[SFN] boilerplate changes in preparation to introduce nonbind markers
[official-gcc.git] / gcc / combine.c
blobf4e94450c094c44b2569bc46dad0406d9a1efb3c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn *i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 static vec<reg_stat_type> reg_stat;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn *subst_insn;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
303 static rtx_insn *added_links_insn;
305 /* And similarly, for notes. */
307 static rtx_insn *added_notes_insn;
309 /* Basic block in which we are performing combines. */
310 static basic_block this_basic_block;
311 static bool optimize_this_for_speed_p;
314 /* Length of the currently allocated uid_insn_cost array. */
316 static int max_uid_known;
318 /* The following array records the insn_cost for every insn
319 in the instruction stream. */
321 static int *uid_insn_cost;
323 /* The following array records the LOG_LINKS for every insn in the
324 instruction stream as struct insn_link pointers. */
326 struct insn_link {
327 rtx_insn *insn;
328 unsigned int regno;
329 struct insn_link *next;
332 static struct insn_link **uid_log_links;
334 static inline int
335 insn_uid_check (const_rtx insn)
337 int uid = INSN_UID (insn);
338 gcc_checking_assert (uid <= max_uid_known);
339 return uid;
342 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345 #define FOR_EACH_LOG_LINK(L, INSN) \
346 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348 /* Links for LOG_LINKS are allocated from this obstack. */
350 static struct obstack insn_link_obstack;
352 /* Allocate a link. */
354 static inline struct insn_link *
355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
357 struct insn_link *l
358 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
359 sizeof (struct insn_link));
360 l->insn = insn;
361 l->regno = regno;
362 l->next = next;
363 return l;
366 /* Incremented for each basic block. */
368 static int label_tick;
370 /* Reset to label_tick for each extended basic block in scanning order. */
372 static int label_tick_ebb_start;
374 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
375 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377 static scalar_int_mode nonzero_bits_mode;
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380 be safely used. It is zero while computing them and after combine has
381 completed. This former test prevents propagating values based on
382 previously set values, which can be incorrect if a variable is modified
383 in a loop. */
385 static int nonzero_sign_valid;
388 /* Record one modification to rtl structure
389 to be undone by storing old_contents into *where. */
391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
393 struct undo
395 struct undo *next;
396 enum undo_kind kind;
397 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
398 union { rtx *r; int *i; struct insn_link **l; } where;
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402 num_undo says how many are currently recorded.
404 other_insn is nonzero if we have modified some other insn in the process
405 of working on subst_insn. It must be verified too. */
407 struct undobuf
409 struct undo *undos;
410 struct undo *frees;
411 rtx_insn *other_insn;
414 static struct undobuf undobuf;
416 /* Number of times the pseudo being substituted for
417 was found and replaced. */
419 static int n_occurrences;
421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
422 scalar_int_mode,
423 unsigned HOST_WIDE_INT *);
424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
425 scalar_int_mode,
426 unsigned int *);
427 static void do_SUBST (rtx *, rtx);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn *);
431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
432 static int cant_combine_insn_p (rtx_insn *);
433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 rtx_insn *, rtx_insn *, rtx *, rtx *);
435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
436 static int contains_muldiv (rtx);
437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 int *, rtx_insn *);
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx *find_split_point (rtx *, rtx_insn *, bool);
442 static rtx subst (rtx, rtx, rtx, int, int, int);
443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
444 static rtx simplify_if_then_else (rtx);
445 static rtx simplify_set (rtx);
446 static rtx simplify_logical (rtx);
447 static rtx expand_compound_operation (rtx);
448 static const_rtx expand_field_assignment (const_rtx);
449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
450 rtx, unsigned HOST_WIDE_INT, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
452 unsigned HOST_WIDE_INT *);
453 static rtx canon_reg_for_combine (rtx, rtx);
454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
455 scalar_int_mode, unsigned HOST_WIDE_INT, int);
456 static rtx force_to_mode (rtx, machine_mode,
457 unsigned HOST_WIDE_INT, int);
458 static rtx if_then_else_cond (rtx, rtx *, rtx *);
459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
461 static rtx make_field_assignment (rtx);
462 static rtx apply_distributive_law (rtx);
463 static rtx distribute_and_simplify_rtx (rtx, int);
464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
465 unsigned HOST_WIDE_INT);
466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
467 unsigned HOST_WIDE_INT);
468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
469 HOST_WIDE_INT, machine_mode, int *);
470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
472 int);
473 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
474 static rtx gen_lowpart_for_combine (machine_mode, rtx);
475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
476 rtx, rtx *);
477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
478 static void update_table_tick (rtx);
479 static void record_value_for_reg (rtx, rtx_insn *, rtx);
480 static void check_promoted_subreg (rtx_insn *, rtx);
481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
482 static void record_dead_and_set_regs (rtx_insn *);
483 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
484 static rtx get_last_value (const_rtx);
485 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
486 static int reg_dead_at_p (rtx, rtx_insn *);
487 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
488 static int reg_bitfield_target_p (rtx, rtx);
489 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
490 static void distribute_links (struct insn_link *);
491 static void mark_used_regs_combine (rtx);
492 static void record_promoted_value (rtx_insn *, rtx);
493 static bool unmentioned_reg_p (rtx, rtx);
494 static void record_truncated_values (rtx *, void *);
495 static bool reg_truncated_to_mode (machine_mode, const_rtx);
496 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
499 /* It is not safe to use ordinary gen_lowpart in combine.
500 See comments in gen_lowpart_for_combine. */
501 #undef RTL_HOOKS_GEN_LOWPART
502 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
504 /* Our implementation of gen_lowpart never emits a new pseudo. */
505 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
506 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
508 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
509 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
511 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
512 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
514 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
515 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
517 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
520 /* Convenience wrapper for the canonicalize_comparison target hook.
521 Target hooks cannot use enum rtx_code. */
522 static inline void
523 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
524 bool op0_preserve_value)
526 int code_int = (int)*code;
527 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
528 *code = (enum rtx_code)code_int;
531 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
532 PATTERN can not be split. Otherwise, it returns an insn sequence.
533 This is a wrapper around split_insns which ensures that the
534 reg_stat vector is made larger if the splitter creates a new
535 register. */
537 static rtx_insn *
538 combine_split_insns (rtx pattern, rtx_insn *insn)
540 rtx_insn *ret;
541 unsigned int nregs;
543 ret = split_insns (pattern, insn);
544 nregs = max_reg_num ();
545 if (nregs > reg_stat.length ())
546 reg_stat.safe_grow_cleared (nregs);
547 return ret;
550 /* This is used by find_single_use to locate an rtx in LOC that
551 contains exactly one use of DEST, which is typically either a REG
552 or CC0. It returns a pointer to the innermost rtx expression
553 containing DEST. Appearances of DEST that are being used to
554 totally replace it are not counted. */
556 static rtx *
557 find_single_use_1 (rtx dest, rtx *loc)
559 rtx x = *loc;
560 enum rtx_code code = GET_CODE (x);
561 rtx *result = NULL;
562 rtx *this_result;
563 int i;
564 const char *fmt;
566 switch (code)
568 case CONST:
569 case LABEL_REF:
570 case SYMBOL_REF:
571 CASE_CONST_ANY:
572 case CLOBBER:
573 return 0;
575 case SET:
576 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
577 of a REG that occupies all of the REG, the insn uses DEST if
578 it is mentioned in the destination or the source. Otherwise, we
579 need just check the source. */
580 if (GET_CODE (SET_DEST (x)) != CC0
581 && GET_CODE (SET_DEST (x)) != PC
582 && !REG_P (SET_DEST (x))
583 && ! (GET_CODE (SET_DEST (x)) == SUBREG
584 && REG_P (SUBREG_REG (SET_DEST (x)))
585 && !read_modify_subreg_p (SET_DEST (x))))
586 break;
588 return find_single_use_1 (dest, &SET_SRC (x));
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
594 default:
595 break;
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 if (fmt[i] == 'e')
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
619 else if (fmt[i] == 'E')
621 int j;
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
641 return result;
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
667 if (dest == cc0_rtx)
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
680 if (!REG_P (dest))
681 return 0;
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
693 if (link)
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
702 return 0;
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
711 static void
712 do_SUBST (rtx *into, rtx newval)
714 struct undo *buf;
715 rtx oldval = *into;
717 if (oldval == newval)
718 return;
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
755 buf->next = undobuf.undos, undobuf.undos = buf;
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
764 static void
765 do_SUBST_INT (int *into, int newval)
767 struct undo *buf;
768 int oldval = *into;
770 if (oldval == newval)
771 return;
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
783 buf->next = undobuf.undos, undobuf.undos = buf;
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
799 if (oldval == newval)
800 return;
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
812 buf->next = undobuf.undos, undobuf.undos = buf;
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
822 struct undo *buf;
823 struct insn_link * oldval = *into;
825 if (oldval == newval)
826 return;
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
838 buf->next = undobuf.undos, undobuf.undos = buf;
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
859 /* Lookup the original insn_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
863 if (i1)
865 i1_cost = INSN_COST (i1);
866 if (i0)
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
872 else
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
879 else
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
891 /* Calculate the replacement insn_costs. */
892 rtx tmp = PATTERN (i3);
893 PATTERN (i3) = newpat;
894 int tmpi = INSN_CODE (i3);
895 INSN_CODE (i3) = -1;
896 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
897 PATTERN (i3) = tmp;
898 INSN_CODE (i3) = tmpi;
899 if (newi2pat)
901 tmp = PATTERN (i2);
902 PATTERN (i2) = newi2pat;
903 tmpi = INSN_CODE (i2);
904 INSN_CODE (i2) = -1;
905 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
906 PATTERN (i2) = tmp;
907 INSN_CODE (i2) = tmpi;
908 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
909 ? new_i2_cost + new_i3_cost : 0;
911 else
913 new_cost = new_i3_cost;
914 new_i2_cost = 0;
917 if (undobuf.other_insn)
919 int old_other_cost, new_other_cost;
921 old_other_cost = INSN_COST (undobuf.other_insn);
922 tmp = PATTERN (undobuf.other_insn);
923 PATTERN (undobuf.other_insn) = newotherpat;
924 tmpi = INSN_CODE (undobuf.other_insn);
925 INSN_CODE (undobuf.other_insn) = -1;
926 new_other_cost = insn_cost (undobuf.other_insn,
927 optimize_this_for_speed_p);
928 PATTERN (undobuf.other_insn) = tmp;
929 INSN_CODE (undobuf.other_insn) = tmpi;
930 if (old_other_cost > 0 && new_other_cost > 0)
932 old_cost += old_other_cost;
933 new_cost += new_other_cost;
935 else
936 old_cost = 0;
939 /* Disallow this combination if both new_cost and old_cost are greater than
940 zero, and new_cost is greater than old cost. */
941 int reject = old_cost > 0 && new_cost > old_cost;
943 if (dump_file)
945 fprintf (dump_file, "%s combination of insns ",
946 reject ? "rejecting" : "allowing");
947 if (i0)
948 fprintf (dump_file, "%d, ", INSN_UID (i0));
949 if (i1 && INSN_UID (i1) != INSN_UID (i2))
950 fprintf (dump_file, "%d, ", INSN_UID (i1));
951 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
953 fprintf (dump_file, "original costs ");
954 if (i0)
955 fprintf (dump_file, "%d + ", i0_cost);
956 if (i1 && INSN_UID (i1) != INSN_UID (i2))
957 fprintf (dump_file, "%d + ", i1_cost);
958 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
960 if (newi2pat)
961 fprintf (dump_file, "replacement costs %d + %d = %d\n",
962 new_i2_cost, new_i3_cost, new_cost);
963 else
964 fprintf (dump_file, "replacement cost %d\n", new_cost);
967 if (reject)
968 return false;
970 /* Update the uid_insn_cost array with the replacement costs. */
971 INSN_COST (i2) = new_i2_cost;
972 INSN_COST (i3) = new_i3_cost;
973 if (i1)
975 INSN_COST (i1) = 0;
976 if (i0)
977 INSN_COST (i0) = 0;
980 return true;
984 /* Delete any insns that copy a register to itself. */
986 static void
987 delete_noop_moves (void)
989 rtx_insn *insn, *next;
990 basic_block bb;
992 FOR_EACH_BB_FN (bb, cfun)
994 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
996 next = NEXT_INSN (insn);
997 if (INSN_P (insn) && noop_move_p (insn))
999 if (dump_file)
1000 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1002 delete_insn_and_edges (insn);
1009 /* Return false if we do not want to (or cannot) combine DEF. */
1010 static bool
1011 can_combine_def_p (df_ref def)
1013 /* Do not consider if it is pre/post modification in MEM. */
1014 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1015 return false;
1017 unsigned int regno = DF_REF_REGNO (def);
1019 /* Do not combine frame pointer adjustments. */
1020 if ((regno == FRAME_POINTER_REGNUM
1021 && (!reload_completed || frame_pointer_needed))
1022 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1023 && regno == HARD_FRAME_POINTER_REGNUM
1024 && (!reload_completed || frame_pointer_needed))
1025 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1026 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1027 return false;
1029 return true;
1032 /* Return false if we do not want to (or cannot) combine USE. */
1033 static bool
1034 can_combine_use_p (df_ref use)
1036 /* Do not consider the usage of the stack pointer by function call. */
1037 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1038 return false;
1040 return true;
1043 /* Fill in log links field for all insns. */
1045 static void
1046 create_log_links (void)
1048 basic_block bb;
1049 rtx_insn **next_use;
1050 rtx_insn *insn;
1051 df_ref def, use;
1053 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1055 /* Pass through each block from the end, recording the uses of each
1056 register and establishing log links when def is encountered.
1057 Note that we do not clear next_use array in order to save time,
1058 so we have to test whether the use is in the same basic block as def.
1060 There are a few cases below when we do not consider the definition or
1061 usage -- these are taken from original flow.c did. Don't ask me why it is
1062 done this way; I don't know and if it works, I don't want to know. */
1064 FOR_EACH_BB_FN (bb, cfun)
1066 FOR_BB_INSNS_REVERSE (bb, insn)
1068 if (!NONDEBUG_INSN_P (insn))
1069 continue;
1071 /* Log links are created only once. */
1072 gcc_assert (!LOG_LINKS (insn));
1074 FOR_EACH_INSN_DEF (def, insn)
1076 unsigned int regno = DF_REF_REGNO (def);
1077 rtx_insn *use_insn;
1079 if (!next_use[regno])
1080 continue;
1082 if (!can_combine_def_p (def))
1083 continue;
1085 use_insn = next_use[regno];
1086 next_use[regno] = NULL;
1088 if (BLOCK_FOR_INSN (use_insn) != bb)
1089 continue;
1091 /* flow.c claimed:
1093 We don't build a LOG_LINK for hard registers contained
1094 in ASM_OPERANDs. If these registers get replaced,
1095 we might wind up changing the semantics of the insn,
1096 even if reload can make what appear to be valid
1097 assignments later. */
1098 if (regno < FIRST_PSEUDO_REGISTER
1099 && asm_noperands (PATTERN (use_insn)) >= 0)
1100 continue;
1102 /* Don't add duplicate links between instructions. */
1103 struct insn_link *links;
1104 FOR_EACH_LOG_LINK (links, use_insn)
1105 if (insn == links->insn && regno == links->regno)
1106 break;
1108 if (!links)
1109 LOG_LINKS (use_insn)
1110 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1113 FOR_EACH_INSN_USE (use, insn)
1114 if (can_combine_use_p (use))
1115 next_use[DF_REF_REGNO (use)] = insn;
1119 free (next_use);
1122 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1123 true if we found a LOG_LINK that proves that A feeds B. This only works
1124 if there are no instructions between A and B which could have a link
1125 depending on A, since in that case we would not record a link for B.
1126 We also check the implicit dependency created by a cc0 setter/user
1127 pair. */
1129 static bool
1130 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1132 struct insn_link *links;
1133 FOR_EACH_LOG_LINK (links, b)
1134 if (links->insn == a)
1135 return true;
1136 if (HAVE_cc0 && sets_cc0_p (a))
1137 return true;
1138 return false;
1141 /* Main entry point for combiner. F is the first insn of the function.
1142 NREGS is the first unused pseudo-reg number.
1144 Return nonzero if the combiner has turned an indirect jump
1145 instruction into a direct jump. */
1146 static int
1147 combine_instructions (rtx_insn *f, unsigned int nregs)
1149 rtx_insn *insn, *next;
1150 rtx_insn *prev;
1151 struct insn_link *links, *nextlinks;
1152 rtx_insn *first;
1153 basic_block last_bb;
1155 int new_direct_jump_p = 0;
1157 for (first = f; first && !NONDEBUG_INSN_P (first); )
1158 first = NEXT_INSN (first);
1159 if (!first)
1160 return 0;
1162 combine_attempts = 0;
1163 combine_merges = 0;
1164 combine_extras = 0;
1165 combine_successes = 0;
1167 rtl_hooks = combine_rtl_hooks;
1169 reg_stat.safe_grow_cleared (nregs);
1171 init_recog_no_volatile ();
1173 /* Allocate array for insn info. */
1174 max_uid_known = get_max_uid ();
1175 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1176 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1177 gcc_obstack_init (&insn_link_obstack);
1179 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1181 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1182 problems when, for example, we have j <<= 1 in a loop. */
1184 nonzero_sign_valid = 0;
1185 label_tick = label_tick_ebb_start = 1;
1187 /* Scan all SETs and see if we can deduce anything about what
1188 bits are known to be zero for some registers and how many copies
1189 of the sign bit are known to exist for those registers.
1191 Also set any known values so that we can use it while searching
1192 for what bits are known to be set. */
1194 setup_incoming_promotions (first);
1195 /* Allow the entry block and the first block to fall into the same EBB.
1196 Conceptually the incoming promotions are assigned to the entry block. */
1197 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1199 create_log_links ();
1200 FOR_EACH_BB_FN (this_basic_block, cfun)
1202 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1203 last_call_luid = 0;
1204 mem_last_set = -1;
1206 label_tick++;
1207 if (!single_pred_p (this_basic_block)
1208 || single_pred (this_basic_block) != last_bb)
1209 label_tick_ebb_start = label_tick;
1210 last_bb = this_basic_block;
1212 FOR_BB_INSNS (this_basic_block, insn)
1213 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1215 rtx links;
1217 subst_low_luid = DF_INSN_LUID (insn);
1218 subst_insn = insn;
1220 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1221 insn);
1222 record_dead_and_set_regs (insn);
1224 if (AUTO_INC_DEC)
1225 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1226 if (REG_NOTE_KIND (links) == REG_INC)
1227 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1228 insn);
1230 /* Record the current insn_cost of this instruction. */
1231 if (NONJUMP_INSN_P (insn))
1232 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1233 if (dump_file)
1235 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1236 dump_insn_slim (dump_file, insn);
1241 nonzero_sign_valid = 1;
1243 /* Now scan all the insns in forward order. */
1244 label_tick = label_tick_ebb_start = 1;
1245 init_reg_last ();
1246 setup_incoming_promotions (first);
1247 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1248 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1250 FOR_EACH_BB_FN (this_basic_block, cfun)
1252 rtx_insn *last_combined_insn = NULL;
1254 /* Ignore instruction combination in basic blocks that are going to
1255 be removed as unreachable anyway. See PR82386. */
1256 if (EDGE_COUNT (this_basic_block->preds) == 0)
1257 continue;
1259 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1260 last_call_luid = 0;
1261 mem_last_set = -1;
1263 label_tick++;
1264 if (!single_pred_p (this_basic_block)
1265 || single_pred (this_basic_block) != last_bb)
1266 label_tick_ebb_start = label_tick;
1267 last_bb = this_basic_block;
1269 rtl_profile_for_bb (this_basic_block);
1270 for (insn = BB_HEAD (this_basic_block);
1271 insn != NEXT_INSN (BB_END (this_basic_block));
1272 insn = next ? next : NEXT_INSN (insn))
1274 next = 0;
1275 if (!NONDEBUG_INSN_P (insn))
1276 continue;
1278 while (last_combined_insn
1279 && (!NONDEBUG_INSN_P (last_combined_insn)
1280 || last_combined_insn->deleted ()))
1281 last_combined_insn = PREV_INSN (last_combined_insn);
1282 if (last_combined_insn == NULL_RTX
1283 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1284 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1285 last_combined_insn = insn;
1287 /* See if we know about function return values before this
1288 insn based upon SUBREG flags. */
1289 check_promoted_subreg (insn, PATTERN (insn));
1291 /* See if we can find hardregs and subreg of pseudos in
1292 narrower modes. This could help turning TRUNCATEs
1293 into SUBREGs. */
1294 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1296 /* Try this insn with each insn it links back to. */
1298 FOR_EACH_LOG_LINK (links, insn)
1299 if ((next = try_combine (insn, links->insn, NULL,
1300 NULL, &new_direct_jump_p,
1301 last_combined_insn)) != 0)
1303 statistics_counter_event (cfun, "two-insn combine", 1);
1304 goto retry;
1307 /* Try each sequence of three linked insns ending with this one. */
1309 if (max_combine >= 3)
1310 FOR_EACH_LOG_LINK (links, insn)
1312 rtx_insn *link = links->insn;
1314 /* If the linked insn has been replaced by a note, then there
1315 is no point in pursuing this chain any further. */
1316 if (NOTE_P (link))
1317 continue;
1319 FOR_EACH_LOG_LINK (nextlinks, link)
1320 if ((next = try_combine (insn, link, nextlinks->insn,
1321 NULL, &new_direct_jump_p,
1322 last_combined_insn)) != 0)
1324 statistics_counter_event (cfun, "three-insn combine", 1);
1325 goto retry;
1329 /* Try to combine a jump insn that uses CC0
1330 with a preceding insn that sets CC0, and maybe with its
1331 logical predecessor as well.
1332 This is how we make decrement-and-branch insns.
1333 We need this special code because data flow connections
1334 via CC0 do not get entered in LOG_LINKS. */
1336 if (HAVE_cc0
1337 && JUMP_P (insn)
1338 && (prev = prev_nonnote_insn (insn)) != 0
1339 && NONJUMP_INSN_P (prev)
1340 && sets_cc0_p (PATTERN (prev)))
1342 if ((next = try_combine (insn, prev, NULL, NULL,
1343 &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1347 FOR_EACH_LOG_LINK (nextlinks, prev)
1348 if ((next = try_combine (insn, prev, nextlinks->insn,
1349 NULL, &new_direct_jump_p,
1350 last_combined_insn)) != 0)
1351 goto retry;
1354 /* Do the same for an insn that explicitly references CC0. */
1355 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1356 && (prev = prev_nonnote_insn (insn)) != 0
1357 && NONJUMP_INSN_P (prev)
1358 && sets_cc0_p (PATTERN (prev))
1359 && GET_CODE (PATTERN (insn)) == SET
1360 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1362 if ((next = try_combine (insn, prev, NULL, NULL,
1363 &new_direct_jump_p,
1364 last_combined_insn)) != 0)
1365 goto retry;
1367 FOR_EACH_LOG_LINK (nextlinks, prev)
1368 if ((next = try_combine (insn, prev, nextlinks->insn,
1369 NULL, &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 goto retry;
1374 /* Finally, see if any of the insns that this insn links to
1375 explicitly references CC0. If so, try this insn, that insn,
1376 and its predecessor if it sets CC0. */
1377 if (HAVE_cc0)
1379 FOR_EACH_LOG_LINK (links, insn)
1380 if (NONJUMP_INSN_P (links->insn)
1381 && GET_CODE (PATTERN (links->insn)) == SET
1382 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1383 && (prev = prev_nonnote_insn (links->insn)) != 0
1384 && NONJUMP_INSN_P (prev)
1385 && sets_cc0_p (PATTERN (prev))
1386 && (next = try_combine (insn, links->insn,
1387 prev, NULL, &new_direct_jump_p,
1388 last_combined_insn)) != 0)
1389 goto retry;
1392 /* Try combining an insn with two different insns whose results it
1393 uses. */
1394 if (max_combine >= 3)
1395 FOR_EACH_LOG_LINK (links, insn)
1396 for (nextlinks = links->next; nextlinks;
1397 nextlinks = nextlinks->next)
1398 if ((next = try_combine (insn, links->insn,
1399 nextlinks->insn, NULL,
1400 &new_direct_jump_p,
1401 last_combined_insn)) != 0)
1404 statistics_counter_event (cfun, "three-insn combine", 1);
1405 goto retry;
1408 /* Try four-instruction combinations. */
1409 if (max_combine >= 4)
1410 FOR_EACH_LOG_LINK (links, insn)
1412 struct insn_link *next1;
1413 rtx_insn *link = links->insn;
1415 /* If the linked insn has been replaced by a note, then there
1416 is no point in pursuing this chain any further. */
1417 if (NOTE_P (link))
1418 continue;
1420 FOR_EACH_LOG_LINK (next1, link)
1422 rtx_insn *link1 = next1->insn;
1423 if (NOTE_P (link1))
1424 continue;
1425 /* I0 -> I1 -> I2 -> I3. */
1426 FOR_EACH_LOG_LINK (nextlinks, link1)
1427 if ((next = try_combine (insn, link, link1,
1428 nextlinks->insn,
1429 &new_direct_jump_p,
1430 last_combined_insn)) != 0)
1432 statistics_counter_event (cfun, "four-insn combine", 1);
1433 goto retry;
1435 /* I0, I1 -> I2, I2 -> I3. */
1436 for (nextlinks = next1->next; nextlinks;
1437 nextlinks = nextlinks->next)
1438 if ((next = try_combine (insn, link, link1,
1439 nextlinks->insn,
1440 &new_direct_jump_p,
1441 last_combined_insn)) != 0)
1443 statistics_counter_event (cfun, "four-insn combine", 1);
1444 goto retry;
1448 for (next1 = links->next; next1; next1 = next1->next)
1450 rtx_insn *link1 = next1->insn;
1451 if (NOTE_P (link1))
1452 continue;
1453 /* I0 -> I2; I1, I2 -> I3. */
1454 FOR_EACH_LOG_LINK (nextlinks, link)
1455 if ((next = try_combine (insn, link, link1,
1456 nextlinks->insn,
1457 &new_direct_jump_p,
1458 last_combined_insn)) != 0)
1460 statistics_counter_event (cfun, "four-insn combine", 1);
1461 goto retry;
1463 /* I0 -> I1; I1, I2 -> I3. */
1464 FOR_EACH_LOG_LINK (nextlinks, link1)
1465 if ((next = try_combine (insn, link, link1,
1466 nextlinks->insn,
1467 &new_direct_jump_p,
1468 last_combined_insn)) != 0)
1470 statistics_counter_event (cfun, "four-insn combine", 1);
1471 goto retry;
1476 /* Try this insn with each REG_EQUAL note it links back to. */
1477 FOR_EACH_LOG_LINK (links, insn)
1479 rtx set, note;
1480 rtx_insn *temp = links->insn;
1481 if ((set = single_set (temp)) != 0
1482 && (note = find_reg_equal_equiv_note (temp)) != 0
1483 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1484 /* Avoid using a register that may already been marked
1485 dead by an earlier instruction. */
1486 && ! unmentioned_reg_p (note, SET_SRC (set))
1487 && (GET_MODE (note) == VOIDmode
1488 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1489 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1490 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1491 || (GET_MODE (XEXP (SET_DEST (set), 0))
1492 == GET_MODE (note))))))
1494 /* Temporarily replace the set's source with the
1495 contents of the REG_EQUAL note. The insn will
1496 be deleted or recognized by try_combine. */
1497 rtx orig_src = SET_SRC (set);
1498 rtx orig_dest = SET_DEST (set);
1499 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1500 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1501 SET_SRC (set) = note;
1502 i2mod = temp;
1503 i2mod_old_rhs = copy_rtx (orig_src);
1504 i2mod_new_rhs = copy_rtx (note);
1505 next = try_combine (insn, i2mod, NULL, NULL,
1506 &new_direct_jump_p,
1507 last_combined_insn);
1508 i2mod = NULL;
1509 if (next)
1511 statistics_counter_event (cfun, "insn-with-note combine", 1);
1512 goto retry;
1514 SET_SRC (set) = orig_src;
1515 SET_DEST (set) = orig_dest;
1519 if (!NOTE_P (insn))
1520 record_dead_and_set_regs (insn);
1522 retry:
1527 default_rtl_profile ();
1528 clear_bb_flags ();
1529 new_direct_jump_p |= purge_all_dead_edges ();
1530 delete_noop_moves ();
1532 /* Clean up. */
1533 obstack_free (&insn_link_obstack, NULL);
1534 free (uid_log_links);
1535 free (uid_insn_cost);
1536 reg_stat.release ();
1539 struct undo *undo, *next;
1540 for (undo = undobuf.frees; undo; undo = next)
1542 next = undo->next;
1543 free (undo);
1545 undobuf.frees = 0;
1548 total_attempts += combine_attempts;
1549 total_merges += combine_merges;
1550 total_extras += combine_extras;
1551 total_successes += combine_successes;
1553 nonzero_sign_valid = 0;
1554 rtl_hooks = general_rtl_hooks;
1556 /* Make recognizer allow volatile MEMs again. */
1557 init_recog ();
1559 return new_direct_jump_p;
1562 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1564 static void
1565 init_reg_last (void)
1567 unsigned int i;
1568 reg_stat_type *p;
1570 FOR_EACH_VEC_ELT (reg_stat, i, p)
1571 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1574 /* Set up any promoted values for incoming argument registers. */
1576 static void
1577 setup_incoming_promotions (rtx_insn *first)
1579 tree arg;
1580 bool strictly_local = false;
1582 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1583 arg = DECL_CHAIN (arg))
1585 rtx x, reg = DECL_INCOMING_RTL (arg);
1586 int uns1, uns3;
1587 machine_mode mode1, mode2, mode3, mode4;
1589 /* Only continue if the incoming argument is in a register. */
1590 if (!REG_P (reg))
1591 continue;
1593 /* Determine, if possible, whether all call sites of the current
1594 function lie within the current compilation unit. (This does
1595 take into account the exporting of a function via taking its
1596 address, and so forth.) */
1597 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1599 /* The mode and signedness of the argument before any promotions happen
1600 (equal to the mode of the pseudo holding it at that stage). */
1601 mode1 = TYPE_MODE (TREE_TYPE (arg));
1602 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1604 /* The mode and signedness of the argument after any source language and
1605 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1606 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1607 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1609 /* The mode and signedness of the argument as it is actually passed,
1610 see assign_parm_setup_reg in function.c. */
1611 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1612 TREE_TYPE (cfun->decl), 0);
1614 /* The mode of the register in which the argument is being passed. */
1615 mode4 = GET_MODE (reg);
1617 /* Eliminate sign extensions in the callee when:
1618 (a) A mode promotion has occurred; */
1619 if (mode1 == mode3)
1620 continue;
1621 /* (b) The mode of the register is the same as the mode of
1622 the argument as it is passed; */
1623 if (mode3 != mode4)
1624 continue;
1625 /* (c) There's no language level extension; */
1626 if (mode1 == mode2)
1628 /* (c.1) All callers are from the current compilation unit. If that's
1629 the case we don't have to rely on an ABI, we only have to know
1630 what we're generating right now, and we know that we will do the
1631 mode1 to mode2 promotion with the given sign. */
1632 else if (!strictly_local)
1633 continue;
1634 /* (c.2) The combination of the two promotions is useful. This is
1635 true when the signs match, or if the first promotion is unsigned.
1636 In the later case, (sign_extend (zero_extend x)) is the same as
1637 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1638 else if (uns1)
1639 uns3 = true;
1640 else if (uns3)
1641 continue;
1643 /* Record that the value was promoted from mode1 to mode3,
1644 so that any sign extension at the head of the current
1645 function may be eliminated. */
1646 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1647 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1648 record_value_for_reg (reg, first, x);
1652 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1653 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1654 because some machines (maybe most) will actually do the sign-extension and
1655 this is the conservative approach.
1657 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1658 kludge. */
1660 static rtx
1661 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1663 scalar_int_mode int_mode;
1664 if (CONST_INT_P (src)
1665 && is_a <scalar_int_mode> (mode, &int_mode)
1666 && GET_MODE_PRECISION (int_mode) < prec
1667 && INTVAL (src) > 0
1668 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1669 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1671 return src;
1674 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1675 and SET. */
1677 static void
1678 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1679 rtx x)
1681 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1682 unsigned HOST_WIDE_INT bits = 0;
1683 rtx reg_equal = NULL, src = SET_SRC (set);
1684 unsigned int num = 0;
1686 if (reg_equal_note)
1687 reg_equal = XEXP (reg_equal_note, 0);
1689 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1691 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1692 if (reg_equal)
1693 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1696 /* Don't call nonzero_bits if it cannot change anything. */
1697 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1699 bits = nonzero_bits (src, nonzero_bits_mode);
1700 if (reg_equal && bits)
1701 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1702 rsp->nonzero_bits |= bits;
1705 /* Don't call num_sign_bit_copies if it cannot change anything. */
1706 if (rsp->sign_bit_copies != 1)
1708 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1709 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1711 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1712 if (num == 0 || numeq > num)
1713 num = numeq;
1715 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1716 rsp->sign_bit_copies = num;
1720 /* Called via note_stores. If X is a pseudo that is narrower than
1721 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1723 If we are setting only a portion of X and we can't figure out what
1724 portion, assume all bits will be used since we don't know what will
1725 be happening.
