2018-03-02 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ada / exp_ch3.adb
blob89ff6581edef3099b4ad12b447000ade57edd22f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Aggr; use Exp_Aggr;
32 with Exp_Atag; use Exp_Atag;
33 with Exp_Ch4; use Exp_Ch4;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Dist; use Exp_Dist;
40 with Exp_Smem; use Exp_Smem;
41 with Exp_Strm; use Exp_Strm;
42 with Exp_Tss; use Exp_Tss;
43 with Exp_Util; use Exp_Util;
44 with Freeze; use Freeze;
45 with Ghost; use Ghost;
46 with Lib; use Lib;
47 with Namet; use Namet;
48 with Nlists; use Nlists;
49 with Nmake; use Nmake;
50 with Opt; use Opt;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch3; use Sem_Ch3;
59 with Sem_Ch6; use Sem_Ch6;
60 with Sem_Ch8; use Sem_Ch8;
61 with Sem_Disp; use Sem_Disp;
62 with Sem_Eval; use Sem_Eval;
63 with Sem_Mech; use Sem_Mech;
64 with Sem_Res; use Sem_Res;
65 with Sem_SCIL; use Sem_SCIL;
66 with Sem_Type; use Sem_Type;
67 with Sem_Util; use Sem_Util;
68 with Sinfo; use Sinfo;
69 with Stand; use Stand;
70 with Snames; use Snames;
71 with Tbuild; use Tbuild;
72 with Ttypes; use Ttypes;
73 with Validsw; use Validsw;
75 package body Exp_Ch3 is
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 procedure Adjust_Discriminants (Rtype : Entity_Id);
82 -- This is used when freezing a record type. It attempts to construct
83 -- more restrictive subtypes for discriminants so that the max size of
84 -- the record can be calculated more accurately. See the body of this
85 -- procedure for details.
87 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
88 -- Build initialization procedure for given array type. Nod is a node
89 -- used for attachment of any actions required in its construction.
90 -- It also supplies the source location used for the procedure.
92 function Build_Discriminant_Formals
93 (Rec_Id : Entity_Id;
94 Use_Dl : Boolean) return List_Id;
95 -- This function uses the discriminants of a type to build a list of
96 -- formal parameters, used in Build_Init_Procedure among other places.
97 -- If the flag Use_Dl is set, the list is built using the already
98 -- defined discriminals of the type, as is the case for concurrent
99 -- types with discriminants. Otherwise new identifiers are created,
100 -- with the source names of the discriminants.
102 function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id;
103 -- This function builds a static aggregate that can serve as the initial
104 -- value for an array type whose bounds are static, and whose component
105 -- type is a composite type that has a static equivalent aggregate.
106 -- The equivalent array aggregate is used both for object initialization
107 -- and for component initialization, when used in the following function.
109 function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id;
110 -- This function builds a static aggregate that can serve as the initial
111 -- value for a record type whose components are scalar and initialized
112 -- with compile-time values, or arrays with similar initialization or
113 -- defaults. When possible, initialization of an object of the type can
114 -- be achieved by using a copy of the aggregate as an initial value, thus
115 -- removing the implicit call that would otherwise constitute elaboration
116 -- code.
118 procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id);
119 -- Build record initialization procedure. N is the type declaration
120 -- node, and Rec_Ent is the corresponding entity for the record type.
122 procedure Build_Slice_Assignment (Typ : Entity_Id);
123 -- Build assignment procedure for one-dimensional arrays of controlled
124 -- types. Other array and slice assignments are expanded in-line, but
125 -- the code expansion for controlled components (when control actions
126 -- are active) can lead to very large blocks that GCC3 handles poorly.
128 procedure Build_Untagged_Equality (Typ : Entity_Id);
129 -- AI05-0123: Equality on untagged records composes. This procedure
130 -- builds the equality routine for an untagged record that has components
131 -- of a record type that has user-defined primitive equality operations.
132 -- The resulting operation is a TSS subprogram.
134 procedure Build_Variant_Record_Equality (Typ : Entity_Id);
135 -- Create An Equality function for the untagged variant record Typ and
136 -- attach it to the TSS list
138 procedure Check_Stream_Attributes (Typ : Entity_Id);
139 -- Check that if a limited extension has a parent with user-defined stream
140 -- attributes, and does not itself have user-defined stream-attributes,
141 -- then any limited component of the extension also has the corresponding
142 -- user-defined stream attributes.
144 procedure Clean_Task_Names
145 (Typ : Entity_Id;
146 Proc_Id : Entity_Id);
147 -- If an initialization procedure includes calls to generate names
148 -- for task subcomponents, indicate that secondary stack cleanup is
149 -- needed after an initialization. Typ is the component type, and Proc_Id
150 -- the initialization procedure for the enclosing composite type.
152 procedure Expand_Freeze_Array_Type (N : Node_Id);
153 -- Freeze an array type. Deals with building the initialization procedure,
154 -- creating the packed array type for a packed array and also with the
155 -- creation of the controlling procedures for the controlled case. The
156 -- argument N is the N_Freeze_Entity node for the type.
158 procedure Expand_Freeze_Class_Wide_Type (N : Node_Id);
159 -- Freeze a class-wide type. Build routine Finalize_Address for the purpose
160 -- of finalizing controlled derivations from the class-wide's root type.
162 procedure Expand_Freeze_Enumeration_Type (N : Node_Id);
163 -- Freeze enumeration type with non-standard representation. Builds the
164 -- array and function needed to convert between enumeration pos and
165 -- enumeration representation values. N is the N_Freeze_Entity node
166 -- for the type.
168 procedure Expand_Freeze_Record_Type (N : Node_Id);
169 -- Freeze record type. Builds all necessary discriminant checking
170 -- and other ancillary functions, and builds dispatch tables where
171 -- needed. The argument N is the N_Freeze_Entity node. This processing
172 -- applies only to E_Record_Type entities, not to class wide types,
173 -- record subtypes, or private types.
175 procedure Expand_Tagged_Root (T : Entity_Id);
176 -- Add a field _Tag at the beginning of the record. This field carries
177 -- the value of the access to the Dispatch table. This procedure is only
178 -- called on root type, the _Tag field being inherited by the descendants.
180 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
181 -- Treat user-defined stream operations as renaming_as_body if the
182 -- subprogram they rename is not frozen when the type is frozen.
184 procedure Initialization_Warning (E : Entity_Id);
185 -- If static elaboration of the package is requested, indicate
186 -- when a type does meet the conditions for static initialization. If
187 -- E is a type, it has components that have no static initialization.
188 -- if E is an entity, its initial expression is not compile-time known.
190 function Init_Formals (Typ : Entity_Id) return List_Id;
191 -- This function builds the list of formals for an initialization routine.
192 -- The first formal is always _Init with the given type. For task value
193 -- record types and types containing tasks, three additional formals are
194 -- added:
196 -- _Master : Master_Id
197 -- _Chain : in out Activation_Chain
198 -- _Task_Name : String
200 -- The caller must append additional entries for discriminants if required.
202 function Inline_Init_Proc (Typ : Entity_Id) return Boolean;
203 -- Returns true if the initialization procedure of Typ should be inlined
205 function In_Runtime (E : Entity_Id) return Boolean;
206 -- Check if E is defined in the RTL (in a child of Ada or System). Used
207 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
209 function Is_User_Defined_Equality (Prim : Node_Id) return Boolean;
210 -- Returns true if Prim is a user defined equality function
212 function Make_Eq_Body
213 (Typ : Entity_Id;
214 Eq_Name : Name_Id) return Node_Id;
215 -- Build the body of a primitive equality operation for a tagged record
216 -- type, or in Ada 2012 for any record type that has components with a
217 -- user-defined equality. Factored out of Predefined_Primitive_Bodies.
219 function Make_Eq_Case
220 (E : Entity_Id;
221 CL : Node_Id;
222 Discrs : Elist_Id := New_Elmt_List) return List_Id;
223 -- Building block for variant record equality. Defined to share the code
224 -- between the tagged and untagged case. Given a Component_List node CL,
225 -- it generates an 'if' followed by a 'case' statement that compares all
226 -- components of local temporaries named X and Y (that are declared as
227 -- formals at some upper level). E provides the Sloc to be used for the
228 -- generated code.
230 -- IF E is an unchecked_union, Discrs is the list of formals created for
231 -- the inferred discriminants of one operand. These formals are used in
232 -- the generated case statements for each variant of the unchecked union.
234 function Make_Eq_If
235 (E : Entity_Id;
236 L : List_Id) return Node_Id;
237 -- Building block for variant record equality. Defined to share the code
238 -- between the tagged and untagged case. Given the list of components
239 -- (or discriminants) L, it generates a return statement that compares all
240 -- components of local temporaries named X and Y (that are declared as
241 -- formals at some upper level). E provides the Sloc to be used for the
242 -- generated code.
244 function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id;
245 -- Search for a renaming of the inequality dispatching primitive of
246 -- this tagged type. If found then build and return the corresponding
247 -- rename-as-body inequality subprogram; otherwise return Empty.
249 procedure Make_Predefined_Primitive_Specs
250 (Tag_Typ : Entity_Id;
251 Predef_List : out List_Id;
252 Renamed_Eq : out Entity_Id);
253 -- Create a list with the specs of the predefined primitive operations.
254 -- For tagged types that are interfaces all these primitives are defined
255 -- abstract.
257 -- The following entries are present for all tagged types, and provide
258 -- the results of the corresponding attribute applied to the object.
259 -- Dispatching is required in general, since the result of the attribute
260 -- will vary with the actual object subtype.
262 -- _size provides result of 'Size attribute
263 -- typSR provides result of 'Read attribute
264 -- typSW provides result of 'Write attribute
265 -- typSI provides result of 'Input attribute
266 -- typSO provides result of 'Output attribute
268 -- The following entries are additionally present for non-limited tagged
269 -- types, and implement additional dispatching operations for predefined
270 -- operations:
272 -- _equality implements "=" operator
273 -- _assign implements assignment operation
274 -- typDF implements deep finalization
275 -- typDA implements deep adjust
277 -- The latter two are empty procedures unless the type contains some
278 -- controlled components that require finalization actions (the deep
279 -- in the name refers to the fact that the action applies to components).
281 -- The list is returned in Predef_List. The Parameter Renamed_Eq either
282 -- returns the value Empty, or else the defining unit name for the
283 -- predefined equality function in the case where the type has a primitive
284 -- operation that is a renaming of predefined equality (but only if there
285 -- is also an overriding user-defined equality function). The returned
286 -- Renamed_Eq will be passed to the corresponding parameter of
287 -- Predefined_Primitive_Bodies.
289 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
290 -- Returns True if there are representation clauses for type T that are not
291 -- inherited. If the result is false, the init_proc and the discriminant
292 -- checking functions of the parent can be reused by a derived type.
294 procedure Make_Controlling_Function_Wrappers
295 (Tag_Typ : Entity_Id;
296 Decl_List : out List_Id;
297 Body_List : out List_Id);
298 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
299 -- associated with inherited functions with controlling results which
300 -- are not overridden. The body of each wrapper function consists solely
301 -- of a return statement whose expression is an extension aggregate
302 -- invoking the inherited subprogram's parent subprogram and extended
303 -- with a null association list.
305 function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id;
306 -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
307 -- null procedures inherited from an interface type that have not been
308 -- overridden. Only one null procedure will be created for a given set of
309 -- inherited null procedures with homographic profiles.
311 function Predef_Spec_Or_Body
312 (Loc : Source_Ptr;
313 Tag_Typ : Entity_Id;
314 Name : Name_Id;
315 Profile : List_Id;
316 Ret_Type : Entity_Id := Empty;
317 For_Body : Boolean := False) return Node_Id;
318 -- This function generates the appropriate expansion for a predefined
319 -- primitive operation specified by its name, parameter profile and
320 -- return type (Empty means this is a procedure). If For_Body is false,
321 -- then the returned node is a subprogram declaration. If For_Body is
322 -- true, then the returned node is a empty subprogram body containing
323 -- no declarations and no statements.
325 function Predef_Stream_Attr_Spec
326 (Loc : Source_Ptr;
327 Tag_Typ : Entity_Id;
328 Name : TSS_Name_Type;
329 For_Body : Boolean := False) return Node_Id;
330 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
331 -- input and output attribute whose specs are constructed in Exp_Strm.
333 function Predef_Deep_Spec
334 (Loc : Source_Ptr;
335 Tag_Typ : Entity_Id;
336 Name : TSS_Name_Type;
337 For_Body : Boolean := False) return Node_Id;
338 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
339 -- and _deep_finalize
341 function Predefined_Primitive_Bodies
342 (Tag_Typ : Entity_Id;
343 Renamed_Eq : Entity_Id) return List_Id;
344 -- Create the bodies of the predefined primitives that are described in
345 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
346 -- the defining unit name of the type's predefined equality as returned
347 -- by Make_Predefined_Primitive_Specs.
349 function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
350 -- Freeze entities of all predefined primitive operations. This is needed
351 -- because the bodies of these operations do not normally do any freezing.
353 function Stream_Operation_OK
354 (Typ : Entity_Id;
355 Operation : TSS_Name_Type) return Boolean;
356 -- Check whether the named stream operation must be emitted for a given
357 -- type. The rules for inheritance of stream attributes by type extensions
358 -- are enforced by this function. Furthermore, various restrictions prevent
359 -- the generation of these operations, as a useful optimization or for
360 -- certification purposes and to save unnecessary generated code.
362 --------------------------
363 -- Adjust_Discriminants --
364 --------------------------
366 -- This procedure attempts to define subtypes for discriminants that are
367 -- more restrictive than those declared. Such a replacement is possible if
368 -- we can demonstrate that values outside the restricted range would cause
369 -- constraint errors in any case. The advantage of restricting the
370 -- discriminant types in this way is that the maximum size of the variant
371 -- record can be calculated more conservatively.
373 -- An example of a situation in which we can perform this type of
374 -- restriction is the following:
376 -- subtype B is range 1 .. 10;
377 -- type Q is array (B range <>) of Integer;
379 -- type V (N : Natural) is record
380 -- C : Q (1 .. N);
381 -- end record;
383 -- In this situation, we can restrict the upper bound of N to 10, since
384 -- any larger value would cause a constraint error in any case.
386 -- There are many situations in which such restriction is possible, but
387 -- for now, we just look for cases like the above, where the component
388 -- in question is a one dimensional array whose upper bound is one of
389 -- the record discriminants. Also the component must not be part of
390 -- any variant part, since then the component does not always exist.
392 procedure Adjust_Discriminants (Rtype : Entity_Id) is
393 Loc : constant Source_Ptr := Sloc (Rtype);
394 Comp : Entity_Id;
395 Ctyp : Entity_Id;
396 Ityp : Entity_Id;
397 Lo : Node_Id;
398 Hi : Node_Id;
399 P : Node_Id;
400 Loval : Uint;
401 Discr : Entity_Id;
402 Dtyp : Entity_Id;
403 Dhi : Node_Id;
404 Dhiv : Uint;
405 Ahi : Node_Id;
406 Ahiv : Uint;
407 Tnn : Entity_Id;
409 begin
410 Comp := First_Component (Rtype);
411 while Present (Comp) loop
413 -- If our parent is a variant, quit, we do not look at components
414 -- that are in variant parts, because they may not always exist.
416 P := Parent (Comp); -- component declaration
417 P := Parent (P); -- component list
419 exit when Nkind (Parent (P)) = N_Variant;
421 -- We are looking for a one dimensional array type
423 Ctyp := Etype (Comp);
425 if not Is_Array_Type (Ctyp) or else Number_Dimensions (Ctyp) > 1 then
426 goto Continue;
427 end if;
429 -- The lower bound must be constant, and the upper bound is a
430 -- discriminant (which is a discriminant of the current record).
432 Ityp := Etype (First_Index (Ctyp));
433 Lo := Type_Low_Bound (Ityp);
434 Hi := Type_High_Bound (Ityp);
436 if not Compile_Time_Known_Value (Lo)
437 or else Nkind (Hi) /= N_Identifier
438 or else No (Entity (Hi))
439 or else Ekind (Entity (Hi)) /= E_Discriminant
440 then
441 goto Continue;
442 end if;
444 -- We have an array with appropriate bounds
446 Loval := Expr_Value (Lo);
447 Discr := Entity (Hi);
448 Dtyp := Etype (Discr);
450 -- See if the discriminant has a known upper bound
452 Dhi := Type_High_Bound (Dtyp);
454 if not Compile_Time_Known_Value (Dhi) then
455 goto Continue;
456 end if;
458 Dhiv := Expr_Value (Dhi);
460 -- See if base type of component array has known upper bound
462 Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
464 if not Compile_Time_Known_Value (Ahi) then
465 goto Continue;
466 end if;
468 Ahiv := Expr_Value (Ahi);
470 -- The condition for doing the restriction is that the high bound
471 -- of the discriminant is greater than the low bound of the array,
472 -- and is also greater than the high bound of the base type index.
474 if Dhiv > Loval and then Dhiv > Ahiv then
476 -- We can reset the upper bound of the discriminant type to
477 -- whichever is larger, the low bound of the component, or
478 -- the high bound of the base type array index.
480 -- We build a subtype that is declared as
482 -- subtype Tnn is discr_type range discr_type'First .. max;
484 -- And insert this declaration into the tree. The type of the
485 -- discriminant is then reset to this more restricted subtype.
487 Tnn := Make_Temporary (Loc, 'T');
489 Insert_Action (Declaration_Node (Rtype),
490 Make_Subtype_Declaration (Loc,
491 Defining_Identifier => Tnn,
492 Subtype_Indication =>
493 Make_Subtype_Indication (Loc,
494 Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
495 Constraint =>
496 Make_Range_Constraint (Loc,
497 Range_Expression =>
498 Make_Range (Loc,
499 Low_Bound =>
500 Make_Attribute_Reference (Loc,
501 Attribute_Name => Name_First,
502 Prefix => New_Occurrence_Of (Dtyp, Loc)),
503 High_Bound =>
504 Make_Integer_Literal (Loc,
505 Intval => UI_Max (Loval, Ahiv)))))));
507 Set_Etype (Discr, Tnn);
508 end if;
510 <<Continue>>
511 Next_Component (Comp);
512 end loop;
513 end Adjust_Discriminants;
515 ---------------------------
516 -- Build_Array_Init_Proc --
517 ---------------------------
519 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
520 Comp_Type : constant Entity_Id := Component_Type (A_Type);
521 Comp_Simple_Init : constant Boolean :=
522 Needs_Simple_Initialization
523 (T => Comp_Type,
524 Consider_IS =>
525 not (Validity_Check_Copies and Is_Bit_Packed_Array (A_Type)));
526 -- True if the component needs simple initialization, based on its type,
527 -- plus the fact that we do not do simple initialization for components
528 -- of bit-packed arrays when validity checks are enabled, because the
529 -- initialization with deliberately out-of-range values would raise
530 -- Constraint_Error.
532 Body_Stmts : List_Id;
533 Has_Default_Init : Boolean;
534 Index_List : List_Id;
535 Loc : Source_Ptr;
536 Proc_Id : Entity_Id;
538 function Init_Component return List_Id;
539 -- Create one statement to initialize one array component, designated
540 -- by a full set of indexes.
542 function Init_One_Dimension (N : Int) return List_Id;
543 -- Create loop to initialize one dimension of the array. The single
544 -- statement in the loop body initializes the inner dimensions if any,
545 -- or else the single component. Note that this procedure is called
546 -- recursively, with N being the dimension to be initialized. A call
547 -- with N greater than the number of dimensions simply generates the
548 -- component initialization, terminating the recursion.
550 --------------------
551 -- Init_Component --
552 --------------------
554 function Init_Component return List_Id is
555 Comp : Node_Id;
557 begin
558 Comp :=
559 Make_Indexed_Component (Loc,
560 Prefix => Make_Identifier (Loc, Name_uInit),
561 Expressions => Index_List);
563 if Has_Default_Aspect (A_Type) then
564 Set_Assignment_OK (Comp);
565 return New_List (
566 Make_Assignment_Statement (Loc,
567 Name => Comp,
568 Expression =>
569 Convert_To (Comp_Type,
570 Default_Aspect_Component_Value (First_Subtype (A_Type)))));
572 elsif Comp_Simple_Init then
573 Set_Assignment_OK (Comp);
574 return New_List (
575 Make_Assignment_Statement (Loc,
576 Name => Comp,
577 Expression =>
578 Get_Simple_Init_Val
579 (Comp_Type, Nod, Component_Size (A_Type))));
581 else
582 Clean_Task_Names (Comp_Type, Proc_Id);
583 return
584 Build_Initialization_Call
585 (Loc, Comp, Comp_Type,
586 In_Init_Proc => True,
587 Enclos_Type => A_Type);
588 end if;
589 end Init_Component;
591 ------------------------
592 -- Init_One_Dimension --
593 ------------------------
595 function Init_One_Dimension (N : Int) return List_Id is
596 Index : Entity_Id;
598 begin
599 -- If the component does not need initializing, then there is nothing
600 -- to do here, so we return a null body. This occurs when generating
601 -- the dummy Init_Proc needed for Initialize_Scalars processing.
603 if not Has_Non_Null_Base_Init_Proc (Comp_Type)
604 and then not Comp_Simple_Init
605 and then not Has_Task (Comp_Type)
606 and then not Has_Default_Aspect (A_Type)
607 then
608 return New_List (Make_Null_Statement (Loc));
610 -- If all dimensions dealt with, we simply initialize the component
612 elsif N > Number_Dimensions (A_Type) then
613 return Init_Component;
615 -- Here we generate the required loop
617 else
618 Index :=
619 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
621 Append (New_Occurrence_Of (Index, Loc), Index_List);
623 return New_List (
624 Make_Implicit_Loop_Statement (Nod,
625 Identifier => Empty,
626 Iteration_Scheme =>
627 Make_Iteration_Scheme (Loc,
628 Loop_Parameter_Specification =>
629 Make_Loop_Parameter_Specification (Loc,
630 Defining_Identifier => Index,
631 Discrete_Subtype_Definition =>
632 Make_Attribute_Reference (Loc,
633 Prefix =>
634 Make_Identifier (Loc, Name_uInit),
635 Attribute_Name => Name_Range,
636 Expressions => New_List (
637 Make_Integer_Literal (Loc, N))))),
638 Statements => Init_One_Dimension (N + 1)));
639 end if;
640 end Init_One_Dimension;
642 -- Start of processing for Build_Array_Init_Proc
644 begin
645 -- The init proc is created when analyzing the freeze node for the type,
646 -- but it properly belongs with the array type declaration. However, if
647 -- the freeze node is for a subtype of a type declared in another unit
648 -- it seems preferable to use the freeze node as the source location of
649 -- the init proc. In any case this is preferable for gcov usage, and
650 -- the Sloc is not otherwise used by the compiler.
652 if In_Open_Scopes (Scope (A_Type)) then
653 Loc := Sloc (A_Type);
654 else
655 Loc := Sloc (Nod);
656 end if;
658 -- Nothing to generate in the following cases:
660 -- 1. Initialization is suppressed for the type
661 -- 2. An initialization already exists for the base type
663 if Initialization_Suppressed (A_Type)
664 or else Present (Base_Init_Proc (A_Type))
665 then
666 return;
667 end if;
669 Index_List := New_List;
671 -- We need an initialization procedure if any of the following is true:
673 -- 1. The component type has an initialization procedure
674 -- 2. The component type needs simple initialization
675 -- 3. Tasks are present
676 -- 4. The type is marked as a public entity
677 -- 5. The array type has a Default_Component_Value aspect
679 -- The reason for the public entity test is to deal properly with the
680 -- Initialize_Scalars pragma. This pragma can be set in the client and
681 -- not in the declaring package, this means the client will make a call
682 -- to the initialization procedure (because one of conditions 1-3 must
683 -- apply in this case), and we must generate a procedure (even if it is
684 -- null) to satisfy the call in this case.
686 -- Exception: do not build an array init_proc for a type whose root
687 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
688 -- is no place to put the code, and in any case we handle initialization
689 -- of such types (in the Initialize_Scalars case, that's the only time
690 -- the issue arises) in a special manner anyway which does not need an
691 -- init_proc.
693 Has_Default_Init := Has_Non_Null_Base_Init_Proc (Comp_Type)
694 or else Comp_Simple_Init
695 or else Has_Task (Comp_Type)
696 or else Has_Default_Aspect (A_Type);
698 if Has_Default_Init
699 or else (not Restriction_Active (No_Initialize_Scalars)
700 and then Is_Public (A_Type)
701 and then not Is_Standard_String_Type (A_Type))
702 then
703 Proc_Id :=
704 Make_Defining_Identifier (Loc,
705 Chars => Make_Init_Proc_Name (A_Type));
707 -- If No_Default_Initialization restriction is active, then we don't
708 -- want to build an init_proc, but we need to mark that an init_proc
709 -- would be needed if this restriction was not active (so that we can
710 -- detect attempts to call it), so set a dummy init_proc in place.
711 -- This is only done though when actual default initialization is
712 -- needed (and not done when only Is_Public is True), since otherwise
713 -- objects such as arrays of scalars could be wrongly flagged as
714 -- violating the restriction.
716 if Restriction_Active (No_Default_Initialization) then
717 if Has_Default_Init then
718 Set_Init_Proc (A_Type, Proc_Id);
719 end if;
721 return;
722 end if;
724 Body_Stmts := Init_One_Dimension (1);
726 Discard_Node (
727 Make_Subprogram_Body (Loc,
728 Specification =>
729 Make_Procedure_Specification (Loc,
730 Defining_Unit_Name => Proc_Id,
731 Parameter_Specifications => Init_Formals (A_Type)),
732 Declarations => New_List,
733 Handled_Statement_Sequence =>
734 Make_Handled_Sequence_Of_Statements (Loc,
735 Statements => Body_Stmts)));
737 Set_Ekind (Proc_Id, E_Procedure);
738 Set_Is_Public (Proc_Id, Is_Public (A_Type));
739 Set_Is_Internal (Proc_Id);
740 Set_Has_Completion (Proc_Id);
742 if not Debug_Generated_Code then
743 Set_Debug_Info_Off (Proc_Id);
744 end if;
746 -- Set Inlined on Init_Proc if it is set on the Init_Proc of the
747 -- component type itself (see also Build_Record_Init_Proc).
749 Set_Is_Inlined (Proc_Id, Inline_Init_Proc (Comp_Type));
751 -- Associate Init_Proc with type, and determine if the procedure
752 -- is null (happens because of the Initialize_Scalars pragma case,
753 -- where we have to generate a null procedure in case it is called
754 -- by a client with Initialize_Scalars set). Such procedures have
755 -- to be generated, but do not have to be called, so we mark them
756 -- as null to suppress the call.
758 Set_Init_Proc (A_Type, Proc_Id);
760 if List_Length (Body_Stmts) = 1
762 -- We must skip SCIL nodes because they may have been added to this
763 -- list by Insert_Actions.
765 and then Nkind (First_Non_SCIL_Node (Body_Stmts)) = N_Null_Statement
766 then
767 Set_Is_Null_Init_Proc (Proc_Id);
769 else
770 -- Try to build a static aggregate to statically initialize
771 -- objects of the type. This can only be done for constrained
772 -- one-dimensional arrays with static bounds.
774 Set_Static_Initialization
775 (Proc_Id,
776 Build_Equivalent_Array_Aggregate (First_Subtype (A_Type)));
777 end if;
778 end if;
779 end Build_Array_Init_Proc;
781 --------------------------------
782 -- Build_Discr_Checking_Funcs --
783 --------------------------------
785 procedure Build_Discr_Checking_Funcs (N : Node_Id) is
786 Rec_Id : Entity_Id;
787 Loc : Source_Ptr;
788 Enclosing_Func_Id : Entity_Id;
789 Sequence : Nat := 1;
790 Type_Def : Node_Id;
791 V : Node_Id;
793 function Build_Case_Statement
794 (Case_Id : Entity_Id;
795 Variant : Node_Id) return Node_Id;
796 -- Build a case statement containing only two alternatives. The first
797 -- alternative corresponds exactly to the discrete choices given on the
798 -- variant with contains the components that we are generating the
799 -- checks for. If the discriminant is one of these return False. The
800 -- second alternative is an OTHERS choice that will return True
801 -- indicating the discriminant did not match.
803 function Build_Dcheck_Function
804 (Case_Id : Entity_Id;
805 Variant : Node_Id) return Entity_Id;
806 -- Build the discriminant checking function for a given variant
808 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
809 -- Builds the discriminant checking function for each variant of the
810 -- given variant part of the record type.
812 --------------------------
813 -- Build_Case_Statement --
814 --------------------------
816 function Build_Case_Statement
817 (Case_Id : Entity_Id;
818 Variant : Node_Id) return Node_Id
820 Alt_List : constant List_Id := New_List;
821 Actuals_List : List_Id;
822 Case_Node : Node_Id;
823 Case_Alt_Node : Node_Id;
824 Choice : Node_Id;
825 Choice_List : List_Id;
826 D : Entity_Id;
827 Return_Node : Node_Id;
829 begin
830 Case_Node := New_Node (N_Case_Statement, Loc);
832 -- Replace the discriminant which controls the variant with the name
833 -- of the formal of the checking function.
835 Set_Expression (Case_Node, Make_Identifier (Loc, Chars (Case_Id)));
837 Choice := First (Discrete_Choices (Variant));
839 if Nkind (Choice) = N_Others_Choice then
840 Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
841 else
842 Choice_List := New_Copy_List (Discrete_Choices (Variant));
843 end if;
845 if not Is_Empty_List (Choice_List) then
846 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
847 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
849 -- In case this is a nested variant, we need to return the result
850 -- of the discriminant checking function for the immediately
851 -- enclosing variant.
853 if Present (Enclosing_Func_Id) then
854 Actuals_List := New_List;
856 D := First_Discriminant (Rec_Id);
857 while Present (D) loop
858 Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
859 Next_Discriminant (D);
860 end loop;
862 Return_Node :=
863 Make_Simple_Return_Statement (Loc,
864 Expression =>
865 Make_Function_Call (Loc,
866 Name =>
867 New_Occurrence_Of (Enclosing_Func_Id, Loc),
868 Parameter_Associations =>
869 Actuals_List));
871 else
872 Return_Node :=
873 Make_Simple_Return_Statement (Loc,
874 Expression =>
875 New_Occurrence_Of (Standard_False, Loc));
876 end if;
878 Set_Statements (Case_Alt_Node, New_List (Return_Node));
879 Append (Case_Alt_Node, Alt_List);
880 end if;
882 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
883 Choice_List := New_List (New_Node (N_Others_Choice, Loc));
884 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
886 Return_Node :=
887 Make_Simple_Return_Statement (Loc,
888 Expression =>
889 New_Occurrence_Of (Standard_True, Loc));
891 Set_Statements (Case_Alt_Node, New_List (Return_Node));
892 Append (Case_Alt_Node, Alt_List);
894 Set_Alternatives (Case_Node, Alt_List);
895 return Case_Node;
896 end Build_Case_Statement;
898 ---------------------------
899 -- Build_Dcheck_Function --
900 ---------------------------
902 function Build_Dcheck_Function
903 (Case_Id : Entity_Id;
904 Variant : Node_Id) return Entity_Id
906 Body_Node : Node_Id;
907 Func_Id : Entity_Id;
908 Parameter_List : List_Id;
909 Spec_Node : Node_Id;
911 begin
912 Body_Node := New_Node (N_Subprogram_Body, Loc);
913 Sequence := Sequence + 1;
915 Func_Id :=
916 Make_Defining_Identifier (Loc,
917 Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
918 Set_Is_Discriminant_Check_Function (Func_Id);
920 Spec_Node := New_Node (N_Function_Specification, Loc);
921 Set_Defining_Unit_Name (Spec_Node, Func_Id);
923 Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
925 Set_Parameter_Specifications (Spec_Node, Parameter_List);
926 Set_Result_Definition (Spec_Node,
927 New_Occurrence_Of (Standard_Boolean, Loc));
928 Set_Specification (Body_Node, Spec_Node);
929 Set_Declarations (Body_Node, New_List);
931 Set_Handled_Statement_Sequence (Body_Node,
932 Make_Handled_Sequence_Of_Statements (Loc,
933 Statements => New_List (
934 Build_Case_Statement (Case_Id, Variant))));
936 Set_Ekind (Func_Id, E_Function);
937 Set_Mechanism (Func_Id, Default_Mechanism);
938 Set_Is_Inlined (Func_Id, True);
939 Set_Is_Pure (Func_Id, True);
940 Set_Is_Public (Func_Id, Is_Public (Rec_Id));
941 Set_Is_Internal (Func_Id, True);
943 if not Debug_Generated_Code then
944 Set_Debug_Info_Off (Func_Id);
945 end if;
947 Analyze (Body_Node);
949 Append_Freeze_Action (Rec_Id, Body_Node);
950 Set_Dcheck_Function (Variant, Func_Id);
951 return Func_Id;
952 end Build_Dcheck_Function;
954 ----------------------------
955 -- Build_Dcheck_Functions --
956 ----------------------------
958 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
959 Component_List_Node : Node_Id;
960 Decl : Entity_Id;
961 Discr_Name : Entity_Id;
962 Func_Id : Entity_Id;
963 Variant : Node_Id;
964 Saved_Enclosing_Func_Id : Entity_Id;
966 begin
967 -- Build the discriminant-checking function for each variant, and
968 -- label all components of that variant with the function's name.
969 -- We only Generate a discriminant-checking function when the
970 -- variant is not empty, to prevent the creation of dead code.
972 Discr_Name := Entity (Name (Variant_Part_Node));
973 Variant := First_Non_Pragma (Variants (Variant_Part_Node));
975 while Present (Variant) loop
976 Component_List_Node := Component_List (Variant);
978 if not Null_Present (Component_List_Node) then
979 Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
981 Decl :=
982 First_Non_Pragma (Component_Items (Component_List_Node));
983 while Present (Decl) loop
984 Set_Discriminant_Checking_Func
985 (Defining_Identifier (Decl), Func_Id);
986 Next_Non_Pragma (Decl);
987 end loop;
989 if Present (Variant_Part (Component_List_Node)) then
990 Saved_Enclosing_Func_Id := Enclosing_Func_Id;
991 Enclosing_Func_Id := Func_Id;
992 Build_Dcheck_Functions (Variant_Part (Component_List_Node));
993 Enclosing_Func_Id := Saved_Enclosing_Func_Id;
994 end if;
995 end if;
997 Next_Non_Pragma (Variant);
998 end loop;
999 end Build_Dcheck_Functions;
1001 -- Start of processing for Build_Discr_Checking_Funcs
1003 begin
1004 -- Only build if not done already
1006 if not Discr_Check_Funcs_Built (N) then
1007 Type_Def := Type_Definition (N);
1009 if Nkind (Type_Def) = N_Record_Definition then
1010 if No (Component_List (Type_Def)) then -- null record.
1011 return;
1012 else
1013 V := Variant_Part (Component_List (Type_Def));
1014 end if;
1016 else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
1017 if No (Component_List (Record_Extension_Part (Type_Def))) then
1018 return;
1019 else
1020 V := Variant_Part
1021 (Component_List (Record_Extension_Part (Type_Def)));
1022 end if;
1023 end if;
1025 Rec_Id := Defining_Identifier (N);
1027 if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
1028 Loc := Sloc (N);
1029 Enclosing_Func_Id := Empty;
1030 Build_Dcheck_Functions (V);
1031 end if;
1033 Set_Discr_Check_Funcs_Built (N);
1034 end if;
1035 end Build_Discr_Checking_Funcs;
1037 --------------------------------
1038 -- Build_Discriminant_Formals --
1039 --------------------------------
1041 function Build_Discriminant_Formals
1042 (Rec_Id : Entity_Id;
1043 Use_Dl : Boolean) return List_Id
1045 Loc : Source_Ptr := Sloc (Rec_Id);
1046 Parameter_List : constant List_Id := New_List;
1047 D : Entity_Id;
1048 Formal : Entity_Id;
1049 Formal_Type : Entity_Id;
1050 Param_Spec_Node : Node_Id;
1052 begin
1053 if Has_Discriminants (Rec_Id) then
1054 D := First_Discriminant (Rec_Id);
1055 while Present (D) loop
1056 Loc := Sloc (D);
1058 if Use_Dl then
1059 Formal := Discriminal (D);
1060 Formal_Type := Etype (Formal);
1061 else
1062 Formal := Make_Defining_Identifier (Loc, Chars (D));
1063 Formal_Type := Etype (D);
1064 end if;
1066 Param_Spec_Node :=
1067 Make_Parameter_Specification (Loc,
1068 Defining_Identifier => Formal,
1069 Parameter_Type =>
1070 New_Occurrence_Of (Formal_Type, Loc));
1071 Append (Param_Spec_Node, Parameter_List);
1072 Next_Discriminant (D);
1073 end loop;
1074 end if;
1076 return Parameter_List;
1077 end Build_Discriminant_Formals;
1079 --------------------------------------
1080 -- Build_Equivalent_Array_Aggregate --
1081 --------------------------------------
1083 function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id is
1084 Loc : constant Source_Ptr := Sloc (T);
1085 Comp_Type : constant Entity_Id := Component_Type (T);
1086 Index_Type : constant Entity_Id := Etype (First_Index (T));
1087 Proc : constant Entity_Id := Base_Init_Proc (T);
1088 Lo, Hi : Node_Id;
1089 Aggr : Node_Id;
1090 Expr : Node_Id;
1092 begin
1093 if not Is_Constrained (T)
1094 or else Number_Dimensions (T) > 1
1095 or else No (Proc)
1096 then
1097 Initialization_Warning (T);
1098 return Empty;
1099 end if;
1101 Lo := Type_Low_Bound (Index_Type);
1102 Hi := Type_High_Bound (Index_Type);
1104 if not Compile_Time_Known_Value (Lo)
1105 or else not Compile_Time_Known_Value (Hi)
1106 then
1107 Initialization_Warning (T);
1108 return Empty;
1109 end if;
1111 if Is_Record_Type (Comp_Type)
1112 and then Present (Base_Init_Proc (Comp_Type))
1113 then
1114 Expr := Static_Initialization (Base_Init_Proc (Comp_Type));
1116 if No (Expr) then
1117 Initialization_Warning (T);
1118 return Empty;
1119 end if;
1121 else
1122 Initialization_Warning (T);
1123 return Empty;
1124 end if;
1126 Aggr := Make_Aggregate (Loc, No_List, New_List);
1127 Set_Etype (Aggr, T);
1128 Set_Aggregate_Bounds (Aggr,
1129 Make_Range (Loc,
1130 Low_Bound => New_Copy (Lo),
1131 High_Bound => New_Copy (Hi)));
1132 Set_Parent (Aggr, Parent (Proc));
1134 Append_To (Component_Associations (Aggr),
1135 Make_Component_Association (Loc,
1136 Choices =>
1137 New_List (
1138 Make_Range (Loc,
1139 Low_Bound => New_Copy (Lo),
1140 High_Bound => New_Copy (Hi))),
1141 Expression => Expr));
1143 if Static_Array_Aggregate (Aggr) then
1144 return Aggr;
1145 else
1146 Initialization_Warning (T);
1147 return Empty;
1148 end if;
1149 end Build_Equivalent_Array_Aggregate;
1151 ---------------------------------------
1152 -- Build_Equivalent_Record_Aggregate --
1153 ---------------------------------------
1155 function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id is
1156 Agg : Node_Id;
1157 Comp : Entity_Id;
1158 Comp_Type : Entity_Id;
1160 -- Start of processing for Build_Equivalent_Record_Aggregate
1162 begin
1163 if not Is_Record_Type (T)
1164 or else Has_Discriminants (T)
1165 or else Is_Limited_Type (T)
1166 or else Has_Non_Standard_Rep (T)
1167 then
1168 Initialization_Warning (T);
1169 return Empty;
1170 end if;
1172 Comp := First_Component (T);
1174 -- A null record needs no warning
1176 if No (Comp) then
1177 return Empty;
1178 end if;
1180 while Present (Comp) loop
1182 -- Array components are acceptable if initialized by a positional
1183 -- aggregate with static components.
1185 if Is_Array_Type (Etype (Comp)) then
1186 Comp_Type := Component_Type (Etype (Comp));
1188 if Nkind (Parent (Comp)) /= N_Component_Declaration
1189 or else No (Expression (Parent (Comp)))
1190 or else Nkind (Expression (Parent (Comp))) /= N_Aggregate
1191 then
1192 Initialization_Warning (T);
1193 return Empty;
1195 elsif Is_Scalar_Type (Component_Type (Etype (Comp)))
1196 and then
1197 (not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
1198 or else
1199 not Compile_Time_Known_Value (Type_High_Bound (Comp_Type)))
1200 then
1201 Initialization_Warning (T);
1202 return Empty;
1204 elsif
1205 not Static_Array_Aggregate (Expression (Parent (Comp)))
1206 then
1207 Initialization_Warning (T);
1208 return Empty;
1209 end if;
1211 elsif Is_Scalar_Type (Etype (Comp)) then
1212 Comp_Type := Etype (Comp);
1214 if Nkind (Parent (Comp)) /= N_Component_Declaration
1215 or else No (Expression (Parent (Comp)))
1216 or else not Compile_Time_Known_Value (Expression (Parent (Comp)))
1217 or else not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
1218 or else not
1219 Compile_Time_Known_Value (Type_High_Bound (Comp_Type))
1220 then
1221 Initialization_Warning (T);
1222 return Empty;
1223 end if;
1225 -- For now, other types are excluded
1227 else
1228 Initialization_Warning (T);
1229 return Empty;
1230 end if;
1232 Next_Component (Comp);
1233 end loop;
1235 -- All components have static initialization. Build positional aggregate
1236 -- from the given expressions or defaults.
1238 Agg := Make_Aggregate (Sloc (T), New_List, New_List);
1239 Set_Parent (Agg, Parent (T));
1241 Comp := First_Component (T);
1242 while Present (Comp) loop
1243 Append
1244 (New_Copy_Tree (Expression (Parent (Comp))), Expressions (Agg));
1245 Next_Component (Comp);
1246 end loop;
1248 Analyze_And_Resolve (Agg, T);
1249 return Agg;
1250 end Build_Equivalent_Record_Aggregate;
1252 -------------------------------
1253 -- Build_Initialization_Call --
1254 -------------------------------
1256 -- References to a discriminant inside the record type declaration can
1257 -- appear either in the subtype_indication to constrain a record or an
1258 -- array, or as part of a larger expression given for the initial value
1259 -- of a component. In both of these cases N appears in the record
1260 -- initialization procedure and needs to be replaced by the formal
1261 -- parameter of the initialization procedure which corresponds to that
1262 -- discriminant.
1264 -- In the example below, references to discriminants D1 and D2 in proc_1
1265 -- are replaced by references to formals with the same name
1266 -- (discriminals)
1268 -- A similar replacement is done for calls to any record initialization
1269 -- procedure for any components that are themselves of a record type.
1271 -- type R (D1, D2 : Integer) is record
1272 -- X : Integer := F * D1;
1273 -- Y : Integer := F * D2;
1274 -- end record;
1276 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1277 -- begin
1278 -- Out_2.D1 := D1;
1279 -- Out_2.D2 := D2;
1280 -- Out_2.X := F * D1;
1281 -- Out_2.Y := F * D2;
1282 -- end;
1284 function Build_Initialization_Call
1285 (Loc : Source_Ptr;
1286 Id_Ref : Node_Id;
1287 Typ : Entity_Id;
1288 In_Init_Proc : Boolean := False;
1289 Enclos_Type : Entity_Id := Empty;
1290 Discr_Map : Elist_Id := New_Elmt_List;
1291 With_Default_Init : Boolean := False;
1292 Constructor_Ref : Node_Id := Empty) return List_Id
1294 Res : constant List_Id := New_List;
1296 Full_Type : Entity_Id;
1298 procedure Check_Predicated_Discriminant
1299 (Val : Node_Id;
1300 Discr : Entity_Id);
1301 -- Discriminants whose subtypes have predicates are checked in two
1302 -- cases:
1303 -- a) When an object is default-initialized and assertions are enabled
1304 -- we check that the value of the discriminant obeys the predicate.
1306 -- b) In all cases, if the discriminant controls a variant and the
1307 -- variant has no others_choice, Constraint_Error must be raised if
1308 -- the predicate is violated, because there is no variant covered
1309 -- by the illegal discriminant value.
1311 -----------------------------------
1312 -- Check_Predicated_Discriminant --
1313 -----------------------------------
1315 procedure Check_Predicated_Discriminant
1316 (Val : Node_Id;
1317 Discr : Entity_Id)
1319 Typ : constant Entity_Id := Etype (Discr);
1321 procedure Check_Missing_Others (V : Node_Id);
1322 -- ???
