[43/46] Make free_stmt_vec_info take a stmt_vec_info
[official-gcc.git] / gcc / tree-vectorizer.h
blobb9aa9c454b5f32b81cfe437286baa889e09baab4
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 class stmt_vec_info {
25 public:
26 stmt_vec_info () {}
27 stmt_vec_info (struct _stmt_vec_info *ptr) : m_ptr (ptr) {}
28 struct _stmt_vec_info *operator-> () const { return m_ptr; }
29 struct _stmt_vec_info &operator* () const;
30 operator struct _stmt_vec_info * () const { return m_ptr; }
31 operator gimple * () const;
32 operator void * () const { return m_ptr; }
33 operator bool () const { return m_ptr; }
34 bool operator == (const stmt_vec_info &x) { return x.m_ptr == m_ptr; }
35 bool operator == (_stmt_vec_info *x) { return x == m_ptr; }
36 bool operator != (const stmt_vec_info &x) { return x.m_ptr != m_ptr; }
37 bool operator != (_stmt_vec_info *x) { return x != m_ptr; }
39 private:
40 struct _stmt_vec_info *m_ptr;
43 #define NULL_STMT_VEC_INFO (stmt_vec_info (NULL))
45 #include "tree-data-ref.h"
46 #include "tree-hash-traits.h"
47 #include "target.h"
49 /* Used for naming of new temporaries. */
50 enum vect_var_kind {
51 vect_simple_var,
52 vect_pointer_var,
53 vect_scalar_var,
54 vect_mask_var
57 /* Defines type of operation. */
58 enum operation_type {
59 unary_op = 1,
60 binary_op,
61 ternary_op
64 /* Define type of available alignment support. */
65 enum dr_alignment_support {
66 dr_unaligned_unsupported,
67 dr_unaligned_supported,
68 dr_explicit_realign,
69 dr_explicit_realign_optimized,
70 dr_aligned
73 /* Define type of def-use cross-iteration cycle. */
74 enum vect_def_type {
75 vect_uninitialized_def = 0,
76 vect_constant_def = 1,
77 vect_external_def,
78 vect_internal_def,
79 vect_induction_def,
80 vect_reduction_def,
81 vect_double_reduction_def,
82 vect_nested_cycle,
83 vect_unknown_def_type
86 /* Define type of reduction. */
87 enum vect_reduction_type {
88 TREE_CODE_REDUCTION,
89 COND_REDUCTION,
90 INTEGER_INDUC_COND_REDUCTION,
91 CONST_COND_REDUCTION,
93 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
94 to implement:
96 for (int i = 0; i < VF; ++i)
97 res = cond[i] ? val[i] : res; */
98 EXTRACT_LAST_REDUCTION,
100 /* Use a folding reduction within the loop to implement:
102 for (int i = 0; i < VF; ++i)
103 res = res OP val[i];
105 (with no reassocation). */
106 FOLD_LEFT_REDUCTION
109 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
110 || ((D) == vect_double_reduction_def) \
111 || ((D) == vect_nested_cycle))
113 /* Structure to encapsulate information about a group of like
114 instructions to be presented to the target cost model. */
115 struct stmt_info_for_cost {
116 int count;
117 enum vect_cost_for_stmt kind;
118 enum vect_cost_model_location where;
119 stmt_vec_info stmt_info;
120 int misalign;
123 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
125 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
126 known alignment for that base. */
127 typedef hash_map<tree_operand_hash,
128 innermost_loop_behavior *> vec_base_alignments;
130 /************************************************************************
132 ************************************************************************/
133 typedef struct _slp_tree *slp_tree;
135 /* A computation tree of an SLP instance. Each node corresponds to a group of
136 stmts to be packed in a SIMD stmt. */
137 struct _slp_tree {
138 /* Nodes that contain def-stmts of this node statements operands. */
139 vec<slp_tree> children;
140 /* A group of scalar stmts to be vectorized together. */
141 vec<stmt_vec_info> stmts;
142 /* Load permutation relative to the stores, NULL if there is no
143 permutation. */
144 vec<unsigned> load_permutation;
145 /* Vectorized stmt/s. */
146 vec<stmt_vec_info> vec_stmts;
147 /* Number of vector stmts that are created to replace the group of scalar
148 stmts. It is calculated during the transformation phase as the number of
149 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
150 divided by vector size. */
151 unsigned int vec_stmts_size;
152 /* Whether the scalar computations use two different operators. */
153 bool two_operators;
154 /* The DEF type of this node. */
155 enum vect_def_type def_type;
159 /* SLP instance is a sequence of stmts in a loop that can be packed into
160 SIMD stmts. */
161 typedef struct _slp_instance {
162 /* The root of SLP tree. */
163 slp_tree root;
165 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
166 unsigned int group_size;
168 /* The unrolling factor required to vectorized this SLP instance. */
169 poly_uint64 unrolling_factor;
171 /* The group of nodes that contain loads of this SLP instance. */
172 vec<slp_tree> loads;
174 /* The SLP node containing the reduction PHIs. */
175 slp_tree reduc_phis;
176 } *slp_instance;
179 /* Access Functions. */
180 #define SLP_INSTANCE_TREE(S) (S)->root
181 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
182 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
183 #define SLP_INSTANCE_LOADS(S) (S)->loads
185 #define SLP_TREE_CHILDREN(S) (S)->children
186 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
187 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
188 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
189 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
190 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
191 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
195 /* Describes two objects whose addresses must be unequal for the vectorized
196 loop to be valid. */
197 typedef std::pair<tree, tree> vec_object_pair;
199 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
200 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
201 struct vec_lower_bound {
202 vec_lower_bound () {}
203 vec_lower_bound (tree e, bool u, poly_uint64 m)
204 : expr (e), unsigned_p (u), min_value (m) {}
206 tree expr;
207 bool unsigned_p;
208 poly_uint64 min_value;
211 /* Vectorizer state shared between different analyses like vector sizes
212 of the same CFG region. */
213 struct vec_info_shared {
214 vec_info_shared();
215 ~vec_info_shared();
217 void save_datarefs();
218 void check_datarefs();
220 /* All data references. Freed by free_data_refs, so not an auto_vec. */
221 vec<data_reference_p> datarefs;
222 vec<data_reference> datarefs_copy;
224 /* The loop nest in which the data dependences are computed. */
225 auto_vec<loop_p> loop_nest;
227 /* All data dependences. Freed by free_dependence_relations, so not
228 an auto_vec. */
229 vec<ddr_p> ddrs;
232 /* Vectorizer state common between loop and basic-block vectorization. */
233 struct vec_info {
234 enum vec_kind { bb, loop };
236 vec_info (vec_kind, void *, vec_info_shared *);
237 ~vec_info ();
239 stmt_vec_info add_stmt (gimple *);
240 stmt_vec_info lookup_stmt (gimple *);
241 stmt_vec_info lookup_def (tree);
242 stmt_vec_info lookup_single_use (tree);
243 struct dr_vec_info *lookup_dr (data_reference *);
244 void move_dr (stmt_vec_info, stmt_vec_info);
245 void remove_stmt (stmt_vec_info);
246 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
248 /* The type of vectorization. */
249 vec_kind kind;