1727 Similarly, set how many bits of X are known to be copies of the sign bit
1728 at all locations in the function. This is the smallest number implied
1729 by any set of X. */
1731 static void
1732 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1734 rtx_insn *insn = (rtx_insn *) data;
1735 scalar_int_mode mode;
1737 if (REG_P (x)
1738 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1739 /* If this register is undefined at the start of the file, we can't
1740 say what its contents were. */
1741 && ! REGNO_REG_SET_P
1742 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1743 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1744 && HWI_COMPUTABLE_MODE_P (mode))
1746 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1748 if (set == 0 || GET_CODE (set) == CLOBBER)
1750 rsp->nonzero_bits = GET_MODE_MASK (mode);
1751 rsp->sign_bit_copies = 1;
1752 return;
1755 /* If this register is being initialized using itself, and the
1756 register is uninitialized in this basic block, and there are
1757 no LOG_LINKS which set the register, then part of the
1758 register is uninitialized. In that case we can't assume
1759 anything about the number of nonzero bits.
1761 ??? We could do better if we checked this in
1762 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1763 could avoid making assumptions about the insn which initially
1764 sets the register, while still using the information in other
1765 insns. We would have to be careful to check every insn
1766 involved in the combination. */
1768 if (insn
1769 && reg_referenced_p (x, PATTERN (insn))
1770 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1771 REGNO (x)))
1773 struct insn_link *link;
1775 FOR_EACH_LOG_LINK (link, insn)
1776 if (dead_or_set_p (link->insn, x))
1777 break;
1778 if (!link)
1780 rsp->nonzero_bits = GET_MODE_MASK (mode);
1781 rsp->sign_bit_copies = 1;
1782 return;
1786 /* If this is a complex assignment, see if we can convert it into a
1787 simple assignment. */
1788 set = expand_field_assignment (set);
1790 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1791 set what we know about X. */
1793 if (SET_DEST (set) == x
1794 || (paradoxical_subreg_p (SET_DEST (set))
1795 && SUBREG_REG (SET_DEST (set)) == x))
1796 update_rsp_from_reg_equal (rsp, insn, set, x);
1797 else
1799 rsp->nonzero_bits = GET_MODE_MASK (mode);
1800 rsp->sign_bit_copies = 1;
1805 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1806 optionally insns that were previously combined into I3 or that will be
1807 combined into the merger of INSN and I3. The order is PRED, PRED2,
1808 INSN, SUCC, SUCC2, I3.
1810 Return 0 if the combination is not allowed for any reason.
1812 If the combination is allowed, *PDEST will be set to the single
1813 destination of INSN and *PSRC to the single source, and this function
1814 will return 1. */
1816 static int
1817 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1818 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1819 rtx *pdest, rtx *psrc)
1821 int i;
1822 const_rtx set = 0;
1823 rtx src, dest;
1824 rtx_insn *p;
1825 rtx link;
1826 bool all_adjacent = true;
1827 int (*is_volatile_p) (const_rtx);
1829 if (succ)
1831 if (succ2)
1833 if (next_active_insn (succ2) != i3)
1834 all_adjacent = false;
1835 if (next_active_insn (succ) != succ2)
1836 all_adjacent = false;
1838 else if (next_active_insn (succ) != i3)
1839 all_adjacent = false;
1840 if (next_active_insn (insn) != succ)
1841 all_adjacent = false;
1843 else if (next_active_insn (insn) != i3)
1844 all_adjacent = false;
1846 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1847 or a PARALLEL consisting of such a SET and CLOBBERs.
1849 If INSN has CLOBBER parallel parts, ignore them for our processing.
1850 By definition, these happen during the execution of the insn. When it
1851 is merged with another insn, all bets are off. If they are, in fact,
1852 needed and aren't also supplied in I3, they may be added by
1853 recog_for_combine. Otherwise, it won't match.
1855 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1856 note.
1858 Get the source and destination of INSN. If more than one, can't
1859 combine. */
1861 if (GET_CODE (PATTERN (insn)) == SET)
1862 set = PATTERN (insn);
1863 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1864 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1866 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1868 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1870 switch (GET_CODE (elt))
1872 /* This is important to combine floating point insns
1873 for the SH4 port. */
1874 case USE:
1875 /* Combining an isolated USE doesn't make sense.
1876 We depend here on combinable_i3pat to reject them. */
1877 /* The code below this loop only verifies that the inputs of
1878 the SET in INSN do not change. We call reg_set_between_p
1879 to verify that the REG in the USE does not change between
1880 I3 and INSN.
1881 If the USE in INSN was for a pseudo register, the matching
1882 insn pattern will likely match any register; combining this
1883 with any other USE would only be safe if we knew that the
1884 used registers have identical values, or if there was
1885 something to tell them apart, e.g. different modes. For
1886 now, we forgo such complicated tests and simply disallow
1887 combining of USES of pseudo registers with any other USE. */
1888 if (REG_P (XEXP (elt, 0))
1889 && GET_CODE (PATTERN (i3)) == PARALLEL)
1891 rtx i3pat = PATTERN (i3);
1892 int i = XVECLEN (i3pat, 0) - 1;
1893 unsigned int regno = REGNO (XEXP (elt, 0));
1897 rtx i3elt = XVECEXP (i3pat, 0, i);
1899 if (GET_CODE (i3elt) == USE
1900 && REG_P (XEXP (i3elt, 0))
1901 && (REGNO (XEXP (i3elt, 0)) == regno
1902 ? reg_set_between_p (XEXP (elt, 0),
1903 PREV_INSN (insn), i3)
1904 : regno >= FIRST_PSEUDO_REGISTER))
1905 return 0;
1907 while (--i >= 0);
1909 break;
1911 /* We can ignore CLOBBERs. */
1912 case CLOBBER:
1913 break;
1915 case SET:
1916 /* Ignore SETs whose result isn't used but not those that
1917 have side-effects. */
1918 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1919 && insn_nothrow_p (insn)
1920 && !side_effects_p (elt))
1921 break;
1923 /* If we have already found a SET, this is a second one and
1924 so we cannot combine with this insn. */
1925 if (set)
1926 return 0;
1928 set = elt;
1929 break;
1931 default:
1932 /* Anything else means we can't combine. */
1933 return 0;
1937 if (set == 0
1938 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1939 so don't do anything with it. */
1940 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1941 return 0;
1943 else
1944 return 0;
1946 if (set == 0)
1947 return 0;
1949 /* The simplification in expand_field_assignment may call back to
1950 get_last_value, so set safe guard here. */
1951 subst_low_luid = DF_INSN_LUID (insn);
1953 set = expand_field_assignment (set);
1954 src = SET_SRC (set), dest = SET_DEST (set);
1956 /* Do not eliminate user-specified register if it is in an
1957 asm input because we may break the register asm usage defined
1958 in GCC manual if allow to do so.
1959 Be aware that this may cover more cases than we expect but this
1960 should be harmless. */
1961 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1962 && extract_asm_operands (PATTERN (i3)))
1963 return 0;
1965 /* Don't eliminate a store in the stack pointer. */
1966 if (dest == stack_pointer_rtx
1967 /* Don't combine with an insn that sets a register to itself if it has
1968 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1969 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1970 /* Can't merge an ASM_OPERANDS. */
1971 || GET_CODE (src) == ASM_OPERANDS
1972 /* Can't merge a function call. */
1973 || GET_CODE (src) == CALL
1974 /* Don't eliminate a function call argument. */
1975 || (CALL_P (i3)
1976 && (find_reg_fusage (i3, USE, dest)
1977 || (REG_P (dest)
1978 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1979 && global_regs[REGNO (dest)])))
1980 /* Don't substitute into an incremented register. */
1981 || FIND_REG_INC_NOTE (i3, dest)
1982 || (succ && FIND_REG_INC_NOTE (succ, dest))
1983 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1984 /* Don't substitute into a non-local goto, this confuses CFG. */
1985 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1986 /* Make sure that DEST is not used after INSN but before SUCC, or
1987 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1988 || (!all_adjacent
1989 && ((succ2
1990 && (reg_used_between_p (dest, succ2, i3)
1991 || reg_used_between_p (dest, succ, succ2)))
1992 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1993 || (succ
1994 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1995 that case SUCC is not in the insn stream, so use SUCC2
1996 instead for this test. */
1997 && reg_used_between_p (dest, insn,
1998 succ2
1999 && INSN_UID (succ) == INSN_UID (succ2)
2000 ? succ2 : succ))))
2001 /* Make sure that the value that is to be substituted for the register
2002 does not use any registers whose values alter in between. However,
2003 If the insns are adjacent, a use can't cross a set even though we
2004 think it might (this can happen for a sequence of insns each setting
2005 the same destination; last_set of that register might point to
2006 a NOTE). If INSN has a REG_EQUIV note, the register is always
2007 equivalent to the memory so the substitution is valid even if there
2008 are intervening stores. Also, don't move a volatile asm or
2009 UNSPEC_VOLATILE across any other insns. */
2010 || (! all_adjacent
2011 && (((!MEM_P (src)
2012 || ! find_reg_note (insn, REG_EQUIV, src))
2013 && modified_between_p (src, insn, i3))
2014 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2015 || GET_CODE (src) == UNSPEC_VOLATILE))
2016 /* Don't combine across a CALL_INSN, because that would possibly
2017 change whether the life span of some REGs crosses calls or not,
2018 and it is a pain to update that information.
2019 Exception: if source is a constant, moving it later can't hurt.
2020 Accept that as a special case. */
2021 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2022 return 0;
2024 /* DEST must either be a REG or CC0. */
2025 if (REG_P (dest))
2027 /* If register alignment is being enforced for multi-word items in all
2028 cases except for parameters, it is possible to have a register copy
2029 insn referencing a hard register that is not allowed to contain the
2030 mode being copied and which would not be valid as an operand of most
2031 insns. Eliminate this problem by not combining with such an insn.
2033 Also, on some machines we don't want to extend the life of a hard
2034 register. */
2036 if (REG_P (src)
2037 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2038 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2039 /* Don't extend the life of a hard register unless it is
2040 user variable (if we have few registers) or it can't
2041 fit into the desired register (meaning something special
2042 is going on).
2043 Also avoid substituting a return register into I3, because
2044 reload can't handle a conflict with constraints of other
2045 inputs. */
2046 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2047 && !targetm.hard_regno_mode_ok (REGNO (src),
2048 GET_MODE (src)))))
2049 return 0;
2051 else if (GET_CODE (dest) != CC0)
2052 return 0;
2055 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2056 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2057 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2059 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2061 /* If the clobber represents an earlyclobber operand, we must not
2062 substitute an expression containing the clobbered register.
2063 As we do not analyze the constraint strings here, we have to
2064 make the conservative assumption. However, if the register is
2065 a fixed hard reg, the clobber cannot represent any operand;
2066 we leave it up to the machine description to either accept or
2067 reject use-and-clobber patterns. */
2068 if (!REG_P (reg)
2069 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2070 || !fixed_regs[REGNO (reg)])
2071 if (reg_overlap_mentioned_p (reg, src))
2072 return 0;
2075 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2076 or not), reject, unless nothing volatile comes between it and I3 */
2078 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2080 /* Make sure neither succ nor succ2 contains a volatile reference. */
2081 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2082 return 0;
2083 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2084 return 0;
2085 /* We'll check insns between INSN and I3 below. */
2088 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2089 to be an explicit register variable, and was chosen for a reason. */
2091 if (GET_CODE (src) == ASM_OPERANDS
2092 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2093 return 0;
2095 /* If INSN contains volatile references (specifically volatile MEMs),
2096 we cannot combine across any other volatile references.
2097 Even if INSN doesn't contain volatile references, any intervening
2098 volatile insn might affect machine state. */
2100 is_volatile_p = volatile_refs_p (PATTERN (insn))
2101 ? volatile_refs_p
2102 : volatile_insn_p;
2104 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2105 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2106 return 0;
2108 /* If INSN contains an autoincrement or autodecrement, make sure that
2109 register is not used between there and I3, and not already used in
2110 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2111 Also insist that I3 not be a jump; if it were one
2112 and the incremented register were spilled, we would lose. */
2114 if (AUTO_INC_DEC)
2115 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2116 if (REG_NOTE_KIND (link) == REG_INC
2117 && (JUMP_P (i3)
2118 || reg_used_between_p (XEXP (link, 0), insn, i3)
2119 || (pred != NULL_RTX
2120 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2121 || (pred2 != NULL_RTX
2122 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2123 || (succ != NULL_RTX
2124 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2125 || (succ2 != NULL_RTX
2126 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2127 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2128 return 0;
2130 /* Don't combine an insn that follows a CC0-setting insn.
2131 An insn that uses CC0 must not be separated from the one that sets it.
2132 We do, however, allow I2 to follow a CC0-setting insn if that insn
2133 is passed as I1; in that case it will be deleted also.
2134 We also allow combining in this case if all the insns are adjacent
2135 because that would leave the two CC0 insns adjacent as well.
2136 It would be more logical to test whether CC0 occurs inside I1 or I2,
2137 but that would be much slower, and this ought to be equivalent. */
2139 if (HAVE_cc0)
2141 p = prev_nonnote_insn (insn);
2142 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2143 && ! all_adjacent)
2144 return 0;
2147 /* If we get here, we have passed all the tests and the combination is
2148 to be allowed. */
2150 *pdest = dest;
2151 *psrc = src;
2153 return 1;
2156 /* LOC is the location within I3 that contains its pattern or the component
2157 of a PARALLEL of the pattern. We validate that it is valid for combining.
2159 One problem is if I3 modifies its output, as opposed to replacing it
2160 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2161 doing so would produce an insn that is not equivalent to the original insns.
2163 Consider:
2165 (set (reg:DI 101) (reg:DI 100))
2166 (set (subreg:SI (reg:DI 101) 0) <foo>)
2168 This is NOT equivalent to:
2170 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2171 (set (reg:DI 101) (reg:DI 100))])
2173 Not only does this modify 100 (in which case it might still be valid
2174 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2176 We can also run into a problem if I2 sets a register that I1
2177 uses and I1 gets directly substituted into I3 (not via I2). In that
2178 case, we would be getting the wrong value of I2DEST into I3, so we
2179 must reject the combination. This case occurs when I2 and I1 both
2180 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2181 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2182 of a SET must prevent combination from occurring. The same situation
2183 can occur for I0, in which case I0_NOT_IN_SRC is set.
2185 Before doing the above check, we first try to expand a field assignment
2186 into a set of logical operations.
2188 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2189 we place a register that is both set and used within I3. If more than one
2190 such register is detected, we fail.
2192 Return 1 if the combination is valid, zero otherwise. */
2194 static int
2195 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2196 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2198 rtx x = *loc;
2200 if (GET_CODE (x) == SET)
2202 rtx set = x ;
2203 rtx dest = SET_DEST (set);
2204 rtx src = SET_SRC (set);
2205 rtx inner_dest = dest;
2206 rtx subdest;
2208 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2209 || GET_CODE (inner_dest) == SUBREG
2210 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2211 inner_dest = XEXP (inner_dest, 0);
2213 /* Check for the case where I3 modifies its output, as discussed
2214 above. We don't want to prevent pseudos from being combined
2215 into the address of a MEM, so only prevent the combination if
2216 i1 or i2 set the same MEM. */
2217 if ((inner_dest != dest &&
2218 (!MEM_P (inner_dest)
2219 || rtx_equal_p (i2dest, inner_dest)
2220 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2221 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2222 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2223 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2224 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2226 /* This is the same test done in can_combine_p except we can't test
2227 all_adjacent; we don't have to, since this instruction will stay
2228 in place, thus we are not considering increasing the lifetime of
2229 INNER_DEST.
2231 Also, if this insn sets a function argument, combining it with
2232 something that might need a spill could clobber a previous
2233 function argument; the all_adjacent test in can_combine_p also
2234 checks this; here, we do a more specific test for this case. */
2236 || (REG_P (inner_dest)
2237 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2238 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2239 GET_MODE (inner_dest)))
2240 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2241 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2242 return 0;
2244 /* If DEST is used in I3, it is being killed in this insn, so
2245 record that for later. We have to consider paradoxical
2246 subregs here, since they kill the whole register, but we
2247 ignore partial subregs, STRICT_LOW_PART, etc.
2248 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2249 STACK_POINTER_REGNUM, since these are always considered to be
2250 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2251 subdest = dest;
2252 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2253 subdest = SUBREG_REG (subdest);
2254 if (pi3dest_killed
2255 && REG_P (subdest)
2256 && reg_referenced_p (subdest, PATTERN (i3))
2257 && REGNO (subdest) != FRAME_POINTER_REGNUM
2258 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2259 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2260 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2261 || (REGNO (subdest) != ARG_POINTER_REGNUM
2262 || ! fixed_regs [REGNO (subdest)]))
2263 && REGNO (subdest) != STACK_POINTER_REGNUM)
2265 if (*pi3dest_killed)
2266 return 0;
2268 *pi3dest_killed = subdest;
2272 else if (GET_CODE (x) == PARALLEL)
2274 int i;
2276 for (i = 0; i < XVECLEN (x, 0); i++)
2277 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2278 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2279 return 0;
2282 return 1;
2285 /* Return 1 if X is an arithmetic expression that contains a multiplication
2286 and division. We don't count multiplications by powers of two here. */
2288 static int
2289 contains_muldiv (rtx x)
2291 switch (GET_CODE (x))
2293 case MOD: case DIV: case UMOD: case UDIV:
2294 return 1;
2296 case MULT:
2297 return ! (CONST_INT_P (XEXP (x, 1))
2298 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2299 default:
2300 if (BINARY_P (x))
2301 return contains_muldiv (XEXP (x, 0))
2302 || contains_muldiv (XEXP (x, 1));
2304 if (UNARY_P (x))
2305 return contains_muldiv (XEXP (x, 0));
2307 return 0;
2311 /* Determine whether INSN can be used in a combination. Return nonzero if
2312 not. This is used in try_combine to detect early some cases where we
2313 can't perform combinations. */
2315 static int
2316 cant_combine_insn_p (rtx_insn *insn)
2318 rtx set;
2319 rtx src, dest;
2321 /* If this isn't really an insn, we can't do anything.
2322 This can occur when flow deletes an insn that it has merged into an
2323 auto-increment address. */
2324 if (!NONDEBUG_INSN_P (insn))
2325 return 1;
2327 /* Never combine loads and stores involving hard regs that are likely
2328 to be spilled. The register allocator can usually handle such
2329 reg-reg moves by tying. If we allow the combiner to make
2330 substitutions of likely-spilled regs, reload might die.
2331 As an exception, we allow combinations involving fixed regs; these are
2332 not available to the register allocator so there's no risk involved. */
2334 set = single_set (insn);
2335 if (! set)
2336 return 0;
2337 src = SET_SRC (set);
2338 dest = SET_DEST (set);
2339 if (GET_CODE (src) == SUBREG)
2340 src = SUBREG_REG (src);
2341 if (GET_CODE (dest) == SUBREG)
2342 dest = SUBREG_REG (dest);
2343 if (REG_P (src) && REG_P (dest)
2344 && ((HARD_REGISTER_P (src)
2345 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2346 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2347 || (HARD_REGISTER_P (dest)
2348 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2349 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2350 return 1;
2352 return 0;
2355 struct likely_spilled_retval_info
2357 unsigned regno, nregs;
2358 unsigned mask;
2361 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2362 hard registers that are known to be written to / clobbered in full. */
2363 static void
2364 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2366 struct likely_spilled_retval_info *const info =
2367 (struct likely_spilled_retval_info *) data;
2368 unsigned regno, nregs;
2369 unsigned new_mask;
2371 if (!REG_P (XEXP (set, 0)))
2372 return;
2373 regno = REGNO (x);
2374 if (regno >= info->regno + info->nregs)
2375 return;
2376 nregs = REG_NREGS (x);
2377 if (regno + nregs <= info->regno)
2378 return;
2379 new_mask = (2U << (nregs - 1)) - 1;
2380 if (regno < info->regno)
2381 new_mask >>= info->regno - regno;
2382 else
2383 new_mask <<= regno - info->regno;
2384 info->mask &= ~new_mask;
2387 /* Return nonzero iff part of the return value is live during INSN, and
2388 it is likely spilled. This can happen when more than one insn is needed
2389 to copy the return value, e.g. when we consider to combine into the
2390 second copy insn for a complex value. */
2392 static int
2393 likely_spilled_retval_p (rtx_insn *insn)
2395 rtx_insn *use = BB_END (this_basic_block);
2396 rtx reg;
2397 rtx_insn *p;
2398 unsigned regno, nregs;
2399 /* We assume here that no machine mode needs more than
2400 32 hard registers when the value overlaps with a register
2401 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2402 unsigned mask;
2403 struct likely_spilled_retval_info info;
2405 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2406 return 0;
2407 reg = XEXP (PATTERN (use), 0);
2408 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2409 return 0;
2410 regno = REGNO (reg);
2411 nregs = REG_NREGS (reg);
2412 if (nregs == 1)
2413 return 0;
2414 mask = (2U << (nregs - 1)) - 1;
2416 /* Disregard parts of the return value that are set later. */
2417 info.regno = regno;
2418 info.nregs = nregs;
2419 info.mask = mask;
2420 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2421 if (INSN_P (p))
2422 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2423 mask = info.mask;
2425 /* Check if any of the (probably) live return value registers is
2426 likely spilled. */
2427 nregs --;
2430 if ((mask & 1 << nregs)
2431 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2432 return 1;
2433 } while (nregs--);
2434 return 0;
2437 /* Adjust INSN after we made a change to its destination.
2439 Changing the destination can invalidate notes that say something about
2440 the results of the insn and a LOG_LINK pointing to the insn. */
2442 static void
2443 adjust_for_new_dest (rtx_insn *insn)
2445 /* For notes, be conservative and simply remove them. */
2446 remove_reg_equal_equiv_notes (insn);
2448 /* The new insn will have a destination that was previously the destination
2449 of an insn just above it. Call distribute_links to make a LOG_LINK from
2450 the next use of that destination. */
2452 rtx set = single_set (insn);
2453 gcc_assert (set);
2455 rtx reg = SET_DEST (set);
2457 while (GET_CODE (reg) == ZERO_EXTRACT
2458 || GET_CODE (reg) == STRICT_LOW_PART
2459 || GET_CODE (reg) == SUBREG)
2460 reg = XEXP (reg, 0);
2461 gcc_assert (REG_P (reg));
2463 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2465 df_insn_rescan (insn);
2468 /* Return TRUE if combine can reuse reg X in mode MODE.
2469 ADDED_SETS is nonzero if the original set is still required. */
2470 static bool
2471 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2473 unsigned int regno;
2475 if (!REG_P (x))
2476 return false;
2478 /* Don't change between modes with different underlying register sizes,
2479 since this could lead to invalid subregs. */
2480 if (REGMODE_NATURAL_SIZE (mode)
2481 != REGMODE_NATURAL_SIZE (GET_MODE (x)))
2482 return false;
2484 regno = REGNO (x);
2485 /* Allow hard registers if the new mode is legal, and occupies no more
2486 registers than the old mode. */
2487 if (regno < FIRST_PSEUDO_REGISTER)
2488 return (targetm.hard_regno_mode_ok (regno, mode)
2489 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2491 /* Or a pseudo that is only used once. */
2492 return (regno < reg_n_sets_max
2493 && REG_N_SETS (regno) == 1
2494 && !added_sets
2495 && !REG_USERVAR_P (x));
2499 /* Check whether X, the destination of a set, refers to part of
2500 the register specified by REG. */
2502 static bool
2503 reg_subword_p (rtx x, rtx reg)
2505 /* Check that reg is an integer mode register. */
2506 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2507 return false;
2509 if (GET_CODE (x) == STRICT_LOW_PART
2510 || GET_CODE (x) == ZERO_EXTRACT)
2511 x = XEXP (x, 0);
2513 return GET_CODE (x) == SUBREG
2514 && SUBREG_REG (x) == reg
2515 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2518 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2519 Note that the INSN should be deleted *after* removing dead edges, so
2520 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2521 but not for a (set (pc) (label_ref FOO)). */
2523 static void
2524 update_cfg_for_uncondjump (rtx_insn *insn)
2526 basic_block bb = BLOCK_FOR_INSN (insn);
2527 gcc_assert (BB_END (bb) == insn);
2529 purge_dead_edges (bb);
2531 delete_insn (insn);
2532 if (EDGE_COUNT (bb->succs) == 1)
2534 rtx_insn *insn;
2536 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2538 /* Remove barriers from the footer if there are any. */
2539 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2540 if (BARRIER_P (insn))
2542 if (PREV_INSN (insn))
2543 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2544 else
2545 BB_FOOTER (bb) = NEXT_INSN (insn);
2546 if (NEXT_INSN (insn))
2547 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2549 else if (LABEL_P (insn))
2550 break;
2554 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2555 by an arbitrary number of CLOBBERs. */
2556 static bool
2557 is_parallel_of_n_reg_sets (rtx pat, int n)
2559 if (GET_CODE (pat) != PARALLEL)
2560 return false;
2562 int len = XVECLEN (pat, 0);
2563 if (len < n)
2564 return false;
2566 int i;
2567 for (i = 0; i < n; i++)
2568 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2569 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2570 return false;
2571 for ( ; i < len; i++)
2572 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2573 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2574 return false;
2576 return true;
2579 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2580 CLOBBERs), can be split into individual SETs in that order, without
2581 changing semantics. */
2582 static bool
2583 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2585 if (!insn_nothrow_p (insn))
2586 return false;
2588 rtx pat = PATTERN (insn);
2590 int i, j;
2591 for (i = 0; i < n; i++)
2593 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2594 return false;
2596 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2598 for (j = i + 1; j < n; j++)
2599 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2600 return false;
2603 return true;
2606 /* Try to combine the insns I0, I1 and I2 into I3.
2607 Here I0, I1 and I2 appear earlier than I3.
2608 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2611 If we are combining more than two insns and the resulting insn is not
2612 recognized, try splitting it into two insns. If that happens, I2 and I3
2613 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2614 Otherwise, I0, I1 and I2 are pseudo-deleted.
2616 Return 0 if the combination does not work. Then nothing is changed.
2617 If we did the combination, return the insn at which combine should
2618 resume scanning.
2620 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2621 new direct jump instruction.
2623 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2624 been I3 passed to an earlier try_combine within the same basic
2625 block. */
2627 static rtx_insn *
2628 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2629 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2631 /* New patterns for I3 and I2, respectively. */
2632 rtx newpat, newi2pat = 0;
2633 rtvec newpat_vec_with_clobbers = 0;
2634 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2635 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2636 dead. */
2637 int added_sets_0, added_sets_1, added_sets_2;
2638 /* Total number of SETs to put into I3. */
2639 int total_sets;
2640 /* Nonzero if I2's or I1's body now appears in I3. */
2641 int i2_is_used = 0, i1_is_used = 0;
2642 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2643 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2644 /* Contains I3 if the destination of I3 is used in its source, which means
2645 that the old life of I3 is being killed. If that usage is placed into
2646 I2 and not in I3, a REG_DEAD note must be made. */
2647 rtx i3dest_killed = 0;
2648 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2649 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2650 /* Copy of SET_SRC of I1 and I0, if needed. */
2651 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2652 /* Set if I2DEST was reused as a scratch register. */
2653 bool i2scratch = false;
2654 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2655 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2656 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2657 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2658 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2659 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2660 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2661 /* Notes that must be added to REG_NOTES in I3 and I2. */
2662 rtx new_i3_notes, new_i2_notes;
2663 /* Notes that we substituted I3 into I2 instead of the normal case. */
2664 int i3_subst_into_i2 = 0;
2665 /* Notes that I1, I2 or I3 is a MULT operation. */
2666 int have_mult = 0;
2667 int swap_i2i3 = 0;
2668 int changed_i3_dest = 0;
2670 int maxreg;
2671 rtx_insn *temp_insn;
2672 rtx temp_expr;
2673 struct insn_link *link;
2674 rtx other_pat = 0;
2675 rtx new_other_notes;
2676 int i;
2677 scalar_int_mode dest_mode, temp_mode;
2679 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2680 never be). */
2681 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2682 return 0;
2684 /* Only try four-insn combinations when there's high likelihood of
2685 success. Look for simple insns, such as loads of constants or
2686 binary operations involving a constant. */
2687 if (i0)
2689 int i;
2690 int ngood = 0;
2691 int nshift = 0;
2692 rtx set0, set3;
2694 if (!flag_expensive_optimizations)
2695 return 0;
2697 for (i = 0; i < 4; i++)
2699 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2700 rtx set = single_set (insn);
2701 rtx src;
2702 if (!set)
2703 continue;
2704 src = SET_SRC (set);
2705 if (CONSTANT_P (src))
2707 ngood += 2;
2708 break;
2710 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2711 ngood++;
2712 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2713 || GET_CODE (src) == LSHIFTRT)
2714 nshift++;
2717 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2718 are likely manipulating its value. Ideally we'll be able to combine
2719 all four insns into a bitfield insertion of some kind.
2721 Note the source in I0 might be inside a sign/zero extension and the
2722 memory modes in I0 and I3 might be different. So extract the address
2723 from the destination of I3 and search for it in the source of I0.
2725 In the event that there's a match but the source/dest do not actually
2726 refer to the same memory, the worst that happens is we try some
2727 combinations that we wouldn't have otherwise. */
2728 if ((set0 = single_set (i0))
2729 /* Ensure the source of SET0 is a MEM, possibly buried inside
2730 an extension. */
2731 && (GET_CODE (SET_SRC (set0)) == MEM
2732 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2733 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2734 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2735 && (set3 = single_set (i3))
2736 /* Ensure the destination of SET3 is a MEM. */
2737 && GET_CODE (SET_DEST (set3)) == MEM
2738 /* Would it be better to extract the base address for the MEM
2739 in SET3 and look for that? I don't have cases where it matters
2740 but I could envision such cases. */
2741 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2742 ngood += 2;
2744 if (ngood < 2 && nshift < 2)
2745 return 0;
2748 /* Exit early if one of the insns involved can't be used for
2749 combinations. */
2750 if (CALL_P (i2)
2751 || (i1 && CALL_P (i1))
2752 || (i0 && CALL_P (i0))
2753 || cant_combine_insn_p (i3)
2754 || cant_combine_insn_p (i2)
2755 || (i1 && cant_combine_insn_p (i1))
2756 || (i0 && cant_combine_insn_p (i0))
2757 || likely_spilled_retval_p (i3))
2758 return 0;
2760 combine_attempts++;
2761 undobuf.other_insn = 0;
2763 /* Reset the hard register usage information. */
2764 CLEAR_HARD_REG_SET (newpat_used_regs);
2766 if (dump_file && (dump_flags & TDF_DETAILS))
2768 if (i0)
2769 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2770 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2771 else if (i1)
2772 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2773 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2774 else
2775 fprintf (dump_file, "\nTrying %d -> %d:\n",
2776 INSN_UID (i2), INSN_UID (i3));
2778 if (i0)
2779 dump_insn_slim (dump_file, i0);
2780 if (i1)
2781 dump_insn_slim (dump_file, i1);
2782 dump_insn_slim (dump_file, i2);
2783 dump_insn_slim (dump_file, i3);
2786 /* If multiple insns feed into one of I2 or I3, they can be in any
2787 order. To simplify the code below, reorder them in sequence. */
2788 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2789 std::swap (i0, i2);
2790 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2791 std::swap (i0, i1);
2792 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2793 std::swap (i1, i2);
2795 added_links_insn = 0;
2796 added_notes_insn = 0;
2798 /* First check for one important special case that the code below will
2799 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2800 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2801 we may be able to replace that destination with the destination of I3.
2802 This occurs in the common code where we compute both a quotient and
2803 remainder into a structure, in which case we want to do the computation
2804 directly into the structure to avoid register-register copies.
2806 Note that this case handles both multiple sets in I2 and also cases
2807 where I2 has a number of CLOBBERs inside the PARALLEL.
