[PR64164] Drop copyrename, use coalescible partition as base when optimizing.
[official-gcc.git] / gcc / explow.c
blob35a761436fcd0630a165d062e46a651add2fc59f
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "input.h"
28 #include "alias.h"
29 #include "symtab.h"
30 #include "tree.h"
31 #include "stor-layout.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "except.h"
35 #include "hard-reg-set.h"
36 #include "function.h"
37 #include "insn-config.h"
38 #include "expmed.h"
39 #include "dojump.h"
40 #include "explow.h"
41 #include "calls.h"
42 #include "emit-rtl.h"
43 #include "varasm.h"
44 #include "stmt.h"
45 #include "expr.h"
46 #include "insn-codes.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "recog.h"
50 #include "langhooks.h"
51 #include "target.h"
52 #include "common/common-target.h"
53 #include "output.h"
55 static rtx break_out_memory_refs (rtx);
58 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
60 HOST_WIDE_INT
61 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
63 int width = GET_MODE_PRECISION (mode);
65 /* You want to truncate to a _what_? */
66 gcc_assert (SCALAR_INT_MODE_P (mode)
67 || POINTER_BOUNDS_MODE_P (mode));
69 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
70 if (mode == BImode)
71 return c & 1 ? STORE_FLAG_VALUE : 0;
73 /* Sign-extend for the requested mode. */
75 if (width < HOST_BITS_PER_WIDE_INT)
77 HOST_WIDE_INT sign = 1;
78 sign <<= width - 1;
79 c &= (sign << 1) - 1;
80 c ^= sign;
81 c -= sign;
84 return c;
87 /* Return an rtx for the sum of X and the integer C, given that X has
88 mode MODE. INPLACE is true if X can be modified inplace or false
89 if it must be treated as immutable. */
91 rtx
92 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
93 bool inplace)
95 RTX_CODE code;
96 rtx y;
97 rtx tem;
98 int all_constant = 0;
100 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
102 if (c == 0)
103 return x;
105 restart:
107 code = GET_CODE (x);
108 y = x;
110 switch (code)
112 CASE_CONST_SCALAR_INT:
113 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
114 mode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
122 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
123 tem = force_const_mem (GET_MODE (x), tem);
124 /* Targets may disallow some constants in the constant pool, thus
125 force_const_mem may return NULL_RTX. */
126 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
129 break;
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 if (inplace && shared_const_p (x))
135 inplace = false;
136 x = XEXP (x, 0);
137 all_constant = 1;
138 goto restart;
140 case SYMBOL_REF:
141 case LABEL_REF:
142 all_constant = 1;
143 break;
145 case PLUS:
146 /* The interesting case is adding the integer to a sum. Look
147 for constant term in the sum and combine with C. For an
148 integer constant term or a constant term that is not an
149 explicit integer, we combine or group them together anyway.
151 We may not immediately return from the recursive call here, lest
152 all_constant gets lost. */
154 if (CONSTANT_P (XEXP (x, 1)))
156 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
157 if (term == const0_rtx)
158 x = XEXP (x, 0);
159 else if (inplace)
160 XEXP (x, 1) = term;
161 else
162 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
163 c = 0;
165 else if (rtx *const_loc = find_constant_term_loc (&y))
167 if (!inplace)
169 /* We need to be careful since X may be shared and we can't
170 modify it in place. */
171 x = copy_rtx (x);
172 const_loc = find_constant_term_loc (&x);
174 *const_loc = plus_constant (mode, *const_loc, c, true);
175 c = 0;
177 break;
179 default:
180 break;
183 if (c != 0)
184 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
186 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
187 return x;
188 else if (all_constant)
189 return gen_rtx_CONST (mode, x);
190 else
191 return x;
194 /* If X is a sum, return a new sum like X but lacking any constant terms.
195 Add all the removed constant terms into *CONSTPTR.
196 X itself is not altered. The result != X if and only if
197 it is not isomorphic to X. */
200 eliminate_constant_term (rtx x, rtx *constptr)
202 rtx x0, x1;
203 rtx tem;
205 if (GET_CODE (x) != PLUS)
206 return x;
208 /* First handle constants appearing at this level explicitly. */
209 if (CONST_INT_P (XEXP (x, 1))
210 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
211 XEXP (x, 1)))
212 && CONST_INT_P (tem))
214 *constptr = tem;
215 return eliminate_constant_term (XEXP (x, 0), constptr);
218 tem = const0_rtx;
219 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
220 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
221 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
222 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
223 *constptr, tem))
224 && CONST_INT_P (tem))
226 *constptr = tem;
227 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
230 return x;
234 /* Return a copy of X in which all memory references
235 and all constants that involve symbol refs
236 have been replaced with new temporary registers.
237 Also emit code to load the memory locations and constants
238 into those registers.
240 If X contains no such constants or memory references,
241 X itself (not a copy) is returned.
243 If a constant is found in the address that is not a legitimate constant
244 in an insn, it is left alone in the hope that it might be valid in the
245 address.