1324 --------------------------
1325 -- Check_Missing_Others --
1326 --------------------------
1328 procedure Check_Missing_Others (V : Node_Id) is
1329 Alt : Node_Id;
1330 Choice : Node_Id;
1331 Last_Var : Node_Id;
1333 begin
1334 Last_Var := Last_Non_Pragma (Variants (V));
1335 Choice := First (Discrete_Choices (Last_Var));
1337 -- An others_choice is added during expansion for gcc use, but
1338 -- does not cover the illegality.
1340 if Entity (Name (V)) = Discr then
1341 if Present (Choice)
1342 and then (Nkind (Choice) /= N_Others_Choice
1343 or else not Comes_From_Source (Choice))
1344 then
1345 Check_Expression_Against_Static_Predicate (Val, Typ);
1347 if not Is_Static_Expression (Val) then
1348 Prepend_To (Res,
1349 Make_Raise_Constraint_Error (Loc,
1350 Condition =>
1351 Make_Op_Not (Loc,
1352 Right_Opnd => Make_Predicate_Call (Typ, Val)),
1353 Reason => CE_Invalid_Data));
1354 end if;
1355 end if;
1356 end if;
1358 -- Check whether some nested variant is ruled by the predicated
1359 -- discriminant.
1361 Alt := First (Variants (V));
1362 while Present (Alt) loop
1363 if Nkind (Alt) = N_Variant
1364 and then Present (Variant_Part (Component_List (Alt)))
1365 then
1366 Check_Missing_Others
1367 (Variant_Part (Component_List (Alt)));
1368 end if;
1370 Next (Alt);
1371 end loop;
1372 end Check_Missing_Others;
1374 -- Local variables
1376 Def : Node_Id;
1378 -- Start of processing for Check_Predicated_Discriminant
1380 begin
1381 if Ekind (Base_Type (Full_Type)) = E_Record_Type then
1382 Def := Type_Definition (Parent (Base_Type (Full_Type)));
1383 else
1384 return;
1385 end if;
1387 if Policy_In_Effect (Name_Assert) = Name_Check
1388 and then not Predicates_Ignored (Etype (Discr))
1389 then
1390 Prepend_To (Res, Make_Predicate_Check (Typ, Val));
1391 end if;
1393 -- If discriminant controls a variant, verify that predicate is
1394 -- obeyed or else an Others_Choice is present.
1396 if Nkind (Def) = N_Record_Definition
1397 and then Present (Variant_Part (Component_List (Def)))
1398 and then Policy_In_Effect (Name_Assert) = Name_Ignore
1399 then
1400 Check_Missing_Others (Variant_Part (Component_List (Def)));
1401 end if;
1402 end Check_Predicated_Discriminant;
1404 -- Local variables
1406 Arg : Node_Id;
1407 Args : List_Id;
1408 Decls : List_Id;
1409 Decl : Node_Id;
1410 Discr : Entity_Id;
1411 First_Arg : Node_Id;
1412 Full_Init_Type : Entity_Id;
1413 Init_Call : Node_Id;
1414 Init_Type : Entity_Id;
1415 Proc : Entity_Id;
1417 -- Start of processing for Build_Initialization_Call
1419 begin
1420 pragma Assert (Constructor_Ref = Empty
1421 or else Is_CPP_Constructor_Call (Constructor_Ref));
1423 if No (Constructor_Ref) then
1424 Proc := Base_Init_Proc (Typ);
1425 else
1426 Proc := Base_Init_Proc (Typ, Entity (Name (Constructor_Ref)));
1427 end if;
1429 pragma Assert (Present (Proc));
1430 Init_Type := Etype (First_Formal (Proc));
1431 Full_Init_Type := Underlying_Type (Init_Type);
1433 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1434 -- is active (in which case we make the call anyway, since in the
1435 -- actual compiled client it may be non null).
1437 if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
1438 return Empty_List;
1440 -- Nothing to do for an array of controlled components that have only
1441 -- the inherited Initialize primitive. This is a useful optimization
1442 -- for CodePeer.
1444 elsif Is_Trivial_Subprogram (Proc)
1445 and then Is_Array_Type (Full_Init_Type)
1446 then
1447 return New_List (Make_Null_Statement (Loc));
1448 end if;
1450 -- Use the [underlying] full view when dealing with a private type. This
1451 -- may require several steps depending on derivations.
1453 Full_Type := Typ;
1454 loop
1455 if Is_Private_Type (Full_Type) then
1456 if Present (Full_View (Full_Type)) then
1457 Full_Type := Full_View (Full_Type);
1459 elsif Present (Underlying_Full_View (Full_Type)) then
1460 Full_Type := Underlying_Full_View (Full_Type);
1462 -- When a private type acts as a generic actual and lacks a full
1463 -- view, use the base type.
1465 elsif Is_Generic_Actual_Type (Full_Type) then
1466 Full_Type := Base_Type (Full_Type);
1468 elsif Ekind (Full_Type) = E_Private_Subtype
1469 and then (not Has_Discriminants (Full_Type)
1470 or else No (Discriminant_Constraint (Full_Type)))
1471 then
1472 Full_Type := Etype (Full_Type);
1474 -- The loop has recovered the [underlying] full view, stop the
1475 -- traversal.
1477 else
1478 exit;
1479 end if;
1481 -- The type is not private, nothing to do
1483 else
1484 exit;
1485 end if;
1486 end loop;
1488 -- If Typ is derived, the procedure is the initialization procedure for
1489 -- the root type. Wrap the argument in an conversion to make it type
1490 -- honest. Actually it isn't quite type honest, because there can be
1491 -- conflicts of views in the private type case. That is why we set
1492 -- Conversion_OK in the conversion node.
1494 if (Is_Record_Type (Typ)
1495 or else Is_Array_Type (Typ)
1496 or else Is_Private_Type (Typ))
1497 and then Init_Type /= Base_Type (Typ)
1498 then
1499 First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
1500 Set_Etype (First_Arg, Init_Type);
1502 else
1503 First_Arg := Id_Ref;
1504 end if;
1506 Args := New_List (Convert_Concurrent (First_Arg, Typ));
1508 -- In the tasks case, add _Master as the value of the _Master parameter
1509 -- and _Chain as the value of the _Chain parameter. At the outer level,
1510 -- these will be variables holding the corresponding values obtained
1511 -- from GNARL. At inner levels, they will be the parameters passed down
1512 -- through the outer routines.
1514 if Has_Task (Full_Type) then
1515 if Restriction_Active (No_Task_Hierarchy) then
1516 Append_To (Args,
1517 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
1518 else
1519 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1520 end if;
1522 -- Add _Chain (not done for sequential elaboration policy, see
1523 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1525 if Partition_Elaboration_Policy /= 'S' then
1526 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1527 end if;
1529 -- Ada 2005 (AI-287): In case of default initialized components
1530 -- with tasks, we generate a null string actual parameter.
1531 -- This is just a workaround that must be improved later???
1533 if With_Default_Init then
1534 Append_To (Args,
1535 Make_String_Literal (Loc,
1536 Strval => ""));
1538 else
1539 Decls :=
1540 Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type, In_Init_Proc);
1541 Decl := Last (Decls);
1543 Append_To (Args,
1544 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
1545 Append_List (Decls, Res);
1546 end if;
1548 else
1549 Decls := No_List;
1550 Decl := Empty;
1551 end if;
1553 -- Add discriminant values if discriminants are present
1555 if Has_Discriminants (Full_Init_Type) then
1556 Discr := First_Discriminant (Full_Init_Type);
1557 while Present (Discr) loop
1559 -- If this is a discriminated concurrent type, the init_proc
1560 -- for the corresponding record is being called. Use that type
1561 -- directly to find the discriminant value, to handle properly
1562 -- intervening renamed discriminants.
1564 declare
1565 T : Entity_Id := Full_Type;
1567 begin
1568 if Is_Protected_Type (T) then
1569 T := Corresponding_Record_Type (T);
1570 end if;
1572 Arg :=
1573 Get_Discriminant_Value (
1574 Discr,
1576 Discriminant_Constraint (Full_Type));
1577 end;
1579 -- If the target has access discriminants, and is constrained by
1580 -- an access to the enclosing construct, i.e. a current instance,
1581 -- replace the reference to the type by a reference to the object.
1583 if Nkind (Arg) = N_Attribute_Reference
1584 and then Is_Access_Type (Etype (Arg))
1585 and then Is_Entity_Name (Prefix (Arg))
1586 and then Is_Type (Entity (Prefix (Arg)))
1587 then
1588 Arg :=
1589 Make_Attribute_Reference (Loc,
1590 Prefix => New_Copy (Prefix (Id_Ref)),
1591 Attribute_Name => Name_Unrestricted_Access);
1593 elsif In_Init_Proc then
1595 -- Replace any possible references to the discriminant in the
1596 -- call to the record initialization procedure with references
1597 -- to the appropriate formal parameter.
1599 if Nkind (Arg) = N_Identifier
1600 and then Ekind (Entity (Arg)) = E_Discriminant
1601 then
1602 Arg := New_Occurrence_Of (Discriminal (Entity (Arg)), Loc);
1604 -- Otherwise make a copy of the default expression. Note that
1605 -- we use the current Sloc for this, because we do not want the
1606 -- call to appear to be at the declaration point. Within the
1607 -- expression, replace discriminants with their discriminals.
1609 else
1610 Arg :=
1611 New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
1612 end if;
1614 else
1615 if Is_Constrained (Full_Type) then
1616 Arg := Duplicate_Subexpr_No_Checks (Arg);
1617 else
1618 -- The constraints come from the discriminant default exps,
1619 -- they must be reevaluated, so we use New_Copy_Tree but we
1620 -- ensure the proper Sloc (for any embedded calls).
1621 -- In addition, if a predicate check is needed on the value
1622 -- of the discriminant, insert it ahead of the call.
1624 Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
1625 end if;
1627 if Has_Predicates (Etype (Discr)) then
1628 Check_Predicated_Discriminant (Arg, Discr);
1629 end if;
1630 end if;
1632 -- Ada 2005 (AI-287): In case of default initialized components,
1633 -- if the component is constrained with a discriminant of the
1634 -- enclosing type, we need to generate the corresponding selected
1635 -- component node to access the discriminant value. In other cases
1636 -- this is not required, either because we are inside the init
1637 -- proc and we use the corresponding formal, or else because the
1638 -- component is constrained by an expression.
1640 if With_Default_Init
1641 and then Nkind (Id_Ref) = N_Selected_Component
1642 and then Nkind (Arg) = N_Identifier
1643 and then Ekind (Entity (Arg)) = E_Discriminant
1644 then
1645 Append_To (Args,
1646 Make_Selected_Component (Loc,
1647 Prefix => New_Copy_Tree (Prefix (Id_Ref)),
1648 Selector_Name => Arg));
1649 else
1650 Append_To (Args, Arg);
1651 end if;
1653 Next_Discriminant (Discr);
1654 end loop;
1655 end if;
1657 -- If this is a call to initialize the parent component of a derived
1658 -- tagged type, indicate that the tag should not be set in the parent.
1660 if Is_Tagged_Type (Full_Init_Type)
1661 and then not Is_CPP_Class (Full_Init_Type)
1662 and then Nkind (Id_Ref) = N_Selected_Component
1663 and then Chars (Selector_Name (Id_Ref)) = Name_uParent
1664 then
1665 Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
1667 elsif Present (Constructor_Ref) then
1668 Append_List_To (Args,
1669 New_Copy_List (Parameter_Associations (Constructor_Ref)));
1670 end if;
1672 Append_To (Res,
1673 Make_Procedure_Call_Statement (Loc,
1674 Name => New_Occurrence_Of (Proc, Loc),
1675 Parameter_Associations => Args));
1677 if Needs_Finalization (Typ)
1678 and then Nkind (Id_Ref) = N_Selected_Component
1679 then
1680 if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
1681 Init_Call :=
1682 Make_Init_Call
1683 (Obj_Ref => New_Copy_Tree (First_Arg),
1684 Typ => Typ);
1686 -- Guard against a missing [Deep_]Initialize when the type was not
1687 -- properly frozen.
1689 if Present (Init_Call) then
1690 Append_To (Res, Init_Call);
1691 end if;
1692 end if;
1693 end if;
1695 return Res;
1697 exception
1698 when RE_Not_Available =>
1699 return Empty_List;
1700 end Build_Initialization_Call;
1702 ----------------------------
1703 -- Build_Record_Init_Proc --
1704 ----------------------------
1706 procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id) is
1707 Decls : constant List_Id := New_List;
1708 Discr_Map : constant Elist_Id := New_Elmt_List;
1709 Loc : constant Source_Ptr := Sloc (Rec_Ent);
1710 Counter : Nat := 0;
1711 Proc_Id : Entity_Id;
1712 Rec_Type : Entity_Id;
1713 Set_Tag : Entity_Id := Empty;
1715 function Build_Assignment
1716 (Id : Entity_Id;
1717 Default : Node_Id) return List_Id;
1718 -- Build an assignment statement that assigns the default expression to
1719 -- its corresponding record component if defined. The left-hand side of
1720 -- the assignment is marked Assignment_OK so that initialization of
1721 -- limited private records works correctly. This routine may also build
1722 -- an adjustment call if the component is controlled.
1724 procedure Build_Discriminant_Assignments (Statement_List : List_Id);
1725 -- If the record has discriminants, add assignment statements to
1726 -- Statement_List to initialize the discriminant values from the
1727 -- arguments of the initialization procedure.
1729 function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
1730 -- Build a list representing a sequence of statements which initialize
1731 -- components of the given component list. This may involve building
1732 -- case statements for the variant parts. Append any locally declared
1733 -- objects on list Decls.
1735 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
1736 -- Given an untagged type-derivation that declares discriminants, e.g.
1738 -- type R (R1, R2 : Integer) is record ... end record;
1739 -- type D (D1 : Integer) is new R (1, D1);
1741 -- we make the _init_proc of D be
1743 -- procedure _init_proc (X : D; D1 : Integer) is
1744 -- begin
1745 -- _init_proc (R (X), 1, D1);
1746 -- end _init_proc;
1748 -- This function builds the call statement in this _init_proc.
1750 procedure Build_CPP_Init_Procedure;
1751 -- Build the tree corresponding to the procedure specification and body
1752 -- of the IC procedure that initializes the C++ part of the dispatch
1753 -- table of an Ada tagged type that is a derivation of a CPP type.
1754 -- Install it as the CPP_Init TSS.
1756 procedure Build_Init_Procedure;
1757 -- Build the tree corresponding to the procedure specification and body
1758 -- of the initialization procedure and install it as the _init TSS.
1760 procedure Build_Offset_To_Top_Functions;
1761 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1762 -- and body of Offset_To_Top, a function used in conjuction with types
1763 -- having secondary dispatch tables.
1765 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
1766 -- Add range checks to components of discriminated records. S is a
1767 -- subtype indication of a record component. Check_List is a list
1768 -- to which the check actions are appended.
1770 function Component_Needs_Simple_Initialization
1771 (T : Entity_Id) return Boolean;
1772 -- Determine if a component needs simple initialization, given its type
1773 -- T. This routine is the same as Needs_Simple_Initialization except for
1774 -- components of type Tag and Interface_Tag. These two access types do
1775 -- not require initialization since they are explicitly initialized by
1776 -- other means.
1778 function Parent_Subtype_Renaming_Discrims return Boolean;
1779 -- Returns True for base types N that rename discriminants, else False
1781 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
1782 -- Determine whether a record initialization procedure needs to be
1783 -- generated for the given record type.
1785 ----------------------
1786 -- Build_Assignment --
1787 ----------------------
1789 function Build_Assignment
1790 (Id : Entity_Id;
1791 Default : Node_Id) return List_Id
1793 Default_Loc : constant Source_Ptr := Sloc (Default);
1794 Typ : constant Entity_Id := Underlying_Type (Etype (Id));
1796 Adj_Call : Node_Id;
1797 Exp : Node_Id := Default;
1798 Kind : Node_Kind := Nkind (Default);
1799 Lhs : Node_Id;
1800 Res : List_Id;
1802 function Replace_Discr_Ref (N : Node_Id) return Traverse_Result;
1803 -- Analysis of the aggregate has replaced discriminants by their
1804 -- corresponding discriminals, but these are irrelevant when the
1805 -- component has a mutable type and is initialized with an aggregate.
1806 -- Instead, they must be replaced by the values supplied in the
1807 -- aggregate, that will be assigned during the expansion of the
1808 -- assignment.
1810 -----------------------
1811 -- Replace_Discr_Ref --
1812 -----------------------
1814 function Replace_Discr_Ref (N : Node_Id) return Traverse_Result is
1815 Val : Node_Id;
1817 begin
1818 if Is_Entity_Name (N)
1819 and then Present (Entity (N))
1820 and then Is_Formal (Entity (N))
1821 and then Present (Discriminal_Link (Entity (N)))
1822 then
1823 Val :=
1824 Make_Selected_Component (Default_Loc,
1825 Prefix => New_Copy_Tree (Lhs),
1826 Selector_Name =>
1827 New_Occurrence_Of
1828 (Discriminal_Link (Entity (N)), Default_Loc));
1830 if Present (Val) then
1831 Rewrite (N, New_Copy_Tree (Val));
1832 end if;
1833 end if;
1835 return OK;
1836 end Replace_Discr_Ref;
1838 procedure Replace_Discriminant_References is
1839 new Traverse_Proc (Replace_Discr_Ref);
1841 -- Start of processing for Build_Assignment
1843 begin
1844 Lhs :=
1845 Make_Selected_Component (Default_Loc,
1846 Prefix => Make_Identifier (Loc, Name_uInit),
1847 Selector_Name => New_Occurrence_Of (Id, Default_Loc));
1848 Set_Assignment_OK (Lhs);
1850 if Nkind (Exp) = N_Aggregate
1851 and then Has_Discriminants (Typ)
1852 and then not Is_Constrained (Base_Type (Typ))
1853 then
1854 -- The aggregate may provide new values for the discriminants
1855 -- of the component, and other components may depend on those
1856 -- discriminants. Previous analysis of those expressions have
1857 -- replaced the discriminants by the formals of the initialization
1858 -- procedure for the type, but these are irrelevant in the
1859 -- enclosing initialization procedure: those discriminant
1860 -- references must be replaced by the values provided in the
1861 -- aggregate.
1863 Replace_Discriminant_References (Exp);
1864 end if;
1866 -- Case of an access attribute applied to the current instance.
1867 -- Replace the reference to the type by a reference to the actual
1868 -- object. (Note that this handles the case of the top level of
1869 -- the expression being given by such an attribute, but does not
1870 -- cover uses nested within an initial value expression. Nested
1871 -- uses are unlikely to occur in practice, but are theoretically
1872 -- possible.) It is not clear how to handle them without fully
1873 -- traversing the expression. ???
1875 if Kind = N_Attribute_Reference
1876 and then Nam_In (Attribute_Name (Default), Name_Unchecked_Access,
1877 Name_Unrestricted_Access)
1878 and then Is_Entity_Name (Prefix (Default))
1879 and then Is_Type (Entity (Prefix (Default)))
1880 and then Entity (Prefix (Default)) = Rec_Type
1881 then
1882 Exp :=
1883 Make_Attribute_Reference (Default_Loc,
1884 Prefix =>
1885 Make_Identifier (Default_Loc, Name_uInit),
1886 Attribute_Name => Name_Unrestricted_Access);
1887 end if;
1889 -- Take a copy of Exp to ensure that later copies of this component
1890 -- declaration in derived types see the original tree, not a node
1891 -- rewritten during expansion of the init_proc. If the copy contains
1892 -- itypes, the scope of the new itypes is the init_proc being built.
1894 Exp := New_Copy_Tree (Exp, New_Scope => Proc_Id);
1896 Res := New_List (
1897 Make_Assignment_Statement (Loc,
1898 Name => Lhs,
1899 Expression => Exp));
1901 Set_No_Ctrl_Actions (First (Res));
1903 -- Adjust the tag if tagged (because of possible view conversions).
1904 -- Suppress the tag adjustment when not Tagged_Type_Expansion because
1905 -- tags are represented implicitly in objects.
1907 if Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
1908 Append_To (Res,
1909 Make_Assignment_Statement (Default_Loc,
1910 Name =>
1911 Make_Selected_Component (Default_Loc,
1912 Prefix =>
1913 New_Copy_Tree (Lhs, New_Scope => Proc_Id),
1914 Selector_Name =>
1915 New_Occurrence_Of
1916 (First_Tag_Component (Typ), Default_Loc)),
1918 Expression =>
1919 Unchecked_Convert_To (RTE (RE_Tag),
1920 New_Occurrence_Of
1921 (Node (First_Elmt (Access_Disp_Table (Underlying_Type
1922 (Typ)))),
1923 Default_Loc))));
1924 end if;
1926 -- Adjust the component if controlled except if it is an aggregate
1927 -- that will be expanded inline.
1929 if Kind = N_Qualified_Expression then
1930 Kind := Nkind (Expression (Default));
1931 end if;
1933 if Needs_Finalization (Typ)
1934 and then not (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate))
1935 and then not Is_Build_In_Place_Function_Call (Exp)
1936 then
1937 Adj_Call :=
1938 Make_Adjust_Call
1939 (Obj_Ref => New_Copy_Tree (Lhs),
1940 Typ => Etype (Id));
1942 -- Guard against a missing [Deep_]Adjust when the component type
1943 -- was not properly frozen.
1945 if Present (Adj_Call) then
1946 Append_To (Res, Adj_Call);
1947 end if;
1948 end if;
1950 -- If a component type has a predicate, add check to the component
1951 -- assignment. Discriminants are handled at the point of the call,
1952 -- which provides for a better error message.
1954 if Comes_From_Source (Exp)
1955 and then Has_Predicates (Typ)
1956 and then not Predicate_Checks_Suppressed (Empty)
1957 and then not Predicates_Ignored (Typ)
1958 then
1959 Append (Make_Predicate_Check (Typ, Exp), Res);
1960 end if;
1962 return Res;
1964 exception
1965 when RE_Not_Available =>
1966 return Empty_List;
1967 end Build_Assignment;
1969 ------------------------------------
1970 -- Build_Discriminant_Assignments --
1971 ------------------------------------
1973 procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
1974 Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
1975 D : Entity_Id;
1976 D_Loc : Source_Ptr;
1978 begin
1979 if Has_Discriminants (Rec_Type)
1980 and then not Is_Unchecked_Union (Rec_Type)
1981 then
1982 D := First_Discriminant (Rec_Type);
1983 while Present (D) loop
1985 -- Don't generate the assignment for discriminants in derived
1986 -- tagged types if the discriminant is a renaming of some
1987 -- ancestor discriminant. This initialization will be done
1988 -- when initializing the _parent field of the derived record.
1990 if Is_Tagged
1991 and then Present (Corresponding_Discriminant (D))
1992 then
1993 null;
1995 else
1996 D_Loc := Sloc (D);
1997 Append_List_To (Statement_List,
1998 Build_Assignment (D,
1999 New_Occurrence_Of (Discriminal (D), D_Loc)));
2000 end if;
2002 Next_Discriminant (D);
2003 end loop;
2004 end if;
2005 end Build_Discriminant_Assignments;
2007 --------------------------
2008 -- Build_Init_Call_Thru --
2009 --------------------------
2011 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
2012 Parent_Proc : constant Entity_Id :=
2013 Base_Init_Proc (Etype (Rec_Type));
2015 Parent_Type : constant Entity_Id :=
2016 Etype (First_Formal (Parent_Proc));
2018 Uparent_Type : constant Entity_Id :=
2019 Underlying_Type (Parent_Type);
2021 First_Discr_Param : Node_Id;
2023 Arg : Node_Id;
2024 Args : List_Id;
2025 First_Arg : Node_Id;
2026 Parent_Discr : Entity_Id;
2027 Res : List_Id;
2029 begin
2030 -- First argument (_Init) is the object to be initialized.
2031 -- ??? not sure where to get a reasonable Loc for First_Arg
2033 First_Arg :=
2034 OK_Convert_To (Parent_Type,
2035 New_Occurrence_Of
2036 (Defining_Identifier (First (Parameters)), Loc));
2038 Set_Etype (First_Arg, Parent_Type);
2040 Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
2042 -- In the tasks case,
2043 -- add _Master as the value of the _Master parameter
2044 -- add _Chain as the value of the _Chain parameter.
2045 -- add _Task_Name as the value of the _Task_Name parameter.
2046 -- At the outer level, these will be variables holding the
2047 -- corresponding values obtained from GNARL or the expander.
2049 -- At inner levels, they will be the parameters passed down through
2050 -- the outer routines.
2052 First_Discr_Param := Next (First (Parameters));
2054 if Has_Task (Rec_Type) then
2055 if Restriction_Active (No_Task_Hierarchy) then
2056 Append_To (Args,
2057 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
2058 else
2059 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
2060 end if;
2062 -- Add _Chain (not done for sequential elaboration policy, see
2063 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
2065 if Partition_Elaboration_Policy /= 'S' then
2066 Append_To (Args, Make_Identifier (Loc, Name_uChain));
2067 end if;
2069 Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
2070 First_Discr_Param := Next (Next (Next (First_Discr_Param)));
2071 end if;
2073 -- Append discriminant values
2075 if Has_Discriminants (Uparent_Type) then
2076 pragma Assert (not Is_Tagged_Type (Uparent_Type));
2078 Parent_Discr := First_Discriminant (Uparent_Type);
2079 while Present (Parent_Discr) loop
2081 -- Get the initial value for this discriminant
2082 -- ??? needs to be cleaned up to use parent_Discr_Constr
2083 -- directly.
2085 declare
2086 Discr : Entity_Id :=
2087 First_Stored_Discriminant (Uparent_Type);
2089 Discr_Value : Elmt_Id :=
2090 First_Elmt (Stored_Constraint (Rec_Type));
2092 begin
2093 while Original_Record_Component (Parent_Discr) /= Discr loop
2094 Next_Stored_Discriminant (Discr);
2095 Next_Elmt (Discr_Value);
2096 end loop;
2098 Arg := Node (Discr_Value);
2099 end;
2101 -- Append it to the list
2103 if Nkind (Arg) = N_Identifier
2104 and then Ekind (Entity (Arg)) = E_Discriminant
2105 then
2106 Append_To (Args,
2107 New_Occurrence_Of (Discriminal (Entity (Arg)), Loc));
2109 -- Case of access discriminants. We replace the reference
2110 -- to the type by a reference to the actual object.
2112 -- Is above comment right??? Use of New_Copy below seems mighty
2113 -- suspicious ???
2115 else
2116 Append_To (Args, New_Copy (Arg));
2117 end if;
2119 Next_Discriminant (Parent_Discr);
2120 end loop;
2121 end if;
2123 Res :=
2124 New_List (
2125 Make_Procedure_Call_Statement (Loc,
2126 Name =>
2127 New_Occurrence_Of (Parent_Proc, Loc),
2128 Parameter_Associations => Args));
2130 return Res;
2131 end Build_Init_Call_Thru;
2133 -----------------------------------
2134 -- Build_Offset_To_Top_Functions --
2135 -----------------------------------
2137 procedure Build_Offset_To_Top_Functions is
2139 procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id);
2140 -- Generate:
2141 -- function Fxx (O : Address) return Storage_Offset is
2142 -- type Acc is access all <Typ>;
2143 -- begin
2144 -- return Acc!(O).Iface_Comp'Position;
2145 -- end Fxx;
2147 ----------------------------------
2148 -- Build_Offset_To_Top_Function --
2149 ----------------------------------
2151 procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id) is
2152 Body_Node : Node_Id;
2153 Func_Id : Entity_Id;
2154 Spec_Node : Node_Id;
2155 Acc_Type : Entity_Id;
2157 begin
2158 Func_Id := Make_Temporary (Loc, 'F');
2159 Set_DT_Offset_To_Top_Func (Iface_Comp, Func_Id);
2161 -- Generate
2162 -- function Fxx (O : in Rec_Typ) return Storage_Offset;
2164 Spec_Node := New_Node (N_Function_Specification, Loc);
2165 Set_Defining_Unit_Name (Spec_Node, Func_Id);
2166 Set_Parameter_Specifications (Spec_Node, New_List (
2167 Make_Parameter_Specification (Loc,
2168 Defining_Identifier =>
2169 Make_Defining_Identifier (Loc, Name_uO),
2170 In_Present => True,
2171 Parameter_Type =>
2172 New_Occurrence_Of (RTE (RE_Address), Loc))));
2173 Set_Result_Definition (Spec_Node,
2174 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
2176 -- Generate
2177 -- function Fxx (O : in Rec_Typ) return Storage_Offset is
2178 -- begin
2179 -- return -O.Iface_Comp'Position;
2180 -- end Fxx;
2182 Body_Node := New_Node (N_Subprogram_Body, Loc);
2183 Set_Specification (Body_Node, Spec_Node);
2185 Acc_Type := Make_Temporary (Loc, 'T');
2186 Set_Declarations (Body_Node, New_List (
2187 Make_Full_Type_Declaration (Loc,
2188 Defining_Identifier => Acc_Type,
2189 Type_Definition =>
2190 Make_Access_To_Object_Definition (Loc,
2191 All_Present => True,
2192 Null_Exclusion_Present => False,
2193 Constant_Present => False,
2194 Subtype_Indication =>
2195 New_Occurrence_Of (Rec_Type, Loc)))));
2197 Set_Handled_Statement_Sequence (Body_Node,
2198 Make_Handled_Sequence_Of_Statements (Loc,
2199 Statements => New_List (
2200 Make_Simple_Return_Statement (Loc,
2201 Expression =>
2202 Make_Op_Minus (Loc,
2203 Make_Attribute_Reference (Loc,
2204 Prefix =>
2205 Make_Selected_Component (Loc,
2206 Prefix =>
2207 Unchecked_Convert_To (Acc_Type,
2208 Make_Identifier (Loc, Name_uO)),
2209 Selector_Name =>
2210 New_Occurrence_Of (Iface_Comp, Loc)),
2211 Attribute_Name => Name_Position))))));
2213 Set_Ekind (Func_Id, E_Function);
2214 Set_Mechanism (Func_Id, Default_Mechanism);
2215 Set_Is_Internal (Func_Id, True);
2217 if not Debug_Generated_Code then
2218 Set_Debug_Info_Off (Func_Id);
2219 end if;
2221 Analyze (Body_Node);
2223 Append_Freeze_Action (Rec_Type, Body_Node);
2224 end Build_Offset_To_Top_Function;
2226 -- Local variables
2228 Iface_Comp : Node_Id;
2229 Iface_Comp_Elmt : Elmt_Id;
2230 Ifaces_Comp_List : Elist_Id;
2232 -- Start of processing for Build_Offset_To_Top_Functions
2234 begin
2235 -- Offset_To_Top_Functions are built only for derivations of types
2236 -- with discriminants that cover interface types.
2237 -- Nothing is needed either in case of virtual targets, since
2238 -- interfaces are handled directly by the target.
2240 if not Is_Tagged_Type (Rec_Type)
2241 or else Etype (Rec_Type) = Rec_Type
2242 or else not Has_Discriminants (Etype (Rec_Type))
2243 or else not Tagged_Type_Expansion
2244 then
2245 return;
2246 end if;
2248 Collect_Interface_Components (Rec_Type, Ifaces_Comp_List);
2250 -- For each interface type with secondary dispatch table we generate
2251 -- the Offset_To_Top_Functions (required to displace the pointer in
2252 -- interface conversions)
2254 Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
2255 while Present (Iface_Comp_Elmt) loop
2256 Iface_Comp := Node (Iface_Comp_Elmt);
2257 pragma Assert (Is_Interface (Related_Type (Iface_Comp)));
2259 -- If the interface is a parent of Rec_Type it shares the primary
2260 -- dispatch table and hence there is no need to build the function
2262 if not Is_Ancestor (Related_Type (Iface_Comp), Rec_Type,
2263 Use_Full_View => True)
2264 then
2265 Build_Offset_To_Top_Function (Iface_Comp);
2266 end if;
2268 Next_Elmt (Iface_Comp_Elmt);
2269 end loop;
2270 end Build_Offset_To_Top_Functions;
2272 ------------------------------
2273 -- Build_CPP_Init_Procedure --
2274 ------------------------------
2276 procedure Build_CPP_Init_Procedure is
2277 Body_Node : Node_Id;
2278 Body_Stmts : List_Id;
2279 Flag_Id : Entity_Id;
2280 Handled_Stmt_Node : Node_Id;
2281 Init_Tags_List : List_Id;
2282 Proc_Id : Entity_Id;
2283 Proc_Spec_Node : Node_Id;
2285 begin
2286 -- Check cases requiring no IC routine
2288 if not Is_CPP_Class (Root_Type (Rec_Type))
2289 or else Is_CPP_Class (Rec_Type)
2290 or else CPP_Num_Prims (Rec_Type) = 0
2291 or else not Tagged_Type_Expansion
2292 or else No_Run_Time_Mode
2293 then
2294 return;
2295 end if;
2297 -- Generate:
2299 -- Flag : Boolean := False;
2301 -- procedure Typ_IC is
2302 -- begin
2303 -- if not Flag then
2304 -- Copy C++ dispatch table slots from parent
2305 -- Update C++ slots of overridden primitives
2306 -- end if;
2307 -- end;
2309 Flag_Id := Make_Temporary (Loc, 'F');
2311 Append_Freeze_Action (Rec_Type,
2312 Make_Object_Declaration (Loc,
2313 Defining_Identifier => Flag_Id,
2314 Object_Definition =>
2315 New_Occurrence_Of (Standard_Boolean, Loc),
2316 Expression =>
2317 New_Occurrence_Of (Standard_True, Loc)));
2319 Body_Stmts := New_List;
2320 Body_Node := New_Node (N_Subprogram_Body, Loc);
2322 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
2324 Proc_Id :=
2325 Make_Defining_Identifier (Loc,
2326 Chars => Make_TSS_Name (Rec_Type, TSS_CPP_Init_Proc));
2328 Set_Ekind (Proc_Id, E_Procedure);
2329 Set_Is_Internal (Proc_Id);
2331 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
2333 Set_Parameter_Specifications (Proc_Spec_Node, New_List);
2334 Set_Specification (Body_Node, Proc_Spec_Node);
2335 Set_Declarations (Body_Node, New_List);
2337 Init_Tags_List := Build_Inherit_CPP_Prims (Rec_Type);
2339 Append_To (Init_Tags_List,
2340 Make_Assignment_Statement (Loc,
2341 Name =>
2342 New_Occurrence_Of (Flag_Id, Loc),
2343 Expression =>
2344 New_Occurrence_Of (Standard_False, Loc)));
2346 Append_To (Body_Stmts,
2347 Make_If_Statement (Loc,
2348 Condition => New_Occurrence_Of (Flag_Id, Loc),
2349 Then_Statements => Init_Tags_List));
2351 Handled_Stmt_Node :=
2352 New_Node (N_Handled_Sequence_Of_Statements, Loc);
2353 Set_Statements (Handled_Stmt_Node, Body_Stmts);
2354 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
2355 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
2357 if not Debug_Generated_Code then
2358 Set_Debug_Info_Off (Proc_Id);
2359 end if;
2361 -- Associate CPP_Init_Proc with type
2363 Set_Init_Proc (Rec_Type, Proc_Id);
2364 end Build_CPP_Init_Procedure;
2366 --------------------------
2367 -- Build_Init_Procedure --
2368 --------------------------
2370 procedure Build_Init_Procedure is
2371 Body_Stmts : List_Id;
2372 Body_Node : Node_Id;
2373 Handled_Stmt_Node : Node_Id;
2374 Init_Tags_List : List_Id;
2375 Parameters : List_Id;
2376 Proc_Spec_Node : Node_Id;
2377 Record_Extension_Node : Node_Id;
2379 begin
2380 Body_Stmts := New_List;
2381 Body_Node := New_Node (N_Subprogram_Body, Loc);
2382 Set_Ekind (Proc_Id, E_Procedure);
2384 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
2385 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
2387 Parameters := Init_Formals (Rec_Type);
2388 Append_List_To (Parameters,
2389 Build_Discriminant_Formals (Rec_Type, True));
2391 -- For tagged types, we add a flag to indicate whether the routine
2392 -- is called to initialize a parent component in the init_proc of
2393 -- a type extension. If the flag is false, we do not set the tag
2394 -- because it has been set already in the extension.
2396 if Is_Tagged_Type (Rec_Type) then
2397 Set_Tag := Make_Temporary (Loc, 'P');
2399 Append_To (Parameters,
2400 Make_Parameter_Specification (Loc,
2401 Defining_Identifier => Set_Tag,
2402 Parameter_Type =>
2403 New_Occurrence_Of (Standard_Boolean, Loc),
2404 Expression =>
2405 New_Occurrence_Of (Standard_True, Loc)));
2406 end if;
2408 Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
2409 Set_Specification (Body_Node, Proc_Spec_Node);
2410 Set_Declarations (Body_Node, Decls);
2412 -- N is a Derived_Type_Definition that renames the parameters of the
2413 -- ancestor type. We initialize it by expanding our discriminants and
2414 -- call the ancestor _init_proc with a type-converted object.
2416 if Parent_Subtype_Renaming_Discrims then
2417 Append_List_To (Body_Stmts, Build_Init_Call_Thru (Parameters));
2419 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
2420 Build_Discriminant_Assignments (Body_Stmts);
2422 if not Null_Present (Type_Definition (N)) then
2423 Append_List_To (Body_Stmts,
2424 Build_Init_Statements (Component_List (Type_Definition (N))));
2425 end if;
2427 -- N is a Derived_Type_Definition with a possible non-empty
2428 -- extension. The initialization of a type extension consists in the
2429 -- initialization of the components in the extension.
2431 else
2432 Build_Discriminant_Assignments (Body_Stmts);
2434 Record_Extension_Node :=
2435 Record_Extension_Part (Type_Definition (N));
2437 if not Null_Present (Record_Extension_Node) then
2438 declare
2439 Stmts : constant List_Id :=
2440 Build_Init_Statements (
2441 Component_List (Record_Extension_Node));
2443 begin
2444 -- The parent field must be initialized first because the
2445 -- offset of the new discriminants may depend on it. This is
2446 -- not needed if the parent is an interface type because in
2447 -- such case the initialization of the _parent field was not
2448 -- generated.
2450 if not Is_Interface (Etype (Rec_Ent)) then
2451 declare
2452 Parent_IP : constant Name_Id :=
2453 Make_Init_Proc_Name (Etype (Rec_Ent));
2454 Stmt : Node_Id;
2455 IP_Call : Node_Id;
2456 IP_Stmts : List_Id;
2458 begin
2459 -- Look for a call to the parent IP at the beginning
2460 -- of Stmts associated with the record extension
2462 Stmt := First (Stmts);
2463 IP_Call := Empty;
2464 while Present (Stmt) loop
2465 if Nkind (Stmt) = N_Procedure_Call_Statement
2466 and then Chars (Name (Stmt)) = Parent_IP
2467 then
2468 IP_Call := Stmt;
2469 exit;
2470 end if;
2472 Next (Stmt);
2473 end loop;
2475 -- If found then move it to the beginning of the
2476 -- statements of this IP routine
2478 if Present (IP_Call) then
2479 IP_Stmts := New_List;
2480 loop
2481 Stmt := Remove_Head (Stmts);
2482 Append_To (IP_Stmts, Stmt);
2483 exit when Stmt = IP_Call;
2484 end loop;
2486 Prepend_List_To (Body_Stmts, IP_Stmts);
2487 end if;
2488 end;
2489 end if;
2491 Append_List_To (Body_Stmts, Stmts);
2492 end;
2493 end if;
2494 end if;
2496 -- Add here the assignment to instantiate the Tag
2498 -- The assignment corresponds to the code:
2500 -- _Init._Tag := Typ'Tag;
2502 -- Suppress the tag assignment when not Tagged_Type_Expansion because
2503 -- tags are represented implicitly in objects. It is also suppressed
2504 -- in case of CPP_Class types because in this case the tag is
2505 -- initialized in the C++ side.
2507 if Is_Tagged_Type (Rec_Type)
2508 and then Tagged_Type_Expansion
2509 and then not No_Run_Time_Mode
2510 then
2511 -- Case 1: Ada tagged types with no CPP ancestor. Set the tags of
2512 -- the actual object and invoke the IP of the parent (in this
2513 -- order). The tag must be initialized before the call to the IP
2514 -- of the parent and the assignments to other components because
2515 -- the initial value of the components may depend on the tag (eg.
2516 -- through a dispatching operation on an access to the current
2517 -- type). The tag assignment is not done when initializing the
2518 -- parent component of a type extension, because in that case the
2519 -- tag is set in the extension.
2521 if not Is_CPP_Class (Root_Type (Rec_Type)) then
2523 -- Initialize the primary tag component
2525 Init_Tags_List := New_List (
2526 Make_Assignment_Statement (Loc,
2527 Name =>
2528 Make_Selected_Component (Loc,
2529 Prefix => Make_Identifier (Loc, Name_uInit),
2530 Selector_Name =>
2531 New_Occurrence_Of
2532 (First_Tag_Component (Rec_Type), Loc)),
2533 Expression =>
2534 New_Occurrence_Of
2535 (Node
2536 (First_Elmt (Access_Disp_Table (Rec_Type))), Loc)));
2538 -- Ada 2005 (AI-251): Initialize the secondary tags components
2539 -- located at fixed positions (tags whose position depends on
2540 -- variable size components are initialized later ---see below)
2542 if Ada_Version >= Ada_2005
2543 and then not Is_Interface (Rec_Type)
2544 and then Has_Interfaces (Rec_Type)
2545 then
2546 declare
2547 Elab_Sec_DT_Stmts_List : constant List_Id := New_List;
2548 Elab_List : List_Id := New_List;
2550 begin
2551 Init_Secondary_Tags
2552 (Typ => Rec_Type,
2553 Target => Make_Identifier (Loc, Name_uInit),
2554 Init_Tags_List => Init_Tags_List,
2555 Stmts_List => Elab_Sec_DT_Stmts_List,
2556 Fixed_Comps => True,
2557 Variable_Comps => False);
2559 Elab_List := New_List (
2560 Make_If_Statement (Loc,
2561 Condition => New_Occurrence_Of (Set_Tag, Loc),
2562 Then_Statements => Init_Tags_List));
2564 if Elab_Flag_Needed (Rec_Type) then
2565 Append_To (Elab_Sec_DT_Stmts_List,
2566 Make_Assignment_Statement (Loc,
2567 Name =>
2568 New_Occurrence_Of
2569 (Access_Disp_Table_Elab_Flag (Rec_Type),
2570 Loc),
2571 Expression =>
2572 New_Occurrence_Of (Standard_False, Loc)));
2574 Append_To (Elab_List,
2575 Make_If_Statement (Loc,
2576 Condition =>
2577 New_Occurrence_Of
2578 (Access_Disp_Table_Elab_Flag (Rec_Type), Loc),
2579 Then_Statements => Elab_Sec_DT_Stmts_List));
2580 end if;
2582 Prepend_List_To (Body_Stmts, Elab_List);
2583 end;
2584 else
2585 Prepend_To (Body_Stmts,
2586 Make_If_Statement (Loc,
2587 Condition => New_Occurrence_Of (Set_Tag, Loc),
2588 Then_Statements => Init_Tags_List));
2589 end if;
2591 -- Case 2: CPP type. The imported C++ constructor takes care of
2592 -- tags initialization. No action needed here because the IP
2593 -- is built by Set_CPP_Constructors; in this case the IP is a
2594 -- wrapper that invokes the C++ constructor and copies the C++
2595 -- tags locally. Done to inherit the C++ slots in Ada derivations
2596 -- (see case 3).
2598 elsif Is_CPP_Class (Rec_Type) then
2599 pragma Assert (False);
2600 null;
2602 -- Case 3: Combined hierarchy containing C++ types and Ada tagged
2603 -- type derivations. Derivations of imported C++ classes add a
2604 -- complication, because we cannot inhibit tag setting in the
2605 -- constructor for the parent. Hence we initialize the tag after
2606 -- the call to the parent IP (that is, in reverse order compared
2607 -- with pure Ada hierarchies ---see comment on case 1).