2809 We make very conservative checks below and only try to handle the
2810 most common cases of this. For example, we only handle the case
2811 where I2 and I3 are adjacent to avoid making difficult register
2812 usage tests. */
2814 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2815 && REG_P (SET_SRC (PATTERN (i3)))
2816 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2817 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2818 && GET_CODE (PATTERN (i2)) == PARALLEL
2819 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2820 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2821 below would need to check what is inside (and reg_overlap_mentioned_p
2822 doesn't support those codes anyway). Don't allow those destinations;
2823 the resulting insn isn't likely to be recognized anyway. */
2824 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2825 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2826 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2827 SET_DEST (PATTERN (i3)))
2828 && next_active_insn (i2) == i3)
2830 rtx p2 = PATTERN (i2);
2832 /* Make sure that the destination of I3,
2833 which we are going to substitute into one output of I2,
2834 is not used within another output of I2. We must avoid making this:
2835 (parallel [(set (mem (reg 69)) ...)
2836 (set (reg 69) ...)])
2837 which is not well-defined as to order of actions.
2838 (Besides, reload can't handle output reloads for this.)
2840 The problem can also happen if the dest of I3 is a memory ref,
2841 if another dest in I2 is an indirect memory ref.
2843 Neither can this PARALLEL be an asm. We do not allow combining
2844 that usually (see can_combine_p), so do not here either. */
2845 bool ok = true;
2846 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2848 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2849 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2850 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2851 SET_DEST (XVECEXP (p2, 0, i))))
2852 ok = false;
2853 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2854 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2855 ok = false;
2858 if (ok)
2859 for (i = 0; i < XVECLEN (p2, 0); i++)
2860 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2861 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2863 combine_merges++;
2865 subst_insn = i3;
2866 subst_low_luid = DF_INSN_LUID (i2);
2868 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2869 i2src = SET_SRC (XVECEXP (p2, 0, i));
2870 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2871 i2dest_killed = dead_or_set_p (i2, i2dest);
2873 /* Replace the dest in I2 with our dest and make the resulting
2874 insn the new pattern for I3. Then skip to where we validate
2875 the pattern. Everything was set up above. */
2876 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2877 newpat = p2;
2878 i3_subst_into_i2 = 1;
2879 goto validate_replacement;
2883 /* If I2 is setting a pseudo to a constant and I3 is setting some
2884 sub-part of it to another constant, merge them by making a new
2885 constant. */
2886 if (i1 == 0
2887 && (temp_expr = single_set (i2)) != 0
2888 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2889 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2890 && GET_CODE (PATTERN (i3)) == SET
2891 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2892 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2894 rtx dest = SET_DEST (PATTERN (i3));
2895 rtx temp_dest = SET_DEST (temp_expr);
2896 int offset = -1;
2897 int width = 0;
2899 if (GET_CODE (dest) == ZERO_EXTRACT)
2901 if (CONST_INT_P (XEXP (dest, 1))
2902 && CONST_INT_P (XEXP (dest, 2))
2903 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2904 &dest_mode))
2906 width = INTVAL (XEXP (dest, 1));
2907 offset = INTVAL (XEXP (dest, 2));
2908 dest = XEXP (dest, 0);
2909 if (BITS_BIG_ENDIAN)
2910 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2913 else
2915 if (GET_CODE (dest) == STRICT_LOW_PART)
2916 dest = XEXP (dest, 0);
2917 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2919 width = GET_MODE_PRECISION (dest_mode);
2920 offset = 0;
2924 if (offset >= 0)
2926 /* If this is the low part, we're done. */
2927 if (subreg_lowpart_p (dest))
2929 /* Handle the case where inner is twice the size of outer. */
2930 else if (GET_MODE_PRECISION (temp_mode)
2931 == 2 * GET_MODE_PRECISION (dest_mode))
2932 offset += GET_MODE_PRECISION (dest_mode);
2933 /* Otherwise give up for now. */
2934 else
2935 offset = -1;
2938 if (offset >= 0)
2940 rtx inner = SET_SRC (PATTERN (i3));
2941 rtx outer = SET_SRC (temp_expr);
2943 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2944 rtx_mode_t (inner, dest_mode),
2945 offset, width);
2947 combine_merges++;
2948 subst_insn = i3;
2949 subst_low_luid = DF_INSN_LUID (i2);
2950 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2951 i2dest = temp_dest;
2952 i2dest_killed = dead_or_set_p (i2, i2dest);
2954 /* Replace the source in I2 with the new constant and make the
2955 resulting insn the new pattern for I3. Then skip to where we
2956 validate the pattern. Everything was set up above. */
2957 SUBST (SET_SRC (temp_expr),
2958 immed_wide_int_const (o, temp_mode));
2960 newpat = PATTERN (i2);
2962 /* The dest of I3 has been replaced with the dest of I2. */
2963 changed_i3_dest = 1;
2964 goto validate_replacement;
2968 /* If we have no I1 and I2 looks like:
2969 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2970 (set Y OP)])
2971 make up a dummy I1 that is
2972 (set Y OP)
2973 and change I2 to be
2974 (set (reg:CC X) (compare:CC Y (const_int 0)))
2976 (We can ignore any trailing CLOBBERs.)
2978 This undoes a previous combination and allows us to match a branch-and-
2979 decrement insn. */
2981 if (!HAVE_cc0 && i1 == 0
2982 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2983 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2984 == MODE_CC)
2985 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2986 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2987 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2988 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2989 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2990 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2992 /* We make I1 with the same INSN_UID as I2. This gives it
2993 the same DF_INSN_LUID for value tracking. Our fake I1 will
2994 never appear in the insn stream so giving it the same INSN_UID
2995 as I2 will not cause a problem. */
2997 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2998 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2999 -1, NULL_RTX);
3000 INSN_UID (i1) = INSN_UID (i2);
3002 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3003 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3004 SET_DEST (PATTERN (i1)));
3005 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3006 SUBST_LINK (LOG_LINKS (i2),
3007 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3010 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3011 make those two SETs separate I1 and I2 insns, and make an I0 that is
3012 the original I1. */
3013 if (!HAVE_cc0 && i0 == 0
3014 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3015 && can_split_parallel_of_n_reg_sets (i2, 2)
3016 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3017 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3018 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3019 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3021 /* If there is no I1, there is no I0 either. */
3022 i0 = i1;
3024 /* We make I1 with the same INSN_UID as I2. This gives it
3025 the same DF_INSN_LUID for value tracking. Our fake I1 will
3026 never appear in the insn stream so giving it the same INSN_UID
3027 as I2 will not cause a problem. */
3029 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3030 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3031 -1, NULL_RTX);
3032 INSN_UID (i1) = INSN_UID (i2);
3034 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3037 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3038 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3040 if (dump_file)
3041 fprintf (dump_file, "Can't combine i2 into i3\n");
3042 undo_all ();
3043 return 0;
3045 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3047 if (dump_file)
3048 fprintf (dump_file, "Can't combine i1 into i3\n");
3049 undo_all ();
3050 return 0;
3052 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3054 if (dump_file)
3055 fprintf (dump_file, "Can't combine i0 into i3\n");
3056 undo_all ();
3057 return 0;
3060 /* Record whether I2DEST is used in I2SRC and similarly for the other
3061 cases. Knowing this will help in register status updating below. */
3062 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3063 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3064 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3065 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3066 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3067 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3068 i2dest_killed = dead_or_set_p (i2, i2dest);
3069 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3070 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3072 /* For the earlier insns, determine which of the subsequent ones they
3073 feed. */
3074 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3075 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3076 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3077 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3078 && reg_overlap_mentioned_p (i0dest, i2src))));
3080 /* Ensure that I3's pattern can be the destination of combines. */
3081 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3082 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3083 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3084 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3085 &i3dest_killed))
3087 undo_all ();
3088 return 0;
3091 /* See if any of the insns is a MULT operation. Unless one is, we will
3092 reject a combination that is, since it must be slower. Be conservative
3093 here. */
3094 if (GET_CODE (i2src) == MULT
3095 || (i1 != 0 && GET_CODE (i1src) == MULT)
3096 || (i0 != 0 && GET_CODE (i0src) == MULT)
3097 || (GET_CODE (PATTERN (i3)) == SET
3098 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3099 have_mult = 1;
3101 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3102 We used to do this EXCEPT in one case: I3 has a post-inc in an
3103 output operand. However, that exception can give rise to insns like
3104 mov r3,(r3)+
3105 which is a famous insn on the PDP-11 where the value of r3 used as the
3106 source was model-dependent. Avoid this sort of thing. */
3108 #if 0
3109 if (!(GET_CODE (PATTERN (i3)) == SET
3110 && REG_P (SET_SRC (PATTERN (i3)))
3111 && MEM_P (SET_DEST (PATTERN (i3)))
3112 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3113 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3114 /* It's not the exception. */
3115 #endif
3116 if (AUTO_INC_DEC)
3118 rtx link;
3119 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3120 if (REG_NOTE_KIND (link) == REG_INC
3121 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3122 || (i1 != 0
3123 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3125 undo_all ();
3126 return 0;
3130 /* See if the SETs in I1 or I2 need to be kept around in the merged
3131 instruction: whenever the value set there is still needed past I3.
3132 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3134 For the SET in I1, we have two cases: if I1 and I2 independently feed
3135 into I3, the set in I1 needs to be kept around unless I1DEST dies
3136 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3137 in I1 needs to be kept around unless I1DEST dies or is set in either
3138 I2 or I3. The same considerations apply to I0. */
3140 added_sets_2 = !dead_or_set_p (i3, i2dest);
3142 if (i1)
3143 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3144 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3145 else
3146 added_sets_1 = 0;
3148 if (i0)
3149 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3150 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3151 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3152 && dead_or_set_p (i2, i0dest)));
3153 else
3154 added_sets_0 = 0;
3156 /* We are about to copy insns for the case where they need to be kept
3157 around. Check that they can be copied in the merged instruction. */
3159 if (targetm.cannot_copy_insn_p
3160 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3161 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3162 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3164 undo_all ();
3165 return 0;
3168 /* If the set in I2 needs to be kept around, we must make a copy of
3169 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3170 PATTERN (I2), we are only substituting for the original I1DEST, not into
3171 an already-substituted copy. This also prevents making self-referential
3172 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3173 I2DEST. */
3175 if (added_sets_2)
3177 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3178 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3179 else
3180 i2pat = copy_rtx (PATTERN (i2));
3183 if (added_sets_1)
3185 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3186 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3187 else
3188 i1pat = copy_rtx (PATTERN (i1));
3191 if (added_sets_0)
3193 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3194 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3195 else
3196 i0pat = copy_rtx (PATTERN (i0));
3199 combine_merges++;
3201 /* Substitute in the latest insn for the regs set by the earlier ones. */
3203 maxreg = max_reg_num ();
3205 subst_insn = i3;
3207 /* Many machines that don't use CC0 have insns that can both perform an
3208 arithmetic operation and set the condition code. These operations will
3209 be represented as a PARALLEL with the first element of the vector
3210 being a COMPARE of an arithmetic operation with the constant zero.
3211 The second element of the vector will set some pseudo to the result
3212 of the same arithmetic operation. If we simplify the COMPARE, we won't
3213 match such a pattern and so will generate an extra insn. Here we test
3214 for this case, where both the comparison and the operation result are
3215 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3216 I2SRC. Later we will make the PARALLEL that contains I2. */
3218 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3219 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3220 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3221 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3223 rtx newpat_dest;
3224 rtx *cc_use_loc = NULL;
3225 rtx_insn *cc_use_insn = NULL;
3226 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3227 machine_mode compare_mode, orig_compare_mode;
3228 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3229 scalar_int_mode mode;
3231 newpat = PATTERN (i3);
3232 newpat_dest = SET_DEST (newpat);
3233 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3235 if (undobuf.other_insn == 0
3236 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3237 &cc_use_insn)))
3239 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3240 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3241 compare_code = simplify_compare_const (compare_code, mode,
3242 op0, &op1);
3243 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3246 /* Do the rest only if op1 is const0_rtx, which may be the
3247 result of simplification. */
3248 if (op1 == const0_rtx)
3250 /* If a single use of the CC is found, prepare to modify it
3251 when SELECT_CC_MODE returns a new CC-class mode, or when
3252 the above simplify_compare_const() returned a new comparison
3253 operator. undobuf.other_insn is assigned the CC use insn
3254 when modifying it. */
3255 if (cc_use_loc)
3257 #ifdef SELECT_CC_MODE
3258 machine_mode new_mode
3259 = SELECT_CC_MODE (compare_code, op0, op1);
3260 if (new_mode != orig_compare_mode
3261 && can_change_dest_mode (SET_DEST (newpat),
3262 added_sets_2, new_mode))
3264 unsigned int regno = REGNO (newpat_dest);
3265 compare_mode = new_mode;
3266 if (regno < FIRST_PSEUDO_REGISTER)
3267 newpat_dest = gen_rtx_REG (compare_mode, regno);
3268 else
3270 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3271 newpat_dest = regno_reg_rtx[regno];
3274 #endif
3275 /* Cases for modifying the CC-using comparison. */
3276 if (compare_code != orig_compare_code
3277 /* ??? Do we need to verify the zero rtx? */
3278 && XEXP (*cc_use_loc, 1) == const0_rtx)
3280 /* Replace cc_use_loc with entire new RTX. */
3281 SUBST (*cc_use_loc,
3282 gen_rtx_fmt_ee (compare_code, compare_mode,
3283 newpat_dest, const0_rtx));
3284 undobuf.other_insn = cc_use_insn;
3286 else if (compare_mode != orig_compare_mode)
3288 /* Just replace the CC reg with a new mode. */
3289 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3290 undobuf.other_insn = cc_use_insn;
3294 /* Now we modify the current newpat:
3295 First, SET_DEST(newpat) is updated if the CC mode has been
3296 altered. For targets without SELECT_CC_MODE, this should be
3297 optimized away. */
3298 if (compare_mode != orig_compare_mode)
3299 SUBST (SET_DEST (newpat), newpat_dest);
3300 /* This is always done to propagate i2src into newpat. */
3301 SUBST (SET_SRC (newpat),
3302 gen_rtx_COMPARE (compare_mode, op0, op1));
3303 /* Create new version of i2pat if needed; the below PARALLEL
3304 creation needs this to work correctly. */
3305 if (! rtx_equal_p (i2src, op0))
3306 i2pat = gen_rtx_SET (i2dest, op0);
3307 i2_is_used = 1;
3311 if (i2_is_used == 0)
3313 /* It is possible that the source of I2 or I1 may be performing
3314 an unneeded operation, such as a ZERO_EXTEND of something
3315 that is known to have the high part zero. Handle that case
3316 by letting subst look at the inner insns.
3318 Another way to do this would be to have a function that tries
3319 to simplify a single insn instead of merging two or more
3320 insns. We don't do this because of the potential of infinite
3321 loops and because of the potential extra memory required.
3322 However, doing it the way we are is a bit of a kludge and
3323 doesn't catch all cases.
3325 But only do this if -fexpensive-optimizations since it slows
3326 things down and doesn't usually win.
3328 This is not done in the COMPARE case above because the
3329 unmodified I2PAT is used in the PARALLEL and so a pattern
3330 with a modified I2SRC would not match. */
3332 if (flag_expensive_optimizations)
3334 /* Pass pc_rtx so no substitutions are done, just
3335 simplifications. */
3336 if (i1)
3338 subst_low_luid = DF_INSN_LUID (i1);
3339 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3342 subst_low_luid = DF_INSN_LUID (i2);
3343 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3346 n_occurrences = 0; /* `subst' counts here */
3347 subst_low_luid = DF_INSN_LUID (i2);
3349 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3350 copy of I2SRC each time we substitute it, in order to avoid creating
3351 self-referential RTL when we will be substituting I1SRC for I1DEST
3352 later. Likewise if I0 feeds into I2, either directly or indirectly
3353 through I1, and I0DEST is in I0SRC. */
3354 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3355 (i1_feeds_i2_n && i1dest_in_i1src)
3356 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3357 && i0dest_in_i0src));
3358 substed_i2 = 1;
3360 /* Record whether I2's body now appears within I3's body. */
3361 i2_is_used = n_occurrences;
3364 /* If we already got a failure, don't try to do more. Otherwise, try to
3365 substitute I1 if we have it. */
3367 if (i1 && GET_CODE (newpat) != CLOBBER)
3369 /* Check that an autoincrement side-effect on I1 has not been lost.
3370 This happens if I1DEST is mentioned in I2 and dies there, and
3371 has disappeared from the new pattern. */
3372 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3373 && i1_feeds_i2_n
3374 && dead_or_set_p (i2, i1dest)
3375 && !reg_overlap_mentioned_p (i1dest, newpat))
3376 /* Before we can do this substitution, we must redo the test done
3377 above (see detailed comments there) that ensures I1DEST isn't
3378 mentioned in any SETs in NEWPAT that are field assignments. */
3379 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3380 0, 0, 0))
3382 undo_all ();
3383 return 0;
3386 n_occurrences = 0;
3387 subst_low_luid = DF_INSN_LUID (i1);
3389 /* If the following substitution will modify I1SRC, make a copy of it
3390 for the case where it is substituted for I1DEST in I2PAT later. */
3391 if (added_sets_2 && i1_feeds_i2_n)
3392 i1src_copy = copy_rtx (i1src);
3394 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3395 copy of I1SRC each time we substitute it, in order to avoid creating
3396 self-referential RTL when we will be substituting I0SRC for I0DEST
3397 later. */
3398 newpat = subst (newpat, i1dest, i1src, 0, 0,
3399 i0_feeds_i1_n && i0dest_in_i0src);
3400 substed_i1 = 1;
3402 /* Record whether I1's body now appears within I3's body. */
3403 i1_is_used = n_occurrences;
3406 /* Likewise for I0 if we have it. */
3408 if (i0 && GET_CODE (newpat) != CLOBBER)
3410 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3411 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3412 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3413 && !reg_overlap_mentioned_p (i0dest, newpat))
3414 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3415 0, 0, 0))
3417 undo_all ();
3418 return 0;
3421 /* If the following substitution will modify I0SRC, make a copy of it
3422 for the case where it is substituted for I0DEST in I1PAT later. */
3423 if (added_sets_1 && i0_feeds_i1_n)
3424 i0src_copy = copy_rtx (i0src);
3425 /* And a copy for I0DEST in I2PAT substitution. */
3426 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3427 || (i0_feeds_i2_n)))
3428 i0src_copy2 = copy_rtx (i0src);
3430 n_occurrences = 0;
3431 subst_low_luid = DF_INSN_LUID (i0);
3432 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3433 substed_i0 = 1;
3436 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3437 to count all the ways that I2SRC and I1SRC can be used. */
3438 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3439 && i2_is_used + added_sets_2 > 1)
3440 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3441 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3442 > 1))
3443 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3444 && (n_occurrences + added_sets_0
3445 + (added_sets_1 && i0_feeds_i1_n)
3446 + (added_sets_2 && i0_feeds_i2_n)
3447 > 1))
3448 /* Fail if we tried to make a new register. */
3449 || max_reg_num () != maxreg
3450 /* Fail if we couldn't do something and have a CLOBBER. */
3451 || GET_CODE (newpat) == CLOBBER
3452 /* Fail if this new pattern is a MULT and we didn't have one before
3453 at the outer level. */
3454 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3455 && ! have_mult))
3457 undo_all ();
3458 return 0;
3461 /* If the actions of the earlier insns must be kept
3462 in addition to substituting them into the latest one,
3463 we must make a new PARALLEL for the latest insn
3464 to hold additional the SETs. */
3466 if (added_sets_0 || added_sets_1 || added_sets_2)
3468 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3469 combine_extras++;
3471 if (GET_CODE (newpat) == PARALLEL)
3473 rtvec old = XVEC (newpat, 0);
3474 total_sets = XVECLEN (newpat, 0) + extra_sets;
3475 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3476 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3477 sizeof (old->elem[0]) * old->num_elem);
3479 else
3481 rtx old = newpat;
3482 total_sets = 1 + extra_sets;
3483 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3484 XVECEXP (newpat, 0, 0) = old;
3487 if (added_sets_0)
3488 XVECEXP (newpat, 0, --total_sets) = i0pat;
3490 if (added_sets_1)
3492 rtx t = i1pat;
3493 if (i0_feeds_i1_n)
3494 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3496 XVECEXP (newpat, 0, --total_sets) = t;
3498 if (added_sets_2)
3500 rtx t = i2pat;
3501 if (i1_feeds_i2_n)
3502 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3503 i0_feeds_i1_n && i0dest_in_i0src);
3504 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3505 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3507 XVECEXP (newpat, 0, --total_sets) = t;
3511 validate_replacement:
3513 /* Note which hard regs this insn has as inputs. */
3514 mark_used_regs_combine (newpat);
3516 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3517 consider splitting this pattern, we might need these clobbers. */
3518 if (i1 && GET_CODE (newpat) == PARALLEL
3519 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3521 int len = XVECLEN (newpat, 0);
3523 newpat_vec_with_clobbers = rtvec_alloc (len);
3524 for (i = 0; i < len; i++)
3525 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3528 /* We have recognized nothing yet. */
3529 insn_code_number = -1;
3531 /* See if this is a PARALLEL of two SETs where one SET's destination is
3532 a register that is unused and this isn't marked as an instruction that
3533 might trap in an EH region. In that case, we just need the other SET.
3534 We prefer this over the PARALLEL.
3536 This can occur when simplifying a divmod insn. We *must* test for this
3537 case here because the code below that splits two independent SETs doesn't
3538 handle this case correctly when it updates the register status.
3540 It's pointless doing this if we originally had two sets, one from
3541 i3, and one from i2. Combining then splitting the parallel results
3542 in the original i2 again plus an invalid insn (which we delete).
3543 The net effect is only to move instructions around, which makes
3544 debug info less accurate.
3546 If the remaining SET came from I2 its destination should not be used
3547 between I2 and I3. See PR82024. */
3549 if (!(added_sets_2 && i1 == 0)
3550 && is_parallel_of_n_reg_sets (newpat, 2)
3551 && asm_noperands (newpat) < 0)
3553 rtx set0 = XVECEXP (newpat, 0, 0);
3554 rtx set1 = XVECEXP (newpat, 0, 1);
3555 rtx oldpat = newpat;
3557 if (((REG_P (SET_DEST (set1))
3558 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3559 || (GET_CODE (SET_DEST (set1)) == SUBREG
3560 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3561 && insn_nothrow_p (i3)
3562 && !side_effects_p (SET_SRC (set1)))
3564 newpat = set0;
3565 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3568 else if (((REG_P (SET_DEST (set0))
3569 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3570 || (GET_CODE (SET_DEST (set0)) == SUBREG
3571 && find_reg_note (i3, REG_UNUSED,
3572 SUBREG_REG (SET_DEST (set0)))))
3573 && insn_nothrow_p (i3)
3574 && !side_effects_p (SET_SRC (set0)))
3576 rtx dest = SET_DEST (set1);
3577 if (GET_CODE (dest) == SUBREG)
3578 dest = SUBREG_REG (dest);
3579 if (!reg_used_between_p (dest, i2, i3))
3581 newpat = set1;
3582 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3584 if (insn_code_number >= 0)
3585 changed_i3_dest = 1;
3589 if (insn_code_number < 0)
3590 newpat = oldpat;
3593 /* Is the result of combination a valid instruction? */
3594 if (insn_code_number < 0)
3595 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3597 /* If we were combining three insns and the result is a simple SET
3598 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3599 insns. There are two ways to do this. It can be split using a
3600 machine-specific method (like when you have an addition of a large
3601 constant) or by combine in the function find_split_point. */
3603 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3604 && asm_noperands (newpat) < 0)
3606 rtx parallel, *split;
3607 rtx_insn *m_split_insn;
3609 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3610 use I2DEST as a scratch register will help. In the latter case,
3611 convert I2DEST to the mode of the source of NEWPAT if we can. */
3613 m_split_insn = combine_split_insns (newpat, i3);
3615 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3616 inputs of NEWPAT. */
3618 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3619 possible to try that as a scratch reg. This would require adding
3620 more code to make it work though. */
3622 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3624 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3626 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3627 (temporarily, until we are committed to this instruction
3628 combination) does not work: for example, any call to nonzero_bits
3629 on the register (from a splitter in the MD file, for example)
3630 will get the old information, which is invalid.
3632 Since nowadays we can create registers during combine just fine,
3633 we should just create a new one here, not reuse i2dest. */
3635 /* First try to split using the original register as a
3636 scratch register. */
3637 parallel = gen_rtx_PARALLEL (VOIDmode,
3638 gen_rtvec (2, newpat,
3639 gen_rtx_CLOBBER (VOIDmode,
3640 i2dest)));
3641 m_split_insn = combine_split_insns (parallel, i3);
3643 /* If that didn't work, try changing the mode of I2DEST if
3644 we can. */
3645 if (m_split_insn == 0
3646 && new_mode != GET_MODE (i2dest)
3647 && new_mode != VOIDmode
3648 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3650 machine_mode old_mode = GET_MODE (i2dest);
3651 rtx ni2dest;
3653 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3654 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3655 else
3657 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3658 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3661 parallel = (gen_rtx_PARALLEL
3662 (VOIDmode,
3663 gen_rtvec (2, newpat,
3664 gen_rtx_CLOBBER (VOIDmode,
3665 ni2dest))));
3666 m_split_insn = combine_split_insns (parallel, i3);
3668 if (m_split_insn == 0
3669 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3671 struct undo *buf;
3673 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3674 buf = undobuf.undos;
3675 undobuf.undos = buf->next;
3676 buf->next = undobuf.frees;
3677 undobuf.frees = buf;
3681 i2scratch = m_split_insn != 0;
3684 /* If recog_for_combine has discarded clobbers, try to use them
3685 again for the split. */
3686 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3688 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3689 m_split_insn = combine_split_insns (parallel, i3);
3692 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3694 rtx m_split_pat = PATTERN (m_split_insn);
3695 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3696 if (insn_code_number >= 0)
3697 newpat = m_split_pat;
3699 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3700 && (next_nonnote_nondebug_insn (i2) == i3
3701 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3703 rtx i2set, i3set;
3704 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3705 newi2pat = PATTERN (m_split_insn);
3707 i3set = single_set (NEXT_INSN (m_split_insn));
3708 i2set = single_set (m_split_insn);
3710 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3712 /* If I2 or I3 has multiple SETs, we won't know how to track
3713 register status, so don't use these insns. If I2's destination
3714 is used between I2 and I3, we also can't use these insns. */
3716 if (i2_code_number >= 0 && i2set && i3set
3717 && (next_nonnote_nondebug_insn (i2) == i3
3718 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3719 insn_code_number = recog_for_combine (&newi3pat, i3,
3720 &new_i3_notes);
3721 if (insn_code_number >= 0)
3722 newpat = newi3pat;
3724 /* It is possible that both insns now set the destination of I3.
3725 If so, we must show an extra use of it. */
3727 if (insn_code_number >= 0)
3729 rtx new_i3_dest = SET_DEST (i3set);
3730 rtx new_i2_dest = SET_DEST (i2set);
3732 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3733 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3734 || GET_CODE (new_i3_dest) == SUBREG)
3735 new_i3_dest = XEXP (new_i3_dest, 0);
3737 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3738 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3739 || GET_CODE (new_i2_dest) == SUBREG)
3740 new_i2_dest = XEXP (new_i2_dest, 0);
3742 if (REG_P (new_i3_dest)
3743 && REG_P (new_i2_dest)
3744 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3745 && REGNO (new_i2_dest) < reg_n_sets_max)
3746 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3750 /* If we can split it and use I2DEST, go ahead and see if that
3751 helps things be recognized. Verify that none of the registers
3752 are set between I2 and I3. */
3753 if (insn_code_number < 0
3754 && (split = find_split_point (&newpat, i3, false)) != 0
3755 && (!HAVE_cc0 || REG_P (i2dest))
3756 /* We need I2DEST in the proper mode. If it is a hard register
3757 or the only use of a pseudo, we can change its mode.
3758 Make sure we don't change a hard register to have a mode that
3759 isn't valid for it, or change the number of registers. */
3760 && (GET_MODE (*split) == GET_MODE (i2dest)
3761 || GET_MODE (*split) == VOIDmode
3762 || can_change_dest_mode (i2dest, added_sets_2,
3763 GET_MODE (*split)))
3764 && (next_nonnote_nondebug_insn (i2) == i3
3765 || !modified_between_p (*split, i2, i3))
3766 /* We can't overwrite I2DEST if its value is still used by
3767 NEWPAT. */
3768 && ! reg_referenced_p (i2dest, newpat))
3770 rtx newdest = i2dest;
3771 enum rtx_code split_code = GET_CODE (*split);
3772 machine_mode split_mode = GET_MODE (*split);
3773 bool subst_done = false;
3774 newi2pat = NULL_RTX;
3776 i2scratch = true;
3778 /* *SPLIT may be part of I2SRC, so make sure we have the
3779 original expression around for later debug processing.
3780 We should not need I2SRC any more in other cases. */
3781 if (MAY_HAVE_DEBUG_BIND_INSNS)
3782 i2src = copy_rtx (i2src);
3783 else
3784 i2src = NULL;
3786 /* Get NEWDEST as a register in the proper mode. We have already
3787 validated that we can do this. */
3788 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3790 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3791 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3792 else
3794 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3795 newdest = regno_reg_rtx[REGNO (i2dest)];
3799 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3800 an ASHIFT. This can occur if it was inside a PLUS and hence
3801 appeared to be a memory address. This is a kludge. */
3802 if (split_code == MULT
3803 && CONST_INT_P (XEXP (*split, 1))
3804 && INTVAL (XEXP (*split, 1)) > 0
3805 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3807 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3808 XEXP (*split, 0), GEN_INT (i)));
3809 /* Update split_code because we may not have a multiply
3810 anymore. */
3811 split_code = GET_CODE (*split);
3814 /* Similarly for (plus (mult FOO (const_int pow2))). */
3815 if (split_code == PLUS
3816 && GET_CODE (XEXP (*split, 0)) == MULT
3817 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3818 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3819 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3821 rtx nsplit = XEXP (*split, 0);
3822 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3823 XEXP (nsplit, 0), GEN_INT (i)));
3824 /* Update split_code because we may not have a multiply
3825 anymore. */
3826 split_code = GET_CODE (*split);
3829 #ifdef INSN_SCHEDULING
3830 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3831 be written as a ZERO_EXTEND. */
3832 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3834 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3835 what it really is. */
3836 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3837 == SIGN_EXTEND)
3838 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3839 SUBREG_REG (*split)));
3840 else
3841 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3842 SUBREG_REG (*split)));
3844 #endif
3846 /* Attempt to split binary operators using arithmetic identities. */
3847 if (BINARY_P (SET_SRC (newpat))
3848 && split_mode == GET_MODE (SET_SRC (newpat))
3849 && ! side_effects_p (SET_SRC (newpat)))
3851 rtx setsrc = SET_SRC (newpat);
3852 machine_mode mode = GET_MODE (setsrc);
3853 enum rtx_code code = GET_CODE (setsrc);
3854 rtx src_op0 = XEXP (setsrc, 0);
3855 rtx src_op1 = XEXP (setsrc, 1);
3857 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3858 if (rtx_equal_p (src_op0, src_op1))
3860 newi2pat = gen_rtx_SET (newdest, src_op0);
3861 SUBST (XEXP (setsrc, 0), newdest);
3862 SUBST (XEXP (setsrc, 1), newdest);
3863 subst_done = true;
3865 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3866 else if ((code == PLUS || code == MULT)
3867 && GET_CODE (src_op0) == code
3868 && GET_CODE (XEXP (src_op0, 0)) == code
3869 && (INTEGRAL_MODE_P (mode)
3870 || (FLOAT_MODE_P (mode)
3871 && flag_unsafe_math_optimizations)))
3873 rtx p = XEXP (XEXP (src_op0, 0), 0);
3874 rtx q = XEXP (XEXP (src_op0, 0), 1);
3875 rtx r = XEXP (src_op0, 1);
3876 rtx s = src_op1;
3878 /* Split both "((X op Y) op X) op Y" and
3879 "((X op Y) op Y) op X" as "T op T" where T is
3880 "X op Y". */
3881 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3882 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3884 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3885 SUBST (XEXP (setsrc, 0), newdest);
3886 SUBST (XEXP (setsrc, 1), newdest);
3887 subst_done = true;
3889 /* Split "((X op X) op Y) op Y)" as "T op T" where
3890 T is "X op Y". */
3891 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3893 rtx tmp = simplify_gen_binary (code, mode, p, r);
3894 newi2pat = gen_rtx_SET (newdest, tmp);
3895 SUBST (XEXP (setsrc, 0), newdest);
3896 SUBST (XEXP (setsrc, 1), newdest);
3897 subst_done = true;
3902 if (!subst_done)
3904 newi2pat = gen_rtx_SET (newdest, *split);
3905 SUBST (*split, newdest);
3908 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3910 /* recog_for_combine might have added CLOBBERs to newi2pat.
