1;
2311 Is_Strlit_Concat : Boolean;
2312 -- True iff we've parsed a sequence of concatenations of string
2313 -- literals, with nothing else mixed in.
2315 Num_Concats : Natural;
2316 -- Number of "&" operators if Is_Strlit_Concat is True
2318 begin
2319 Is_Strlit_Concat :=
2320 Nkind (Node1) = N_String_Literal
2321 and then Token = Tok_Ampersand;
2322 Num_Concats := 0;
2324 -- Scan out sequence of terms separated by binary adding operators
2326 loop
2327 exit when Token not in Token_Class_Binary_Addop;
2328 Tokptr := Token_Ptr;
2329 Node2 := New_Op_Node (P_Binary_Adding_Operator, Tokptr);
2331 if Style_Check and then not Debug_Flag_Dot_QQ then
2332 Style.Check_Binary_Operator;
2333 end if;
2335 Scan; -- past operator
2336 Set_Left_Opnd (Node2, Node1);
2337 Node1 := P_Term;
2338 Set_Right_Opnd (Node2, Node1);
2340 -- Check if we're still concatenating string literals
2342 Is_Strlit_Concat :=
2343 Is_Strlit_Concat
2344 and then Nkind (Node2) = N_Op_Concat
2345 and then Nkind (Node1) = N_String_Literal;
2347 if Is_Strlit_Concat then
2348 Num_Concats := Num_Concats + 1;
2349 end if;
2351 Node1 := Node2;
2352 end loop;
2354 -- If we have an enormous series of concatenations of string
2355 -- literals, rewrite as explained above. The Is_Folded_In_Parser
2356 -- flag tells semantic analysis that if the "&" is not predefined,
2357 -- the folded value is wrong.
2359 if Is_Strlit_Concat
2360 and then Num_Concats >= Num_Concats_Threshold
2361 then
2362 declare
2363 Empty_String_Val : String_Id;
2364 -- String_Id for ""
2366 Strlit_Concat_Val : String_Id;
2367 -- Contains the folded value (which will be correct if the
2368 -- "&" operators are the predefined ones).
2370 Cur_Node : Node_Id;
2371 -- For walking up the tree
2373 New_Node : Node_Id;
2374 -- Folded node to replace Node1
2376 Loc : constant Source_Ptr := Sloc (First_Node);
2378 begin
2379 -- Walk up the tree starting at the leftmost string literal
2380 -- (First_Node), building up the Strlit_Concat_Val as we
2381 -- go. Note that we do not use recursion here -- the whole
2382 -- point is to avoid recursively walking that enormous tree.
2384 Start_String;
2385 Store_String_Chars (Strval (First_Node));
2387 Cur_Node := Parent (First_Node);
2388 while Present (Cur_Node) loop
2389 pragma Assert (Nkind (Cur_Node) = N_Op_Concat and then
2390 Nkind (Right_Opnd (Cur_Node)) = N_String_Literal);
2392 Store_String_Chars (Strval (Right_Opnd (Cur_Node)));
2393 Cur_Node := Parent (Cur_Node);
2394 end loop;
2396 Strlit_Concat_Val := End_String;
2398 -- Create new folded node, and rewrite result with a concat-
2399 -- enation of an empty string literal and the folded node.
2401 Start_String;
2402 Empty_String_Val := End_String;
2403 New_Node :=
2404 Make_Op_Concat (Loc,
2405 Make_String_Literal (Loc, Empty_String_Val),
2406 Make_String_Literal (Loc, Strlit_Concat_Val,
2407 Is_Folded_In_Parser => True));
2408 Rewrite (Node1, New_Node);
2409 end;
2410 end if;
2411 end;
2413 -- All done, we clearly do not have name or numeric literal so this
2414 -- is a case of a simple expression which is some other possibility.
2416 Expr_Form := EF_Simple;
2417 end if;
2419 -- Come here at end of simple expression, where we do a couple of
2420 -- special checks to improve error recovery.
2422 -- Special test to improve error recovery. If the current token is a
2423 -- period, then someone is trying to do selection on something that is
2424 -- not a name, e.g. a qualified expression.
2426 if Token = Tok_Dot then
2427 Error_Msg_SC ("prefix for selection is not a name");
2429 -- If qualified expression, comment and continue, otherwise something
2430 -- is pretty nasty so do an Error_Resync call.
2432 if Ada_Version < Ada_2012
2433 and then Nkind (Node1) = N_Qualified_Expression
2434 then
2435 Error_Msg_SC ("\would be legal in Ada 2012 mode");
2436 else
2437 raise Error_Resync;
2438 end if;
2439 end if;
2441 -- Special test to improve error recovery: If the current token is
2442 -- not the first token on a line (as determined by checking the
2443 -- previous token position with the start of the current line),
2444 -- then we insist that we have an appropriate terminating token.
2445 -- Consider the following two examples:
2447 -- 1) if A nad B then ...
2449 -- 2) A := B
2450 -- C := D
2452 -- In the first example, we would like to issue a binary operator
2453 -- expected message and resynchronize to the then. In the second
2454 -- example, we do not want to issue a binary operator message, so
2455 -- that instead we will get the missing semicolon message. This
2456 -- distinction is of course a heuristic which does not always work,
2457 -- but in practice it is quite effective.
2459 -- Note: the one case in which we do not go through this circuit is
2460 -- when we have scanned a range attribute and want to return with
2461 -- Token pointing to the apostrophe. The apostrophe is not normally
2462 -- an expression terminator, and is not in Token_Class_Sterm, but
2463 -- in this special case we know that the expression is complete.
2465 if not Token_Is_At_Start_Of_Line
2466 and then Token not in Token_Class_Sterm
2467 then
2468 -- Normally the right error message is indeed that we expected a
2469 -- binary operator, but in the case of being between a right and left
2470 -- paren, e.g. in an aggregate, a more likely error is missing comma.