2609 else
2610 -- Initialize the primary tag
2612 Init_Tags_List := New_List (
2613 Make_Assignment_Statement (Loc,
2614 Name =>
2615 Make_Selected_Component (Loc,
2616 Prefix => Make_Identifier (Loc, Name_uInit),
2617 Selector_Name =>
2618 New_Occurrence_Of
2619 (First_Tag_Component (Rec_Type), Loc)),
2620 Expression =>
2621 New_Occurrence_Of
2622 (Node
2623 (First_Elmt (Access_Disp_Table (Rec_Type))), Loc)));
2625 -- Ada 2005 (AI-251): Initialize the secondary tags components
2626 -- located at fixed positions (tags whose position depends on
2627 -- variable size components are initialized later ---see below)
2629 if Ada_Version >= Ada_2005
2630 and then not Is_Interface (Rec_Type)
2631 and then Has_Interfaces (Rec_Type)
2632 then
2633 Init_Secondary_Tags
2634 (Typ => Rec_Type,
2635 Target => Make_Identifier (Loc, Name_uInit),
2636 Init_Tags_List => Init_Tags_List,
2637 Stmts_List => Init_Tags_List,
2638 Fixed_Comps => True,
2639 Variable_Comps => False);
2640 end if;
2642 -- Initialize the tag component after invocation of parent IP.
2644 -- Generate:
2645 -- parent_IP(_init.parent); // Invokes the C++ constructor
2646 -- [ typIC; ] // Inherit C++ slots from parent
2647 -- init_tags
2649 declare
2650 Ins_Nod : Node_Id;
2652 begin
2653 -- Search for the call to the IP of the parent. We assume
2654 -- that the first init_proc call is for the parent.
2656 Ins_Nod := First (Body_Stmts);
2657 while Present (Next (Ins_Nod))
2658 and then (Nkind (Ins_Nod) /= N_Procedure_Call_Statement
2659 or else not Is_Init_Proc (Name (Ins_Nod)))
2660 loop
2661 Next (Ins_Nod);
2662 end loop;
2664 -- The IC routine copies the inherited slots of the C+ part
2665 -- of the dispatch table from the parent and updates the
2666 -- overridden C++ slots.
2668 if CPP_Num_Prims (Rec_Type) > 0 then
2669 declare
2670 Init_DT : Entity_Id;
2671 New_Nod : Node_Id;
2673 begin
2674 Init_DT := CPP_Init_Proc (Rec_Type);
2675 pragma Assert (Present (Init_DT));
2677 New_Nod :=
2678 Make_Procedure_Call_Statement (Loc,
2679 New_Occurrence_Of (Init_DT, Loc));
2680 Insert_After (Ins_Nod, New_Nod);
2682 -- Update location of init tag statements
2684 Ins_Nod := New_Nod;
2685 end;
2686 end if;
2688 Insert_List_After (Ins_Nod, Init_Tags_List);
2689 end;
2690 end if;
2692 -- Ada 2005 (AI-251): Initialize the secondary tag components
2693 -- located at variable positions. We delay the generation of this
2694 -- code until here because the value of the attribute 'Position
2695 -- applied to variable size components of the parent type that
2696 -- depend on discriminants is only safely read at runtime after
2697 -- the parent components have been initialized.
2699 if Ada_Version >= Ada_2005
2700 and then not Is_Interface (Rec_Type)
2701 and then Has_Interfaces (Rec_Type)
2702 and then Has_Discriminants (Etype (Rec_Type))
2703 and then Is_Variable_Size_Record (Etype (Rec_Type))
2704 then
2705 Init_Tags_List := New_List;
2707 Init_Secondary_Tags
2708 (Typ => Rec_Type,
2709 Target => Make_Identifier (Loc, Name_uInit),
2710 Init_Tags_List => Init_Tags_List,
2711 Stmts_List => Init_Tags_List,
2712 Fixed_Comps => False,
2713 Variable_Comps => True);
2715 if Is_Non_Empty_List (Init_Tags_List) then
2716 Append_List_To (Body_Stmts, Init_Tags_List);
2717 end if;
2718 end if;
2719 end if;
2721 Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
2722 Set_Statements (Handled_Stmt_Node, Body_Stmts);
2724 -- Generate:
2725 -- Deep_Finalize (_init, C1, ..., CN);
2726 -- raise;
2728 if Counter > 0
2729 and then Needs_Finalization (Rec_Type)
2730 and then not Is_Abstract_Type (Rec_Type)
2731 and then not Restriction_Active (No_Exception_Propagation)
2732 then
2733 declare
2734 DF_Call : Node_Id;
2735 DF_Id : Entity_Id;
2737 begin
2738 -- Create a local version of Deep_Finalize which has indication
2739 -- of partial initialization state.
2741 DF_Id :=
2742 Make_Defining_Identifier (Loc,
2743 Chars => New_External_Name (Name_uFinalizer));
2745 Append_To (Decls, Make_Local_Deep_Finalize (Rec_Type, DF_Id));
2747 DF_Call :=
2748 Make_Procedure_Call_Statement (Loc,
2749 Name => New_Occurrence_Of (DF_Id, Loc),
2750 Parameter_Associations => New_List (
2751 Make_Identifier (Loc, Name_uInit),
2752 New_Occurrence_Of (Standard_False, Loc)));
2754 -- Do not emit warnings related to the elaboration order when a
2755 -- controlled object is declared before the body of Finalize is
2756 -- seen.
2758 if Legacy_Elaboration_Checks then
2759 Set_No_Elaboration_Check (DF_Call);
2760 end if;
2762 Set_Exception_Handlers (Handled_Stmt_Node, New_List (
2763 Make_Exception_Handler (Loc,
2764 Exception_Choices => New_List (
2765 Make_Others_Choice (Loc)),
2766 Statements => New_List (
2767 DF_Call,
2768 Make_Raise_Statement (Loc)))));
2769 end;
2770 else
2771 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
2772 end if;
2774 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
2776 if not Debug_Generated_Code then
2777 Set_Debug_Info_Off (Proc_Id);
2778 end if;
2780 -- Associate Init_Proc with type, and determine if the procedure
2781 -- is null (happens because of the Initialize_Scalars pragma case,
2782 -- where we have to generate a null procedure in case it is called
2783 -- by a client with Initialize_Scalars set). Such procedures have
2784 -- to be generated, but do not have to be called, so we mark them
2785 -- as null to suppress the call.
2787 Set_Init_Proc (Rec_Type, Proc_Id);
2789 if List_Length (Body_Stmts) = 1
2791 -- We must skip SCIL nodes because they may have been added to this
2792 -- list by Insert_Actions.
2794 and then Nkind (First_Non_SCIL_Node (Body_Stmts)) = N_Null_Statement
2795 then
2796 Set_Is_Null_Init_Proc (Proc_Id);
2797 end if;
2798 end Build_Init_Procedure;
2800 ---------------------------
2801 -- Build_Init_Statements --
2802 ---------------------------
2804 function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
2805 Checks : constant List_Id := New_List;
2806 Actions : List_Id := No_List;
2807 Counter_Id : Entity_Id := Empty;
2808 Comp_Loc : Source_Ptr;
2809 Decl : Node_Id;
2810 Has_POC : Boolean;
2811 Id : Entity_Id;
2812 Parent_Stmts : List_Id;
2813 Stmts : List_Id;
2814 Typ : Entity_Id;
2816 procedure Increment_Counter (Loc : Source_Ptr);
2817 -- Generate an "increment by one" statement for the current counter
2818 -- and append it to the list Stmts.
2820 procedure Make_Counter (Loc : Source_Ptr);
2821 -- Create a new counter for the current component list. The routine
2822 -- creates a new defining Id, adds an object declaration and sets
2823 -- the Id generator for the next variant.
2825 -----------------------
2826 -- Increment_Counter --
2827 -----------------------
2829 procedure Increment_Counter (Loc : Source_Ptr) is
2830 begin
2831 -- Generate:
2832 -- Counter := Counter + 1;
2834 Append_To (Stmts,
2835 Make_Assignment_Statement (Loc,
2836 Name => New_Occurrence_Of (Counter_Id, Loc),
2837 Expression =>
2838 Make_Op_Add (Loc,
2839 Left_Opnd => New_Occurrence_Of (Counter_Id, Loc),
2840 Right_Opnd => Make_Integer_Literal (Loc, 1))));
2841 end Increment_Counter;
2843 ------------------
2844 -- Make_Counter --
2845 ------------------
2847 procedure Make_Counter (Loc : Source_Ptr) is
2848 begin
2849 -- Increment the Id generator
2851 Counter := Counter + 1;
2853 -- Create the entity and declaration
2855 Counter_Id :=
2856 Make_Defining_Identifier (Loc,
2857 Chars => New_External_Name ('C', Counter));
2859 -- Generate:
2860 -- Cnn : Integer := 0;
2862 Append_To (Decls,
2863 Make_Object_Declaration (Loc,
2864 Defining_Identifier => Counter_Id,
2865 Object_Definition =>
2866 New_Occurrence_Of (Standard_Integer, Loc),
2867 Expression =>
2868 Make_Integer_Literal (Loc, 0)));
2869 end Make_Counter;
2871 -- Start of processing for Build_Init_Statements
2873 begin
2874 if Null_Present (Comp_List) then
2875 return New_List (Make_Null_Statement (Loc));
2876 end if;
2878 Parent_Stmts := New_List;
2879 Stmts := New_List;
2881 -- Loop through visible declarations of task types and protected
2882 -- types moving any expanded code from the spec to the body of the
2883 -- init procedure.
2885 if Is_Task_Record_Type (Rec_Type)
2886 or else Is_Protected_Record_Type (Rec_Type)
2887 then
2888 declare
2889 Decl : constant Node_Id :=
2890 Parent (Corresponding_Concurrent_Type (Rec_Type));
2891 Def : Node_Id;
2892 N1 : Node_Id;
2893 N2 : Node_Id;
2895 begin
2896 if Is_Task_Record_Type (Rec_Type) then
2897 Def := Task_Definition (Decl);
2898 else
2899 Def := Protected_Definition (Decl);
2900 end if;
2902 if Present (Def) then
2903 N1 := First (Visible_Declarations (Def));
2904 while Present (N1) loop
2905 N2 := N1;
2906 N1 := Next (N1);
2908 if Nkind (N2) in N_Statement_Other_Than_Procedure_Call
2909 or else Nkind (N2) in N_Raise_xxx_Error
2910 or else Nkind (N2) = N_Procedure_Call_Statement
2911 then
2912 Append_To (Stmts,
2913 New_Copy_Tree (N2, New_Scope => Proc_Id));
2914 Rewrite (N2, Make_Null_Statement (Sloc (N2)));
2915 Analyze (N2);
2916 end if;
2917 end loop;
2918 end if;
2919 end;
2920 end if;
2922 -- Loop through components, skipping pragmas, in 2 steps. The first
2923 -- step deals with regular components. The second step deals with
2924 -- components that have per object constraints and no explicit
2925 -- initialization.
2927 Has_POC := False;
2929 -- First pass : regular components
2931 Decl := First_Non_Pragma (Component_Items (Comp_List));
2932 while Present (Decl) loop
2933 Comp_Loc := Sloc (Decl);
2934 Build_Record_Checks
2935 (Subtype_Indication (Component_Definition (Decl)), Checks);
2937 Id := Defining_Identifier (Decl);
2938 Typ := Etype (Id);
2940 -- Leave any processing of per-object constrained component for
2941 -- the second pass.
2943 if Has_Access_Constraint (Id) and then No (Expression (Decl)) then
2944 Has_POC := True;
2946 -- Regular component cases
2948 else
2949 -- In the context of the init proc, references to discriminants
2950 -- resolve to denote the discriminals: this is where we can
2951 -- freeze discriminant dependent component subtypes.
2953 if not Is_Frozen (Typ) then
2954 Append_List_To (Stmts, Freeze_Entity (Typ, N));
2955 end if;
2957 -- Explicit initialization
2959 if Present (Expression (Decl)) then
2960 if Is_CPP_Constructor_Call (Expression (Decl)) then
2961 Actions :=
2962 Build_Initialization_Call
2963 (Comp_Loc,
2964 Id_Ref =>
2965 Make_Selected_Component (Comp_Loc,
2966 Prefix =>
2967 Make_Identifier (Comp_Loc, Name_uInit),
2968 Selector_Name =>
2969 New_Occurrence_Of (Id, Comp_Loc)),
2970 Typ => Typ,
2971 In_Init_Proc => True,
2972 Enclos_Type => Rec_Type,
2973 Discr_Map => Discr_Map,
2974 Constructor_Ref => Expression (Decl));
2975 else
2976 Actions := Build_Assignment (Id, Expression (Decl));
2977 end if;
2979 -- CPU, Dispatching_Domain, Priority, and Secondary_Stack_Size
2980 -- components are filled in with the corresponding rep-item
2981 -- expression of the concurrent type (if any).
2983 elsif Ekind (Scope (Id)) = E_Record_Type
2984 and then Present (Corresponding_Concurrent_Type (Scope (Id)))
2985 and then Nam_In (Chars (Id), Name_uCPU,
2986 Name_uDispatching_Domain,
2987 Name_uPriority,
2988 Name_uSecondary_Stack_Size)
2989 then
2990 declare
2991 Exp : Node_Id;
2992 Nam : Name_Id;
2993 pragma Warnings (Off, Nam);
2994 Ritem : Node_Id;
2996 begin
2997 if Chars (Id) = Name_uCPU then
2998 Nam := Name_CPU;
3000 elsif Chars (Id) = Name_uDispatching_Domain then
3001 Nam := Name_Dispatching_Domain;
3003 elsif Chars (Id) = Name_uPriority then
3004 Nam := Name_Priority;
3006 elsif Chars (Id) = Name_uSecondary_Stack_Size then
3007 Nam := Name_Secondary_Stack_Size;
3008 end if;
3010 -- Get the Rep Item (aspect specification, attribute
3011 -- definition clause or pragma) of the corresponding
3012 -- concurrent type.
3014 Ritem :=
3015 Get_Rep_Item
3016 (Corresponding_Concurrent_Type (Scope (Id)),
3017 Nam,
3018 Check_Parents => False);
3020 if Present (Ritem) then
3022 -- Pragma case
3024 if Nkind (Ritem) = N_Pragma then
3025 Exp := First (Pragma_Argument_Associations (Ritem));
3027 if Nkind (Exp) = N_Pragma_Argument_Association then
3028 Exp := Expression (Exp);
3029 end if;
3031 -- Conversion for Priority expression
3033 if Nam = Name_Priority then
3034 if Pragma_Name (Ritem) = Name_Priority
3035 and then not GNAT_Mode
3036 then
3037 Exp := Convert_To (RTE (RE_Priority), Exp);
3038 else
3039 Exp :=
3040 Convert_To (RTE (RE_Any_Priority), Exp);
3041 end if;
3042 end if;
3044 -- Aspect/Attribute definition clause case
3046 else
3047 Exp := Expression (Ritem);
3049 -- Conversion for Priority expression
3051 if Nam = Name_Priority then
3052 if Chars (Ritem) = Name_Priority
3053 and then not GNAT_Mode
3054 then
3055 Exp := Convert_To (RTE (RE_Priority), Exp);
3056 else
3057 Exp :=
3058 Convert_To (RTE (RE_Any_Priority), Exp);
3059 end if;
3060 end if;
3061 end if;
3063 -- Conversion for Dispatching_Domain value
3065 if Nam = Name_Dispatching_Domain then
3066 Exp :=
3067 Unchecked_Convert_To
3068 (RTE (RE_Dispatching_Domain_Access), Exp);
3070 -- Conversion for Secondary_Stack_Size value
3072 elsif Nam = Name_Secondary_Stack_Size then
3073 Exp := Convert_To (RTE (RE_Size_Type), Exp);
3074 end if;
3076 Actions := Build_Assignment (Id, Exp);
3078 -- Nothing needed if no Rep Item
3080 else
3081 Actions := No_List;
3082 end if;
3083 end;
3085 -- Composite component with its own Init_Proc
3087 elsif not Is_Interface (Typ)
3088 and then Has_Non_Null_Base_Init_Proc (Typ)
3089 then
3090 Actions :=
3091 Build_Initialization_Call
3092 (Comp_Loc,
3093 Make_Selected_Component (Comp_Loc,
3094 Prefix =>
3095 Make_Identifier (Comp_Loc, Name_uInit),
3096 Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
3097 Typ,
3098 In_Init_Proc => True,
3099 Enclos_Type => Rec_Type,
3100 Discr_Map => Discr_Map);
3102 Clean_Task_Names (Typ, Proc_Id);
3104 -- Simple initialization
3106 elsif Component_Needs_Simple_Initialization (Typ) then
3107 Actions :=
3108 Build_Assignment
3109 (Id, Get_Simple_Init_Val (Typ, N, Esize (Id)));
3111 -- Nothing needed for this case
3113 else
3114 Actions := No_List;
3115 end if;
3117 if Present (Checks) then
3118 if Chars (Id) = Name_uParent then
3119 Append_List_To (Parent_Stmts, Checks);
3120 else
3121 Append_List_To (Stmts, Checks);
3122 end if;
3123 end if;
3125 if Present (Actions) then
3126 if Chars (Id) = Name_uParent then
3127 Append_List_To (Parent_Stmts, Actions);
3129 else
3130 Append_List_To (Stmts, Actions);
3132 -- Preserve initialization state in the current counter
3134 if Needs_Finalization (Typ) then
3135 if No (Counter_Id) then
3136 Make_Counter (Comp_Loc);
3137 end if;
3139 Increment_Counter (Comp_Loc);
3140 end if;
3141 end if;
3142 end if;
3143 end if;
3145 Next_Non_Pragma (Decl);
3146 end loop;
3148 -- The parent field must be initialized first because variable
3149 -- size components of the parent affect the location of all the
3150 -- new components.
3152 Prepend_List_To (Stmts, Parent_Stmts);
3154 -- Set up tasks and protected object support. This needs to be done
3155 -- before any component with a per-object access discriminant
3156 -- constraint, or any variant part (which may contain such
3157 -- components) is initialized, because the initialization of these
3158 -- components may reference the enclosing concurrent object.
3160 -- For a task record type, add the task create call and calls to bind
3161 -- any interrupt (signal) entries.
3163 if Is_Task_Record_Type (Rec_Type) then
3165 -- In the case of the restricted run time the ATCB has already
3166 -- been preallocated.
3168 if Restricted_Profile then
3169 Append_To (Stmts,
3170 Make_Assignment_Statement (Loc,
3171 Name =>
3172 Make_Selected_Component (Loc,
3173 Prefix => Make_Identifier (Loc, Name_uInit),
3174 Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
3175 Expression =>
3176 Make_Attribute_Reference (Loc,
3177 Prefix =>
3178 Make_Selected_Component (Loc,
3179 Prefix => Make_Identifier (Loc, Name_uInit),
3180 Selector_Name => Make_Identifier (Loc, Name_uATCB)),
3181 Attribute_Name => Name_Unchecked_Access)));
3182 end if;
3184 Append_To (Stmts, Make_Task_Create_Call (Rec_Type));
3186 declare
3187 Task_Type : constant Entity_Id :=
3188 Corresponding_Concurrent_Type (Rec_Type);
3189 Task_Decl : constant Node_Id := Parent (Task_Type);
3190 Task_Def : constant Node_Id := Task_Definition (Task_Decl);
3191 Decl_Loc : Source_Ptr;
3192 Ent : Entity_Id;
3193 Vis_Decl : Node_Id;
3195 begin
3196 if Present (Task_Def) then
3197 Vis_Decl := First (Visible_Declarations (Task_Def));
3198 while Present (Vis_Decl) loop
3199 Decl_Loc := Sloc (Vis_Decl);
3201 if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
3202 if Get_Attribute_Id (Chars (Vis_Decl)) =
3203 Attribute_Address
3204 then
3205 Ent := Entity (Name (Vis_Decl));
3207 if Ekind (Ent) = E_Entry then
3208 Append_To (Stmts,
3209 Make_Procedure_Call_Statement (Decl_Loc,
3210 Name =>
3211 New_Occurrence_Of (RTE (
3212 RE_Bind_Interrupt_To_Entry), Decl_Loc),
3213 Parameter_Associations => New_List (
3214 Make_Selected_Component (Decl_Loc,
3215 Prefix =>
3216 Make_Identifier (Decl_Loc, Name_uInit),
3217 Selector_Name =>
3218 Make_Identifier
3219 (Decl_Loc, Name_uTask_Id)),
3220 Entry_Index_Expression
3221 (Decl_Loc, Ent, Empty, Task_Type),
3222 Expression (Vis_Decl))));
3223 end if;
3224 end if;
3225 end if;
3227 Next (Vis_Decl);
3228 end loop;
3229 end if;
3230 end;
3231 end if;
3233 -- For a protected type, add statements generated by
3234 -- Make_Initialize_Protection.
3236 if Is_Protected_Record_Type (Rec_Type) then
3237 Append_List_To (Stmts,
3238 Make_Initialize_Protection (Rec_Type));
3239 end if;
3241 -- Second pass: components with per-object constraints
3243 if Has_POC then
3244 Decl := First_Non_Pragma (Component_Items (Comp_List));
3245 while Present (Decl) loop
3246 Comp_Loc := Sloc (Decl);
3247 Id := Defining_Identifier (Decl);
3248 Typ := Etype (Id);
3250 if Has_Access_Constraint (Id)
3251 and then No (Expression (Decl))
3252 then
3253 if Has_Non_Null_Base_Init_Proc (Typ) then
3254 Append_List_To (Stmts,
3255 Build_Initialization_Call (Comp_Loc,
3256 Make_Selected_Component (Comp_Loc,
3257 Prefix =>
3258 Make_Identifier (Comp_Loc, Name_uInit),
3259 Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
3260 Typ,
3261 In_Init_Proc => True,
3262 Enclos_Type => Rec_Type,
3263 Discr_Map => Discr_Map));
3265 Clean_Task_Names (Typ, Proc_Id);
3267 -- Preserve initialization state in the current counter
3269 if Needs_Finalization (Typ) then
3270 if No (Counter_Id) then
3271 Make_Counter (Comp_Loc);
3272 end if;
3274 Increment_Counter (Comp_Loc);
3275 end if;
3277 elsif Component_Needs_Simple_Initialization (Typ) then
3278 Append_List_To (Stmts,
3279 Build_Assignment
3280 (Id, Get_Simple_Init_Val (Typ, N, Esize (Id))));
3281 end if;
3282 end if;
3284 Next_Non_Pragma (Decl);
3285 end loop;
3286 end if;
3288 -- Process the variant part
3290 if Present (Variant_Part (Comp_List)) then
3291 declare
3292 Variant_Alts : constant List_Id := New_List;
3293 Var_Loc : Source_Ptr := No_Location;
3294 Variant : Node_Id;
3296 begin
3297 Variant :=
3298 First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3299 while Present (Variant) loop
3300 Var_Loc := Sloc (Variant);
3301 Append_To (Variant_Alts,
3302 Make_Case_Statement_Alternative (Var_Loc,
3303 Discrete_Choices =>
3304 New_Copy_List (Discrete_Choices (Variant)),
3305 Statements =>
3306 Build_Init_Statements (Component_List (Variant))));
3307 Next_Non_Pragma (Variant);
3308 end loop;
3310 -- The expression of the case statement which is a reference
3311 -- to one of the discriminants is replaced by the appropriate
3312 -- formal parameter of the initialization procedure.
3314 Append_To (Stmts,
3315 Make_Case_Statement (Var_Loc,
3316 Expression =>
3317 New_Occurrence_Of (Discriminal (
3318 Entity (Name (Variant_Part (Comp_List)))), Var_Loc),
3319 Alternatives => Variant_Alts));
3320 end;
3321 end if;
3323 -- If no initializations when generated for component declarations
3324 -- corresponding to this Stmts, append a null statement to Stmts to
3325 -- to make it a valid Ada tree.
3327 if Is_Empty_List (Stmts) then
3328 Append (Make_Null_Statement (Loc), Stmts);
3329 end if;
3331 return Stmts;
3333 exception
3334 when RE_Not_Available =>
3335 return Empty_List;
3336 end Build_Init_Statements;
3338 -------------------------
3339 -- Build_Record_Checks --
3340 -------------------------
3342 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
3343 Subtype_Mark_Id : Entity_Id;
3345 procedure Constrain_Array
3346 (SI : Node_Id;
3347 Check_List : List_Id);
3348 -- Apply a list of index constraints to an unconstrained array type.
3349 -- The first parameter is the entity for the resulting subtype.
3350 -- Check_List is a list to which the check actions are appended.
3352 ---------------------
3353 -- Constrain_Array --
3354 ---------------------
3356 procedure Constrain_Array
3357 (SI : Node_Id;
3358 Check_List : List_Id)
3360 C : constant Node_Id := Constraint (SI);
3361 Number_Of_Constraints : Nat := 0;
3362 Index : Node_Id;
3363 S, T : Entity_Id;
3365 procedure Constrain_Index
3366 (Index : Node_Id;
3367 S : Node_Id;
3368 Check_List : List_Id);
3369 -- Process an index constraint in a constrained array declaration.
3370 -- The constraint can be either a subtype name or a range with or
3371 -- without an explicit subtype mark. Index is the corresponding
3372 -- index of the unconstrained array. S is the range expression.
3373 -- Check_List is a list to which the check actions are appended.
3375 ---------------------
3376 -- Constrain_Index --
3377 ---------------------
3379 procedure Constrain_Index
3380 (Index : Node_Id;
3381 S : Node_Id;
3382 Check_List : List_Id)
3384 T : constant Entity_Id := Etype (Index);
3386 begin
3387 if Nkind (S) = N_Range then
3388 Process_Range_Expr_In_Decl (S, T, Check_List => Check_List);
3389 end if;
3390 end Constrain_Index;
3392 -- Start of processing for Constrain_Array
3394 begin
3395 T := Entity (Subtype_Mark (SI));
3397 if Is_Access_Type (T) then
3398 T := Designated_Type (T);
3399 end if;
3401 S := First (Constraints (C));
3402 while Present (S) loop
3403 Number_Of_Constraints := Number_Of_Constraints + 1;
3404 Next (S);
3405 end loop;
3407 -- In either case, the index constraint must provide a discrete
3408 -- range for each index of the array type and the type of each
3409 -- discrete range must be the same as that of the corresponding
3410 -- index. (RM 3.6.1)
3412 S := First (Constraints (C));
3413 Index := First_Index (T);
3414 Analyze (Index);
3416 -- Apply constraints to each index type
3418 for J in 1 .. Number_Of_Constraints loop
3419 Constrain_Index (Index, S, Check_List);
3420 Next (Index);
3421 Next (S);
3422 end loop;
3423 end Constrain_Array;
3425 -- Start of processing for Build_Record_Checks
3427 begin
3428 if Nkind (S) = N_Subtype_Indication then
3429 Find_Type (Subtype_Mark (S));
3430 Subtype_Mark_Id := Entity (Subtype_Mark (S));
3432 -- Remaining processing depends on type
3434 case Ekind (Subtype_Mark_Id) is
3435 when Array_Kind =>
3436 Constrain_Array (S, Check_List);
3438 when others =>
3439 null;
3440 end case;
3441 end if;
3442 end Build_Record_Checks;
3444 -------------------------------------------
3445 -- Component_Needs_Simple_Initialization --
3446 -------------------------------------------
3448 function Component_Needs_Simple_Initialization
3449 (T : Entity_Id) return Boolean
3451 begin
3452 return
3453 Needs_Simple_Initialization (T)
3454 and then not Is_RTE (T, RE_Tag)
3456 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
3458 and then not Is_RTE (T, RE_Interface_Tag);
3459 end Component_Needs_Simple_Initialization;
3461 --------------------------------------
3462 -- Parent_Subtype_Renaming_Discrims --
3463 --------------------------------------
3465 function Parent_Subtype_Renaming_Discrims return Boolean is
3466 De : Entity_Id;
3467 Dp : Entity_Id;
3469 begin
3470 if Base_Type (Rec_Ent) /= Rec_Ent then
3471 return False;
3472 end if;
3474 if Etype (Rec_Ent) = Rec_Ent
3475 or else not Has_Discriminants (Rec_Ent)
3476 or else Is_Constrained (Rec_Ent)
3477 or else Is_Tagged_Type (Rec_Ent)
3478 then
3479 return False;
3480 end if;
3482 -- If there are no explicit stored discriminants we have inherited
3483 -- the root type discriminants so far, so no renamings occurred.
3485 if First_Discriminant (Rec_Ent) =
3486 First_Stored_Discriminant (Rec_Ent)
3487 then
3488 return False;
3489 end if;
3491 -- Check if we have done some trivial renaming of the parent
3492 -- discriminants, i.e. something like
3494 -- type DT (X1, X2: int) is new PT (X1, X2);
3496 De := First_Discriminant (Rec_Ent);
3497 Dp := First_Discriminant (Etype (Rec_Ent));
3498 while Present (De) loop
3499 pragma Assert (Present (Dp));
3501 if Corresponding_Discriminant (De) /= Dp then
3502 return True;
3503 end if;
3505 Next_Discriminant (De);
3506 Next_Discriminant (Dp);
3507 end loop;
3509 return Present (Dp);
3510 end Parent_Subtype_Renaming_Discrims;
3512 ------------------------
3513 -- Requires_Init_Proc --
3514 ------------------------
3516 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
3517 Comp_Decl : Node_Id;
3518 Id : Entity_Id;
3519 Typ : Entity_Id;
3521 begin
3522 -- Definitely do not need one if specifically suppressed
3524 if Initialization_Suppressed (Rec_Id) then
3525 return False;
3526 end if;
3528 -- If it is a type derived from a type with unknown discriminants,
3529 -- we cannot build an initialization procedure for it.
3531 if Has_Unknown_Discriminants (Rec_Id)
3532 or else Has_Unknown_Discriminants (Etype (Rec_Id))
3533 then
3534 return False;
3535 end if;
3537 -- Otherwise we need to generate an initialization procedure if
3538 -- Is_CPP_Class is False and at least one of the following applies:
3540 -- 1. Discriminants are present, since they need to be initialized
3541 -- with the appropriate discriminant constraint expressions.
3542 -- However, the discriminant of an unchecked union does not
3543 -- count, since the discriminant is not present.
3545 -- 2. The type is a tagged type, since the implicit Tag component
3546 -- needs to be initialized with a pointer to the dispatch table.
3548 -- 3. The type contains tasks
3550 -- 4. One or more components has an initial value
3552 -- 5. One or more components is for a type which itself requires
3553 -- an initialization procedure.
3555 -- 6. One or more components is a type that requires simple
3556 -- initialization (see Needs_Simple_Initialization), except
3557 -- that types Tag and Interface_Tag are excluded, since fields
3558 -- of these types are initialized by other means.
3560 -- 7. The type is the record type built for a task type (since at
3561 -- the very least, Create_Task must be called)
3563 -- 8. The type is the record type built for a protected type (since
3564 -- at least Initialize_Protection must be called)
3566 -- 9. The type is marked as a public entity. The reason we add this
3567 -- case (even if none of the above apply) is to properly handle
3568 -- Initialize_Scalars. If a package is compiled without an IS
3569 -- pragma, and the client is compiled with an IS pragma, then
3570 -- the client will think an initialization procedure is present
3571 -- and call it, when in fact no such procedure is required, but
3572 -- since the call is generated, there had better be a routine
3573 -- at the other end of the call, even if it does nothing).
3575 -- Note: the reason we exclude the CPP_Class case is because in this
3576 -- case the initialization is performed by the C++ constructors, and
3577 -- the IP is built by Set_CPP_Constructors.
3579 if Is_CPP_Class (Rec_Id) then
3580 return False;
3582 elsif Is_Interface (Rec_Id) then
3583 return False;
3585 elsif (Has_Discriminants (Rec_Id)
3586 and then not Is_Unchecked_Union (Rec_Id))
3587 or else Is_Tagged_Type (Rec_Id)
3588 or else Is_Concurrent_Record_Type (Rec_Id)
3589 or else Has_Task (Rec_Id)
3590 then
3591 return True;
3592 end if;
3594 Id := First_Component (Rec_Id);
3595 while Present (Id) loop
3596 Comp_Decl := Parent (Id);
3597 Typ := Etype (Id);
3599 if Present (Expression (Comp_Decl))
3600 or else Has_Non_Null_Base_Init_Proc (Typ)
3601 or else Component_Needs_Simple_Initialization (Typ)
3602 then
3603 return True;
3604 end if;
3606 Next_Component (Id);
3607 end loop;
3609 -- As explained above, a record initialization procedure is needed
3610 -- for public types in case Initialize_Scalars applies to a client.
3611 -- However, such a procedure is not needed in the case where either
3612 -- of restrictions No_Initialize_Scalars or No_Default_Initialization
3613 -- applies. No_Initialize_Scalars excludes the possibility of using
3614 -- Initialize_Scalars in any partition, and No_Default_Initialization
3615 -- implies that no initialization should ever be done for objects of
3616 -- the type, so is incompatible with Initialize_Scalars.
3618 if not Restriction_Active (No_Initialize_Scalars)
3619 and then not Restriction_Active (No_Default_Initialization)
3620 and then Is_Public (Rec_Id)
3621 then
3622 return True;
3623 end if;
3625 return False;
3626 end Requires_Init_Proc;
3628 -- Start of processing for Build_Record_Init_Proc
3630 begin
3631 Rec_Type := Defining_Identifier (N);
3633 -- This may be full declaration of a private type, in which case
3634 -- the visible entity is a record, and the private entity has been
3635 -- exchanged with it in the private part of the current package.
3636 -- The initialization procedure is built for the record type, which
3637 -- is retrievable from the private entity.
3639 if Is_Incomplete_Or_Private_Type (Rec_Type) then
3640 Rec_Type := Underlying_Type (Rec_Type);
3641 end if;
3643 -- If we have a variant record with restriction No_Implicit_Conditionals
3644 -- in effect, then we skip building the procedure. This is safe because
3645 -- if we can see the restriction, so can any caller, calls to initialize
3646 -- such records are not allowed for variant records if this restriction
3647 -- is active.
3649 if Has_Variant_Part (Rec_Type)
3650 and then Restriction_Active (No_Implicit_Conditionals)
3651 then
3652 return;
3653 end if;
3655 -- If there are discriminants, build the discriminant map to replace
3656 -- discriminants by their discriminals in complex bound expressions.
3657 -- These only arise for the corresponding records of synchronized types.
3659 if Is_Concurrent_Record_Type (Rec_Type)
3660 and then Has_Discriminants (Rec_Type)
3661 then
3662 declare
3663 Disc : Entity_Id;
3664 begin
3665 Disc := First_Discriminant (Rec_Type);
3666 while Present (Disc) loop
3667 Append_Elmt (Disc, Discr_Map);
3668 Append_Elmt (Discriminal (Disc), Discr_Map);
3669 Next_Discriminant (Disc);
3670 end loop;
3671 end;
3672 end if;
3674 -- Derived types that have no type extension can use the initialization
3675 -- procedure of their parent and do not need a procedure of their own.
3676 -- This is only correct if there are no representation clauses for the
3677 -- type or its parent, and if the parent has in fact been frozen so
3678 -- that its initialization procedure exists.
3680 if Is_Derived_Type (Rec_Type)
3681 and then not Is_Tagged_Type (Rec_Type)
3682 and then not Is_Unchecked_Union (Rec_Type)
3683 and then not Has_New_Non_Standard_Rep (Rec_Type)
3684 and then not Parent_Subtype_Renaming_Discrims
3685 and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
3686 then
3687 Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
3689 -- Otherwise if we need an initialization procedure, then build one,
3690 -- mark it as public and inlinable and as having a completion.
3692 elsif Requires_Init_Proc (Rec_Type)
3693 or else Is_Unchecked_Union (Rec_Type)
3694 then
3695 Proc_Id :=
3696 Make_Defining_Identifier (Loc,
3697 Chars => Make_Init_Proc_Name (Rec_Type));
3699 -- If No_Default_Initialization restriction is active, then we don't
3700 -- want to build an init_proc, but we need to mark that an init_proc
3701 -- would be needed if this restriction was not active (so that we can
3702 -- detect attempts to call it), so set a dummy init_proc in place.
3704 if Restriction_Active (No_Default_Initialization) then
3705 Set_Init_Proc (Rec_Type, Proc_Id);
3706 return;
3707 end if;
3709 Build_Offset_To_Top_Functions;
3710 Build_CPP_Init_Procedure;
3711 Build_Init_Procedure;
3713 Set_Is_Public (Proc_Id, Is_Public (Rec_Ent));
3714 Set_Is_Internal (Proc_Id);
3715 Set_Has_Completion (Proc_Id);
3717 if not Debug_Generated_Code then
3718 Set_Debug_Info_Off (Proc_Id);
3719 end if;
3721 Set_Is_Inlined (Proc_Id, Inline_Init_Proc (Rec_Type));
3723 -- Do not build an aggregate if Modify_Tree_For_C, this isn't
3724 -- needed and may generate early references to non frozen types
3725 -- since we expand aggregate much more systematically.
3727 if Modify_Tree_For_C then
3728 return;
3729 end if;
3731 declare
3732 Agg : constant Node_Id :=
3733 Build_Equivalent_Record_Aggregate (Rec_Type);
3735 procedure Collect_Itypes (Comp : Node_Id);
3736 -- Generate references to itypes in the aggregate, because
3737 -- the first use of the aggregate may be in a nested scope.
3739 --------------------
3740 -- Collect_Itypes --
3741 --------------------
3743 procedure Collect_Itypes (Comp : Node_Id) is
3744 Ref : Node_Id;
3745 Sub_Aggr : Node_Id;
3746 Typ : constant Entity_Id := Etype (Comp);
3748 begin
3749 if Is_Array_Type (Typ) and then Is_Itype (Typ) then
3750 Ref := Make_Itype_Reference (Loc);
3751 Set_Itype (Ref, Typ);
3752 Append_Freeze_Action (Rec_Type, Ref);
3754 Ref := Make_Itype_Reference (Loc);
3755 Set_Itype (Ref, Etype (First_Index (Typ)));
3756 Append_Freeze_Action (Rec_Type, Ref);
3758 -- Recurse on nested arrays
3760 Sub_Aggr := First (Expressions (Comp));
3761 while Present (Sub_Aggr) loop
3762 Collect_Itypes (Sub_Aggr);
3763 Next (Sub_Aggr);
3764 end loop;
3765 end if;
3766 end Collect_Itypes;
3768 begin
3769 -- If there is a static initialization aggregate for the type,
3770 -- generate itype references for the types of its (sub)components,
3771 -- to prevent out-of-scope errors in the resulting tree.
3772 -- The aggregate may have been rewritten as a Raise node, in which
3773 -- case there are no relevant itypes.
3775 if Present (Agg) and then Nkind (Agg) = N_Aggregate then
3776 Set_Static_Initialization (Proc_Id, Agg);
3778 declare
3779 Comp : Node_Id;
3780 begin
3781 Comp := First (Component_Associations (Agg));
3782 while Present (Comp) loop
3783 Collect_Itypes (Expression (Comp));
3784 Next (Comp);
3785 end loop;
3786 end;
3787 end if;
3788 end;
3789 end if;
3790 end Build_Record_Init_Proc;
3792 ----------------------------
3793 -- Build_Slice_Assignment --
3794 ----------------------------
3796 -- Generates the following subprogram:
3798 -- procedure Assign
3799 -- (Source, Target : Array_Type,
3800 -- Left_Lo, Left_Hi : Index;
3801 -- Right_Lo, Right_Hi : Index;
3802 -- Rev : Boolean)
3803 -- is
3804 -- Li1 : Index;
3805 -- Ri1 : Index;
3807 -- begin
3809 -- if Left_Hi < Left_Lo then
3810 -- return;
3811 -- end if;
3813 -- if Rev then
3814 -- Li1 := Left_Hi;
3815 -- Ri1 := Right_Hi;
3816 -- else
3817 -- Li1 := Left_Lo;
3818 -- Ri1 := Right_Lo;
3819 -- end if;
3821 -- loop
3822 -- Target (Li1) := Source (Ri1);
3824 -- if Rev then
3825 -- exit when Li1 = Left_Lo;
3826 -- Li1 := Index'pred (Li1);
3827 -- Ri1 := Index'pred (Ri1);
3828 -- else
3829 -- exit when Li1 = Left_Hi;
3830 -- Li1 := Index'succ (Li1);
3831 -- Ri1 := Index'succ (Ri1);
3832 -- end if;
3833 -- end loop;
3834 -- end Assign;
3836 procedure Build_Slice_Assignment (Typ : Entity_Id) is
3837 Loc : constant Source_Ptr := Sloc (Typ);
3838 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
3840 Larray : constant Entity_Id := Make_Temporary (Loc, 'A');
3841 Rarray : constant Entity_Id := Make_Temporary (Loc, 'R');
3842 Left_Lo : constant Entity_Id := Make_Temporary (Loc, 'L');
3843 Left_Hi : constant Entity_Id := Make_Temporary (Loc, 'L');
3844 Right_Lo : constant Entity_Id := Make_Temporary (Loc, 'R');
3845 Right_Hi : constant Entity_Id := Make_Temporary (Loc, 'R');
3846 Rev : constant Entity_Id := Make_Temporary (Loc, 'D');
3847 -- Formal parameters of procedure
3849 Proc_Name : constant Entity_Id :=
3850 Make_Defining_Identifier (Loc,
3851 Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));
3853 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L');
3854 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R');
3855 -- Subscripts for left and right sides
3857 Decls : List_Id;
3858 Loops : Node_Id;
3859 Stats : List_Id;
3861 begin
3862 -- Build declarations for indexes
3864 Decls := New_List;
3866 Append_To (Decls,
3867 Make_Object_Declaration (Loc,
3868 Defining_Identifier => Lnn,
3869 Object_Definition =>
3870 New_Occurrence_Of (Index, Loc)));
3872 Append_To (Decls,
3873 Make_Object_Declaration (Loc,
3874 Defining_Identifier => Rnn,
3875 Object_Definition =>
3876 New_Occurrence_Of (Index, Loc)));
3878 Stats := New_List;
3880 -- Build test for empty slice case
3882 Append_To (Stats,
3883 Make_If_Statement (Loc,
3884 Condition =>
3885 Make_Op_Lt (Loc,
3886 Left_Opnd => New_Occurrence_Of (Left_Hi, Loc),
3887 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc)),
3888 Then_Statements => New_List (Make_Simple_Return_Statement (Loc))));
3890 -- Build initializations for indexes
3892 declare
3893 F_Init : constant List_Id := New_List;
3894 B_Init : constant List_Id := New_List;
3896 begin
3897 Append_To (F_Init,
3898 Make_Assignment_Statement (Loc,
3899 Name => New_Occurrence_Of (Lnn, Loc),
3900 Expression => New_Occurrence_Of (Left_Lo, Loc)));
3902 Append_To (F_Init,
3903 Make_Assignment_Statement (Loc,
3904 Name => New_Occurrence_Of (Rnn, Loc),
3905 Expression => New_Occurrence_Of (Right_Lo, Loc)));
3907 Append_To (B_Init,
3908 Make_Assignment_Statement (Loc,
3909 Name => New_Occurrence_Of (Lnn, Loc),
3910 Expression => New_Occurrence_Of (Left_Hi, Loc)));
3912 Append_To (B_Init,
3913 Make_Assignment_Statement (Loc,
3914 Name => New_Occurrence_Of (Rnn, Loc),
3915 Expression => New_Occurrence_Of (Right_Hi, Loc)));
3917 Append_To (Stats,
3918 Make_If_Statement (Loc,
3919 Condition => New_Occurrence_Of (Rev, Loc),
3920 Then_Statements => B_Init,
3921 Else_Statements => F_Init));
3922 end;
3924 -- Now construct the assignment statement
3926 Loops :=
3927 Make_Loop_Statement (Loc,
3928 Statements => New_List (
3929 Make_Assignment_Statement (Loc,
3930 Name =>
3931 Make_Indexed_Component (Loc,
3932 Prefix => New_Occurrence_Of (Larray, Loc),
3933 Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
3934 Expression =>
3935 Make_Indexed_Component (Loc,
3936 Prefix => New_Occurrence_Of (Rarray, Loc),
3937 Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
3938 End_Label => Empty);
3940 -- Build the exit condition and increment/decrement statements
3942 declare
3943 F_Ass : constant List_Id := New_List;
3944 B_Ass : constant List_Id := New_List;
3946 begin
3947 Append_To (F_Ass,
3948 Make_Exit_Statement (Loc,
3949 Condition =>
3950 Make_Op_Eq (Loc,
3951 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
3952 Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));
3954 Append_To (F_Ass,
3955 Make_Assignment_Statement (Loc,
3956 Name => New_Occurrence_Of (Lnn, Loc),
3957 Expression =>
3958 Make_Attribute_Reference (Loc,
3959 Prefix =>
3960 New_Occurrence_Of (Index, Loc),
3961 Attribute_Name => Name_Succ,
3962 Expressions => New_List (
3963 New_Occurrence_Of (Lnn, Loc)))));
3965 Append_To (F_Ass,
3966 Make_Assignment_Statement (Loc,
3967 Name => New_Occurrence_Of (Rnn, Loc),
3968 Expression =>
3969 Make_Attribute_Reference (Loc,
3970 Prefix =>
3971 New_Occurrence_Of (Index, Loc),
3972 Attribute_Name => Name_Succ,
3973 Expressions => New_List (
3974 New_Occurrence_Of (Rnn, Loc)))));
3976 Append_To (B_Ass,
3977 Make_Exit_Statement (Loc,
3978 Condition =>
3979 Make_Op_Eq (Loc,
3980 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
3981 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));
3983 Append_To (B_Ass,
3984 Make_Assignment_Statement (Loc,
3985 Name => New_Occurrence_Of (Lnn, Loc),
3986 Expression =>
3987 Make_Attribute_Reference (Loc,
3988 Prefix =>
3989 New_Occurrence_Of (Index, Loc),
3990 Attribute_Name => Name_Pred,
3991 Expressions => New_List (
3992 New_Occurrence_Of (Lnn, Loc)))));
3994 Append_To (B_Ass,
3995 Make_Assignment_Statement (Loc,
3996 Name => New_Occurrence_Of (Rnn, Loc),
3997 Expression =>
3998 Make_Attribute_Reference (Loc,
3999 Prefix =>
4000 New_Occurrence_Of (Index, Loc),
4001 Attribute_Name => Name_Pred,
4002 Expressions => New_List (
4003 New_Occurrence_Of (Rnn, Loc)))));
4005 Append_To (Statements (Loops),
4006 Make_If_Statement (Loc,
4007 Condition => New_Occurrence_Of (Rev, Loc),
4008 Then_Statements => B_Ass,
4009 Else_Statements => F_Ass));
4010 end;
4012 Append_To (Stats, Loops);
4014 declare
4015 Spec : Node_Id;
4016 Formals : List_Id := New_List;
4018 begin
4019 Formals := New_List (
4020 Make_Parameter_Specification (Loc,
4021 Defining_Identifier => Larray,
4022 Out_Present => True,
4023 Parameter_Type =>
4024 New_Occurrence_Of (Base_Type (Typ), Loc)),
4026 Make_Parameter_Specification (Loc,
4027 Defining_Identifier => Rarray,
4028 Parameter_Type =>
4029 New_Occurrence_Of (Base_Type (Typ), Loc)),
4031 Make_Parameter_Specification (Loc,
4032 Defining_Identifier => Left_Lo,
4033 Parameter_Type =>
4034 New_Occurrence_Of (Index, Loc)),
4036 Make_Parameter_Specification (Loc,
4037 Defining_Identifier => Left_Hi,
4038 Parameter_Type =>
4039 New_Occurrence_Of (Index, Loc)),
4041 Make_Parameter_Specification (Loc,
4042 Defining_Identifier => Right_Lo,
4043 Parameter_Type =>
4044 New_Occurrence_Of (Index, Loc)),
4046 Make_Parameter_Specification (Loc,
4047 Defining_Identifier => Right_Hi,
4048 Parameter_Type =>
4049 New_Occurrence_Of (Index, Loc)));
4051 Append_To (Formals,
4052 Make_Parameter_Specification (Loc,
4053 Defining_Identifier => Rev,
4054 Parameter_Type =>
4055 New_Occurrence_Of (Standard_Boolean, Loc)));
4057 Spec :=
4058 Make_Procedure_Specification (Loc,
4059 Defining_Unit_Name => Proc_Name,
4060 Parameter_Specifications => Formals);
4062 Discard_Node (
4063 Make_Subprogram_Body (Loc,
4064 Specification => Spec,
4065 Declarations => Decls,
4066 Handled_Statement_Sequence =>
4067 Make_Handled_Sequence_Of_Statements (Loc,
4068 Statements => Stats)));
4069 end;
4071 Set_TSS (Typ, Proc_Name);
4072 Set_Is_Pure (Proc_Name);
4073 end Build_Slice_Assignment;
4075 -----------------------------
4076 -- Build_Untagged_Equality --
4077 -----------------------------
4079 procedure Build_Untagged_Equality (Typ : Entity_Id) is
4080 Build_Eq : Boolean;
4081 Comp : Entity_Id;
4082 Decl : Node_Id;
4083 Op : Entity_Id;
4084 Prim : Elmt_Id;
4085 Eq_Op : Entity_Id;
4087 function User_Defined_Eq (T : Entity_Id) return Entity_Id;
4088 -- Check whether the type T has a user-defined primitive equality. If so
4089 -- return it, else return Empty. If true for a component of Typ, we have
4090 -- to build the primitive equality for it.