251 /* Shared vectorizer state. */
252 vec_info_shared *shared;
254 /* The mapping of GIMPLE UID to stmt_vec_info. */
255 vec<stmt_vec_info> stmt_vec_infos;
257 /* All SLP instances. */
258 auto_vec<slp_instance> slp_instances;
260 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
261 known alignment for that base. */
262 vec_base_alignments base_alignments;
264 /* All interleaving chains of stores, represented by the first
265 stmt in the chain. */
266 auto_vec<stmt_vec_info> grouped_stores;
268 /* Cost data used by the target cost model. */
269 void *target_cost_data;
272 struct _loop_vec_info;
273 struct _bb_vec_info;
275 template<>
276 template<>
277 inline bool
278 is_a_helper <_loop_vec_info *>::test (vec_info *i)
280 return i->kind == vec_info::loop;
283 template<>
284 template<>
285 inline bool
286 is_a_helper <_bb_vec_info *>::test (vec_info *i)
288 return i->kind == vec_info::bb;
292 /* In general, we can divide the vector statements in a vectorized loop
293 into related groups ("rgroups") and say that for each rgroup there is
294 some nS such that the rgroup operates on nS values from one scalar
295 iteration followed by nS values from the next. That is, if VF is the
296 vectorization factor of the loop, the rgroup operates on a sequence:
298 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
300 where (i,j) represents a scalar value with index j in a scalar
301 iteration with index i.
303 [ We use the term "rgroup" to emphasise that this grouping isn't
304 necessarily the same as the grouping of statements used elsewhere.
305 For example, if we implement a group of scalar loads using gather
306 loads, we'll use a separate gather load for each scalar load, and
307 thus each gather load will belong to its own rgroup. ]
309 In general this sequence will occupy nV vectors concatenated
310 together. If these vectors have nL lanes each, the total number
311 of scalar values N is given by:
313 N = nS * VF = nV * nL
315 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
316 are compile-time constants but VF and nL can be variable (if the target
317 supports variable-length vectors).
319 In classical vectorization, each iteration of the vector loop would
320 handle exactly VF iterations of the original scalar loop. However,
321 in a fully-masked loop, a particular iteration of the vector loop
322 might handle fewer than VF iterations of the scalar loop. The vector
323 lanes that correspond to iterations of the scalar loop are said to be
324 "active" and the other lanes are said to be "inactive".
326 In a fully-masked loop, many rgroups need to be masked to ensure that
327 they have no effect for the inactive lanes. Each such rgroup needs a
328 sequence of booleans in the same order as above, but with each (i,j)
329 replaced by a boolean that indicates whether iteration i is active.
330 This sequence occupies nV vector masks that again have nL lanes each.
331 Thus the mask sequence as a whole consists of VF independent booleans
332 that are each repeated nS times.
334 We make the simplifying assumption that if a sequence of nV masks is
335 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
336 VIEW_CONVERTing it. This holds for all current targets that support
337 fully-masked loops. For example, suppose the scalar loop is:
339 float *f;
340 double *d;
341 for (int i = 0; i < n; ++i)
343 f[i * 2 + 0] += 1.0f;
344 f[i * 2 + 1] += 2.0f;
345 d[i] += 3.0;
348 and suppose that vectors have 256 bits. The vectorized f accesses
349 will belong to one rgroup and the vectorized d access to another:
351 f rgroup: nS = 2, nV = 1, nL = 8
352 d rgroup: nS = 1, nV = 1, nL = 4
353 VF = 4
355 [ In this simple example the rgroups do correspond to the normal
356 SLP grouping scheme. ]
358 If only the first three lanes are active, the masks we need are:
360 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
361 d rgroup: 1 | 1 | 1 | 0
363 Here we can use a mask calculated for f's rgroup for d's, but not
364 vice versa.
366 Thus for each value of nV, it is enough to provide nV masks, with the
367 mask being calculated based on the highest nL (or, equivalently, based
368 on the highest nS) required by any rgroup with that nV. We therefore
369 represent the entire collection of masks as a two-level table, with the
370 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
371 the second being indexed by the mask index 0 <= i < nV. */
373 /* The masks needed by rgroups with nV vectors, according to the
374 description above. */
375 struct rgroup_masks {
376 /* The largest nS for all rgroups that use these masks. */
377 unsigned int max_nscalars_per_iter;
379 /* The type of mask to use, based on the highest nS recorded above. */
380 tree mask_type;
382 /* A vector of nV masks, in iteration order. */
383 vec<tree> masks;
386 typedef auto_vec<rgroup_masks> vec_loop_masks;
388 /*-----------------------------------------------------------------*/
389 /* Info on vectorized loops. */
390 /*-----------------------------------------------------------------*/
391 typedef struct _loop_vec_info : public vec_info {
392 _loop_vec_info (struct loop *, vec_info_shared *);
393 ~_loop_vec_info ();
395 /* The loop to which this info struct refers to. */
396 struct loop *loop;
398 /* The loop basic blocks. */
399 basic_block *bbs;
401 /* Number of latch executions. */
402 tree num_itersm1;
403 /* Number of iterations. */
404 tree num_iters;
405 /* Number of iterations of the original loop. */
406 tree num_iters_unchanged;
407 /* Condition under which this loop is analyzed and versioned. */
408 tree num_iters_assumptions;
410 /* Threshold of number of iterations below which vectorzation will not be
411 performed. It is calculated from MIN_PROFITABLE_ITERS and
412 PARAM_MIN_VECT_LOOP_BOUND. */
413 unsigned int th;
415 /* When applying loop versioning, the vector form should only be used
416 if the number of scalar iterations is >= this value, on top of all
417 the other requirements. Ignored when loop versioning is not being
418 used. */
419 poly_uint64 versioning_threshold;
421 /* Unrolling factor */
422 poly_uint64 vectorization_factor;
424 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
425 if there is no particular limit. */
426 unsigned HOST_WIDE_INT max_vectorization_factor;
428 /* The masks that a fully-masked loop should use to avoid operating
429 on inactive scalars. */
430 vec_loop_masks masks;
432 /* If we are using a loop mask to align memory addresses, this variable
433 contains the number of vector elements that we should skip in the
434 first iteration of the vector loop (i.e. the number of leading
435 elements that should be false in the first mask). */
436 tree mask_skip_niters;
438 /* Type of the variables to use in the WHILE_ULT call for fully-masked
439 loops. */
440 tree mask_compare_type;
442 /* Unknown DRs according to which loop was peeled. */
443 struct dr_vec_info *unaligned_dr;
445 /* peeling_for_alignment indicates whether peeling for alignment will take
446 place, and what the peeling factor should be:
447 peeling_for_alignment = X means:
448 If X=0: Peeling for alignment will not be applied.
449 If X>0: Peel first X iterations.
450 If X=-1: Generate a runtime test to calculate the number of iterations
451 to be peeled, using the dataref recorded in the field
452 unaligned_dr. */
453 int peeling_for_alignment;
455 /* The mask used to check the alignment of pointers or arrays. */
456 int ptr_mask;
458 /* Data Dependence Relations defining address ranges that are candidates
459 for a run-time aliasing check. */
460 auto_vec<ddr_p> may_alias_ddrs;
462 /* Data Dependence Relations defining address ranges together with segment
463 lengths from which the run-time aliasing check is built. */
464 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
466 /* Check that the addresses of each pair of objects is unequal. */
467 auto_vec<vec_object_pair> check_unequal_addrs;
469 /* List of values that are required to be nonzero. This is used to check
470 whether things like "x[i * n] += 1;" are safe and eventually gets added
471 to the checks for lower bounds below. */
472 auto_vec<tree> check_nonzero;
474 /* List of values that need to be checked for a minimum value. */
475 auto_vec<vec_lower_bound> lower_bounds;
477 /* Statements in the loop that have data references that are candidates for a
478 runtime (loop versioning) misalignment check. */
479 auto_vec<stmt_vec_info> may_misalign_stmts;
481 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
482 auto_vec<stmt_vec_info> reductions;
484 /* All reduction chains in the loop, represented by the first
485 stmt in the chain. */
486 auto_vec<stmt_vec_info> reduction_chains;
488 /* Cost vector for a single scalar iteration. */
489 auto_vec<stmt_info_for_cost> scalar_cost_vec;
491 /* Map of IV base/step expressions to inserted name in the preheader. */
492 hash_map<tree_operand_hash, tree> *ivexpr_map;
494 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
495 applied to the loop, i.e., no unrolling is needed, this is 1. */
496 poly_uint64 slp_unrolling_factor;
498 /* Cost of a single scalar iteration. */
499 int single_scalar_iteration_cost;
501 /* Is the loop vectorizable? */
502 bool vectorizable;
504 /* Records whether we still have the option of using a fully-masked loop. */
505 bool can_fully_mask_p;
507 /* True if have decided to use a fully-masked loop. */
508 bool fully_masked_p;
510 /* When we have grouped data accesses with gaps, we may introduce invalid
511 memory accesses. We peel the last iteration of the loop to prevent
512 this. */
513 bool peeling_for_gaps;
515 /* When the number of iterations is not a multiple of the vector size
516 we need to peel off iterations at the end to form an epilogue loop. */
517 bool peeling_for_niter;
519 /* Reductions are canonicalized so that the last operand is the reduction
520 operand. If this places a constant into RHS1, this decanonicalizes
521 GIMPLE for other phases, so we must track when this has occurred and
522 fix it up. */
523 bool operands_swapped;
525 /* True if there are no loop carried data dependencies in the loop.
526 If loop->safelen <= 1, then this is always true, either the loop
527 didn't have any loop carried data dependencies, or the loop is being
528 vectorized guarded with some runtime alias checks, or couldn't
529 be vectorized at all, but then this field shouldn't be used.
530 For loop->safelen >= 2, the user has asserted that there are no
531 backward dependencies, but there still could be loop carried forward
532 dependencies in such loops. This flag will be false if normal
533 vectorizer data dependency analysis would fail or require versioning
534 for alias, but because of loop->safelen >= 2 it has been vectorized
535 even without versioning for alias. E.g. in:
536 #pragma omp simd
537 for (int i = 0; i < m; i++)
538 a[i] = a[i + k] * c;
539 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
540 DTRT even for k > 0 && k < m, but without safelen we would not
541 vectorize this, so this field would be false. */
542 bool no_data_dependencies;
544 /* Mark loops having masked stores. */
545 bool has_mask_store;
547 /* If if-conversion versioned this loop before conversion, this is the
548 loop version without if-conversion. */
549 struct loop *scalar_loop;
551 /* For loops being epilogues of already vectorized loops
552 this points to the original vectorized loop. Otherwise NULL. */
553 _loop_vec_info *orig_loop_info;
555 } *loop_vec_info;
557 /* Access Functions. */
558 #define LOOP_VINFO_LOOP(L) (L)->loop
559 #define LOOP_VINFO_BBS(L) (L)->bbs
560 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
561 #define LOOP_VINFO_NITERS(L) (L)->num_iters
562 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
563 prologue peeling retain total unchanged scalar loop iterations for
564 cost model. */
565 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
566 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
567 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
568 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
569 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
570 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
571 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
572 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
573 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
574 #define LOOP_VINFO_MASKS(L) (L)->masks
575 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
576 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
577 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
578 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
579 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
580 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
581 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
582 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
583 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
584 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
585 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
586 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
587 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
588 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
589 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
590 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
591 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
592 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
593 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
594 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
595 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
596 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
597 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
598 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
599 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
600 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
601 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
602 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
603 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
604 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
606 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
607 ((L)->may_misalign_stmts.length () > 0)
608 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
609 ((L)->comp_alias_ddrs.length () > 0 \
610 || (L)->check_unequal_addrs.length () > 0 \
611 || (L)->lower_bounds.length () > 0)
612 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
613 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
614 #define LOOP_REQUIRES_VERSIONING(L) \
615 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
616 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
617 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
619 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
620 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
622 #define LOOP_VINFO_EPILOGUE_P(L) \