2472 if Prev_Token = Tok_Right_Paren and then Token = Tok_Left_Paren then
2473 T_Comma;
2475 -- And if we have a quote, we may have a bad attribute
2477 elsif At_Start_Of_Attribute then
2478 Error_Msg_SC ("prefix of attribute must be a name");
2480 if Ada_Version >= Ada_2012 then
2481 Error_Msg_SC ("\qualify expression to turn it into a name");
2482 end if;
2484 -- Normal case for binary operator expected message
2486 else
2487 Error_Msg_AP ("binary operator expected");
2488 end if;
2490 raise Error_Resync;
2492 else
2493 return Node1;
2494 end if;
2496 -- If any error occurs, then scan to next expression terminator symbol
2497 -- or comma, right paren or vertical bar at the outer (i.e. current) paren
2498 -- level. Expr_Form is set to indicate a normal simple expression.
2500 exception
2501 when Error_Resync =>
2502 Resync_Expression;
2503 Expr_Form := EF_Simple;
2504 return Error;
2505 end P_Simple_Expression;
2507 -----------------------------------------------
2508 -- 4.4 Simple Expression or Range Attribute --
2509 -----------------------------------------------
2511 -- SIMPLE_EXPRESSION ::=
2512 -- [UNARY_ADDING_OPERATOR] TERM {BINARY_ADDING_OPERATOR TERM}
2514 -- RANGE_ATTRIBUTE_REFERENCE ::= PREFIX ' RANGE_ATTRIBUTE_DESIGNATOR
2516 -- RANGE_ATTRIBUTE_DESIGNATOR ::= range [(static_EXPRESSION)]
2518 -- Error recovery: cannot raise Error_Resync
2520 function P_Simple_Expression_Or_Range_Attribute return Node_Id is
2521 Sexpr : Node_Id;
2522 Attr_Node : Node_Id;
2524 begin
2525 -- We don't just want to roar ahead and call P_Simple_Expression
2526 -- here, since we want to handle the case of a parenthesized range
2527 -- attribute cleanly.
2529 if Token = Tok_Left_Paren then
2530 declare
2531 Lptr : constant Source_Ptr := Token_Ptr;
2532 Scan_State : Saved_Scan_State;
2534 begin
2535 Save_Scan_State (Scan_State);
2536 Scan; -- past left paren
2537 Sexpr := P_Simple_Expression;
2539 if Token = Tok_Apostrophe then
2540 Attr_Node := P_Range_Attribute_Reference (Sexpr);
2541 Expr_Form := EF_Range_Attr;
2543 if Token = Tok_Right_Paren then
2544 Scan; -- scan past right paren if present
2545 end if;
2547 Error_Msg ("parentheses not allowed for range attribute", Lptr);
2549 return Attr_Node;
2550 end if;
2552 Restore_Scan_State (Scan_State);
2553 end;
2554 end if;
2556 -- Here after dealing with parenthesized range attribute
2558 Sexpr := P_Simple_Expression;
2560 if Token = Tok_Apostrophe then
2561 Attr_Node := P_Range_Attribute_Reference (Sexpr);
2562 Expr_Form := EF_Range_Attr;
2563 return Attr_Node;
2565 else
2566 return Sexpr;
2567 end if;
2568 end P_Simple_Expression_Or_Range_Attribute;
2570 ---------------
2571 -- 4.4 Term --
2572 ---------------
2574 -- TERM ::= FACTOR {MULTIPLYING_OPERATOR FACTOR}
2576 -- Error recovery: can raise Error_Resync
2578 function P_Term return Node_Id is
2579 Node1, Node2 : Node_Id;
2580 Tokptr : Source_Ptr;
2582 begin
2583 Node1 := P_Factor;
2585 loop
2586 exit when Token not in Token_Class_Mulop;
2587 Tokptr := Token_Ptr;
2588 Node2 := New_Op_Node (P_Multiplying_Operator, Tokptr);
2590 if Style_Check and then not Debug_Flag_Dot_QQ then
2591 Style.Check_Binary_Operator;
2592 end if;
2594 Scan; -- past operator
2595 Set_Left_Opnd (Node2, Node1);
2596 Set_Right_Opnd (Node2, P_Factor);
2597 Node1 := Node2;
2598 end loop;
2600 return Node1;
2601 end P_Term;
2603 -----------------
2604 -- 4.4 Factor --
2605 -----------------
2607 -- FACTOR ::= PRIMARY [** PRIMARY] | abs PRIMARY | not PRIMARY
2609 -- Error recovery: can raise Error_Resync
2611 function P_Factor return Node_Id is
2612 Node1 : Node_Id;
2613 Node2 : Node_Id;
2615 begin
2616 if Token = Tok_Abs then
2617 Node1 := New_Op_Node (N_Op_Abs, Token_Ptr);
2619 if Style_Check then
2620 Style.Check_Abs_Not;
2621 end if;
2623 Scan; -- past ABS
2624 Set_Right_Opnd (Node1, P_Primary);
2625 return Node1;
2627 elsif Token = Tok_Not then
2628 Node1 := New_Op_Node (N_Op_Not, Token_Ptr);
2630 if Style_Check then
2631 Style.Check_Abs_Not;
2632 end if;
2634 Scan; -- past NOT
2635 Set_Right_Opnd (Node1, P_Primary);
2636 return Node1;
2638 else
2639 Node1 := P_Primary;
2641 if Token = Tok_Double_Asterisk then
2642 Node2 := New_Op_Node (N_Op_Expon, Token_Ptr);
2643 Scan; -- past **
2644 Set_Left_Opnd (Node2, Node1);
2645 Set_Right_Opnd (Node2, P_Primary);
2646 Check_Bad_Exp;
2647 return Node2;
2648 else
2649 return Node1;
2650 end if;
2651 end if;
2652 end P_Factor;
2654 ------------------
2655 -- 4.4 Primary --
2656 ------------------
2658 -- PRIMARY ::=
2659 -- NUMERIC_LITERAL | null
2660 -- | STRING_LITERAL | AGGREGATE
2661 -- | NAME | QUALIFIED_EXPRESSION
2662 -- | ALLOCATOR | (EXPRESSION) | QUANTIFIED_EXPRESSION
2664 -- Error recovery: can raise Error_Resync
2666 function P_Primary return Node_Id is
2667 Scan_State : Saved_Scan_State;
2668 Node1 : Node_Id;
2670 Lparen : constant Boolean := Prev_Token = Tok_Left_Paren;
2671 -- Remember if previous token is a left parenthesis. This is used to
2672 -- deal with checking whether IF/CASE/FOR expressions appearing as
2673 -- primaries require extra parenthesization.