4092 ---------------------
4093 -- User_Defined_Eq --
4094 ---------------------
4096 function User_Defined_Eq (T : Entity_Id) return Entity_Id is
4097 Prim : Elmt_Id;
4098 Op : Entity_Id;
4100 begin
4101 Op := TSS (T, TSS_Composite_Equality);
4103 if Present (Op) then
4104 return Op;
4105 end if;
4107 Prim := First_Elmt (Collect_Primitive_Operations (T));
4108 while Present (Prim) loop
4109 Op := Node (Prim);
4111 if Chars (Op) = Name_Op_Eq
4112 and then Etype (Op) = Standard_Boolean
4113 and then Etype (First_Formal (Op)) = T
4114 and then Etype (Next_Formal (First_Formal (Op))) = T
4115 then
4116 return Op;
4117 end if;
4119 Next_Elmt (Prim);
4120 end loop;
4122 return Empty;
4123 end User_Defined_Eq;
4125 -- Start of processing for Build_Untagged_Equality
4127 begin
4128 -- If a record component has a primitive equality operation, we must
4129 -- build the corresponding one for the current type.
4131 Build_Eq := False;
4132 Comp := First_Component (Typ);
4133 while Present (Comp) loop
4134 if Is_Record_Type (Etype (Comp))
4135 and then Present (User_Defined_Eq (Etype (Comp)))
4136 then
4137 Build_Eq := True;
4138 end if;
4140 Next_Component (Comp);
4141 end loop;
4143 -- If there is a user-defined equality for the type, we do not create
4144 -- the implicit one.
4146 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
4147 Eq_Op := Empty;
4148 while Present (Prim) loop
4149 if Chars (Node (Prim)) = Name_Op_Eq
4150 and then Comes_From_Source (Node (Prim))
4152 -- Don't we also need to check formal types and return type as in
4153 -- User_Defined_Eq above???
4155 then
4156 Eq_Op := Node (Prim);
4157 Build_Eq := False;
4158 exit;
4159 end if;
4161 Next_Elmt (Prim);
4162 end loop;
4164 -- If the type is derived, inherit the operation, if present, from the
4165 -- parent type. It may have been declared after the type derivation. If
4166 -- the parent type itself is derived, it may have inherited an operation
4167 -- that has itself been overridden, so update its alias and related
4168 -- flags. Ditto for inequality.
4170 if No (Eq_Op) and then Is_Derived_Type (Typ) then
4171 Prim := First_Elmt (Collect_Primitive_Operations (Etype (Typ)));
4172 while Present (Prim) loop
4173 if Chars (Node (Prim)) = Name_Op_Eq then
4174 Copy_TSS (Node (Prim), Typ);
4175 Build_Eq := False;
4177 declare
4178 Op : constant Entity_Id := User_Defined_Eq (Typ);
4179 Eq_Op : constant Entity_Id := Node (Prim);
4180 NE_Op : constant Entity_Id := Next_Entity (Eq_Op);
4182 begin
4183 if Present (Op) then
4184 Set_Alias (Op, Eq_Op);
4185 Set_Is_Abstract_Subprogram
4186 (Op, Is_Abstract_Subprogram (Eq_Op));
4188 if Chars (Next_Entity (Op)) = Name_Op_Ne then
4189 Set_Is_Abstract_Subprogram
4190 (Next_Entity (Op), Is_Abstract_Subprogram (NE_Op));
4191 end if;
4192 end if;
4193 end;
4195 exit;
4196 end if;
4198 Next_Elmt (Prim);
4199 end loop;
4200 end if;
4202 -- If not inherited and not user-defined, build body as for a type with
4203 -- tagged components.
4205 if Build_Eq then
4206 Decl :=
4207 Make_Eq_Body (Typ, Make_TSS_Name (Typ, TSS_Composite_Equality));
4208 Op := Defining_Entity (Decl);
4209 Set_TSS (Typ, Op);
4210 Set_Is_Pure (Op);
4212 if Is_Library_Level_Entity (Typ) then
4213 Set_Is_Public (Op);
4214 end if;
4215 end if;
4216 end Build_Untagged_Equality;
4218 -----------------------------------
4219 -- Build_Variant_Record_Equality --
4220 -----------------------------------
4222 -- Generates:
4224 -- function _Equality (X, Y : T) return Boolean is
4225 -- begin
4226 -- -- Compare discriminants
4228 -- if X.D1 /= Y.D1 or else X.D2 /= Y.D2 or else ... then
4229 -- return False;
4230 -- end if;
4232 -- -- Compare components
4234 -- if X.C1 /= Y.C1 or else X.C2 /= Y.C2 or else ... then
4235 -- return False;
4236 -- end if;
4238 -- -- Compare variant part
4240 -- case X.D1 is
4241 -- when V1 =>
4242 -- if X.C2 /= Y.C2 or else X.C3 /= Y.C3 or else ... then
4243 -- return False;
4244 -- end if;
4245 -- ...
4246 -- when Vn =>
4247 -- if X.Cn /= Y.Cn or else ... then
4248 -- return False;
4249 -- end if;
4250 -- end case;
4252 -- return True;
4253 -- end _Equality;
4255 procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
4256 Loc : constant Source_Ptr := Sloc (Typ);
4258 F : constant Entity_Id :=
4259 Make_Defining_Identifier (Loc,
4260 Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
4262 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_X);
4263 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_Y);
4265 Def : constant Node_Id := Parent (Typ);
4266 Comps : constant Node_Id := Component_List (Type_Definition (Def));
4267 Stmts : constant List_Id := New_List;
4268 Pspecs : constant List_Id := New_List;
4270 begin
4271 -- If we have a variant record with restriction No_Implicit_Conditionals
4272 -- in effect, then we skip building the procedure. This is safe because
4273 -- if we can see the restriction, so can any caller, calls to equality
4274 -- test routines are not allowed for variant records if this restriction
4275 -- is active.
4277 if Restriction_Active (No_Implicit_Conditionals) then
4278 return;
4279 end if;
4281 -- Derived Unchecked_Union types no longer inherit the equality function
4282 -- of their parent.
4284 if Is_Derived_Type (Typ)
4285 and then not Is_Unchecked_Union (Typ)
4286 and then not Has_New_Non_Standard_Rep (Typ)
4287 then
4288 declare
4289 Parent_Eq : constant Entity_Id :=
4290 TSS (Root_Type (Typ), TSS_Composite_Equality);
4291 begin
4292 if Present (Parent_Eq) then
4293 Copy_TSS (Parent_Eq, Typ);
4294 return;
4295 end if;
4296 end;
4297 end if;
4299 Discard_Node (
4300 Make_Subprogram_Body (Loc,
4301 Specification =>
4302 Make_Function_Specification (Loc,
4303 Defining_Unit_Name => F,
4304 Parameter_Specifications => Pspecs,
4305 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
4306 Declarations => New_List,
4307 Handled_Statement_Sequence =>
4308 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stmts)));
4310 Append_To (Pspecs,
4311 Make_Parameter_Specification (Loc,
4312 Defining_Identifier => X,
4313 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
4315 Append_To (Pspecs,
4316 Make_Parameter_Specification (Loc,
4317 Defining_Identifier => Y,
4318 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
4320 -- Unchecked_Unions require additional machinery to support equality.
4321 -- Two extra parameters (A and B) are added to the equality function
4322 -- parameter list for each discriminant of the type, in order to
4323 -- capture the inferred values of the discriminants in equality calls.
4324 -- The names of the parameters match the names of the corresponding
4325 -- discriminant, with an added suffix.
4327 if Is_Unchecked_Union (Typ) then
4328 declare
4329 Discr : Entity_Id;
4330 Discr_Type : Entity_Id;
4331 A, B : Entity_Id;
4332 New_Discrs : Elist_Id;
4334 begin
4335 New_Discrs := New_Elmt_List;
4337 Discr := First_Discriminant (Typ);
4338 while Present (Discr) loop
4339 Discr_Type := Etype (Discr);
4340 A := Make_Defining_Identifier (Loc,
4341 Chars => New_External_Name (Chars (Discr), 'A'));
4343 B := Make_Defining_Identifier (Loc,
4344 Chars => New_External_Name (Chars (Discr), 'B'));
4346 -- Add new parameters to the parameter list
4348 Append_To (Pspecs,
4349 Make_Parameter_Specification (Loc,
4350 Defining_Identifier => A,
4351 Parameter_Type =>
4352 New_Occurrence_Of (Discr_Type, Loc)));
4354 Append_To (Pspecs,
4355 Make_Parameter_Specification (Loc,
4356 Defining_Identifier => B,
4357 Parameter_Type =>
4358 New_Occurrence_Of (Discr_Type, Loc)));
4360 Append_Elmt (A, New_Discrs);
4362 -- Generate the following code to compare each of the inferred
4363 -- discriminants:
4365 -- if a /= b then
4366 -- return False;
4367 -- end if;
4369 Append_To (Stmts,
4370 Make_If_Statement (Loc,
4371 Condition =>
4372 Make_Op_Ne (Loc,
4373 Left_Opnd => New_Occurrence_Of (A, Loc),
4374 Right_Opnd => New_Occurrence_Of (B, Loc)),
4375 Then_Statements => New_List (
4376 Make_Simple_Return_Statement (Loc,
4377 Expression =>
4378 New_Occurrence_Of (Standard_False, Loc)))));
4379 Next_Discriminant (Discr);
4380 end loop;
4382 -- Generate component-by-component comparison. Note that we must
4383 -- propagate the inferred discriminants formals to act as
4384 -- the case statement switch. Their value is added when an
4385 -- equality call on unchecked unions is expanded.
4387 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps, New_Discrs));
4388 end;
4390 -- Normal case (not unchecked union)
4392 else
4393 Append_To (Stmts,
4394 Make_Eq_If (Typ, Discriminant_Specifications (Def)));
4395 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
4396 end if;
4398 Append_To (Stmts,
4399 Make_Simple_Return_Statement (Loc,
4400 Expression => New_Occurrence_Of (Standard_True, Loc)));
4402 Set_TSS (Typ, F);
4403 Set_Is_Pure (F);
4405 if not Debug_Generated_Code then
4406 Set_Debug_Info_Off (F);
4407 end if;
4408 end Build_Variant_Record_Equality;
4410 -----------------------------
4411 -- Check_Stream_Attributes --
4412 -----------------------------
4414 procedure Check_Stream_Attributes (Typ : Entity_Id) is
4415 Comp : Entity_Id;
4416 Par_Read : constant Boolean :=
4417 Stream_Attribute_Available (Typ, TSS_Stream_Read)
4418 and then not Has_Specified_Stream_Read (Typ);
4419 Par_Write : constant Boolean :=
4420 Stream_Attribute_Available (Typ, TSS_Stream_Write)
4421 and then not Has_Specified_Stream_Write (Typ);
4423 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
4424 -- Check that Comp has a user-specified Nam stream attribute
4426 ----------------
4427 -- Check_Attr --
4428 ----------------
4430 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
4431 begin
4432 if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then
4433 Error_Msg_Name_1 := Nam;
4434 Error_Msg_N
4435 ("|component& in limited extension must have% attribute", Comp);
4436 end if;
4437 end Check_Attr;
4439 -- Start of processing for Check_Stream_Attributes
4441 begin
4442 if Par_Read or else Par_Write then
4443 Comp := First_Component (Typ);
4444 while Present (Comp) loop
4445 if Comes_From_Source (Comp)
4446 and then Original_Record_Component (Comp) = Comp
4447 and then Is_Limited_Type (Etype (Comp))
4448 then
4449 if Par_Read then
4450 Check_Attr (Name_Read, TSS_Stream_Read);
4451 end if;
4453 if Par_Write then
4454 Check_Attr (Name_Write, TSS_Stream_Write);
4455 end if;
4456 end if;
4458 Next_Component (Comp);
4459 end loop;
4460 end if;
4461 end Check_Stream_Attributes;
4463 ----------------------
4464 -- Clean_Task_Names --
4465 ----------------------
4467 procedure Clean_Task_Names
4468 (Typ : Entity_Id;
4469 Proc_Id : Entity_Id)
4471 begin
4472 if Has_Task (Typ)
4473 and then not Restriction_Active (No_Implicit_Heap_Allocations)
4474 and then not Global_Discard_Names
4475 and then Tagged_Type_Expansion
4476 then
4477 Set_Uses_Sec_Stack (Proc_Id);
4478 end if;
4479 end Clean_Task_Names;
4481 ------------------------------
4482 -- Expand_Freeze_Array_Type --
4483 ------------------------------
4485 procedure Expand_Freeze_Array_Type (N : Node_Id) is
4486 Typ : constant Entity_Id := Entity (N);
4487 Base : constant Entity_Id := Base_Type (Typ);
4488 Comp_Typ : constant Entity_Id := Component_Type (Typ);
4490 begin
4491 if not Is_Bit_Packed_Array (Typ) then
4493 -- If the component contains tasks, so does the array type. This may
4494 -- not be indicated in the array type because the component may have
4495 -- been a private type at the point of definition. Same if component
4496 -- type is controlled or contains protected objects.
4498 Propagate_Concurrent_Flags (Base, Comp_Typ);
4499 Set_Has_Controlled_Component
4500 (Base, Has_Controlled_Component (Comp_Typ)
4501 or else Is_Controlled (Comp_Typ));
4503 if No (Init_Proc (Base)) then
4505 -- If this is an anonymous array created for a declaration with
4506 -- an initial value, its init_proc will never be called. The
4507 -- initial value itself may have been expanded into assignments,
4508 -- in which case the object declaration is carries the
4509 -- No_Initialization flag.
4511 if Is_Itype (Base)
4512 and then Nkind (Associated_Node_For_Itype (Base)) =
4513 N_Object_Declaration
4514 and then
4515 (Present (Expression (Associated_Node_For_Itype (Base)))
4516 or else No_Initialization (Associated_Node_For_Itype (Base)))
4517 then
4518 null;
4520 -- We do not need an init proc for string or wide [wide] string,
4521 -- since the only time these need initialization in normalize or
4522 -- initialize scalars mode, and these types are treated specially
4523 -- and do not need initialization procedures.
4525 elsif Is_Standard_String_Type (Base) then
4526 null;
4528 -- Otherwise we have to build an init proc for the subtype
4530 else
4531 Build_Array_Init_Proc (Base, N);
4532 end if;
4533 end if;
4535 if Typ = Base and then Has_Controlled_Component (Base) then
4536 Build_Controlling_Procs (Base);
4538 if not Is_Limited_Type (Comp_Typ)
4539 and then Number_Dimensions (Typ) = 1
4540 then
4541 Build_Slice_Assignment (Typ);
4542 end if;
4543 end if;
4545 -- For packed case, default initialization, except if the component type
4546 -- is itself a packed structure with an initialization procedure, or
4547 -- initialize/normalize scalars active, and we have a base type, or the
4548 -- type is public, because in that case a client might specify
4549 -- Normalize_Scalars and there better be a public Init_Proc for it.
4551 elsif (Present (Init_Proc (Component_Type (Base)))
4552 and then No (Base_Init_Proc (Base)))
4553 or else (Init_Or_Norm_Scalars and then Base = Typ)
4554 or else Is_Public (Typ)
4555 then
4556 Build_Array_Init_Proc (Base, N);
4557 end if;
4558 end Expand_Freeze_Array_Type;
4560 -----------------------------------
4561 -- Expand_Freeze_Class_Wide_Type --
4562 -----------------------------------
4564 procedure Expand_Freeze_Class_Wide_Type (N : Node_Id) is
4565 function Is_C_Derivation (Typ : Entity_Id) return Boolean;
4566 -- Given a type, determine whether it is derived from a C or C++ root
4568 ---------------------
4569 -- Is_C_Derivation --
4570 ---------------------
4572 function Is_C_Derivation (Typ : Entity_Id) return Boolean is
4573 T : Entity_Id;
4575 begin
4576 T := Typ;
4577 loop
4578 if Is_CPP_Class (T)
4579 or else Convention (T) = Convention_C
4580 or else Convention (T) = Convention_CPP
4581 then
4582 return True;
4583 end if;
4585 exit when T = Etype (T);
4587 T := Etype (T);
4588 end loop;
4590 return False;
4591 end Is_C_Derivation;
4593 -- Local variables
4595 Typ : constant Entity_Id := Entity (N);
4596 Root : constant Entity_Id := Root_Type (Typ);
4598 -- Start of processing for Expand_Freeze_Class_Wide_Type
4600 begin
4601 -- Certain run-time configurations and targets do not provide support
4602 -- for controlled types.
4604 if Restriction_Active (No_Finalization) then
4605 return;
4607 -- Do not create TSS routine Finalize_Address when dispatching calls are
4608 -- disabled since the core of the routine is a dispatching call.
4610 elsif Restriction_Active (No_Dispatching_Calls) then
4611 return;
4613 -- Do not create TSS routine Finalize_Address for concurrent class-wide
4614 -- types. Ignore C, C++, CIL and Java types since it is assumed that the
4615 -- non-Ada side will handle their destruction.
4617 elsif Is_Concurrent_Type (Root)
4618 or else Is_C_Derivation (Root)
4619 or else Convention (Typ) = Convention_CPP
4620 then
4621 return;
4623 -- Do not create TSS routine Finalize_Address when compiling in CodePeer
4624 -- mode since the routine contains an Unchecked_Conversion.
4626 elsif CodePeer_Mode then
4627 return;
4628 end if;
4630 -- Create the body of TSS primitive Finalize_Address. This automatically
4631 -- sets the TSS entry for the class-wide type.
4633 Make_Finalize_Address_Body (Typ);
4634 end Expand_Freeze_Class_Wide_Type;
4636 ------------------------------------
4637 -- Expand_Freeze_Enumeration_Type --
4638 ------------------------------------
4640 procedure Expand_Freeze_Enumeration_Type (N : Node_Id) is
4641 Typ : constant Entity_Id := Entity (N);
4642 Loc : constant Source_Ptr := Sloc (Typ);
4644 Arr : Entity_Id;
4645 Ent : Entity_Id;
4646 Fent : Entity_Id;
4647 Is_Contiguous : Boolean;
4648 Ityp : Entity_Id;
4649 Last_Repval : Uint;
4650 Lst : List_Id;
4651 Num : Nat;
4652 Pos_Expr : Node_Id;
4654 Func : Entity_Id;
4655 pragma Warnings (Off, Func);
4657 begin
4658 -- Various optimizations possible if given representation is contiguous
4660 Is_Contiguous := True;
4662 Ent := First_Literal (Typ);
4663 Last_Repval := Enumeration_Rep (Ent);
4665 Next_Literal (Ent);
4666 while Present (Ent) loop
4667 if Enumeration_Rep (Ent) - Last_Repval /= 1 then
4668 Is_Contiguous := False;
4669 exit;
4670 else
4671 Last_Repval := Enumeration_Rep (Ent);
4672 end if;
4674 Next_Literal (Ent);
4675 end loop;
4677 if Is_Contiguous then
4678 Set_Has_Contiguous_Rep (Typ);
4679 Ent := First_Literal (Typ);
4680 Num := 1;
4681 Lst := New_List (New_Occurrence_Of (Ent, Sloc (Ent)));
4683 else
4684 -- Build list of literal references
4686 Lst := New_List;
4687 Num := 0;
4689 Ent := First_Literal (Typ);
4690 while Present (Ent) loop
4691 Append_To (Lst, New_Occurrence_Of (Ent, Sloc (Ent)));
4692 Num := Num + 1;
4693 Next_Literal (Ent);
4694 end loop;
4695 end if;
4697 -- Now build an array declaration
4699 -- typA : array (Natural range 0 .. num - 1) of ctype :=
4700 -- (v, v, v, v, v, ....)
4702 -- where ctype is the corresponding integer type. If the representation
4703 -- is contiguous, we only keep the first literal, which provides the
4704 -- offset for Pos_To_Rep computations.
4706 Arr :=
4707 Make_Defining_Identifier (Loc,
4708 Chars => New_External_Name (Chars (Typ), 'A'));
4710 Append_Freeze_Action (Typ,
4711 Make_Object_Declaration (Loc,
4712 Defining_Identifier => Arr,
4713 Constant_Present => True,
4715 Object_Definition =>
4716 Make_Constrained_Array_Definition (Loc,
4717 Discrete_Subtype_Definitions => New_List (
4718 Make_Subtype_Indication (Loc,
4719 Subtype_Mark => New_Occurrence_Of (Standard_Natural, Loc),
4720 Constraint =>
4721 Make_Range_Constraint (Loc,
4722 Range_Expression =>
4723 Make_Range (Loc,
4724 Low_Bound =>
4725 Make_Integer_Literal (Loc, 0),
4726 High_Bound =>
4727 Make_Integer_Literal (Loc, Num - 1))))),
4729 Component_Definition =>
4730 Make_Component_Definition (Loc,
4731 Aliased_Present => False,
4732 Subtype_Indication => New_Occurrence_Of (Typ, Loc))),
4734 Expression =>
4735 Make_Aggregate (Loc,
4736 Expressions => Lst)));
4738 Set_Enum_Pos_To_Rep (Typ, Arr);
4740 -- Now we build the function that converts representation values to
4741 -- position values. This function has the form:
4743 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
4744 -- begin
4745 -- case ityp!(A) is
4746 -- when enum-lit'Enum_Rep => return posval;
4747 -- when enum-lit'Enum_Rep => return posval;
4748 -- ...
4749 -- when others =>
4750 -- [raise Constraint_Error when F "invalid data"]
4751 -- return -1;
4752 -- end case;
4753 -- end;
4755 -- Note: the F parameter determines whether the others case (no valid
4756 -- representation) raises Constraint_Error or returns a unique value
4757 -- of minus one. The latter case is used, e.g. in 'Valid code.
4759 -- Note: the reason we use Enum_Rep values in the case here is to avoid
4760 -- the code generator making inappropriate assumptions about the range
4761 -- of the values in the case where the value is invalid. ityp is a
4762 -- signed or unsigned integer type of appropriate width.
4764 -- Note: if exceptions are not supported, then we suppress the raise
4765 -- and return -1 unconditionally (this is an erroneous program in any
4766 -- case and there is no obligation to raise Constraint_Error here). We
4767 -- also do this if pragma Restrictions (No_Exceptions) is active.
4769 -- Is this right??? What about No_Exception_Propagation???
4771 -- Representations are signed
4773 if Enumeration_Rep (First_Literal (Typ)) < 0 then
4775 -- The underlying type is signed. Reset the Is_Unsigned_Type
4776 -- explicitly, because it might have been inherited from
4777 -- parent type.
4779 Set_Is_Unsigned_Type (Typ, False);
4781 if Esize (Typ) <= Standard_Integer_Size then
4782 Ityp := Standard_Integer;
4783 else
4784 Ityp := Universal_Integer;
4785 end if;
4787 -- Representations are unsigned
4789 else
4790 if Esize (Typ) <= Standard_Integer_Size then
4791 Ityp := RTE (RE_Unsigned);
4792 else
4793 Ityp := RTE (RE_Long_Long_Unsigned);
4794 end if;
4795 end if;
4797 -- The body of the function is a case statement. First collect case
4798 -- alternatives, or optimize the contiguous case.
4800 Lst := New_List;
4802 -- If representation is contiguous, Pos is computed by subtracting
4803 -- the representation of the first literal.
4805 if Is_Contiguous then
4806 Ent := First_Literal (Typ);
4808 if Enumeration_Rep (Ent) = Last_Repval then
4810 -- Another special case: for a single literal, Pos is zero
4812 Pos_Expr := Make_Integer_Literal (Loc, Uint_0);
4814 else
4815 Pos_Expr :=
4816 Convert_To (Standard_Integer,
4817 Make_Op_Subtract (Loc,
4818 Left_Opnd =>
4819 Unchecked_Convert_To
4820 (Ityp, Make_Identifier (Loc, Name_uA)),
4821 Right_Opnd =>
4822 Make_Integer_Literal (Loc,
4823 Intval => Enumeration_Rep (First_Literal (Typ)))));
4824 end if;
4826 Append_To (Lst,
4827 Make_Case_Statement_Alternative (Loc,
4828 Discrete_Choices => New_List (
4829 Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
4830 Low_Bound =>
4831 Make_Integer_Literal (Loc,
4832 Intval => Enumeration_Rep (Ent)),
4833 High_Bound =>
4834 Make_Integer_Literal (Loc, Intval => Last_Repval))),
4836 Statements => New_List (
4837 Make_Simple_Return_Statement (Loc,
4838 Expression => Pos_Expr))));
4840 else
4841 Ent := First_Literal (Typ);
4842 while Present (Ent) loop
4843 Append_To (Lst,
4844 Make_Case_Statement_Alternative (Loc,
4845 Discrete_Choices => New_List (
4846 Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
4847 Intval => Enumeration_Rep (Ent))),
4849 Statements => New_List (
4850 Make_Simple_Return_Statement (Loc,
4851 Expression =>
4852 Make_Integer_Literal (Loc,
4853 Intval => Enumeration_Pos (Ent))))));
4855 Next_Literal (Ent);
4856 end loop;
4857 end if;
4859 -- In normal mode, add the others clause with the test.
4860 -- If Predicates_Ignored is True, validity checks do not apply to
4861 -- the subtype.
4863 if not No_Exception_Handlers_Set
4864 and then not Predicates_Ignored (Typ)
4865 then
4866 Append_To (Lst,
4867 Make_Case_Statement_Alternative (Loc,
4868 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4869 Statements => New_List (
4870 Make_Raise_Constraint_Error (Loc,
4871 Condition => Make_Identifier (Loc, Name_uF),
4872 Reason => CE_Invalid_Data),
4873 Make_Simple_Return_Statement (Loc,
4874 Expression => Make_Integer_Literal (Loc, -1)))));
4876 -- If either of the restrictions No_Exceptions_Handlers/Propagation is
4877 -- active then return -1 (we cannot usefully raise Constraint_Error in
4878 -- this case). See description above for further details.
4880 else
4881 Append_To (Lst,
4882 Make_Case_Statement_Alternative (Loc,
4883 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4884 Statements => New_List (
4885 Make_Simple_Return_Statement (Loc,
4886 Expression => Make_Integer_Literal (Loc, -1)))));
4887 end if;
4889 -- Now we can build the function body
4891 Fent :=
4892 Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));
4894 Func :=
4895 Make_Subprogram_Body (Loc,
4896 Specification =>
4897 Make_Function_Specification (Loc,
4898 Defining_Unit_Name => Fent,
4899 Parameter_Specifications => New_List (
4900 Make_Parameter_Specification (Loc,
4901 Defining_Identifier =>
4902 Make_Defining_Identifier (Loc, Name_uA),
4903 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
4904 Make_Parameter_Specification (Loc,
4905 Defining_Identifier =>
4906 Make_Defining_Identifier (Loc, Name_uF),
4907 Parameter_Type =>
4908 New_Occurrence_Of (Standard_Boolean, Loc))),
4910 Result_Definition => New_Occurrence_Of (Standard_Integer, Loc)),
4912 Declarations => Empty_List,
4914 Handled_Statement_Sequence =>
4915 Make_Handled_Sequence_Of_Statements (Loc,
4916 Statements => New_List (
4917 Make_Case_Statement (Loc,
4918 Expression =>
4919 Unchecked_Convert_To
4920 (Ityp, Make_Identifier (Loc, Name_uA)),
4921 Alternatives => Lst))));
4923 Set_TSS (Typ, Fent);
4925 -- Set Pure flag (it will be reset if the current context is not Pure).
4926 -- We also pretend there was a pragma Pure_Function so that for purposes
4927 -- of optimization and constant-folding, we will consider the function
4928 -- Pure even if we are not in a Pure context).
4930 Set_Is_Pure (Fent);
4931 Set_Has_Pragma_Pure_Function (Fent);
4933 -- Unless we are in -gnatD mode, where we are debugging generated code,
4934 -- this is an internal entity for which we don't need debug info.
4936 if not Debug_Generated_Code then
4937 Set_Debug_Info_Off (Fent);
4938 end if;
4940 Set_Is_Inlined (Fent);
4942 exception
4943 when RE_Not_Available =>
4944 return;
4945 end Expand_Freeze_Enumeration_Type;
4947 -------------------------------
4948 -- Expand_Freeze_Record_Type --
4949 -------------------------------
4951 procedure Expand_Freeze_Record_Type (N : Node_Id) is
4952 Typ : constant Node_Id := Entity (N);
4953 Typ_Decl : constant Node_Id := Parent (Typ);
4955 Comp : Entity_Id;
4956 Comp_Typ : Entity_Id;
4957 Predef_List : List_Id;
4959 Wrapper_Decl_List : List_Id := No_List;
4960 Wrapper_Body_List : List_Id := No_List;
4962 Renamed_Eq : Node_Id := Empty;
4963 -- Defining unit name for the predefined equality function in the case
4964 -- where the type has a primitive operation that is a renaming of
4965 -- predefined equality (but only if there is also an overriding
4966 -- user-defined equality function). Used to pass this entity from
4967 -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.
4969 -- Start of processing for Expand_Freeze_Record_Type
4971 begin
4972 -- Build discriminant checking functions if not a derived type (for
4973 -- derived types that are not tagged types, always use the discriminant
4974 -- checking functions of the parent type). However, for untagged types
4975 -- the derivation may have taken place before the parent was frozen, so
4976 -- we copy explicitly the discriminant checking functions from the
4977 -- parent into the components of the derived type.
4979 if not Is_Derived_Type (Typ)
4980 or else Has_New_Non_Standard_Rep (Typ)
4981 or else Is_Tagged_Type (Typ)
4982 then
4983 Build_Discr_Checking_Funcs (Typ_Decl);
4985 elsif Is_Derived_Type (Typ)
4986 and then not Is_Tagged_Type (Typ)
4988 -- If we have a derived Unchecked_Union, we do not inherit the
4989 -- discriminant checking functions from the parent type since the
4990 -- discriminants are non existent.
4992 and then not Is_Unchecked_Union (Typ)
4993 and then Has_Discriminants (Typ)
4994 then
4995 declare
4996 Old_Comp : Entity_Id;
4998 begin
4999 Old_Comp :=
5000 First_Component (Base_Type (Underlying_Type (Etype (Typ))));
5001 Comp := First_Component (Typ);
5002 while Present (Comp) loop
5003 if Ekind (Comp) = E_Component
5004 and then Chars (Comp) = Chars (Old_Comp)
5005 then
5006 Set_Discriminant_Checking_Func
5007 (Comp, Discriminant_Checking_Func (Old_Comp));
5008 end if;
5010 Next_Component (Old_Comp);
5011 Next_Component (Comp);
5012 end loop;
5013 end;
5014 end if;
5016 if Is_Derived_Type (Typ)
5017 and then Is_Limited_Type (Typ)
5018 and then Is_Tagged_Type (Typ)
5019 then
5020 Check_Stream_Attributes (Typ);
5021 end if;
5023 -- Update task, protected, and controlled component flags, because some
5024 -- of the component types may have been private at the point of the
5025 -- record declaration. Detect anonymous access-to-controlled components.
5027 Comp := First_Component (Typ);
5028 while Present (Comp) loop
5029 Comp_Typ := Etype (Comp);
5031 Propagate_Concurrent_Flags (Typ, Comp_Typ);
5033 -- Do not set Has_Controlled_Component on a class-wide equivalent
5034 -- type. See Make_CW_Equivalent_Type.
5036 if not Is_Class_Wide_Equivalent_Type (Typ)
5037 and then
5038 (Has_Controlled_Component (Comp_Typ)
5039 or else (Chars (Comp) /= Name_uParent
5040 and then Is_Controlled (Comp_Typ)))
5041 then
5042 Set_Has_Controlled_Component (Typ);
5043 end if;
5045 Next_Component (Comp);
5046 end loop;
5048 -- Handle constructors of untagged CPP_Class types
5050 if not Is_Tagged_Type (Typ) and then Is_CPP_Class (Typ) then
5051 Set_CPP_Constructors (Typ);
5052 end if;
5054 -- Creation of the Dispatch Table. Note that a Dispatch Table is built
5055 -- for regular tagged types as well as for Ada types deriving from a C++
5056 -- Class, but not for tagged types directly corresponding to C++ classes
5057 -- In the later case we assume that it is created in the C++ side and we
5058 -- just use it.
5060 if Is_Tagged_Type (Typ) then
5062 -- Add the _Tag component
5064 if Underlying_Type (Etype (Typ)) = Typ then
5065 Expand_Tagged_Root (Typ);
5066 end if;
5068 if Is_CPP_Class (Typ) then
5069 Set_All_DT_Position (Typ);
5071 -- Create the tag entities with a minimum decoration
5073 if Tagged_Type_Expansion then
5074 Append_Freeze_Actions (Typ, Make_Tags (Typ));
5075 end if;
5077 Set_CPP_Constructors (Typ);
5079 else
5080 if not Building_Static_DT (Typ) then
5082 -- Usually inherited primitives are not delayed but the first
5083 -- Ada extension of a CPP_Class is an exception since the
5084 -- address of the inherited subprogram has to be inserted in
5085 -- the new Ada Dispatch Table and this is a freezing action.
5087 -- Similarly, if this is an inherited operation whose parent is
5088 -- not frozen yet, it is not in the DT of the parent, and we
5089 -- generate an explicit freeze node for the inherited operation
5090 -- so it is properly inserted in the DT of the current type.
5092 declare
5093 Elmt : Elmt_Id;
5094 Subp : Entity_Id;
5096 begin
5097 Elmt := First_Elmt (Primitive_Operations (Typ));
5098 while Present (Elmt) loop
5099 Subp := Node (Elmt);
5101 if Present (Alias (Subp)) then
5102 if Is_CPP_Class (Etype (Typ)) then
5103 Set_Has_Delayed_Freeze (Subp);
5105 elsif Has_Delayed_Freeze (Alias (Subp))
5106 and then not Is_Frozen (Alias (Subp))
5107 then
5108 Set_Is_Frozen (Subp, False);
5109 Set_Has_Delayed_Freeze (Subp);
5110 end if;
5111 end if;
5113 Next_Elmt (Elmt);
5114 end loop;
5115 end;
5116 end if;
5118 -- Unfreeze momentarily the type to add the predefined primitives
5119 -- operations. The reason we unfreeze is so that these predefined
5120 -- operations will indeed end up as primitive operations (which
5121 -- must be before the freeze point).
5123 Set_Is_Frozen (Typ, False);
5125 -- Do not add the spec of predefined primitives in case of
5126 -- CPP tagged type derivations that have convention CPP.
5128 if Is_CPP_Class (Root_Type (Typ))
5129 and then Convention (Typ) = Convention_CPP
5130 then
5131 null;
5133 -- Do not add the spec of the predefined primitives if we are
5134 -- compiling under restriction No_Dispatching_Calls.
5136 elsif not Restriction_Active (No_Dispatching_Calls) then
5137 Make_Predefined_Primitive_Specs (Typ, Predef_List, Renamed_Eq);
5138 Insert_List_Before_And_Analyze (N, Predef_List);
5139 end if;
5141 -- Ada 2005 (AI-391): For a nonabstract null extension, create
5142 -- wrapper functions for each nonoverridden inherited function
5143 -- with a controlling result of the type. The wrapper for such
5144 -- a function returns an extension aggregate that invokes the
5145 -- parent function.
5147 if Ada_Version >= Ada_2005
5148 and then not Is_Abstract_Type (Typ)
5149 and then Is_Null_Extension (Typ)
5150 then
5151 Make_Controlling_Function_Wrappers
5152 (Typ, Wrapper_Decl_List, Wrapper_Body_List);
5153 Insert_List_Before_And_Analyze (N, Wrapper_Decl_List);
5154 end if;
5156 -- Ada 2005 (AI-251): For a nonabstract type extension, build
5157 -- null procedure declarations for each set of homographic null
5158 -- procedures that are inherited from interface types but not
5159 -- overridden. This is done to ensure that the dispatch table
5160 -- entry associated with such null primitives are properly filled.
5162 if Ada_Version >= Ada_2005
5163 and then Etype (Typ) /= Typ
5164 and then not Is_Abstract_Type (Typ)
5165 and then Has_Interfaces (Typ)
5166 then
5167 Insert_Actions (N, Make_Null_Procedure_Specs (Typ));
5168 end if;
5170 Set_Is_Frozen (Typ);
5172 if not Is_Derived_Type (Typ)
5173 or else Is_Tagged_Type (Etype (Typ))
5174 then
5175 Set_All_DT_Position (Typ);
5177 -- If this is a type derived from an untagged private type whose
5178 -- full view is tagged, the type is marked tagged for layout
5179 -- reasons, but it has no dispatch table.
5181 elsif Is_Derived_Type (Typ)
5182 and then Is_Private_Type (Etype (Typ))
5183 and then not Is_Tagged_Type (Etype (Typ))
5184 then
5185 return;
5186 end if;
5188 -- Create and decorate the tags. Suppress their creation when
5189 -- not Tagged_Type_Expansion because the dispatching mechanism is
5190 -- handled internally by the virtual target.
5192 if Tagged_Type_Expansion then
5193 Append_Freeze_Actions (Typ, Make_Tags (Typ));
5195 -- Generate dispatch table of locally defined tagged type.
5196 -- Dispatch tables of library level tagged types are built
5197 -- later (see Analyze_Declarations).
5199 if not Building_Static_DT (Typ) then
5200 Append_Freeze_Actions (Typ, Make_DT (Typ));
5201 end if;
5202 end if;
5204 -- If the type has unknown discriminants, propagate dispatching
5205 -- information to its underlying record view, which does not get
5206 -- its own dispatch table.
5208 if Is_Derived_Type (Typ)
5209 and then Has_Unknown_Discriminants (Typ)
5210 and then Present (Underlying_Record_View (Typ))
5211 then
5212 declare
5213 Rep : constant Entity_Id := Underlying_Record_View (Typ);
5214 begin
5215 Set_Access_Disp_Table
5216 (Rep, Access_Disp_Table (Typ));
5217 Set_Dispatch_Table_Wrappers
5218 (Rep, Dispatch_Table_Wrappers (Typ));
5219 Set_Direct_Primitive_Operations
5220 (Rep, Direct_Primitive_Operations (Typ));
5221 end;
5222 end if;
5224 -- Make sure that the primitives Initialize, Adjust and Finalize
5225 -- are Frozen before other TSS subprograms. We don't want them
5226 -- Frozen inside.
5228 if Is_Controlled (Typ) then
5229 if not Is_Limited_Type (Typ) then
5230 Append_Freeze_Actions (Typ,
5231 Freeze_Entity (Find_Prim_Op (Typ, Name_Adjust), Typ));
5232 end if;
5234 Append_Freeze_Actions (Typ,
5235 Freeze_Entity (Find_Prim_Op (Typ, Name_Initialize), Typ));
5237 Append_Freeze_Actions (Typ,
5238 Freeze_Entity (Find_Prim_Op (Typ, Name_Finalize), Typ));
5239 end if;
5241 -- Freeze rest of primitive operations. There is no need to handle
5242 -- the predefined primitives if we are compiling under restriction
5243 -- No_Dispatching_Calls.
5245 if not Restriction_Active (No_Dispatching_Calls) then
5246 Append_Freeze_Actions (Typ, Predefined_Primitive_Freeze (Typ));
5247 end if;
5248 end if;
5250 -- In the untagged case, ever since Ada 83 an equality function must
5251 -- be provided for variant records that are not unchecked unions.
5252 -- In Ada 2012 the equality function composes, and thus must be built
5253 -- explicitly just as for tagged records.
5255 elsif Has_Discriminants (Typ)
5256 and then not Is_Limited_Type (Typ)
5257 then
5258 declare
5259 Comps : constant Node_Id :=
5260 Component_List (Type_Definition (Typ_Decl));
5261 begin
5262 if Present (Comps)
5263 and then Present (Variant_Part (Comps))
5264 then
5265 Build_Variant_Record_Equality (Typ);
5266 end if;
5267 end;
5269 -- Otherwise create primitive equality operation (AI05-0123)
5271 -- This is done unconditionally to ensure that tools can be linked
5272 -- properly with user programs compiled with older language versions.
5273 -- In addition, this is needed because "=" composes for bounded strings
5274 -- in all language versions (see Exp_Ch4.Expand_Composite_Equality).
5276 elsif Comes_From_Source (Typ)
5277 and then Convention (Typ) = Convention_Ada
5278 and then not Is_Limited_Type (Typ)
5279 then
5280 Build_Untagged_Equality (Typ);
5281 end if;
5283 -- Before building the record initialization procedure, if we are
5284 -- dealing with a concurrent record value type, then we must go through
5285 -- the discriminants, exchanging discriminals between the concurrent
5286 -- type and the concurrent record value type. See the section "Handling
5287 -- of Discriminants" in the Einfo spec for details.