623 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
625 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
626 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
628 static inline loop_vec_info
629 loop_vec_info_for_loop (struct loop *loop)
631 return (loop_vec_info) loop->aux;
634 typedef struct _bb_vec_info : public vec_info
636 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
637 ~_bb_vec_info ();
639 basic_block bb;
640 gimple_stmt_iterator region_begin;
641 gimple_stmt_iterator region_end;
642 } *bb_vec_info;
644 #define BB_VINFO_BB(B) (B)->bb
645 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
646 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
647 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
648 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
649 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
651 static inline bb_vec_info
652 vec_info_for_bb (basic_block bb)
654 return (bb_vec_info) bb->aux;
657 /*-----------------------------------------------------------------*/
658 /* Info on vectorized defs. */
659 /*-----------------------------------------------------------------*/
660 enum stmt_vec_info_type {
661 undef_vec_info_type = 0,
662 load_vec_info_type,
663 store_vec_info_type,
664 shift_vec_info_type,
665 op_vec_info_type,
666 call_vec_info_type,
667 call_simd_clone_vec_info_type,
668 assignment_vec_info_type,
669 condition_vec_info_type,
670 comparison_vec_info_type,
671 reduc_vec_info_type,
672 induc_vec_info_type,
673 type_promotion_vec_info_type,
674 type_demotion_vec_info_type,
675 type_conversion_vec_info_type,
676 loop_exit_ctrl_vec_info_type
679 /* Indicates whether/how a variable is used in the scope of loop/basic
680 block. */
681 enum vect_relevant {
682 vect_unused_in_scope = 0,
684 /* The def is only used outside the loop. */
685 vect_used_only_live,
686 /* The def is in the inner loop, and the use is in the outer loop, and the
687 use is a reduction stmt. */
688 vect_used_in_outer_by_reduction,
689 /* The def is in the inner loop, and the use is in the outer loop (and is
690 not part of reduction). */
691 vect_used_in_outer,
693 /* defs that feed computations that end up (only) in a reduction. These
694 defs may be used by non-reduction stmts, but eventually, any
695 computations/values that are affected by these defs are used to compute
696 a reduction (i.e. don't get stored to memory, for example). We use this
697 to identify computations that we can change the order in which they are
698 computed. */
699 vect_used_by_reduction,
701 vect_used_in_scope
704 /* The type of vectorization that can be applied to the stmt: regular loop-based
705 vectorization; pure SLP - the stmt is a part of SLP instances and does not
706 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
707 a part of SLP instance and also must be loop-based vectorized, since it has
708 uses outside SLP sequences.
710 In the loop context the meanings of pure and hybrid SLP are slightly
711 different. By saying that pure SLP is applied to the loop, we mean that we
712 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
713 vectorized without doing any conceptual unrolling, cause we don't pack
714 together stmts from different iterations, only within a single iteration.
715 Loop hybrid SLP means that we exploit both intra-iteration and
716 inter-iteration parallelism (e.g., number of elements in the vector is 4
717 and the slp-group-size is 2, in which case we don't have enough parallelism
718 within an iteration, so we obtain the rest of the parallelism from subsequent
719 iterations by unrolling the loop by 2). */
720 enum slp_vect_type {
721 loop_vect = 0,
722 pure_slp,
723 hybrid
726 /* Says whether a statement is a load, a store of a vectorized statement
727 result, or a store of an invariant value. */
728 enum vec_load_store_type {
729 VLS_LOAD,
730 VLS_STORE,
731 VLS_STORE_INVARIANT
734 /* Describes how we're going to vectorize an individual load or store,
735 or a group of loads or stores. */
736 enum vect_memory_access_type {
737 /* An access to an invariant address. This is used only for loads. */
738 VMAT_INVARIANT,
740 /* A simple contiguous access. */
741 VMAT_CONTIGUOUS,
743 /* A contiguous access that goes down in memory rather than up,
744 with no additional permutation. This is used only for stores
745 of invariants. */
746 VMAT_CONTIGUOUS_DOWN,
748 /* A simple contiguous access in which the elements need to be permuted
749 after loading or before storing. Only used for loop vectorization;
750 SLP uses separate permutes. */
751 VMAT_CONTIGUOUS_PERMUTE,
753 /* A simple contiguous access in which the elements need to be reversed
754 after loading or before storing. */
755 VMAT_CONTIGUOUS_REVERSE,
757 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
758 VMAT_LOAD_STORE_LANES,
760 /* An access in which each scalar element is loaded or stored
761 individually. */
762 VMAT_ELEMENTWISE,
764 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
765 SLP accesses. Each unrolled iteration uses a contiguous load
766 or store for the whole group, but the groups from separate iterations
767 are combined in the same way as for VMAT_ELEMENTWISE. */
768 VMAT_STRIDED_SLP,
770 /* The access uses gather loads or scatter stores. */
771 VMAT_GATHER_SCATTER
774 struct dr_vec_info {
775 /* The data reference itself. */
776 data_reference *dr;
777 /* The statement that contains the data reference. */
778 stmt_vec_info stmt;
779 /* The misalignment in bytes of the reference, or -1 if not known. */
780 int misalignment;
781 /* The byte alignment that we'd ideally like the reference to have,
782 and the value that misalignment is measured against. */
783 int target_alignment;
784 /* If true the alignment of base_decl needs to be increased. */
785 bool base_misaligned;
786 tree base_decl;
789 typedef struct data_reference *dr_p;
791 struct _stmt_vec_info {
793 enum stmt_vec_info_type type;
795 /* Indicates whether this stmts is part of a computation whose result is
796 used outside the loop. */
797 bool live;
799 /* Stmt is part of some pattern (computation idiom) */
800 bool in_pattern_p;
802 /* True if the statement was created during pattern recognition as
803 part of the replacement for RELATED_STMT. This implies that the
804 statement isn't part of any basic block, although for convenience
805 its gimple_bb is the same as for RELATED_STMT. */
806 bool pattern_stmt_p;
808 /* Is this statement vectorizable or should it be skipped in (partial)
809 vectorization. */
810 bool vectorizable;
812 /* The stmt to which this info struct refers to. */
813 gimple *stmt;
815 /* The vec_info with respect to which STMT is vectorized. */
816 vec_info *vinfo;
818 /* The vector type to be used for the LHS of this statement. */
819 tree vectype;
821 /* The vectorized version of the stmt. */
822 stmt_vec_info vectorized_stmt;
825 /* The following is relevant only for stmts that contain a non-scalar
826 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
827 at most one such data-ref. */
829 dr_vec_info dr_aux;
831 /* Information about the data-ref relative to this loop
832 nest (the loop that is being considered for vectorization). */
833 innermost_loop_behavior dr_wrt_vec_loop;
835 /* For loop PHI nodes, the base and evolution part of it. This makes sure
836 this information is still available in vect_update_ivs_after_vectorizer
837 where we may not be able to re-analyze the PHI nodes evolution as
838 peeling for the prologue loop can make it unanalyzable. The evolution
839 part is still correct after peeling, but the base may have changed from
840 the version here. */
841 tree loop_phi_evolution_base_unchanged;
842 tree loop_phi_evolution_part;
844 /* Used for various bookkeeping purposes, generally holding a pointer to
845 some other stmt S that is in some way "related" to this stmt.