2675 begin
2676 -- The loop runs more than once only if misplaced pragmas are found
2677 -- or if a misplaced unary minus is skipped.
2679 loop
2680 case Token is
2682 -- Name token can start a name, call or qualified expression, all
2683 -- of which are acceptable possibilities for primary. Note also
2684 -- that string literal is included in name (as operator symbol)
2685 -- and type conversion is included in name (as indexed component).
2687 when Tok_Char_Literal
2688 | Tok_Identifier
2689 | Tok_Operator_Symbol
2691 Node1 := P_Name;
2693 -- All done unless apostrophe follows
2695 if Token /= Tok_Apostrophe then
2696 return Node1;
2698 -- Apostrophe following means that we have either just parsed
2699 -- the subtype mark of a qualified expression, or the prefix
2700 -- or a range attribute.
2702 else -- Token = Tok_Apostrophe
2703 Save_Scan_State (Scan_State); -- at apostrophe
2704 Scan; -- past apostrophe
2706 -- If range attribute, then this is always an error, since
2707 -- the only legitimate case (where the scanned expression is
2708 -- a qualified simple name) is handled at the level of the
2709 -- Simple_Expression processing. This case corresponds to a
2710 -- usage such as 3 + A'Range, which is always illegal.
2712 if Token = Tok_Range then
2713 Restore_Scan_State (Scan_State); -- to apostrophe
2714 Bad_Range_Attribute (Token_Ptr);
2715 return Error;
2717 -- If left paren, then we have a qualified expression.
2718 -- Note that P_Name guarantees that in this case, where
2719 -- Token = Tok_Apostrophe on return, the only two possible
2720 -- tokens following the apostrophe are left paren and
2721 -- RANGE, so we know we have a left paren here.
2723 else -- Token = Tok_Left_Paren
2724 return P_Qualified_Expression (Node1);
2726 end if;
2727 end if;
2729 -- Numeric or string literal
2731 when Tok_Integer_Literal
2732 | Tok_Real_Literal
2733 | Tok_String_Literal
2735 Node1 := Token_Node;
2736 Scan; -- past number
2737 return Node1;
2739 -- Left paren, starts aggregate or parenthesized expression
2741 when Tok_Left_Paren =>
2742 declare
2743 Expr : constant Node_Id := P_Aggregate_Or_Paren_Expr;
2745 begin
2746 if Nkind (Expr) = N_Attribute_Reference
2747 and then Attribute_Name (Expr) = Name_Range
2748 then
2749 Bad_Range_Attribute (Sloc (Expr));
2750 end if;
2752 return Expr;
2753 end;
2755 -- Allocator
2757 when Tok_New =>
2758 return P_Allocator;
2760 -- Null
2762 when Tok_Null =>
2763 Scan; -- past NULL
2764 return New_Node (N_Null, Prev_Token_Ptr);
2766 -- Pragma, not allowed here, so just skip past it
2768 when Tok_Pragma =>
2769 P_Pragmas_Misplaced;
2771 -- Deal with IF (possible unparenthesized if expression)
2773 when Tok_If =>
2775 -- If this looks like a real if, defined as an IF appearing at
2776 -- the start of a new line, then we consider we have a missing
2777 -- operand. If in Ada 2012 and the IF is not properly indented
2778 -- for a statement, we prefer to issue a message about an ill-
2779 -- parenthesized if expression.
2781 if Token_Is_At_Start_Of_Line
2782 and then not
2783 (Ada_Version >= Ada_2012
2784 and then Style_Check_Indentation /= 0
2785 and then Start_Column rem Style_Check_Indentation /= 0)
2786 then
2787 Error_Msg_AP ("missing operand");
2788 return Error;
2790 -- If this looks like an if expression, then treat it that way
2791 -- with an error message if not explicitly surrounded by
2792 -- parentheses.
2794 elsif Ada_Version >= Ada_2012 then
2795 Node1 := P_If_Expression;
2797 if not (Lparen and then Token = Tok_Right_Paren) then
2798 Error_Msg
2799 ("if expression must be parenthesized", Sloc (Node1));
2800 end if;
2802 return Node1;
2804 -- Otherwise treat as misused identifier
2806 else
2807 return P_Identifier;
2808 end if;
2810 -- Deal with CASE (possible unparenthesized case expression)
2812 when Tok_Case =>
2814 -- If this looks like a real case, defined as a CASE appearing
2815 -- the start of a new line, then we consider we have a missing
2816 -- operand. If in Ada 2012 and the CASE is not properly
2817 -- indented for a statement, we prefer to issue a message about
2818 -- an ill-parenthesized case expression.
2820 if Token_Is_At_Start_Of_Line
2821 and then not
2822 (Ada_Version >= Ada_2012
2823 and then Style_Check_Indentation /= 0
2824 and then Start_Column rem Style_Check_Indentation /= 0)
2825 then
2826 Error_Msg_AP ("missing operand");
2827 return Error;
2829 -- If this looks like a case expression, then treat it that way
2830 -- with an error message if not within parentheses.
2832 elsif Ada_Version >= Ada_2012 then
2833 Node1 := P_Case_Expression;
2835 if not (Lparen and then Token = Tok_Right_Paren) then
2836 Error_Msg
2837 ("case expression must be parenthesized", Sloc (Node1));
2838 end if;
2840 return Node1;
2842 -- Otherwise treat as misused identifier
2844 else
2845 return P_Identifier;
2846 end if;
2848 -- For [all | some] indicates a quantified expression
2850 when Tok_For =>
2851 if Token_Is_At_Start_Of_Line then
2852 Error_Msg_AP ("misplaced loop");
2853 return Error;
2855 elsif Ada_Version >= Ada_2012 then
2856 Save_Scan_State (Scan_State);
2857 Scan; -- past FOR
2859 if Token = Tok_All or else Token = Tok_Some then
2860 Restore_Scan_State (Scan_State); -- To FOR
2861 Node1 := P_Quantified_Expression;
2863 if not (Lparen and then Token = Tok_Right_Paren) then
2864 Error_Msg
2865 ("quantified expression must be parenthesized",
2866 Sloc (Node1));
2867 end if;
2868 else
2869 Restore_Scan_State (Scan_State); -- To FOR
2870 Node1 := P_Iterated_Component_Assoc_Or_Reduction;
2871 end if;
2873 return Node1;
2875 -- Otherwise treat as misused identifier
2877 else
2878 return P_Identifier;
2879 end if;
2881 -- Minus may well be an improper attempt at a unary minus. Give
2882 -- a message, skip the minus and keep going.