3911 Make sure NEWPAT does not depend on the clobbered regs. */
3912 if (GET_CODE (newi2pat) == PARALLEL)
3913 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3914 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3916 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3917 if (reg_overlap_mentioned_p (reg, newpat))
3919 undo_all ();
3920 return 0;
3924 /* If the split point was a MULT and we didn't have one before,
3925 don't use one now. */
3926 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3927 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3931 /* Check for a case where we loaded from memory in a narrow mode and
3932 then sign extended it, but we need both registers. In that case,
3933 we have a PARALLEL with both loads from the same memory location.
3934 We can split this into a load from memory followed by a register-register
3935 copy. This saves at least one insn, more if register allocation can
3936 eliminate the copy.
3938 We cannot do this if the destination of the first assignment is a
3939 condition code register or cc0. We eliminate this case by making sure
3940 the SET_DEST and SET_SRC have the same mode.
3942 We cannot do this if the destination of the second assignment is
3943 a register that we have already assumed is zero-extended. Similarly
3944 for a SUBREG of such a register. */
3946 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3947 && GET_CODE (newpat) == PARALLEL
3948 && XVECLEN (newpat, 0) == 2
3949 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3950 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3951 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3952 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3953 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3954 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3955 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3956 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3957 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3958 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3959 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3960 (REG_P (temp_expr)
3961 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3962 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3963 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3964 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3965 != GET_MODE_MASK (word_mode))))
3966 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3967 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3968 (REG_P (temp_expr)
3969 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3970 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3971 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3972 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3973 != GET_MODE_MASK (word_mode)))))
3974 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3975 SET_SRC (XVECEXP (newpat, 0, 1)))
3976 && ! find_reg_note (i3, REG_UNUSED,
3977 SET_DEST (XVECEXP (newpat, 0, 0))))
3979 rtx ni2dest;
3981 newi2pat = XVECEXP (newpat, 0, 0);
3982 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3983 newpat = XVECEXP (newpat, 0, 1);
3984 SUBST (SET_SRC (newpat),
3985 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3986 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3988 if (i2_code_number >= 0)
3989 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3991 if (insn_code_number >= 0)
3992 swap_i2i3 = 1;
3995 /* Similarly, check for a case where we have a PARALLEL of two independent
3996 SETs but we started with three insns. In this case, we can do the sets
3997 as two separate insns. This case occurs when some SET allows two
3998 other insns to combine, but the destination of that SET is still live.
4000 Also do this if we started with two insns and (at least) one of the
4001 resulting sets is a noop; this noop will be deleted later. */
4003 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4004 && GET_CODE (newpat) == PARALLEL
4005 && XVECLEN (newpat, 0) == 2
4006 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4007 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4008 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
4009 || set_noop_p (XVECEXP (newpat, 0, 1)))
4010 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4011 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4012 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4013 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4014 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4015 XVECEXP (newpat, 0, 0))
4016 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4017 XVECEXP (newpat, 0, 1))
4018 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4019 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4021 rtx set0 = XVECEXP (newpat, 0, 0);
4022 rtx set1 = XVECEXP (newpat, 0, 1);
4024 /* Normally, it doesn't matter which of the two is done first,
4025 but the one that references cc0 can't be the second, and
4026 one which uses any regs/memory set in between i2 and i3 can't
4027 be first. The PARALLEL might also have been pre-existing in i3,
4028 so we need to make sure that we won't wrongly hoist a SET to i2
4029 that would conflict with a death note present in there. */
4030 if (!modified_between_p (SET_SRC (set1), i2, i3)
4031 && !(REG_P (SET_DEST (set1))
4032 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4033 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4034 && find_reg_note (i2, REG_DEAD,
4035 SUBREG_REG (SET_DEST (set1))))
4036 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4037 /* If I3 is a jump, ensure that set0 is a jump so that
4038 we do not create invalid RTL. */
4039 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4042 newi2pat = set1;
4043 newpat = set0;
4045 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4046 && !(REG_P (SET_DEST (set0))
4047 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4048 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4049 && find_reg_note (i2, REG_DEAD,
4050 SUBREG_REG (SET_DEST (set0))))
4051 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4052 /* If I3 is a jump, ensure that set1 is a jump so that
4053 we do not create invalid RTL. */
4054 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4057 newi2pat = set0;
4058 newpat = set1;
4060 else
4062 undo_all ();
4063 return 0;
4066 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4068 if (i2_code_number >= 0)
4070 /* recog_for_combine might have added CLOBBERs to newi2pat.
4071 Make sure NEWPAT does not depend on the clobbered regs. */
4072 if (GET_CODE (newi2pat) == PARALLEL)
4074 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4075 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4077 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4078 if (reg_overlap_mentioned_p (reg, newpat))
4080 undo_all ();
4081 return 0;
4086 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4090 /* If it still isn't recognized, fail and change things back the way they
4091 were. */
4092 if ((insn_code_number < 0
4093 /* Is the result a reasonable ASM_OPERANDS? */
4094 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4096 undo_all ();
4097 return 0;
4100 /* If we had to change another insn, make sure it is valid also. */
4101 if (undobuf.other_insn)
4103 CLEAR_HARD_REG_SET (newpat_used_regs);
4105 other_pat = PATTERN (undobuf.other_insn);
4106 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4107 &new_other_notes);
4109 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4111 undo_all ();
4112 return 0;
4116 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4117 they are adjacent to each other or not. */
4118 if (HAVE_cc0)
4120 rtx_insn *p = prev_nonnote_insn (i3);
4121 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4122 && sets_cc0_p (newi2pat))
4124 undo_all ();
4125 return 0;
4129 /* Only allow this combination if insn_cost reports that the
4130 replacement instructions are cheaper than the originals. */
4131 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4133 undo_all ();
4134 return 0;
4137 if (MAY_HAVE_DEBUG_BIND_INSNS)
4139 struct undo *undo;
4141 for (undo = undobuf.undos; undo; undo = undo->next)
4142 if (undo->kind == UNDO_MODE)
4144 rtx reg = *undo->where.r;
4145 machine_mode new_mode = GET_MODE (reg);
4146 machine_mode old_mode = undo->old_contents.m;
4148 /* Temporarily revert mode back. */
4149 adjust_reg_mode (reg, old_mode);
4151 if (reg == i2dest && i2scratch)
4153 /* If we used i2dest as a scratch register with a
4154 different mode, substitute it for the original
4155 i2src while its original mode is temporarily
4156 restored, and then clear i2scratch so that we don't
4157 do it again later. */
4158 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4159 this_basic_block);
4160 i2scratch = false;
4161 /* Put back the new mode. */
4162 adjust_reg_mode (reg, new_mode);
4164 else
4166 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4167 rtx_insn *first, *last;
4169 if (reg == i2dest)
4171 first = i2;
4172 last = last_combined_insn;
4174 else
4176 first = i3;
4177 last = undobuf.other_insn;
4178 gcc_assert (last);
4179 if (DF_INSN_LUID (last)
4180 < DF_INSN_LUID (last_combined_insn))
4181 last = last_combined_insn;
4184 /* We're dealing with a reg that changed mode but not
4185 meaning, so we want to turn it into a subreg for
4186 the new mode. However, because of REG sharing and
4187 because its mode had already changed, we have to do
4188 it in two steps. First, replace any debug uses of
4189 reg, with its original mode temporarily restored,
4190 with this copy we have created; then, replace the
4191 copy with the SUBREG of the original shared reg,
4192 once again changed to the new mode. */
4193 propagate_for_debug (first, last, reg, tempreg,
4194 this_basic_block);
4195 adjust_reg_mode (reg, new_mode);
4196 propagate_for_debug (first, last, tempreg,
4197 lowpart_subreg (old_mode, reg, new_mode),
4198 this_basic_block);
4203 /* If we will be able to accept this, we have made a
4204 change to the destination of I3. This requires us to
4205 do a few adjustments. */
4207 if (changed_i3_dest)
4209 PATTERN (i3) = newpat;
4210 adjust_for_new_dest (i3);
4213 /* We now know that we can do this combination. Merge the insns and
4214 update the status of registers and LOG_LINKS. */
4216 if (undobuf.other_insn)
4218 rtx note, next;
4220 PATTERN (undobuf.other_insn) = other_pat;
4222 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4223 ensure that they are still valid. Then add any non-duplicate
4224 notes added by recog_for_combine. */
4225 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4227 next = XEXP (note, 1);
4229 if ((REG_NOTE_KIND (note) == REG_DEAD
4230 && !reg_referenced_p (XEXP (note, 0),
4231 PATTERN (undobuf.other_insn)))
4232 ||(REG_NOTE_KIND (note) == REG_UNUSED
4233 && !reg_set_p (XEXP (note, 0),
4234 PATTERN (undobuf.other_insn)))
4235 /* Simply drop equal note since it may be no longer valid
4236 for other_insn. It may be possible to record that CC
4237 register is changed and only discard those notes, but
4238 in practice it's unnecessary complication and doesn't
4239 give any meaningful improvement.
4241 See PR78559. */
4242 || REG_NOTE_KIND (note) == REG_EQUAL
4243 || REG_NOTE_KIND (note) == REG_EQUIV)
4244 remove_note (undobuf.other_insn, note);
4247 distribute_notes (new_other_notes, undobuf.other_insn,
4248 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4249 NULL_RTX);
4252 if (swap_i2i3)
4254 rtx_insn *insn;
4255 struct insn_link *link;
4256 rtx ni2dest;
4258 /* I3 now uses what used to be its destination and which is now
4259 I2's destination. This requires us to do a few adjustments. */
4260 PATTERN (i3) = newpat;
4261 adjust_for_new_dest (i3);
4263 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4264 so we still will.
4266 However, some later insn might be using I2's dest and have
4267 a LOG_LINK pointing at I3. We must remove this link.
4268 The simplest way to remove the link is to point it at I1,
4269 which we know will be a NOTE. */
4271 /* newi2pat is usually a SET here; however, recog_for_combine might
4272 have added some clobbers. */
4273 if (GET_CODE (newi2pat) == PARALLEL)
4274 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4275 else
4276 ni2dest = SET_DEST (newi2pat);
4278 for (insn = NEXT_INSN (i3);
4279 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4280 || insn != BB_HEAD (this_basic_block->next_bb));
4281 insn = NEXT_INSN (insn))
4283 if (NONDEBUG_INSN_P (insn)
4284 && reg_referenced_p (ni2dest, PATTERN (insn)))
4286 FOR_EACH_LOG_LINK (link, insn)
4287 if (link->insn == i3)
4288 link->insn = i1;
4290 break;
4296 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4297 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4298 rtx midnotes = 0;
4299 int from_luid;
4300 /* Compute which registers we expect to eliminate. newi2pat may be setting
4301 either i3dest or i2dest, so we must check it. */
4302 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4303 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4304 || !i2dest_killed
4305 ? 0 : i2dest);
4306 /* For i1, we need to compute both local elimination and global
4307 elimination information with respect to newi2pat because i1dest
4308 may be the same as i3dest, in which case newi2pat may be setting
4309 i1dest. Global information is used when distributing REG_DEAD
4310 note for i2 and i3, in which case it does matter if newi2pat sets
4311 i1dest or not.
4313 Local information is used when distributing REG_DEAD note for i1,
4314 in which case it doesn't matter if newi2pat sets i1dest or not.
4315 See PR62151, if we have four insns combination:
4316 i0: r0 <- i0src
4317 i1: r1 <- i1src (using r0)
4318 REG_DEAD (r0)
4319 i2: r0 <- i2src (using r1)
4320 i3: r3 <- i3src (using r0)
4321 ix: using r0
4322 From i1's point of view, r0 is eliminated, no matter if it is set
4323 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4324 should be discarded.
4326 Note local information only affects cases in forms like "I1->I2->I3",
4327 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4328 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4329 i0dest anyway. */
4330 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4331 || !i1dest_killed
4332 ? 0 : i1dest);
4333 rtx elim_i1 = (local_elim_i1 == 0
4334 || (newi2pat && reg_set_p (i1dest, newi2pat))
4335 ? 0 : i1dest);
4336 /* Same case as i1. */
4337 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4338 ? 0 : i0dest);
4339 rtx elim_i0 = (local_elim_i0 == 0
4340 || (newi2pat && reg_set_p (i0dest, newi2pat))
4341 ? 0 : i0dest);
4343 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4344 clear them. */
4345 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4346 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4347 if (i1)
4348 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4349 if (i0)
4350 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4352 /* Ensure that we do not have something that should not be shared but
4353 occurs multiple times in the new insns. Check this by first
4354 resetting all the `used' flags and then copying anything is shared. */
4356 reset_used_flags (i3notes);
4357 reset_used_flags (i2notes);
4358 reset_used_flags (i1notes);
4359 reset_used_flags (i0notes);
4360 reset_used_flags (newpat);
4361 reset_used_flags (newi2pat);
4362 if (undobuf.other_insn)
4363 reset_used_flags (PATTERN (undobuf.other_insn));
4365 i3notes = copy_rtx_if_shared (i3notes);
4366 i2notes = copy_rtx_if_shared (i2notes);
4367 i1notes = copy_rtx_if_shared (i1notes);
4368 i0notes = copy_rtx_if_shared (i0notes);
4369 newpat = copy_rtx_if_shared (newpat);
4370 newi2pat = copy_rtx_if_shared (newi2pat);
4371 if (undobuf.other_insn)
4372 reset_used_flags (PATTERN (undobuf.other_insn));
4374 INSN_CODE (i3) = insn_code_number;
4375 PATTERN (i3) = newpat;
4377 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4379 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4380 link = XEXP (link, 1))
4382 if (substed_i2)
4384 /* I2SRC must still be meaningful at this point. Some
4385 splitting operations can invalidate I2SRC, but those
4386 operations do not apply to calls. */
4387 gcc_assert (i2src);
4388 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4389 i2dest, i2src);
4391 if (substed_i1)
4392 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4393 i1dest, i1src);
4394 if (substed_i0)
4395 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4396 i0dest, i0src);
4400 if (undobuf.other_insn)
4401 INSN_CODE (undobuf.other_insn) = other_code_number;
4403 /* We had one special case above where I2 had more than one set and
4404 we replaced a destination of one of those sets with the destination
4405 of I3. In that case, we have to update LOG_LINKS of insns later
4406 in this basic block. Note that this (expensive) case is rare.
4408 Also, in this case, we must pretend that all REG_NOTEs for I2
4409 actually came from I3, so that REG_UNUSED notes from I2 will be
4410 properly handled. */
4412 if (i3_subst_into_i2)
4414 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4415 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4416 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4417 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4418 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4419 && ! find_reg_note (i2, REG_UNUSED,
4420 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4421 for (temp_insn = NEXT_INSN (i2);
4422 temp_insn
4423 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4424 || BB_HEAD (this_basic_block) != temp_insn);
4425 temp_insn = NEXT_INSN (temp_insn))
4426 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4427 FOR_EACH_LOG_LINK (link, temp_insn)
4428 if (link->insn == i2)
4429 link->insn = i3;
4431 if (i3notes)
4433 rtx link = i3notes;
4434 while (XEXP (link, 1))
4435 link = XEXP (link, 1);
4436 XEXP (link, 1) = i2notes;
4438 else
4439 i3notes = i2notes;
4440 i2notes = 0;
4443 LOG_LINKS (i3) = NULL;
4444 REG_NOTES (i3) = 0;
4445 LOG_LINKS (i2) = NULL;
4446 REG_NOTES (i2) = 0;
4448 if (newi2pat)
4450 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4451 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4452 this_basic_block);
4453 INSN_CODE (i2) = i2_code_number;
4454 PATTERN (i2) = newi2pat;
4456 else
4458 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4459 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4460 this_basic_block);
4461 SET_INSN_DELETED (i2);
4464 if (i1)
4466 LOG_LINKS (i1) = NULL;
4467 REG_NOTES (i1) = 0;
4468 if (MAY_HAVE_DEBUG_BIND_INSNS)
4469 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4470 this_basic_block);
4471 SET_INSN_DELETED (i1);
4474 if (i0)
4476 LOG_LINKS (i0) = NULL;
4477 REG_NOTES (i0) = 0;
4478 if (MAY_HAVE_DEBUG_BIND_INSNS)
4479 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4480 this_basic_block);
4481 SET_INSN_DELETED (i0);
4484 /* Get death notes for everything that is now used in either I3 or
4485 I2 and used to die in a previous insn. If we built two new
4486 patterns, move from I1 to I2 then I2 to I3 so that we get the
4487 proper movement on registers that I2 modifies. */
4489 if (i0)
4490 from_luid = DF_INSN_LUID (i0);
4491 else if (i1)
4492 from_luid = DF_INSN_LUID (i1);
4493 else
4494 from_luid = DF_INSN_LUID (i2);
4495 if (newi2pat)
4496 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4497 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4499 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4500 if (i3notes)
4501 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4502 elim_i2, elim_i1, elim_i0);
4503 if (i2notes)
4504 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4505 elim_i2, elim_i1, elim_i0);
4506 if (i1notes)
4507 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4508 elim_i2, local_elim_i1, local_elim_i0);
4509 if (i0notes)
4510 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4511 elim_i2, elim_i1, local_elim_i0);
4512 if (midnotes)
4513 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4514 elim_i2, elim_i1, elim_i0);
4516 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4517 know these are REG_UNUSED and want them to go to the desired insn,
4518 so we always pass it as i3. */
4520 if (newi2pat && new_i2_notes)
4521 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4522 NULL_RTX);
4524 if (new_i3_notes)
4525 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4526 NULL_RTX);
4528 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4529 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4530 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4531 in that case, it might delete I2. Similarly for I2 and I1.
4532 Show an additional death due to the REG_DEAD note we make here. If
4533 we discard it in distribute_notes, we will decrement it again. */
4535 if (i3dest_killed)
4537 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4538 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4539 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4540 elim_i1, elim_i0);
4541 else
4542 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4543 elim_i2, elim_i1, elim_i0);
4546 if (i2dest_in_i2src)
4548 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4549 if (newi2pat && reg_set_p (i2dest, newi2pat))
4550 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4551 NULL_RTX, NULL_RTX);
4552 else
4553 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4554 NULL_RTX, NULL_RTX, NULL_RTX);
4557 if (i1dest_in_i1src)
4559 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4560 if (newi2pat && reg_set_p (i1dest, newi2pat))
4561 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4562 NULL_RTX, NULL_RTX);
4563 else
4564 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4565 NULL_RTX, NULL_RTX, NULL_RTX);
4568 if (i0dest_in_i0src)
4570 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4571 if (newi2pat && reg_set_p (i0dest, newi2pat))
4572 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4573 NULL_RTX, NULL_RTX);
4574 else
4575 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4576 NULL_RTX, NULL_RTX, NULL_RTX);
4579 distribute_links (i3links);
4580 distribute_links (i2links);
4581 distribute_links (i1links);
4582 distribute_links (i0links);
4584 if (REG_P (i2dest))
4586 struct insn_link *link;
4587 rtx_insn *i2_insn = 0;
4588 rtx i2_val = 0, set;
4590 /* The insn that used to set this register doesn't exist, and
4591 this life of the register may not exist either. See if one of
4592 I3's links points to an insn that sets I2DEST. If it does,
4593 that is now the last known value for I2DEST. If we don't update
4594 this and I2 set the register to a value that depended on its old
4595 contents, we will get confused. If this insn is used, thing
4596 will be set correctly in combine_instructions. */
4597 FOR_EACH_LOG_LINK (link, i3)
4598 if ((set = single_set (link->insn)) != 0
4599 && rtx_equal_p (i2dest, SET_DEST (set)))
4600 i2_insn = link->insn, i2_val = SET_SRC (set);
4602 record_value_for_reg (i2dest, i2_insn, i2_val);
4604 /* If the reg formerly set in I2 died only once and that was in I3,
4605 zero its use count so it won't make `reload' do any work. */
4606 if (! added_sets_2
4607 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4608 && ! i2dest_in_i2src
4609 && REGNO (i2dest) < reg_n_sets_max)
4610 INC_REG_N_SETS (REGNO (i2dest), -1);
4613 if (i1 && REG_P (i1dest))
4615 struct insn_link *link;
4616 rtx_insn *i1_insn = 0;
4617 rtx i1_val = 0, set;
4619 FOR_EACH_LOG_LINK (link, i3)
4620 if ((set = single_set (link->insn)) != 0
4621 && rtx_equal_p (i1dest, SET_DEST (set)))
4622 i1_insn = link->insn, i1_val = SET_SRC (set);
4624 record_value_for_reg (i1dest, i1_insn, i1_val);
4626 if (! added_sets_1
4627 && ! i1dest_in_i1src
4628 && REGNO (i1dest) < reg_n_sets_max)
4629 INC_REG_N_SETS (REGNO (i1dest), -1);
4632 if (i0 && REG_P (i0dest))
4634 struct insn_link *link;
4635 rtx_insn *i0_insn = 0;
4636 rtx i0_val = 0, set;
4638 FOR_EACH_LOG_LINK (link, i3)
4639 if ((set = single_set (link->insn)) != 0
4640 && rtx_equal_p (i0dest, SET_DEST (set)))
4641 i0_insn = link->insn, i0_val = SET_SRC (set);
4643 record_value_for_reg (i0dest, i0_insn, i0_val);
4645 if (! added_sets_0
4646 && ! i0dest_in_i0src
4647 && REGNO (i0dest) < reg_n_sets_max)
4648 INC_REG_N_SETS (REGNO (i0dest), -1);
4651 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4652 been made to this insn. The order is important, because newi2pat
4653 can affect nonzero_bits of newpat. */
4654 if (newi2pat)
4655 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4656 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4659 if (undobuf.other_insn != NULL_RTX)
4661 if (dump_file)
4663 fprintf (dump_file, "modifying other_insn ");
4664 dump_insn_slim (dump_file, undobuf.other_insn);
4666 df_insn_rescan (undobuf.other_insn);
4669 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4671 if (dump_file)
4673 fprintf (dump_file, "modifying insn i0 ");
4674 dump_insn_slim (dump_file, i0);
4676 df_insn_rescan (i0);
4679 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4681 if (dump_file)
4683 fprintf (dump_file, "modifying insn i1 ");
4684 dump_insn_slim (dump_file, i1);
4686 df_insn_rescan (i1);
4689 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4691 if (dump_file)
4693 fprintf (dump_file, "modifying insn i2 ");
4694 dump_insn_slim (dump_file, i2);
4696 df_insn_rescan (i2);
4699 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4701 if (dump_file)
4703 fprintf (dump_file, "modifying insn i3 ");
4704 dump_insn_slim (dump_file, i3);
4706 df_insn_rescan (i3);
4709 /* Set new_direct_jump_p if a new return or simple jump instruction
4710 has been created. Adjust the CFG accordingly. */
4711 if (returnjump_p (i3) || any_uncondjump_p (i3))
4713 *new_direct_jump_p = 1;
4714 mark_jump_label (PATTERN (i3), i3, 0);
4715 update_cfg_for_uncondjump (i3);
4718 if (undobuf.other_insn != NULL_RTX
4719 && (returnjump_p (undobuf.other_insn)
4720 || any_uncondjump_p (undobuf.other_insn)))
4722 *new_direct_jump_p = 1;
4723 update_cfg_for_uncondjump (undobuf.other_insn);
4726 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4727 && XEXP (PATTERN (i3), 0) == const1_rtx)
4729 basic_block bb = BLOCK_FOR_INSN (i3);
4730 gcc_assert (bb);
4731 remove_edge (split_block (bb, i3));
4732 emit_barrier_after_bb (bb);
4733 *new_direct_jump_p = 1;
4736 if (undobuf.other_insn
4737 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4738 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4740 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4741 gcc_assert (bb);
4742 remove_edge (split_block (bb, undobuf.other_insn));
4743 emit_barrier_after_bb (bb);
4744 *new_direct_jump_p = 1;
4747 /* A noop might also need cleaning up of CFG, if it comes from the
4748 simplification of a jump. */
4749 if (JUMP_P (i3)
4750 && GET_CODE (newpat) == SET
4751 && SET_SRC (newpat) == pc_rtx
4752 && SET_DEST (newpat) == pc_rtx)
4754 *new_direct_jump_p = 1;
4755 update_cfg_for_uncondjump (i3);
4758 if (undobuf.other_insn != NULL_RTX
4759 && JUMP_P (undobuf.other_insn)
4760 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4761 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4762 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4764 *new_direct_jump_p = 1;
4765 update_cfg_for_uncondjump (undobuf.other_insn);
4768 combine_successes++;
4769 undo_commit ();
4771 rtx_insn *ret = newi2pat ? i2 : i3;
4772 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4773 ret = added_links_insn;
4774 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4775 ret = added_notes_insn;
4777 return ret;
4780 /* Get a marker for undoing to the current state. */
4782 static void *
4783 get_undo_marker (void)
4785 return undobuf.undos;
4788 /* Undo the modifications up to the marker. */
4790 static void
4791 undo_to_marker (void *marker)
4793 struct undo *undo, *next;
4795 for (undo = undobuf.undos; undo != marker; undo = next)
4797 gcc_assert (undo);
4799 next = undo->next;
4800 switch (undo->kind)
4802 case UNDO_RTX:
4803 *undo->where.r = undo->old_contents.r;
4804 break;
4805 case UNDO_INT:
4806 *undo->where.i = undo->old_contents.i;
4807 break;
4808 case UNDO_MODE:
4809 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4810 break;
4811 case UNDO_LINKS:
4812 *undo->where.l = undo->old_contents.l;
4813 break;
4814 default:
4815 gcc_unreachable ();
4818 undo->next = undobuf.frees;
4819 undobuf.frees = undo;
4822 undobuf.undos = (struct undo *) marker;
4825 /* Undo all the modifications recorded in undobuf. */
4827 static void
4828 undo_all (void)
4830 undo_to_marker (0);
4833 /* We've committed to accepting the changes we made. Move all
4834 of the undos to the free list. */
4836 static void
4837 undo_commit (void)
4839 struct undo *undo, *next;
4841 for (undo = undobuf.undos; undo; undo = next)
4843 next = undo->next;
4844 undo->next = undobuf.frees;
4845 undobuf.frees = undo;
4847 undobuf.undos = 0;
4850 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4851 where we have an arithmetic expression and return that point. LOC will
4852 be inside INSN.
4854 try_combine will call this function to see if an insn can be split into
4855 two insns. */
4857 static rtx *
4858 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4860 rtx x = *loc;
4861 enum rtx_code code = GET_CODE (x);
4862 rtx *split;
4863 unsigned HOST_WIDE_INT len = 0;
4864 HOST_WIDE_INT pos = 0;
4865 int unsignedp = 0;
4866 rtx inner = NULL_RTX;
4867 scalar_int_mode mode, inner_mode;
4869 /* First special-case some codes. */
4870 switch (code)
4872 case SUBREG:
4873 #ifdef INSN_SCHEDULING
4874 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4875 point. */
4876 if (MEM_P (SUBREG_REG (x)))
4877 return loc;
4878 #endif
4879 return find_split_point (&SUBREG_REG (x), insn, false);
4881 case MEM:
4882 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4883 using LO_SUM and HIGH. */
4884 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4885 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4887 machine_mode address_mode = get_address_mode (x);
4889 SUBST (XEXP (x, 0),
4890 gen_rtx_LO_SUM (address_mode,
4891 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4892 XEXP (x, 0)));
4893 return &XEXP (XEXP (x, 0), 0);
4896 /* If we have a PLUS whose second operand is a constant and the
4897 address is not valid, perhaps will can split it up using
4898 the machine-specific way to split large constants. We use
4899 the first pseudo-reg (one of the virtual regs) as a placeholder;
4900 it will not remain in the result. */
4901 if (GET_CODE (XEXP (x, 0)) == PLUS
4902 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4903 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4904 MEM_ADDR_SPACE (x)))
4906 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4907 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4908 subst_insn);
4910 /* This should have produced two insns, each of which sets our
4911 placeholder. If the source of the second is a valid address,
4912 we can make put both sources together and make a split point
4913 in the middle. */
4915 if (seq
4916 && NEXT_INSN (seq) != NULL_RTX
4917 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4918 && NONJUMP_INSN_P (seq)
4919 && GET_CODE (PATTERN (seq)) == SET
4920 && SET_DEST (PATTERN (seq)) == reg
4921 && ! reg_mentioned_p (reg,
4922 SET_SRC (PATTERN (seq)))
4923 && NONJUMP_INSN_P (NEXT_INSN (seq))
4924 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4925 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4926 && memory_address_addr_space_p
4927 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4928 MEM_ADDR_SPACE (x)))
4930 rtx src1 = SET_SRC (PATTERN (seq));
4931 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4933 /* Replace the placeholder in SRC2 with SRC1. If we can
4934 find where in SRC2 it was placed, that can become our
4935 split point and we can replace this address with SRC2.
4936 Just try two obvious places. */
4938 src2 = replace_rtx (src2, reg, src1);
4939 split = 0;
4940 if (XEXP (src2, 0) == src1)
4941 split = &XEXP (src2, 0);
4942 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4943 && XEXP (XEXP (src2, 0), 0) == src1)
4944 split = &XEXP (XEXP (src2, 0), 0);
4946 if (split)
4948 SUBST (XEXP (x, 0), src2);
4949 return split;
4953 /* If that didn't work, perhaps the first operand is complex and
4954 needs to be computed separately, so make a split point there.
4955 This will occur on machines that just support REG + CONST
4956 and have a constant moved through some previous computation. */
4958 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4959 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4960 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4961 return &XEXP (XEXP (x, 0), 0);
4964 /* If we have a PLUS whose first operand is complex, try computing it
4965 separately by making a split there. */
4966 if (GET_CODE (XEXP (x, 0)) == PLUS
4967 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4968 MEM_ADDR_SPACE (x))
4969 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4970 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4971 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4972 return &XEXP (XEXP (x, 0), 0);
4973 break;
4975 case SET:
4976 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4977 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4978 we need to put the operand into a register. So split at that
4979 point. */
4981 if (SET_DEST (x) == cc0_rtx
4982 && GET_CODE (SET_SRC (x)) != COMPARE
4983 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4984 && !OBJECT_P (SET_SRC (x))
4985 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4986 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4987 return &SET_SRC (x);
4989 /* See if we can split SET_SRC as it stands. */
4990 split = find_split_point (&SET_SRC (x), insn, true);
4991 if (split && split != &SET_SRC (x))
4992 return split;
4994 /* See if we can split SET_DEST as it stands. */
4995 split = find_split_point (&SET_DEST (x), insn, false);
4996 if (split && split != &SET_DEST (x))
4997 return split;
4999 /* See if this is a bitfield assignment with everything constant. If
5000 so, this is an IOR of an AND, so split it into that. */
5001 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5002 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5003 &inner_mode)
5004 && HWI_COMPUTABLE_MODE_P (inner_mode)
5005 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5006 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5007 && CONST_INT_P (SET_SRC (x))
5008 && ((INTVAL (XEXP (SET_DEST (x), 1))
5009 + INTVAL (XEXP (SET_DEST (x), 2)))
5010 <= GET_MODE_PRECISION (inner_mode))
5011 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5013 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5014 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5015 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5016 rtx dest = XEXP (SET_DEST (x), 0);
5017 unsigned HOST_WIDE_INT mask
5018 = (HOST_WIDE_INT_1U << len) - 1;
5019 rtx or_mask;
5021 if (BITS_BIG_ENDIAN)
5022 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5024 or_mask = gen_int_mode (src << pos, inner_mode);
5025 if (src == mask)
5026 SUBST (SET_SRC (x),
5027 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5028 else
5030 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5031 SUBST (SET_SRC (x),
5032 simplify_gen_binary (IOR, inner_mode,
5033 simplify_gen_binary (AND, inner_mode,
5034 dest, negmask),
5035 or_mask));
5038 SUBST (SET_DEST (x), dest);
5040 split = find_split_point (&SET_SRC (x), insn, true);
5041 if (split && split != &SET_SRC (x))
5042 return split;
5045 /* Otherwise, see if this is an operation that we can split into two.