5289 if Is_Concurrent_Record_Type (Typ)
5290 and then Has_Discriminants (Typ)
5291 then
5292 declare
5293 Ctyp : constant Entity_Id :=
5294 Corresponding_Concurrent_Type (Typ);
5295 Conc_Discr : Entity_Id;
5296 Rec_Discr : Entity_Id;
5297 Temp : Entity_Id;
5299 begin
5300 Conc_Discr := First_Discriminant (Ctyp);
5301 Rec_Discr := First_Discriminant (Typ);
5302 while Present (Conc_Discr) loop
5303 Temp := Discriminal (Conc_Discr);
5304 Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
5305 Set_Discriminal (Rec_Discr, Temp);
5307 Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
5308 Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
5310 Next_Discriminant (Conc_Discr);
5311 Next_Discriminant (Rec_Discr);
5312 end loop;
5313 end;
5314 end if;
5316 if Has_Controlled_Component (Typ) then
5317 Build_Controlling_Procs (Typ);
5318 end if;
5320 Adjust_Discriminants (Typ);
5322 -- Do not need init for interfaces on virtual targets since they're
5323 -- abstract.
5325 if Tagged_Type_Expansion or else not Is_Interface (Typ) then
5326 Build_Record_Init_Proc (Typ_Decl, Typ);
5327 end if;
5329 -- For tagged type that are not interfaces, build bodies of primitive
5330 -- operations. Note: do this after building the record initialization
5331 -- procedure, since the primitive operations may need the initialization
5332 -- routine. There is no need to add predefined primitives of interfaces
5333 -- because all their predefined primitives are abstract.
5335 if Is_Tagged_Type (Typ) and then not Is_Interface (Typ) then
5337 -- Do not add the body of predefined primitives in case of CPP tagged
5338 -- type derivations that have convention CPP.
5340 if Is_CPP_Class (Root_Type (Typ))
5341 and then Convention (Typ) = Convention_CPP
5342 then
5343 null;
5345 -- Do not add the body of the predefined primitives if we are
5346 -- compiling under restriction No_Dispatching_Calls or if we are
5347 -- compiling a CPP tagged type.
5349 elsif not Restriction_Active (No_Dispatching_Calls) then
5351 -- Create the body of TSS primitive Finalize_Address. This must
5352 -- be done before the bodies of all predefined primitives are
5353 -- created. If Typ is limited, Stream_Input and Stream_Read may
5354 -- produce build-in-place allocations and for those the expander
5355 -- needs Finalize_Address.
5357 Make_Finalize_Address_Body (Typ);
5358 Predef_List := Predefined_Primitive_Bodies (Typ, Renamed_Eq);
5359 Append_Freeze_Actions (Typ, Predef_List);
5360 end if;
5362 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
5363 -- inherited functions, then add their bodies to the freeze actions.
5365 if Present (Wrapper_Body_List) then
5366 Append_Freeze_Actions (Typ, Wrapper_Body_List);
5367 end if;
5369 -- Create extra formals for the primitive operations of the type.
5370 -- This must be done before analyzing the body of the initialization
5371 -- procedure, because a self-referential type might call one of these
5372 -- primitives in the body of the init_proc itself.
5374 declare
5375 Elmt : Elmt_Id;
5376 Subp : Entity_Id;
5378 begin
5379 Elmt := First_Elmt (Primitive_Operations (Typ));
5380 while Present (Elmt) loop
5381 Subp := Node (Elmt);
5382 if not Has_Foreign_Convention (Subp)
5383 and then not Is_Predefined_Dispatching_Operation (Subp)
5384 then
5385 Create_Extra_Formals (Subp);
5386 end if;
5388 Next_Elmt (Elmt);
5389 end loop;
5390 end;
5391 end if;
5392 end Expand_Freeze_Record_Type;
5394 ------------------------------------
5395 -- Expand_N_Full_Type_Declaration --
5396 ------------------------------------
5398 procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
5399 procedure Build_Master (Ptr_Typ : Entity_Id);
5400 -- Create the master associated with Ptr_Typ
5402 ------------------
5403 -- Build_Master --
5404 ------------------
5406 procedure Build_Master (Ptr_Typ : Entity_Id) is
5407 Desig_Typ : Entity_Id := Designated_Type (Ptr_Typ);
5409 begin
5410 -- If the designated type is an incomplete view coming from a
5411 -- limited-with'ed package, we need to use the nonlimited view in
5412 -- case it has tasks.
5414 if Ekind (Desig_Typ) in Incomplete_Kind
5415 and then Present (Non_Limited_View (Desig_Typ))
5416 then
5417 Desig_Typ := Non_Limited_View (Desig_Typ);
5418 end if;
5420 -- Anonymous access types are created for the components of the
5421 -- record parameter for an entry declaration. No master is created
5422 -- for such a type.
5424 if Comes_From_Source (N) and then Has_Task (Desig_Typ) then
5425 Build_Master_Entity (Ptr_Typ);
5426 Build_Master_Renaming (Ptr_Typ);
5428 -- Create a class-wide master because a Master_Id must be generated
5429 -- for access-to-limited-class-wide types whose root may be extended
5430 -- with task components.
5432 -- Note: This code covers access-to-limited-interfaces because they
5433 -- can be used to reference tasks implementing them.
5435 elsif Is_Limited_Class_Wide_Type (Desig_Typ)
5436 and then Tasking_Allowed
5437 then
5438 Build_Class_Wide_Master (Ptr_Typ);
5439 end if;
5440 end Build_Master;
5442 -- Local declarations
5444 Def_Id : constant Entity_Id := Defining_Identifier (N);
5445 B_Id : constant Entity_Id := Base_Type (Def_Id);
5446 FN : Node_Id;
5447 Par_Id : Entity_Id;
5449 -- Start of processing for Expand_N_Full_Type_Declaration
5451 begin
5452 if Is_Access_Type (Def_Id) then
5453 Build_Master (Def_Id);
5455 if Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
5456 Expand_Access_Protected_Subprogram_Type (N);
5457 end if;
5459 -- Array of anonymous access-to-task pointers
5461 elsif Ada_Version >= Ada_2005
5462 and then Is_Array_Type (Def_Id)
5463 and then Is_Access_Type (Component_Type (Def_Id))
5464 and then Ekind (Component_Type (Def_Id)) = E_Anonymous_Access_Type
5465 then
5466 Build_Master (Component_Type (Def_Id));
5468 elsif Has_Task (Def_Id) then
5469 Expand_Previous_Access_Type (Def_Id);
5471 -- Check the components of a record type or array of records for
5472 -- anonymous access-to-task pointers.
5474 elsif Ada_Version >= Ada_2005
5475 and then (Is_Record_Type (Def_Id)
5476 or else
5477 (Is_Array_Type (Def_Id)
5478 and then Is_Record_Type (Component_Type (Def_Id))))
5479 then
5480 declare
5481 Comp : Entity_Id;
5482 First : Boolean;
5483 M_Id : Entity_Id;
5484 Typ : Entity_Id;
5486 begin
5487 if Is_Array_Type (Def_Id) then
5488 Comp := First_Entity (Component_Type (Def_Id));
5489 else
5490 Comp := First_Entity (Def_Id);
5491 end if;
5493 -- Examine all components looking for anonymous access-to-task
5494 -- types.
5496 First := True;
5497 while Present (Comp) loop
5498 Typ := Etype (Comp);
5500 if Ekind (Typ) = E_Anonymous_Access_Type
5501 and then Has_Task (Available_View (Designated_Type (Typ)))
5502 and then No (Master_Id (Typ))
5503 then
5504 -- Ensure that the record or array type have a _master
5506 if First then
5507 Build_Master_Entity (Def_Id);
5508 Build_Master_Renaming (Typ);
5509 M_Id := Master_Id (Typ);
5511 First := False;
5513 -- Reuse the same master to service any additional types
5515 else
5516 Set_Master_Id (Typ, M_Id);
5517 end if;
5518 end if;
5520 Next_Entity (Comp);
5521 end loop;
5522 end;
5523 end if;
5525 Par_Id := Etype (B_Id);
5527 -- The parent type is private then we need to inherit any TSS operations
5528 -- from the full view.
5530 if Ekind (Par_Id) in Private_Kind
5531 and then Present (Full_View (Par_Id))
5532 then
5533 Par_Id := Base_Type (Full_View (Par_Id));
5534 end if;
5536 if Nkind (Type_Definition (Original_Node (N))) =
5537 N_Derived_Type_Definition
5538 and then not Is_Tagged_Type (Def_Id)
5539 and then Present (Freeze_Node (Par_Id))
5540 and then Present (TSS_Elist (Freeze_Node (Par_Id)))
5541 then
5542 Ensure_Freeze_Node (B_Id);
5543 FN := Freeze_Node (B_Id);
5545 if No (TSS_Elist (FN)) then
5546 Set_TSS_Elist (FN, New_Elmt_List);
5547 end if;
5549 declare
5550 T_E : constant Elist_Id := TSS_Elist (FN);
5551 Elmt : Elmt_Id;
5553 begin
5554 Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
5555 while Present (Elmt) loop
5556 if Chars (Node (Elmt)) /= Name_uInit then
5557 Append_Elmt (Node (Elmt), T_E);
5558 end if;
5560 Next_Elmt (Elmt);
5561 end loop;
5563 -- If the derived type itself is private with a full view, then
5564 -- associate the full view with the inherited TSS_Elist as well.
5566 if Ekind (B_Id) in Private_Kind
5567 and then Present (Full_View (B_Id))
5568 then
5569 Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
5570 Set_TSS_Elist
5571 (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
5572 end if;
5573 end;
5574 end if;
5575 end Expand_N_Full_Type_Declaration;
5577 ---------------------------------
5578 -- Expand_N_Object_Declaration --
5579 ---------------------------------
5581 procedure Expand_N_Object_Declaration (N : Node_Id) is
5582 Loc : constant Source_Ptr := Sloc (N);
5583 Def_Id : constant Entity_Id := Defining_Identifier (N);
5584 Expr : constant Node_Id := Expression (N);
5585 Obj_Def : constant Node_Id := Object_Definition (N);
5586 Typ : constant Entity_Id := Etype (Def_Id);
5587 Base_Typ : constant Entity_Id := Base_Type (Typ);
5588 Expr_Q : Node_Id;
5590 function Build_Equivalent_Aggregate return Boolean;
5591 -- If the object has a constrained discriminated type and no initial
5592 -- value, it may be possible to build an equivalent aggregate instead,
5593 -- and prevent an actual call to the initialization procedure.
5595 procedure Check_Large_Modular_Array;
5596 -- Check that the size of the array can be computed without overflow,
5597 -- and generate a Storage_Error otherwise. This is only relevant for
5598 -- array types whose index in a (mod 2**64) type, where wrap-around
5599 -- arithmetic might yield a meaningless value for the length of the
5600 -- array, or its corresponding attribute.
5602 procedure Count_Default_Sized_Task_Stacks
5603 (Typ : Entity_Id;
5604 Pri_Stacks : out Int;
5605 Sec_Stacks : out Int);
5606 -- Count the number of default-sized primary and secondary task stacks
5607 -- required for task objects contained within type Typ. If the number of
5608 -- task objects contained within the type is not known at compile time
5609 -- the procedure will return the stack counts of zero.
5611 procedure Default_Initialize_Object (After : Node_Id);
5612 -- Generate all default initialization actions for object Def_Id. Any
5613 -- new code is inserted after node After.
5615 function Rewrite_As_Renaming return Boolean;
5616 -- Indicate whether to rewrite a declaration with initialization into an
5617 -- object renaming declaration (see below).
5619 --------------------------------
5620 -- Build_Equivalent_Aggregate --
5621 --------------------------------
5623 function Build_Equivalent_Aggregate return Boolean is
5624 Aggr : Node_Id;
5625 Comp : Entity_Id;
5626 Discr : Elmt_Id;
5627 Full_Type : Entity_Id;
5629 begin
5630 Full_Type := Typ;
5632 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
5633 Full_Type := Full_View (Typ);
5634 end if;
5636 -- Only perform this transformation if Elaboration_Code is forbidden
5637 -- or undesirable, and if this is a global entity of a constrained
5638 -- record type.
5640 -- If Initialize_Scalars might be active this transformation cannot
5641 -- be performed either, because it will lead to different semantics
5642 -- or because elaboration code will in fact be created.
5644 if Ekind (Full_Type) /= E_Record_Subtype
5645 or else not Has_Discriminants (Full_Type)
5646 or else not Is_Constrained (Full_Type)
5647 or else Is_Controlled (Full_Type)
5648 or else Is_Limited_Type (Full_Type)
5649 or else not Restriction_Active (No_Initialize_Scalars)
5650 then
5651 return False;
5652 end if;
5654 if Ekind (Current_Scope) = E_Package
5655 and then
5656 (Restriction_Active (No_Elaboration_Code)
5657 or else Is_Preelaborated (Current_Scope))
5658 then
5659 -- Building a static aggregate is possible if the discriminants
5660 -- have static values and the other components have static
5661 -- defaults or none.
5663 Discr := First_Elmt (Discriminant_Constraint (Full_Type));
5664 while Present (Discr) loop
5665 if not Is_OK_Static_Expression (Node (Discr)) then
5666 return False;
5667 end if;
5669 Next_Elmt (Discr);
5670 end loop;
5672 -- Check that initialized components are OK, and that non-
5673 -- initialized components do not require a call to their own
5674 -- initialization procedure.
5676 Comp := First_Component (Full_Type);
5677 while Present (Comp) loop
5678 if Ekind (Comp) = E_Component
5679 and then Present (Expression (Parent (Comp)))
5680 and then
5681 not Is_OK_Static_Expression (Expression (Parent (Comp)))
5682 then
5683 return False;
5685 elsif Has_Non_Null_Base_Init_Proc (Etype (Comp)) then
5686 return False;
5688 end if;
5690 Next_Component (Comp);
5691 end loop;
5693 -- Everything is static, assemble the aggregate, discriminant
5694 -- values first.
5696 Aggr :=
5697 Make_Aggregate (Loc,
5698 Expressions => New_List,
5699 Component_Associations => New_List);
5701 Discr := First_Elmt (Discriminant_Constraint (Full_Type));
5702 while Present (Discr) loop
5703 Append_To (Expressions (Aggr), New_Copy (Node (Discr)));
5704 Next_Elmt (Discr);
5705 end loop;
5707 -- Now collect values of initialized components
5709 Comp := First_Component (Full_Type);
5710 while Present (Comp) loop
5711 if Ekind (Comp) = E_Component
5712 and then Present (Expression (Parent (Comp)))
5713 then
5714 Append_To (Component_Associations (Aggr),
5715 Make_Component_Association (Loc,
5716 Choices => New_List (New_Occurrence_Of (Comp, Loc)),
5717 Expression => New_Copy_Tree
5718 (Expression (Parent (Comp)))));
5719 end if;
5721 Next_Component (Comp);
5722 end loop;
5724 -- Finally, box-initialize remaining components
5726 Append_To (Component_Associations (Aggr),
5727 Make_Component_Association (Loc,
5728 Choices => New_List (Make_Others_Choice (Loc)),
5729 Expression => Empty));
5730 Set_Box_Present (Last (Component_Associations (Aggr)));
5731 Set_Expression (N, Aggr);
5733 if Typ /= Full_Type then
5734 Analyze_And_Resolve (Aggr, Full_View (Base_Type (Full_Type)));
5735 Rewrite (Aggr, Unchecked_Convert_To (Typ, Aggr));
5736 Analyze_And_Resolve (Aggr, Typ);
5737 else
5738 Analyze_And_Resolve (Aggr, Full_Type);
5739 end if;
5741 return True;
5743 else
5744 return False;
5745 end if;
5746 end Build_Equivalent_Aggregate;
5748 -------------------------------
5749 -- Check_Large_Modular_Array --
5750 -------------------------------
5752 procedure Check_Large_Modular_Array is
5753 Index_Typ : Entity_Id;
5755 begin
5756 if Is_Array_Type (Typ)
5757 and then Is_Modular_Integer_Type (Etype (First_Index (Typ)))
5758 then
5759 -- To prevent arithmetic overflow with large values, we raise
5760 -- Storage_Error under the following guard:
5762 -- (Arr'Last / 2 - Arr'First / 2) > (2 ** 30)
5764 -- This takes care of the boundary case, but it is preferable to
5765 -- use a smaller limit, because even on 64-bit architectures an
5766 -- array of more than 2 ** 30 bytes is likely to raise
5767 -- Storage_Error.
5769 Index_Typ := Etype (First_Index (Typ));
5771 if RM_Size (Index_Typ) = RM_Size (Standard_Long_Long_Integer) then
5772 Insert_Action (N,
5773 Make_Raise_Storage_Error (Loc,
5774 Condition =>
5775 Make_Op_Ge (Loc,
5776 Left_Opnd =>
5777 Make_Op_Subtract (Loc,
5778 Left_Opnd =>
5779 Make_Op_Divide (Loc,
5780 Left_Opnd =>
5781 Make_Attribute_Reference (Loc,
5782 Prefix =>
5783 New_Occurrence_Of (Typ, Loc),
5784 Attribute_Name => Name_Last),
5785 Right_Opnd =>
5786 Make_Integer_Literal (Loc, Uint_2)),
5787 Right_Opnd =>
5788 Make_Op_Divide (Loc,
5789 Left_Opnd =>
5790 Make_Attribute_Reference (Loc,
5791 Prefix =>
5792 New_Occurrence_Of (Typ, Loc),
5793 Attribute_Name => Name_First),
5794 Right_Opnd =>
5795 Make_Integer_Literal (Loc, Uint_2))),
5796 Right_Opnd =>
5797 Make_Integer_Literal (Loc, (Uint_2 ** 30))),
5798 Reason => SE_Object_Too_Large));
5799 end if;
5800 end if;
5801 end Check_Large_Modular_Array;
5803 -------------------------------------
5804 -- Count_Default_Sized_Task_Stacks --
5805 -------------------------------------
5807 procedure Count_Default_Sized_Task_Stacks
5808 (Typ : Entity_Id;
5809 Pri_Stacks : out Int;
5810 Sec_Stacks : out Int)
5812 Component : Entity_Id;
5814 begin
5815 -- To calculate the number of default-sized task stacks required for
5816 -- an object of Typ, a depth-first recursive traversal of the AST
5817 -- from the Typ entity node is undertaken. Only type nodes containing
5818 -- task objects are visited.
5820 Pri_Stacks := 0;
5821 Sec_Stacks := 0;
5823 if not Has_Task (Typ) then
5824 return;
5825 end if;
5827 case Ekind (Typ) is
5828 when E_Task_Subtype
5829 | E_Task_Type
5831 -- A task type is found marking the bottom of the descent. If
5832 -- the type has no representation aspect for the corresponding
5833 -- stack then that stack is using the default size.
5835 if Present (Get_Rep_Item (Typ, Name_Storage_Size)) then
5836 Pri_Stacks := 0;
5837 else
5838 Pri_Stacks := 1;
5839 end if;
5841 if Present (Get_Rep_Item (Typ, Name_Secondary_Stack_Size)) then
5842 Sec_Stacks := 0;
5843 else
5844 Sec_Stacks := 1;
5845 end if;
5847 when E_Array_Subtype
5848 | E_Array_Type
5850 -- First find the number of default stacks contained within an
5851 -- array component.
5853 Count_Default_Sized_Task_Stacks
5854 (Component_Type (Typ),
5855 Pri_Stacks,
5856 Sec_Stacks);
5858 -- Then multiply the result by the size of the array
5860 declare
5861 Quantity : constant Int := Number_Of_Elements_In_Array (Typ);
5862 -- Number_Of_Elements_In_Array is non-trival, consequently
5863 -- its result is captured as an optimization.
5865 begin
5866 Pri_Stacks := Pri_Stacks * Quantity;
5867 Sec_Stacks := Sec_Stacks * Quantity;
5868 end;
5870 when E_Protected_Subtype
5871 | E_Protected_Type
5872 | E_Record_Subtype
5873 | E_Record_Type
5875 Component := First_Component_Or_Discriminant (Typ);
5877 -- Recursively descend each component of the composite type
5878 -- looking for tasks, but only if the component is marked as
5879 -- having a task.
5881 while Present (Component) loop
5882 if Has_Task (Etype (Component)) then
5883 declare
5884 P : Int;
5885 S : Int;
5887 begin
5888 Count_Default_Sized_Task_Stacks
5889 (Etype (Component), P, S);
5890 Pri_Stacks := Pri_Stacks + P;
5891 Sec_Stacks := Sec_Stacks + S;
5892 end;
5893 end if;
5895 Next_Component_Or_Discriminant (Component);
5896 end loop;
5898 when E_Limited_Private_Subtype
5899 | E_Limited_Private_Type
5900 | E_Record_Subtype_With_Private
5901 | E_Record_Type_With_Private
5903 -- Switch to the full view of the private type to continue
5904 -- search.
5906 Count_Default_Sized_Task_Stacks
5907 (Full_View (Typ), Pri_Stacks, Sec_Stacks);
5909 -- Other types should not contain tasks
5911 when others =>
5912 raise Program_Error;
5913 end case;
5914 end Count_Default_Sized_Task_Stacks;
5916 -------------------------------
5917 -- Default_Initialize_Object --
5918 -------------------------------
5920 procedure Default_Initialize_Object (After : Node_Id) is
5921 function New_Object_Reference return Node_Id;
5922 -- Return a new reference to Def_Id with attributes Assignment_OK and
5923 -- Must_Not_Freeze already set.
5925 --------------------------
5926 -- New_Object_Reference --
5927 --------------------------
5929 function New_Object_Reference return Node_Id is
5930 Obj_Ref : constant Node_Id := New_Occurrence_Of (Def_Id, Loc);
5932 begin
5933 -- The call to the type init proc or [Deep_]Finalize must not
5934 -- freeze the related object as the call is internally generated.
5935 -- This way legal rep clauses that apply to the object will not be
5936 -- flagged. Note that the initialization call may be removed if
5937 -- pragma Import is encountered or moved to the freeze actions of
5938 -- the object because of an address clause.
5940 Set_Assignment_OK (Obj_Ref);
5941 Set_Must_Not_Freeze (Obj_Ref);
5943 return Obj_Ref;
5944 end New_Object_Reference;
5946 -- Local variables
5948 Exceptions_OK : constant Boolean :=
5949 not Restriction_Active (No_Exception_Propagation);
5951 Aggr_Init : Node_Id;
5952 Comp_Init : List_Id := No_List;
5953 Fin_Block : Node_Id;
5954 Fin_Call : Node_Id;
5955 Init_Stmts : List_Id := No_List;
5956 Obj_Init : Node_Id := Empty;
5957 Obj_Ref : Node_Id;
5959 -- Start of processing for Default_Initialize_Object
5961 begin
5962 -- Default initialization is suppressed for objects that are already
5963 -- known to be imported (i.e. whose declaration specifies the Import
5964 -- aspect). Note that for objects with a pragma Import, we generate
5965 -- initialization here, and then remove it downstream when processing
5966 -- the pragma. It is also suppressed for variables for which a pragma
5967 -- Suppress_Initialization has been explicitly given
5969 if Is_Imported (Def_Id) or else Suppress_Initialization (Def_Id) then
5970 return;
5972 -- Nothing to do if the object being initialized is of a task type
5973 -- and restriction No_Tasking is in effect, because this is a direct
5974 -- violation of the restriction.
5976 elsif Is_Task_Type (Base_Typ)
5977 and then Restriction_Active (No_Tasking)
5978 then
5979 return;
5980 end if;
5982 -- The expansion performed by this routine is as follows:
5984 -- begin
5985 -- Abort_Defer;
5986 -- Type_Init_Proc (Obj);
5988 -- begin
5989 -- [Deep_]Initialize (Obj);
5991 -- exception
5992 -- when others =>
5993 -- [Deep_]Finalize (Obj, Self => False);
5994 -- raise;
5995 -- end;
5996 -- at end
5997 -- Abort_Undefer_Direct;
5998 -- end;
6000 -- Initialize the components of the object
6002 if Has_Non_Null_Base_Init_Proc (Typ)
6003 and then not No_Initialization (N)
6004 and then not Initialization_Suppressed (Typ)
6005 then
6006 -- Do not initialize the components if No_Default_Initialization
6007 -- applies as the actual restriction check will occur later
6008 -- when the object is frozen as it is not known yet whether the
6009 -- object is imported or not.
6011 if not Restriction_Active (No_Default_Initialization) then
6013 -- If the values of the components are compile-time known, use
6014 -- their prebuilt aggregate form directly.
6016 Aggr_Init := Static_Initialization (Base_Init_Proc (Typ));
6018 if Present (Aggr_Init) then
6019 Set_Expression
6020 (N, New_Copy_Tree (Aggr_Init, New_Scope => Current_Scope));
6022 -- If type has discriminants, try to build an equivalent
6023 -- aggregate using discriminant values from the declaration.
6024 -- This is a useful optimization, in particular if restriction
6025 -- No_Elaboration_Code is active.
6027 elsif Build_Equivalent_Aggregate then
6028 null;
6030 -- Otherwise invoke the type init proc, generate:
6031 -- Type_Init_Proc (Obj);
6033 else
6034 Obj_Ref := New_Object_Reference;
6036 if Comes_From_Source (Def_Id) then
6037 Initialization_Warning (Obj_Ref);
6038 end if;
6040 Comp_Init := Build_Initialization_Call (Loc, Obj_Ref, Typ);
6041 end if;
6042 end if;
6044 -- Provide a default value if the object needs simple initialization
6045 -- and does not already have an initial value. A generated temporary
6046 -- does not require initialization because it will be assigned later.
6048 elsif Needs_Simple_Initialization
6049 (Typ, Initialize_Scalars
6050 and then No (Following_Address_Clause (N)))
6051 and then not Is_Internal (Def_Id)
6052 and then not Has_Init_Expression (N)
6053 then
6054 Set_No_Initialization (N, False);
6055 Set_Expression
6056 (N, New_Copy_Tree
6057 (Get_Simple_Init_Val (Typ, N, Esize (Def_Id)),
6058 New_Sloc => Sloc (Obj_Def)));
6059 Analyze_And_Resolve (Expression (N), Typ);
6060 end if;
6062 -- Initialize the object, generate:
6063 -- [Deep_]Initialize (Obj);
6065 if Needs_Finalization (Typ) and then not No_Initialization (N) then
6066 Obj_Init :=
6067 Make_Init_Call
6068 (Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
6069 Typ => Typ);
6070 end if;
6072 -- Build a special finalization block when both the object and its
6073 -- controlled components are to be initialized. The block finalizes
6074 -- the components if the object initialization fails. Generate:
6076 -- begin
6077 -- <Obj_Init>
6079 -- exception
6080 -- when others =>
6081 -- <Fin_Call>
6082 -- raise;
6083 -- end;
6085 if Has_Controlled_Component (Typ)
6086 and then Present (Comp_Init)
6087 and then Present (Obj_Init)
6088 and then Exceptions_OK
6089 then
6090 Init_Stmts := Comp_Init;
6092 Fin_Call :=
6093 Make_Final_Call
6094 (Obj_Ref => New_Object_Reference,
6095 Typ => Typ,
6096 Skip_Self => True);
6098 if Present (Fin_Call) then
6100 -- Do not emit warnings related to the elaboration order when a
6101 -- controlled object is declared before the body of Finalize is
6102 -- seen.
6104 if Legacy_Elaboration_Checks then
6105 Set_No_Elaboration_Check (Fin_Call);
6106 end if;
6108 Fin_Block :=
6109 Make_Block_Statement (Loc,
6110 Declarations => No_List,
6112 Handled_Statement_Sequence =>
6113 Make_Handled_Sequence_Of_Statements (Loc,
6114 Statements => New_List (Obj_Init),
6116 Exception_Handlers => New_List (
6117 Make_Exception_Handler (Loc,
6118 Exception_Choices => New_List (
6119 Make_Others_Choice (Loc)),
6121 Statements => New_List (
6122 Fin_Call,
6123 Make_Raise_Statement (Loc))))));
6125 -- Signal the ABE mechanism that the block carries out
6126 -- initialization actions.
6128 Set_Is_Initialization_Block (Fin_Block);
6130 Append_To (Init_Stmts, Fin_Block);
6131 end if;
6133 -- Otherwise finalization is not required, the initialization calls
6134 -- are passed to the abort block building circuitry, generate:
6136 -- Type_Init_Proc (Obj);
6137 -- [Deep_]Initialize (Obj);
6139 else
6140 if Present (Comp_Init) then
6141 Init_Stmts := Comp_Init;
6142 end if;
6144 if Present (Obj_Init) then
6145 if No (Init_Stmts) then
6146 Init_Stmts := New_List;
6147 end if;
6149 Append_To (Init_Stmts, Obj_Init);
6150 end if;
6151 end if;
6153 -- Build an abort block to protect the initialization calls
6155 if Abort_Allowed
6156 and then Present (Comp_Init)
6157 and then Present (Obj_Init)
6158 then
6159 -- Generate:
6160 -- Abort_Defer;
6162 Prepend_To (Init_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
6164 -- When exceptions are propagated, abort deferral must take place
6165 -- in the presence of initialization or finalization exceptions.
6166 -- Generate:
6168 -- begin
6169 -- Abort_Defer;
6170 -- <Init_Stmts>
6171 -- at end
6172 -- Abort_Undefer_Direct;
6173 -- end;
6175 if Exceptions_OK then
6176 Init_Stmts := New_List (
6177 Build_Abort_Undefer_Block (Loc,
6178 Stmts => Init_Stmts,
6179 Context => N));
6181 -- Otherwise exceptions are not propagated. Generate:
6183 -- Abort_Defer;
6184 -- <Init_Stmts>
6185 -- Abort_Undefer;
6187 else
6188 Append_To (Init_Stmts,
6189 Build_Runtime_Call (Loc, RE_Abort_Undefer));
6190 end if;
6191 end if;
6193 -- Insert the whole initialization sequence into the tree. If the
6194 -- object has a delayed freeze, as will be the case when it has
6195 -- aspect specifications, the initialization sequence is part of
6196 -- the freeze actions.
6198 if Present (Init_Stmts) then
6199 if Has_Delayed_Freeze (Def_Id) then
6200 Append_Freeze_Actions (Def_Id, Init_Stmts);
6201 else
6202 Insert_Actions_After (After, Init_Stmts);
6203 end if;
6204 end if;
6205 end Default_Initialize_Object;
6207 -------------------------
6208 -- Rewrite_As_Renaming --
6209 -------------------------
6211 function Rewrite_As_Renaming return Boolean is
6212 begin
6213 -- If the object declaration appears in the form
6215 -- Obj : Ctrl_Typ := Func (...);
6217 -- where Ctrl_Typ is controlled but not immutably limited type, then
6218 -- the expansion of the function call should use a dereference of the
6219 -- result to reference the value on the secondary stack.
6221 -- Obj : Ctrl_Typ renames Func (...).all;
6223 -- As a result, the call avoids an extra copy. This an optimization,
6224 -- but it is required for passing ACATS tests in some cases where it
6225 -- would otherwise make two copies. The RM allows removing redunant
6226 -- Adjust/Finalize calls, but does not allow insertion of extra ones.
6228 -- This part is disabled for now, because it breaks GPS builds
6230 return (False -- ???
6231 and then Nkind (Expr_Q) = N_Explicit_Dereference
6232 and then not Comes_From_Source (Expr_Q)
6233 and then Nkind (Original_Node (Expr_Q)) = N_Function_Call
6234 and then Nkind (Object_Definition (N)) in N_Has_Entity
6235 and then (Needs_Finalization (Entity (Object_Definition (N)))))
6237 -- If the initializing expression is for a variable with attribute
6238 -- OK_To_Rename set, then transform:
6240 -- Obj : Typ := Expr;
6242 -- into
6244 -- Obj : Typ renames Expr;
6246 -- provided that Obj is not aliased. The aliased case has to be
6247 -- excluded in general because Expr will not be aliased in
6248 -- general.
6250 or else
6251 (not Aliased_Present (N)
6252 and then Is_Entity_Name (Expr_Q)
6253 and then Ekind (Entity (Expr_Q)) = E_Variable
6254 and then OK_To_Rename (Entity (Expr_Q))
6255 and then Is_Entity_Name (Obj_Def));
6256 end Rewrite_As_Renaming;
6258 -- Local variables
6260 Next_N : constant Node_Id := Next (N);
6262 Adj_Call : Node_Id;
6263 Id_Ref : Node_Id;
6264 Tag_Assign : Node_Id;
6266 Init_After : Node_Id := N;
6267 -- Node after which the initialization actions are to be inserted. This
6268 -- is normally N, except for the case of a shared passive variable, in
6269 -- which case the init proc call must be inserted only after the bodies
6270 -- of the shared variable procedures have been seen.
6272 -- Start of processing for Expand_N_Object_Declaration
6274 begin
6275 -- Don't do anything for deferred constants. All proper actions will be
6276 -- expanded during the full declaration.
6278 if No (Expr) and Constant_Present (N) then
6279 return;
6280 end if;
6282 -- The type of the object cannot be abstract. This is diagnosed at the
6283 -- point the object is frozen, which happens after the declaration is
6284 -- fully expanded, so simply return now.
6286 if Is_Abstract_Type (Typ) then
6287 return;
6288 end if;
6290 -- No action needed for the internal imported dummy object added by
6291 -- Make_DT to compute the offset of the components that reference
6292 -- secondary dispatch tables; required to avoid never-ending loop
6293 -- processing this internal object declaration.
6295 if Tagged_Type_Expansion
6296 and then Is_Internal (Def_Id)
6297 and then Is_Imported (Def_Id)
6298 and then Related_Type (Def_Id) = Implementation_Base_Type (Typ)
6299 then
6300 return;
6301 end if;
6303 -- First we do special processing for objects of a tagged type where
6304 -- this is the point at which the type is frozen. The creation of the
6305 -- dispatch table and the initialization procedure have to be deferred
6306 -- to this point, since we reference previously declared primitive
6307 -- subprograms.
6309 -- Force construction of dispatch tables of library level tagged types
6311 if Tagged_Type_Expansion
6312 and then Building_Static_Dispatch_Tables
6313 and then Is_Library_Level_Entity (Def_Id)
6314 and then Is_Library_Level_Tagged_Type (Base_Typ)
6315 and then Ekind_In (Base_Typ, E_Record_Type,
6316 E_Protected_Type,
6317 E_Task_Type)
6318 and then not Has_Dispatch_Table (Base_Typ)
6319 then
6320 declare
6321 New_Nodes : List_Id := No_List;
6323 begin
6324 if Is_Concurrent_Type (Base_Typ) then
6325 New_Nodes := Make_DT (Corresponding_Record_Type (Base_Typ), N);
6326 else
6327 New_Nodes := Make_DT (Base_Typ, N);
6328 end if;
6330 if not Is_Empty_List (New_Nodes) then
6331 Insert_List_Before (N, New_Nodes);
6332 end if;
6333 end;
6334 end if;
6336 -- Make shared memory routines for shared passive variable
6338 if Is_Shared_Passive (Def_Id) then
6339 Init_After := Make_Shared_Var_Procs (N);
6340 end if;
6342 -- If tasks being declared, make sure we have an activation chain
6343 -- defined for the tasks (has no effect if we already have one), and
6344 -- also that a Master variable is established and that the appropriate
6345 -- enclosing construct is established as a task master.
6347 if Has_Task (Typ) then
6348 Build_Activation_Chain_Entity (N);
6349 Build_Master_Entity (Def_Id);
6350 end if;
6352 Check_Large_Modular_Array;
6354 -- If No_Implicit_Heap_Allocations or No_Implicit_Task_Allocations
6355 -- restrictions are active then default-sized secondary stacks are
6356 -- generated by the binder and allocated by SS_Init. To provide the
6357 -- binder the number of stacks to generate, the number of default-sized
6358 -- stacks required for task objects contained within the object
6359 -- declaration N is calculated here as it is at this point where
6360 -- unconstrained types become constrained. The result is stored in the
6361 -- enclosing unit's Unit_Record.
6363 -- Note if N is an array object declaration that has an initialization
6364 -- expression, a second object declaration for the initialization
6365 -- expression is created by the compiler. To prevent double counting
6366 -- of the stacks in this scenario, the stacks of the first array are
6367 -- not counted.
6369 if Has_Task (Typ)
6370 and then not Restriction_Active (No_Secondary_Stack)
6371 and then (Restriction_Active (No_Implicit_Heap_Allocations)
6372 or else Restriction_Active (No_Implicit_Task_Allocations))
6373 and then not (Ekind_In (Ekind (Typ), E_Array_Type, E_Array_Subtype)
6374 and then (Has_Init_Expression (N)))
6375 then
6376 declare
6377 PS_Count, SS_Count : Int := 0;
6378 begin
6379 Count_Default_Sized_Task_Stacks (Typ, PS_Count, SS_Count);
6380 Increment_Primary_Stack_Count (PS_Count);
6381 Increment_Sec_Stack_Count (SS_Count);
6382 end;
6383 end if;
6385 -- Default initialization required, and no expression present
6387 if No (Expr) then
6389 -- If we have a type with a variant part, the initialization proc
6390 -- will contain implicit tests of the discriminant values, which
6391 -- counts as a violation of the restriction No_Implicit_Conditionals.
6393 if Has_Variant_Part (Typ) then
6394 declare
6395 Msg : Boolean;
6397 begin
6398 Check_Restriction (Msg, No_Implicit_Conditionals, Obj_Def);
6400 if Msg then
6401 Error_Msg_N
6402 ("\initialization of variant record tests discriminants",
6403 Obj_Def);
6404 return;
6405 end if;
6406 end;
6407 end if;
6409 -- For the default initialization case, if we have a private type
6410 -- with invariants, and invariant checks are enabled, then insert an
6411 -- invariant check after the object declaration. Note that it is OK
6412 -- to clobber the object with an invalid value since if the exception
6413 -- is raised, then the object will go out of scope. In the case where
6414 -- an array object is initialized with an aggregate, the expression
6415 -- is removed. Check flag Has_Init_Expression to avoid generating a
6416 -- junk invariant check and flag No_Initialization to avoid checking
6417 -- an uninitialized object such as a compiler temporary used for an
6418 -- aggregate.
6420 if Has_Invariants (Base_Typ)
6421 and then Present (Invariant_Procedure (Base_Typ))
6422 and then not Has_Init_Expression (N)
6423 and then not No_Initialization (N)
6424 then
6425 -- If entity has an address clause or aspect, make invariant
6426 -- call into a freeze action for the explicit freeze node for
6427 -- object. Otherwise insert invariant check after declaration.
6429 if Present (Following_Address_Clause (N))
6430 or else Has_Aspect (Def_Id, Aspect_Address)
6431 then
6432 Ensure_Freeze_Node (Def_Id);
6433 Set_Has_Delayed_Freeze (Def_Id);
6434 Set_Is_Frozen (Def_Id, False);
6436 if not Partial_View_Has_Unknown_Discr (Typ) then
6437 Append_Freeze_Action (Def_Id,
6438 Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc)));
6439 end if;
6441 elsif not Partial_View_Has_Unknown_Discr (Typ) then
6442 Insert_After (N,
6443 Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc)));
6444 end if;
6445 end if;
6447 Default_Initialize_Object (Init_After);
6449 -- Generate attribute for Persistent_BSS if needed
6451 if Persistent_BSS_Mode
6452 and then Comes_From_Source (N)
6453 and then Is_Potentially_Persistent_Type (Typ)
6454 and then not Has_Init_Expression (N)
6455 and then Is_Library_Level_Entity (Def_Id)
6456 then
6457 declare
6458 Prag : Node_Id;
6459 begin
6460 Prag :=
6461 Make_Linker_Section_Pragma
6462 (Def_Id, Sloc (N), ".persistent.bss");
6463 Insert_After (N, Prag);
6464 Analyze (Prag);
6465 end;
6466 end if;
6468 -- If access type, then we know it is null if not initialized
6470 if Is_Access_Type (Typ) then
6471 Set_Is_Known_Null (Def_Id);
6472 end if;
6474 -- Explicit initialization present
6476 else
6477 -- Obtain actual expression from qualified expression
6479 if Nkind (Expr) = N_Qualified_Expression then
6480 Expr_Q := Expression (Expr);
6481 else
6482 Expr_Q := Expr;
6483 end if;
6485 -- When we have the appropriate type of aggregate in the expression
6486 -- (it has been determined during analysis of the aggregate by
6487 -- setting the delay flag), let's perform in place assignment and
6488 -- thus avoid creating a temporary.
6490 if Is_Delayed_Aggregate (Expr_Q) then
6491 Convert_Aggr_In_Object_Decl (N);
6493 -- Ada 2005 (AI-318-02): If the initialization expression is a call
6494 -- to a build-in-place function, then access to the declared object
6495 -- must be passed to the function. Currently we limit such functions
6496 -- to those with constrained limited result subtypes, but eventually
6497 -- plan to expand the allowed forms of functions that are treated as
6498 -- build-in-place.
6500 elsif Is_Build_In_Place_Function_Call (Expr_Q) then
6501 Make_Build_In_Place_Call_In_Object_Declaration (N, Expr_Q);
6503 -- The previous call expands the expression initializing the
6504 -- built-in-place object into further code that will be analyzed
6505 -- later. No further expansion needed here.
6507 return;
6509 -- This is the same as the previous 'elsif', except that the call has
6510 -- been transformed by other expansion activities into something like
6511 -- F(...)'Reference.
6513 elsif Nkind (Expr_Q) = N_Reference
6514 and then Is_Build_In_Place_Function_Call (Prefix (Expr_Q))
6515 and then not Is_Expanded_Build_In_Place_Call
6516 (Unqual_Conv (Prefix (Expr_Q)))
6517 then
6518 Make_Build_In_Place_Call_In_Anonymous_Context (Prefix (Expr_Q));
6520 -- The previous call expands the expression initializing the
6521 -- built-in-place object into further code that will be analyzed
6522 -- later. No further expansion needed here.
6524 return;
6526 -- Ada 2005 (AI-318-02): Specialization of the previous case for
6527 -- expressions containing a build-in-place function call whose
6528 -- returned object covers interface types, and Expr_Q has calls to
6529 -- Ada.Tags.Displace to displace the pointer to the returned build-
6530 -- in-place object to reference the secondary dispatch table of a
6531 -- covered interface type.
6533 elsif Present (Unqual_BIP_Iface_Function_Call (Expr_Q)) then
6534 Make_Build_In_Place_Iface_Call_In_Object_Declaration (N, Expr_Q);
6536 -- The previous call expands the expression initializing the
6537 -- built-in-place object into further code that will be analyzed
6538 -- later. No further expansion needed here.
6540 return;
6542 -- Ada 2005 (AI-251): Rewrite the expression that initializes a
6543 -- class-wide interface object to ensure that we copy the full
6544 -- object, unless we are targetting a VM where interfaces are handled
6545 -- by VM itself. Note that if the root type of Typ is an ancestor of
6546 -- Expr's type, both types share the same dispatch table and there is
6547 -- no need to displace the pointer.
6549 elsif Is_Interface (Typ)
6551 -- Avoid never-ending recursion because if Equivalent_Type is set
6552 -- then we've done it already and must not do it again.
6554 and then not
6555 (Nkind (Obj_Def) = N_Identifier
6556 and then Present (Equivalent_Type (Entity (Obj_Def))))
6557 then
6558 pragma Assert (Is_Class_Wide_Type (Typ));
6560 -- If the object is a return object of an inherently limited type,
6561 -- which implies build-in-place treatment, bypass the special
6562 -- treatment of class-wide interface initialization below. In this
6563 -- case, the expansion of the return statement will take care of
6564 -- creating the object (via allocator) and initializing it.