2884 when Tok_Minus =>
2885 Error_Msg_SC ("parentheses required for unary minus");
2886 Scan; -- past minus
2888 when Tok_At_Sign => -- AI12-0125 : target_name
2889 if Ada_Version < Ada_2020 then
2890 Error_Msg_SC ("target name is an Ada 2020 extension");
2891 Error_Msg_SC ("\compile with -gnatX");
2892 end if;
2894 Node1 := P_Name;
2895 return Node1;
2897 -- Ada 2020: reduction expression parameter
2899 when Tok_Less =>
2900 Scan; -- past <
2902 Node1 :=
2903 New_Node (N_Reduction_Expression_Parameter, Token_Ptr);
2904 Set_Expression (Node1, P_Simple_Expression);
2906 Scan; -- past >
2907 return Node1;
2909 -- Anything else is illegal as the first token of a primary, but
2910 -- we test for some common errors, to improve error messages.
2912 when others =>
2913 if Is_Reserved_Identifier then
2914 return P_Identifier;
2916 elsif Prev_Token = Tok_Comma then
2917 Error_Msg_SP -- CODEFIX
2918 ("|extra "","" ignored");
2919 raise Error_Resync;
2921 else
2922 Error_Msg_AP ("missing operand");
2923 raise Error_Resync;
2924 end if;
2925 end case;
2926 end loop;
2927 end P_Primary;
2929 -------------------------------
2930 -- 4.4 Quantified_Expression --
2931 -------------------------------
2933 -- QUANTIFIED_EXPRESSION ::=
2934 -- for QUANTIFIER LOOP_PARAMETER_SPECIFICATION => PREDICATE |
2935 -- for QUANTIFIER ITERATOR_SPECIFICATION => PREDICATE
2937 function P_Quantified_Expression return Node_Id is
2938 I_Spec : Node_Id;
2939 Node1 : Node_Id;
2941 begin
2942 Error_Msg_Ada_2012_Feature ("quantified expression", Token_Ptr);
2943 Scan; -- past FOR
2944 Node1 := New_Node (N_Quantified_Expression, Prev_Token_Ptr);
2946 if Token = Tok_All then
2947 Set_All_Present (Node1);
2948 elsif Token /= Tok_Some then
2949 Error_Msg_AP ("missing quantifier");
2950 raise Error_Resync;
2951 end if;
2953 Scan; -- past ALL or SOME
2954 I_Spec := P_Loop_Parameter_Specification;
2956 if Nkind (I_Spec) = N_Loop_Parameter_Specification then
2957 Set_Loop_Parameter_Specification (Node1, I_Spec);
2958 else
2959 Set_Iterator_Specification (Node1, I_Spec);
2960 end if;
2962 if Token = Tok_Arrow then
2963 Scan;
2964 Set_Condition (Node1, P_Expression);
2965 return Node1;
2966 else
2967 Error_Msg_AP ("missing arrow");
2968 raise Error_Resync;
2969 end if;
2970 end P_Quantified_Expression;
2972 ---------------------------
2973 -- 4.5 Logical Operator --
2974 ---------------------------
2976 -- LOGICAL_OPERATOR ::= and | or | xor
2978 -- Note: AND THEN and OR ELSE are also treated as logical operators
2979 -- by the parser (even though they are not operators semantically)
2981 -- The value returned is the appropriate Node_Kind code for the operator
2982 -- On return, Token points to the token following the scanned operator.
2984 -- The caller has checked that the first token is a legitimate logical
2985 -- operator token (i.e. is either XOR, AND, OR).
2987 -- Error recovery: cannot raise Error_Resync
2989 function P_Logical_Operator return Node_Kind is
2990 begin
2991 if Token = Tok_And then
2992 if Style_Check then
2993 Style.Check_Binary_Operator;
2994 end if;
2996 Scan; -- past AND
2998 if Token = Tok_Then then
2999 Scan; -- past THEN
3000 return N_And_Then;
3001 else
3002 return N_Op_And;
3003 end if;
3005 elsif Token = Tok_Or then
3006 if Style_Check then
3007 Style.Check_Binary_Operator;
3008 end if;
3010 Scan; -- past OR
3012 if Token = Tok_Else then
3013 Scan; -- past ELSE
3014 return N_Or_Else;
3015 else
3016 return N_Op_Or;
3017 end if;
3019 else -- Token = Tok_Xor
3020 if Style_Check then
3021 Style.Check_Binary_Operator;
3022 end if;
3024 Scan; -- past XOR
3025 return N_Op_Xor;
3026 end if;
3027 end P_Logical_Operator;
3029 ------------------------------
3030 -- 4.5 Relational Operator --
3031 ------------------------------
3033 -- RELATIONAL_OPERATOR ::= = | /= | < | <= | > | >=
3035 -- The value returned is the appropriate Node_Kind code for the operator.
3036 -- On return, Token points to the operator token, NOT past it.
3038 -- The caller has checked that the first token is a legitimate relational
3039 -- operator token (i.e. is one of the operator tokens listed above).
3041 -- Error recovery: cannot raise Error_Resync
3043 function P_Relational_Operator return Node_Kind is
3044 Op_Kind : Node_Kind;
3045 Relop_Node : constant array (Token_Class_Relop) of Node_Kind :=
3046 (Tok_Less => N_Op_Lt,
3047 Tok_Equal => N_Op_Eq,
3048 Tok_Greater => N_Op_Gt,
3049 Tok_Not_Equal => N_Op_Ne,
3050 Tok_Greater_Equal => N_Op_Ge,
3051 Tok_Less_Equal => N_Op_Le,
3052 Tok_In => N_In,
3053 Tok_Not => N_Not_In,
3054 Tok_Box => N_Op_Ne);
3056 begin
3057 if Token = Tok_Box then
3058 Error_Msg_SC -- CODEFIX
3059 ("|""'<'>"" should be ""/=""");
3060 end if;
3062 Op_Kind := Relop_Node (Token);
3064 if Style_Check then
3065 Style.Check_Binary_Operator;
3066 end if;
3068 Scan; -- past operator token
3070 -- Deal with NOT IN, if previous token was NOT, we must have IN now
3072 if Prev_Token = Tok_Not then
3074 -- Style check, for NOT IN, we require one space between NOT and IN
3076 if Style_Check and then Token = Tok_In then
3077 Style.Check_Not_In;
3078 end if;
3080 T_In;
3081 end if;
3083 return Op_Kind;
3084 end P_Relational_Operator;
3086 ---------------------------------
3087 -- 4.5 Binary Adding Operator --
3088 ---------------------------------
3090 -- BINARY_ADDING_OPERATOR ::= + | - | &
3092 -- The value returned is the appropriate Node_Kind code for the operator.