5046 If so, try to split that. */
5047 code = GET_CODE (SET_SRC (x));
5049 switch (code)
5051 case AND:
5052 /* If we are AND'ing with a large constant that is only a single
5053 bit and the result is only being used in a context where we
5054 need to know if it is zero or nonzero, replace it with a bit
5055 extraction. This will avoid the large constant, which might
5056 have taken more than one insn to make. If the constant were
5057 not a valid argument to the AND but took only one insn to make,
5058 this is no worse, but if it took more than one insn, it will
5059 be better. */
5061 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5062 && REG_P (XEXP (SET_SRC (x), 0))
5063 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5064 && REG_P (SET_DEST (x))
5065 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5066 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5067 && XEXP (*split, 0) == SET_DEST (x)
5068 && XEXP (*split, 1) == const0_rtx)
5070 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5071 XEXP (SET_SRC (x), 0),
5072 pos, NULL_RTX, 1, 1, 0, 0);
5073 if (extraction != 0)
5075 SUBST (SET_SRC (x), extraction);
5076 return find_split_point (loc, insn, false);
5079 break;
5081 case NE:
5082 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5083 is known to be on, this can be converted into a NEG of a shift. */
5084 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5085 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5086 && 1 <= (pos = exact_log2
5087 (nonzero_bits (XEXP (SET_SRC (x), 0),
5088 GET_MODE (XEXP (SET_SRC (x), 0))))))
5090 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5092 SUBST (SET_SRC (x),
5093 gen_rtx_NEG (mode,
5094 gen_rtx_LSHIFTRT (mode,
5095 XEXP (SET_SRC (x), 0),
5096 GEN_INT (pos))));
5098 split = find_split_point (&SET_SRC (x), insn, true);
5099 if (split && split != &SET_SRC (x))
5100 return split;
5102 break;
5104 case SIGN_EXTEND:
5105 inner = XEXP (SET_SRC (x), 0);
5107 /* We can't optimize if either mode is a partial integer
5108 mode as we don't know how many bits are significant
5109 in those modes. */
5110 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5111 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5112 break;
5114 pos = 0;
5115 len = GET_MODE_PRECISION (inner_mode);
5116 unsignedp = 0;
5117 break;
5119 case SIGN_EXTRACT:
5120 case ZERO_EXTRACT:
5121 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5122 &inner_mode)
5123 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5124 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5126 inner = XEXP (SET_SRC (x), 0);
5127 len = INTVAL (XEXP (SET_SRC (x), 1));
5128 pos = INTVAL (XEXP (SET_SRC (x), 2));
5130 if (BITS_BIG_ENDIAN)
5131 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5132 unsignedp = (code == ZERO_EXTRACT);
5134 break;
5136 default:
5137 break;
5140 if (len && pos >= 0
5141 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner))
5142 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5144 /* For unsigned, we have a choice of a shift followed by an
5145 AND or two shifts. Use two shifts for field sizes where the
5146 constant might be too large. We assume here that we can
5147 always at least get 8-bit constants in an AND insn, which is
5148 true for every current RISC. */
5150 if (unsignedp && len <= 8)
5152 unsigned HOST_WIDE_INT mask
5153 = (HOST_WIDE_INT_1U << len) - 1;
5154 SUBST (SET_SRC (x),
5155 gen_rtx_AND (mode,
5156 gen_rtx_LSHIFTRT
5157 (mode, gen_lowpart (mode, inner),
5158 GEN_INT (pos)),
5159 gen_int_mode (mask, mode)));
5161 split = find_split_point (&SET_SRC (x), insn, true);
5162 if (split && split != &SET_SRC (x))
5163 return split;
5165 else
5167 SUBST (SET_SRC (x),
5168 gen_rtx_fmt_ee
5169 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5170 gen_rtx_ASHIFT (mode,
5171 gen_lowpart (mode, inner),
5172 GEN_INT (GET_MODE_PRECISION (mode)
5173 - len - pos)),
5174 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5176 split = find_split_point (&SET_SRC (x), insn, true);
5177 if (split && split != &SET_SRC (x))
5178 return split;
5182 /* See if this is a simple operation with a constant as the second
5183 operand. It might be that this constant is out of range and hence
5184 could be used as a split point. */
5185 if (BINARY_P (SET_SRC (x))
5186 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5187 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5188 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5189 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5190 return &XEXP (SET_SRC (x), 1);
5192 /* Finally, see if this is a simple operation with its first operand
5193 not in a register. The operation might require this operand in a
5194 register, so return it as a split point. We can always do this
5195 because if the first operand were another operation, we would have
5196 already found it as a split point. */
5197 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5198 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5199 return &XEXP (SET_SRC (x), 0);
5201 return 0;
5203 case AND:
5204 case IOR:
5205 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5206 it is better to write this as (not (ior A B)) so we can split it.
5207 Similarly for IOR. */
5208 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5210 SUBST (*loc,
5211 gen_rtx_NOT (GET_MODE (x),
5212 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5213 GET_MODE (x),
5214 XEXP (XEXP (x, 0), 0),
5215 XEXP (XEXP (x, 1), 0))));
5216 return find_split_point (loc, insn, set_src);
5219 /* Many RISC machines have a large set of logical insns. If the
5220 second operand is a NOT, put it first so we will try to split the
5221 other operand first. */
5222 if (GET_CODE (XEXP (x, 1)) == NOT)
5224 rtx tem = XEXP (x, 0);
5225 SUBST (XEXP (x, 0), XEXP (x, 1));
5226 SUBST (XEXP (x, 1), tem);
5228 break;
5230 case PLUS:
5231 case MINUS:
5232 /* Canonicalization can produce (minus A (mult B C)), where C is a
5233 constant. It may be better to try splitting (plus (mult B -C) A)
5234 instead if this isn't a multiply by a power of two. */
5235 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5236 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5237 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5239 machine_mode mode = GET_MODE (x);
5240 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5241 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5242 SUBST (*loc, gen_rtx_PLUS (mode,
5243 gen_rtx_MULT (mode,
5244 XEXP (XEXP (x, 1), 0),
5245 gen_int_mode (other_int,
5246 mode)),
5247 XEXP (x, 0)));
5248 return find_split_point (loc, insn, set_src);
5251 /* Split at a multiply-accumulate instruction. However if this is
5252 the SET_SRC, we likely do not have such an instruction and it's
5253 worthless to try this split. */
5254 if (!set_src
5255 && (GET_CODE (XEXP (x, 0)) == MULT
5256 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5257 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5258 return loc;
5260 default:
5261 break;
5264 /* Otherwise, select our actions depending on our rtx class. */
5265 switch (GET_RTX_CLASS (code))
5267 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5268 case RTX_TERNARY:
5269 split = find_split_point (&XEXP (x, 2), insn, false);
5270 if (split)
5271 return split;
5272 /* fall through */
5273 case RTX_BIN_ARITH:
5274 case RTX_COMM_ARITH:
5275 case RTX_COMPARE:
5276 case RTX_COMM_COMPARE:
5277 split = find_split_point (&XEXP (x, 1), insn, false);
5278 if (split)
5279 return split;
5280 /* fall through */
5281 case RTX_UNARY:
5282 /* Some machines have (and (shift ...) ...) insns. If X is not
5283 an AND, but XEXP (X, 0) is, use it as our split point. */
5284 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5285 return &XEXP (x, 0);
5287 split = find_split_point (&XEXP (x, 0), insn, false);
5288 if (split)
5289 return split;
5290 return loc;
5292 default:
5293 /* Otherwise, we don't have a split point. */
5294 return 0;
5298 /* Throughout X, replace FROM with TO, and return the result.
5299 The result is TO if X is FROM;
5300 otherwise the result is X, but its contents may have been modified.
5301 If they were modified, a record was made in undobuf so that
5302 undo_all will (among other things) return X to its original state.
5304 If the number of changes necessary is too much to record to undo,
5305 the excess changes are not made, so the result is invalid.
5306 The changes already made can still be undone.
5307 undobuf.num_undo is incremented for such changes, so by testing that
5308 the caller can tell whether the result is valid.
5310 `n_occurrences' is incremented each time FROM is replaced.
5312 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5314 IN_COND is nonzero if we are at the top level of a condition.
5316 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5317 by copying if `n_occurrences' is nonzero. */
5319 static rtx
5320 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5322 enum rtx_code code = GET_CODE (x);
5323 machine_mode op0_mode = VOIDmode;
5324 const char *fmt;
5325 int len, i;
5326 rtx new_rtx;
5328 /* Two expressions are equal if they are identical copies of a shared
5329 RTX or if they are both registers with the same register number
5330 and mode. */
5332 #define COMBINE_RTX_EQUAL_P(X,Y) \
5333 ((X) == (Y) \
5334 || (REG_P (X) && REG_P (Y) \
5335 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5337 /* Do not substitute into clobbers of regs -- this will never result in
5338 valid RTL. */
5339 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5340 return x;
5342 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5344 n_occurrences++;
5345 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5348 /* If X and FROM are the same register but different modes, they
5349 will not have been seen as equal above. However, the log links code
5350 will make a LOG_LINKS entry for that case. If we do nothing, we
5351 will try to rerecognize our original insn and, when it succeeds,
5352 we will delete the feeding insn, which is incorrect.
5354 So force this insn not to match in this (rare) case. */
5355 if (! in_dest && code == REG && REG_P (from)
5356 && reg_overlap_mentioned_p (x, from))
5357 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5359 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5360 of which may contain things that can be combined. */
5361 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5362 return x;
5364 /* It is possible to have a subexpression appear twice in the insn.
5365 Suppose that FROM is a register that appears within TO.
5366 Then, after that subexpression has been scanned once by `subst',
5367 the second time it is scanned, TO may be found. If we were
5368 to scan TO here, we would find FROM within it and create a
5369 self-referent rtl structure which is completely wrong. */
5370 if (COMBINE_RTX_EQUAL_P (x, to))
5371 return to;
5373 /* Parallel asm_operands need special attention because all of the
5374 inputs are shared across the arms. Furthermore, unsharing the
5375 rtl results in recognition failures. Failure to handle this case
5376 specially can result in circular rtl.
5378 Solve this by doing a normal pass across the first entry of the
5379 parallel, and only processing the SET_DESTs of the subsequent
5380 entries. Ug. */
5382 if (code == PARALLEL
5383 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5384 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5386 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5388 /* If this substitution failed, this whole thing fails. */
5389 if (GET_CODE (new_rtx) == CLOBBER
5390 && XEXP (new_rtx, 0) == const0_rtx)
5391 return new_rtx;
5393 SUBST (XVECEXP (x, 0, 0), new_rtx);
5395 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5397 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5399 if (!REG_P (dest)
5400 && GET_CODE (dest) != CC0
5401 && GET_CODE (dest) != PC)
5403 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5405 /* If this substitution failed, this whole thing fails. */
5406 if (GET_CODE (new_rtx) == CLOBBER
5407 && XEXP (new_rtx, 0) == const0_rtx)
5408 return new_rtx;
5410 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5414 else
5416 len = GET_RTX_LENGTH (code);
5417 fmt = GET_RTX_FORMAT (code);
5419 /* We don't need to process a SET_DEST that is a register, CC0,
5420 or PC, so set up to skip this common case. All other cases
5421 where we want to suppress replacing something inside a
5422 SET_SRC are handled via the IN_DEST operand. */
5423 if (code == SET
5424 && (REG_P (SET_DEST (x))
5425 || GET_CODE (SET_DEST (x)) == CC0
5426 || GET_CODE (SET_DEST (x)) == PC))
5427 fmt = "ie";
5429 /* Trying to simplify the operands of a widening MULT is not likely
5430 to create RTL matching a machine insn. */
5431 if (code == MULT
5432 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5433 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5434 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5435 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5436 && REG_P (XEXP (XEXP (x, 0), 0))
5437 && REG_P (XEXP (XEXP (x, 1), 0))
5438 && from == to)
5439 return x;
5442 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5443 constant. */
5444 if (fmt[0] == 'e')
5445 op0_mode = GET_MODE (XEXP (x, 0));
5447 for (i = 0; i < len; i++)
5449 if (fmt[i] == 'E')
5451 int j;
5452 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5454 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5456 new_rtx = (unique_copy && n_occurrences
5457 ? copy_rtx (to) : to);
5458 n_occurrences++;
5460 else
5462 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5463 unique_copy);
5465 /* If this substitution failed, this whole thing
5466 fails. */
5467 if (GET_CODE (new_rtx) == CLOBBER
5468 && XEXP (new_rtx, 0) == const0_rtx)
5469 return new_rtx;
5472 SUBST (XVECEXP (x, i, j), new_rtx);
5475 else if (fmt[i] == 'e')
5477 /* If this is a register being set, ignore it. */
5478 new_rtx = XEXP (x, i);
5479 if (in_dest
5480 && i == 0
5481 && (((code == SUBREG || code == ZERO_EXTRACT)
5482 && REG_P (new_rtx))
5483 || code == STRICT_LOW_PART))
5486 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5488 /* In general, don't install a subreg involving two
5489 modes not tieable. It can worsen register
5490 allocation, and can even make invalid reload
5491 insns, since the reg inside may need to be copied
5492 from in the outside mode, and that may be invalid
5493 if it is an fp reg copied in integer mode.
5495 We allow two exceptions to this: It is valid if
5496 it is inside another SUBREG and the mode of that
5497 SUBREG and the mode of the inside of TO is
5498 tieable and it is valid if X is a SET that copies
5499 FROM to CC0. */
5501 if (GET_CODE (to) == SUBREG
5502 && !targetm.modes_tieable_p (GET_MODE (to),
5503 GET_MODE (SUBREG_REG (to)))
5504 && ! (code == SUBREG
5505 && (targetm.modes_tieable_p
5506 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5507 && (!HAVE_cc0
5508 || (! (code == SET
5509 && i == 1
5510 && XEXP (x, 0) == cc0_rtx))))
5511 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5513 if (code == SUBREG
5514 && REG_P (to)
5515 && REGNO (to) < FIRST_PSEUDO_REGISTER
5516 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5517 SUBREG_BYTE (x),
5518 GET_MODE (x)) < 0)
5519 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5521 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5522 n_occurrences++;
5524 else
5525 /* If we are in a SET_DEST, suppress most cases unless we
5526 have gone inside a MEM, in which case we want to
5527 simplify the address. We assume here that things that
5528 are actually part of the destination have their inner
5529 parts in the first expression. This is true for SUBREG,
5530 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5531 things aside from REG and MEM that should appear in a
5532 SET_DEST. */
5533 new_rtx = subst (XEXP (x, i), from, to,
5534 (((in_dest
5535 && (code == SUBREG || code == STRICT_LOW_PART
5536 || code == ZERO_EXTRACT))
5537 || code == SET)
5538 && i == 0),
5539 code == IF_THEN_ELSE && i == 0,
5540 unique_copy);
5542 /* If we found that we will have to reject this combination,
5543 indicate that by returning the CLOBBER ourselves, rather than
5544 an expression containing it. This will speed things up as
5545 well as prevent accidents where two CLOBBERs are considered
5546 to be equal, thus producing an incorrect simplification. */
5548 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5549 return new_rtx;
5551 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5553 machine_mode mode = GET_MODE (x);
5555 x = simplify_subreg (GET_MODE (x), new_rtx,
5556 GET_MODE (SUBREG_REG (x)),
5557 SUBREG_BYTE (x));
5558 if (! x)
5559 x = gen_rtx_CLOBBER (mode, const0_rtx);
5561 else if (CONST_SCALAR_INT_P (new_rtx)
5562 && GET_CODE (x) == ZERO_EXTEND)
5564 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5565 new_rtx, GET_MODE (XEXP (x, 0)));
5566 gcc_assert (x);
5568 else
5569 SUBST (XEXP (x, i), new_rtx);
5574 /* Check if we are loading something from the constant pool via float
5575 extension; in this case we would undo compress_float_constant
5576 optimization and degenerate constant load to an immediate value. */
5577 if (GET_CODE (x) == FLOAT_EXTEND
5578 && MEM_P (XEXP (x, 0))
5579 && MEM_READONLY_P (XEXP (x, 0)))
5581 rtx tmp = avoid_constant_pool_reference (x);
5582 if (x != tmp)
5583 return x;
5586 /* Try to simplify X. If the simplification changed the code, it is likely
5587 that further simplification will help, so loop, but limit the number
5588 of repetitions that will be performed. */
5590 for (i = 0; i < 4; i++)
5592 /* If X is sufficiently simple, don't bother trying to do anything
5593 with it. */
5594 if (code != CONST_INT && code != REG && code != CLOBBER)
5595 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5597 if (GET_CODE (x) == code)
5598 break;
5600 code = GET_CODE (x);
5602 /* We no longer know the original mode of operand 0 since we
5603 have changed the form of X) */
5604 op0_mode = VOIDmode;
5607 return x;
5610 /* If X is a commutative operation whose operands are not in the canonical
5611 order, use substitutions to swap them. */
5613 static void
5614 maybe_swap_commutative_operands (rtx x)
5616 if (COMMUTATIVE_ARITH_P (x)
5617 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5619 rtx temp = XEXP (x, 0);
5620 SUBST (XEXP (x, 0), XEXP (x, 1));
5621 SUBST (XEXP (x, 1), temp);
5625 /* Simplify X, a piece of RTL. We just operate on the expression at the
5626 outer level; call `subst' to simplify recursively. Return the new
5627 expression.
5629 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5630 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5631 of a condition. */
5633 static rtx
5634 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5635 int in_cond)
5637 enum rtx_code code = GET_CODE (x);
5638 machine_mode mode = GET_MODE (x);
5639 scalar_int_mode int_mode;
5640 rtx temp;
5641 int i;
5643 /* If this is a commutative operation, put a constant last and a complex
5644 expression first. We don't need to do this for comparisons here. */
5645 maybe_swap_commutative_operands (x);
5647 /* Try to fold this expression in case we have constants that weren't
5648 present before. */
5649 temp = 0;
5650 switch (GET_RTX_CLASS (code))
5652 case RTX_UNARY:
5653 if (op0_mode == VOIDmode)
5654 op0_mode = GET_MODE (XEXP (x, 0));
5655 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5656 break;
5657 case RTX_COMPARE:
5658 case RTX_COMM_COMPARE:
5660 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5661 if (cmp_mode == VOIDmode)
5663 cmp_mode = GET_MODE (XEXP (x, 1));
5664 if (cmp_mode == VOIDmode)
5665 cmp_mode = op0_mode;
5667 temp = simplify_relational_operation (code, mode, cmp_mode,
5668 XEXP (x, 0), XEXP (x, 1));
5670 break;
5671 case RTX_COMM_ARITH:
5672 case RTX_BIN_ARITH:
5673 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5674 break;
5675 case RTX_BITFIELD_OPS:
5676 case RTX_TERNARY:
5677 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5678 XEXP (x, 1), XEXP (x, 2));
5679 break;
5680 default:
5681 break;
5684 if (temp)
5686 x = temp;
5687 code = GET_CODE (temp);
5688 op0_mode = VOIDmode;
5689 mode = GET_MODE (temp);
5692 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5693 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5694 things. Check for cases where both arms are testing the same
5695 condition.
5697 Don't do anything if all operands are very simple. */
5699 if ((BINARY_P (x)
5700 && ((!OBJECT_P (XEXP (x, 0))
5701 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5702 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5703 || (!OBJECT_P (XEXP (x, 1))
5704 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5705 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5706 || (UNARY_P (x)
5707 && (!OBJECT_P (XEXP (x, 0))
5708 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5709 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5711 rtx cond, true_rtx, false_rtx;
5713 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5714 if (cond != 0
5715 /* If everything is a comparison, what we have is highly unlikely
5716 to be simpler, so don't use it. */
5717 && ! (COMPARISON_P (x)
5718 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5720 rtx cop1 = const0_rtx;
5721 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5723 if (cond_code == NE && COMPARISON_P (cond))
5724 return x;
5726 /* Simplify the alternative arms; this may collapse the true and
5727 false arms to store-flag values. Be careful to use copy_rtx
5728 here since true_rtx or false_rtx might share RTL with x as a
5729 result of the if_then_else_cond call above. */
5730 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5731 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5733 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5734 is unlikely to be simpler. */
5735 if (general_operand (true_rtx, VOIDmode)
5736 && general_operand (false_rtx, VOIDmode))
5738 enum rtx_code reversed;
5740 /* Restarting if we generate a store-flag expression will cause
5741 us to loop. Just drop through in this case. */
5743 /* If the result values are STORE_FLAG_VALUE and zero, we can
5744 just make the comparison operation. */
5745 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5746 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5747 cond, cop1);
5748 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5749 && ((reversed = reversed_comparison_code_parts
5750 (cond_code, cond, cop1, NULL))
5751 != UNKNOWN))
5752 x = simplify_gen_relational (reversed, mode, VOIDmode,
5753 cond, cop1);
5755 /* Likewise, we can make the negate of a comparison operation
5756 if the result values are - STORE_FLAG_VALUE and zero. */
5757 else if (CONST_INT_P (true_rtx)
5758 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5759 && false_rtx == const0_rtx)
5760 x = simplify_gen_unary (NEG, mode,
5761 simplify_gen_relational (cond_code,
5762 mode, VOIDmode,
5763 cond, cop1),
5764 mode);
5765 else if (CONST_INT_P (false_rtx)
5766 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5767 && true_rtx == const0_rtx
5768 && ((reversed = reversed_comparison_code_parts
5769 (cond_code, cond, cop1, NULL))
5770 != UNKNOWN))
5771 x = simplify_gen_unary (NEG, mode,
5772 simplify_gen_relational (reversed,
5773 mode, VOIDmode,
5774 cond, cop1),
5775 mode);
5776 else
5777 return gen_rtx_IF_THEN_ELSE (mode,
5778 simplify_gen_relational (cond_code,
5779 mode,
5780 VOIDmode,
5781 cond,
5782 cop1),
5783 true_rtx, false_rtx);
5785 code = GET_CODE (x);
5786 op0_mode = VOIDmode;
5791 /* First see if we can apply the inverse distributive law. */
5792 if (code == PLUS || code == MINUS
5793 || code == AND || code == IOR || code == XOR)
5795 x = apply_distributive_law (x);
5796 code = GET_CODE (x);
5797 op0_mode = VOIDmode;
5800 /* If CODE is an associative operation not otherwise handled, see if we
5801 can associate some operands. This can win if they are constants or
5802 if they are logically related (i.e. (a & b) & a). */
5803 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5804 || code == AND || code == IOR || code == XOR
5805 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5806 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5807 || (flag_associative_math && FLOAT_MODE_P (mode))))
5809 if (GET_CODE (XEXP (x, 0)) == code)
5811 rtx other = XEXP (XEXP (x, 0), 0);
5812 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5813 rtx inner_op1 = XEXP (x, 1);
5814 rtx inner;
5816 /* Make sure we pass the constant operand if any as the second
5817 one if this is a commutative operation. */
5818 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5819 std::swap (inner_op0, inner_op1);
5820 inner = simplify_binary_operation (code == MINUS ? PLUS
5821 : code == DIV ? MULT
5822 : code,
5823 mode, inner_op0, inner_op1);
5825 /* For commutative operations, try the other pair if that one
5826 didn't simplify. */
5827 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5829 other = XEXP (XEXP (x, 0), 1);
5830 inner = simplify_binary_operation (code, mode,
5831 XEXP (XEXP (x, 0), 0),
5832 XEXP (x, 1));
5835 if (inner)
5836 return simplify_gen_binary (code, mode, other, inner);
5840 /* A little bit of algebraic simplification here. */
5841 switch (code)
5843 case MEM:
5844 /* Ensure that our address has any ASHIFTs converted to MULT in case
5845 address-recognizing predicates are called later. */
5846 temp = make_compound_operation (XEXP (x, 0), MEM);
5847 SUBST (XEXP (x, 0), temp);
5848 break;
5850 case SUBREG:
5851 if (op0_mode == VOIDmode)
5852 op0_mode = GET_MODE (SUBREG_REG (x));
5854 /* See if this can be moved to simplify_subreg. */
5855 if (CONSTANT_P (SUBREG_REG (x))
5856 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5857 /* Don't call gen_lowpart if the inner mode
5858 is VOIDmode and we cannot simplify it, as SUBREG without
5859 inner mode is invalid. */
5860 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5861 || gen_lowpart_common (mode, SUBREG_REG (x))))
5862 return gen_lowpart (mode, SUBREG_REG (x));
5864 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5865 break;
5867 rtx temp;
5868 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5869 SUBREG_BYTE (x));
5870 if (temp)
5871 return temp;
5873 /* If op is known to have all lower bits zero, the result is zero. */
5874 scalar_int_mode int_mode, int_op0_mode;
5875 if (!in_dest
5876 && is_a <scalar_int_mode> (mode, &int_mode)
5877 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5878 && (GET_MODE_PRECISION (int_mode)
5879 < GET_MODE_PRECISION (int_op0_mode))
5880 && (subreg_lowpart_offset (int_mode, int_op0_mode)
5881 == SUBREG_BYTE (x))
5882 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5883 && (nonzero_bits (SUBREG_REG (x), int_op0_mode)
5884 & GET_MODE_MASK (int_mode)) == 0)
5885 return CONST0_RTX (int_mode);
5888 /* Don't change the mode of the MEM if that would change the meaning
5889 of the address. */
5890 if (MEM_P (SUBREG_REG (x))
5891 && (MEM_VOLATILE_P (SUBREG_REG (x))
5892 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5893 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5894 return gen_rtx_CLOBBER (mode, const0_rtx);
5896 /* Note that we cannot do any narrowing for non-constants since
5897 we might have been counting on using the fact that some bits were
5898 zero. We now do this in the SET. */
5900 break;
5902 case NEG:
5903 temp = expand_compound_operation (XEXP (x, 0));
5905 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5906 replaced by (lshiftrt X C). This will convert
5907 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5909 if (GET_CODE (temp) == ASHIFTRT
5910 && CONST_INT_P (XEXP (temp, 1))
5911 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5912 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5913 INTVAL (XEXP (temp, 1)));
5915 /* If X has only a single bit that might be nonzero, say, bit I, convert
5916 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5917 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5918 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5919 or a SUBREG of one since we'd be making the expression more
5920 complex if it was just a register. */
5922 if (!REG_P (temp)
5923 && ! (GET_CODE (temp) == SUBREG
5924 && REG_P (SUBREG_REG (temp)))
5925 && is_a <scalar_int_mode> (mode, &int_mode)
5926 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5928 rtx temp1 = simplify_shift_const
5929 (NULL_RTX, ASHIFTRT, int_mode,
5930 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5931 GET_MODE_PRECISION (int_mode) - 1 - i),
5932 GET_MODE_PRECISION (int_mode) - 1 - i);
5934 /* If all we did was surround TEMP with the two shifts, we
5935 haven't improved anything, so don't use it. Otherwise,
5936 we are better off with TEMP1. */
5937 if (GET_CODE (temp1) != ASHIFTRT
5938 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5939 || XEXP (XEXP (temp1, 0), 0) != temp)
5940 return temp1;
5942 break;
5944 case TRUNCATE:
5945 /* We can't handle truncation to a partial integer mode here
5946 because we don't know the real bitsize of the partial
5947 integer mode. */
5948 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5949 break;
5951 if (HWI_COMPUTABLE_MODE_P (mode))
5952 SUBST (XEXP (x, 0),
5953 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5954 GET_MODE_MASK (mode), 0));
5956 /* We can truncate a constant value and return it. */
5957 if (CONST_INT_P (XEXP (x, 0)))
5958 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5960 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5961 whose value is a comparison can be replaced with a subreg if
5962 STORE_FLAG_VALUE permits. */
5963 if (HWI_COMPUTABLE_MODE_P (mode)
5964 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5965 && (temp = get_last_value (XEXP (x, 0)))
5966 && COMPARISON_P (temp))
5967 return gen_lowpart (mode, XEXP (x, 0));
5968 break;
5970 case CONST:
5971 /* (const (const X)) can become (const X). Do it this way rather than
5972 returning the inner CONST since CONST can be shared with a
5973 REG_EQUAL note. */
5974 if (GET_CODE (XEXP (x, 0)) == CONST)
5975 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5976 break;
5978 case LO_SUM:
5979 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5980 can add in an offset. find_split_point will split this address up
5981 again if it doesn't match. */
5982 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5983 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5984 return XEXP (x, 1);
5985 break;
5987 case PLUS:
5988 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5989 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5990 bit-field and can be replaced by either a sign_extend or a
5991 sign_extract. The `and' may be a zero_extend and the two
5992 <c>, -<c> constants may be reversed. */
5993 if (GET_CODE (XEXP (x, 0)) == XOR
5994 && is_a <scalar_int_mode> (mode, &int_mode)
5995 && CONST_INT_P (XEXP (x, 1))
5996 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5997 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5998 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5999 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6000 && HWI_COMPUTABLE_MODE_P (int_mode)
6001 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6002 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6003 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6004 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6005 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6006 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
6007 == (unsigned int) i + 1))))
6008 return simplify_shift_const
6009 (NULL_RTX, ASHIFTRT, int_mode,
6010 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6011 XEXP (XEXP (XEXP (x, 0), 0), 0),
6012 GET_MODE_PRECISION (int_mode) - (i + 1)),
6013 GET_MODE_PRECISION (int_mode) - (i + 1));
6015 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6016 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6017 the bitsize of the mode - 1. This allows simplification of
6018 "a = (b & 8) == 0;" */
6019 if (XEXP (x, 1) == constm1_rtx
6020 && !REG_P (XEXP (x, 0))
6021 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6022 && REG_P (SUBREG_REG (XEXP (x, 0))))
6023 && is_a <scalar_int_mode> (mode, &int_mode)
6024 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6025 return simplify_shift_const
6026 (NULL_RTX, ASHIFTRT, int_mode,
6027 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6028 gen_rtx_XOR (int_mode, XEXP (x, 0),
6029 const1_rtx),
6030 GET_MODE_PRECISION (int_mode) - 1),
6031 GET_MODE_PRECISION (int_mode) - 1);
6033 /* If we are adding two things that have no bits in common, convert
6034 the addition into an IOR. This will often be further simplified,
6035 for example in cases like ((a & 1) + (a & 2)), which can
6036 become a & 3. */
6038 if (HWI_COMPUTABLE_MODE_P (mode)
6039 && (nonzero_bits (XEXP (x, 0), mode)
6040 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6042 /* Try to simplify the expression further. */
6043 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6044 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6046 /* If we could, great. If not, do not go ahead with the IOR
6047 replacement, since PLUS appears in many special purpose
6048 address arithmetic instructions. */
6049 if (GET_CODE (temp) != CLOBBER
6050 && (GET_CODE (temp) != IOR
6051 || ((XEXP (temp, 0) != XEXP (x, 0)
6052 || XEXP (temp, 1) != XEXP (x, 1))
6053 && (XEXP (temp, 0) != XEXP (x, 1)
6054 || XEXP (temp, 1) != XEXP (x, 0)))))
6055 return temp;
6058 /* Canonicalize x + x into x << 1. */
6059 if (GET_MODE_CLASS (mode) == MODE_INT
6060 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6061 && !side_effects_p (XEXP (x, 0)))
6062 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6064 break;
6066 case MINUS:
6067 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6068 (and <foo> (const_int pow2-1)) */
6069 if (is_a <scalar_int_mode> (mode, &int_mode)
6070 && GET_CODE (XEXP (x, 1)) == AND
6071 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6072 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6073 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6074 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6075 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6076 break;
6078 case MULT:
6079 /* If we have (mult (plus A B) C), apply the distributive law and then
6080 the inverse distributive law to see if things simplify. This
6081 occurs mostly in addresses, often when unrolling loops. */
6083 if (GET_CODE (XEXP (x, 0)) == PLUS)
6085 rtx result = distribute_and_simplify_rtx (x, 0);
6086 if (result)
6087 return result;
6090 /* Try simplify a*(b/c) as (a*b)/c. */
6091 if (FLOAT_MODE_P (mode) && flag_associative_math
6092 && GET_CODE (XEXP (x, 0)) == DIV)
6094 rtx tem = simplify_binary_operation (MULT, mode,
6095 XEXP (XEXP (x, 0), 0),
6096 XEXP (x, 1));
6097 if (tem)
6098 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6100 break;
6102 case UDIV:
6103 /* If this is a divide by a power of two, treat it as a shift if
6104 its first operand is a shift. */
6105 if (is_a <scalar_int_mode> (mode, &int_mode)
6106 && CONST_INT_P (XEXP (x, 1))
6107 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6108 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6109 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6110 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6111 || GET_CODE (XEXP (x, 0)) == ROTATE
6112 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6113 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6114 XEXP (x, 0), i);
6115 break;
6117 case EQ: case NE:
6118 case GT: case GTU: case GE: case GEU:
6119 case LT: case LTU: case LE: case LEU:
6120 case UNEQ: case LTGT:
6121 case UNGT: case UNGE:
6122 case UNLT: case UNLE:
6123 case UNORDERED: case ORDERED:
6124 /* If the first operand is a condition code, we can't do anything
6125 with it. */
6126 if (GET_CODE (XEXP (x, 0)) == COMPARE
6127 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6128 && ! CC0_P (XEXP (x, 0))))
6130 rtx op0 = XEXP (x, 0);
6131 rtx op1 = XEXP (x, 1);
6132 enum rtx_code new_code;
6134 if (GET_CODE (op0) == COMPARE)
6135 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6137 /* Simplify our comparison, if possible. */
6138 new_code = simplify_comparison (code, &op0, &op1);
6140 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6141 if only the low-order bit is possibly nonzero in X (such as when
6142 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6143 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6144 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6145 (plus X 1).