247 X may contain no arithmetic except addition, subtraction and multiplication.
248 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
250 static rtx
251 break_out_memory_refs (rtx x)
253 if (MEM_P (x)
254 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
255 && GET_MODE (x) != VOIDmode))
256 x = force_reg (GET_MODE (x), x);
257 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
258 || GET_CODE (x) == MULT)
260 rtx op0 = break_out_memory_refs (XEXP (x, 0));
261 rtx op1 = break_out_memory_refs (XEXP (x, 1));
263 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
264 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
267 return x;
270 /* Given X, a memory address in address space AS' pointer mode, convert it to
271 an address in the address space's address mode, or vice versa (TO_MODE says
272 which way). We take advantage of the fact that pointers are not allowed to
273 overflow by commuting arithmetic operations over conversions so that address
274 arithmetic insns can be used. IN_CONST is true if this conversion is inside
275 a CONST. */
277 static rtx
278 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
279 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
280 bool in_const ATTRIBUTE_UNUSED)
282 #ifndef POINTERS_EXTEND_UNSIGNED
283 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
284 return x;
285 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
286 machine_mode pointer_mode, address_mode, from_mode;
287 rtx temp;
288 enum rtx_code code;
290 /* If X already has the right mode, just return it. */
291 if (GET_MODE (x) == to_mode)
292 return x;
294 pointer_mode = targetm.addr_space.pointer_mode (as);
295 address_mode = targetm.addr_space.address_mode (as);
296 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
298 /* Here we handle some special cases. If none of them apply, fall through
299 to the default case. */
300 switch (GET_CODE (x))
302 CASE_CONST_SCALAR_INT:
303 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
304 code = TRUNCATE;
305 else if (POINTERS_EXTEND_UNSIGNED < 0)
306 break;
307 else if (POINTERS_EXTEND_UNSIGNED > 0)
308 code = ZERO_EXTEND;
309 else
310 code = SIGN_EXTEND;
311 temp = simplify_unary_operation (code, to_mode, x, from_mode);
312 if (temp)
313 return temp;
314 break;
316 case SUBREG:
317 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
318 && GET_MODE (SUBREG_REG (x)) == to_mode)
319 return SUBREG_REG (x);
320 break;
322 case LABEL_REF:
323 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
324 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
325 return temp;
326 break;
328 case SYMBOL_REF:
329 temp = shallow_copy_rtx (x);
330 PUT_MODE (temp, to_mode);
331 return temp;
332 break;
334 case CONST:
335 return gen_rtx_CONST (to_mode,
336 convert_memory_address_addr_space_1
337 (to_mode, XEXP (x, 0), as, true));
338 break;
340 case PLUS:
341 case MULT:
342 /* For addition we can safely permute the conversion and addition
343 operation if one operand is a constant and converting the constant
344 does not change it or if one operand is a constant and we are
345 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
346 We can always safely permute them if we are making the address
347 narrower. Inside a CONST RTL, this is safe for both pointers
348 zero or sign extended as pointers cannot wrap. */
349 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
350 || (GET_CODE (x) == PLUS
351 && CONST_INT_P (XEXP (x, 1))
352 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
353 || XEXP (x, 1) == convert_memory_address_addr_space_1
354 (to_mode, XEXP (x, 1), as, in_const)
355 || POINTERS_EXTEND_UNSIGNED < 0)))
356 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
357 convert_memory_address_addr_space_1
358 (to_mode, XEXP (x, 0), as, in_const),
359 XEXP (x, 1));
360 break;
362 default:
363 break;
366 return convert_modes (to_mode, from_mode,
367 x, POINTERS_EXTEND_UNSIGNED);
368 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
371 /* Given X, a memory address in address space AS' pointer mode, convert it to
372 an address in the address space's address mode, or vice versa (TO_MODE says
373 which way). We take advantage of the fact that pointers are not allowed to
374 overflow by commuting arithmetic operations over conversions so that address
375 arithmetic insns can be used. */
378 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
380 return convert_memory_address_addr_space_1 (to_mode, x, as, false);
384 /* Return something equivalent to X but valid as a memory address for something
385 of mode MODE in the named address space AS. When X is not itself valid,
386 this works by copying X or subexpressions of it into registers. */
389 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
391 rtx oldx = x;
392 machine_mode address_mode = targetm.addr_space.address_mode (as);
394 x = convert_memory_address_addr_space (address_mode, x, as);
396 /* By passing constant addresses through registers
397 we get a chance to cse them. */
398 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
399 x = force_reg (address_mode, x);
401 /* We get better cse by rejecting indirect addressing at this stage.
402 Let the combiner create indirect addresses where appropriate.
403 For now, generate the code so that the subexpressions useful to share
404 are visible. But not if cse won't be done! */
405 else
407 if (! cse_not_expected && !REG_P (x))
408 x = break_out_memory_refs (x);
410 /* At this point, any valid address is accepted. */
411 if (memory_address_addr_space_p (mode, x, as))
412 goto done;
414 /* If it was valid before but breaking out memory refs invalidated it,
415 use it the old way. */
416 if (memory_address_addr_space_p (mode, oldx, as))
418 x = oldx;
419 goto done;
422 /* Perform machine-dependent transformations on X
423 in certain cases. This is not necessary since the code
424 below can handle all possible cases, but machine-dependent
425 transformations can make better code. */
427 rtx orig_x = x;
428 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
429 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
430 goto done;
433 /* PLUS and MULT can appear in special ways
434 as the result of attempts to make an address usable for indexing.
435 Usually they are dealt with by calling force_operand, below.
436 But a sum containing constant terms is special
437 if removing them makes the sum a valid address:
438 then we generate that address in a register
439 and index off of it. We do this because it often makes
440 shorter code, and because the addresses thus generated
441 in registers often become common subexpressions. */
442 if (GET_CODE (x) == PLUS)
444 rtx constant_term = const0_rtx;
445 rtx y = eliminate_constant_term (x, &constant_term);
446 if (constant_term == const0_rtx
447 || ! memory_address_addr_space_p (mode, y, as))
448 x = force_operand (x, NULL_RTX);
449 else
451 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
452 if (! memory_address_addr_space_p (mode, y, as))
453 x = force_operand (x, NULL_RTX);
454 else
455 x = y;
459 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
460 x = force_operand (x, NULL_RTX);
462 /* If we have a register that's an invalid address,
463 it must be a hard reg of the wrong class. Copy it to a pseudo. */
464 else if (REG_P (x))
465 x = copy_to_reg (x);
467 /* Last resort: copy the value to a register, since
468 the register is a valid address. */
469 else
470 x = force_reg (address_mode, x);
473 done:
475 gcc_assert (memory_address_addr_space_p (mode, x, as));
476 /* If we didn't change the address, we are done. Otherwise, mark
477 a reg as a pointer if we have REG or REG + CONST_INT. */
478 if (oldx == x)
479 return x;
480 else if (REG_P (x))
481 mark_reg_pointer (x, BITS_PER_UNIT);
482 else if (GET_CODE (x) == PLUS
483 && REG_P (XEXP (x, 0))
484 && CONST_INT_P (XEXP (x, 1)))
485 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
487 /* OLDX may have been the address on a temporary. Update the address
488 to indicate that X is now used. */
489 update_temp_slot_address (oldx, x);
491 return x;
494 /* If REF is a MEM with an invalid address, change it into a valid address.