3093 -- On return, Token points to the operator token (NOT past it).
3095 -- The caller has checked that the first token is a legitimate adding
3096 -- operator token (i.e. is one of the operator tokens listed above).
3098 -- Error recovery: cannot raise Error_Resync
3100 function P_Binary_Adding_Operator return Node_Kind is
3101 Addop_Node : constant array (Token_Class_Binary_Addop) of Node_Kind :=
3102 (Tok_Ampersand => N_Op_Concat,
3103 Tok_Minus => N_Op_Subtract,
3104 Tok_Plus => N_Op_Add);
3105 begin
3106 return Addop_Node (Token);
3107 end P_Binary_Adding_Operator;
3109 --------------------------------
3110 -- 4.5 Unary Adding Operator --
3111 --------------------------------
3113 -- UNARY_ADDING_OPERATOR ::= + | -
3115 -- The value returned is the appropriate Node_Kind code for the operator.
3116 -- On return, Token points to the operator token (NOT past it).
3118 -- The caller has checked that the first token is a legitimate adding
3119 -- operator token (i.e. is one of the operator tokens listed above).
3121 -- Error recovery: cannot raise Error_Resync
3123 function P_Unary_Adding_Operator return Node_Kind is
3124 Addop_Node : constant array (Token_Class_Unary_Addop) of Node_Kind :=
3125 (Tok_Minus => N_Op_Minus,
3126 Tok_Plus => N_Op_Plus);
3127 begin
3128 return Addop_Node (Token);
3129 end P_Unary_Adding_Operator;
3131 -------------------------------
3132 -- 4.5 Multiplying Operator --
3133 -------------------------------
3135 -- MULTIPLYING_OPERATOR ::= * | / | mod | rem
3137 -- The value returned is the appropriate Node_Kind code for the operator.
3138 -- On return, Token points to the operator token (NOT past it).
3140 -- The caller has checked that the first token is a legitimate multiplying
3141 -- operator token (i.e. is one of the operator tokens listed above).
3143 -- Error recovery: cannot raise Error_Resync
3145 function P_Multiplying_Operator return Node_Kind is
3146 Mulop_Node : constant array (Token_Class_Mulop) of Node_Kind :=
3147 (Tok_Asterisk => N_Op_Multiply,
3148 Tok_Mod => N_Op_Mod,
3149 Tok_Rem => N_Op_Rem,
3150 Tok_Slash => N_Op_Divide);
3151 begin
3152 return Mulop_Node (Token);
3153 end P_Multiplying_Operator;
3155 --------------------------------------
3156 -- 4.5 Highest Precedence Operator --
3157 --------------------------------------
3159 -- Parsed by P_Factor (4.4)
3161 -- Note: this rule is not in fact used by the grammar at any point
3163 --------------------------
3164 -- 4.6 Type Conversion --
3165 --------------------------
3167 -- Parsed by P_Primary as a Name (4.1)
3169 -------------------------------
3170 -- 4.7 Qualified Expression --
3171 -------------------------------
3173 -- QUALIFIED_EXPRESSION ::=
3174 -- SUBTYPE_MARK ' (EXPRESSION) | SUBTYPE_MARK ' AGGREGATE
3176 -- The caller has scanned the name which is the Subtype_Mark parameter
3177 -- and scanned past the single quote following the subtype mark. The
3178 -- caller has not checked that this name is in fact appropriate for
3179 -- a subtype mark name (i.e. it is a selected component or identifier).
3181 -- Error_Recovery: cannot raise Error_Resync
3183 function P_Qualified_Expression (Subtype_Mark : Node_Id) return Node_Id is
3184 Qual_Node : Node_Id;
3185 begin
3186 Qual_Node := New_Node (N_Qualified_Expression, Prev_Token_Ptr);
3187 Set_Subtype_Mark (Qual_Node, Check_Subtype_Mark (Subtype_Mark));
3188 Set_Expression (Qual_Node, P_Aggregate_Or_Paren_Expr);
3189 return Qual_Node;
3190 end P_Qualified_Expression;
3192 --------------------
3193 -- 4.8 Allocator --
3194 --------------------
3196 -- ALLOCATOR ::=
3197 -- new [SUBPOOL_SPECIFICATION] SUBTYPE_INDICATION
3198 -- | new [SUBPOOL_SPECIFICATION] QUALIFIED_EXPRESSION
3200 -- SUBPOOL_SPECIFICATION ::= (subpool_handle_NAME)
3202 -- The caller has checked that the initial token is NEW
3204 -- Error recovery: can raise Error_Resync
3206 function P_Allocator return Node_Id is
3207 Alloc_Node : Node_Id;
3208 Type_Node : Node_Id;
3209 Null_Exclusion_Present : Boolean;
3211 begin
3212 Alloc_Node := New_Node (N_Allocator, Token_Ptr);
3213 T_New;
3215 -- Scan subpool_specification if present (Ada 2012 (AI05-0111-3))
3217 -- Scan Null_Exclusion if present (Ada 2005 (AI-231))
3219 if Token = Tok_Left_Paren then
3220 Scan; -- past (
3221 Set_Subpool_Handle_Name (Alloc_Node, P_Name);
3222 T_Right_Paren;
3224 Error_Msg_Ada_2012_Feature
3225 ("|subpool specification",
3226 Sloc (Subpool_Handle_Name (Alloc_Node)));
3227 end if;
3229 Null_Exclusion_Present := P_Null_Exclusion;
3230 Set_Null_Exclusion_Present (Alloc_Node, Null_Exclusion_Present);
3231 Type_Node := P_Subtype_Mark_Resync;
3233 if Token = Tok_Apostrophe then
3234 Scan; -- past apostrophe
3235 Set_Expression (Alloc_Node, P_Qualified_Expression (Type_Node));
3236 else
3237 Set_Expression
3238 (Alloc_Node,
3239 P_Subtype_Indication (Type_Node, Null_Exclusion_Present));
3241 -- AI05-0104: An explicit null exclusion is not allowed for an
3242 -- allocator without initialization. In previous versions of the
3243 -- language it just raises constraint error.