846 Current use of this field is:
847 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
848 true): S is the "pattern stmt" that represents (and replaces) the
849 sequence of stmts that constitutes the pattern. Similarly, the
850 related_stmt of the "pattern stmt" points back to this stmt (which is
851 the last stmt in the original sequence of stmts that constitutes the
852 pattern). */
853 stmt_vec_info related_stmt;
855 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
856 The sequence is attached to the original statement rather than the
857 pattern statement. */
858 gimple_seq pattern_def_seq;
860 /* List of datarefs that are known to have the same alignment as the dataref
861 of this stmt. */
862 vec<dr_p> same_align_refs;
864 /* Selected SIMD clone's function info. First vector element
865 is SIMD clone's function decl, followed by a pair of trees (base + step)
866 for linear arguments (pair of NULLs for other arguments). */
867 vec<tree> simd_clone_info;
869 /* Classify the def of this stmt. */
870 enum vect_def_type def_type;
872 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
873 enum slp_vect_type slp_type;
875 /* Interleaving and reduction chains info. */
876 /* First element in the group. */
877 stmt_vec_info first_element;
878 /* Pointer to the next element in the group. */
879 stmt_vec_info next_element;
880 /* For data-refs, in case that two or more stmts share data-ref, this is the
881 pointer to the previously detected stmt with the same dr. */
882 stmt_vec_info same_dr_stmt;
883 /* The size of the group. */
884 unsigned int size;
885 /* For stores, number of stores from this group seen. We vectorize the last
886 one. */
887 unsigned int store_count;
888 /* For loads only, the gap from the previous load. For consecutive loads, GAP
889 is 1. */
890 unsigned int gap;
892 /* The minimum negative dependence distance this stmt participates in
893 or zero if none. */
894 unsigned int min_neg_dist;
896 /* Not all stmts in the loop need to be vectorized. e.g, the increment
897 of the loop induction variable and computation of array indexes. relevant
898 indicates whether the stmt needs to be vectorized. */
899 enum vect_relevant relevant;
901 /* For loads if this is a gather, for stores if this is a scatter. */
902 bool gather_scatter_p;
904 /* True if this is an access with loop-invariant stride. */
905 bool strided_p;
907 /* For both loads and stores. */
908 bool simd_lane_access_p;
910 /* Classifies how the load or store is going to be implemented
911 for loop vectorization. */
912 vect_memory_access_type memory_access_type;
914 /* For reduction loops, this is the type of reduction. */
915 enum vect_reduction_type v_reduc_type;
917 /* For CONST_COND_REDUCTION, record the reduc code. */
918 enum tree_code const_cond_reduc_code;
920 /* On a reduction PHI the reduction type as detected by
921 vect_force_simple_reduction. */
922 enum vect_reduction_type reduc_type;
924 /* On a reduction PHI the def returned by vect_force_simple_reduction.
925 On the def returned by vect_force_simple_reduction the
926 corresponding PHI. */
927 stmt_vec_info reduc_def;
929 /* The number of scalar stmt references from active SLP instances. */
930 unsigned int num_slp_uses;
932 /* If nonzero, the lhs of the statement could be truncated to this
933 many bits without affecting any users of the result. */
934 unsigned int min_output_precision;
936 /* If nonzero, all non-boolean input operands have the same precision,
937 and they could each be truncated to this many bits without changing
938 the result. */
939 unsigned int min_input_precision;
941 /* If OPERATION_BITS is nonzero, the statement could be performed on
942 an integer with the sign and number of bits given by OPERATION_SIGN
943 and OPERATION_BITS without changing the result. */
944 unsigned int operation_precision;
945 signop operation_sign;
948 /* Information about a gather/scatter call. */
949 struct gather_scatter_info {
950 /* The internal function to use for the gather/scatter operation,
951 or IFN_LAST if a built-in function should be used instead. */
952 internal_fn ifn;
954 /* The FUNCTION_DECL for the built-in gather/scatter function,
955 or null if an internal function should be used instead. */
956 tree decl;
958 /* The loop-invariant base value. */
959 tree base;
961 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
962 tree offset;
964 /* Each offset element should be multiplied by this amount before
965 being added to the base. */
966 int scale;
968 /* The definition type for the vectorized offset. */
969 enum vect_def_type offset_dt;
971 /* The type of the vectorized offset. */
972 tree offset_vectype;
974 /* The type of the scalar elements after loading or before storing. */
975 tree element_type;
977 /* The type of the scalar elements being loaded or stored. */
978 tree memory_type;
981 /* Access Functions. */
982 #define STMT_VINFO_TYPE(S) (S)->type
983 #define STMT_VINFO_STMT(S) (S)->stmt
984 inline loop_vec_info
985 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
987 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
988 return loop_vinfo;
989 return NULL;
991 inline bb_vec_info
992 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
994 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
995 return bb_vinfo;
996 return NULL;
998 #define STMT_VINFO_RELEVANT(S) (S)->relevant
999 #define STMT_VINFO_LIVE_P(S) (S)->live
1000 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1001 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
1002 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1003 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1004 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1005 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1006 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1007 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1008 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
1009 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
1011 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1012 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1013 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1014 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1015 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1016 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1017 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1018 (S)->dr_wrt_vec_loop.base_misalignment
1019 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1020 (S)->dr_wrt_vec_loop.offset_alignment
1021 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1022 (S)->dr_wrt_vec_loop.step_alignment
1024 #define STMT_VINFO_DR_INFO(S) \
1025 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1027 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1028 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1029 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1030 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1031 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1032 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1033 #define STMT_VINFO_GROUPED_ACCESS(S) \
1034 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1035 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1036 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1037 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1038 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1039 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1040 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1042 #define DR_GROUP_FIRST_ELEMENT(S) \