495 Pass through anything else unchanged. REF must be an unshared rtx and
496 the function may modify it in-place. */
499 validize_mem (rtx ref)
501 if (!MEM_P (ref))
502 return ref;
503 ref = use_anchored_address (ref);
504 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
505 MEM_ADDR_SPACE (ref)))
506 return ref;
508 return replace_equiv_address (ref, XEXP (ref, 0), true);
511 /* If X is a memory reference to a member of an object block, try rewriting
512 it to use an anchor instead. Return the new memory reference on success
513 and the old one on failure. */
516 use_anchored_address (rtx x)
518 rtx base;
519 HOST_WIDE_INT offset;
520 machine_mode mode;
522 if (!flag_section_anchors)
523 return x;
525 if (!MEM_P (x))
526 return x;
528 /* Split the address into a base and offset. */
529 base = XEXP (x, 0);
530 offset = 0;
531 if (GET_CODE (base) == CONST
532 && GET_CODE (XEXP (base, 0)) == PLUS
533 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
535 offset += INTVAL (XEXP (XEXP (base, 0), 1));
536 base = XEXP (XEXP (base, 0), 0);
539 /* Check whether BASE is suitable for anchors. */
540 if (GET_CODE (base) != SYMBOL_REF
541 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
542 || SYMBOL_REF_ANCHOR_P (base)
543 || SYMBOL_REF_BLOCK (base) == NULL
544 || !targetm.use_anchors_for_symbol_p (base))
545 return x;
547 /* Decide where BASE is going to be. */
548 place_block_symbol (base);
550 /* Get the anchor we need to use. */
551 offset += SYMBOL_REF_BLOCK_OFFSET (base);
552 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
553 SYMBOL_REF_TLS_MODEL (base));
555 /* Work out the offset from the anchor. */
556 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
558 /* If we're going to run a CSE pass, force the anchor into a register.
559 We will then be able to reuse registers for several accesses, if the
560 target costs say that that's worthwhile. */
561 mode = GET_MODE (base);
562 if (!cse_not_expected)
563 base = force_reg (mode, base);
565 return replace_equiv_address (x, plus_constant (mode, base, offset));
568 /* Copy the value or contents of X to a new temp reg and return that reg. */
571 copy_to_reg (rtx x)
573 rtx temp = gen_reg_rtx (GET_MODE (x));
575 /* If not an operand, must be an address with PLUS and MULT so
576 do the computation. */
577 if (! general_operand (x, VOIDmode))
578 x = force_operand (x, temp);
580 if (x != temp)
581 emit_move_insn (temp, x);
583 return temp;
586 /* Like copy_to_reg but always give the new register mode Pmode
587 in case X is a constant. */
590 copy_addr_to_reg (rtx x)
592 return copy_to_mode_reg (Pmode, x);
595 /* Like copy_to_reg but always give the new register mode MODE
596 in case X is a constant. */
599 copy_to_mode_reg (machine_mode mode, rtx x)
601 rtx temp = gen_reg_rtx (mode);
603 /* If not an operand, must be an address with PLUS and MULT so
604 do the computation. */
605 if (! general_operand (x, VOIDmode))
606 x = force_operand (x, temp);
608 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
609 if (x != temp)
610 emit_move_insn (temp, x);
611 return temp;
614 /* Load X into a register if it is not already one.
615 Use mode MODE for the register.
616 X should be valid for mode MODE, but it may be a constant which
617 is valid for all integer modes; that's why caller must specify MODE.
619 The caller must not alter the value in the register we return,
620 since we mark it as a "constant" register. */
623 force_reg (machine_mode mode, rtx x)
625 rtx temp, set;
626 rtx_insn *insn;
628 if (REG_P (x))
629 return x;
631 if (general_operand (x, mode))
633 temp = gen_reg_rtx (mode);
634 insn = emit_move_insn (temp, x);
636 else
638 temp = force_operand (x, NULL_RTX);
639 if (REG_P (temp))
640 insn = get_last_insn ();
641 else
643 rtx temp2 = gen_reg_rtx (mode);
644 insn = emit_move_insn (temp2, temp);
645 temp = temp2;
649 /* Let optimizers know that TEMP's value never changes
650 and that X can be substituted for it. Don't get confused
651 if INSN set something else (such as a SUBREG of TEMP). */
652 if (CONSTANT_P (x)
653 && (set = single_set (insn)) != 0
654 && SET_DEST (set) == temp
655 && ! rtx_equal_p (x, SET_SRC (set)))
656 set_unique_reg_note (insn, REG_EQUAL, x);
658 /* Let optimizers know that TEMP is a pointer, and if so, the
659 known alignment of that pointer. */
661 unsigned align = 0;
662 if (GET_CODE (x) == SYMBOL_REF)
664 align = BITS_PER_UNIT;
665 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
666 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
668 else if (GET_CODE (x) == LABEL_REF)
669 align = BITS_PER_UNIT;
670 else if (GET_CODE (x) == CONST
671 && GET_CODE (XEXP (x, 0)) == PLUS
672 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
673 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
675 rtx s = XEXP (XEXP (x, 0), 0);
676 rtx c = XEXP (XEXP (x, 0), 1);
677 unsigned sa, ca;
679 sa = BITS_PER_UNIT;
680 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
681 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
683 if (INTVAL (c) == 0)
684 align = sa;
685 else
687 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
688 align = MIN (sa, ca);
692 if (align || (MEM_P (x) && MEM_POINTER (x)))
693 mark_reg_pointer (temp, align);
696 return temp;
699 /* If X is a memory ref, copy its contents to a new temp reg and return
700 that reg. Otherwise, return X. */
703 force_not_mem (rtx x)
705 rtx temp;
707 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
708 return x;
710 temp = gen_reg_rtx (GET_MODE (x));
712 if (MEM_POINTER (x))
713 REG_POINTER (temp) = 1;
715 emit_move_insn (temp, x);
716 return temp;
719 /* Copy X to TARGET (if it's nonzero and a reg)
720 or to a new temp reg and return that reg.
721 MODE is the mode to use for X in case it is a constant. */
724 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
726 rtx temp;
728 if (target && REG_P (target))
729 temp = target;
730 else
731 temp = gen_reg_rtx (mode);
733 emit_move_insn (temp, x);
734 return temp;
737 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
738 PUNSIGNEDP points to the signedness of the type and may be adjusted
739 to show what signedness to use on extension operations.
741 FOR_RETURN is nonzero if the caller is promoting the return value
742 of FNDECL, else it is for promoting args. */
744 machine_mode
745 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
746 const_tree funtype, int for_return)
748 /* Called without a type node for a libcall. */
749 if (type == NULL_TREE)
751 if (INTEGRAL_MODE_P (mode))
752 return targetm.calls.promote_function_mode (NULL_TREE, mode,
753 punsignedp, funtype,
754 for_return);
755 else
756 return mode;
759 switch (TREE_CODE (type))
761 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
762 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
763 case POINTER_TYPE: case REFERENCE_TYPE:
764 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
765 for_return);
767 default:
768 return mode;
771 /* Return the mode to use to store a scalar of TYPE and MODE.