3245 if Ada_Version >= Ada_2012 and then Null_Exclusion_Present then
3246 Error_Msg_N
3247 ("an allocator with a subtype indication "
3248 & "cannot have a null exclusion", Alloc_Node);
3249 end if;
3250 end if;
3252 return Alloc_Node;
3253 end P_Allocator;
3255 -----------------------
3256 -- P_Case_Expression --
3257 -----------------------
3259 function P_Case_Expression return Node_Id is
3260 Loc : constant Source_Ptr := Token_Ptr;
3261 Case_Node : Node_Id;
3262 Save_State : Saved_Scan_State;
3264 begin
3265 Error_Msg_Ada_2012_Feature ("|case expression", Token_Ptr);
3266 Scan; -- past CASE
3267 Case_Node :=
3268 Make_Case_Expression (Loc,
3269 Expression => P_Expression_No_Right_Paren,
3270 Alternatives => New_List);
3271 T_Is;
3273 -- We now have scanned out CASE expression IS, scan alternatives
3275 loop
3276 T_When;
3277 Append_To (Alternatives (Case_Node), P_Case_Expression_Alternative);
3279 -- Missing comma if WHEN (more alternatives present)
3281 if Token = Tok_When then
3282 T_Comma;
3284 -- A semicolon followed by "when" is probably meant to be a comma
3286 elsif Token = Tok_Semicolon then
3287 Save_Scan_State (Save_State);
3288 Scan; -- past the semicolon
3290 if Token /= Tok_When then
3291 Restore_Scan_State (Save_State);
3292 exit;
3293 end if;
3295 Error_Msg_SP -- CODEFIX
3296 ("|"";"" should be "",""");
3298 -- If comma/WHEN, skip comma and we have another alternative
3300 elsif Token = Tok_Comma then
3301 Save_Scan_State (Save_State);
3302 Scan; -- past comma
3304 if Token /= Tok_When then
3305 Restore_Scan_State (Save_State);
3306 exit;
3307 end if;
3309 -- If no comma or WHEN, definitely done
3311 else
3312 exit;
3313 end if;
3314 end loop;
3316 -- If we have an END CASE, diagnose as not needed
3318 if Token = Tok_End then
3319 Error_Msg_SC ("`END CASE` not allowed at end of case expression");
3320 Scan; -- past END
3322 if Token = Tok_Case then
3323 Scan; -- past CASE;
3324 end if;
3325 end if;
3327 -- Return the Case_Expression node
3329 return Case_Node;
3330 end P_Case_Expression;
3332 -----------------------------------
3333 -- P_Case_Expression_Alternative --
3334 -----------------------------------
3336 -- CASE_STATEMENT_ALTERNATIVE ::=
3337 -- when DISCRETE_CHOICE_LIST =>
3338 -- EXPRESSION
3340 -- The caller has checked that and scanned past the initial WHEN token
3341 -- Error recovery: can raise Error_Resync
3343 function P_Case_Expression_Alternative return Node_Id is
3344 Case_Alt_Node : Node_Id;
3345 begin
3346 Case_Alt_Node := New_Node (N_Case_Expression_Alternative, Token_Ptr);
3347 Set_Discrete_Choices (Case_Alt_Node, P_Discrete_Choice_List);
3348 TF_Arrow;
3349 Set_Expression (Case_Alt_Node, P_Expression);
3350 return Case_Alt_Node;
3351 end P_Case_Expression_Alternative;
3353 ---------------------------------------------
3354 -- P_Iterated_Component_Assoc_Or_Reduction --
3355 ---------------------------------------------
3357 -- ITERATED_COMPONENT_ASSOCIATION ::=
3358 -- for DEFINING_IDENTIFIER in DISCRETE_CHOICE_LIST => EXPRESSION
3360 function P_Iterated_Component_Assoc_Or_Reduction return Node_Id is
3361 Expr : Node_Id;
3363 function OK_Reduction_Expression_Parameter (L : List_Id) return Boolean;
3364 -- Check that if a reduction_expression_Parameter appears, it is a
3365 -- single one.