1043 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1044 #define DR_GROUP_NEXT_ELEMENT(S) \
1045 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1046 #define DR_GROUP_SIZE(S) \
1047 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1048 #define DR_GROUP_STORE_COUNT(S) \
1049 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1050 #define DR_GROUP_GAP(S) \
1051 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1052 #define DR_GROUP_SAME_DR_STMT(S) \
1053 (gcc_checking_assert ((S)->dr_aux.dr), (S)->same_dr_stmt)
1055 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1056 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1057 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1058 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1059 #define REDUC_GROUP_SIZE(S) \
1060 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1062 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1064 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1065 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1066 #define STMT_SLP_TYPE(S) (S)->slp_type
1068 #define VECT_MAX_COST 1000
1070 /* The maximum number of intermediate steps required in multi-step type
1071 conversion. */
1072 #define MAX_INTERM_CVT_STEPS 3
1074 #define MAX_VECTORIZATION_FACTOR INT_MAX
1076 /* Nonzero if TYPE represents a (scalar) boolean type or type
1077 in the middle-end compatible with it (unsigned precision 1 integral
1078 types). Used to determine which types should be vectorized as
1079 VECTOR_BOOLEAN_TYPE_P. */
1081 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1082 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1083 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1084 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1085 && TYPE_PRECISION (TYPE) == 1 \
1086 && TYPE_UNSIGNED (TYPE)))
1088 inline _stmt_vec_info &
1089 stmt_vec_info::operator* () const
1091 return *m_ptr;
1094 inline stmt_vec_info::operator gimple * () const
1096 return m_ptr ? m_ptr->stmt : NULL;
1099 extern vec<stmt_vec_info> *stmt_vec_info_vec;
1101 void set_stmt_vec_info_vec (vec<stmt_vec_info> *);
1102 void free_stmt_vec_infos (vec<stmt_vec_info> *);
1104 /* Return a stmt_vec_info corresponding to STMT. */
1106 static inline stmt_vec_info
1107 vinfo_for_stmt (gimple *stmt)
1109 int uid = gimple_uid (stmt);
1110 if (uid <= 0)
1111 return NULL;
1113 return (*stmt_vec_info_vec)[uid - 1];
1116 /* Set vectorizer information INFO for STMT. */
1118 static inline void
1119 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
1121 unsigned int uid = gimple_uid (stmt);
1122 if (uid == 0)
1124 gcc_checking_assert (info);
1125 uid = stmt_vec_info_vec->length () + 1;
1126 gimple_set_uid (stmt, uid);
1127 stmt_vec_info_vec->safe_push (info);
1129 else
1131 gcc_checking_assert (info == NULL_STMT_VEC_INFO);
1132 (*stmt_vec_info_vec)[uid - 1] = info;
1136 static inline bool
1137 nested_in_vect_loop_p (struct loop *loop, stmt_vec_info stmt_info)
1139 return (loop->inner
1140 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1143 /* Return the earlier statement between STMT1_INFO and STMT2_INFO. */
1145 static inline stmt_vec_info
1146 get_earlier_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1148 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (stmt1_info)
1149 || !STMT_VINFO_RELATED_STMT (stmt1_info))
1150 && (STMT_VINFO_IN_PATTERN_P (stmt2_info)
1151 || !STMT_VINFO_RELATED_STMT (stmt2_info)));
1153 if (gimple_uid (stmt1_info->stmt) < gimple_uid (stmt2_info->stmt))
1154 return stmt1_info;
1155 else
1156 return stmt2_info;
1159 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1161 static inline stmt_vec_info
1162 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1164 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (stmt1_info)
1165 || !STMT_VINFO_RELATED_STMT (stmt1_info))
1166 && (STMT_VINFO_IN_PATTERN_P (stmt2_info)
1167 || !STMT_VINFO_RELATED_STMT (stmt2_info)));
1169 if (gimple_uid (stmt1_info->stmt) > gimple_uid (stmt2_info->stmt))
1170 return stmt1_info;
1171 else
1172 return stmt2_info;
1175 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1176 pattern. */
1178 static inline bool
1179 is_pattern_stmt_p (stmt_vec_info stmt_info)
1181 return stmt_info->pattern_stmt_p;
1184 /* Return true if BB is a loop header. */
1186 static inline bool
1187 is_loop_header_bb_p (basic_block bb)
1189 if (bb == (bb->loop_father)->header)
1190 return true;
1191 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1192 return false;
1195 /* Return pow2 (X). */
1197 static inline int
1198 vect_pow2 (int x)
1200 int i, res = 1;
1202 for (i = 0; i < x; i++)
1203 res *= 2;
1205 return res;
1208 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1210 static inline int
1211 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1212 tree vectype, int misalign)
1214 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1215 vectype, misalign);
1218 /* Get cost by calling cost target builtin. */
1220 static inline
1221 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1223 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1226 /* Alias targetm.vectorize.init_cost. */
1228 static inline void *
1229 init_cost (struct loop *loop_info)
1231 return targetm.vectorize.init_cost (loop_info);
1234 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1235 stmt_vec_info, int, enum vect_cost_model_location);
1237 /* Alias targetm.vectorize.add_stmt_cost. */
1239 static inline unsigned
1240 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1241 stmt_vec_info stmt_info, int misalign,
1242 enum vect_cost_model_location where)
1244 if (dump_file && (dump_flags & TDF_DETAILS))
1245 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign, where);
1246 return targetm.vectorize.add_stmt_cost (data, count, kind,
1247 stmt_info, misalign, where);
1250 /* Alias targetm.vectorize.finish_cost. */
1252 static inline void
1253 finish_cost (void *data, unsigned *prologue_cost,
1254 unsigned *body_cost, unsigned *epilogue_cost)
1256 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1259 /* Alias targetm.vectorize.destroy_cost_data. */
1261 static inline void
1262 destroy_cost_data (void *data)
1264 targetm.vectorize.destroy_cost_data (data);
1267 inline void
1268 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1270 stmt_info_for_cost *cost;
1271 unsigned i;
1272 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1273 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1274 cost->misalign, cost->where);
1277 /*-----------------------------------------------------------------*/
1278 /* Info on data references alignment. */
1279 /*-----------------------------------------------------------------*/
1280 #define DR_MISALIGNMENT_UNKNOWN (-1)
1281 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1283 inline void
1284 set_dr_misalignment (dr_vec_info *dr_info, int val)
1286 dr_info->misalignment = val;
1289 inline int
1290 dr_misalignment (dr_vec_info *dr_info)
1292 int misalign = dr_info->misalignment;
1293 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1294 return misalign;
1297 /* Reflects actual alignment of first access in the vectorized loop,
1298 taking into account peeling/versioning if applied. */
1299 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1300 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1302 /* Only defined once DR_MISALIGNMENT is defined. */