772 PUNSIGNEDP points to the signedness of the type and may be adjusted
773 to show what signedness to use on extension operations. */
775 machine_mode
776 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
777 int *punsignedp ATTRIBUTE_UNUSED)
779 #ifdef PROMOTE_MODE
780 enum tree_code code;
781 int unsignedp;
782 #endif
784 /* For libcalls this is invoked without TYPE from the backends
785 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
786 case. */
787 if (type == NULL_TREE)
788 return mode;
790 /* FIXME: this is the same logic that was there until GCC 4.4, but we
791 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
792 is not defined. The affected targets are M32C, S390, SPARC. */
793 #ifdef PROMOTE_MODE
794 code = TREE_CODE (type);
795 unsignedp = *punsignedp;
797 switch (code)
799 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
800 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
801 PROMOTE_MODE (mode, unsignedp, type);
802 *punsignedp = unsignedp;
803 return mode;
804 break;
806 #ifdef POINTERS_EXTEND_UNSIGNED
807 case REFERENCE_TYPE:
808 case POINTER_TYPE:
809 *punsignedp = POINTERS_EXTEND_UNSIGNED;
810 return targetm.addr_space.address_mode
811 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
812 break;
813 #endif
815 default:
816 return mode;
818 #else
819 return mode;
820 #endif
824 /* Use one of promote_mode or promote_function_mode to find the promoted
825 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
826 of DECL after promotion. */
828 machine_mode
829 promote_decl_mode (const_tree decl, int *punsignedp)
831 tree type = TREE_TYPE (decl);
832 int unsignedp = TYPE_UNSIGNED (type);
833 machine_mode mode = DECL_MODE (decl);
834 machine_mode pmode;
836 if (TREE_CODE (decl) == RESULT_DECL
837 || TREE_CODE (decl) == PARM_DECL)
838 pmode = promote_function_mode (type, mode, &unsignedp,
839 TREE_TYPE (current_function_decl), 2);
840 else
841 pmode = promote_mode (type, mode, &unsignedp);
843 if (punsignedp)
844 *punsignedp = unsignedp;
845 return pmode;
848 /* Return the promoted mode for name. If it is a named SSA_NAME, it
849 is the same as promote_decl_mode. Otherwise, it is the promoted
850 mode of a temp decl of same type as the SSA_NAME, if we had created
851 one. */
853 machine_mode
854 promote_ssa_mode (const_tree name, int *punsignedp)
856 gcc_assert (TREE_CODE (name) == SSA_NAME);
858 tree type = TREE_TYPE (name);
859 int unsignedp = TYPE_UNSIGNED (type);
860 machine_mode mode = TYPE_MODE (type);
862 machine_mode pmode = promote_mode (type, mode, &unsignedp);
863 if (punsignedp)
864 *punsignedp = unsignedp;
866 return pmode;
871 /* Controls the behaviour of {anti_,}adjust_stack. */
872 static bool suppress_reg_args_size;
874 /* A helper for adjust_stack and anti_adjust_stack. */
876 static void
877 adjust_stack_1 (rtx adjust, bool anti_p)
879 rtx temp;
880 rtx_insn *insn;
882 /* Hereafter anti_p means subtract_p. */
883 if (!STACK_GROWS_DOWNWARD)
884 anti_p = !anti_p;
886 temp = expand_binop (Pmode,
887 anti_p ? sub_optab : add_optab,
888 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
889 OPTAB_LIB_WIDEN);
891 if (temp != stack_pointer_rtx)
892 insn = emit_move_insn (stack_pointer_rtx, temp);
893 else
895 insn = get_last_insn ();
896 temp = single_set (insn);
897 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
900 if (!suppress_reg_args_size)
901 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
904 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
905 This pops when ADJUST is positive. ADJUST need not be constant. */
907 void
908 adjust_stack (rtx adjust)
910 if (adjust == const0_rtx)
911 return;
913 /* We expect all variable sized adjustments to be multiple of
914 PREFERRED_STACK_BOUNDARY. */
915 if (CONST_INT_P (adjust))
916 stack_pointer_delta -= INTVAL (adjust);
918 adjust_stack_1 (adjust, false);
921 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
922 This pushes when ADJUST is positive. ADJUST need not be constant. */
924 void
925 anti_adjust_stack (rtx adjust)
927 if (adjust == const0_rtx)
928 return;
930 /* We expect all variable sized adjustments to be multiple of
931 PREFERRED_STACK_BOUNDARY. */
932 if (CONST_INT_P (adjust))
933 stack_pointer_delta += INTVAL (adjust);
935 adjust_stack_1 (adjust, true);
938 /* Round the size of a block to be pushed up to the boundary required
939 by this machine. SIZE is the desired size, which need not be constant. */
941 static rtx
942 round_push (rtx size)
944 rtx align_rtx, alignm1_rtx;
946 if (!SUPPORTS_STACK_ALIGNMENT
947 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
949 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
951 if (align == 1)
952 return size;
954 if (CONST_INT_P (size))
956 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
958 if (INTVAL (size) != new_size)
959 size = GEN_INT (new_size);
960 return size;
963 align_rtx = GEN_INT (align);
964 alignm1_rtx = GEN_INT (align - 1);
966 else
968 /* If crtl->preferred_stack_boundary might still grow, use
969 virtual_preferred_stack_boundary_rtx instead. This will be
970 substituted by the right value in vregs pass and optimized
971 during combine. */
972 align_rtx = virtual_preferred_stack_boundary_rtx;
973 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
974 NULL_RTX);
977 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
978 but we know it can't. So add ourselves and then do
979 TRUNC_DIV_EXPR. */
980 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
981 NULL_RTX, 1, OPTAB_LIB_WIDEN);
982 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
983 NULL_RTX, 1);
984 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
986 return size;
989 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
990 to a previously-created save area. If no save area has been allocated,
991 this function will allocate one. If a save area is specified, it
992 must be of the proper mode. */
994 void
995 emit_stack_save (enum save_level save_level, rtx *psave)
997 rtx sa = *psave;
998 /* The default is that we use a move insn and save in a Pmode object. */
999 rtx (*fcn) (rtx, rtx) = gen_move_insn_uncast;
1000 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1002 /* See if this machine has anything special to do for this kind of save. */
1003 switch (save_level)
1005 #ifdef HAVE_save_stack_block
1006 case SAVE_BLOCK:
1007 if (HAVE_save_stack_block)
1008 fcn = gen_save_stack_block;
1009 break;
1010 #endif
1011 #ifdef HAVE_save_stack_function
1012 case SAVE_FUNCTION:
1013 if (HAVE_save_stack_function)
1014 fcn = gen_save_stack_function;
1015 break;
1016 #endif
1017 #ifdef HAVE_save_stack_nonlocal
1018 case SAVE_NONLOCAL:
1019 if (HAVE_save_stack_nonlocal)
1020 fcn = gen_save_stack_nonlocal;
1021 break;
1022 #endif
1023 default:
1024 break;
1027 /* If there is no save area and we have to allocate one, do so. Otherwise
1028 verify the save area is the proper mode. */
1030 if (sa == 0)
1032 if (mode != VOIDmode)
1034 if (save_level == SAVE_NONLOCAL)
1035 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1036 else
1037 *psave = sa = gen_reg_rtx (mode);
1041 do_pending_stack_adjust ();
1042 if (sa != 0)
1043 sa = validize_mem (sa);
1044 emit_insn (fcn (sa, stack_pointer_rtx));
1047 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1048 area made by emit_stack_save. If it is zero, we have nothing to do. */
1050 void
1051 emit_stack_restore (enum save_level save_level, rtx sa)
1053 /* The default is that we use a move insn. */
1054 rtx (*fcn) (rtx, rtx) = gen_move_insn_uncast;
1056 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1057 STACK_POINTER and HARD_FRAME_POINTER.