3367 ---------------------------------------
3368 -- OK_Reduction_Expression_Parameter --
3369 ---------------------------------------
3371 function OK_Reduction_Expression_Parameter
3372 (L : List_Id) return Boolean
3374 Actual : Node_Id;
3375 Num : Int := 0;
3376 Seen : Boolean;
3378 begin
3379 Seen := False;
3380 Actual := First (L);
3381 while Present (Actual) loop
3382 if Nkind (Actual) = N_Reduction_Expression_Parameter then
3383 if Seen then
3384 Error_Msg_N ("only one reduction parameter allowed", Expr);
3385 else
3386 Seen := True;
3387 end if;
3388 end if;
3390 Num := Num + 1;
3391 Next (Actual);
3392 end loop;
3394 if Seen and then Num > 2 then
3395 Error_Msg_N ("too many parameters in reduction function", Expr);
3396 end if;
3398 return Seen;
3399 end OK_Reduction_Expression_Parameter;
3401 -- Local variables
3403 Lparen : constant Boolean := Prev_Token = Tok_Left_Paren;
3404 Assoc_Node : Node_Id;
3405 State : Saved_Scan_State;
3407 -- Start of processing for P_Iterated_Component_Assoc_Or_Reduction
3409 begin
3410 Scan; -- past FOR
3411 Assoc_Node :=
3412 New_Node (N_Iterated_Component_Association, Prev_Token_Ptr);
3414 Save_Scan_State (State);
3415 Set_Defining_Identifier (Assoc_Node, P_Defining_Identifier);
3417 if Token = Tok_In then
3418 Scan; -- past in
3420 Set_Discrete_Choices (Assoc_Node, P_Discrete_Choice_List);
3421 TF_Arrow;
3423 if Token = Tok_Less then
3424 Restore_Scan_State (State);
3425 return P_Reduction_Expression (Lparen);
3426 else
3427 Expr := P_Expression;
3428 end if;
3430 if Nkind (Expr) = N_Function_Call
3431 and then OK_Reduction_Expression_Parameter
3432 (Parameter_Associations (Expr))
3433 then
3434 Restore_Scan_State (State);
3435 return P_Reduction_Expression (Lparen);
3437 elsif Nkind (Expr) in N_Op
3438 and then
3439 Nkind (Right_Opnd (Expr)) = N_Reduction_Expression_Parameter
3440 then
3441 return P_Reduction_Expression (Lparen);
3443 elsif Nkind (Expr) in N_Binary_Op
3444 and then
3445 Nkind (Left_Opnd (Expr)) = N_Reduction_Expression_Parameter
3446 then
3447 return P_Reduction_Expression (Lparen);
3449 elsif Nkind (Expr) = N_Indexed_Component
3450 and then OK_Reduction_Expression_Parameter (Expressions (Expr))
3451 then
3452 Restore_Scan_State (State);
3453 return P_Reduction_Expression (Lparen);
3454 end if;
3456 Set_Expression (Assoc_Node, Expr);
3457 if Ada_Version < Ada_2020 then
3458 Error_Msg_SC ("iterated component is an Ada 2020 extension");
3459 Error_Msg_SC ("\compile with -gnatX");
3460 end if;
3462 return Assoc_Node;
3464 elsif Token = Tok_Of then
3465 Restore_Scan_State (State);
3466 return P_Reduction_Expression (Lparen);
3468 else
3469 raise Error_Resync;
3470 end if;
3471 end P_Iterated_Component_Assoc_Or_Reduction;
3473 ----------------------------
3474 -- P_Reduction_Expression --
3475 ----------------------------
3477 function P_Reduction_Expression (Lparen : Boolean) return Node_Id is
3478 Expr : Node_Id;
3479 I_Spec : Node_Id;
3480 Left_Opnd : Node_Id;
3481 Reduction_Node : Node_Id;
3483 begin
3484 Reduction_Node := New_Node (N_Reduction_Expression, Prev_Token_Ptr);
3486 I_Spec := P_Loop_Parameter_Specification;
3488 if Nkind (I_Spec) = N_Loop_Parameter_Specification then
3489 Set_Loop_Parameter_Specification (Reduction_Node, I_Spec);
3490 else
3491 Set_Iterator_Specification (Reduction_Node, I_Spec);
3492 end if;
3494 T_Arrow;
3495 if Token = Tok_Less and then False then
3496 Scan; -- past <
3498 Left_Opnd := New_Node (N_Reduction_Expression_Parameter, Token_Ptr);
3499 Set_Expression (Left_Opnd, P_Simple_Expression);
3501 Scan; -- past >
3503 if Token = Tok_Plus then
3504 Set_Expression
3505 (Reduction_Node, New_Op_Node (N_Op_Add, Token_Ptr));
3506 else
3507 Set_Expression
3508 (Reduction_Node, New_Op_Node (N_Op_Concat, Token_Ptr));
3509 end if;
3511 Scan; -- past operstor
3512 Set_Left_Opnd (Expression (Reduction_Node), Left_Opnd);
3513 Set_Right_Opnd (Expression (Reduction_Node), P_Primary);
3515 else
3516 Expr := P_Expression;
3517 Set_Expression (Reduction_Node, Expr);
3519 -- if Nkind (Expr) = N_Indexed_Component
3520 -- and then List_Length (Expressions (Expr)) /= 2
3521 -- then
3522 -- Error_Msg_N
3523 -- ("combiner function call must have two arguments", Expr);
3524 -- end if;
3525 end if;
3527 if Ada_Version < Ada_2020 then
3528 Error_Msg_SC ("Reduction_Expression is an Ada 2020 extension");
3529 Error_Msg_SC ("\compile with -gnatX");
3530 end if;
3532 if not (Lparen and then Token = Tok_Right_Paren) then
3533 Error_Msg
3534 ("reduction expression must be parenthesized",
3535 Sloc (Reduction_Node));
3536 else
3537 Scan; -- past ???
3538 end if;
3540 return Reduction_Node;
3541 end P_Reduction_Expression;
3543 ---------------------
3544 -- P_If_Expression --
3545 ---------------------
3547 -- IF_EXPRESSION ::=
3548 -- if CONDITION then DEPENDENT_EXPRESSION
3549 -- {elsif CONDITION then DEPENDENT_EXPRESSION}
3550 -- [else DEPENDENT_EXPRESSION]
3552 -- DEPENDENT_EXPRESSION ::= EXPRESSION
3554 function P_If_Expression return Node_Id is
3555 function P_If_Expression_Internal
3556 (Loc : Source_Ptr;
3557 Cond : Node_Id) return Node_Id;
3558 -- This is the internal recursive routine that does all the work, it is
3559 -- recursive since it is used to process ELSIF parts, which internally
3560 -- are N_If_Expression nodes with the Is_Elsif flag set. The calling
3561 -- sequence is like the outer function except that the caller passes
3562 -- the conditional expression (scanned using P_Expression), and the
3563 -- scan pointer points just past this expression. Loc points to the
3564 -- IF or ELSIF token.
3566 ------------------------------
3567 -- P_If_Expression_Internal --
3568 ------------------------------
3570 function P_If_Expression_Internal
3571 (Loc : Source_Ptr;
3572 Cond : Node_Id) return Node_Id
3574 Exprs : constant List_Id := New_List;
3575 Expr : Node_Id;
3576 State : Saved_Scan_State;
3577 Eptr : Source_Ptr;
3579 begin
3580 -- All cases except where we are at right paren
3582 if Token /= Tok_Right_Paren then
3583 TF_Then;
3584 Append_To (Exprs, P_Condition (Cond));
3585 Append_To (Exprs, P_Expression);
3587 -- Case of right paren (missing THEN phrase). Note that we know this
3588 -- is the IF case, since the caller dealt with this possibility in
3589 -- the ELSIF case.