6147 Remove any ZERO_EXTRACT we made when thinking this was a
6148 comparison. It may now be simpler to use, e.g., an AND. If a
6149 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6150 the call to make_compound_operation in the SET case.
6152 Don't apply these optimizations if the caller would
6153 prefer a comparison rather than a value.
6154 E.g., for the condition in an IF_THEN_ELSE most targets need
6155 an explicit comparison. */
6157 if (in_cond)
6160 else if (STORE_FLAG_VALUE == 1
6161 && new_code == NE
6162 && is_int_mode (mode, &int_mode)
6163 && op1 == const0_rtx
6164 && int_mode == GET_MODE (op0)
6165 && nonzero_bits (op0, int_mode) == 1)
6166 return gen_lowpart (int_mode,
6167 expand_compound_operation (op0));
6169 else if (STORE_FLAG_VALUE == 1
6170 && new_code == NE
6171 && is_int_mode (mode, &int_mode)
6172 && op1 == const0_rtx
6173 && int_mode == GET_MODE (op0)
6174 && (num_sign_bit_copies (op0, int_mode)
6175 == GET_MODE_PRECISION (int_mode)))
6177 op0 = expand_compound_operation (op0);
6178 return simplify_gen_unary (NEG, int_mode,
6179 gen_lowpart (int_mode, op0),
6180 int_mode);
6183 else if (STORE_FLAG_VALUE == 1
6184 && new_code == EQ
6185 && is_int_mode (mode, &int_mode)
6186 && op1 == const0_rtx
6187 && int_mode == GET_MODE (op0)
6188 && nonzero_bits (op0, int_mode) == 1)
6190 op0 = expand_compound_operation (op0);
6191 return simplify_gen_binary (XOR, int_mode,
6192 gen_lowpart (int_mode, op0),
6193 const1_rtx);
6196 else if (STORE_FLAG_VALUE == 1
6197 && new_code == EQ
6198 && is_int_mode (mode, &int_mode)
6199 && op1 == const0_rtx
6200 && int_mode == GET_MODE (op0)
6201 && (num_sign_bit_copies (op0, int_mode)
6202 == GET_MODE_PRECISION (int_mode)))
6204 op0 = expand_compound_operation (op0);
6205 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6208 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6209 those above. */
6210 if (in_cond)
6213 else if (STORE_FLAG_VALUE == -1
6214 && new_code == NE
6215 && is_int_mode (mode, &int_mode)
6216 && op1 == const0_rtx
6217 && int_mode == GET_MODE (op0)
6218 && (num_sign_bit_copies (op0, int_mode)
6219 == GET_MODE_PRECISION (int_mode)))
6220 return gen_lowpart (int_mode, expand_compound_operation (op0));
6222 else if (STORE_FLAG_VALUE == -1
6223 && new_code == NE
6224 && is_int_mode (mode, &int_mode)
6225 && op1 == const0_rtx
6226 && int_mode == GET_MODE (op0)
6227 && nonzero_bits (op0, int_mode) == 1)
6229 op0 = expand_compound_operation (op0);
6230 return simplify_gen_unary (NEG, int_mode,
6231 gen_lowpart (int_mode, op0),
6232 int_mode);
6235 else if (STORE_FLAG_VALUE == -1
6236 && new_code == EQ
6237 && is_int_mode (mode, &int_mode)
6238 && op1 == const0_rtx
6239 && int_mode == GET_MODE (op0)
6240 && (num_sign_bit_copies (op0, int_mode)
6241 == GET_MODE_PRECISION (int_mode)))
6243 op0 = expand_compound_operation (op0);
6244 return simplify_gen_unary (NOT, int_mode,
6245 gen_lowpart (int_mode, op0),
6246 int_mode);
6249 /* If X is 0/1, (eq X 0) is X-1. */
6250 else if (STORE_FLAG_VALUE == -1
6251 && new_code == EQ
6252 && is_int_mode (mode, &int_mode)
6253 && op1 == const0_rtx
6254 && int_mode == GET_MODE (op0)
6255 && nonzero_bits (op0, int_mode) == 1)
6257 op0 = expand_compound_operation (op0);
6258 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6261 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6262 one bit that might be nonzero, we can convert (ne x 0) to
6263 (ashift x c) where C puts the bit in the sign bit. Remove any
6264 AND with STORE_FLAG_VALUE when we are done, since we are only
6265 going to test the sign bit. */
6266 if (new_code == NE
6267 && is_int_mode (mode, &int_mode)
6268 && HWI_COMPUTABLE_MODE_P (int_mode)
6269 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6270 && op1 == const0_rtx
6271 && int_mode == GET_MODE (op0)
6272 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6274 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6275 expand_compound_operation (op0),
6276 GET_MODE_PRECISION (int_mode) - 1 - i);
6277 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6278 return XEXP (x, 0);
6279 else
6280 return x;
6283 /* If the code changed, return a whole new comparison.
6284 We also need to avoid using SUBST in cases where
6285 simplify_comparison has widened a comparison with a CONST_INT,
6286 since in that case the wider CONST_INT may fail the sanity
6287 checks in do_SUBST. */
6288 if (new_code != code
6289 || (CONST_INT_P (op1)
6290 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6291 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6292 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6294 /* Otherwise, keep this operation, but maybe change its operands.
6295 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6296 SUBST (XEXP (x, 0), op0);
6297 SUBST (XEXP (x, 1), op1);
6299 break;
6301 case IF_THEN_ELSE:
6302 return simplify_if_then_else (x);
6304 case ZERO_EXTRACT:
6305 case SIGN_EXTRACT:
6306 case ZERO_EXTEND:
6307 case SIGN_EXTEND:
6308 /* If we are processing SET_DEST, we are done. */
6309 if (in_dest)
6310 return x;
6312 return expand_compound_operation (x);
6314 case SET:
6315 return simplify_set (x);
6317 case AND:
6318 case IOR:
6319 return simplify_logical (x);
6321 case ASHIFT:
6322 case LSHIFTRT:
6323 case ASHIFTRT:
6324 case ROTATE:
6325 case ROTATERT:
6326 /* If this is a shift by a constant amount, simplify it. */
6327 if (CONST_INT_P (XEXP (x, 1)))
6328 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6329 INTVAL (XEXP (x, 1)));
6331 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6332 SUBST (XEXP (x, 1),
6333 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6334 (HOST_WIDE_INT_1U
6335 << exact_log2 (GET_MODE_UNIT_BITSIZE
6336 (GET_MODE (x))))
6337 - 1,
6338 0));
6339 break;
6341 default:
6342 break;
6345 return x;
6348 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6350 static rtx
6351 simplify_if_then_else (rtx x)
6353 machine_mode mode = GET_MODE (x);
6354 rtx cond = XEXP (x, 0);
6355 rtx true_rtx = XEXP (x, 1);
6356 rtx false_rtx = XEXP (x, 2);
6357 enum rtx_code true_code = GET_CODE (cond);
6358 int comparison_p = COMPARISON_P (cond);
6359 rtx temp;
6360 int i;
6361 enum rtx_code false_code;
6362 rtx reversed;
6363 scalar_int_mode int_mode, inner_mode;
6365 /* Simplify storing of the truth value. */
6366 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6367 return simplify_gen_relational (true_code, mode, VOIDmode,
6368 XEXP (cond, 0), XEXP (cond, 1));
6370 /* Also when the truth value has to be reversed. */
6371 if (comparison_p
6372 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6373 && (reversed = reversed_comparison (cond, mode)))
6374 return reversed;
6376 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6377 in it is being compared against certain values. Get the true and false
6378 comparisons and see if that says anything about the value of each arm. */
6380 if (comparison_p
6381 && ((false_code = reversed_comparison_code (cond, NULL))
6382 != UNKNOWN)
6383 && REG_P (XEXP (cond, 0)))
6385 HOST_WIDE_INT nzb;
6386 rtx from = XEXP (cond, 0);
6387 rtx true_val = XEXP (cond, 1);
6388 rtx false_val = true_val;
6389 int swapped = 0;
6391 /* If FALSE_CODE is EQ, swap the codes and arms. */
6393 if (false_code == EQ)
6395 swapped = 1, true_code = EQ, false_code = NE;
6396 std::swap (true_rtx, false_rtx);
6399 scalar_int_mode from_mode;
6400 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6402 /* If we are comparing against zero and the expression being
6403 tested has only a single bit that might be nonzero, that is
6404 its value when it is not equal to zero. Similarly if it is
6405 known to be -1 or 0. */
6406 if (true_code == EQ
6407 && true_val == const0_rtx
6408 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6410 false_code = EQ;
6411 false_val = gen_int_mode (nzb, from_mode);
6413 else if (true_code == EQ
6414 && true_val == const0_rtx
6415 && (num_sign_bit_copies (from, from_mode)
6416 == GET_MODE_PRECISION (from_mode)))
6418 false_code = EQ;
6419 false_val = constm1_rtx;
6423 /* Now simplify an arm if we know the value of the register in the
6424 branch and it is used in the arm. Be careful due to the potential
6425 of locally-shared RTL. */
6427 if (reg_mentioned_p (from, true_rtx))
6428 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6429 from, true_val),
6430 pc_rtx, pc_rtx, 0, 0, 0);
6431 if (reg_mentioned_p (from, false_rtx))
6432 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6433 from, false_val),
6434 pc_rtx, pc_rtx, 0, 0, 0);
6436 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6437 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6439 true_rtx = XEXP (x, 1);
6440 false_rtx = XEXP (x, 2);
6441 true_code = GET_CODE (cond);
6444 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6445 reversed, do so to avoid needing two sets of patterns for
6446 subtract-and-branch insns. Similarly if we have a constant in the true
6447 arm, the false arm is the same as the first operand of the comparison, or
6448 the false arm is more complicated than the true arm. */
6450 if (comparison_p
6451 && reversed_comparison_code (cond, NULL) != UNKNOWN
6452 && (true_rtx == pc_rtx
6453 || (CONSTANT_P (true_rtx)
6454 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6455 || true_rtx == const0_rtx
6456 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6457 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6458 && !OBJECT_P (false_rtx))
6459 || reg_mentioned_p (true_rtx, false_rtx)
6460 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6462 true_code = reversed_comparison_code (cond, NULL);
6463 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6464 SUBST (XEXP (x, 1), false_rtx);
6465 SUBST (XEXP (x, 2), true_rtx);
6467 std::swap (true_rtx, false_rtx);
6468 cond = XEXP (x, 0);
6470 /* It is possible that the conditional has been simplified out. */
6471 true_code = GET_CODE (cond);
6472 comparison_p = COMPARISON_P (cond);
6475 /* If the two arms are identical, we don't need the comparison. */
6477 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6478 return true_rtx;
6480 /* Convert a == b ? b : a to "a". */
6481 if (true_code == EQ && ! side_effects_p (cond)
6482 && !HONOR_NANS (mode)
6483 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6484 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6485 return false_rtx;
6486 else if (true_code == NE && ! side_effects_p (cond)
6487 && !HONOR_NANS (mode)
6488 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6489 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6490 return true_rtx;
6492 /* Look for cases where we have (abs x) or (neg (abs X)). */
6494 if (GET_MODE_CLASS (mode) == MODE_INT
6495 && comparison_p
6496 && XEXP (cond, 1) == const0_rtx
6497 && GET_CODE (false_rtx) == NEG
6498 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6499 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6500 && ! side_effects_p (true_rtx))
6501 switch (true_code)
6503 case GT:
6504 case GE:
6505 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6506 case LT:
6507 case LE:
6508 return
6509 simplify_gen_unary (NEG, mode,
6510 simplify_gen_unary (ABS, mode, true_rtx, mode),
6511 mode);
6512 default:
6513 break;
6516 /* Look for MIN or MAX. */
6518 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6519 && comparison_p
6520 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6521 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6522 && ! side_effects_p (cond))
6523 switch (true_code)
6525 case GE:
6526 case GT:
6527 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6528 case LE:
6529 case LT:
6530 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6531 case GEU:
6532 case GTU:
6533 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6534 case LEU:
6535 case LTU:
6536 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6537 default:
6538 break;
6541 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6542 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6543 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6544 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6545 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6546 neither 1 or -1, but it isn't worth checking for. */
6548 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6549 && comparison_p
6550 && is_int_mode (mode, &int_mode)
6551 && ! side_effects_p (x))
6553 rtx t = make_compound_operation (true_rtx, SET);
6554 rtx f = make_compound_operation (false_rtx, SET);
6555 rtx cond_op0 = XEXP (cond, 0);
6556 rtx cond_op1 = XEXP (cond, 1);
6557 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6558 scalar_int_mode m = int_mode;
6559 rtx z = 0, c1 = NULL_RTX;
6561 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6562 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6563 || GET_CODE (t) == ASHIFT
6564 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6565 && rtx_equal_p (XEXP (t, 0), f))
6566 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6568 /* If an identity-zero op is commutative, check whether there
6569 would be a match if we swapped the operands. */
6570 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6571 || GET_CODE (t) == XOR)
6572 && rtx_equal_p (XEXP (t, 1), f))
6573 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6574 else if (GET_CODE (t) == SIGN_EXTEND
6575 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6576 && (GET_CODE (XEXP (t, 0)) == PLUS
6577 || GET_CODE (XEXP (t, 0)) == MINUS
6578 || GET_CODE (XEXP (t, 0)) == IOR
6579 || GET_CODE (XEXP (t, 0)) == XOR
6580 || GET_CODE (XEXP (t, 0)) == ASHIFT
6581 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6582 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6583 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6584 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6585 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6586 && (num_sign_bit_copies (f, GET_MODE (f))
6587 > (unsigned int)
6588 (GET_MODE_PRECISION (int_mode)
6589 - GET_MODE_PRECISION (inner_mode))))
6591 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6592 extend_op = SIGN_EXTEND;
6593 m = inner_mode;
6595 else if (GET_CODE (t) == SIGN_EXTEND
6596 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6597 && (GET_CODE (XEXP (t, 0)) == PLUS
6598 || GET_CODE (XEXP (t, 0)) == IOR
6599 || GET_CODE (XEXP (t, 0)) == XOR)
6600 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6601 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6602 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6603 && (num_sign_bit_copies (f, GET_MODE (f))
6604 > (unsigned int)
6605 (GET_MODE_PRECISION (int_mode)
6606 - GET_MODE_PRECISION (inner_mode))))
6608 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6609 extend_op = SIGN_EXTEND;
6610 m = inner_mode;
6612 else if (GET_CODE (t) == ZERO_EXTEND
6613 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6614 && (GET_CODE (XEXP (t, 0)) == PLUS
6615 || GET_CODE (XEXP (t, 0)) == MINUS
6616 || GET_CODE (XEXP (t, 0)) == IOR
6617 || GET_CODE (XEXP (t, 0)) == XOR
6618 || GET_CODE (XEXP (t, 0)) == ASHIFT
6619 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6620 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6621 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6622 && HWI_COMPUTABLE_MODE_P (int_mode)
6623 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6624 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6625 && ((nonzero_bits (f, GET_MODE (f))
6626 & ~GET_MODE_MASK (inner_mode))
6627 == 0))
6629 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6630 extend_op = ZERO_EXTEND;
6631 m = inner_mode;
6633 else if (GET_CODE (t) == ZERO_EXTEND
6634 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6635 && (GET_CODE (XEXP (t, 0)) == PLUS
6636 || GET_CODE (XEXP (t, 0)) == IOR
6637 || GET_CODE (XEXP (t, 0)) == XOR)
6638 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6639 && HWI_COMPUTABLE_MODE_P (int_mode)
6640 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6641 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6642 && ((nonzero_bits (f, GET_MODE (f))
6643 & ~GET_MODE_MASK (inner_mode))
6644 == 0))
6646 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6647 extend_op = ZERO_EXTEND;
6648 m = inner_mode;
6651 if (z)
6653 machine_mode cm = m;
6654 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6655 && GET_MODE (c1) != VOIDmode)
6656 cm = GET_MODE (c1);
6657 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6658 cond_op0, cond_op1),
6659 pc_rtx, pc_rtx, 0, 0, 0);
6660 temp = simplify_gen_binary (MULT, cm, temp,
6661 simplify_gen_binary (MULT, cm, c1,
6662 const_true_rtx));
6663 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6664 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6666 if (extend_op != UNKNOWN)
6667 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6669 return temp;
6673 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6674 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6675 negation of a single bit, we can convert this operation to a shift. We
6676 can actually do this more generally, but it doesn't seem worth it. */
6678 if (true_code == NE
6679 && is_a <scalar_int_mode> (mode, &int_mode)
6680 && XEXP (cond, 1) == const0_rtx
6681 && false_rtx == const0_rtx
6682 && CONST_INT_P (true_rtx)
6683 && ((1 == nonzero_bits (XEXP (cond, 0), int_mode)
6684 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6685 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6686 == GET_MODE_PRECISION (int_mode))
6687 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6688 return
6689 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6690 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6692 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6693 non-zero bit in A is C1. */
6694 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6695 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6696 && is_a <scalar_int_mode> (mode, &int_mode)
6697 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6698 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6699 == nonzero_bits (XEXP (cond, 0), inner_mode)
6700 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6702 rtx val = XEXP (cond, 0);
6703 if (inner_mode == int_mode)
6704 return val;
6705 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6706 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6709 return x;
6712 /* Simplify X, a SET expression. Return the new expression. */
6714 static rtx
6715 simplify_set (rtx x)
6717 rtx src = SET_SRC (x);
6718 rtx dest = SET_DEST (x);
6719 machine_mode mode
6720 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6721 rtx_insn *other_insn;
6722 rtx *cc_use;
6723 scalar_int_mode int_mode;
6725 /* (set (pc) (return)) gets written as (return). */
6726 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6727 return src;
6729 /* Now that we know for sure which bits of SRC we are using, see if we can
6730 simplify the expression for the object knowing that we only need the
6731 low-order bits. */
6733 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6735 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6736 SUBST (SET_SRC (x), src);
6739 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6740 the comparison result and try to simplify it unless we already have used
6741 undobuf.other_insn. */
6742 if ((GET_MODE_CLASS (mode) == MODE_CC
6743 || GET_CODE (src) == COMPARE
6744 || CC0_P (dest))
6745 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6746 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6747 && COMPARISON_P (*cc_use)
6748 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6750 enum rtx_code old_code = GET_CODE (*cc_use);
6751 enum rtx_code new_code;
6752 rtx op0, op1, tmp;
6753 int other_changed = 0;
6754 rtx inner_compare = NULL_RTX;
6755 machine_mode compare_mode = GET_MODE (dest);
6757 if (GET_CODE (src) == COMPARE)
6759 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6760 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6762 inner_compare = op0;
6763 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6766 else
6767 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6769 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6770 op0, op1);
6771 if (!tmp)
6772 new_code = old_code;
6773 else if (!CONSTANT_P (tmp))
6775 new_code = GET_CODE (tmp);
6776 op0 = XEXP (tmp, 0);
6777 op1 = XEXP (tmp, 1);
6779 else
6781 rtx pat = PATTERN (other_insn);
6782 undobuf.other_insn = other_insn;
6783 SUBST (*cc_use, tmp);
6785 /* Attempt to simplify CC user. */
6786 if (GET_CODE (pat) == SET)
6788 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6789 if (new_rtx != NULL_RTX)
6790 SUBST (SET_SRC (pat), new_rtx);
6793 /* Convert X into a no-op move. */
6794 SUBST (SET_DEST (x), pc_rtx);
6795 SUBST (SET_SRC (x), pc_rtx);
6796 return x;
6799 /* Simplify our comparison, if possible. */
6800 new_code = simplify_comparison (new_code, &op0, &op1);
6802 #ifdef SELECT_CC_MODE
6803 /* If this machine has CC modes other than CCmode, check to see if we
6804 need to use a different CC mode here. */
6805 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6806 compare_mode = GET_MODE (op0);
6807 else if (inner_compare
6808 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6809 && new_code == old_code
6810 && op0 == XEXP (inner_compare, 0)
6811 && op1 == XEXP (inner_compare, 1))
6812 compare_mode = GET_MODE (inner_compare);
6813 else
6814 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6816 /* If the mode changed, we have to change SET_DEST, the mode in the
6817 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6818 a hard register, just build new versions with the proper mode. If it
6819 is a pseudo, we lose unless it is only time we set the pseudo, in
6820 which case we can safely change its mode. */
6821 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6823 if (can_change_dest_mode (dest, 0, compare_mode))
6825 unsigned int regno = REGNO (dest);
6826 rtx new_dest;
6828 if (regno < FIRST_PSEUDO_REGISTER)
6829 new_dest = gen_rtx_REG (compare_mode, regno);
6830 else
6832 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6833 new_dest = regno_reg_rtx[regno];
6836 SUBST (SET_DEST (x), new_dest);
6837 SUBST (XEXP (*cc_use, 0), new_dest);
6838 other_changed = 1;
6840 dest = new_dest;
6843 #endif /* SELECT_CC_MODE */
6845 /* If the code changed, we have to build a new comparison in
6846 undobuf.other_insn. */
6847 if (new_code != old_code)
6849 int other_changed_previously = other_changed;
6850 unsigned HOST_WIDE_INT mask;
6851 rtx old_cc_use = *cc_use;
6853 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6854 dest, const0_rtx));
6855 other_changed = 1;
6857 /* If the only change we made was to change an EQ into an NE or
6858 vice versa, OP0 has only one bit that might be nonzero, and OP1
6859 is zero, check if changing the user of the condition code will
6860 produce a valid insn. If it won't, we can keep the original code
6861 in that insn by surrounding our operation with an XOR. */
6863 if (((old_code == NE && new_code == EQ)
6864 || (old_code == EQ && new_code == NE))
6865 && ! other_changed_previously && op1 == const0_rtx
6866 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6867 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6869 rtx pat = PATTERN (other_insn), note = 0;
6871 if ((recog_for_combine (&pat, other_insn, &note) < 0
6872 && ! check_asm_operands (pat)))
6874 *cc_use = old_cc_use;
6875 other_changed = 0;
6877 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6878 gen_int_mode (mask,
6879 GET_MODE (op0)));
6884 if (other_changed)
6885 undobuf.other_insn = other_insn;
6887 /* Don't generate a compare of a CC with 0, just use that CC. */
6888 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6890 SUBST (SET_SRC (x), op0);
6891 src = SET_SRC (x);
6893 /* Otherwise, if we didn't previously have the same COMPARE we
6894 want, create it from scratch. */
6895 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6896 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6898 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6899 src = SET_SRC (x);
6902 else
6904 /* Get SET_SRC in a form where we have placed back any
6905 compound expressions. Then do the checks below. */
6906 src = make_compound_operation (src, SET);
6907 SUBST (SET_SRC (x), src);
6910 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6911 and X being a REG or (subreg (reg)), we may be able to convert this to
6912 (set (subreg:m2 x) (op)).
6914 We can always do this if M1 is narrower than M2 because that means that
6915 we only care about the low bits of the result.
6917 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6918 perform a narrower operation than requested since the high-order bits will
6919 be undefined. On machine where it is defined, this transformation is safe
6920 as long as M1 and M2 have the same number of words. */
6922 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6923 && !OBJECT_P (SUBREG_REG (src))
6924 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6925 / UNITS_PER_WORD)
6926 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6927 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6928 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6929 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6930 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6931 GET_MODE (SUBREG_REG (src)),
6932 GET_MODE (src)))
6933 && (REG_P (dest)
6934 || (GET_CODE (dest) == SUBREG
6935 && REG_P (SUBREG_REG (dest)))))
6937 SUBST (SET_DEST (x),
6938 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6939 dest));
6940 SUBST (SET_SRC (x), SUBREG_REG (src));
6942 src = SET_SRC (x), dest = SET_DEST (x);
6945 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6946 in SRC. */
6947 if (dest == cc0_rtx
6948 && partial_subreg_p (src)
6949 && subreg_lowpart_p (src))
6951 rtx inner = SUBREG_REG (src);
6952 machine_mode inner_mode = GET_MODE (inner);
6954 /* Here we make sure that we don't have a sign bit on. */
6955 if (val_signbit_known_clear_p (GET_MODE (src),
6956 nonzero_bits (inner, inner_mode)))
6958 SUBST (SET_SRC (x), inner);
6959 src = SET_SRC (x);
6963 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6964 would require a paradoxical subreg. Replace the subreg with a
6965 zero_extend to avoid the reload that would otherwise be required. */
6967 enum rtx_code extend_op;
6968 if (paradoxical_subreg_p (src)
6969 && MEM_P (SUBREG_REG (src))
6970 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6972 SUBST (SET_SRC (x),
6973 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6975 src = SET_SRC (x);
6978 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6979 are comparing an item known to be 0 or -1 against 0, use a logical
6980 operation instead. Check for one of the arms being an IOR of the other
6981 arm with some value. We compute three terms to be IOR'ed together. In
6982 practice, at most two will be nonzero. Then we do the IOR's. */
6984 if (GET_CODE (dest) != PC
6985 && GET_CODE (src) == IF_THEN_ELSE
6986 && is_int_mode (GET_MODE (src), &int_mode)
6987 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6988 && XEXP (XEXP (src, 0), 1) == const0_rtx
6989 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
6990 && (!HAVE_conditional_move
6991 || ! can_conditionally_move_p (int_mode))
6992 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
6993 == GET_MODE_PRECISION (int_mode))
6994 && ! side_effects_p (src))
6996 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6997 ? XEXP (src, 1) : XEXP (src, 2));
6998 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6999 ? XEXP (src, 2) : XEXP (src, 1));
7000 rtx term1 = const0_rtx, term2, term3;
7002 if (GET_CODE (true_rtx) == IOR
7003 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7004 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7005 else if (GET_CODE (true_rtx) == IOR
7006 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7007 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7008 else if (GET_CODE (false_rtx) == IOR
7009 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7010 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7011 else if (GET_CODE (false_rtx) == IOR
7012 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7013 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7015 term2 = simplify_gen_binary (AND, int_mode,
7016 XEXP (XEXP (src, 0), 0), true_rtx);
7017 term3 = simplify_gen_binary (AND, int_mode,
7018 simplify_gen_unary (NOT, int_mode,
7019 XEXP (XEXP (src, 0), 0),
7020 int_mode),
7021 false_rtx);
7023 SUBST (SET_SRC (x),
7024 simplify_gen_binary (IOR, int_mode,
7025 simplify_gen_binary (IOR, int_mode,
7026 term1, term2),
7027 term3));
7029 src = SET_SRC (x);
7032 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7033 whole thing fail. */
7034 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7035 return src;
7036 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7037 return dest;
7038 else
7039 /* Convert this into a field assignment operation, if possible. */
7040 return make_field_assignment (x);
7043 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7044 result. */
7046 static rtx
7047 simplify_logical (rtx x)
7049 rtx op0 = XEXP (x, 0);
7050 rtx op1 = XEXP (x, 1);
7051 scalar_int_mode mode;
7053 switch (GET_CODE (x))
7055 case AND:
7056 /* We can call simplify_and_const_int only if we don't lose
7057 any (sign) bits when converting INTVAL (op1) to
7058 "unsigned HOST_WIDE_INT". */
7059 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7060 && CONST_INT_P (op1)
7061 && (HWI_COMPUTABLE_MODE_P (mode)
7062 || INTVAL (op1) > 0))
7064 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7065 if (GET_CODE (x) != AND)
7066 return x;
7068 op0 = XEXP (x, 0);
7069 op1 = XEXP (x, 1);
7072 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7073 apply the distributive law and then the inverse distributive
7074 law to see if things simplify. */
7075 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7077 rtx result = distribute_and_simplify_rtx (x, 0);
7078 if (result)
7079 return result;
7081 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7083 rtx result = distribute_and_simplify_rtx (x, 1);
7084 if (result)
7085 return result;
7087 break;
7089 case IOR:
7090 /* If we have (ior (and A B) C), apply the distributive law and then
7091 the inverse distributive law to see if things simplify. */
7093 if (GET_CODE (op0) == AND)
7095 rtx result = distribute_and_simplify_rtx (x, 0);
7096 if (result)
7097 return result;
7100 if (GET_CODE (op1) == AND)
7102 rtx result = distribute_and_simplify_rtx (x, 1);
7103 if (result)
7104 return result;
7106 break;
7108 default:
7109 gcc_unreachable ();
7112 return x;
7115 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7116 operations" because they can be replaced with two more basic operations.
7117 ZERO_EXTEND is also considered "compound" because it can be replaced with
7118 an AND operation, which is simpler, though only one operation.
7120 The function expand_compound_operation is called with an rtx expression
7121 and will convert it to the appropriate shifts and AND operations,
7122 simplifying at each stage.
7124 The function make_compound_operation is called to convert an expression
7125 consisting of shifts and ANDs into the equivalent compound expression.
7126 It is the inverse of this function, loosely speaking. */
7128 static rtx
7129 expand_compound_operation (rtx x)
7131 unsigned HOST_WIDE_INT pos = 0, len;
7132 int unsignedp = 0;
7133 unsigned int modewidth;
7134 rtx tem;
7135 scalar_int_mode inner_mode;
7137 switch (GET_CODE (x))
7139 case ZERO_EXTEND:
7140 unsignedp = 1;
7141 /* FALLTHRU */
7142 case SIGN_EXTEND:
7143 /* We can't necessarily use a const_int for a multiword mode;
7144 it depends on implicitly extending the value.
7145 Since we don't know the right way to extend it,
7146 we can't tell whether the implicit way is right.
7148 Even for a mode that is no wider than a const_int,
7149 we can't win, because we need to sign extend one of its bits through
7150 the rest of it, and we don't know which bit. */
7151 if (CONST_INT_P (XEXP (x, 0)))
7152 return x;
7154 /* Reject modes that aren't scalar integers because turning vector
7155 or complex modes into shifts causes problems. */
7156 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7157 return x;
7159 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7160 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7161 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7162 reloaded. If not for that, MEM's would very rarely be safe.
7164 Reject modes bigger than a word, because we might not be able
7165 to reference a two-register group starting with an arbitrary register
7166 (and currently gen_lowpart might crash for a SUBREG). */
7168 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7169 return x;
7171 len = GET_MODE_PRECISION (inner_mode);
7172 /* If the inner object has VOIDmode (the only way this can happen
7173 is if it is an ASM_OPERANDS), we can't do anything since we don't
7174 know how much masking to do. */
7175 if (len == 0)
7176 return x;
7178 break;
7180 case ZERO_EXTRACT:
7181 unsignedp = 1;
7183 /* fall through */
7185 case SIGN_EXTRACT:
7186 /* If the operand is a CLOBBER, just return it. */
7187 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7188 return XEXP (x, 0);
7190 if (!CONST_INT_P (XEXP (x, 1))
7191 || !CONST_INT_P (XEXP (x, 2)))
7192 return x;
7194 /* Reject modes that aren't scalar integers because turning vector
7195 or complex modes into shifts causes problems. */
7196 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7197 return x;
7199 len = INTVAL (XEXP (x, 1));
7200 pos = INTVAL (XEXP (x, 2));
7202 /* This should stay within the object being extracted, fail otherwise. */
7203 if (len + pos > GET_MODE_PRECISION (inner_mode))
7204 return x;
7206 if (BITS_BIG_ENDIAN)
7207 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7209 break;
7211 default:
7212 return x;
7215 /* We've rejected non-scalar operations by now. */
7216 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7218 /* Convert sign extension to zero extension, if we know that the high
7219 bit is not set, as this is easier to optimize. It will be converted
7220 back to cheaper alternative in make_extraction. */
7221 if (GET_CODE (x) == SIGN_EXTEND
7222 && HWI_COMPUTABLE_MODE_P (mode)
7223 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7224 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7225 == 0))
7227 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7228 rtx temp2 = expand_compound_operation (temp);
7230 /* Make sure this is a profitable operation. */
7231 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7232 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7233 return temp2;
7234 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7235 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7236 return temp;
7237 else
7238 return x;
7241 /* We can optimize some special cases of ZERO_EXTEND. */
7242 if (GET_CODE (x) == ZERO_EXTEND)
7244 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7245 know that the last value didn't have any inappropriate bits
7246 set. */
7247 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7248 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7249 && HWI_COMPUTABLE_MODE_P (mode)
7250 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7251 & ~GET_MODE_MASK (inner_mode)) == 0)
7252 return XEXP (XEXP (x, 0), 0);
7254 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7255 if (GET_CODE (XEXP (x, 0)) == SUBREG
7256 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7257 && subreg_lowpart_p (XEXP (x, 0))
7258 && HWI_COMPUTABLE_MODE_P (mode)
7259 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7260 & ~GET_MODE_MASK (inner_mode)) == 0)
7261 return SUBREG_REG (XEXP (x, 0));
7263 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7264 is a comparison and STORE_FLAG_VALUE permits. This is like
7265 the first case, but it works even when MODE is larger
7266 than HOST_WIDE_INT. */
7267 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7268 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7269 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7270 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7271 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7272 return XEXP (XEXP (x, 0), 0);
7274 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7275 if (GET_CODE (XEXP (x, 0)) == SUBREG
7276 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7277 && subreg_lowpart_p (XEXP (x, 0))
7278 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7279 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7280 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7281 return SUBREG_REG (XEXP (x, 0));
7285 /* If we reach here, we want to return a pair of shifts. The inner
7286 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7287 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7288 logical depending on the value of UNSIGNEDP.