1058 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1059 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1060 aligned variables, which is reflected in ix86_can_eliminate.
1061 We normally still have the realigned STACK_POINTER that we can use.
1062 But if there is a stack restore still present at reload, it can trigger
1063 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1064 FRAME_POINTER into a hard reg.
1065 To prevent this situation, we force need_drap if we emit a stack
1066 restore. */
1067 if (SUPPORTS_STACK_ALIGNMENT)
1068 crtl->need_drap = true;
1070 /* See if this machine has anything special to do for this kind of save. */
1071 switch (save_level)
1073 #ifdef HAVE_restore_stack_block
1074 case SAVE_BLOCK:
1075 if (HAVE_restore_stack_block)
1076 fcn = gen_restore_stack_block;
1077 break;
1078 #endif
1079 #ifdef HAVE_restore_stack_function
1080 case SAVE_FUNCTION:
1081 if (HAVE_restore_stack_function)
1082 fcn = gen_restore_stack_function;
1083 break;
1084 #endif
1085 #ifdef HAVE_restore_stack_nonlocal
1086 case SAVE_NONLOCAL:
1087 if (HAVE_restore_stack_nonlocal)
1088 fcn = gen_restore_stack_nonlocal;
1089 break;
1090 #endif
1091 default:
1092 break;
1095 if (sa != 0)
1097 sa = validize_mem (sa);
1098 /* These clobbers prevent the scheduler from moving
1099 references to variable arrays below the code
1100 that deletes (pops) the arrays. */
1101 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1102 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1105 discard_pending_stack_adjust ();
1107 emit_insn (fcn (stack_pointer_rtx, sa));
1110 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1111 function. This should be called whenever we allocate or deallocate
1112 dynamic stack space. */
1114 void
1115 update_nonlocal_goto_save_area (void)
1117 tree t_save;
1118 rtx r_save;
1120 /* The nonlocal_goto_save_area object is an array of N pointers. The
1121 first one is used for the frame pointer save; the rest are sized by
1122 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1123 of the stack save area slots. */
1124 t_save = build4 (ARRAY_REF,
1125 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1126 cfun->nonlocal_goto_save_area,
1127 integer_one_node, NULL_TREE, NULL_TREE);
1128 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1130 emit_stack_save (SAVE_NONLOCAL, &r_save);
1133 /* Record a new stack level for the current function. This should be called
1134 whenever we allocate or deallocate dynamic stack space. */
1136 void
1137 record_new_stack_level (void)
1139 /* Record the new stack level for nonlocal gotos. */
1140 if (cfun->nonlocal_goto_save_area)
1141 update_nonlocal_goto_save_area ();
1143 /* Record the new stack level for SJLJ exceptions. */
1144 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1145 update_sjlj_context ();
1148 /* Return an rtx representing the address of an area of memory dynamically
1149 pushed on the stack.
1151 Any required stack pointer alignment is preserved.
1153 SIZE is an rtx representing the size of the area.
1155 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1156 parameter may be zero. If so, a proper value will be extracted
1157 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1159 REQUIRED_ALIGN is the alignment (in bits) required for the region
1160 of memory.
1162 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1163 stack space allocated by the generated code cannot be added with itself
1164 in the course of the execution of the function. It is always safe to
1165 pass FALSE here and the following criterion is sufficient in order to
1166 pass TRUE: every path in the CFG that starts at the allocation point and
1167 loops to it executes the associated deallocation code. */
1170 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1171 unsigned required_align, bool cannot_accumulate)
1173 HOST_WIDE_INT stack_usage_size = -1;
1174 rtx_code_label *final_label;
1175 rtx final_target, target;
1176 unsigned extra_align = 0;
1177 bool must_align;
1179 /* If we're asking for zero bytes, it doesn't matter what we point
1180 to since we can't dereference it. But return a reasonable
1181 address anyway. */
1182 if (size == const0_rtx)
1183 return virtual_stack_dynamic_rtx;
1185 /* Otherwise, show we're calling alloca or equivalent. */
1186 cfun->calls_alloca = 1;
1188 /* If stack usage info is requested, look into the size we are passed.
1189 We need to do so this early to avoid the obfuscation that may be
1190 introduced later by the various alignment operations. */
1191 if (flag_stack_usage_info)
1193 if (CONST_INT_P (size))
1194 stack_usage_size = INTVAL (size);
1195 else if (REG_P (size))
1197 /* Look into the last emitted insn and see if we can deduce
1198 something for the register. */
1199 rtx_insn *insn;
1200 rtx set, note;
1201 insn = get_last_insn ();
1202 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1204 if (CONST_INT_P (SET_SRC (set)))
1205 stack_usage_size = INTVAL (SET_SRC (set));
1206 else if ((note = find_reg_equal_equiv_note (insn))
1207 && CONST_INT_P (XEXP (note, 0)))
1208 stack_usage_size = INTVAL (XEXP (note, 0));
1212 /* If the size is not constant, we can't say anything. */
1213 if (stack_usage_size == -1)
1215 current_function_has_unbounded_dynamic_stack_size = 1;
1216 stack_usage_size = 0;
1220 /* Ensure the size is in the proper mode. */
1221 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1222 size = convert_to_mode (Pmode, size, 1);
1224 /* Adjust SIZE_ALIGN, if needed. */
1225 if (CONST_INT_P (size))
1227 unsigned HOST_WIDE_INT lsb;
1229 lsb = INTVAL (size);
1230 lsb &= -lsb;
1232 /* Watch out for overflow truncating to "unsigned". */
1233 if (lsb > UINT_MAX / BITS_PER_UNIT)
1234 size_align = 1u << (HOST_BITS_PER_INT - 1);
1235 else
1236 size_align = (unsigned)lsb * BITS_PER_UNIT;
1238 else if (size_align < BITS_PER_UNIT)
1239 size_align = BITS_PER_UNIT;
1241 /* We can't attempt to minimize alignment necessary, because we don't
1242 know the final value of preferred_stack_boundary yet while executing
1243 this code. */
1244 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1245 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1247 /* We will need to ensure that the address we return is aligned to
1248 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1249 always know its final value at this point in the compilation (it
1250 might depend on the size of the outgoing parameter lists, for
1251 example), so we must align the value to be returned in that case.