3591 else
3592 Error_Msg_BC ("missing THEN phrase");
3593 Append_To (Exprs, P_Condition (Cond));
3594 end if;
3596 -- We now have scanned out IF expr THEN expr
3598 -- Check for common error of semicolon before the ELSE
3600 if Token = Tok_Semicolon then
3601 Save_Scan_State (State);
3602 Scan; -- past semicolon
3604 if Token = Tok_Else or else Token = Tok_Elsif then
3605 Error_Msg_SP -- CODEFIX
3606 ("|extra "";"" ignored");
3608 else
3609 Restore_Scan_State (State);
3610 end if;
3611 end if;
3613 -- Scan out ELSIF sequence if present
3615 if Token = Tok_Elsif then
3616 Eptr := Token_Ptr;
3617 Scan; -- past ELSIF
3618 Expr := P_Expression;
3620 -- If we are at a right paren, we assume the ELSIF should be ELSE
3622 if Token = Tok_Right_Paren then
3623 Error_Msg ("ELSIF should be ELSE", Eptr);
3624 Append_To (Exprs, Expr);
3626 -- Otherwise we have an OK ELSIF
3628 else
3629 Expr := P_If_Expression_Internal (Eptr, Expr);
3630 Set_Is_Elsif (Expr);
3631 Append_To (Exprs, Expr);
3632 end if;
3634 -- Scan out ELSE phrase if present
3636 elsif Token = Tok_Else then
3638 -- Scan out ELSE expression
3640 Scan; -- Past ELSE
3641 Append_To (Exprs, P_Expression);
3643 -- Skip redundant ELSE parts
3645 while Token = Tok_Else loop
3646 Error_Msg_SC ("only one ELSE part is allowed");
3647 Scan; -- past ELSE
3648 Discard_Junk_Node (P_Expression);
3649 end loop;
3651 -- Two expression case (implied True, filled in during semantics)
3653 else
3654 null;
3655 end if;
3657 -- If we have an END IF, diagnose as not needed
3659 if Token = Tok_End then
3660 Error_Msg_SC ("`END IF` not allowed at end of if expression");
3661 Scan; -- past END
3663 if Token = Tok_If then
3664 Scan; -- past IF;
3665 end if;
3666 end if;
3668 -- Return the If_Expression node
3670 return Make_If_Expression (Loc, Expressions => Exprs);
3671 end P_If_Expression_Internal;
3673 -- Local variables
3675 Loc : constant Source_Ptr := Token_Ptr;
3676 If_Expr : Node_Id;
3678 -- Start of processing for P_If_Expression
3680 begin
3681 Error_Msg_Ada_2012_Feature ("|if expression", Token_Ptr);
3682 Scan; -- past IF
3683 Inside_If_Expression := Inside_If_Expression + 1;
3684 If_Expr := P_If_Expression_Internal (Loc, P_Expression);
3685 Inside_If_Expression := Inside_If_Expression - 1;
3686 return If_Expr;
3687 end P_If_Expression;
3689 -----------------------
3690 -- P_Membership_Test --
3691 -----------------------
3693 -- MEMBERSHIP_CHOICE_LIST ::= MEMBERHIP_CHOICE {'|' MEMBERSHIP_CHOICE}
3694 -- MEMBERSHIP_CHOICE ::= CHOICE_EXPRESSION | range | subtype_mark
3696 procedure P_Membership_Test (N : Node_Id) is
3697 Alt : constant Node_Id :=
3698 P_Range_Or_Subtype_Mark
3699 (Allow_Simple_Expression => (Ada_Version >= Ada_2012));
3701 begin
3702 -- Set case
3704 if Token = Tok_Vertical_Bar then
3705 Error_Msg_Ada_2012_Feature ("set notation", Token_Ptr);
3706 Set_Alternatives (N, New_List (Alt));
3707 Set_Right_Opnd (N, Empty);
3709 -- Loop to accumulate alternatives
3711 while Token = Tok_Vertical_Bar loop
3712 Scan; -- past vertical bar
3713 Append_To
3714 (Alternatives (N),
3715 P_Range_Or_Subtype_Mark (Allow_Simple_Expression => True));
3716 end loop;
3718 -- Not set case
3720 else
3721 Set_Right_Opnd (N, Alt);
3722 Set_Alternatives (N, No_List);
3723 end if;
3724 end P_Membership_Test;
3726 ------------------------------------------
3727 -- P_Unparen_Cond_Case_Quant_Expression --
3728 ------------------------------------------
3730 function P_Unparen_Cond_Case_Quant_Expression return Node_Id is
3731 Lparen : constant Boolean := Prev_Token = Tok_Left_Paren;
3733 Result : Node_Id;
3734 Scan_State : Saved_Scan_State;
3736 begin
3737 -- Case expression
3739 if Token = Tok_Case then
3740 Result := P_Case_Expression;
3742 if not (Lparen and then Token = Tok_Right_Paren) then
3743 Error_Msg_N ("case expression must be parenthesized!", Result);
3744 end if;
3746 -- If expression
3748 elsif Token = Tok_If then
3749 Result := P_If_Expression;
3751 if not (Lparen and then Token = Tok_Right_Paren) then
3752 Error_Msg_N ("if expression must be parenthesized!", Result);
3753 end if;
3755 -- Quantified expression or iterated component association
3757 elsif Token = Tok_For then
3759 Save_Scan_State (Scan_State);
3760 Scan; -- past FOR
3762 if Token = Tok_All or else Token = Tok_Some then
3763 Restore_Scan_State (Scan_State);
3764 Result := P_Quantified_Expression;
3766 if not (Lparen and then Token = Tok_Right_Paren) then
3767 Error_Msg_N
3768 ("quantified expression must be parenthesized!", Result);
3769 end if;
3771 else
3772 -- If no quantifier keyword, this is an iterated component in
3773 -- an aggregate.
3775 Restore_Scan_State (Scan_State);
3776 Result := P_Iterated_Component_Assoc_Or_Reduction;
3777 end if;
3779 -- No other possibility should exist (caller was supposed to check)
3781 else
3782 raise Program_Error;
3783 end if;
3785 -- Return expression (possibly after having given message)
3787 return Result;
3788 end P_Unparen_Cond_Case_Quant_Expression;
3790 end Ch4;