7290 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7291 converted into an AND of a shift.
7293 We must check for the case where the left shift would have a negative
7294 count. This can happen in a case like (x >> 31) & 255 on machines
7295 that can't shift by a constant. On those machines, we would first
7296 combine the shift with the AND to produce a variable-position
7297 extraction. Then the constant of 31 would be substituted in
7298 to produce such a position. */
7300 modewidth = GET_MODE_PRECISION (mode);
7301 if (modewidth >= pos + len)
7303 tem = gen_lowpart (mode, XEXP (x, 0));
7304 if (!tem || GET_CODE (tem) == CLOBBER)
7305 return x;
7306 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7307 tem, modewidth - pos - len);
7308 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7309 mode, tem, modewidth - len);
7311 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7312 tem = simplify_and_const_int (NULL_RTX, mode,
7313 simplify_shift_const (NULL_RTX, LSHIFTRT,
7314 mode, XEXP (x, 0),
7315 pos),
7316 (HOST_WIDE_INT_1U << len) - 1);
7317 else
7318 /* Any other cases we can't handle. */
7319 return x;
7321 /* If we couldn't do this for some reason, return the original
7322 expression. */
7323 if (GET_CODE (tem) == CLOBBER)
7324 return x;
7326 return tem;
7329 /* X is a SET which contains an assignment of one object into
7330 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7331 or certain SUBREGS). If possible, convert it into a series of
7332 logical operations.
7334 We half-heartedly support variable positions, but do not at all
7335 support variable lengths. */
7337 static const_rtx
7338 expand_field_assignment (const_rtx x)
7340 rtx inner;
7341 rtx pos; /* Always counts from low bit. */
7342 int len;
7343 rtx mask, cleared, masked;
7344 scalar_int_mode compute_mode;
7346 /* Loop until we find something we can't simplify. */
7347 while (1)
7349 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7350 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7352 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7353 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7354 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7356 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7357 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7359 inner = XEXP (SET_DEST (x), 0);
7360 len = INTVAL (XEXP (SET_DEST (x), 1));
7361 pos = XEXP (SET_DEST (x), 2);
7363 /* A constant position should stay within the width of INNER. */
7364 if (CONST_INT_P (pos)
7365 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7366 break;
7368 if (BITS_BIG_ENDIAN)
7370 if (CONST_INT_P (pos))
7371 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7372 - INTVAL (pos));
7373 else if (GET_CODE (pos) == MINUS
7374 && CONST_INT_P (XEXP (pos, 1))
7375 && (INTVAL (XEXP (pos, 1))
7376 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7377 /* If position is ADJUST - X, new position is X. */
7378 pos = XEXP (pos, 0);
7379 else
7381 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7382 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7383 gen_int_mode (prec - len,
7384 GET_MODE (pos)),
7385 pos);
7390 /* If the destination is a subreg that overwrites the whole of the inner
7391 register, we can move the subreg to the source. */
7392 else if (GET_CODE (SET_DEST (x)) == SUBREG
7393 /* We need SUBREGs to compute nonzero_bits properly. */
7394 && nonzero_sign_valid
7395 && !read_modify_subreg_p (SET_DEST (x)))
7397 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7398 gen_lowpart
7399 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7400 SET_SRC (x)));
7401 continue;
7403 else
7404 break;
7406 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7407 inner = SUBREG_REG (inner);
7409 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7410 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7412 /* Don't do anything for vector or complex integral types. */
7413 if (! FLOAT_MODE_P (GET_MODE (inner)))
7414 break;
7416 /* Try to find an integral mode to pun with. */
7417 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7418 .exists (&compute_mode))
7419 break;
7421 inner = gen_lowpart (compute_mode, inner);
7424 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7425 if (len >= HOST_BITS_PER_WIDE_INT)
7426 break;
7428 /* Don't try to compute in too wide unsupported modes. */
7429 if (!targetm.scalar_mode_supported_p (compute_mode))
7430 break;
7432 /* Now compute the equivalent expression. Make a copy of INNER
7433 for the SET_DEST in case it is a MEM into which we will substitute;
7434 we don't want shared RTL in that case. */
7435 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7436 compute_mode);
7437 cleared = simplify_gen_binary (AND, compute_mode,
7438 simplify_gen_unary (NOT, compute_mode,
7439 simplify_gen_binary (ASHIFT,
7440 compute_mode,
7441 mask, pos),
7442 compute_mode),
7443 inner);
7444 masked = simplify_gen_binary (ASHIFT, compute_mode,
7445 simplify_gen_binary (
7446 AND, compute_mode,
7447 gen_lowpart (compute_mode, SET_SRC (x)),
7448 mask),
7449 pos);
7451 x = gen_rtx_SET (copy_rtx (inner),
7452 simplify_gen_binary (IOR, compute_mode,
7453 cleared, masked));
7456 return x;
7459 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7460 it is an RTX that represents the (variable) starting position; otherwise,
7461 POS is the (constant) starting bit position. Both are counted from the LSB.
7463 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7465 IN_DEST is nonzero if this is a reference in the destination of a SET.
7466 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7467 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7468 be used.
7470 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7471 ZERO_EXTRACT should be built even for bits starting at bit 0.
7473 MODE is the desired mode of the result (if IN_DEST == 0).
7475 The result is an RTX for the extraction or NULL_RTX if the target
7476 can't handle it. */
7478 static rtx
7479 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7480 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7481 int in_dest, int in_compare)
7483 /* This mode describes the size of the storage area
7484 to fetch the overall value from. Within that, we
7485 ignore the POS lowest bits, etc. */
7486 machine_mode is_mode = GET_MODE (inner);
7487 machine_mode inner_mode;
7488 scalar_int_mode wanted_inner_mode;
7489 scalar_int_mode wanted_inner_reg_mode = word_mode;
7490 scalar_int_mode pos_mode = word_mode;
7491 machine_mode extraction_mode = word_mode;
7492 rtx new_rtx = 0;
7493 rtx orig_pos_rtx = pos_rtx;
7494 HOST_WIDE_INT orig_pos;
7496 if (pos_rtx && CONST_INT_P (pos_rtx))
7497 pos = INTVAL (pos_rtx), pos_rtx = 0;
7499 if (GET_CODE (inner) == SUBREG
7500 && subreg_lowpart_p (inner)
7501 && (paradoxical_subreg_p (inner)
7502 /* If trying or potentionally trying to extract
7503 bits outside of is_mode, don't look through
7504 non-paradoxical SUBREGs. See PR82192. */
7505 || (pos_rtx == NULL_RTX
7506 && pos + len <= GET_MODE_PRECISION (is_mode))))
7508 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7509 consider just the QI as the memory to extract from.
7510 The subreg adds or removes high bits; its mode is
7511 irrelevant to the meaning of this extraction,
7512 since POS and LEN count from the lsb. */
7513 if (MEM_P (SUBREG_REG (inner)))
7514 is_mode = GET_MODE (SUBREG_REG (inner));
7515 inner = SUBREG_REG (inner);
7517 else if (GET_CODE (inner) == ASHIFT
7518 && CONST_INT_P (XEXP (inner, 1))
7519 && pos_rtx == 0 && pos == 0
7520 && len > UINTVAL (XEXP (inner, 1)))
7522 /* We're extracting the least significant bits of an rtx
7523 (ashift X (const_int C)), where LEN > C. Extract the
7524 least significant (LEN - C) bits of X, giving an rtx
7525 whose mode is MODE, then shift it left C times. */
7526 new_rtx = make_extraction (mode, XEXP (inner, 0),
7527 0, 0, len - INTVAL (XEXP (inner, 1)),
7528 unsignedp, in_dest, in_compare);
7529 if (new_rtx != 0)
7530 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7532 else if (GET_CODE (inner) == TRUNCATE
7533 /* If trying or potentionally trying to extract
7534 bits outside of is_mode, don't look through
7535 TRUNCATE. See PR82192. */
7536 && pos_rtx == NULL_RTX
7537 && pos + len <= GET_MODE_PRECISION (is_mode))
7538 inner = XEXP (inner, 0);
7540 inner_mode = GET_MODE (inner);
7542 /* See if this can be done without an extraction. We never can if the
7543 width of the field is not the same as that of some integer mode. For
7544 registers, we can only avoid the extraction if the position is at the
7545 low-order bit and this is either not in the destination or we have the
7546 appropriate STRICT_LOW_PART operation available.
7548 For MEM, we can avoid an extract if the field starts on an appropriate
7549 boundary and we can change the mode of the memory reference. */
7551 scalar_int_mode tmode;
7552 if (int_mode_for_size (len, 1).exists (&tmode)
7553 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7554 && !MEM_P (inner)
7555 && (pos == 0 || REG_P (inner))
7556 && (inner_mode == tmode
7557 || !REG_P (inner)
7558 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7559 || reg_truncated_to_mode (tmode, inner))
7560 && (! in_dest
7561 || (REG_P (inner)
7562 && have_insn_for (STRICT_LOW_PART, tmode))))
7563 || (MEM_P (inner) && pos_rtx == 0
7564 && (pos
7565 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7566 : BITS_PER_UNIT)) == 0
7567 /* We can't do this if we are widening INNER_MODE (it
7568 may not be aligned, for one thing). */
7569 && !paradoxical_subreg_p (tmode, inner_mode)
7570 && (inner_mode == tmode
7571 || (! mode_dependent_address_p (XEXP (inner, 0),
7572 MEM_ADDR_SPACE (inner))
7573 && ! MEM_VOLATILE_P (inner))))))
7575 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7576 field. If the original and current mode are the same, we need not
7577 adjust the offset. Otherwise, we do if bytes big endian.
7579 If INNER is not a MEM, get a piece consisting of just the field
7580 of interest (in this case POS % BITS_PER_WORD must be 0). */
7582 if (MEM_P (inner))
7584 HOST_WIDE_INT offset;
7586 /* POS counts from lsb, but make OFFSET count in memory order. */
7587 if (BYTES_BIG_ENDIAN)
7588 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7589 else
7590 offset = pos / BITS_PER_UNIT;
7592 new_rtx = adjust_address_nv (inner, tmode, offset);
7594 else if (REG_P (inner))
7596 if (tmode != inner_mode)
7598 /* We can't call gen_lowpart in a DEST since we
7599 always want a SUBREG (see below) and it would sometimes
7600 return a new hard register. */
7601 if (pos || in_dest)
7603 unsigned int offset
7604 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7606 /* Avoid creating invalid subregs, for example when
7607 simplifying (x>>32)&255. */
7608 if (!validate_subreg (tmode, inner_mode, inner, offset))
7609 return NULL_RTX;
7611 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7613 else
7614 new_rtx = gen_lowpart (tmode, inner);
7616 else
7617 new_rtx = inner;
7619 else
7620 new_rtx = force_to_mode (inner, tmode,
7621 len >= HOST_BITS_PER_WIDE_INT
7622 ? HOST_WIDE_INT_M1U
7623 : (HOST_WIDE_INT_1U << len) - 1, 0);
7625 /* If this extraction is going into the destination of a SET,
7626 make a STRICT_LOW_PART unless we made a MEM. */
7628 if (in_dest)
7629 return (MEM_P (new_rtx) ? new_rtx
7630 : (GET_CODE (new_rtx) != SUBREG
7631 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7632 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7634 if (mode == tmode)
7635 return new_rtx;
7637 if (CONST_SCALAR_INT_P (new_rtx))
7638 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7639 mode, new_rtx, tmode);
7641 /* If we know that no extraneous bits are set, and that the high
7642 bit is not set, convert the extraction to the cheaper of
7643 sign and zero extension, that are equivalent in these cases. */
7644 if (flag_expensive_optimizations
7645 && (HWI_COMPUTABLE_MODE_P (tmode)
7646 && ((nonzero_bits (new_rtx, tmode)
7647 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7648 == 0)))
7650 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7651 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7653 /* Prefer ZERO_EXTENSION, since it gives more information to
7654 backends. */
7655 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7656 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7657 return temp;
7658 return temp1;
7661 /* Otherwise, sign- or zero-extend unless we already are in the
7662 proper mode. */
7664 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7665 mode, new_rtx));
7668 /* Unless this is a COMPARE or we have a funny memory reference,
7669 don't do anything with zero-extending field extracts starting at
7670 the low-order bit since they are simple AND operations. */
7671 if (pos_rtx == 0 && pos == 0 && ! in_dest
7672 && ! in_compare && unsignedp)
7673 return 0;
7675 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7676 if the position is not a constant and the length is not 1. In all
7677 other cases, we would only be going outside our object in cases when
7678 an original shift would have been undefined. */
7679 if (MEM_P (inner)
7680 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7681 || (pos_rtx != 0 && len != 1)))
7682 return 0;
7684 enum extraction_pattern pattern = (in_dest ? EP_insv
7685 : unsignedp ? EP_extzv : EP_extv);
7687 /* If INNER is not from memory, we want it to have the mode of a register
7688 extraction pattern's structure operand, or word_mode if there is no
7689 such pattern. The same applies to extraction_mode and pos_mode
7690 and their respective operands.
7692 For memory, assume that the desired extraction_mode and pos_mode
7693 are the same as for a register operation, since at present we don't
7694 have named patterns for aligned memory structures. */
7695 struct extraction_insn insn;
7696 if (get_best_reg_extraction_insn (&insn, pattern,
7697 GET_MODE_BITSIZE (inner_mode), mode))
7699 wanted_inner_reg_mode = insn.struct_mode.require ();
7700 pos_mode = insn.pos_mode;
7701 extraction_mode = insn.field_mode;
7704 /* Never narrow an object, since that might not be safe. */
7706 if (mode != VOIDmode
7707 && partial_subreg_p (extraction_mode, mode))
7708 extraction_mode = mode;
7710 if (!MEM_P (inner))
7711 wanted_inner_mode = wanted_inner_reg_mode;
7712 else
7714 /* Be careful not to go beyond the extracted object and maintain the
7715 natural alignment of the memory. */
7716 wanted_inner_mode = smallest_int_mode_for_size (len);
7717 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7718 > GET_MODE_BITSIZE (wanted_inner_mode))
7719 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7722 orig_pos = pos;
7724 if (BITS_BIG_ENDIAN)
7726 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7727 BITS_BIG_ENDIAN style. If position is constant, compute new
7728 position. Otherwise, build subtraction.
7729 Note that POS is relative to the mode of the original argument.
7730 If it's a MEM we need to recompute POS relative to that.
7731 However, if we're extracting from (or inserting into) a register,
7732 we want to recompute POS relative to wanted_inner_mode. */
7733 int width = (MEM_P (inner)
7734 ? GET_MODE_BITSIZE (is_mode)
7735 : GET_MODE_BITSIZE (wanted_inner_mode));
7737 if (pos_rtx == 0)
7738 pos = width - len - pos;
7739 else
7740 pos_rtx
7741 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7742 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7743 pos_rtx);
7744 /* POS may be less than 0 now, but we check for that below.
7745 Note that it can only be less than 0 if !MEM_P (inner). */
7748 /* If INNER has a wider mode, and this is a constant extraction, try to
7749 make it smaller and adjust the byte to point to the byte containing
7750 the value. */
7751 if (wanted_inner_mode != VOIDmode
7752 && inner_mode != wanted_inner_mode
7753 && ! pos_rtx
7754 && partial_subreg_p (wanted_inner_mode, is_mode)
7755 && MEM_P (inner)
7756 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7757 && ! MEM_VOLATILE_P (inner))
7759 int offset = 0;
7761 /* The computations below will be correct if the machine is big
7762 endian in both bits and bytes or little endian in bits and bytes.
7763 If it is mixed, we must adjust. */
7765 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7766 adjust OFFSET to compensate. */
7767 if (BYTES_BIG_ENDIAN
7768 && paradoxical_subreg_p (is_mode, inner_mode))
7769 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7771 /* We can now move to the desired byte. */
7772 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7773 * GET_MODE_SIZE (wanted_inner_mode);
7774 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7776 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7777 && is_mode != wanted_inner_mode)
7778 offset = (GET_MODE_SIZE (is_mode)
7779 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7781 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7784 /* If INNER is not memory, get it into the proper mode. If we are changing
7785 its mode, POS must be a constant and smaller than the size of the new
7786 mode. */
7787 else if (!MEM_P (inner))
7789 /* On the LHS, don't create paradoxical subregs implicitely truncating
7790 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7791 if (in_dest
7792 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7793 wanted_inner_mode))
7794 return NULL_RTX;
7796 if (GET_MODE (inner) != wanted_inner_mode
7797 && (pos_rtx != 0
7798 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7799 return NULL_RTX;
7801 if (orig_pos < 0)
7802 return NULL_RTX;
7804 inner = force_to_mode (inner, wanted_inner_mode,
7805 pos_rtx
7806 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7807 ? HOST_WIDE_INT_M1U
7808 : (((HOST_WIDE_INT_1U << len) - 1)
7809 << orig_pos),
7813 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7814 have to zero extend. Otherwise, we can just use a SUBREG.
7816 We dealt with constant rtxes earlier, so pos_rtx cannot
7817 have VOIDmode at this point. */
7818 if (pos_rtx != 0
7819 && (GET_MODE_SIZE (pos_mode)
7820 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7822 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7823 GET_MODE (pos_rtx));
7825 /* If we know that no extraneous bits are set, and that the high
7826 bit is not set, convert extraction to cheaper one - either
7827 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7828 cases. */
7829 if (flag_expensive_optimizations
7830 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7831 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7832 & ~(((unsigned HOST_WIDE_INT)
7833 GET_MODE_MASK (GET_MODE (pos_rtx)))
7834 >> 1))
7835 == 0)))
7837 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7838 GET_MODE (pos_rtx));
7840 /* Prefer ZERO_EXTENSION, since it gives more information to
7841 backends. */
7842 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7843 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7844 temp = temp1;
7846 pos_rtx = temp;
7849 /* Make POS_RTX unless we already have it and it is correct. If we don't
7850 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7851 be a CONST_INT. */
7852 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7853 pos_rtx = orig_pos_rtx;
7855 else if (pos_rtx == 0)
7856 pos_rtx = GEN_INT (pos);
7858 /* Make the required operation. See if we can use existing rtx. */
7859 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7860 extraction_mode, inner, GEN_INT (len), pos_rtx);
7861 if (! in_dest)
7862 new_rtx = gen_lowpart (mode, new_rtx);
7864 return new_rtx;
7867 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7868 can be commuted with any other operations in X. Return X without
7869 that shift if so. */
7871 static rtx
7872 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7874 enum rtx_code code = GET_CODE (x);
7875 rtx tem;
7877 switch (code)
7879 case ASHIFT:
7880 /* This is the shift itself. If it is wide enough, we will return
7881 either the value being shifted if the shift count is equal to
7882 COUNT or a shift for the difference. */
7883 if (CONST_INT_P (XEXP (x, 1))
7884 && INTVAL (XEXP (x, 1)) >= count)
7885 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7886 INTVAL (XEXP (x, 1)) - count);
7887 break;
7889 case NEG: case NOT:
7890 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7891 return simplify_gen_unary (code, mode, tem, mode);
7893 break;
7895 case PLUS: case IOR: case XOR: case AND:
7896 /* If we can safely shift this constant and we find the inner shift,
7897 make a new operation. */
7898 if (CONST_INT_P (XEXP (x, 1))
7899 && (UINTVAL (XEXP (x, 1))
7900 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7901 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7903 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7904 return simplify_gen_binary (code, mode, tem,
7905 gen_int_mode (val, mode));
7907 break;
7909 default:
7910 break;
7913 return 0;
7916 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7917 level of the expression and MODE is its mode. IN_CODE is as for
7918 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7919 that should be used when recursing on operands of *X_PTR.
7921 There are two possible actions:
7923 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7924 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7926 - Return a new rtx, which the caller returns directly. */
7928 static rtx
7929 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7930 enum rtx_code in_code,
7931 enum rtx_code *next_code_ptr)
7933 rtx x = *x_ptr;
7934 enum rtx_code next_code = *next_code_ptr;
7935 enum rtx_code code = GET_CODE (x);
7936 int mode_width = GET_MODE_PRECISION (mode);
7937 rtx rhs, lhs;
7938 rtx new_rtx = 0;
7939 int i;
7940 rtx tem;
7941 scalar_int_mode inner_mode;
7942 bool equality_comparison = false;
7944 if (in_code == EQ)
7946 equality_comparison = true;
7947 in_code = COMPARE;
7950 /* Process depending on the code of this operation. If NEW is set
7951 nonzero, it will be returned. */
7953 switch (code)
7955 case ASHIFT:
7956 /* Convert shifts by constants into multiplications if inside
7957 an address. */
7958 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7959 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7960 && INTVAL (XEXP (x, 1)) >= 0)
7962 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7963 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7965 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7966 if (GET_CODE (new_rtx) == NEG)
7968 new_rtx = XEXP (new_rtx, 0);
7969 multval = -multval;
7971 multval = trunc_int_for_mode (multval, mode);
7972 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7974 break;
7976 case PLUS:
7977 lhs = XEXP (x, 0);
7978 rhs = XEXP (x, 1);
7979 lhs = make_compound_operation (lhs, next_code);
7980 rhs = make_compound_operation (rhs, next_code);
7981 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7983 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7984 XEXP (lhs, 1));
7985 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7987 else if (GET_CODE (lhs) == MULT
7988 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7990 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7991 simplify_gen_unary (NEG, mode,
7992 XEXP (lhs, 1),
7993 mode));
7994 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7996 else
7998 SUBST (XEXP (x, 0), lhs);
7999 SUBST (XEXP (x, 1), rhs);
8001 maybe_swap_commutative_operands (x);
8002 return x;
8004 case MINUS:
8005 lhs = XEXP (x, 0);
8006 rhs = XEXP (x, 1);
8007 lhs = make_compound_operation (lhs, next_code);
8008 rhs = make_compound_operation (rhs, next_code);
8009 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8011 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8012 XEXP (rhs, 1));
8013 return simplify_gen_binary (PLUS, mode, tem, lhs);
8015 else if (GET_CODE (rhs) == MULT
8016 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8018 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8019 simplify_gen_unary (NEG, mode,
8020 XEXP (rhs, 1),
8021 mode));
8022 return simplify_gen_binary (PLUS, mode, tem, lhs);
8024 else
8026 SUBST (XEXP (x, 0), lhs);
8027 SUBST (XEXP (x, 1), rhs);
8028 return x;
8031 case AND:
8032 /* If the second operand is not a constant, we can't do anything
8033 with it. */
8034 if (!CONST_INT_P (XEXP (x, 1)))
8035 break;
8037 /* If the constant is a power of two minus one and the first operand
8038 is a logical right shift, make an extraction. */
8039 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8040 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8042 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8043 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8044 i, 1, 0, in_code == COMPARE);
8047 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8048 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8049 && subreg_lowpart_p (XEXP (x, 0))
8050 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8051 &inner_mode)
8052 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8053 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8055 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8056 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8057 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8058 XEXP (inner_x0, 1),
8059 i, 1, 0, in_code == COMPARE);
8061 /* If we narrowed the mode when dropping the subreg, then we lose. */
8062 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8063 new_rtx = NULL;
8065 /* If that didn't give anything, see if the AND simplifies on
8066 its own. */
8067 if (!new_rtx && i >= 0)
8069 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8070 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8071 0, in_code == COMPARE);
8074 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8075 else if ((GET_CODE (XEXP (x, 0)) == XOR
8076 || GET_CODE (XEXP (x, 0)) == IOR)
8077 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8078 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8079 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8081 /* Apply the distributive law, and then try to make extractions. */
8082 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8083 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8084 XEXP (x, 1)),
8085 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8086 XEXP (x, 1)));
8087 new_rtx = make_compound_operation (new_rtx, in_code);
8090 /* If we are have (and (rotate X C) M) and C is larger than the number
8091 of bits in M, this is an extraction. */
8093 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8094 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8095 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8096 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8098 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8099 new_rtx = make_extraction (mode, new_rtx,
8100 (GET_MODE_PRECISION (mode)
8101 - INTVAL (XEXP (XEXP (x, 0), 1))),
8102 NULL_RTX, i, 1, 0, in_code == COMPARE);
8105 /* On machines without logical shifts, if the operand of the AND is
8106 a logical shift and our mask turns off all the propagated sign
8107 bits, we can replace the logical shift with an arithmetic shift. */
8108 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8109 && !have_insn_for (LSHIFTRT, mode)
8110 && have_insn_for (ASHIFTRT, mode)
8111 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8112 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8113 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8114 && mode_width <= HOST_BITS_PER_WIDE_INT)
8116 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8118 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8119 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8120 SUBST (XEXP (x, 0),
8121 gen_rtx_ASHIFTRT (mode,
8122 make_compound_operation (XEXP (XEXP (x,
8125 next_code),
8126 XEXP (XEXP (x, 0), 1)));
8129 /* If the constant is one less than a power of two, this might be
8130 representable by an extraction even if no shift is present.
8131 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8132 we are in a COMPARE. */
8133 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8134 new_rtx = make_extraction (mode,
8135 make_compound_operation (XEXP (x, 0),
8136 next_code),
8137 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8139 /* If we are in a comparison and this is an AND with a power of two,
8140 convert this into the appropriate bit extract. */
8141 else if (in_code == COMPARE
8142 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8143 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8144 new_rtx = make_extraction (mode,
8145 make_compound_operation (XEXP (x, 0),
8146 next_code),
8147 i, NULL_RTX, 1, 1, 0, 1);
8149 /* If the one operand is a paradoxical subreg of a register or memory and
8150 the constant (limited to the smaller mode) has only zero bits where
8151 the sub expression has known zero bits, this can be expressed as
8152 a zero_extend. */
8153 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8155 rtx sub;
8157 sub = XEXP (XEXP (x, 0), 0);
8158 machine_mode sub_mode = GET_MODE (sub);
8159 if ((REG_P (sub) || MEM_P (sub))
8160 && GET_MODE_PRECISION (sub_mode) < mode_width)
8162 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8163 unsigned HOST_WIDE_INT mask;
8165 /* original AND constant with all the known zero bits set */
8166 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8167 if ((mask & mode_mask) == mode_mask)
8169 new_rtx = make_compound_operation (sub, next_code);
8170 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8171 GET_MODE_PRECISION (sub_mode),
8172 1, 0, in_code == COMPARE);
8177 break;
8179 case LSHIFTRT:
8180 /* If the sign bit is known to be zero, replace this with an
8181 arithmetic shift. */
8182 if (have_insn_for (ASHIFTRT, mode)
8183 && ! have_insn_for (LSHIFTRT, mode)
8184 && mode_width <= HOST_BITS_PER_WIDE_INT
8185 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8187 new_rtx = gen_rtx_ASHIFTRT (mode,
8188 make_compound_operation (XEXP (x, 0),
8189 next_code),
8190 XEXP (x, 1));
8191 break;
8194 /* fall through */
8196 case ASHIFTRT:
8197 lhs = XEXP (x, 0);
8198 rhs = XEXP (x, 1);
8200 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8201 this is a SIGN_EXTRACT. */
8202 if (CONST_INT_P (rhs)
8203 && GET_CODE (lhs) == ASHIFT
8204 && CONST_INT_P (XEXP (lhs, 1))
8205 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8206 && INTVAL (XEXP (lhs, 1)) >= 0
8207 && INTVAL (rhs) < mode_width)
8209 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8210 new_rtx = make_extraction (mode, new_rtx,
8211 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8212 NULL_RTX, mode_width - INTVAL (rhs),
8213 code == LSHIFTRT, 0, in_code == COMPARE);
8214 break;
8217 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8218 If so, try to merge the shifts into a SIGN_EXTEND. We could
8219 also do this for some cases of SIGN_EXTRACT, but it doesn't
8220 seem worth the effort; the case checked for occurs on Alpha. */
8222 if (!OBJECT_P (lhs)
8223 && ! (GET_CODE (lhs) == SUBREG
8224 && (OBJECT_P (SUBREG_REG (lhs))))
8225 && CONST_INT_P (rhs)
8226 && INTVAL (rhs) >= 0
8227 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8228 && INTVAL (rhs) < mode_width
8229 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8230 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8231 next_code),
8232 0, NULL_RTX, mode_width - INTVAL (rhs),
8233 code == LSHIFTRT, 0, in_code == COMPARE);
8235 break;
8237 case SUBREG:
8238 /* Call ourselves recursively on the inner expression. If we are
8239 narrowing the object and it has a different RTL code from
8240 what it originally did, do this SUBREG as a force_to_mode. */
8242 rtx inner = SUBREG_REG (x), simplified;
8243 enum rtx_code subreg_code = in_code;
8245 /* If the SUBREG is masking of a logical right shift,
8246 make an extraction. */
8247 if (GET_CODE (inner) == LSHIFTRT
8248 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8249 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8250 && CONST_INT_P (XEXP (inner, 1))
8251 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8252 && subreg_lowpart_p (x))
8254 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8255 int width = GET_MODE_PRECISION (inner_mode)
8256 - INTVAL (XEXP (inner, 1));
8257 if (width > mode_width)
8258 width = mode_width;
8259 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8260 width, 1, 0, in_code == COMPARE);
8261 break;
8264 /* If in_code is COMPARE, it isn't always safe to pass it through
8265 to the recursive make_compound_operation call. */
8266 if (subreg_code == COMPARE
8267 && (!subreg_lowpart_p (x)
8268 || GET_CODE (inner) == SUBREG
8269 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8270 is (const_int 0), rather than
8271 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8272 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8273 for non-equality comparisons against 0 is not equivalent
8274 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8275 || (GET_CODE (inner) == AND
8276 && CONST_INT_P (XEXP (inner, 1))
8277 && partial_subreg_p (x)
8278 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8279 >= GET_MODE_BITSIZE (mode) - 1)))
8280 subreg_code = SET;
8282 tem = make_compound_operation (inner, subreg_code);
8284 simplified
8285 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8286 if (simplified)
8287 tem = simplified;
8289 if (GET_CODE (tem) != GET_CODE (inner)
8290 && partial_subreg_p (x)
8291 && subreg_lowpart_p (x))
8293 rtx newer
8294 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8296 /* If we have something other than a SUBREG, we might have
8297 done an expansion, so rerun ourselves. */
8298 if (GET_CODE (newer) != SUBREG)
8299 newer = make_compound_operation (newer, in_code);
8301 /* force_to_mode can expand compounds. If it just re-expanded
8302 the compound, use gen_lowpart to convert to the desired
8303 mode. */
8304 if (rtx_equal_p (newer, x)
8305 /* Likewise if it re-expanded the compound only partially.
8306 This happens for SUBREG of ZERO_EXTRACT if they extract
8307 the same number of bits. */
8308 || (GET_CODE (newer) == SUBREG
8309 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8310 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8311 && GET_CODE (inner) == AND
8312 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8313 return gen_lowpart (GET_MODE (x), tem);
8315 return newer;
8318 if (simplified)
8319 return tem;
8321 break;
8323 default:
8324 break;
8327 if (new_rtx)
8328 *x_ptr = gen_lowpart (mode, new_rtx);
8329 *next_code_ptr = next_code;
8330 return NULL_RTX;
8333 /* Look at the expression rooted at X. Look for expressions
8334 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8335 Form these expressions.
8337 Return the new rtx, usually just X.
8339 Also, for machines like the VAX that don't have logical shift insns,
8340 try to convert logical to arithmetic shift operations in cases where
8341 they are equivalent. This undoes the canonicalizations to logical
8342 shifts done elsewhere.