1252 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1253 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1254 We must also do an alignment operation on the returned value if
1255 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1257 If we have to align, we must leave space in SIZE for the hole
1258 that might result from the alignment operation. */
1260 must_align = (crtl->preferred_stack_boundary < required_align);
1261 if (must_align)
1263 if (required_align > PREFERRED_STACK_BOUNDARY)
1264 extra_align = PREFERRED_STACK_BOUNDARY;
1265 else if (required_align > STACK_BOUNDARY)
1266 extra_align = STACK_BOUNDARY;
1267 else
1268 extra_align = BITS_PER_UNIT;
1271 /* ??? STACK_POINTER_OFFSET is always defined now. */
1272 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1273 must_align = true;
1274 extra_align = BITS_PER_UNIT;
1275 #endif
1277 if (must_align)
1279 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1281 size = plus_constant (Pmode, size, extra);
1282 size = force_operand (size, NULL_RTX);
1284 if (flag_stack_usage_info)
1285 stack_usage_size += extra;
1287 if (extra && size_align > extra_align)
1288 size_align = extra_align;
1291 /* Round the size to a multiple of the required stack alignment.
1292 Since the stack if presumed to be rounded before this allocation,
1293 this will maintain the required alignment.
1295 If the stack grows downward, we could save an insn by subtracting
1296 SIZE from the stack pointer and then aligning the stack pointer.
1297 The problem with this is that the stack pointer may be unaligned
1298 between the execution of the subtraction and alignment insns and
1299 some machines do not allow this. Even on those that do, some
1300 signal handlers malfunction if a signal should occur between those
1301 insns. Since this is an extremely rare event, we have no reliable
1302 way of knowing which systems have this problem. So we avoid even
1303 momentarily mis-aligning the stack. */
1304 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1306 size = round_push (size);
1308 if (flag_stack_usage_info)
1310 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1311 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1315 target = gen_reg_rtx (Pmode);
1317 /* The size is supposed to be fully adjusted at this point so record it
1318 if stack usage info is requested. */
1319 if (flag_stack_usage_info)
1321 current_function_dynamic_stack_size += stack_usage_size;
1323 /* ??? This is gross but the only safe stance in the absence
1324 of stack usage oriented flow analysis. */
1325 if (!cannot_accumulate)
1326 current_function_has_unbounded_dynamic_stack_size = 1;
1329 final_label = NULL;
1330 final_target = NULL_RTX;
1332 /* If we are splitting the stack, we need to ask the backend whether
1333 there is enough room on the current stack. If there isn't, or if
1334 the backend doesn't know how to tell is, then we need to call a
1335 function to allocate memory in some other way. This memory will
1336 be released when we release the current stack segment. The
1337 effect is that stack allocation becomes less efficient, but at
1338 least it doesn't cause a stack overflow. */
1339 if (flag_split_stack)
1341 rtx_code_label *available_label;
1342 rtx ask, space, func;
1344 available_label = NULL;
1346 #ifdef HAVE_split_stack_space_check
1347 if (HAVE_split_stack_space_check)
1349 available_label = gen_label_rtx ();
1351 /* This instruction will branch to AVAILABLE_LABEL if there
1352 are SIZE bytes available on the stack. */
1353 emit_insn (gen_split_stack_space_check (size, available_label));
1355 #endif
1357 /* The __morestack_allocate_stack_space function will allocate
1358 memory using malloc. If the alignment of the memory returned
1359 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1360 make sure we allocate enough space. */
1361 if (MALLOC_ABI_ALIGNMENT >= required_align)
1362 ask = size;
1363 else
1365 ask = expand_binop (Pmode, add_optab, size,
1366 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1367 Pmode),
1368 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1369 must_align = true;
1372 func = init_one_libfunc ("__morestack_allocate_stack_space");
1374 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1375 1, ask, Pmode);
1377 if (available_label == NULL_RTX)
1378 return space;
1380 final_target = gen_reg_rtx (Pmode);
1382 emit_move_insn (final_target, space);
1384 final_label = gen_label_rtx ();
1385 emit_jump (final_label);
1387 emit_label (available_label);
1390 do_pending_stack_adjust ();
1392 /* We ought to be called always on the toplevel and stack ought to be aligned
1393 properly. */
1394 gcc_assert (!(stack_pointer_delta
1395 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1397 /* If needed, check that we have the required amount of stack. Take into
1398 account what has already been checked. */
1399 if (STACK_CHECK_MOVING_SP)
1401 else if (flag_stack_check == GENERIC_STACK_CHECK)
1402 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1403 size);
1404 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1405 probe_stack_range (STACK_CHECK_PROTECT, size);
1407 /* Don't let anti_adjust_stack emit notes. */
1408 suppress_reg_args_size = true;
1410 /* Perform the required allocation from the stack. Some systems do
1411 this differently than simply incrementing/decrementing from the
1412 stack pointer, such as acquiring the space by calling malloc(). */
1413 #ifdef HAVE_allocate_stack
1414 if (HAVE_allocate_stack)
1416 struct expand_operand ops[2];
1417 /* We don't have to check against the predicate for operand 0 since
1418 TARGET is known to be a pseudo of the proper mode, which must
1419 be valid for the operand. */
1420 create_fixed_operand (&ops[0], target);
1421 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1422 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1424 else
1425 #endif
1427 int saved_stack_pointer_delta;
1429 if (!STACK_GROWS_DOWNWARD)
1430 emit_move_insn (target, virtual_stack_dynamic_rtx);
1432 /* Check stack bounds if necessary. */
1433 if (crtl->limit_stack)
1435 rtx available;
1436 rtx_code_label *space_available = gen_label_rtx ();
1437 if (STACK_GROWS_DOWNWARD)
1438 available = expand_binop (Pmode, sub_optab,
1439 stack_pointer_rtx, stack_limit_rtx,
1440 NULL_RTX, 1, OPTAB_WIDEN);
1441 else
1442 available = expand_binop (Pmode, sub_optab,
1443 stack_limit_rtx, stack_pointer_rtx,
1444 NULL_RTX, 1, OPTAB_WIDEN);
1446 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1447 space_available);
1448 #ifdef HAVE_trap
1449 if (HAVE_trap)
1450 emit_insn (gen_trap ());
1451 else
1452 #endif
1453 error ("stack limits not supported on this target");
1454 emit_barrier ();
1455 emit_label (space_available);
1458 saved_stack_pointer_delta = stack_pointer_delta;
1460 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1461 anti_adjust_stack_and_probe (size, false);
1462 else
1463 anti_adjust_stack (size);
1465 /* Even if size is constant, don't modify stack_pointer_delta.