6566 if Is_Return_Object (Def_Id) and then Is_Limited_View (Typ) then
6567 null;
6569 elsif Tagged_Type_Expansion then
6570 declare
6571 Iface : constant Entity_Id := Root_Type (Typ);
6572 Expr_N : Node_Id := Expr;
6573 Expr_Typ : Entity_Id;
6574 New_Expr : Node_Id;
6575 Obj_Id : Entity_Id;
6576 Tag_Comp : Node_Id;
6578 begin
6579 -- If the original node of the expression was a conversion
6580 -- to this specific class-wide interface type then restore
6581 -- the original node because we must copy the object before
6582 -- displacing the pointer to reference the secondary tag
6583 -- component. This code must be kept synchronized with the
6584 -- expansion done by routine Expand_Interface_Conversion
6586 if not Comes_From_Source (Expr_N)
6587 and then Nkind (Expr_N) = N_Explicit_Dereference
6588 and then Nkind (Original_Node (Expr_N)) = N_Type_Conversion
6589 and then Etype (Original_Node (Expr_N)) = Typ
6590 then
6591 Rewrite (Expr_N, Original_Node (Expression (N)));
6592 end if;
6594 -- Avoid expansion of redundant interface conversion
6596 if Is_Interface (Etype (Expr_N))
6597 and then Nkind (Expr_N) = N_Type_Conversion
6598 and then Etype (Expr_N) = Typ
6599 then
6600 Expr_N := Expression (Expr_N);
6601 Set_Expression (N, Expr_N);
6602 end if;
6604 Obj_Id := Make_Temporary (Loc, 'D', Expr_N);
6605 Expr_Typ := Base_Type (Etype (Expr_N));
6607 if Is_Class_Wide_Type (Expr_Typ) then
6608 Expr_Typ := Root_Type (Expr_Typ);
6609 end if;
6611 -- Replace
6612 -- CW : I'Class := Obj;
6613 -- by
6614 -- Tmp : T := Obj;
6615 -- type Ityp is not null access I'Class;
6616 -- CW : I'Class renames Ityp (Tmp.I_Tag'Address).all;
6618 if Comes_From_Source (Expr_N)
6619 and then Nkind (Expr_N) = N_Identifier
6620 and then not Is_Interface (Expr_Typ)
6621 and then Interface_Present_In_Ancestor (Expr_Typ, Typ)
6622 and then (Expr_Typ = Etype (Expr_Typ)
6623 or else not
6624 Is_Variable_Size_Record (Etype (Expr_Typ)))
6625 then
6626 -- Copy the object
6628 Insert_Action (N,
6629 Make_Object_Declaration (Loc,
6630 Defining_Identifier => Obj_Id,
6631 Object_Definition =>
6632 New_Occurrence_Of (Expr_Typ, Loc),
6633 Expression => Relocate_Node (Expr_N)));
6635 -- Statically reference the tag associated with the
6636 -- interface
6638 Tag_Comp :=
6639 Make_Selected_Component (Loc,
6640 Prefix => New_Occurrence_Of (Obj_Id, Loc),
6641 Selector_Name =>
6642 New_Occurrence_Of
6643 (Find_Interface_Tag (Expr_Typ, Iface), Loc));
6645 -- Replace
6646 -- IW : I'Class := Obj;
6647 -- by
6648 -- type Equiv_Record is record ... end record;
6649 -- implicit subtype CW is <Class_Wide_Subtype>;
6650 -- Tmp : CW := CW!(Obj);
6651 -- type Ityp is not null access I'Class;
6652 -- IW : I'Class renames
6653 -- Ityp!(Displace (Temp'Address, I'Tag)).all;
6655 else
6656 -- Generate the equivalent record type and update the
6657 -- subtype indication to reference it.
6659 Expand_Subtype_From_Expr
6660 (N => N,
6661 Unc_Type => Typ,
6662 Subtype_Indic => Obj_Def,
6663 Exp => Expr_N);
6665 if not Is_Interface (Etype (Expr_N)) then
6666 New_Expr := Relocate_Node (Expr_N);
6668 -- For interface types we use 'Address which displaces
6669 -- the pointer to the base of the object (if required)
6671 else
6672 New_Expr :=
6673 Unchecked_Convert_To (Etype (Obj_Def),
6674 Make_Explicit_Dereference (Loc,
6675 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6676 Make_Attribute_Reference (Loc,
6677 Prefix => Relocate_Node (Expr_N),
6678 Attribute_Name => Name_Address))));
6679 end if;
6681 -- Copy the object
6683 if not Is_Limited_Record (Expr_Typ) then
6684 Insert_Action (N,
6685 Make_Object_Declaration (Loc,
6686 Defining_Identifier => Obj_Id,
6687 Object_Definition =>
6688 New_Occurrence_Of (Etype (Obj_Def), Loc),
6689 Expression => New_Expr));
6691 -- Rename limited type object since they cannot be copied
6692 -- This case occurs when the initialization expression
6693 -- has been previously expanded into a temporary object.
6695 else pragma Assert (not Comes_From_Source (Expr_Q));
6696 Insert_Action (N,
6697 Make_Object_Renaming_Declaration (Loc,
6698 Defining_Identifier => Obj_Id,
6699 Subtype_Mark =>
6700 New_Occurrence_Of (Etype (Obj_Def), Loc),
6701 Name =>
6702 Unchecked_Convert_To
6703 (Etype (Obj_Def), New_Expr)));
6704 end if;
6706 -- Dynamically reference the tag associated with the
6707 -- interface.
6709 Tag_Comp :=
6710 Make_Function_Call (Loc,
6711 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
6712 Parameter_Associations => New_List (
6713 Make_Attribute_Reference (Loc,
6714 Prefix => New_Occurrence_Of (Obj_Id, Loc),
6715 Attribute_Name => Name_Address),
6716 New_Occurrence_Of
6717 (Node (First_Elmt (Access_Disp_Table (Iface))),
6718 Loc)));
6719 end if;
6721 Rewrite (N,
6722 Make_Object_Renaming_Declaration (Loc,
6723 Defining_Identifier => Make_Temporary (Loc, 'D'),
6724 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
6725 Name =>
6726 Convert_Tag_To_Interface (Typ, Tag_Comp)));
6728 -- If the original entity comes from source, then mark the
6729 -- new entity as needing debug information, even though it's
6730 -- defined by a generated renaming that does not come from
6731 -- source, so that Materialize_Entity will be set on the
6732 -- entity when Debug_Renaming_Declaration is called during
6733 -- analysis.
6735 if Comes_From_Source (Def_Id) then
6736 Set_Debug_Info_Needed (Defining_Identifier (N));
6737 end if;
6739 Analyze (N, Suppress => All_Checks);
6741 -- Replace internal identifier of rewritten node by the
6742 -- identifier found in the sources. We also have to exchange
6743 -- entities containing their defining identifiers to ensure
6744 -- the correct replacement of the object declaration by this
6745 -- object renaming declaration because these identifiers
6746 -- were previously added by Enter_Name to the current scope.
6747 -- We must preserve the homonym chain of the source entity
6748 -- as well. We must also preserve the kind of the entity,
6749 -- which may be a constant. Preserve entity chain because
6750 -- itypes may have been generated already, and the full
6751 -- chain must be preserved for final freezing. Finally,
6752 -- preserve Comes_From_Source setting, so that debugging
6753 -- and cross-referencing information is properly kept, and
6754 -- preserve source location, to prevent spurious errors when
6755 -- entities are declared (they must have their own Sloc).
6757 declare
6758 New_Id : constant Entity_Id := Defining_Identifier (N);
6759 Next_Temp : constant Entity_Id := Next_Entity (New_Id);
6760 Save_CFS : constant Boolean :=
6761 Comes_From_Source (Def_Id);
6762 Save_SP : constant Node_Id := SPARK_Pragma (Def_Id);
6763 Save_SPI : constant Boolean :=
6764 SPARK_Pragma_Inherited (Def_Id);
6766 begin
6767 Set_Next_Entity (New_Id, Next_Entity (Def_Id));
6768 Set_Next_Entity (Def_Id, Next_Temp);
6770 Set_Chars (Defining_Identifier (N), Chars (Def_Id));
6771 Set_Homonym (Defining_Identifier (N), Homonym (Def_Id));
6772 Set_Ekind (Defining_Identifier (N), Ekind (Def_Id));
6773 Set_Sloc (Defining_Identifier (N), Sloc (Def_Id));
6775 Set_Comes_From_Source (Def_Id, False);
6777 -- ??? This is extremely dangerous!!! Exchanging entities
6778 -- is very low level, and as a result it resets flags and
6779 -- fields which belong to the original Def_Id. Several of
6780 -- these attributes are saved and restored, but there may
6781 -- be many more that need to be preserverd.
6783 Exchange_Entities (Defining_Identifier (N), Def_Id);
6785 -- Restore clobbered attributes
6787 Set_Comes_From_Source (Def_Id, Save_CFS);
6788 Set_SPARK_Pragma (Def_Id, Save_SP);
6789 Set_SPARK_Pragma_Inherited (Def_Id, Save_SPI);
6790 end;
6791 end;
6792 end if;
6794 return;
6796 -- Common case of explicit object initialization
6798 else
6799 -- In most cases, we must check that the initial value meets any
6800 -- constraint imposed by the declared type. However, there is one
6801 -- very important exception to this rule. If the entity has an
6802 -- unconstrained nominal subtype, then it acquired its constraints
6803 -- from the expression in the first place, and not only does this
6804 -- mean that the constraint check is not needed, but an attempt to
6805 -- perform the constraint check can cause order of elaboration
6806 -- problems.
6808 if not Is_Constr_Subt_For_U_Nominal (Typ) then
6810 -- If this is an allocator for an aggregate that has been
6811 -- allocated in place, delay checks until assignments are
6812 -- made, because the discriminants are not initialized.
6814 if Nkind (Expr) = N_Allocator
6815 and then No_Initialization (Expr)
6816 then
6817 null;
6819 -- Otherwise apply a constraint check now if no prev error
6821 elsif Nkind (Expr) /= N_Error then
6822 Apply_Constraint_Check (Expr, Typ);
6824 -- Deal with possible range check
6826 if Do_Range_Check (Expr) then
6828 -- If assignment checks are suppressed, turn off flag
6830 if Suppress_Assignment_Checks (N) then
6831 Set_Do_Range_Check (Expr, False);
6833 -- Otherwise generate the range check
6835 else
6836 Generate_Range_Check
6837 (Expr, Typ, CE_Range_Check_Failed);
6838 end if;
6839 end if;
6840 end if;
6841 end if;
6843 -- If the type is controlled and not inherently limited, then
6844 -- the target is adjusted after the copy and attached to the
6845 -- finalization list. However, no adjustment is done in the case
6846 -- where the object was initialized by a call to a function whose
6847 -- result is built in place, since no copy occurred. Similarly, no
6848 -- adjustment is required if we are going to rewrite the object
6849 -- declaration into a renaming declaration.
6851 if Needs_Finalization (Typ)
6852 and then not Is_Limited_View (Typ)
6853 and then not Rewrite_As_Renaming
6854 then
6855 Adj_Call :=
6856 Make_Adjust_Call (
6857 Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
6858 Typ => Base_Typ);
6860 -- Guard against a missing [Deep_]Adjust when the base type
6861 -- was not properly frozen.
6863 if Present (Adj_Call) then
6864 Insert_Action_After (Init_After, Adj_Call);
6865 end if;
6866 end if;
6868 -- For tagged types, when an init value is given, the tag has to
6869 -- be re-initialized separately in order to avoid the propagation
6870 -- of a wrong tag coming from a view conversion unless the type
6871 -- is class wide (in this case the tag comes from the init value).
6872 -- Suppress the tag assignment when not Tagged_Type_Expansion
6873 -- because tags are represented implicitly in objects. Ditto for
6874 -- types that are CPP_CLASS, and for initializations that are
6875 -- aggregates, because they have to have the right tag.
6877 -- The re-assignment of the tag has to be done even if the object
6878 -- is a constant. The assignment must be analyzed after the
6879 -- declaration. If an address clause follows, this is handled as
6880 -- part of the freeze actions for the object, otherwise insert
6881 -- tag assignment here.
6883 Tag_Assign := Make_Tag_Assignment (N);
6885 if Present (Tag_Assign) then
6886 if Present (Following_Address_Clause (N)) then
6887 Ensure_Freeze_Node (Def_Id);
6889 else
6890 Insert_Action_After (Init_After, Tag_Assign);
6891 end if;
6893 -- Handle C++ constructor calls. Note that we do not check that
6894 -- Typ is a tagged type since the equivalent Ada type of a C++
6895 -- class that has no virtual methods is an untagged limited
6896 -- record type.
6898 elsif Is_CPP_Constructor_Call (Expr) then
6900 -- The call to the initialization procedure does NOT freeze the
6901 -- object being initialized.
6903 Id_Ref := New_Occurrence_Of (Def_Id, Loc);
6904 Set_Must_Not_Freeze (Id_Ref);
6905 Set_Assignment_OK (Id_Ref);
6907 Insert_Actions_After (Init_After,
6908 Build_Initialization_Call (Loc, Id_Ref, Typ,
6909 Constructor_Ref => Expr));
6911 -- We remove here the original call to the constructor
6912 -- to avoid its management in the backend
6914 Set_Expression (N, Empty);
6915 return;
6917 -- Handle initialization of limited tagged types
6919 elsif Is_Tagged_Type (Typ)
6920 and then Is_Class_Wide_Type (Typ)
6921 and then Is_Limited_Record (Typ)
6922 and then not Is_Limited_Interface (Typ)
6923 then
6924 -- Given that the type is limited we cannot perform a copy. If
6925 -- Expr_Q is the reference to a variable we mark the variable
6926 -- as OK_To_Rename to expand this declaration into a renaming
6927 -- declaration (see bellow).
6929 if Is_Entity_Name (Expr_Q) then
6930 Set_OK_To_Rename (Entity (Expr_Q));
6932 -- If we cannot convert the expression into a renaming we must
6933 -- consider it an internal error because the backend does not
6934 -- have support to handle it.
6936 else
6937 pragma Assert (False);
6938 raise Program_Error;
6939 end if;
6941 -- For discrete types, set the Is_Known_Valid flag if the
6942 -- initializing value is known to be valid. Only do this for
6943 -- source assignments, since otherwise we can end up turning
6944 -- on the known valid flag prematurely from inserted code.
6946 elsif Comes_From_Source (N)
6947 and then Is_Discrete_Type (Typ)
6948 and then Expr_Known_Valid (Expr)
6949 then
6950 Set_Is_Known_Valid (Def_Id);
6952 elsif Is_Access_Type (Typ) then
6954 -- For access types set the Is_Known_Non_Null flag if the
6955 -- initializing value is known to be non-null. We can also set
6956 -- Can_Never_Be_Null if this is a constant.
6958 if Known_Non_Null (Expr) then
6959 Set_Is_Known_Non_Null (Def_Id, True);
6961 if Constant_Present (N) then
6962 Set_Can_Never_Be_Null (Def_Id);
6963 end if;
6964 end if;
6965 end if;
6967 -- If validity checking on copies, validate initial expression.
6968 -- But skip this if declaration is for a generic type, since it
6969 -- makes no sense to validate generic types. Not clear if this
6970 -- can happen for legal programs, but it definitely can arise
6971 -- from previous instantiation errors.
6973 if Validity_Checks_On
6974 and then Comes_From_Source (N)
6975 and then Validity_Check_Copies
6976 and then not Is_Generic_Type (Etype (Def_Id))
6977 then
6978 Ensure_Valid (Expr);
6979 Set_Is_Known_Valid (Def_Id);
6980 end if;
6981 end if;
6983 -- Cases where the back end cannot handle the initialization
6984 -- directly. In such cases, we expand an assignment that will
6985 -- be appropriately handled by Expand_N_Assignment_Statement.
6987 -- The exclusion of the unconstrained case is wrong, but for now it
6988 -- is too much trouble ???
6990 if (Is_Possibly_Unaligned_Slice (Expr)
6991 or else (Is_Possibly_Unaligned_Object (Expr)
6992 and then not Represented_As_Scalar (Etype (Expr))))
6993 and then not (Is_Array_Type (Etype (Expr))
6994 and then not Is_Constrained (Etype (Expr)))
6995 then
6996 declare
6997 Stat : constant Node_Id :=
6998 Make_Assignment_Statement (Loc,
6999 Name => New_Occurrence_Of (Def_Id, Loc),
7000 Expression => Relocate_Node (Expr));
7001 begin
7002 Set_Expression (N, Empty);
7003 Set_No_Initialization (N);
7004 Set_Assignment_OK (Name (Stat));
7005 Set_No_Ctrl_Actions (Stat);
7006 Insert_After_And_Analyze (Init_After, Stat);
7007 end;
7008 end if;
7009 end if;
7011 if Nkind (Obj_Def) = N_Access_Definition
7012 and then not Is_Local_Anonymous_Access (Etype (Def_Id))
7013 then
7014 -- An Ada 2012 stand-alone object of an anonymous access type
7016 declare
7017 Loc : constant Source_Ptr := Sloc (N);
7019 Level : constant Entity_Id :=
7020 Make_Defining_Identifier (Sloc (N),
7021 Chars =>
7022 New_External_Name (Chars (Def_Id), Suffix => "L"));
7024 Level_Expr : Node_Id;
7025 Level_Decl : Node_Id;
7027 begin
7028 Set_Ekind (Level, Ekind (Def_Id));
7029 Set_Etype (Level, Standard_Natural);
7030 Set_Scope (Level, Scope (Def_Id));
7032 if No (Expr) then
7034 -- Set accessibility level of null
7036 Level_Expr :=
7037 Make_Integer_Literal (Loc, Scope_Depth (Standard_Standard));
7039 else
7040 Level_Expr := Dynamic_Accessibility_Level (Expr);
7041 end if;
7043 Level_Decl :=
7044 Make_Object_Declaration (Loc,
7045 Defining_Identifier => Level,
7046 Object_Definition =>
7047 New_Occurrence_Of (Standard_Natural, Loc),
7048 Expression => Level_Expr,
7049 Constant_Present => Constant_Present (N),
7050 Has_Init_Expression => True);
7052 Insert_Action_After (Init_After, Level_Decl);
7054 Set_Extra_Accessibility (Def_Id, Level);
7055 end;
7056 end if;
7058 -- If the object is default initialized and its type is subject to
7059 -- pragma Default_Initial_Condition, add a runtime check to verify
7060 -- the assumption of the pragma (SPARK RM 7.3.3). Generate:
7062 -- <Base_Typ>DIC (<Base_Typ> (Def_Id));
7064 -- Note that the check is generated for source objects only
7066 if Comes_From_Source (Def_Id)
7067 and then Has_DIC (Typ)
7068 and then Present (DIC_Procedure (Typ))
7069 and then not Has_Init_Expression (N)
7070 then
7071 declare
7072 DIC_Call : constant Node_Id := Build_DIC_Call (Loc, Def_Id, Typ);
7074 begin
7075 if Present (Next_N) then
7076 Insert_Before_And_Analyze (Next_N, DIC_Call);
7078 -- The object declaration is the last node in a declarative or a
7079 -- statement list.
7081 else
7082 Append_To (List_Containing (N), DIC_Call);
7083 Analyze (DIC_Call);
7084 end if;
7085 end;
7086 end if;
7088 -- Final transformation - turn the object declaration into a renaming
7089 -- if appropriate. If this is the completion of a deferred constant
7090 -- declaration, then this transformation generates what would be
7091 -- illegal code if written by hand, but that's OK.
7093 if Present (Expr) then
7094 if Rewrite_As_Renaming then
7095 Rewrite (N,
7096 Make_Object_Renaming_Declaration (Loc,
7097 Defining_Identifier => Defining_Identifier (N),
7098 Subtype_Mark => Obj_Def,
7099 Name => Expr_Q));
7101 -- We do not analyze this renaming declaration, because all its
7102 -- components have already been analyzed, and if we were to go
7103 -- ahead and analyze it, we would in effect be trying to generate
7104 -- another declaration of X, which won't do.
7106 Set_Renamed_Object (Defining_Identifier (N), Expr_Q);
7107 Set_Analyzed (N);
7109 -- We do need to deal with debug issues for this renaming
7111 -- First, if entity comes from source, then mark it as needing
7112 -- debug information, even though it is defined by a generated
7113 -- renaming that does not come from source.
7115 if Comes_From_Source (Defining_Identifier (N)) then
7116 Set_Debug_Info_Needed (Defining_Identifier (N));
7117 end if;
7119 -- Now call the routine to generate debug info for the renaming
7121 declare
7122 Decl : constant Node_Id := Debug_Renaming_Declaration (N);
7123 begin
7124 if Present (Decl) then
7125 Insert_Action (N, Decl);
7126 end if;
7127 end;
7128 end if;
7129 end if;
7131 -- Exception on library entity not available
7133 exception
7134 when RE_Not_Available =>
7135 return;
7136 end Expand_N_Object_Declaration;
7138 ---------------------------------
7139 -- Expand_N_Subtype_Indication --
7140 ---------------------------------
7142 -- Add a check on the range of the subtype. The static case is partially
7143 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
7144 -- to check here for the static case in order to avoid generating
7145 -- extraneous expanded code. Also deal with validity checking.
7147 procedure Expand_N_Subtype_Indication (N : Node_Id) is
7148 Ran : constant Node_Id := Range_Expression (Constraint (N));
7149 Typ : constant Entity_Id := Entity (Subtype_Mark (N));
7151 begin
7152 if Nkind (Constraint (N)) = N_Range_Constraint then
7153 Validity_Check_Range (Range_Expression (Constraint (N)));
7154 end if;
7156 if Nkind_In (Parent (N), N_Constrained_Array_Definition, N_Slice) then
7157 Apply_Range_Check (Ran, Typ);
7158 end if;
7159 end Expand_N_Subtype_Indication;
7161 ---------------------------
7162 -- Expand_N_Variant_Part --
7163 ---------------------------
7165 -- Note: this procedure no longer has any effect. It used to be that we
7166 -- would replace the choices in the last variant by a when others, and
7167 -- also expanded static predicates in variant choices here, but both of
7168 -- those activities were being done too early, since we can't check the
7169 -- choices until the statically predicated subtypes are frozen, which can
7170 -- happen as late as the free point of the record, and we can't change the
7171 -- last choice to an others before checking the choices, which is now done
7172 -- at the freeze point of the record.
7174 procedure Expand_N_Variant_Part (N : Node_Id) is
7175 begin
7176 null;
7177 end Expand_N_Variant_Part;
7179 ---------------------------------
7180 -- Expand_Previous_Access_Type --
7181 ---------------------------------
7183 procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
7184 Ptr_Typ : Entity_Id;
7186 begin
7187 -- Find all access types in the current scope whose designated type is
7188 -- Def_Id and build master renamings for them.
7190 Ptr_Typ := First_Entity (Current_Scope);
7191 while Present (Ptr_Typ) loop
7192 if Is_Access_Type (Ptr_Typ)
7193 and then Designated_Type (Ptr_Typ) = Def_Id
7194 and then No (Master_Id (Ptr_Typ))
7195 then
7196 -- Ensure that the designated type has a master
7198 Build_Master_Entity (Def_Id);
7200 -- Private and incomplete types complicate the insertion of master
7201 -- renamings because the access type may precede the full view of
7202 -- the designated type. For this reason, the master renamings are
7203 -- inserted relative to the designated type.
7205 Build_Master_Renaming (Ptr_Typ, Ins_Nod => Parent (Def_Id));
7206 end if;
7208 Next_Entity (Ptr_Typ);
7209 end loop;
7210 end Expand_Previous_Access_Type;
7212 -----------------------------
7213 -- Expand_Record_Extension --
7214 -----------------------------
7216 -- Add a field _parent at the beginning of the record extension. This is
7217 -- used to implement inheritance. Here are some examples of expansion:
7219 -- 1. no discriminants
7220 -- type T2 is new T1 with null record;
7221 -- gives
7222 -- type T2 is new T1 with record
7223 -- _Parent : T1;
7224 -- end record;
7226 -- 2. renamed discriminants
7227 -- type T2 (B, C : Int) is new T1 (A => B) with record
7228 -- _Parent : T1 (A => B);
7229 -- D : Int;
7230 -- end;
7232 -- 3. inherited discriminants
7233 -- type T2 is new T1 with record -- discriminant A inherited
7234 -- _Parent : T1 (A);
7235 -- D : Int;
7236 -- end;
7238 procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
7239 Indic : constant Node_Id := Subtype_Indication (Def);
7240 Loc : constant Source_Ptr := Sloc (Def);
7241 Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
7242 Par_Subtype : Entity_Id;
7243 Comp_List : Node_Id;
7244 Comp_Decl : Node_Id;
7245 Parent_N : Node_Id;
7246 D : Entity_Id;
7247 List_Constr : constant List_Id := New_List;
7249 begin
7250 -- Expand_Record_Extension is called directly from the semantics, so
7251 -- we must check to see whether expansion is active before proceeding,
7252 -- because this affects the visibility of selected components in bodies
7253 -- of instances.
7255 if not Expander_Active then
7256 return;
7257 end if;
7259 -- This may be a derivation of an untagged private type whose full
7260 -- view is tagged, in which case the Derived_Type_Definition has no
7261 -- extension part. Build an empty one now.
7263 if No (Rec_Ext_Part) then
7264 Rec_Ext_Part :=
7265 Make_Record_Definition (Loc,
7266 End_Label => Empty,
7267 Component_List => Empty,
7268 Null_Present => True);
7270 Set_Record_Extension_Part (Def, Rec_Ext_Part);
7271 Mark_Rewrite_Insertion (Rec_Ext_Part);
7272 end if;
7274 Comp_List := Component_List (Rec_Ext_Part);
7276 Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
7278 -- If the derived type inherits its discriminants the type of the
7279 -- _parent field must be constrained by the inherited discriminants
7281 if Has_Discriminants (T)
7282 and then Nkind (Indic) /= N_Subtype_Indication
7283 and then not Is_Constrained (Entity (Indic))
7284 then
7285 D := First_Discriminant (T);
7286 while Present (D) loop
7287 Append_To (List_Constr, New_Occurrence_Of (D, Loc));
7288 Next_Discriminant (D);
7289 end loop;
7291 Par_Subtype :=
7292 Process_Subtype (
7293 Make_Subtype_Indication (Loc,
7294 Subtype_Mark => New_Occurrence_Of (Entity (Indic), Loc),
7295 Constraint =>
7296 Make_Index_Or_Discriminant_Constraint (Loc,
7297 Constraints => List_Constr)),
7298 Def);
7300 -- Otherwise the original subtype_indication is just what is needed
7302 else
7303 Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
7304 end if;
7306 Set_Parent_Subtype (T, Par_Subtype);
7308 Comp_Decl :=
7309 Make_Component_Declaration (Loc,
7310 Defining_Identifier => Parent_N,
7311 Component_Definition =>
7312 Make_Component_Definition (Loc,
7313 Aliased_Present => False,
7314 Subtype_Indication => New_Occurrence_Of (Par_Subtype, Loc)));
7316 if Null_Present (Rec_Ext_Part) then
7317 Set_Component_List (Rec_Ext_Part,
7318 Make_Component_List (Loc,
7319 Component_Items => New_List (Comp_Decl),
7320 Variant_Part => Empty,
7321 Null_Present => False));
7322 Set_Null_Present (Rec_Ext_Part, False);
7324 elsif Null_Present (Comp_List)
7325 or else Is_Empty_List (Component_Items (Comp_List))
7326 then
7327 Set_Component_Items (Comp_List, New_List (Comp_Decl));
7328 Set_Null_Present (Comp_List, False);
7330 else
7331 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
7332 end if;
7334 Analyze (Comp_Decl);
7335 end Expand_Record_Extension;
7337 ------------------------
7338 -- Expand_Tagged_Root --
7339 ------------------------
7341 procedure Expand_Tagged_Root (T : Entity_Id) is
7342 Def : constant Node_Id := Type_Definition (Parent (T));
7343 Comp_List : Node_Id;
7344 Comp_Decl : Node_Id;
7345 Sloc_N : Source_Ptr;
7347 begin
7348 if Null_Present (Def) then
7349 Set_Component_List (Def,
7350 Make_Component_List (Sloc (Def),
7351 Component_Items => Empty_List,
7352 Variant_Part => Empty,
7353 Null_Present => True));
7354 end if;
7356 Comp_List := Component_List (Def);
7358 if Null_Present (Comp_List)
7359 or else Is_Empty_List (Component_Items (Comp_List))
7360 then
7361 Sloc_N := Sloc (Comp_List);
7362 else
7363 Sloc_N := Sloc (First (Component_Items (Comp_List)));
7364 end if;
7366 Comp_Decl :=
7367 Make_Component_Declaration (Sloc_N,
7368 Defining_Identifier => First_Tag_Component (T),
7369 Component_Definition =>
7370 Make_Component_Definition (Sloc_N,
7371 Aliased_Present => False,
7372 Subtype_Indication => New_Occurrence_Of (RTE (RE_Tag), Sloc_N)));
7374 if Null_Present (Comp_List)
7375 or else Is_Empty_List (Component_Items (Comp_List))
7376 then
7377 Set_Component_Items (Comp_List, New_List (Comp_Decl));
7378 Set_Null_Present (Comp_List, False);
7380 else
7381 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
7382 end if;
7384 -- We don't Analyze the whole expansion because the tag component has
7385 -- already been analyzed previously. Here we just insure that the tree
7386 -- is coherent with the semantic decoration
7388 Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));
7390 exception
7391 when RE_Not_Available =>
7392 return;
7393 end Expand_Tagged_Root;
7395 ------------------------------
7396 -- Freeze_Stream_Operations --
7397 ------------------------------
7399 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
7400 Names : constant array (1 .. 4) of TSS_Name_Type :=
7401 (TSS_Stream_Input,
7402 TSS_Stream_Output,
7403 TSS_Stream_Read,
7404 TSS_Stream_Write);
7405 Stream_Op : Entity_Id;
7407 begin
7408 -- Primitive operations of tagged types are frozen when the dispatch
7409 -- table is constructed.
7411 if not Comes_From_Source (Typ) or else Is_Tagged_Type (Typ) then
7412 return;
7413 end if;
7415 for J in Names'Range loop
7416 Stream_Op := TSS (Typ, Names (J));
7418 if Present (Stream_Op)
7419 and then Is_Subprogram (Stream_Op)
7420 and then Nkind (Unit_Declaration_Node (Stream_Op)) =
7421 N_Subprogram_Declaration
7422 and then not Is_Frozen (Stream_Op)
7423 then
7424 Append_Freeze_Actions (Typ, Freeze_Entity (Stream_Op, N));
7425 end if;
7426 end loop;
7427 end Freeze_Stream_Operations;
7429 -----------------
7430 -- Freeze_Type --
7431 -----------------
7433 -- Full type declarations are expanded at the point at which the type is
7434 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
7435 -- declarations generated by the freezing (e.g. the procedure generated
7436 -- for initialization) are chained in the Actions field list of the freeze
7437 -- node using Append_Freeze_Actions.
7439 -- WARNING: This routine manages Ghost regions. Return statements must be
7440 -- replaced by gotos which jump to the end of the routine and restore the
7441 -- Ghost mode.
7443 function Freeze_Type (N : Node_Id) return Boolean is
7444 procedure Process_RACW_Types (Typ : Entity_Id);
7445 -- Validate and generate stubs for all RACW types associated with type
7446 -- Typ.
7448 procedure Process_Pending_Access_Types (Typ : Entity_Id);
7449 -- Associate type Typ's Finalize_Address primitive with the finalization
7450 -- masters of pending access-to-Typ types.
7452 ------------------------
7453 -- Process_RACW_Types --
7454 ------------------------
7456 procedure Process_RACW_Types (Typ : Entity_Id) is
7457 List : constant Elist_Id := Access_Types_To_Process (N);
7458 E : Elmt_Id;
7459 Seen : Boolean := False;
7461 begin
7462 if Present (List) then
7463 E := First_Elmt (List);
7464 while Present (E) loop
7465 if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
7466 Validate_RACW_Primitives (Node (E));
7467 Seen := True;
7468 end if;
7470 Next_Elmt (E);
7471 end loop;
7472 end if;
7474 -- If there are RACWs designating this type, make stubs now
7476 if Seen then
7477 Remote_Types_Tagged_Full_View_Encountered (Typ);
7478 end if;
7479 end Process_RACW_Types;
7481 ----------------------------------
7482 -- Process_Pending_Access_Types --
7483 ----------------------------------
7485 procedure Process_Pending_Access_Types (Typ : Entity_Id) is
7486 E : Elmt_Id;
7488 begin
7489 -- Finalize_Address is not generated in CodePeer mode because the
7490 -- body contains address arithmetic. This processing is disabled.
7492 if CodePeer_Mode then
7493 null;
7495 -- Certain itypes are generated for contexts that cannot allocate
7496 -- objects and should not set primitive Finalize_Address.
7498 elsif Is_Itype (Typ)
7499 and then Nkind (Associated_Node_For_Itype (Typ)) =
7500 N_Explicit_Dereference
7501 then
7502 null;
7504 -- When an access type is declared after the incomplete view of a
7505 -- Taft-amendment type, the access type is considered pending in
7506 -- case the full view of the Taft-amendment type is controlled. If
7507 -- this is indeed the case, associate the Finalize_Address routine
7508 -- of the full view with the finalization masters of all pending
7509 -- access types. This scenario applies to anonymous access types as
7510 -- well.
7512 elsif Needs_Finalization (Typ)
7513 and then Present (Pending_Access_Types (Typ))
7514 then
7515 E := First_Elmt (Pending_Access_Types (Typ));
7516 while Present (E) loop
7518 -- Generate:
7519 -- Set_Finalize_Address
7520 -- (Ptr_Typ, <Typ>FD'Unrestricted_Access);
7522 Append_Freeze_Action (Typ,
7523 Make_Set_Finalize_Address_Call
7524 (Loc => Sloc (N),
7525 Ptr_Typ => Node (E)));
7527 Next_Elmt (E);
7528 end loop;
7529 end if;
7530 end Process_Pending_Access_Types;
7532 -- Local variables
7534 Def_Id : constant Entity_Id := Entity (N);
7536 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
7537 -- Save the Ghost mode to restore on exit
7539 Result : Boolean := False;
7541 -- Start of processing for Freeze_Type
7543 begin
7544 -- The type being frozen may be subject to pragma Ghost. Set the mode
7545 -- now to ensure that any nodes generated during freezing are properly
7546 -- marked as Ghost.
7548 Set_Ghost_Mode (Def_Id);
7550 -- Process any remote access-to-class-wide types designating the type
7551 -- being frozen.
7553 Process_RACW_Types (Def_Id);
7555 -- Freeze processing for record types
7557 if Is_Record_Type (Def_Id) then
7558 if Ekind (Def_Id) = E_Record_Type then
7559 Expand_Freeze_Record_Type (N);
7560 elsif Is_Class_Wide_Type (Def_Id) then
7561 Expand_Freeze_Class_Wide_Type (N);
7562 end if;
7564 -- Freeze processing for array types
7566 elsif Is_Array_Type (Def_Id) then
7567 Expand_Freeze_Array_Type (N);
7569 -- Freeze processing for access types
7571 -- For pool-specific access types, find out the pool object used for
7572 -- this type, needs actual expansion of it in some cases. Here are the
7573 -- different cases :
7575 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
7576 -- ---> don't use any storage pool
7578 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
7579 -- Expand:
7580 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
7582 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7583 -- ---> Storage Pool is the specified one
7585 -- See GNAT Pool packages in the Run-Time for more details
7587 elsif Ekind_In (Def_Id, E_Access_Type, E_General_Access_Type) then
7588 declare
7589 Loc : constant Source_Ptr := Sloc (N);
7590 Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
7592 Freeze_Action_Typ : Entity_Id;
7593 Pool_Object : Entity_Id;
7595 begin
7596 -- Case 1
7598 -- Rep Clause "for Def_Id'Storage_Size use 0;"
7599 -- ---> don't use any storage pool
7601 if No_Pool_Assigned (Def_Id) then
7602 null;
7604 -- Case 2
7606 -- Rep Clause : for Def_Id'Storage_Size use Expr.
7607 -- ---> Expand:
7608 -- Def_Id__Pool : Stack_Bounded_Pool
7609 -- (Expr, DT'Size, DT'Alignment);
7611 elsif Has_Storage_Size_Clause (Def_Id) then
7612 declare
7613 DT_Align : Node_Id;
7614 DT_Size : Node_Id;
7616 begin
7617 -- For unconstrained composite types we give a size of zero
7618 -- so that the pool knows that it needs a special algorithm
7619 -- for variable size object allocation.
7621 if Is_Composite_Type (Desig_Type)
7622 and then not Is_Constrained (Desig_Type)
7623 then
7624 DT_Size := Make_Integer_Literal (Loc, 0);
7625 DT_Align := Make_Integer_Literal (Loc, Maximum_Alignment);
7627 else
7628 DT_Size :=
7629 Make_Attribute_Reference (Loc,
7630 Prefix => New_Occurrence_Of (Desig_Type, Loc),
7631 Attribute_Name => Name_Max_Size_In_Storage_Elements);
7633 DT_Align :=
7634 Make_Attribute_Reference (Loc,
7635 Prefix => New_Occurrence_Of (Desig_Type, Loc),
7636 Attribute_Name => Name_Alignment);
7637 end if;
7639 Pool_Object :=
7640 Make_Defining_Identifier (Loc,
7641 Chars => New_External_Name (Chars (Def_Id), 'P'));
7643 -- We put the code associated with the pools in the entity
7644 -- that has the later freeze node, usually the access type
7645 -- but it can also be the designated_type; because the pool
7646 -- code requires both those types to be frozen
7648 if Is_Frozen (Desig_Type)
7649 and then (No (Freeze_Node (Desig_Type))
7650 or else Analyzed (Freeze_Node (Desig_Type)))
7651 then
7652 Freeze_Action_Typ := Def_Id;
7654 -- A Taft amendment type cannot get the freeze actions
7655 -- since the full view is not there.
7657 elsif Is_Incomplete_Or_Private_Type (Desig_Type)
7658 and then No (Full_View (Desig_Type))
7659 then
7660 Freeze_Action_Typ := Def_Id;
7662 else
7663 Freeze_Action_Typ := Desig_Type;
7664 end if;
7666 Append_Freeze_Action (Freeze_Action_Typ,
7667 Make_Object_Declaration (Loc,
7668 Defining_Identifier => Pool_Object,
7669 Object_Definition =>
7670 Make_Subtype_Indication (Loc,
7671 Subtype_Mark =>
7672 New_Occurrence_Of
7673 (RTE (RE_Stack_Bounded_Pool), Loc),
7675 Constraint =>
7676 Make_Index_Or_Discriminant_Constraint (Loc,
7677 Constraints => New_List (
7679 -- First discriminant is the Pool Size
7681 New_Occurrence_Of (
7682 Storage_Size_Variable (Def_Id), Loc),
7684 -- Second discriminant is the element size
7686 DT_Size,
7688 -- Third discriminant is the alignment
7690 DT_Align)))));
7691 end;
7693 Set_Associated_Storage_Pool (Def_Id, Pool_Object);
7695 -- Case 3
7697 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7698 -- ---> Storage Pool is the specified one
7700 -- When compiling in Ada 2012 mode, ensure that the accessibility
7701 -- level of the subpool access type is not deeper than that of the
7702 -- pool_with_subpools.
7704 elsif Ada_Version >= Ada_2012
7705 and then Present (Associated_Storage_Pool (Def_Id))
7707 -- Omit this check for the case of a configurable run-time that
7708 -- does not provide package System.Storage_Pools.Subpools.
7710 and then RTE_Available (RE_Root_Storage_Pool_With_Subpools)
7711 then
7712 declare
7713 Loc : constant Source_Ptr := Sloc (Def_Id);
7714 Pool : constant Entity_Id :=
7715 Associated_Storage_Pool (Def_Id);
7716 RSPWS : constant Entity_Id :=
7717 RTE (RE_Root_Storage_Pool_With_Subpools);
7719 begin
7720 -- It is known that the accessibility level of the access
7721 -- type is deeper than that of the pool.
7723 if Type_Access_Level (Def_Id) > Object_Access_Level (Pool)
7724 and then not Accessibility_Checks_Suppressed (Def_Id)
7725 and then not Accessibility_Checks_Suppressed (Pool)
7726 then
7727 -- Static case: the pool is known to be a descendant of
7728 -- Root_Storage_Pool_With_Subpools.
7730 if Is_Ancestor (RSPWS, Etype (Pool)) then
7731 Error_Msg_N
7732 ("??subpool access type has deeper accessibility "
7733 & "level than pool", Def_Id);
7735 Append_Freeze_Action (Def_Id,
7736 Make_Raise_Program_Error (Loc,
7737 Reason => PE_Accessibility_Check_Failed));
7739 -- Dynamic case: when the pool is of a class-wide type,
7740 -- it may or may not support subpools depending on the
7741 -- path of derivation. Generate:
7743 -- if Def_Id in RSPWS'Class then
7744 -- raise Program_Error;
7745 -- end if;
7747 elsif Is_Class_Wide_Type (Etype (Pool)) then
7748 Append_Freeze_Action (Def_Id,
7749 Make_If_Statement (Loc,
7750 Condition =>
7751 Make_In (Loc,
7752 Left_Opnd => New_Occurrence_Of (Pool, Loc),
7753 Right_Opnd =>
7754 New_Occurrence_Of
7755 (Class_Wide_Type (RSPWS), Loc)),
7757 Then_Statements => New_List (
7758 Make_Raise_Program_Error (Loc,
7759 Reason => PE_Accessibility_Check_Failed))));
7760 end if;
7761 end if;
7762 end;
7763 end if;
7765 -- For access-to-controlled types (including class-wide types and
7766 -- Taft-amendment types, which potentially have controlled
7767 -- components), expand the list controller object that will store
7768 -- the dynamically allocated objects. Don't do this transformation
7769 -- for expander-generated access types, but do it for types that
7770 -- are the full view of types derived from other private types.
7771 -- Also suppress the list controller in the case of a designated
7772 -- type with convention Java, since this is used when binding to
7773 -- Java API specs, where there's no equivalent of a finalization
7774 -- list and we don't want to pull in the finalization support if
7775 -- not needed.
7777 if not Comes_From_Source (Def_Id)
7778 and then not Has_Private_Declaration (Def_Id)
7779 then
7780 null;
7782 -- An exception is made for types defined in the run-time because
7783 -- Ada.Tags.Tag itself is such a type and cannot afford this
7784 -- unnecessary overhead that would generates a loop in the
7785 -- expansion scheme. Another exception is if Restrictions
7786 -- (No_Finalization) is active, since then we know nothing is
7787 -- controlled.
7789 elsif Restriction_Active (No_Finalization)
7790 or else In_Runtime (Def_Id)
7791 then
7792 null;
7794 -- Create a finalization master for an access-to-controlled type
7795 -- or an access-to-incomplete type. It is assumed that the full
7796 -- view will be controlled.
7798 elsif Needs_Finalization (Desig_Type)
7799 or else (Is_Incomplete_Type (Desig_Type)
7800 and then No (Full_View (Desig_Type)))
7801 then
7802 Build_Finalization_Master (Def_Id);
7804 -- Create a finalization master when the designated type contains
7805 -- a private component. It is assumed that the full view will be
7806 -- controlled.
7808 elsif Has_Private_Component (Desig_Type) then
7809 Build_Finalization_Master
7810 (Typ => Def_Id,
7811 For_Private => True,
7812 Context_Scope => Scope (Def_Id),
7813 Insertion_Node => Declaration_Node (Desig_Type));
7814 end if;
7815 end;
7817 -- Freeze processing for enumeration types
7819 elsif Ekind (Def_Id) = E_Enumeration_Type then
7821 -- We only have something to do if we have a non-standard
7822 -- representation (i.e. at least one literal whose pos value
7823 -- is not the same as its representation)
7825 if Has_Non_Standard_Rep (Def_Id) then
7826 Expand_Freeze_Enumeration_Type (N);
7827 end if;
7829 -- Private types that are completed by a derivation from a private
7830 -- type have an internally generated full view, that needs to be
7831 -- frozen. This must be done explicitly because the two views share
7832 -- the freeze node, and the underlying full view is not visible when
7833 -- the freeze node is analyzed.
7835 elsif Is_Private_Type (Def_Id)
7836 and then Is_Derived_Type (Def_Id)
7837 and then Present (Full_View (Def_Id))
7838 and then Is_Itype (Full_View (Def_Id))
7839 and then Has_Private_Declaration (Full_View (Def_Id))
7840 and then Freeze_Node (Full_View (Def_Id)) = N
7841 then
7842 Set_Entity (N, Full_View (Def_Id));
7843 Result := Freeze_Type (N);
7844 Set_Entity (N, Def_Id);
7846 -- All other types require no expander action. There are such cases
7847 -- (e.g. task types and protected types). In such cases, the freeze
7848 -- nodes are there for use by Gigi.
7850 end if;
7852 -- Complete the initialization of all pending access types' finalization
7853 -- masters now that the designated type has been is frozen and primitive
7854 -- Finalize_Address generated.
7856 Process_Pending_Access_Types (Def_Id);
7857 Freeze_Stream_Operations (N, Def_Id);
7859 -- Generate the [spec and] body of the procedure tasked with the runtime
7860 -- verification of pragma Default_Initial_Condition's expression.
7862 if Has_DIC (Def_Id) then
7863 Build_DIC_Procedure_Body (Def_Id, For_Freeze => True);
7864 end if;
7866 -- Generate the [spec and] body of the invariant procedure tasked with
7867 -- the runtime verification of all invariants that pertain to the type.