1303 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1305 /* Return true if data access DR_INFO is aligned to its target alignment
1306 (which may be less than a full vector). */
1308 static inline bool
1309 aligned_access_p (dr_vec_info *dr_info)
1311 return (DR_MISALIGNMENT (dr_info) == 0);
1314 /* Return TRUE if the alignment of the data access is known, and FALSE
1315 otherwise. */
1317 static inline bool
1318 known_alignment_for_access_p (dr_vec_info *dr_info)
1320 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1323 /* Return the minimum alignment in bytes that the vectorized version
1324 of DR_INFO is guaranteed to have. */
1326 static inline unsigned int
1327 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1329 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1330 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1331 if (DR_MISALIGNMENT (dr_info) == 0)
1332 return DR_TARGET_ALIGNMENT (dr_info);
1333 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1336 /* Return the behavior of DR_INFO with respect to the vectorization context
1337 (which for outer loop vectorization might not be the behavior recorded
1338 in DR_INFO itself). */
1340 static inline innermost_loop_behavior *
1341 vect_dr_behavior (dr_vec_info *dr_info)
1343 stmt_vec_info stmt_info = dr_info->stmt;
1344 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1345 if (loop_vinfo == NULL
1346 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1347 return &DR_INNERMOST (dr_info->dr);
1348 else
1349 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1352 /* Return true if the vect cost model is unlimited. */
1353 static inline bool
1354 unlimited_cost_model (loop_p loop)
1356 if (loop != NULL && loop->force_vectorize
1357 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1358 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1359 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1362 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1363 if the first iteration should use a partial mask in order to achieve
1364 alignment. */
1366 static inline bool
1367 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1369 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1370 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1373 /* Return the number of vectors of type VECTYPE that are needed to get
1374 NUNITS elements. NUNITS should be based on the vectorization factor,
1375 so it is always a known multiple of the number of elements in VECTYPE. */
1377 static inline unsigned int
1378 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1380 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1383 /* Return the number of copies needed for loop vectorization when
1384 a statement operates on vectors of type VECTYPE. This is the
1385 vectorization factor divided by the number of elements in
1386 VECTYPE and is always known at compile time. */
1388 static inline unsigned int
1389 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1391 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1394 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1395 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1396 if we haven't yet recorded any vector types. */
1398 static inline void
1399 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1401 /* All unit counts have the form current_vector_size * X for some
1402 rational X, so two unit sizes must have a common multiple.
1403 Everything is a multiple of the initial value of 1. */
1404 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1405 *max_nunits = force_common_multiple (*max_nunits, nunits);
1408 /* Return the vectorization factor that should be used for costing
1409 purposes while vectorizing the loop described by LOOP_VINFO.
1410 Pick a reasonable estimate if the vectorization factor isn't
1411 known at compile time. */
1413 static inline unsigned int
1414 vect_vf_for_cost (loop_vec_info loop_vinfo)
1416 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1419 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1420 Pick a reasonable estimate if the exact number isn't known at
1421 compile time. */
1423 static inline unsigned int
1424 vect_nunits_for_cost (tree vec_type)
1426 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1429 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1431 static inline unsigned HOST_WIDE_INT
1432 vect_max_vf (loop_vec_info loop_vinfo)
1434 unsigned HOST_WIDE_INT vf;
1435 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1436 return vf;
1437 return MAX_VECTORIZATION_FACTOR;
1440 /* Return the size of the value accessed by unvectorized data reference
1441 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1442 for the associated gimple statement, since that guarantees that DR_INFO
1443 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1444 here includes things like V1SI, which can be vectorized in the same way
1445 as a plain SI.) */
1447 inline unsigned int
1448 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1450 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1453 /* Source location + hotness information. */
1454 extern dump_user_location_t vect_location;
1456 /* A macro for calling:
1457 dump_begin_scope (MSG, vect_location);
1458 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1459 and then calling
1460 dump_end_scope ();
1461 once the object goes out of scope, thus capturing the nesting of
1462 the scopes. */
1464 #define DUMP_VECT_SCOPE(MSG) \
1465 AUTO_DUMP_SCOPE (MSG, vect_location)
1467 /*-----------------------------------------------------------------*/
1468 /* Function prototypes. */
1469 /*-----------------------------------------------------------------*/
1471 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1472 in tree-vect-loop-manip.c. */
1473 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1474 tree, tree, tree, bool);
1475 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1476 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1477 struct loop *, edge);
1478 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1479 poly_uint64);
1480 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1481 tree *, tree *, tree *, int, bool, bool);
1482 extern void vect_prepare_for_masked_peels (loop_vec_info);
1483 extern dump_user_location_t find_loop_location (struct loop *);
1484 extern bool vect_can_advance_ivs_p (loop_vec_info);
1486 /* In tree-vect-stmts.c. */
1487 extern poly_uint64 current_vector_size;
1488 extern tree get_vectype_for_scalar_type (tree);
1489 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1490 extern tree get_mask_type_for_scalar_type (tree);
1491 extern tree get_same_sized_vectype (tree, tree);
1492 extern bool vect_get_loop_mask_type (loop_vec_info);
1493 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1494 stmt_vec_info * = NULL, gimple ** = NULL);
1495 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1496 tree *, stmt_vec_info * = NULL,
1497 gimple ** = NULL);
1498 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1499 tree, tree, enum tree_code *,
1500 enum tree_code *, int *,
1501 vec<tree> *);
1502 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1503 enum tree_code *,
1504 int *, vec<tree> *);
1505 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1506 extern void free_stmt_vec_info (stmt_vec_info);
1507 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1508 enum vect_cost_for_stmt, stmt_vec_info,
1509 int, enum vect_cost_model_location);