1466 The constant size alloca should preserve
1467 crtl->preferred_stack_boundary alignment. */
1468 stack_pointer_delta = saved_stack_pointer_delta;
1470 if (STACK_GROWS_DOWNWARD)
1471 emit_move_insn (target, virtual_stack_dynamic_rtx);
1474 suppress_reg_args_size = false;
1476 /* Finish up the split stack handling. */
1477 if (final_label != NULL_RTX)
1479 gcc_assert (flag_split_stack);
1480 emit_move_insn (final_target, target);
1481 emit_label (final_label);
1482 target = final_target;
1485 if (must_align)
1487 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1488 but we know it can't. So add ourselves and then do
1489 TRUNC_DIV_EXPR. */
1490 target = expand_binop (Pmode, add_optab, target,
1491 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1492 Pmode),
1493 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1494 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1495 gen_int_mode (required_align / BITS_PER_UNIT,
1496 Pmode),
1497 NULL_RTX, 1);
1498 target = expand_mult (Pmode, target,
1499 gen_int_mode (required_align / BITS_PER_UNIT,
1500 Pmode),
1501 NULL_RTX, 1);
1504 /* Now that we've committed to a return value, mark its alignment. */
1505 mark_reg_pointer (target, required_align);
1507 /* Record the new stack level. */
1508 record_new_stack_level ();
1510 return target;
1513 /* A front end may want to override GCC's stack checking by providing a
1514 run-time routine to call to check the stack, so provide a mechanism for
1515 calling that routine. */
1517 static GTY(()) rtx stack_check_libfunc;
1519 void
1520 set_stack_check_libfunc (const char *libfunc_name)
1522 gcc_assert (stack_check_libfunc == NULL_RTX);
1523 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1526 /* Emit one stack probe at ADDRESS, an address within the stack. */
1528 void
1529 emit_stack_probe (rtx address)
1531 #ifdef HAVE_probe_stack_address
1532 if (HAVE_probe_stack_address)
1533 emit_insn (gen_probe_stack_address (address));
1534 else
1535 #endif
1537 rtx memref = gen_rtx_MEM (word_mode, address);
1539 MEM_VOLATILE_P (memref) = 1;
1541 /* See if we have an insn to probe the stack. */
1542 #ifdef HAVE_probe_stack
1543 if (HAVE_probe_stack)
1544 emit_insn (gen_probe_stack (memref));
1545 else
1546 #endif
1547 emit_move_insn (memref, const0_rtx);
1551 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1552 FIRST is a constant and size is a Pmode RTX. These are offsets from
1553 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1554 or subtract them from the stack pointer. */
1556 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1558 #if STACK_GROWS_DOWNWARD
1559 #define STACK_GROW_OP MINUS
1560 #define STACK_GROW_OPTAB sub_optab
1561 #define STACK_GROW_OFF(off) -(off)
1562 #else
1563 #define STACK_GROW_OP PLUS
1564 #define STACK_GROW_OPTAB add_optab
1565 #define STACK_GROW_OFF(off) (off)
1566 #endif
1568 void
1569 probe_stack_range (HOST_WIDE_INT first, rtx size)
1571 /* First ensure SIZE is Pmode. */
1572 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1573 size = convert_to_mode (Pmode, size, 1);
1575 /* Next see if we have a function to check the stack. */
1576 if (stack_check_libfunc)
1578 rtx addr = memory_address (Pmode,
1579 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1580 stack_pointer_rtx,
1581 plus_constant (Pmode,
1582 size, first)));
1583 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1584 Pmode);
1587 /* Next see if we have an insn to check the stack. */
1588 #ifdef HAVE_check_stack
1589 else if (HAVE_check_stack)
1591 struct expand_operand ops[1];
1592 rtx addr = memory_address (Pmode,
1593 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1594 stack_pointer_rtx,
1595 plus_constant (Pmode,
1596 size, first)));
1597 bool success;
1598 create_input_operand (&ops[0], addr, Pmode);
1599 success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1600 gcc_assert (success);
1602 #endif
1604 /* Otherwise we have to generate explicit probes. If we have a constant
1605 small number of them to generate, that's the easy case. */
1606 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1608 HOST_WIDE_INT isize = INTVAL (size), i;
1609 rtx addr;
1611 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1612 it exceeds SIZE. If only one probe is needed, this will not
1613 generate any code. Then probe at FIRST + SIZE. */
1614 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1616 addr = memory_address (Pmode,
1617 plus_constant (Pmode, stack_pointer_rtx,
1618 STACK_GROW_OFF (first + i)));
1619 emit_stack_probe (addr);
1622 addr = memory_address (Pmode,
1623 plus_constant (Pmode, stack_pointer_rtx,
1624 STACK_GROW_OFF (first + isize)));
1625 emit_stack_probe (addr);
1628 /* In the variable case, do the same as above, but in a loop. Note that we
1629 must be extra careful with variables wrapping around because we might be
1630 at the very top (or the very bottom) of the address space and we have to
1631 be able to handle this case properly; in particular, we use an equality
1632 test for the loop condition. */
1633 else
1635 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1636 rtx_code_label *loop_lab = gen_label_rtx ();
1637 rtx_code_label *end_lab = gen_label_rtx ();
1639 /* Step 1: round SIZE to the previous multiple of the interval. */
1641 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1642 rounded_size
1643 = simplify_gen_binary (AND, Pmode, size,
1644 gen_int_mode (-PROBE_INTERVAL, Pmode));
1645 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1648 /* Step 2: compute initial and final value of the loop counter. */
1650 /* TEST_ADDR = SP + FIRST. */
1651 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1652 stack_pointer_rtx,
1653 gen_int_mode (first, Pmode)),
1654 NULL_RTX);
1656 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1657 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1658 test_addr,
1659 rounded_size_op), NULL_RTX);
1662 /* Step 3: the loop
1664 while (TEST_ADDR != LAST_ADDR)
1666 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1667 probe at TEST_ADDR
1670 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1671 until it is equal to ROUNDED_SIZE. */
1673 emit_label (loop_lab);
1675 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1676 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1677 end_lab);
1679 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1680 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1681 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1682 1, OPTAB_WIDEN);
1684 gcc_assert (temp == test_addr);
1686 /* Probe at TEST_ADDR. */
1687 emit_stack_probe (test_addr);
1689 emit_jump (loop_lab);
1691 emit_label (end_lab);
1694 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1695 that SIZE is equal to ROUNDED_SIZE. */
1697 /* TEMP = SIZE - ROUNDED_SIZE. */
1698 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1699 if (temp != const0_rtx)
1701 rtx addr;