7868 -- This includes invariants on the partial and full view, inherited
7869 -- class-wide invariants from parent types or interfaces, and invariants
7870 -- on array elements or record components.
7872 if Is_Interface (Def_Id) then
7874 -- Interfaces are treated as the partial view of a private type in
7875 -- order to achieve uniformity with the general case. As a result, an
7876 -- interface receives only a "partial" invariant procedure which is
7877 -- never called.
7879 if Has_Own_Invariants (Def_Id) then
7880 Build_Invariant_Procedure_Body
7881 (Typ => Def_Id,
7882 Partial_Invariant => Is_Interface (Def_Id));
7883 end if;
7885 -- Non-interface types
7887 -- Do not generate invariant procedure within other assertion
7888 -- subprograms, which may involve local declarations of local
7889 -- subtypes to which these checks do not apply.
7891 elsif Has_Invariants (Def_Id) then
7892 if Within_Internal_Subprogram
7893 or else (Ekind (Current_Scope) = E_Function
7894 and then Is_Predicate_Function (Current_Scope))
7895 then
7896 null;
7897 else
7898 Build_Invariant_Procedure_Body (Def_Id);
7899 end if;
7900 end if;
7902 Restore_Ghost_Mode (Saved_GM);
7904 return Result;
7906 exception
7907 when RE_Not_Available =>
7908 Restore_Ghost_Mode (Saved_GM);
7910 return False;
7911 end Freeze_Type;
7913 -------------------------
7914 -- Get_Simple_Init_Val --
7915 -------------------------
7917 function Get_Simple_Init_Val
7918 (T : Entity_Id;
7919 N : Node_Id;
7920 Size : Uint := No_Uint) return Node_Id
7922 Loc : constant Source_Ptr := Sloc (N);
7923 Val : Node_Id;
7924 Result : Node_Id;
7925 Val_RE : RE_Id;
7927 Size_To_Use : Uint;
7928 -- This is the size to be used for computation of the appropriate
7929 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
7931 IV_Attribute : constant Boolean :=
7932 Nkind (N) = N_Attribute_Reference
7933 and then Attribute_Name (N) = Name_Invalid_Value;
7935 Lo_Bound : Uint;
7936 Hi_Bound : Uint;
7937 -- These are the values computed by the procedure Check_Subtype_Bounds
7939 procedure Check_Subtype_Bounds;
7940 -- This procedure examines the subtype T, and its ancestor subtypes and
7941 -- derived types to determine the best known information about the
7942 -- bounds of the subtype. After the call Lo_Bound is set either to
7943 -- No_Uint if no information can be determined, or to a value which
7944 -- represents a known low bound, i.e. a valid value of the subtype can
7945 -- not be less than this value. Hi_Bound is similarly set to a known
7946 -- high bound (valid value cannot be greater than this).
7948 --------------------------
7949 -- Check_Subtype_Bounds --
7950 --------------------------
7952 procedure Check_Subtype_Bounds is
7953 ST1 : Entity_Id;
7954 ST2 : Entity_Id;
7955 Lo : Node_Id;
7956 Hi : Node_Id;
7957 Loval : Uint;
7958 Hival : Uint;
7960 begin
7961 Lo_Bound := No_Uint;
7962 Hi_Bound := No_Uint;
7964 -- Loop to climb ancestor subtypes and derived types
7966 ST1 := T;
7967 loop
7968 if not Is_Discrete_Type (ST1) then
7969 return;
7970 end if;
7972 Lo := Type_Low_Bound (ST1);
7973 Hi := Type_High_Bound (ST1);
7975 if Compile_Time_Known_Value (Lo) then
7976 Loval := Expr_Value (Lo);
7978 if Lo_Bound = No_Uint or else Lo_Bound < Loval then
7979 Lo_Bound := Loval;
7980 end if;
7981 end if;
7983 if Compile_Time_Known_Value (Hi) then
7984 Hival := Expr_Value (Hi);
7986 if Hi_Bound = No_Uint or else Hi_Bound > Hival then
7987 Hi_Bound := Hival;
7988 end if;
7989 end if;
7991 ST2 := Ancestor_Subtype (ST1);
7993 if No (ST2) then
7994 ST2 := Etype (ST1);
7995 end if;
7997 exit when ST1 = ST2;
7998 ST1 := ST2;
7999 end loop;
8000 end Check_Subtype_Bounds;
8002 -- Start of processing for Get_Simple_Init_Val
8004 begin
8005 -- For a private type, we should always have an underlying type (because
8006 -- this was already checked in Needs_Simple_Initialization). What we do
8007 -- is to get the value for the underlying type and then do an unchecked
8008 -- conversion to the private type.
8010 if Is_Private_Type (T) then
8011 Val := Get_Simple_Init_Val (Underlying_Type (T), N, Size);
8013 -- A special case, if the underlying value is null, then qualify it
8014 -- with the underlying type, so that the null is properly typed.
8015 -- Similarly, if it is an aggregate it must be qualified, because an
8016 -- unchecked conversion does not provide a context for it.
8018 if Nkind_In (Val, N_Null, N_Aggregate) then
8019 Val :=
8020 Make_Qualified_Expression (Loc,
8021 Subtype_Mark =>
8022 New_Occurrence_Of (Underlying_Type (T), Loc),
8023 Expression => Val);
8024 end if;
8026 Result := Unchecked_Convert_To (T, Val);
8028 -- Don't truncate result (important for Initialize/Normalize_Scalars)
8030 if Nkind (Result) = N_Unchecked_Type_Conversion
8031 and then Is_Scalar_Type (Underlying_Type (T))
8032 then
8033 Set_No_Truncation (Result);
8034 end if;
8036 return Result;
8038 -- Scalars with Default_Value aspect. The first subtype may now be
8039 -- private, so retrieve value from underlying type.
8041 elsif Is_Scalar_Type (T) and then Has_Default_Aspect (T) then
8042 if Is_Private_Type (First_Subtype (T)) then
8043 return Unchecked_Convert_To (T,
8044 Default_Aspect_Value (Full_View (First_Subtype (T))));
8045 else
8046 return
8047 Convert_To (T, Default_Aspect_Value (First_Subtype (T)));
8048 end if;
8050 -- Otherwise, for scalars, we must have normalize/initialize scalars
8051 -- case, or if the node N is an 'Invalid_Value attribute node.
8053 elsif Is_Scalar_Type (T) then
8054 pragma Assert (Init_Or_Norm_Scalars or IV_Attribute);
8056 -- Compute size of object. If it is given by the caller, we can use
8057 -- it directly, otherwise we use Esize (T) as an estimate. As far as
8058 -- we know this covers all cases correctly.
8060 if Size = No_Uint or else Size <= Uint_0 then
8061 Size_To_Use := UI_Max (Uint_1, Esize (T));
8062 else
8063 Size_To_Use := Size;
8064 end if;
8066 -- Maximum size to use is 64 bits, since we will create values of
8067 -- type Unsigned_64 and the range must fit this type.
8069 if Size_To_Use /= No_Uint and then Size_To_Use > Uint_64 then
8070 Size_To_Use := Uint_64;
8071 end if;
8073 -- Check known bounds of subtype
8075 Check_Subtype_Bounds;
8077 -- Processing for Normalize_Scalars case
8079 if Normalize_Scalars and then not IV_Attribute then
8081 -- If zero is invalid, it is a convenient value to use that is
8082 -- for sure an appropriate invalid value in all situations.
8084 if Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
8085 Val := Make_Integer_Literal (Loc, 0);
8087 -- Cases where all one bits is the appropriate invalid value
8089 -- For modular types, all 1 bits is either invalid or valid. If
8090 -- it is valid, then there is nothing that can be done since there
8091 -- are no invalid values (we ruled out zero already).
8093 -- For signed integer types that have no negative values, either
8094 -- there is room for negative values, or there is not. If there
8095 -- is, then all 1-bits may be interpreted as minus one, which is
8096 -- certainly invalid. Alternatively it is treated as the largest
8097 -- positive value, in which case the observation for modular types
8098 -- still applies.
8100 -- For float types, all 1-bits is a NaN (not a number), which is
8101 -- certainly an appropriately invalid value.
8103 elsif Is_Unsigned_Type (T)
8104 or else Is_Floating_Point_Type (T)
8105 or else Is_Enumeration_Type (T)
8106 then
8107 Val := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);
8109 -- Resolve as Unsigned_64, because the largest number we can
8110 -- generate is out of range of universal integer.
8112 Analyze_And_Resolve (Val, RTE (RE_Unsigned_64));
8114 -- Case of signed types
8116 else
8117 declare
8118 Signed_Size : constant Uint :=
8119 UI_Min (Uint_63, Size_To_Use - 1);
8121 begin
8122 -- Normally we like to use the most negative number. The one
8123 -- exception is when this number is in the known subtype
8124 -- range and the largest positive number is not in the known
8125 -- subtype range.
8127 -- For this exceptional case, use largest positive value
8129 if Lo_Bound /= No_Uint and then Hi_Bound /= No_Uint
8130 and then Lo_Bound <= (-(2 ** Signed_Size))
8131 and then Hi_Bound < 2 ** Signed_Size
8132 then
8133 Val := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);
8135 -- Normal case of largest negative value
8137 else
8138 Val := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
8139 end if;
8140 end;
8141 end if;
8143 -- Here for Initialize_Scalars case (or Invalid_Value attribute used)
8145 else
8146 -- For float types, use float values from System.Scalar_Values
8148 if Is_Floating_Point_Type (T) then
8149 if Root_Type (T) = Standard_Short_Float then
8150 Val_RE := RE_IS_Isf;
8151 elsif Root_Type (T) = Standard_Float then
8152 Val_RE := RE_IS_Ifl;
8153 elsif Root_Type (T) = Standard_Long_Float then
8154 Val_RE := RE_IS_Ilf;
8155 else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
8156 Val_RE := RE_IS_Ill;
8157 end if;
8159 -- If zero is invalid, use zero values from System.Scalar_Values
8161 elsif Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
8162 if Size_To_Use <= 8 then
8163 Val_RE := RE_IS_Iz1;
8164 elsif Size_To_Use <= 16 then
8165 Val_RE := RE_IS_Iz2;
8166 elsif Size_To_Use <= 32 then
8167 Val_RE := RE_IS_Iz4;
8168 else
8169 Val_RE := RE_IS_Iz8;
8170 end if;
8172 -- For unsigned, use unsigned values from System.Scalar_Values
8174 elsif Is_Unsigned_Type (T) then
8175 if Size_To_Use <= 8 then
8176 Val_RE := RE_IS_Iu1;
8177 elsif Size_To_Use <= 16 then
8178 Val_RE := RE_IS_Iu2;
8179 elsif Size_To_Use <= 32 then
8180 Val_RE := RE_IS_Iu4;
8181 else
8182 Val_RE := RE_IS_Iu8;
8183 end if;
8185 -- For signed, use signed values from System.Scalar_Values
8187 else
8188 if Size_To_Use <= 8 then
8189 Val_RE := RE_IS_Is1;
8190 elsif Size_To_Use <= 16 then
8191 Val_RE := RE_IS_Is2;
8192 elsif Size_To_Use <= 32 then
8193 Val_RE := RE_IS_Is4;
8194 else
8195 Val_RE := RE_IS_Is8;
8196 end if;
8197 end if;
8199 Val := New_Occurrence_Of (RTE (Val_RE), Loc);
8200 end if;
8202 -- The final expression is obtained by doing an unchecked conversion
8203 -- of this result to the base type of the required subtype. Use the
8204 -- base type to prevent the unchecked conversion from chopping bits,
8205 -- and then we set Kill_Range_Check to preserve the "bad" value.
8207 Result := Unchecked_Convert_To (Base_Type (T), Val);
8209 -- Ensure result is not truncated, since we want the "bad" bits, and
8210 -- also kill range check on result.
8212 if Nkind (Result) = N_Unchecked_Type_Conversion then
8213 Set_No_Truncation (Result);
8214 Set_Kill_Range_Check (Result, True);
8215 end if;
8217 return Result;
8219 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
8221 elsif Is_Standard_String_Type (T) then
8222 pragma Assert (Init_Or_Norm_Scalars);
8224 return
8225 Make_Aggregate (Loc,
8226 Component_Associations => New_List (
8227 Make_Component_Association (Loc,
8228 Choices => New_List (
8229 Make_Others_Choice (Loc)),
8230 Expression =>
8231 Get_Simple_Init_Val
8232 (Component_Type (T), N, Esize (Root_Type (T))))));
8234 -- Access type is initialized to null
8236 elsif Is_Access_Type (T) then
8237 return Make_Null (Loc);
8239 -- No other possibilities should arise, since we should only be calling
8240 -- Get_Simple_Init_Val if Needs_Simple_Initialization returned True,
8241 -- indicating one of the above cases held.
8243 else
8244 raise Program_Error;
8245 end if;
8247 exception
8248 when RE_Not_Available =>
8249 return Empty;
8250 end Get_Simple_Init_Val;
8252 ------------------------------
8253 -- Has_New_Non_Standard_Rep --
8254 ------------------------------
8256 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
8257 begin
8258 if not Is_Derived_Type (T) then
8259 return Has_Non_Standard_Rep (T)
8260 or else Has_Non_Standard_Rep (Root_Type (T));
8262 -- If Has_Non_Standard_Rep is not set on the derived type, the
8263 -- representation is fully inherited.
8265 elsif not Has_Non_Standard_Rep (T) then
8266 return False;
8268 else
8269 return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
8271 -- May need a more precise check here: the First_Rep_Item may be a
8272 -- stream attribute, which does not affect the representation of the
8273 -- type ???
8275 end if;
8276 end Has_New_Non_Standard_Rep;
8278 ----------------------
8279 -- Inline_Init_Proc --
8280 ----------------------
8282 function Inline_Init_Proc (Typ : Entity_Id) return Boolean is
8283 begin
8284 -- The initialization proc of protected records is not worth inlining.
8285 -- In addition, when compiled for another unit for inlining purposes,
8286 -- it may make reference to entities that have not been elaborated yet.
8287 -- The initialization proc of records that need finalization contains
8288 -- a nested clean-up procedure that makes it impractical to inline as
8289 -- well, except for simple controlled types themselves. And similar
8290 -- considerations apply to task types.
8292 if Is_Concurrent_Type (Typ) then
8293 return False;
8295 elsif Needs_Finalization (Typ) and then not Is_Controlled (Typ) then
8296 return False;
8298 elsif Has_Task (Typ) then
8299 return False;
8301 else
8302 return True;
8303 end if;
8304 end Inline_Init_Proc;
8306 ----------------
8307 -- In_Runtime --
8308 ----------------
8310 function In_Runtime (E : Entity_Id) return Boolean is
8311 S1 : Entity_Id;
8313 begin
8314 S1 := Scope (E);
8315 while Scope (S1) /= Standard_Standard loop
8316 S1 := Scope (S1);
8317 end loop;
8319 return Is_RTU (S1, System) or else Is_RTU (S1, Ada);
8320 end In_Runtime;
8322 ----------------------------
8323 -- Initialization_Warning --
8324 ----------------------------
8326 procedure Initialization_Warning (E : Entity_Id) is
8327 Warning_Needed : Boolean;
8329 begin
8330 Warning_Needed := False;
8332 if Ekind (Current_Scope) = E_Package
8333 and then Static_Elaboration_Desired (Current_Scope)
8334 then
8335 if Is_Type (E) then
8336 if Is_Record_Type (E) then
8337 if Has_Discriminants (E)
8338 or else Is_Limited_Type (E)
8339 or else Has_Non_Standard_Rep (E)
8340 then
8341 Warning_Needed := True;
8343 else
8344 -- Verify that at least one component has an initialization
8345 -- expression. No need for a warning on a type if all its
8346 -- components have no initialization.
8348 declare
8349 Comp : Entity_Id;
8351 begin
8352 Comp := First_Component (E);
8353 while Present (Comp) loop
8354 if Ekind (Comp) = E_Discriminant
8355 or else
8356 (Nkind (Parent (Comp)) = N_Component_Declaration
8357 and then Present (Expression (Parent (Comp))))
8358 then
8359 Warning_Needed := True;
8360 exit;
8361 end if;
8363 Next_Component (Comp);
8364 end loop;
8365 end;
8366 end if;
8368 if Warning_Needed then
8369 Error_Msg_N
8370 ("Objects of the type cannot be initialized statically "
8371 & "by default??", Parent (E));
8372 end if;
8373 end if;
8375 else
8376 Error_Msg_N ("Object cannot be initialized statically??", E);
8377 end if;
8378 end if;
8379 end Initialization_Warning;
8381 ------------------
8382 -- Init_Formals --
8383 ------------------
8385 function Init_Formals (Typ : Entity_Id) return List_Id is
8386 Loc : constant Source_Ptr := Sloc (Typ);
8387 Formals : List_Id;
8389 begin
8390 -- First parameter is always _Init : in out typ. Note that we need this
8391 -- to be in/out because in the case of the task record value, there
8392 -- are default record fields (_Priority, _Size, -Task_Info) that may
8393 -- be referenced in the generated initialization routine.
8395 Formals := New_List (
8396 Make_Parameter_Specification (Loc,
8397 Defining_Identifier => Make_Defining_Identifier (Loc, Name_uInit),
8398 In_Present => True,
8399 Out_Present => True,
8400 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
8402 -- For task record value, or type that contains tasks, add two more
8403 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
8404 -- We also add these parameters for the task record type case.
8406 if Has_Task (Typ)
8407 or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
8408 then
8409 Append_To (Formals,
8410 Make_Parameter_Specification (Loc,
8411 Defining_Identifier =>
8412 Make_Defining_Identifier (Loc, Name_uMaster),
8413 Parameter_Type =>
8414 New_Occurrence_Of (RTE (RE_Master_Id), Loc)));
8416 -- Add _Chain (not done for sequential elaboration policy, see
8417 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
8419 if Partition_Elaboration_Policy /= 'S' then
8420 Append_To (Formals,
8421 Make_Parameter_Specification (Loc,
8422 Defining_Identifier =>
8423 Make_Defining_Identifier (Loc, Name_uChain),
8424 In_Present => True,
8425 Out_Present => True,
8426 Parameter_Type =>
8427 New_Occurrence_Of (RTE (RE_Activation_Chain), Loc)));
8428 end if;
8430 Append_To (Formals,
8431 Make_Parameter_Specification (Loc,
8432 Defining_Identifier =>
8433 Make_Defining_Identifier (Loc, Name_uTask_Name),
8434 In_Present => True,
8435 Parameter_Type => New_Occurrence_Of (Standard_String, Loc)));
8436 end if;
8438 return Formals;
8440 exception
8441 when RE_Not_Available =>
8442 return Empty_List;
8443 end Init_Formals;
8445 -------------------------
8446 -- Init_Secondary_Tags --
8447 -------------------------
8449 procedure Init_Secondary_Tags
8450 (Typ : Entity_Id;
8451 Target : Node_Id;
8452 Init_Tags_List : List_Id;
8453 Stmts_List : List_Id;
8454 Fixed_Comps : Boolean := True;
8455 Variable_Comps : Boolean := True)
8457 Loc : constant Source_Ptr := Sloc (Target);
8459 -- Inherit the C++ tag of the secondary dispatch table of Typ associated
8460 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8462 procedure Initialize_Tag
8463 (Typ : Entity_Id;
8464 Iface : Entity_Id;
8465 Tag_Comp : Entity_Id;
8466 Iface_Tag : Node_Id);
8467 -- Initialize the tag of the secondary dispatch table of Typ associated
8468 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8469 -- Compiling under the CPP full ABI compatibility mode, if the ancestor
8470 -- of Typ CPP tagged type we generate code to inherit the contents of
8471 -- the dispatch table directly from the ancestor.
8473 --------------------
8474 -- Initialize_Tag --
8475 --------------------
8477 procedure Initialize_Tag
8478 (Typ : Entity_Id;
8479 Iface : Entity_Id;
8480 Tag_Comp : Entity_Id;
8481 Iface_Tag : Node_Id)
8483 Comp_Typ : Entity_Id;
8484 Offset_To_Top_Comp : Entity_Id := Empty;
8486 begin
8487 -- Initialize pointer to secondary DT associated with the interface
8489 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
8490 Append_To (Init_Tags_List,
8491 Make_Assignment_Statement (Loc,
8492 Name =>
8493 Make_Selected_Component (Loc,
8494 Prefix => New_Copy_Tree (Target),
8495 Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
8496 Expression =>
8497 New_Occurrence_Of (Iface_Tag, Loc)));
8498 end if;
8500 Comp_Typ := Scope (Tag_Comp);
8502 -- Initialize the entries of the table of interfaces. We generate a
8503 -- different call when the parent of the type has variable size
8504 -- components.
8506 if Comp_Typ /= Etype (Comp_Typ)
8507 and then Is_Variable_Size_Record (Etype (Comp_Typ))
8508 and then Chars (Tag_Comp) /= Name_uTag
8509 then
8510 pragma Assert (Present (DT_Offset_To_Top_Func (Tag_Comp)));
8512 -- Issue error if Set_Dynamic_Offset_To_Top is not available in a
8513 -- configurable run-time environment.
8515 if not RTE_Available (RE_Set_Dynamic_Offset_To_Top) then
8516 Error_Msg_CRT
8517 ("variable size record with interface types", Typ);
8518 return;
8519 end if;
8521 -- Generate:
8522 -- Set_Dynamic_Offset_To_Top
8523 -- (This => Init,
8524 -- Prim_T => Typ'Tag,
8525 -- Interface_T => Iface'Tag,
8526 -- Offset_Value => n,
8527 -- Offset_Func => Fn'Address)
8529 Append_To (Stmts_List,
8530 Make_Procedure_Call_Statement (Loc,
8531 Name =>
8532 New_Occurrence_Of (RTE (RE_Set_Dynamic_Offset_To_Top), Loc),
8533 Parameter_Associations => New_List (
8534 Make_Attribute_Reference (Loc,
8535 Prefix => New_Copy_Tree (Target),
8536 Attribute_Name => Name_Address),
8538 Unchecked_Convert_To (RTE (RE_Tag),
8539 New_Occurrence_Of
8540 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc)),
8542 Unchecked_Convert_To (RTE (RE_Tag),
8543 New_Occurrence_Of
8544 (Node (First_Elmt (Access_Disp_Table (Iface))),
8545 Loc)),
8547 Unchecked_Convert_To
8548 (RTE (RE_Storage_Offset),
8549 Make_Op_Minus (Loc,
8550 Make_Attribute_Reference (Loc,
8551 Prefix =>
8552 Make_Selected_Component (Loc,
8553 Prefix => New_Copy_Tree (Target),
8554 Selector_Name =>
8555 New_Occurrence_Of (Tag_Comp, Loc)),
8556 Attribute_Name => Name_Position))),
8558 Unchecked_Convert_To (RTE (RE_Offset_To_Top_Function_Ptr),
8559 Make_Attribute_Reference (Loc,
8560 Prefix => New_Occurrence_Of
8561 (DT_Offset_To_Top_Func (Tag_Comp), Loc),
8562 Attribute_Name => Name_Address)))));
8564 -- In this case the next component stores the value of the offset
8565 -- to the top.
8567 Offset_To_Top_Comp := Next_Entity (Tag_Comp);
8568 pragma Assert (Present (Offset_To_Top_Comp));
8570 Append_To (Init_Tags_List,
8571 Make_Assignment_Statement (Loc,
8572 Name =>
8573 Make_Selected_Component (Loc,
8574 Prefix => New_Copy_Tree (Target),
8575 Selector_Name =>
8576 New_Occurrence_Of (Offset_To_Top_Comp, Loc)),
8578 Expression =>
8579 Make_Op_Minus (Loc,
8580 Make_Attribute_Reference (Loc,
8581 Prefix =>
8582 Make_Selected_Component (Loc,
8583 Prefix => New_Copy_Tree (Target),
8584 Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
8585 Attribute_Name => Name_Position))));
8587 -- Normal case: No discriminants in the parent type
8589 else
8590 -- Don't need to set any value if the offset-to-top field is
8591 -- statically set or if this interface shares the primary
8592 -- dispatch table.
8594 if not Building_Static_Secondary_DT (Typ)
8595 and then not Is_Ancestor (Iface, Typ, Use_Full_View => True)
8596 then
8597 Append_To (Stmts_List,
8598 Build_Set_Static_Offset_To_Top (Loc,
8599 Iface_Tag => New_Occurrence_Of (Iface_Tag, Loc),
8600 Offset_Value =>
8601 Unchecked_Convert_To (RTE (RE_Storage_Offset),
8602 Make_Op_Minus (Loc,
8603 Make_Attribute_Reference (Loc,
8604 Prefix =>
8605 Make_Selected_Component (Loc,
8606 Prefix => New_Copy_Tree (Target),
8607 Selector_Name =>
8608 New_Occurrence_Of (Tag_Comp, Loc)),
8609 Attribute_Name => Name_Position)))));
8610 end if;
8612 -- Generate:
8613 -- Register_Interface_Offset
8614 -- (Prim_T => Typ'Tag,
8615 -- Interface_T => Iface'Tag,
8616 -- Is_Constant => True,
8617 -- Offset_Value => n,
8618 -- Offset_Func => null);
8620 if not Building_Static_Secondary_DT (Typ)
8621 and then RTE_Available (RE_Register_Interface_Offset)
8622 then
8623 Append_To (Stmts_List,
8624 Make_Procedure_Call_Statement (Loc,
8625 Name =>
8626 New_Occurrence_Of
8627 (RTE (RE_Register_Interface_Offset), Loc),
8628 Parameter_Associations => New_List (
8629 Unchecked_Convert_To (RTE (RE_Tag),
8630 New_Occurrence_Of
8631 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc)),
8633 Unchecked_Convert_To (RTE (RE_Tag),
8634 New_Occurrence_Of
8635 (Node (First_Elmt (Access_Disp_Table (Iface))), Loc)),
8637 New_Occurrence_Of (Standard_True, Loc),
8639 Unchecked_Convert_To (RTE (RE_Storage_Offset),
8640 Make_Op_Minus (Loc,
8641 Make_Attribute_Reference (Loc,
8642 Prefix =>
8643 Make_Selected_Component (Loc,
8644 Prefix => New_Copy_Tree (Target),
8645 Selector_Name =>
8646 New_Occurrence_Of (Tag_Comp, Loc)),
8647 Attribute_Name => Name_Position))),
8649 Make_Null (Loc))));
8650 end if;
8651 end if;
8652 end Initialize_Tag;
8654 -- Local variables
8656 Full_Typ : Entity_Id;
8657 Ifaces_List : Elist_Id;
8658 Ifaces_Comp_List : Elist_Id;
8659 Ifaces_Tag_List : Elist_Id;
8660 Iface_Elmt : Elmt_Id;
8661 Iface_Comp_Elmt : Elmt_Id;
8662 Iface_Tag_Elmt : Elmt_Id;
8663 Tag_Comp : Node_Id;
8664 In_Variable_Pos : Boolean;
8666 -- Start of processing for Init_Secondary_Tags
8668 begin
8669 -- Handle private types
8671 if Present (Full_View (Typ)) then
8672 Full_Typ := Full_View (Typ);
8673 else
8674 Full_Typ := Typ;
8675 end if;
8677 Collect_Interfaces_Info
8678 (Full_Typ, Ifaces_List, Ifaces_Comp_List, Ifaces_Tag_List);
8680 Iface_Elmt := First_Elmt (Ifaces_List);
8681 Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
8682 Iface_Tag_Elmt := First_Elmt (Ifaces_Tag_List);
8683 while Present (Iface_Elmt) loop
8684 Tag_Comp := Node (Iface_Comp_Elmt);
8686 -- Check if parent of record type has variable size components
8688 In_Variable_Pos := Scope (Tag_Comp) /= Etype (Scope (Tag_Comp))
8689 and then Is_Variable_Size_Record (Etype (Scope (Tag_Comp)));
8691 -- If we are compiling under the CPP full ABI compatibility mode and
8692 -- the ancestor is a CPP_Pragma tagged type then we generate code to
8693 -- initialize the secondary tag components from tags that reference
8694 -- secondary tables filled with copy of parent slots.
8696 if Is_CPP_Class (Root_Type (Full_Typ)) then
8698 -- Reject interface components located at variable offset in
8699 -- C++ derivations. This is currently unsupported.
8701 if not Fixed_Comps and then In_Variable_Pos then
8703 -- Locate the first dynamic component of the record. Done to
8704 -- improve the text of the warning.
8706 declare
8707 Comp : Entity_Id;
8708 Comp_Typ : Entity_Id;
8710 begin
8711 Comp := First_Entity (Typ);
8712 while Present (Comp) loop
8713 Comp_Typ := Etype (Comp);
8715 if Ekind (Comp) /= E_Discriminant
8716 and then not Is_Tag (Comp)
8717 then
8718 exit when
8719 (Is_Record_Type (Comp_Typ)
8720 and then
8721 Is_Variable_Size_Record (Base_Type (Comp_Typ)))
8722 or else
8723 (Is_Array_Type (Comp_Typ)
8724 and then Is_Variable_Size_Array (Comp_Typ));
8725 end if;
8727 Next_Entity (Comp);
8728 end loop;
8730 pragma Assert (Present (Comp));
8731 Error_Msg_Node_2 := Comp;
8732 Error_Msg_NE
8733 ("parent type & with dynamic component & cannot be parent"
8734 & " of 'C'P'P derivation if new interfaces are present",
8735 Typ, Scope (Original_Record_Component (Comp)));
8737 Error_Msg_Sloc :=
8738 Sloc (Scope (Original_Record_Component (Comp)));
8739 Error_Msg_NE
8740 ("type derived from 'C'P'P type & defined #",
8741 Typ, Scope (Original_Record_Component (Comp)));
8743 -- Avoid duplicated warnings
8745 exit;
8746 end;
8748 -- Initialize secondary tags
8750 else
8751 Initialize_Tag
8752 (Typ => Full_Typ,
8753 Iface => Node (Iface_Elmt),
8754 Tag_Comp => Tag_Comp,
8755 Iface_Tag => Node (Iface_Tag_Elmt));
8756 end if;
8758 -- Otherwise generate code to initialize the tag
8760 else
8761 if (In_Variable_Pos and then Variable_Comps)
8762 or else (not In_Variable_Pos and then Fixed_Comps)
8763 then
8764 Initialize_Tag
8765 (Typ => Full_Typ,
8766 Iface => Node (Iface_Elmt),
8767 Tag_Comp => Tag_Comp,
8768 Iface_Tag => Node (Iface_Tag_Elmt));
8769 end if;
8770 end if;
8772 Next_Elmt (Iface_Elmt);
8773 Next_Elmt (Iface_Comp_Elmt);
8774 Next_Elmt (Iface_Tag_Elmt);
8775 end loop;
8776 end Init_Secondary_Tags;
8778 ------------------------
8779 -- Is_User_Defined_Eq --
8780 ------------------------
8782 function Is_User_Defined_Equality (Prim : Node_Id) return Boolean is
8783 begin
8784 return Chars (Prim) = Name_Op_Eq
8785 and then Etype (First_Formal (Prim)) =
8786 Etype (Next_Formal (First_Formal (Prim)))
8787 and then Base_Type (Etype (Prim)) = Standard_Boolean;
8788 end Is_User_Defined_Equality;
8790 ----------------------------------------
8791 -- Make_Controlling_Function_Wrappers --
8792 ----------------------------------------
8794 procedure Make_Controlling_Function_Wrappers
8795 (Tag_Typ : Entity_Id;
8796 Decl_List : out List_Id;
8797 Body_List : out List_Id)
8799 Loc : constant Source_Ptr := Sloc (Tag_Typ);
8800 Prim_Elmt : Elmt_Id;
8801 Subp : Entity_Id;
8802 Actual_List : List_Id;
8803 Formal_List : List_Id;
8804 Formal : Entity_Id;
8805 Par_Formal : Entity_Id;
8806 Formal_Node : Node_Id;
8807 Func_Body : Node_Id;
8808 Func_Decl : Node_Id;
8809 Func_Spec : Node_Id;
8810 Return_Stmt : Node_Id;
8812 begin
8813 Decl_List := New_List;
8814 Body_List := New_List;
8816 Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
8817 while Present (Prim_Elmt) loop
8818 Subp := Node (Prim_Elmt);
8820 -- If a primitive function with a controlling result of the type has
8821 -- not been overridden by the user, then we must create a wrapper
8822 -- function here that effectively overrides it and invokes the
8823 -- (non-abstract) parent function. This can only occur for a null
8824 -- extension. Note that functions with anonymous controlling access
8825 -- results don't qualify and must be overridden. We also exclude
8826 -- Input attributes, since each type will have its own version of
8827 -- Input constructed by the expander. The test for Comes_From_Source
8828 -- is needed to distinguish inherited operations from renamings
8829 -- (which also have Alias set). We exclude internal entities with
8830 -- Interface_Alias to avoid generating duplicated wrappers since
8831 -- the primitive which covers the interface is also available in
8832 -- the list of primitive operations.
8834 -- The function may be abstract, or require_Overriding may be set
8835 -- for it, because tests for null extensions may already have reset
8836 -- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
8837 -- set, functions that need wrappers are recognized by having an
8838 -- alias that returns the parent type.
8840 if Comes_From_Source (Subp)
8841 or else No (Alias (Subp))
8842 or else Present (Interface_Alias (Subp))
8843 or else Ekind (Subp) /= E_Function
8844 or else not Has_Controlling_Result (Subp)
8845 or else Is_Access_Type (Etype (Subp))
8846 or else Is_Abstract_Subprogram (Alias (Subp))
8847 or else Is_TSS (Subp, TSS_Stream_Input)
8848 then
8849 goto Next_Prim;
8851 elsif Is_Abstract_Subprogram (Subp)
8852 or else Requires_Overriding (Subp)
8853 or else
8854 (Is_Null_Extension (Etype (Subp))
8855 and then Etype (Alias (Subp)) /= Etype (Subp))
8856 then
8857 Formal_List := No_List;
8858 Formal := First_Formal (Subp);
8860 if Present (Formal) then
8861 Formal_List := New_List;
8863 while Present (Formal) loop
8864 Append
8865 (Make_Parameter_Specification
8866 (Loc,
8867 Defining_Identifier =>
8868 Make_Defining_Identifier (Sloc (Formal),
8869 Chars => Chars (Formal)),
8870 In_Present => In_Present (Parent (Formal)),
8871 Out_Present => Out_Present (Parent (Formal)),
8872 Null_Exclusion_Present =>
8873 Null_Exclusion_Present (Parent (Formal)),
8874 Parameter_Type =>
8875 New_Occurrence_Of (Etype (Formal), Loc),
8876 Expression =>
8877 New_Copy_Tree (Expression (Parent (Formal)))),
8878 Formal_List);
8880 Next_Formal (Formal);
8881 end loop;
8882 end if;
8884 Func_Spec :=
8885 Make_Function_Specification (Loc,
8886 Defining_Unit_Name =>
8887 Make_Defining_Identifier (Loc,
8888 Chars => Chars (Subp)),
8889 Parameter_Specifications => Formal_List,
8890 Result_Definition =>
8891 New_Occurrence_Of (Etype (Subp), Loc));
8893 Func_Decl := Make_Subprogram_Declaration (Loc, Func_Spec);
8894 Append_To (Decl_List, Func_Decl);
8896 -- Build a wrapper body that calls the parent function. The body
8897 -- contains a single return statement that returns an extension
8898 -- aggregate whose ancestor part is a call to the parent function,
8899 -- passing the formals as actuals (with any controlling arguments
8900 -- converted to the types of the corresponding formals of the
8901 -- parent function, which might be anonymous access types), and
8902 -- having a null extension.
8904 Formal := First_Formal (Subp);
8905 Par_Formal := First_Formal (Alias (Subp));
8906 Formal_Node := First (Formal_List);
8908 if Present (Formal) then
8909 Actual_List := New_List;
8910 else
8911 Actual_List := No_List;
8912 end if;
8914 while Present (Formal) loop
8915 if Is_Controlling_Formal (Formal) then
8916 Append_To (Actual_List,
8917 Make_Type_Conversion (Loc,
8918 Subtype_Mark =>
8919 New_Occurrence_Of (Etype (Par_Formal), Loc),
8920 Expression =>
8921 New_Occurrence_Of
8922 (Defining_Identifier (Formal_Node), Loc)));
8923 else
8924 Append_To
8925 (Actual_List,
8926 New_Occurrence_Of
8927 (Defining_Identifier (Formal_Node), Loc));
8928 end if;
8930 Next_Formal (Formal);
8931 Next_Formal (Par_Formal);
8932 Next (Formal_Node);
8933 end loop;
8935 Return_Stmt :=
8936 Make_Simple_Return_Statement (Loc,
8937 Expression =>
8938 Make_Extension_Aggregate (Loc,
8939 Ancestor_Part =>
8940 Make_Function_Call (Loc,
8941 Name =>
8942 New_Occurrence_Of (Alias (Subp), Loc),
8943 Parameter_Associations => Actual_List),
8944 Null_Record_Present => True));
8946 Func_Body :=
8947 Make_Subprogram_Body (Loc,
8948 Specification => New_Copy_Tree (Func_Spec),
8949 Declarations => Empty_List,
8950 Handled_Statement_Sequence =>
8951 Make_Handled_Sequence_Of_Statements (Loc,
8952 Statements => New_List (Return_Stmt)));
8954 Set_Defining_Unit_Name
8955 (Specification (Func_Body),
8956 Make_Defining_Identifier (Loc, Chars (Subp)));
8958 Append_To (Body_List, Func_Body);
8960 -- Replace the inherited function with the wrapper function in the
8961 -- primitive operations list. We add the minimum decoration needed
8962 -- to override interface primitives.
8964 Set_Ekind (Defining_Unit_Name (Func_Spec), E_Function);
8966 Override_Dispatching_Operation
8967 (Tag_Typ, Subp, New_Op => Defining_Unit_Name (Func_Spec),
8968 Is_Wrapper => True);
8969 end if;
8971 <<Next_Prim>>
8972 Next_Elmt (Prim_Elmt);
8973 end loop;
8974 end Make_Controlling_Function_Wrappers;
8976 -------------------
8977 -- Make_Eq_Body --
8978 -------------------
8980 function Make_Eq_Body
8981 (Typ : Entity_Id;
8982 Eq_Name : Name_Id) return Node_Id
8984 Loc : constant Source_Ptr := Sloc (Parent (Typ));
8985 Decl : Node_Id;
8986 Def : constant Node_Id := Parent (Typ);
8987 Stmts : constant List_Id := New_List;
8988 Variant_Case : Boolean := Has_Discriminants (Typ);
8989 Comps : Node_Id := Empty;
8990 Typ_Def : Node_Id := Type_Definition (Def);
8992 begin
8993 Decl :=
8994 Predef_Spec_Or_Body (Loc,
8995 Tag_Typ => Typ,
8996 Name => Eq_Name,
8997 Profile => New_List (
8998 Make_Parameter_Specification (Loc,
8999 Defining_Identifier =>
9000 Make_Defining_Identifier (Loc, Name_X),
9001 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
9003 Make_Parameter_Specification (Loc,
9004 Defining_Identifier =>
9005 Make_Defining_Identifier (Loc, Name_Y),
9006 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9008 Ret_Type => Standard_Boolean,
9009 For_Body => True);
9011 if Variant_Case then
9012 if Nkind (Typ_Def) = N_Derived_Type_Definition then
9013 Typ_Def := Record_Extension_Part (Typ_Def);
9014 end if;
9016 if Present (Typ_Def) then
9017 Comps := Component_List (Typ_Def);
9018 end if;
9020 Variant_Case :=
9021 Present (Comps) and then Present (Variant_Part (Comps));
9022 end if;
9024 if Variant_Case then
9025 Append_To (Stmts,
9026 Make_Eq_If (Typ, Discriminant_Specifications (Def)));
9027 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
9028 Append_To (Stmts,
9029 Make_Simple_Return_Statement (Loc,
9030 Expression => New_Occurrence_Of (Standard_True, Loc)));
9032 else
9033 Append_To (Stmts,
9034 Make_Simple_Return_Statement (Loc,
9035 Expression =>
9036 Expand_Record_Equality
9037 (Typ,
9038 Typ => Typ,
9039 Lhs => Make_Identifier (Loc, Name_X),
9040 Rhs => Make_Identifier (Loc, Name_Y),
9041 Bodies => Declarations (Decl))));
9042 end if;
9044 Set_Handled_Statement_Sequence
9045 (Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts));
9046 return Decl;
9047 end Make_Eq_Body;
9049 ------------------
9050 -- Make_Eq_Case --
9051 ------------------
9053 -- <Make_Eq_If shared components>
9055 -- case X.D1 is
9056 -- when V1 => <Make_Eq_Case> on subcomponents
9057 -- ...
9058 -- when Vn => <Make_Eq_Case> on subcomponents
9059 -- end case;
9061 function Make_Eq_Case
9062 (E : Entity_Id;
9063 CL : Node_Id;
9064 Discrs : Elist_Id := New_Elmt_List) return List_Id
9066 Loc : constant Source_Ptr := Sloc (E);
9067 Result : constant List_Id := New_List;
9068 Variant : Node_Id;
9069 Alt_List : List_Id;
9071 function Corresponding_Formal (C : Node_Id) return Entity_Id;
9072 -- Given the discriminant that controls a given variant of an unchecked
9073 -- union, find the formal of the equality function that carries the
9074 -- inferred value of the discriminant.
9076 function External_Name (E : Entity_Id) return Name_Id;
9077 -- The value of a given discriminant is conveyed in the corresponding
9078 -- formal parameter of the equality routine. The name of this formal
9079 -- parameter carries a one-character suffix which is removed here.
9081 --------------------------
9082 -- Corresponding_Formal --
9083 --------------------------
9085 function Corresponding_Formal (C : Node_Id) return Entity_Id is
9086 Discr : constant Entity_Id := Entity (Name (Variant_Part (C)));
9087 Elm : Elmt_Id;
9089 begin
9090 Elm := First_Elmt (Discrs);
9091 while Present (Elm) loop
9092 if Chars (Discr) = External_Name (Node (Elm)) then
9093 return Node (Elm);
9094 end if;
9096 Next_Elmt (Elm);
9097 end loop;
9099 -- A formal of the proper name must be found
9101 raise Program_Error;
9102 end Corresponding_Formal;
9104 -------------------
9105 -- External_Name --
9106 -------------------
9108 function External_Name (E : Entity_Id) return Name_Id is
9109 begin
9110 Get_Name_String (Chars (E));
9111 Name_Len := Name_Len - 1;
9112 return Name_Find;
9113 end External_Name;
9115 -- Start of processing for Make_Eq_Case
9117 begin
9118 Append_To (Result, Make_Eq_If (E, Component_Items (CL)));
9120 if No (Variant_Part (CL)) then
9121 return Result;
9122 end if;
9124 Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
9126 if No (Variant) then
9127 return Result;
9128 end if;
9130 Alt_List := New_List;
9131 while Present (Variant) loop
9132 Append_To (Alt_List,
9133 Make_Case_Statement_Alternative (Loc,
9134 Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
9135 Statements =>
9136 Make_Eq_Case (E, Component_List (Variant), Discrs)));
9137 Next_Non_Pragma (Variant);
9138 end loop;
9140 -- If we have an Unchecked_Union, use one of the parameters of the
9141 -- enclosing equality routine that captures the discriminant, to use
9142 -- as the expression in the generated case statement.
9144 if Is_Unchecked_Union (E) then
9145 Append_To (Result,
9146 Make_Case_Statement (Loc,
9147 Expression =>
9148 New_Occurrence_Of (Corresponding_Formal (CL), Loc),
9149 Alternatives => Alt_List));
9151 else
9152 Append_To (Result,
9153 Make_Case_Statement (Loc,
9154 Expression =>
9155 Make_Selected_Component (Loc,
9156 Prefix => Make_Identifier (Loc, Name_X),
9157 Selector_Name => New_Copy (Name (Variant_Part (CL)))),
9158 Alternatives => Alt_List));
9159 end if;
9161 return Result;
9162 end Make_Eq_Case;
9164 ----------------
9165 -- Make_Eq_If --
9166 ----------------
9168 -- Generates:
9170 -- if
9171 -- X.C1 /= Y.C1
9172 -- or else
9173 -- X.C2 /= Y.C2
9174 -- ...
9175 -- then
9176 -- return False;
9177 -- end if;
9179 -- or a null statement if the list L is empty
9181 function Make_Eq_If
9182 (E : Entity_Id;
9183 L : List_Id) return Node_Id
9185 Loc : constant Source_Ptr := Sloc (E);
9186 C : Node_Id;
9187 Field_Name : Name_Id;
9188 Cond : Node_Id;
9190 begin
9191 if No (L) then
9192 return Make_Null_Statement (Loc);
9194 else
9195 Cond := Empty;
9197 C := First_Non_Pragma (L);
9198 while Present (C) loop
9199 Field_Name := Chars (Defining_Identifier (C));
9201 -- The tags must not be compared: they are not part of the value.