1510 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1511 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1512 gimple_stmt_iterator *);
1513 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1514 extern tree vect_get_store_rhs (stmt_vec_info);
1515 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1516 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1517 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1518 vec<tree> *, slp_tree);
1519 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1520 vec<tree> *, vec<tree> *);
1521 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1522 gimple_stmt_iterator *);
1523 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1524 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1525 bool *, slp_tree, slp_instance);
1526 extern void vect_remove_stores (stmt_vec_info);
1527 extern bool vect_analyze_stmt (stmt_vec_info, bool *, slp_tree, slp_instance,
1528 stmt_vector_for_cost *);
1529 extern bool vectorizable_condition (stmt_vec_info, gimple_stmt_iterator *,
1530 stmt_vec_info *, tree, int, slp_tree,
1531 stmt_vector_for_cost *);
1532 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1533 unsigned int *, unsigned int *,
1534 stmt_vector_for_cost *,
1535 stmt_vector_for_cost *, bool);
1536 extern void vect_get_store_cost (stmt_vec_info, int,
1537 unsigned int *, stmt_vector_for_cost *);
1538 extern bool vect_supportable_shift (enum tree_code, tree);
1539 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1540 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1541 extern void optimize_mask_stores (struct loop*);
1542 extern gcall *vect_gen_while (tree, tree, tree);
1543 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1544 extern bool vect_get_vector_types_for_stmt (stmt_vec_info, tree *, tree *);
1545 extern tree vect_get_mask_type_for_stmt (stmt_vec_info);
1547 /* In tree-vect-data-refs.c. */
1548 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1549 extern enum dr_alignment_support vect_supportable_dr_alignment
1550 (dr_vec_info *, bool);
1551 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1552 HOST_WIDE_INT *);
1553 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1554 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1555 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1556 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1557 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1558 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1559 extern bool vect_analyze_data_ref_accesses (vec_info *);
1560 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1561 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1562 signop, int, internal_fn *, tree *);
1563 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1564 gather_scatter_info *);
1565 extern bool vect_find_stmt_data_reference (loop_p, gimple *,
1566 vec<data_reference_p> *);
1567 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1568 extern void vect_record_base_alignments (vec_info *);
1569 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, struct loop *, tree,
1570 tree *, gimple_stmt_iterator *,
1571 gimple **, bool, bool *,
1572 tree = NULL_TREE, tree = NULL_TREE);
1573 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1574 stmt_vec_info, tree);
1575 extern void vect_copy_ref_info (tree, tree);
1576 extern tree vect_create_destination_var (tree, tree);
1577 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1578 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1579 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1580 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1581 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1582 gimple_stmt_iterator *, vec<tree> *);
1583 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1584 tree *, enum dr_alignment_support, tree,
1585 struct loop **);
1586 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1587 gimple_stmt_iterator *);
1588 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1589 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1590 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1591 const char * = NULL);
1592 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1593 tree, tree = NULL_TREE);
1595 /* In tree-vect-loop.c. */
1596 /* FORNOW: Used in tree-parloops.c. */
1597 extern stmt_vec_info vect_force_simple_reduction (loop_vec_info, stmt_vec_info,
1598 bool *, bool);
1599 /* Used in gimple-loop-interchange.c. */
1600 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1601 enum tree_code);
1602 /* Drive for loop analysis stage. */
1603 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info,
1604 vec_info_shared *);
1605 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1606 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1607 tree *, bool);
1608 extern tree vect_halve_mask_nunits (tree);
1609 extern tree vect_double_mask_nunits (tree);
1610 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1611 unsigned int, tree);
1612 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1613 unsigned int, tree, unsigned int);
1615 /* Drive for loop transformation stage. */
1616 extern struct loop *vect_transform_loop (loop_vec_info);
1617 extern loop_vec_info vect_analyze_loop_form (struct loop *, vec_info_shared *);
1618 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1619 slp_tree, int, stmt_vec_info *,
1620 stmt_vector_for_cost *);
1621 extern bool vectorizable_reduction (stmt_vec_info, gimple_stmt_iterator *,
1622 stmt_vec_info *, slp_tree, slp_instance,
1623 stmt_vector_for_cost *);
1624 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1625 stmt_vec_info *, slp_tree,
1626 stmt_vector_for_cost *);
1627 extern tree get_initial_def_for_reduction (stmt_vec_info, tree, tree *);
1628 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1629 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1630 stmt_vector_for_cost *,
1631 stmt_vector_for_cost *,
1632 stmt_vector_for_cost *);
1633 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1635 /* In tree-vect-slp.c. */
1636 extern void vect_free_slp_instance (slp_instance, bool);
1637 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1638 gimple_stmt_iterator *, poly_uint64,
1639 slp_instance, bool, unsigned *);
1640 extern bool vect_slp_analyze_operations (vec_info *);
1641 extern bool vect_schedule_slp (vec_info *);
1642 extern bool vect_analyze_slp (vec_info *, unsigned);
1643 extern bool vect_make_slp_decision (loop_vec_info);
1644 extern void vect_detect_hybrid_slp (loop_vec_info);
1645 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1646 extern bool vect_slp_bb (basic_block);
1647 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1648 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1649 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1650 unsigned int * = NULL,
1651 tree * = NULL, tree * = NULL);
1652 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1653 unsigned int, vec<tree> &);
1654 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1656 /* In tree-vect-patterns.c. */
1657 /* Pattern recognition functions.
1658 Additional pattern recognition functions can (and will) be added
1659 in the future. */
1660 void vect_pattern_recog (vec_info *);
1662 /* In tree-vectorizer.c. */
1663 unsigned vectorize_loops (void);
1664 bool vect_stmt_in_region_p (vec_info *, gimple *);
1665 void vect_free_loop_info_assumptions (struct loop *);
1667 #endif /* GCC_TREE_VECTORIZER_H */