1703 if (CONST_INT_P (temp))
1705 /* Use [base + disp} addressing mode if supported. */
1706 HOST_WIDE_INT offset = INTVAL (temp);
1707 addr = memory_address (Pmode,
1708 plus_constant (Pmode, last_addr,
1709 STACK_GROW_OFF (offset)));
1711 else
1713 /* Manual CSE if the difference is not known at compile-time. */
1714 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1715 addr = memory_address (Pmode,
1716 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1717 last_addr, temp));
1720 emit_stack_probe (addr);
1724 /* Make sure nothing is scheduled before we are done. */
1725 emit_insn (gen_blockage ());
1728 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1729 while probing it. This pushes when SIZE is positive. SIZE need not
1730 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1731 by plus SIZE at the end. */
1733 void
1734 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1736 /* We skip the probe for the first interval + a small dope of 4 words and
1737 probe that many bytes past the specified size to maintain a protection
1738 area at the botton of the stack. */
1739 const int dope = 4 * UNITS_PER_WORD;
1741 /* First ensure SIZE is Pmode. */
1742 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1743 size = convert_to_mode (Pmode, size, 1);
1745 /* If we have a constant small number of probes to generate, that's the
1746 easy case. */
1747 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1749 HOST_WIDE_INT isize = INTVAL (size), i;
1750 bool first_probe = true;
1752 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1753 values of N from 1 until it exceeds SIZE. If only one probe is
1754 needed, this will not generate any code. Then adjust and probe
1755 to PROBE_INTERVAL + SIZE. */
1756 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1758 if (first_probe)
1760 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1761 first_probe = false;
1763 else
1764 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1765 emit_stack_probe (stack_pointer_rtx);
1768 if (first_probe)
1769 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1770 else
1771 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1772 emit_stack_probe (stack_pointer_rtx);
1775 /* In the variable case, do the same as above, but in a loop. Note that we
1776 must be extra careful with variables wrapping around because we might be
1777 at the very top (or the very bottom) of the address space and we have to
1778 be able to handle this case properly; in particular, we use an equality
1779 test for the loop condition. */
1780 else
1782 rtx rounded_size, rounded_size_op, last_addr, temp;
1783 rtx_code_label *loop_lab = gen_label_rtx ();
1784 rtx_code_label *end_lab = gen_label_rtx ();
1787 /* Step 1: round SIZE to the previous multiple of the interval. */
1789 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1790 rounded_size
1791 = simplify_gen_binary (AND, Pmode, size,
1792 gen_int_mode (-PROBE_INTERVAL, Pmode));
1793 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1796 /* Step 2: compute initial and final value of the loop counter. */
1798 /* SP = SP_0 + PROBE_INTERVAL. */
1799 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1801 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1802 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1803 stack_pointer_rtx,
1804 rounded_size_op), NULL_RTX);
1807 /* Step 3: the loop
1809 while (SP != LAST_ADDR)
1811 SP = SP + PROBE_INTERVAL
1812 probe at SP
1815 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1816 values of N from 1 until it is equal to ROUNDED_SIZE. */
1818 emit_label (loop_lab);
1820 /* Jump to END_LAB if SP == LAST_ADDR. */
1821 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1822 Pmode, 1, end_lab);
1824 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1825 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1826 emit_stack_probe (stack_pointer_rtx);
1828 emit_jump (loop_lab);
1830 emit_label (end_lab);
1833 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1834 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1836 /* TEMP = SIZE - ROUNDED_SIZE. */
1837 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1838 if (temp != const0_rtx)
1840 /* Manual CSE if the difference is not known at compile-time. */
1841 if (GET_CODE (temp) != CONST_INT)
1842 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1843 anti_adjust_stack (temp);
1844 emit_stack_probe (stack_pointer_rtx);
1848 /* Adjust back and account for the additional first interval. */
1849 if (adjust_back)
1850 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1851 else
1852 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1855 /* Return an rtx representing the register or memory location
1856 in which a scalar value of data type VALTYPE
1857 was returned by a function call to function FUNC.
1858 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1859 function is known, otherwise 0.
1860 OUTGOING is 1 if on a machine with register windows this function
1861 should return the register in which the function will put its result
1862 and 0 otherwise. */
1865 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1866 int outgoing ATTRIBUTE_UNUSED)
1868 rtx val;
1870 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1872 if (REG_P (val)
1873 && GET_MODE (val) == BLKmode)
1875 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1876 machine_mode tmpmode;
1878 /* int_size_in_bytes can return -1. We don't need a check here
1879 since the value of bytes will then be large enough that no
1880 mode will match anyway. */
1882 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1883 tmpmode != VOIDmode;
1884 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1886 /* Have we found a large enough mode? */
1887 if (GET_MODE_SIZE (tmpmode) >= bytes)
1888 break;
1891 /* No suitable mode found. */
1892 gcc_assert (tmpmode != VOIDmode);
1894 PUT_MODE (val, tmpmode);
1896 return val;
1899 /* Return an rtx representing the register or memory location
1900 in which a scalar value of mode MODE was returned by a library call. */
1903 hard_libcall_value (machine_mode mode, rtx fun)
1905 return targetm.calls.libcall_value (mode, fun);
1908 /* Look up the tree code for a given rtx code
1909 to provide the arithmetic operation for REAL_ARITHMETIC.
1910 The function returns an int because the caller may not know
1911 what `enum tree_code' means. */
1914 rtx_to_tree_code (enum rtx_code code)
1916 enum tree_code tcode;
1918 switch (code)
1920 case PLUS:
1921 tcode = PLUS_EXPR;
1922 break;
1923 case MINUS:
1924 tcode = MINUS_EXPR;
1925 break;
1926 case MULT:
1927 tcode = MULT_EXPR;
1928 break;
1929 case DIV:
1930 tcode = RDIV_EXPR;
1931 break;
1932 case SMIN:
1933 tcode = MIN_EXPR;
1934 break;
1935 case SMAX:
1936 tcode = MAX_EXPR;
1937 break;
1938 default:
1939 tcode = LAST_AND_UNUSED_TREE_CODE;
1940 break;
1942 return ((int) tcode);
1945 #include "gt-explow.h"