9202 -- Ditto for parent interfaces because their equality operator is
9203 -- abstract.
9205 -- Note also that in the following, we use Make_Identifier for
9206 -- the component names. Use of New_Occurrence_Of to identify the
9207 -- components would be incorrect because the wrong entities for
9208 -- discriminants could be picked up in the private type case.
9210 if Field_Name = Name_uParent
9211 and then Is_Interface (Etype (Defining_Identifier (C)))
9212 then
9213 null;
9215 elsif Field_Name /= Name_uTag then
9216 Evolve_Or_Else (Cond,
9217 Make_Op_Ne (Loc,
9218 Left_Opnd =>
9219 Make_Selected_Component (Loc,
9220 Prefix => Make_Identifier (Loc, Name_X),
9221 Selector_Name => Make_Identifier (Loc, Field_Name)),
9223 Right_Opnd =>
9224 Make_Selected_Component (Loc,
9225 Prefix => Make_Identifier (Loc, Name_Y),
9226 Selector_Name => Make_Identifier (Loc, Field_Name))));
9227 end if;
9229 Next_Non_Pragma (C);
9230 end loop;
9232 if No (Cond) then
9233 return Make_Null_Statement (Loc);
9235 else
9236 return
9237 Make_Implicit_If_Statement (E,
9238 Condition => Cond,
9239 Then_Statements => New_List (
9240 Make_Simple_Return_Statement (Loc,
9241 Expression => New_Occurrence_Of (Standard_False, Loc))));
9242 end if;
9243 end if;
9244 end Make_Eq_If;
9246 -------------------
9247 -- Make_Neq_Body --
9248 -------------------
9250 function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id is
9252 function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean;
9253 -- Returns true if Prim is a renaming of an unresolved predefined
9254 -- inequality operation.
9256 --------------------------------
9257 -- Is_Predefined_Neq_Renaming --
9258 --------------------------------
9260 function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean is
9261 begin
9262 return Chars (Prim) /= Name_Op_Ne
9263 and then Present (Alias (Prim))
9264 and then Comes_From_Source (Prim)
9265 and then Is_Intrinsic_Subprogram (Alias (Prim))
9266 and then Chars (Alias (Prim)) = Name_Op_Ne;
9267 end Is_Predefined_Neq_Renaming;
9269 -- Local variables
9271 Loc : constant Source_Ptr := Sloc (Parent (Tag_Typ));
9272 Stmts : constant List_Id := New_List;
9273 Decl : Node_Id;
9274 Eq_Prim : Entity_Id;
9275 Left_Op : Entity_Id;
9276 Renaming_Prim : Entity_Id;
9277 Right_Op : Entity_Id;
9278 Target : Entity_Id;
9280 -- Start of processing for Make_Neq_Body
9282 begin
9283 -- For a call on a renaming of a dispatching subprogram that is
9284 -- overridden, if the overriding occurred before the renaming, then
9285 -- the body executed is that of the overriding declaration, even if the
9286 -- overriding declaration is not visible at the place of the renaming;
9287 -- otherwise, the inherited or predefined subprogram is called, see
9288 -- (RM 8.5.4(8))
9290 -- Stage 1: Search for a renaming of the inequality primitive and also
9291 -- search for an overriding of the equality primitive located before the
9292 -- renaming declaration.
9294 declare
9295 Elmt : Elmt_Id;
9296 Prim : Node_Id;
9298 begin
9299 Eq_Prim := Empty;
9300 Renaming_Prim := Empty;
9302 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
9303 while Present (Elmt) loop
9304 Prim := Node (Elmt);
9306 if Is_User_Defined_Equality (Prim) and then No (Alias (Prim)) then
9307 if No (Renaming_Prim) then
9308 pragma Assert (No (Eq_Prim));
9309 Eq_Prim := Prim;
9310 end if;
9312 elsif Is_Predefined_Neq_Renaming (Prim) then
9313 Renaming_Prim := Prim;
9314 end if;
9316 Next_Elmt (Elmt);
9317 end loop;
9318 end;
9320 -- No further action needed if no renaming was found
9322 if No (Renaming_Prim) then
9323 return Empty;
9324 end if;
9326 -- Stage 2: Replace the renaming declaration by a subprogram declaration
9327 -- (required to add its body)
9329 Decl := Parent (Parent (Renaming_Prim));
9330 Rewrite (Decl,
9331 Make_Subprogram_Declaration (Loc,
9332 Specification => Specification (Decl)));
9333 Set_Analyzed (Decl);
9335 -- Remove the decoration of intrinsic renaming subprogram
9337 Set_Is_Intrinsic_Subprogram (Renaming_Prim, False);
9338 Set_Convention (Renaming_Prim, Convention_Ada);
9339 Set_Alias (Renaming_Prim, Empty);
9340 Set_Has_Completion (Renaming_Prim, False);
9342 -- Stage 3: Build the corresponding body
9344 Left_Op := First_Formal (Renaming_Prim);
9345 Right_Op := Next_Formal (Left_Op);
9347 Decl :=
9348 Predef_Spec_Or_Body (Loc,
9349 Tag_Typ => Tag_Typ,
9350 Name => Chars (Renaming_Prim),
9351 Profile => New_List (
9352 Make_Parameter_Specification (Loc,
9353 Defining_Identifier =>
9354 Make_Defining_Identifier (Loc, Chars (Left_Op)),
9355 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9357 Make_Parameter_Specification (Loc,
9358 Defining_Identifier =>
9359 Make_Defining_Identifier (Loc, Chars (Right_Op)),
9360 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9362 Ret_Type => Standard_Boolean,
9363 For_Body => True);
9365 -- If the overriding of the equality primitive occurred before the
9366 -- renaming, then generate:
9368 -- function <Neq_Name> (X : Y : Typ) return Boolean is
9369 -- begin
9370 -- return not Oeq (X, Y);
9371 -- end;
9373 if Present (Eq_Prim) then
9374 Target := Eq_Prim;
9376 -- Otherwise build a nested subprogram which performs the predefined
9377 -- evaluation of the equality operator. That is, generate:
9379 -- function <Neq_Name> (X : Y : Typ) return Boolean is
9380 -- function Oeq (X : Y) return Boolean is
9381 -- begin
9382 -- <<body of default implementation>>
9383 -- end;
9384 -- begin
9385 -- return not Oeq (X, Y);
9386 -- end;
9388 else
9389 declare
9390 Local_Subp : Node_Id;
9391 begin
9392 Local_Subp := Make_Eq_Body (Tag_Typ, Name_Op_Eq);
9393 Set_Declarations (Decl, New_List (Local_Subp));
9394 Target := Defining_Entity (Local_Subp);
9395 end;
9396 end if;
9398 Append_To (Stmts,
9399 Make_Simple_Return_Statement (Loc,
9400 Expression =>
9401 Make_Op_Not (Loc,
9402 Make_Function_Call (Loc,
9403 Name => New_Occurrence_Of (Target, Loc),
9404 Parameter_Associations => New_List (
9405 Make_Identifier (Loc, Chars (Left_Op)),
9406 Make_Identifier (Loc, Chars (Right_Op)))))));
9408 Set_Handled_Statement_Sequence
9409 (Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts));
9410 return Decl;
9411 end Make_Neq_Body;
9413 -------------------------------
9414 -- Make_Null_Procedure_Specs --
9415 -------------------------------
9417 function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id is
9418 Decl_List : constant List_Id := New_List;
9419 Loc : constant Source_Ptr := Sloc (Tag_Typ);
9420 Formal : Entity_Id;
9421 Formal_List : List_Id;
9422 New_Param_Spec : Node_Id;
9423 Parent_Subp : Entity_Id;
9424 Prim_Elmt : Elmt_Id;
9425 Subp : Entity_Id;
9427 begin
9428 Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
9429 while Present (Prim_Elmt) loop
9430 Subp := Node (Prim_Elmt);
9432 -- If a null procedure inherited from an interface has not been
9433 -- overridden, then we build a null procedure declaration to
9434 -- override the inherited procedure.
9436 Parent_Subp := Alias (Subp);
9438 if Present (Parent_Subp)
9439 and then Is_Null_Interface_Primitive (Parent_Subp)
9440 then
9441 Formal_List := No_List;
9442 Formal := First_Formal (Subp);
9444 if Present (Formal) then
9445 Formal_List := New_List;
9447 while Present (Formal) loop
9449 -- Copy the parameter spec including default expressions
9451 New_Param_Spec :=
9452 New_Copy_Tree (Parent (Formal), New_Sloc => Loc);
9454 -- Generate a new defining identifier for the new formal.
9455 -- required because New_Copy_Tree does not duplicate
9456 -- semantic fields (except itypes).
9458 Set_Defining_Identifier (New_Param_Spec,
9459 Make_Defining_Identifier (Sloc (Formal),
9460 Chars => Chars (Formal)));
9462 -- For controlling arguments we must change their
9463 -- parameter type to reference the tagged type (instead
9464 -- of the interface type)
9466 if Is_Controlling_Formal (Formal) then
9467 if Nkind (Parameter_Type (Parent (Formal))) = N_Identifier
9468 then
9469 Set_Parameter_Type (New_Param_Spec,
9470 New_Occurrence_Of (Tag_Typ, Loc));
9472 else pragma Assert
9473 (Nkind (Parameter_Type (Parent (Formal))) =
9474 N_Access_Definition);
9475 Set_Subtype_Mark (Parameter_Type (New_Param_Spec),
9476 New_Occurrence_Of (Tag_Typ, Loc));
9477 end if;
9478 end if;
9480 Append (New_Param_Spec, Formal_List);
9482 Next_Formal (Formal);
9483 end loop;
9484 end if;
9486 Append_To (Decl_List,
9487 Make_Subprogram_Declaration (Loc,
9488 Make_Procedure_Specification (Loc,
9489 Defining_Unit_Name =>
9490 Make_Defining_Identifier (Loc, Chars (Subp)),
9491 Parameter_Specifications => Formal_List,
9492 Null_Present => True)));
9493 end if;
9495 Next_Elmt (Prim_Elmt);
9496 end loop;
9498 return Decl_List;
9499 end Make_Null_Procedure_Specs;
9501 -------------------------------------
9502 -- Make_Predefined_Primitive_Specs --
9503 -------------------------------------
9505 procedure Make_Predefined_Primitive_Specs
9506 (Tag_Typ : Entity_Id;
9507 Predef_List : out List_Id;
9508 Renamed_Eq : out Entity_Id)
9510 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
9511 -- Returns true if Prim is a renaming of an unresolved predefined
9512 -- equality operation.
9514 -------------------------------
9515 -- Is_Predefined_Eq_Renaming --
9516 -------------------------------
9518 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
9519 begin
9520 return Chars (Prim) /= Name_Op_Eq
9521 and then Present (Alias (Prim))
9522 and then Comes_From_Source (Prim)
9523 and then Is_Intrinsic_Subprogram (Alias (Prim))
9524 and then Chars (Alias (Prim)) = Name_Op_Eq;
9525 end Is_Predefined_Eq_Renaming;
9527 -- Local variables
9529 Loc : constant Source_Ptr := Sloc (Tag_Typ);
9530 Res : constant List_Id := New_List;
9531 Eq_Name : Name_Id := Name_Op_Eq;
9532 Eq_Needed : Boolean;
9533 Eq_Spec : Node_Id;
9534 Prim : Elmt_Id;
9536 Has_Predef_Eq_Renaming : Boolean := False;
9537 -- Set to True if Tag_Typ has a primitive that renames the predefined
9538 -- equality operator. Used to implement (RM 8-5-4(8)).
9540 -- Start of processing for Make_Predefined_Primitive_Specs
9542 begin
9543 Renamed_Eq := Empty;
9545 -- Spec of _Size
9547 Append_To (Res, Predef_Spec_Or_Body (Loc,
9548 Tag_Typ => Tag_Typ,
9549 Name => Name_uSize,
9550 Profile => New_List (
9551 Make_Parameter_Specification (Loc,
9552 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
9553 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9555 Ret_Type => Standard_Long_Long_Integer));
9557 -- Specs for dispatching stream attributes
9559 declare
9560 Stream_Op_TSS_Names :
9561 constant array (Positive range <>) of TSS_Name_Type :=
9562 (TSS_Stream_Read,
9563 TSS_Stream_Write,
9564 TSS_Stream_Input,
9565 TSS_Stream_Output);
9567 begin
9568 for Op in Stream_Op_TSS_Names'Range loop
9569 if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
9570 Append_To (Res,
9571 Predef_Stream_Attr_Spec (Loc, Tag_Typ,
9572 Stream_Op_TSS_Names (Op)));
9573 end if;
9574 end loop;
9575 end;
9577 -- Spec of "=" is expanded if the type is not limited and if a user
9578 -- defined "=" was not already declared for the non-full view of a
9579 -- private extension
9581 if not Is_Limited_Type (Tag_Typ) then
9582 Eq_Needed := True;
9583 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
9584 while Present (Prim) loop
9586 -- If a primitive is encountered that renames the predefined
9587 -- equality operator before reaching any explicit equality
9588 -- primitive, then we still need to create a predefined equality
9589 -- function, because calls to it can occur via the renaming. A
9590 -- new name is created for the equality to avoid conflicting with
9591 -- any user-defined equality. (Note that this doesn't account for
9592 -- renamings of equality nested within subpackages???)
9594 if Is_Predefined_Eq_Renaming (Node (Prim)) then
9595 Has_Predef_Eq_Renaming := True;
9596 Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
9598 -- User-defined equality
9600 elsif Is_User_Defined_Equality (Node (Prim)) then
9601 if No (Alias (Node (Prim)))
9602 or else Nkind (Unit_Declaration_Node (Node (Prim))) =
9603 N_Subprogram_Renaming_Declaration
9604 then
9605 Eq_Needed := False;
9606 exit;
9608 -- If the parent is not an interface type and has an abstract
9609 -- equality function explicitly defined in the sources, then
9610 -- the inherited equality is abstract as well, and no body can
9611 -- be created for it.
9613 elsif not Is_Interface (Etype (Tag_Typ))
9614 and then Present (Alias (Node (Prim)))
9615 and then Comes_From_Source (Alias (Node (Prim)))
9616 and then Is_Abstract_Subprogram (Alias (Node (Prim)))
9617 then
9618 Eq_Needed := False;
9619 exit;
9621 -- If the type has an equality function corresponding with
9622 -- a primitive defined in an interface type, the inherited
9623 -- equality is abstract as well, and no body can be created
9624 -- for it.
9626 elsif Present (Alias (Node (Prim)))
9627 and then Comes_From_Source (Ultimate_Alias (Node (Prim)))
9628 and then
9629 Is_Interface
9630 (Find_Dispatching_Type (Ultimate_Alias (Node (Prim))))
9631 then
9632 Eq_Needed := False;
9633 exit;
9634 end if;
9635 end if;
9637 Next_Elmt (Prim);
9638 end loop;
9640 -- If a renaming of predefined equality was found but there was no
9641 -- user-defined equality (so Eq_Needed is still true), then set the
9642 -- name back to Name_Op_Eq. But in the case where a user-defined
9643 -- equality was located after such a renaming, then the predefined
9644 -- equality function is still needed, so Eq_Needed must be set back
9645 -- to True.
9647 if Eq_Name /= Name_Op_Eq then
9648 if Eq_Needed then
9649 Eq_Name := Name_Op_Eq;
9650 else
9651 Eq_Needed := True;
9652 end if;
9653 end if;
9655 if Eq_Needed then
9656 Eq_Spec := Predef_Spec_Or_Body (Loc,
9657 Tag_Typ => Tag_Typ,
9658 Name => Eq_Name,
9659 Profile => New_List (
9660 Make_Parameter_Specification (Loc,
9661 Defining_Identifier =>
9662 Make_Defining_Identifier (Loc, Name_X),
9663 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9665 Make_Parameter_Specification (Loc,
9666 Defining_Identifier =>
9667 Make_Defining_Identifier (Loc, Name_Y),
9668 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9669 Ret_Type => Standard_Boolean);
9670 Append_To (Res, Eq_Spec);
9672 if Has_Predef_Eq_Renaming then
9673 Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
9675 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
9676 while Present (Prim) loop
9678 -- Any renamings of equality that appeared before an
9679 -- overriding equality must be updated to refer to the
9680 -- entity for the predefined equality, otherwise calls via
9681 -- the renaming would get incorrectly resolved to call the
9682 -- user-defined equality function.
9684 if Is_Predefined_Eq_Renaming (Node (Prim)) then
9685 Set_Alias (Node (Prim), Renamed_Eq);
9687 -- Exit upon encountering a user-defined equality
9689 elsif Chars (Node (Prim)) = Name_Op_Eq
9690 and then No (Alias (Node (Prim)))
9691 then
9692 exit;
9693 end if;
9695 Next_Elmt (Prim);
9696 end loop;
9697 end if;
9698 end if;
9700 -- Spec for dispatching assignment
9702 Append_To (Res, Predef_Spec_Or_Body (Loc,
9703 Tag_Typ => Tag_Typ,
9704 Name => Name_uAssign,
9705 Profile => New_List (
9706 Make_Parameter_Specification (Loc,
9707 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
9708 Out_Present => True,
9709 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9711 Make_Parameter_Specification (Loc,
9712 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
9713 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)))));
9714 end if;
9716 -- Ada 2005: Generate declarations for the following primitive
9717 -- operations for limited interfaces and synchronized types that
9718 -- implement a limited interface.
9720 -- Disp_Asynchronous_Select
9721 -- Disp_Conditional_Select
9722 -- Disp_Get_Prim_Op_Kind
9723 -- Disp_Get_Task_Id
9724 -- Disp_Requeue
9725 -- Disp_Timed_Select
9727 -- Disable the generation of these bodies if No_Dispatching_Calls,
9728 -- Ravenscar or ZFP is active.
9730 if Ada_Version >= Ada_2005
9731 and then not Restriction_Active (No_Dispatching_Calls)
9732 and then not Restriction_Active (No_Select_Statements)
9733 and then RTE_Available (RE_Select_Specific_Data)
9734 then
9735 -- These primitives are defined abstract in interface types
9737 if Is_Interface (Tag_Typ)
9738 and then Is_Limited_Record (Tag_Typ)
9739 then
9740 Append_To (Res,
9741 Make_Abstract_Subprogram_Declaration (Loc,
9742 Specification =>
9743 Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
9745 Append_To (Res,
9746 Make_Abstract_Subprogram_Declaration (Loc,
9747 Specification =>
9748 Make_Disp_Conditional_Select_Spec (Tag_Typ)));
9750 Append_To (Res,
9751 Make_Abstract_Subprogram_Declaration (Loc,
9752 Specification =>
9753 Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
9755 Append_To (Res,
9756 Make_Abstract_Subprogram_Declaration (Loc,
9757 Specification =>
9758 Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
9760 Append_To (Res,
9761 Make_Abstract_Subprogram_Declaration (Loc,
9762 Specification =>
9763 Make_Disp_Requeue_Spec (Tag_Typ)));
9765 Append_To (Res,
9766 Make_Abstract_Subprogram_Declaration (Loc,
9767 Specification =>
9768 Make_Disp_Timed_Select_Spec (Tag_Typ)));
9770 -- If ancestor is an interface type, declare non-abstract primitives
9771 -- to override the abstract primitives of the interface type.
9773 -- In VM targets we define these primitives in all root tagged types
9774 -- that are not interface types. Done because in VM targets we don't
9775 -- have secondary dispatch tables and any derivation of Tag_Typ may
9776 -- cover limited interfaces (which always have these primitives since
9777 -- they may be ancestors of synchronized interface types).
9779 elsif (not Is_Interface (Tag_Typ)
9780 and then Is_Interface (Etype (Tag_Typ))
9781 and then Is_Limited_Record (Etype (Tag_Typ)))
9782 or else
9783 (Is_Concurrent_Record_Type (Tag_Typ)
9784 and then Has_Interfaces (Tag_Typ))
9785 or else
9786 (not Tagged_Type_Expansion
9787 and then not Is_Interface (Tag_Typ)
9788 and then Tag_Typ = Root_Type (Tag_Typ))
9789 then
9790 Append_To (Res,
9791 Make_Subprogram_Declaration (Loc,
9792 Specification =>
9793 Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
9795 Append_To (Res,
9796 Make_Subprogram_Declaration (Loc,
9797 Specification =>
9798 Make_Disp_Conditional_Select_Spec (Tag_Typ)));
9800 Append_To (Res,
9801 Make_Subprogram_Declaration (Loc,
9802 Specification =>
9803 Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
9805 Append_To (Res,
9806 Make_Subprogram_Declaration (Loc,
9807 Specification =>
9808 Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
9810 Append_To (Res,
9811 Make_Subprogram_Declaration (Loc,
9812 Specification =>
9813 Make_Disp_Requeue_Spec (Tag_Typ)));
9815 Append_To (Res,
9816 Make_Subprogram_Declaration (Loc,
9817 Specification =>
9818 Make_Disp_Timed_Select_Spec (Tag_Typ)));
9819 end if;
9820 end if;
9822 -- All tagged types receive their own Deep_Adjust and Deep_Finalize
9823 -- regardless of whether they are controlled or may contain controlled
9824 -- components.
9826 -- Do not generate the routines if finalization is disabled
9828 if Restriction_Active (No_Finalization) then
9829 null;
9831 else
9832 if not Is_Limited_Type (Tag_Typ) then
9833 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
9834 end if;
9836 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
9837 end if;
9839 Predef_List := Res;
9840 end Make_Predefined_Primitive_Specs;
9842 -------------------------
9843 -- Make_Tag_Assignment --
9844 -------------------------
9846 function Make_Tag_Assignment (N : Node_Id) return Node_Id is
9847 Loc : constant Source_Ptr := Sloc (N);
9848 Def_If : constant Entity_Id := Defining_Identifier (N);
9849 Expr : constant Node_Id := Expression (N);
9850 Typ : constant Entity_Id := Etype (Def_If);
9851 Full_Typ : constant Entity_Id := Underlying_Type (Typ);
9852 New_Ref : Node_Id;
9854 begin
9855 -- This expansion activity is called during analysis, but cannot
9856 -- be applied in ASIS mode when other expansion is disabled.
9858 if Is_Tagged_Type (Typ)
9859 and then not Is_Class_Wide_Type (Typ)
9860 and then not Is_CPP_Class (Typ)
9861 and then Tagged_Type_Expansion
9862 and then Nkind (Expr) /= N_Aggregate
9863 and then not ASIS_Mode
9864 and then (Nkind (Expr) /= N_Qualified_Expression
9865 or else Nkind (Expression (Expr)) /= N_Aggregate)
9866 then
9867 New_Ref :=
9868 Make_Selected_Component (Loc,
9869 Prefix => New_Occurrence_Of (Def_If, Loc),
9870 Selector_Name =>
9871 New_Occurrence_Of (First_Tag_Component (Full_Typ), Loc));
9872 Set_Assignment_OK (New_Ref);
9874 return
9875 Make_Assignment_Statement (Loc,
9876 Name => New_Ref,
9877 Expression =>
9878 Unchecked_Convert_To (RTE (RE_Tag),
9879 New_Occurrence_Of (Node
9880 (First_Elmt (Access_Disp_Table (Full_Typ))), Loc)));
9881 else
9882 return Empty;
9883 end if;
9884 end Make_Tag_Assignment;
9886 ---------------------------------
9887 -- Needs_Simple_Initialization --
9888 ---------------------------------
9890 function Needs_Simple_Initialization
9891 (T : Entity_Id;
9892 Consider_IS : Boolean := True) return Boolean
9894 Consider_IS_NS : constant Boolean :=
9895 Normalize_Scalars or (Initialize_Scalars and Consider_IS);
9897 begin
9898 -- Never need initialization if it is suppressed
9900 if Initialization_Suppressed (T) then
9901 return False;
9902 end if;
9904 -- Check for private type, in which case test applies to the underlying
9905 -- type of the private type.
9907 if Is_Private_Type (T) then
9908 declare
9909 RT : constant Entity_Id := Underlying_Type (T);
9910 begin
9911 if Present (RT) then
9912 return Needs_Simple_Initialization (RT);
9913 else
9914 return False;
9915 end if;
9916 end;
9918 -- Scalar type with Default_Value aspect requires initialization
9920 elsif Is_Scalar_Type (T) and then Has_Default_Aspect (T) then
9921 return True;
9923 -- Cases needing simple initialization are access types, and, if pragma
9924 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
9925 -- types.
9927 elsif Is_Access_Type (T)
9928 or else (Consider_IS_NS and then (Is_Scalar_Type (T)))
9929 then
9930 return True;
9932 -- If Initialize/Normalize_Scalars is in effect, string objects also
9933 -- need initialization, unless they are created in the course of
9934 -- expanding an aggregate (since in the latter case they will be
9935 -- filled with appropriate initializing values before they are used).
9937 elsif Consider_IS_NS
9938 and then Is_Standard_String_Type (T)
9939 and then
9940 (not Is_Itype (T)
9941 or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
9942 then
9943 return True;
9945 else
9946 return False;
9947 end if;
9948 end Needs_Simple_Initialization;
9950 ----------------------
9951 -- Predef_Deep_Spec --
9952 ----------------------
9954 function Predef_Deep_Spec
9955 (Loc : Source_Ptr;
9956 Tag_Typ : Entity_Id;
9957 Name : TSS_Name_Type;
9958 For_Body : Boolean := False) return Node_Id
9960 Formals : List_Id;
9962 begin
9963 -- V : in out Tag_Typ
9965 Formals := New_List (
9966 Make_Parameter_Specification (Loc,
9967 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
9968 In_Present => True,
9969 Out_Present => True,
9970 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)));
9972 -- F : Boolean := True
9974 if Name = TSS_Deep_Adjust
9975 or else Name = TSS_Deep_Finalize
9976 then
9977 Append_To (Formals,
9978 Make_Parameter_Specification (Loc,
9979 Defining_Identifier => Make_Defining_Identifier (Loc, Name_F),
9980 Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
9981 Expression => New_Occurrence_Of (Standard_True, Loc)));
9982 end if;
9984 return
9985 Predef_Spec_Or_Body (Loc,
9986 Name => Make_TSS_Name (Tag_Typ, Name),
9987 Tag_Typ => Tag_Typ,
9988 Profile => Formals,
9989 For_Body => For_Body);
9991 exception
9992 when RE_Not_Available =>
9993 return Empty;
9994 end Predef_Deep_Spec;
9996 -------------------------
9997 -- Predef_Spec_Or_Body --
9998 -------------------------
10000 function Predef_Spec_Or_Body
10001 (Loc : Source_Ptr;
10002 Tag_Typ : Entity_Id;
10003 Name : Name_Id;
10004 Profile : List_Id;
10005 Ret_Type : Entity_Id := Empty;
10006 For_Body : Boolean := False) return Node_Id
10008 Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
10009 Spec : Node_Id;
10011 begin
10012 Set_Is_Public (Id, Is_Public (Tag_Typ));
10014 -- The internal flag is set to mark these declarations because they have
10015 -- specific properties. First, they are primitives even if they are not
10016 -- defined in the type scope (the freezing point is not necessarily in
10017 -- the same scope). Second, the predefined equality can be overridden by
10018 -- a user-defined equality, no body will be generated in this case.
10020 Set_Is_Internal (Id);
10022 if not Debug_Generated_Code then
10023 Set_Debug_Info_Off (Id);
10024 end if;
10026 if No (Ret_Type) then
10027 Spec :=
10028 Make_Procedure_Specification (Loc,
10029 Defining_Unit_Name => Id,
10030 Parameter_Specifications => Profile);
10031 else
10032 Spec :=
10033 Make_Function_Specification (Loc,
10034 Defining_Unit_Name => Id,
10035 Parameter_Specifications => Profile,
10036 Result_Definition => New_Occurrence_Of (Ret_Type, Loc));
10037 end if;
10039 if Is_Interface (Tag_Typ) then
10040 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
10042 -- If body case, return empty subprogram body. Note that this is ill-
10043 -- formed, because there is not even a null statement, and certainly not
10044 -- a return in the function case. The caller is expected to do surgery
10045 -- on the body to add the appropriate stuff.
10047 elsif For_Body then
10048 return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
10050 -- For the case of an Input attribute predefined for an abstract type,
10051 -- generate an abstract specification. This will never be called, but we
10052 -- need the slot allocated in the dispatching table so that attributes
10053 -- typ'Class'Input and typ'Class'Output will work properly.
10055 elsif Is_TSS (Name, TSS_Stream_Input)
10056 and then Is_Abstract_Type (Tag_Typ)
10057 then
10058 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
10060 -- Normal spec case, where we return a subprogram declaration
10062 else
10063 return Make_Subprogram_Declaration (Loc, Spec);
10064 end if;
10065 end Predef_Spec_Or_Body;
10067 -----------------------------
10068 -- Predef_Stream_Attr_Spec --
10069 -----------------------------
10071 function Predef_Stream_Attr_Spec
10072 (Loc : Source_Ptr;
10073 Tag_Typ : Entity_Id;
10074 Name : TSS_Name_Type;
10075 For_Body : Boolean := False) return Node_Id
10077 Ret_Type : Entity_Id;
10079 begin
10080 if Name = TSS_Stream_Input then
10081 Ret_Type := Tag_Typ;
10082 else
10083 Ret_Type := Empty;
10084 end if;
10086 return
10087 Predef_Spec_Or_Body
10088 (Loc,
10089 Name => Make_TSS_Name (Tag_Typ, Name),
10090 Tag_Typ => Tag_Typ,
10091 Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
10092 Ret_Type => Ret_Type,
10093 For_Body => For_Body);
10094 end Predef_Stream_Attr_Spec;
10096 ---------------------------------
10097 -- Predefined_Primitive_Bodies --
10098 ---------------------------------
10100 function Predefined_Primitive_Bodies
10101 (Tag_Typ : Entity_Id;
10102 Renamed_Eq : Entity_Id) return List_Id
10104 Loc : constant Source_Ptr := Sloc (Tag_Typ);
10105 Res : constant List_Id := New_List;
10106 Adj_Call : Node_Id;
10107 Decl : Node_Id;
10108 Fin_Call : Node_Id;
10109 Prim : Elmt_Id;
10110 Eq_Needed : Boolean;
10111 Eq_Name : Name_Id;
10112 Ent : Entity_Id;
10114 pragma Warnings (Off, Ent);
10116 begin
10117 pragma Assert (not Is_Interface (Tag_Typ));
10119 -- See if we have a predefined "=" operator
10121 if Present (Renamed_Eq) then
10122 Eq_Needed := True;
10123 Eq_Name := Chars (Renamed_Eq);
10125 -- If the parent is an interface type then it has defined all the
10126 -- predefined primitives abstract and we need to check if the type
10127 -- has some user defined "=" function which matches the profile of
10128 -- the Ada predefined equality operator to avoid generating it.
10130 elsif Is_Interface (Etype (Tag_Typ)) then
10131 Eq_Needed := True;
10132 Eq_Name := Name_Op_Eq;
10134 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
10135 while Present (Prim) loop
10136 if Chars (Node (Prim)) = Name_Op_Eq
10137 and then not Is_Internal (Node (Prim))
10138 and then Present (First_Entity (Node (Prim)))
10140 -- The predefined equality primitive must have exactly two
10141 -- formals whose type is this tagged type
10143 and then Present (Last_Entity (Node (Prim)))
10144 and then Next_Entity (First_Entity (Node (Prim)))
10145 = Last_Entity (Node (Prim))
10146 and then Etype (First_Entity (Node (Prim))) = Tag_Typ
10147 and then Etype (Last_Entity (Node (Prim))) = Tag_Typ
10148 then
10149 Eq_Needed := False;
10150 Eq_Name := No_Name;
10151 exit;
10152 end if;
10154 Next_Elmt (Prim);
10155 end loop;
10157 else
10158 Eq_Needed := False;
10159 Eq_Name := No_Name;
10161 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
10162 while Present (Prim) loop
10163 if Chars (Node (Prim)) = Name_Op_Eq
10164 and then Is_Internal (Node (Prim))
10165 then
10166 Eq_Needed := True;
10167 Eq_Name := Name_Op_Eq;
10168 exit;
10169 end if;
10171 Next_Elmt (Prim);
10172 end loop;
10173 end if;
10175 -- Body of _Size
10177 Decl := Predef_Spec_Or_Body (Loc,
10178 Tag_Typ => Tag_Typ,
10179 Name => Name_uSize,
10180 Profile => New_List (
10181 Make_Parameter_Specification (Loc,
10182 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
10183 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
10185 Ret_Type => Standard_Long_Long_Integer,
10186 For_Body => True);
10188 Set_Handled_Statement_Sequence (Decl,
10189 Make_Handled_Sequence_Of_Statements (Loc, New_List (
10190 Make_Simple_Return_Statement (Loc,
10191 Expression =>
10192 Make_Attribute_Reference (Loc,
10193 Prefix => Make_Identifier (Loc, Name_X),
10194 Attribute_Name => Name_Size)))));
10196 Append_To (Res, Decl);
10198 -- Bodies for Dispatching stream IO routines. We need these only for
10199 -- non-limited types (in the limited case there is no dispatching).
10200 -- We also skip them if dispatching or finalization are not available
10201 -- or if stream operations are prohibited by restriction No_Streams or
10202 -- from use of pragma/aspect No_Tagged_Streams.
10204 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
10205 and then No (TSS (Tag_Typ, TSS_Stream_Read))
10206 then
10207 Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
10208 Append_To (Res, Decl);
10209 end if;
10211 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
10212 and then No (TSS (Tag_Typ, TSS_Stream_Write))
10213 then
10214 Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
10215 Append_To (Res, Decl);
10216 end if;
10218 -- Skip body of _Input for the abstract case, since the corresponding
10219 -- spec is abstract (see Predef_Spec_Or_Body).
10221 if not Is_Abstract_Type (Tag_Typ)
10222 and then Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
10223 and then No (TSS (Tag_Typ, TSS_Stream_Input))
10224 then
10225 Build_Record_Or_Elementary_Input_Function
10226 (Loc, Tag_Typ, Decl, Ent);
10227 Append_To (Res, Decl);
10228 end if;
10230 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
10231 and then No (TSS (Tag_Typ, TSS_Stream_Output))
10232 then
10233 Build_Record_Or_Elementary_Output_Procedure (Loc, Tag_Typ, Decl, Ent);
10234 Append_To (Res, Decl);
10235 end if;
10237 -- Ada 2005: Generate bodies for the following primitive operations for
10238 -- limited interfaces and synchronized types that implement a limited
10239 -- interface.
10241 -- disp_asynchronous_select
10242 -- disp_conditional_select
10243 -- disp_get_prim_op_kind
10244 -- disp_get_task_id
10245 -- disp_timed_select
10247 -- The interface versions will have null bodies
10249 -- Disable the generation of these bodies if No_Dispatching_Calls,
10250 -- Ravenscar or ZFP is active.
10252 -- In VM targets we define these primitives in all root tagged types
10253 -- that are not interface types. Done because in VM targets we don't
10254 -- have secondary dispatch tables and any derivation of Tag_Typ may
10255 -- cover limited interfaces (which always have these primitives since
10256 -- they may be ancestors of synchronized interface types).
10258 if Ada_Version >= Ada_2005
10259 and then not Is_Interface (Tag_Typ)
10260 and then
10261 ((Is_Interface (Etype (Tag_Typ))
10262 and then Is_Limited_Record (Etype (Tag_Typ)))
10263 or else
10264 (Is_Concurrent_Record_Type (Tag_Typ)
10265 and then Has_Interfaces (Tag_Typ))
10266 or else
10267 (not Tagged_Type_Expansion
10268 and then Tag_Typ = Root_Type (Tag_Typ)))
10269 and then not Restriction_Active (No_Dispatching_Calls)
10270 and then not Restriction_Active (No_Select_Statements)
10271 and then RTE_Available (RE_Select_Specific_Data)
10272 then
10273 Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ));
10274 Append_To (Res, Make_Disp_Conditional_Select_Body (Tag_Typ));
10275 Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body (Tag_Typ));
10276 Append_To (Res, Make_Disp_Get_Task_Id_Body (Tag_Typ));
10277 Append_To (Res, Make_Disp_Requeue_Body (Tag_Typ));
10278 Append_To (Res, Make_Disp_Timed_Select_Body (Tag_Typ));
10279 end if;
10281 if not Is_Limited_Type (Tag_Typ) and then not Is_Interface (Tag_Typ) then
10283 -- Body for equality
10285 if Eq_Needed then
10286 Decl := Make_Eq_Body (Tag_Typ, Eq_Name);
10287 Append_To (Res, Decl);
10288 end if;
10290 -- Body for inequality (if required)
10292 Decl := Make_Neq_Body (Tag_Typ);
10294 if Present (Decl) then
10295 Append_To (Res, Decl);
10296 end if;
10298 -- Body for dispatching assignment
10300 Decl :=
10301 Predef_Spec_Or_Body (Loc,
10302 Tag_Typ => Tag_Typ,
10303 Name => Name_uAssign,
10304 Profile => New_List (
10305 Make_Parameter_Specification (Loc,
10306 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
10307 Out_Present => True,
10308 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
10310 Make_Parameter_Specification (Loc,
10311 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
10312 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
10313 For_Body => True);
10315 Set_Handled_Statement_Sequence (Decl,
10316 Make_Handled_Sequence_Of_Statements (Loc, New_List (
10317 Make_Assignment_Statement (Loc,
10318 Name => Make_Identifier (Loc, Name_X),
10319 Expression => Make_Identifier (Loc, Name_Y)))));
10321 Append_To (Res, Decl);
10322 end if;
10324 -- Generate empty bodies of routines Deep_Adjust and Deep_Finalize for
10325 -- tagged types which do not contain controlled components.
10327 -- Do not generate the routines if finalization is disabled
10329 if Restriction_Active (No_Finalization) then
10330 null;
10332 elsif not Has_Controlled_Component (Tag_Typ) then
10333 if not Is_Limited_Type (Tag_Typ) then
10334 Adj_Call := Empty;
10335 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);
10337 if Is_Controlled (Tag_Typ) then
10338 Adj_Call :=
10339 Make_Adjust_Call (
10340 Obj_Ref => Make_Identifier (Loc, Name_V),
10341 Typ => Tag_Typ);
10342 end if;
10344 if No (Adj_Call) then
10345 Adj_Call := Make_Null_Statement (Loc);
10346 end if;
10348 Set_Handled_Statement_Sequence (Decl,
10349 Make_Handled_Sequence_Of_Statements (Loc,
10350 Statements => New_List (Adj_Call)));
10352 Append_To (Res, Decl);
10353 end if;
10355 Fin_Call := Empty;
10356 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);
10358 if Is_Controlled (Tag_Typ) then
10359 Fin_Call :=
10360 Make_Final_Call
10361 (Obj_Ref => Make_Identifier (Loc, Name_V),
10362 Typ => Tag_Typ);
10363 end if;
10365 if No (Fin_Call) then
10366 Fin_Call := Make_Null_Statement (Loc);
10367 end if;
10369 Set_Handled_Statement_Sequence (Decl,
10370 Make_Handled_Sequence_Of_Statements (Loc,
10371 Statements => New_List (Fin_Call)));
10373 Append_To (Res, Decl);
10374 end if;
10376 return Res;
10377 end Predefined_Primitive_Bodies;
10379 ---------------------------------
10380 -- Predefined_Primitive_Freeze --
10381 ---------------------------------
10383 function Predefined_Primitive_Freeze
10384 (Tag_Typ : Entity_Id) return List_Id
10386 Res : constant List_Id := New_List;
10387 Prim : Elmt_Id;
10388 Frnodes : List_Id;
10390 begin
10391 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
10392 while Present (Prim) loop
10393 if Is_Predefined_Dispatching_Operation (Node (Prim)) then
10394 Frnodes := Freeze_Entity (Node (Prim), Tag_Typ);
10396 if Present (Frnodes) then
10397 Append_List_To (Res, Frnodes);
10398 end if;
10399 end if;
10401 Next_Elmt (Prim);
10402 end loop;
10404 return Res;
10405 end Predefined_Primitive_Freeze;
10407 -------------------------
10408 -- Stream_Operation_OK --
10409 -------------------------
10411 function Stream_Operation_OK
10412 (Typ : Entity_Id;
10413 Operation : TSS_Name_Type) return Boolean
10415 Has_Predefined_Or_Specified_Stream_Attribute : Boolean := False;
10417 begin
10418 -- Special case of a limited type extension: a default implementation
10419 -- of the stream attributes Read or Write exists if that attribute
10420 -- has been specified or is available for an ancestor type; a default
10421 -- implementation of the attribute Output (resp. Input) exists if the
10422 -- attribute has been specified or Write (resp. Read) is available for
10423 -- an ancestor type. The last condition only applies under Ada 2005.
10425 if Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ) then
10426 if Operation = TSS_Stream_Read then
10427 Has_Predefined_Or_Specified_Stream_Attribute :=
10428 Has_Specified_Stream_Read (Typ);
10430 elsif Operation = TSS_Stream_Write then
10431 Has_Predefined_Or_Specified_Stream_Attribute :=
10432 Has_Specified_Stream_Write (Typ);
10434 elsif Operation = TSS_Stream_Input then
10435 Has_Predefined_Or_Specified_Stream_Attribute :=
10436 Has_Specified_Stream_Input (Typ)
10437 or else
10438 (Ada_Version >= Ada_2005
10439 and then Stream_Operation_OK (Typ, TSS_Stream_Read));
10441 elsif Operation = TSS_Stream_Output then
10442 Has_Predefined_Or_Specified_Stream_Attribute :=
10443 Has_Specified_Stream_Output (Typ)
10444 or else
10445 (Ada_Version >= Ada_2005
10446 and then Stream_Operation_OK (Typ, TSS_Stream_Write));
10447 end if;
10449 -- Case of inherited TSS_Stream_Read or TSS_Stream_Write
10451 if not Has_Predefined_Or_Specified_Stream_Attribute
10452 and then Is_Derived_Type (Typ)
10453 and then (Operation = TSS_Stream_Read
10454 or else Operation = TSS_Stream_Write)
10455 then
10456 Has_Predefined_Or_Specified_Stream_Attribute :=
10457 Present
10458 (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
10459 end if;
10460 end if;
10462 -- If the type is not limited, or else is limited but the attribute is
10463 -- explicitly specified or is predefined for the type, then return True,
10464 -- unless other conditions prevail, such as restrictions prohibiting
10465 -- streams or dispatching operations. We also return True for limited
10466 -- interfaces, because they may be extended by nonlimited types and
10467 -- permit inheritance in this case (addresses cases where an abstract
10468 -- extension doesn't get 'Input declared, as per comments below, but
10469 -- 'Class'Input must still be allowed). Note that attempts to apply
10470 -- stream attributes to a limited interface or its class-wide type
10471 -- (or limited extensions thereof) will still get properly rejected
10472 -- by Check_Stream_Attribute.
10474 -- We exclude the Input operation from being a predefined subprogram in
10475 -- the case where the associated type is an abstract extension, because
10476 -- the attribute is not callable in that case, per 13.13.2(49/2). Also,
10477 -- we don't want an abstract version created because types derived from
10478 -- the abstract type may not even have Input available (for example if
10479 -- derived from a private view of the abstract type that doesn't have
10480 -- a visible Input).
10482 -- Do not generate stream routines for type Finalization_Master because
10483 -- a master may never appear in types and therefore cannot be read or
10484 -- written.
10486 return
10487 (not Is_Limited_Type (Typ)
10488 or else Is_Interface (Typ)
10489 or else Has_Predefined_Or_Specified_Stream_Attribute)
10490 and then
10491 (Operation /= TSS_Stream_Input
10492 or else not Is_Abstract_Type (Typ)
10493 or else not Is_Derived_Type (Typ))
10494 and then not Has_Unknown_Discriminants (Typ)
10495 and then not
10496 (Is_Interface (Typ)
10497 and then
10498 (Is_Task_Interface (Typ)
10499 or else Is_Protected_Interface (Typ)
10500 or else Is_Synchronized_Interface (Typ)))
10501 and then not Restriction_Active (No_Streams)
10502 and then not Restriction_Active (No_Dispatch)
10503 and then No (No_Tagged_Streams_Pragma (Typ))
10504 and then not No_Run_Time_Mode
10505 and then RTE_Available (RE_Tag)
10506 and then No (Type_Without_Stream_Operation (Typ))
10507 and then RTE_Available (RE_Root_Stream_Type)
10508 and then not Is_RTE (Typ, RE_Finalization_Master);
10509 end Stream_Operation_OK;
10511 end Exp_Ch3;