8344 We try, as much as possible, to re-use rtl expressions to save memory.
8346 IN_CODE says what kind of expression we are processing. Normally, it is
8347 SET. In a memory address it is MEM. When processing the arguments of
8348 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8349 precisely it is an equality comparison against zero. */
8352 make_compound_operation (rtx x, enum rtx_code in_code)
8354 enum rtx_code code = GET_CODE (x);
8355 const char *fmt;
8356 int i, j;
8357 enum rtx_code next_code;
8358 rtx new_rtx, tem;
8360 /* Select the code to be used in recursive calls. Once we are inside an
8361 address, we stay there. If we have a comparison, set to COMPARE,
8362 but once inside, go back to our default of SET. */
8364 next_code = (code == MEM ? MEM
8365 : ((code == COMPARE || COMPARISON_P (x))
8366 && XEXP (x, 1) == const0_rtx) ? COMPARE
8367 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8369 scalar_int_mode mode;
8370 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8372 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8373 &next_code);
8374 if (new_rtx)
8375 return new_rtx;
8376 code = GET_CODE (x);
8379 /* Now recursively process each operand of this operation. We need to
8380 handle ZERO_EXTEND specially so that we don't lose track of the
8381 inner mode. */
8382 if (code == ZERO_EXTEND)
8384 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8385 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8386 new_rtx, GET_MODE (XEXP (x, 0)));
8387 if (tem)
8388 return tem;
8389 SUBST (XEXP (x, 0), new_rtx);
8390 return x;
8393 fmt = GET_RTX_FORMAT (code);
8394 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8395 if (fmt[i] == 'e')
8397 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8398 SUBST (XEXP (x, i), new_rtx);
8400 else if (fmt[i] == 'E')
8401 for (j = 0; j < XVECLEN (x, i); j++)
8403 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8404 SUBST (XVECEXP (x, i, j), new_rtx);
8407 maybe_swap_commutative_operands (x);
8408 return x;
8411 /* Given M see if it is a value that would select a field of bits
8412 within an item, but not the entire word. Return -1 if not.
8413 Otherwise, return the starting position of the field, where 0 is the
8414 low-order bit.
8416 *PLEN is set to the length of the field. */
8418 static int
8419 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8421 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8422 int pos = m ? ctz_hwi (m) : -1;
8423 int len = 0;
8425 if (pos >= 0)
8426 /* Now shift off the low-order zero bits and see if we have a
8427 power of two minus 1. */
8428 len = exact_log2 ((m >> pos) + 1);
8430 if (len <= 0)
8431 pos = -1;
8433 *plen = len;
8434 return pos;
8437 /* If X refers to a register that equals REG in value, replace these
8438 references with REG. */
8439 static rtx
8440 canon_reg_for_combine (rtx x, rtx reg)
8442 rtx op0, op1, op2;
8443 const char *fmt;
8444 int i;
8445 bool copied;
8447 enum rtx_code code = GET_CODE (x);
8448 switch (GET_RTX_CLASS (code))
8450 case RTX_UNARY:
8451 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8452 if (op0 != XEXP (x, 0))
8453 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8454 GET_MODE (reg));
8455 break;
8457 case RTX_BIN_ARITH:
8458 case RTX_COMM_ARITH:
8459 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8460 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8461 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8462 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8463 break;
8465 case RTX_COMPARE:
8466 case RTX_COMM_COMPARE:
8467 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8468 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8469 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8470 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8471 GET_MODE (op0), op0, op1);
8472 break;
8474 case RTX_TERNARY:
8475 case RTX_BITFIELD_OPS:
8476 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8477 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8478 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8479 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8480 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8481 GET_MODE (op0), op0, op1, op2);
8482 /* FALLTHRU */
8484 case RTX_OBJ:
8485 if (REG_P (x))
8487 if (rtx_equal_p (get_last_value (reg), x)
8488 || rtx_equal_p (reg, get_last_value (x)))
8489 return reg;
8490 else
8491 break;
8494 /* fall through */
8496 default:
8497 fmt = GET_RTX_FORMAT (code);
8498 copied = false;
8499 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8500 if (fmt[i] == 'e')
8502 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8503 if (op != XEXP (x, i))
8505 if (!copied)
8507 copied = true;
8508 x = copy_rtx (x);
8510 XEXP (x, i) = op;
8513 else if (fmt[i] == 'E')
8515 int j;
8516 for (j = 0; j < XVECLEN (x, i); j++)
8518 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8519 if (op != XVECEXP (x, i, j))
8521 if (!copied)
8523 copied = true;
8524 x = copy_rtx (x);
8526 XVECEXP (x, i, j) = op;
8531 break;
8534 return x;
8537 /* Return X converted to MODE. If the value is already truncated to
8538 MODE we can just return a subreg even though in the general case we
8539 would need an explicit truncation. */
8541 static rtx
8542 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8544 if (!CONST_INT_P (x)
8545 && partial_subreg_p (mode, GET_MODE (x))
8546 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8547 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8549 /* Bit-cast X into an integer mode. */
8550 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8551 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8552 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8553 x, GET_MODE (x));
8556 return gen_lowpart (mode, x);
8559 /* See if X can be simplified knowing that we will only refer to it in
8560 MODE and will only refer to those bits that are nonzero in MASK.
8561 If other bits are being computed or if masking operations are done
8562 that select a superset of the bits in MASK, they can sometimes be
8563 ignored.
8565 Return a possibly simplified expression, but always convert X to
8566 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8568 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8569 are all off in X. This is used when X will be complemented, by either
8570 NOT, NEG, or XOR. */
8572 static rtx
8573 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8574 int just_select)
8576 enum rtx_code code = GET_CODE (x);
8577 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8578 machine_mode op_mode;
8579 unsigned HOST_WIDE_INT nonzero;
8581 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8582 code below will do the wrong thing since the mode of such an
8583 expression is VOIDmode.
8585 Also do nothing if X is a CLOBBER; this can happen if X was
8586 the return value from a call to gen_lowpart. */
8587 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8588 return x;
8590 /* We want to perform the operation in its present mode unless we know
8591 that the operation is valid in MODE, in which case we do the operation
8592 in MODE. */
8593 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8594 && have_insn_for (code, mode))
8595 ? mode : GET_MODE (x));
8597 /* It is not valid to do a right-shift in a narrower mode
8598 than the one it came in with. */
8599 if ((code == LSHIFTRT || code == ASHIFTRT)
8600 && partial_subreg_p (mode, GET_MODE (x)))
8601 op_mode = GET_MODE (x);
8603 /* Truncate MASK to fit OP_MODE. */
8604 if (op_mode)
8605 mask &= GET_MODE_MASK (op_mode);
8607 /* Determine what bits of X are guaranteed to be (non)zero. */
8608 nonzero = nonzero_bits (x, mode);
8610 /* If none of the bits in X are needed, return a zero. */
8611 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8612 x = const0_rtx;
8614 /* If X is a CONST_INT, return a new one. Do this here since the
8615 test below will fail. */
8616 if (CONST_INT_P (x))
8618 if (SCALAR_INT_MODE_P (mode))
8619 return gen_int_mode (INTVAL (x) & mask, mode);
8620 else
8622 x = GEN_INT (INTVAL (x) & mask);
8623 return gen_lowpart_common (mode, x);
8627 /* If X is narrower than MODE and we want all the bits in X's mode, just
8628 get X in the proper mode. */
8629 if (paradoxical_subreg_p (mode, GET_MODE (x))
8630 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8631 return gen_lowpart (mode, x);
8633 /* We can ignore the effect of a SUBREG if it narrows the mode or
8634 if the constant masks to zero all the bits the mode doesn't have. */
8635 if (GET_CODE (x) == SUBREG
8636 && subreg_lowpart_p (x)
8637 && (partial_subreg_p (x)
8638 || (0 == (mask
8639 & GET_MODE_MASK (GET_MODE (x))
8640 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8641 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8643 scalar_int_mode int_mode, xmode;
8644 if (is_a <scalar_int_mode> (mode, &int_mode)
8645 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8646 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8647 integer too. */
8648 return force_int_to_mode (x, int_mode, xmode,
8649 as_a <scalar_int_mode> (op_mode),
8650 mask, just_select);
8652 return gen_lowpart_or_truncate (mode, x);
8655 /* Subroutine of force_to_mode that handles cases in which both X and
8656 the result are scalar integers. MODE is the mode of the result,
8657 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8658 is preferred for simplified versions of X. The other arguments
8659 are as for force_to_mode. */
8661 static rtx
8662 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8663 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8664 int just_select)
8666 enum rtx_code code = GET_CODE (x);
8667 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8668 unsigned HOST_WIDE_INT fuller_mask;
8669 rtx op0, op1, temp;
8671 /* When we have an arithmetic operation, or a shift whose count we
8672 do not know, we need to assume that all bits up to the highest-order
8673 bit in MASK will be needed. This is how we form such a mask. */
8674 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8675 fuller_mask = HOST_WIDE_INT_M1U;
8676 else
8677 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8678 - 1);
8680 switch (code)
8682 case CLOBBER:
8683 /* If X is a (clobber (const_int)), return it since we know we are
8684 generating something that won't match. */
8685 return x;
8687 case SIGN_EXTEND:
8688 case ZERO_EXTEND:
8689 case ZERO_EXTRACT:
8690 case SIGN_EXTRACT:
8691 x = expand_compound_operation (x);
8692 if (GET_CODE (x) != code)
8693 return force_to_mode (x, mode, mask, next_select);
8694 break;
8696 case TRUNCATE:
8697 /* Similarly for a truncate. */
8698 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8700 case AND:
8701 /* If this is an AND with a constant, convert it into an AND
8702 whose constant is the AND of that constant with MASK. If it
8703 remains an AND of MASK, delete it since it is redundant. */
8705 if (CONST_INT_P (XEXP (x, 1)))
8707 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8708 mask & INTVAL (XEXP (x, 1)));
8709 xmode = op_mode;
8711 /* If X is still an AND, see if it is an AND with a mask that
8712 is just some low-order bits. If so, and it is MASK, we don't
8713 need it. */
8715 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8716 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8717 x = XEXP (x, 0);
8719 /* If it remains an AND, try making another AND with the bits
8720 in the mode mask that aren't in MASK turned on. If the
8721 constant in the AND is wide enough, this might make a
8722 cheaper constant. */
8724 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8725 && GET_MODE_MASK (xmode) != mask
8726 && HWI_COMPUTABLE_MODE_P (xmode))
8728 unsigned HOST_WIDE_INT cval
8729 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8730 rtx y;
8732 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8733 gen_int_mode (cval, xmode));
8734 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8735 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8736 x = y;
8739 break;
8742 goto binop;
8744 case PLUS:
8745 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8746 low-order bits (as in an alignment operation) and FOO is already
8747 aligned to that boundary, mask C1 to that boundary as well.
8748 This may eliminate that PLUS and, later, the AND. */
8751 unsigned int width = GET_MODE_PRECISION (mode);
8752 unsigned HOST_WIDE_INT smask = mask;
8754 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8755 number, sign extend it. */
8757 if (width < HOST_BITS_PER_WIDE_INT
8758 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8759 smask |= HOST_WIDE_INT_M1U << width;
8761 if (CONST_INT_P (XEXP (x, 1))
8762 && pow2p_hwi (- smask)
8763 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8764 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8765 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8766 (INTVAL (XEXP (x, 1)) & smask)),
8767 mode, smask, next_select);
8770 /* fall through */
8772 case MULT:
8773 /* Substituting into the operands of a widening MULT is not likely to
8774 create RTL matching a machine insn. */
8775 if (code == MULT
8776 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8777 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8778 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8779 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8780 && REG_P (XEXP (XEXP (x, 0), 0))
8781 && REG_P (XEXP (XEXP (x, 1), 0)))
8782 return gen_lowpart_or_truncate (mode, x);
8784 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8785 most significant bit in MASK since carries from those bits will
8786 affect the bits we are interested in. */
8787 mask = fuller_mask;
8788 goto binop;
8790 case MINUS:
8791 /* If X is (minus C Y) where C's least set bit is larger than any bit
8792 in the mask, then we may replace with (neg Y). */
8793 if (CONST_INT_P (XEXP (x, 0))
8794 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8796 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8797 return force_to_mode (x, mode, mask, next_select);
8800 /* Similarly, if C contains every bit in the fuller_mask, then we may
8801 replace with (not Y). */
8802 if (CONST_INT_P (XEXP (x, 0))
8803 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8805 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8806 return force_to_mode (x, mode, mask, next_select);
8809 mask = fuller_mask;
8810 goto binop;
8812 case IOR:
8813 case XOR:
8814 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8815 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8816 operation which may be a bitfield extraction. Ensure that the
8817 constant we form is not wider than the mode of X. */
8819 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8820 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8821 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8822 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8823 && CONST_INT_P (XEXP (x, 1))
8824 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8825 + floor_log2 (INTVAL (XEXP (x, 1))))
8826 < GET_MODE_PRECISION (xmode))
8827 && (UINTVAL (XEXP (x, 1))
8828 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8830 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8831 << INTVAL (XEXP (XEXP (x, 0), 1)),
8832 xmode);
8833 temp = simplify_gen_binary (GET_CODE (x), xmode,
8834 XEXP (XEXP (x, 0), 0), temp);
8835 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8836 XEXP (XEXP (x, 0), 1));
8837 return force_to_mode (x, mode, mask, next_select);
8840 binop:
8841 /* For most binary operations, just propagate into the operation and
8842 change the mode if we have an operation of that mode. */
8844 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8845 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8847 /* If we ended up truncating both operands, truncate the result of the
8848 operation instead. */
8849 if (GET_CODE (op0) == TRUNCATE
8850 && GET_CODE (op1) == TRUNCATE)
8852 op0 = XEXP (op0, 0);
8853 op1 = XEXP (op1, 0);
8856 op0 = gen_lowpart_or_truncate (op_mode, op0);
8857 op1 = gen_lowpart_or_truncate (op_mode, op1);
8859 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8861 x = simplify_gen_binary (code, op_mode, op0, op1);
8862 xmode = op_mode;
8864 break;
8866 case ASHIFT:
8867 /* For left shifts, do the same, but just for the first operand.
8868 However, we cannot do anything with shifts where we cannot
8869 guarantee that the counts are smaller than the size of the mode
8870 because such a count will have a different meaning in a
8871 wider mode. */
8873 if (! (CONST_INT_P (XEXP (x, 1))
8874 && INTVAL (XEXP (x, 1)) >= 0
8875 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8876 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8877 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8878 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8879 break;
8881 /* If the shift count is a constant and we can do arithmetic in
8882 the mode of the shift, refine which bits we need. Otherwise, use the
8883 conservative form of the mask. */
8884 if (CONST_INT_P (XEXP (x, 1))
8885 && INTVAL (XEXP (x, 1)) >= 0
8886 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8887 && HWI_COMPUTABLE_MODE_P (op_mode))
8888 mask >>= INTVAL (XEXP (x, 1));
8889 else
8890 mask = fuller_mask;
8892 op0 = gen_lowpart_or_truncate (op_mode,
8893 force_to_mode (XEXP (x, 0), op_mode,
8894 mask, next_select));
8896 if (op_mode != xmode || op0 != XEXP (x, 0))
8898 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8899 xmode = op_mode;
8901 break;
8903 case LSHIFTRT:
8904 /* Here we can only do something if the shift count is a constant,
8905 this shift constant is valid for the host, and we can do arithmetic
8906 in OP_MODE. */
8908 if (CONST_INT_P (XEXP (x, 1))
8909 && INTVAL (XEXP (x, 1)) >= 0
8910 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8911 && HWI_COMPUTABLE_MODE_P (op_mode))
8913 rtx inner = XEXP (x, 0);
8914 unsigned HOST_WIDE_INT inner_mask;
8916 /* Select the mask of the bits we need for the shift operand. */
8917 inner_mask = mask << INTVAL (XEXP (x, 1));
8919 /* We can only change the mode of the shift if we can do arithmetic
8920 in the mode of the shift and INNER_MASK is no wider than the
8921 width of X's mode. */
8922 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8923 op_mode = xmode;
8925 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8927 if (xmode != op_mode || inner != XEXP (x, 0))
8929 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8930 xmode = op_mode;
8934 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8935 shift and AND produces only copies of the sign bit (C2 is one less
8936 than a power of two), we can do this with just a shift. */
8938 if (GET_CODE (x) == LSHIFTRT
8939 && CONST_INT_P (XEXP (x, 1))
8940 /* The shift puts one of the sign bit copies in the least significant
8941 bit. */
8942 && ((INTVAL (XEXP (x, 1))
8943 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8944 >= GET_MODE_PRECISION (xmode))
8945 && pow2p_hwi (mask + 1)
8946 /* Number of bits left after the shift must be more than the mask
8947 needs. */
8948 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8949 <= GET_MODE_PRECISION (xmode))
8950 /* Must be more sign bit copies than the mask needs. */
8951 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8952 >= exact_log2 (mask + 1)))
8953 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
8954 GEN_INT (GET_MODE_PRECISION (xmode)
8955 - exact_log2 (mask + 1)));
8957 goto shiftrt;
8959 case ASHIFTRT:
8960 /* If we are just looking for the sign bit, we don't need this shift at
8961 all, even if it has a variable count. */
8962 if (val_signbit_p (xmode, mask))
8963 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8965 /* If this is a shift by a constant, get a mask that contains those bits
8966 that are not copies of the sign bit. We then have two cases: If
8967 MASK only includes those bits, this can be a logical shift, which may
8968 allow simplifications. If MASK is a single-bit field not within
8969 those bits, we are requesting a copy of the sign bit and hence can
8970 shift the sign bit to the appropriate location. */
8972 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8973 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8975 unsigned HOST_WIDE_INT nonzero;
8976 int i;
8978 /* If the considered data is wider than HOST_WIDE_INT, we can't
8979 represent a mask for all its bits in a single scalar.
8980 But we only care about the lower bits, so calculate these. */
8982 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
8984 nonzero = HOST_WIDE_INT_M1U;
8986 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8987 is the number of bits a full-width mask would have set.
8988 We need only shift if these are fewer than nonzero can
8989 hold. If not, we must keep all bits set in nonzero. */
8991 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
8992 < HOST_BITS_PER_WIDE_INT)
8993 nonzero >>= INTVAL (XEXP (x, 1))
8994 + HOST_BITS_PER_WIDE_INT
8995 - GET_MODE_PRECISION (xmode);
8997 else
8999 nonzero = GET_MODE_MASK (xmode);
9000 nonzero >>= INTVAL (XEXP (x, 1));
9003 if ((mask & ~nonzero) == 0)
9005 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9006 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9007 if (GET_CODE (x) != ASHIFTRT)
9008 return force_to_mode (x, mode, mask, next_select);
9011 else if ((i = exact_log2 (mask)) >= 0)
9013 x = simplify_shift_const
9014 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9015 GET_MODE_PRECISION (xmode) - 1 - i);
9017 if (GET_CODE (x) != ASHIFTRT)
9018 return force_to_mode (x, mode, mask, next_select);
9022 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9023 even if the shift count isn't a constant. */
9024 if (mask == 1)
9025 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9027 shiftrt:
9029 /* If this is a zero- or sign-extension operation that just affects bits
9030 we don't care about, remove it. Be sure the call above returned
9031 something that is still a shift. */
9033 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9034 && CONST_INT_P (XEXP (x, 1))
9035 && INTVAL (XEXP (x, 1)) >= 0
9036 && (INTVAL (XEXP (x, 1))
9037 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9038 && GET_CODE (XEXP (x, 0)) == ASHIFT
9039 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9040 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9041 next_select);
9043 break;
9045 case ROTATE:
9046 case ROTATERT:
9047 /* If the shift count is constant and we can do computations
9048 in the mode of X, compute where the bits we care about are.
9049 Otherwise, we can't do anything. Don't change the mode of
9050 the shift or propagate MODE into the shift, though. */
9051 if (CONST_INT_P (XEXP (x, 1))
9052 && INTVAL (XEXP (x, 1)) >= 0)
9054 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9055 xmode, gen_int_mode (mask, xmode),
9056 XEXP (x, 1));
9057 if (temp && CONST_INT_P (temp))
9058 x = simplify_gen_binary (code, xmode,
9059 force_to_mode (XEXP (x, 0), xmode,
9060 INTVAL (temp), next_select),
9061 XEXP (x, 1));
9063 break;
9065 case NEG:
9066 /* If we just want the low-order bit, the NEG isn't needed since it
9067 won't change the low-order bit. */
9068 if (mask == 1)
9069 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9071 /* We need any bits less significant than the most significant bit in
9072 MASK since carries from those bits will affect the bits we are
9073 interested in. */
9074 mask = fuller_mask;
9075 goto unop;
9077 case NOT:
9078 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9079 same as the XOR case above. Ensure that the constant we form is not
9080 wider than the mode of X. */
9082 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9083 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9084 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9085 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9086 < GET_MODE_PRECISION (xmode))
9087 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9089 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9090 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9091 x = simplify_gen_binary (LSHIFTRT, xmode,
9092 temp, XEXP (XEXP (x, 0), 1));
9094 return force_to_mode (x, mode, mask, next_select);
9097 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9098 use the full mask inside the NOT. */
9099 mask = fuller_mask;
9101 unop:
9102 op0 = gen_lowpart_or_truncate (op_mode,
9103 force_to_mode (XEXP (x, 0), mode, mask,
9104 next_select));
9105 if (op_mode != xmode || op0 != XEXP (x, 0))
9107 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9108 xmode = op_mode;
9110 break;
9112 case NE:
9113 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9114 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9115 which is equal to STORE_FLAG_VALUE. */
9116 if ((mask & ~STORE_FLAG_VALUE) == 0
9117 && XEXP (x, 1) == const0_rtx
9118 && GET_MODE (XEXP (x, 0)) == mode
9119 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9120 && (nonzero_bits (XEXP (x, 0), mode)
9121 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9122 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9124 break;
9126 case IF_THEN_ELSE:
9127 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9128 written in a narrower mode. We play it safe and do not do so. */
9130 op0 = gen_lowpart_or_truncate (xmode,
9131 force_to_mode (XEXP (x, 1), mode,
9132 mask, next_select));
9133 op1 = gen_lowpart_or_truncate (xmode,
9134 force_to_mode (XEXP (x, 2), mode,
9135 mask, next_select));
9136 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9137 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9138 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9139 op0, op1);
9140 break;
9142 default:
9143 break;
9146 /* Ensure we return a value of the proper mode. */
9147 return gen_lowpart_or_truncate (mode, x);
9150 /* Return nonzero if X is an expression that has one of two values depending on
9151 whether some other value is zero or nonzero. In that case, we return the
9152 value that is being tested, *PTRUE is set to the value if the rtx being
9153 returned has a nonzero value, and *PFALSE is set to the other alternative.
9155 If we return zero, we set *PTRUE and *PFALSE to X. */
9157 static rtx
9158 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9160 machine_mode mode = GET_MODE (x);
9161 enum rtx_code code = GET_CODE (x);
9162 rtx cond0, cond1, true0, true1, false0, false1;
9163 unsigned HOST_WIDE_INT nz;
9164 scalar_int_mode int_mode;
9166 /* If we are comparing a value against zero, we are done. */
9167 if ((code == NE || code == EQ)
9168 && XEXP (x, 1) == const0_rtx)
9170 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9171 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9172 return XEXP (x, 0);
9175 /* If this is a unary operation whose operand has one of two values, apply
9176 our opcode to compute those values. */
9177 else if (UNARY_P (x)
9178 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9180 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9181 *pfalse = simplify_gen_unary (code, mode, false0,
9182 GET_MODE (XEXP (x, 0)));
9183 return cond0;
9186 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9187 make can't possibly match and would suppress other optimizations. */
9188 else if (code == COMPARE)
9191 /* If this is a binary operation, see if either side has only one of two
9192 values. If either one does or if both do and they are conditional on
9193 the same value, compute the new true and false values. */
9194 else if (BINARY_P (x))
9196 rtx op0 = XEXP (x, 0);
9197 rtx op1 = XEXP (x, 1);
9198 cond0 = if_then_else_cond (op0, &true0, &false0);
9199 cond1 = if_then_else_cond (op1, &true1, &false1);
9201 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9202 && (REG_P (op0) || REG_P (op1)))
9204 /* Try to enable a simplification by undoing work done by
9205 if_then_else_cond if it converted a REG into something more
9206 complex. */
9207 if (REG_P (op0))
9209 cond0 = 0;
9210 true0 = false0 = op0;
9212 else
9214 cond1 = 0;
9215 true1 = false1 = op1;
9219 if ((cond0 != 0 || cond1 != 0)
9220 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9222 /* If if_then_else_cond returned zero, then true/false are the
9223 same rtl. We must copy one of them to prevent invalid rtl
9224 sharing. */
9225 if (cond0 == 0)
9226 true0 = copy_rtx (true0);
9227 else if (cond1 == 0)
9228 true1 = copy_rtx (true1);
9230 if (COMPARISON_P (x))
9232 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9233 true0, true1);
9234 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9235 false0, false1);
9237 else
9239 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9240 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9243 return cond0 ? cond0 : cond1;
9246 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9247 operands is zero when the other is nonzero, and vice-versa,
9248 and STORE_FLAG_VALUE is 1 or -1. */
9250 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9251 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9252 || code == UMAX)
9253 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9255 rtx op0 = XEXP (XEXP (x, 0), 1);
9256 rtx op1 = XEXP (XEXP (x, 1), 1);
9258 cond0 = XEXP (XEXP (x, 0), 0);
9259 cond1 = XEXP (XEXP (x, 1), 0);
9261 if (COMPARISON_P (cond0)
9262 && COMPARISON_P (cond1)
9263 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9264 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9265 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9266 || ((swap_condition (GET_CODE (cond0))
9267 == reversed_comparison_code (cond1, NULL))
9268 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9269 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9270 && ! side_effects_p (x))
9272 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9273 *pfalse = simplify_gen_binary (MULT, mode,
9274 (code == MINUS
9275 ? simplify_gen_unary (NEG, mode,
9276 op1, mode)
9277 : op1),
9278 const_true_rtx);
9279 return cond0;
9283 /* Similarly for MULT, AND and UMIN, except that for these the result
9284 is always zero. */
9285 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9286 && (code == MULT || code == AND || code == UMIN)
9287 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9289 cond0 = XEXP (XEXP (x, 0), 0);
9290 cond1 = XEXP (XEXP (x, 1), 0);
9292 if (COMPARISON_P (cond0)
9293 && COMPARISON_P (cond1)
9294 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9295 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9296 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9297 || ((swap_condition (GET_CODE (cond0))
9298 == reversed_comparison_code (cond1, NULL))
9299 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9300 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9301 && ! side_effects_p (x))
9303 *ptrue = *pfalse = const0_rtx;
9304 return cond0;
9309 else if (code == IF_THEN_ELSE)
9311 /* If we have IF_THEN_ELSE already, extract the condition and
9312 canonicalize it if it is NE or EQ. */
9313 cond0 = XEXP (x, 0);
9314 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9315 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9316 return XEXP (cond0, 0);
9317 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9319 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9320 return XEXP (cond0, 0);
9322 else
9323 return cond0;
9326 /* If X is a SUBREG, we can narrow both the true and false values
9327 if the inner expression, if there is a condition. */
9328 else if (code == SUBREG
9329 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9330 &true0, &false0)))
9332 true0 = simplify_gen_subreg (mode, true0,
9333 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9334 false0 = simplify_gen_subreg (mode, false0,
9335 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9336 if (true0 && false0)
9338 *ptrue = true0;
9339 *pfalse = false0;
9340 return cond0;
9344 /* If X is a constant, this isn't special and will cause confusions
9345 if we treat it as such. Likewise if it is equivalent to a constant. */
9346 else if (CONSTANT_P (x)
9347 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9350 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9351 will be least confusing to the rest of the compiler. */
9352 else if (mode == BImode)
9354 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9355 return x;
9358 /* If X is known to be either 0 or -1, those are the true and
9359 false values when testing X. */
9360 else if (x == constm1_rtx || x == const0_rtx
9361 || (is_a <scalar_int_mode> (mode, &int_mode)
9362 && (num_sign_bit_copies (x, int_mode)
9363 == GET_MODE_PRECISION (int_mode))))
9365 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9366 return x;
9369 /* Likewise for 0 or a single bit. */
9370 else if (HWI_COMPUTABLE_MODE_P (mode)
9371 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9373 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9374 return x;
9377 /* Otherwise fail; show no condition with true and false values the same. */
9378 *ptrue = *pfalse = x;
9379 return 0;
9382 /* Return the value of expression X given the fact that condition COND
9383 is known to be true when applied to REG as its first operand and VAL
9384 as its second. X is known to not be shared and so can be modified in
9385 place.
9387 We only handle the simplest cases, and specifically those cases that
9388 arise with IF_THEN_ELSE expressions. */
9390 static rtx
9391 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9393 enum rtx_code code = GET_CODE (x);
9394 const char *fmt;
9395 int i, j;
9397 if (side_effects_p (x))
9398 return x;
9400 /* If either operand of the condition is a floating point value,
9401 then we have to avoid collapsing an EQ comparison. */
9402 if (cond == EQ
9403 && rtx_equal_p (x, reg)
9404 && ! FLOAT_MODE_P (GET_MODE (x))
9405 && ! FLOAT_MODE_P (GET_MODE (val)))
9406 return val;
9408 if (cond == UNEQ && rtx_equal_p (x, reg))
9409 return val;
9411 /* If X is (abs REG) and we know something about REG's relationship
9412 with zero, we may be able to simplify this. */
9414 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9415 switch (cond)
9417 case GE: case GT: case EQ:
9418 return XEXP (x, 0);
9419 case LT: case LE:
9420 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9421 XEXP (x, 0),
9422 GET_MODE (XEXP (x, 0)));
9423 default:
9424 break;
9427 /* The only other cases we handle are MIN, MAX, and comparisons if the
9428 operands are the same as REG and VAL. */
9430 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9432 if (rtx_equal_p (XEXP (x, 0), val))
9434 std::swap (val, reg);
9435 cond = swap_condition (cond);
9438 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9440 if (COMPARISON_P (x))
9442 if (comparison_dominates_p (cond, code))
9443 return const_true_rtx;
9445 code = reversed_comparison_code (x, NULL);
9446 if (code != UNKNOWN
9447 && comparison_dominates_p (cond, code))
9448 return const0_rtx;
9449 else
9450 return x;
9452 else if (code == SMAX || code == SMIN
9453 || code == UMIN || code == UMAX)
9455 int unsignedp = (code == UMIN || code == UMAX);
9457 /* Do not reverse the condition when it is NE or EQ.
9458 This is because we cannot conclude anything about
9459 the value of 'SMAX (x, y)' when x is not equal to y,
9460 but we can when x equals y. */
9461 if ((code == SMAX || code == UMAX)
9462 && ! (cond == EQ || cond == NE))
9463 cond = reverse_condition (cond);
9465 switch (cond)
9467 case GE: case GT:
9468 return unsignedp ? x : XEXP (x, 1);
9469 case LE: case LT:
9470 return unsignedp ? x : XEXP (x, 0);
9471 case GEU: case GTU:
9472 return unsignedp ? XEXP (x, 1) : x;
9473 case LEU: case LTU:
9474 return unsignedp ? XEXP (x, 0) : x;
9475 default:
9476 break;
9481 else if (code == SUBREG)
9483 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9484 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9486 if (SUBREG_REG (x) != r)
9488 /* We must simplify subreg here, before we lose track of the
9489 original inner_mode. */
9490 new_rtx = simplify_subreg (GET_MODE (x), r,
9491 inner_mode, SUBREG_BYTE (x));
9492 if (new_rtx)
9493 return new_rtx;
9494 else
9495 SUBST (SUBREG_REG (x), r);
9498 return x;
9500 /* We don't have to handle SIGN_EXTEND here, because even in the
9501 case of replacing something with a modeless CONST_INT, a
9502 CONST_INT is already (supposed to be) a valid sign extension for
9503 its narrower mode, which implies it's already properly
9504 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9505 story is different. */
9506 else if (code == ZERO_EXTEND)
9508 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9509 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9511 if (XEXP (x, 0) != r)
9513 /* We must simplify the zero_extend here, before we lose
9514 track of the original inner_mode. */
9515 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9516 r, inner_mode);
9517 if (new_rtx)
9518 return new_rtx;
9519 else
9520 SUBST (XEXP (x, 0), r);
9523 return x;
9526 fmt = GET_RTX_FORMAT (code);
9527 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9529 if (fmt[i] == 'e')
9530 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9531 else if (fmt[i] == 'E')
9532 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9533 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9534 cond, reg, val));
9537 return x;
9540 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9541 assignment as a field assignment. */
9543 static int
9544 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9546 if (widen_x && GET_MODE (x) != GET_MODE (y))
9548 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9549 return 0;
9550 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9551 return 0;
9552 x = adjust_address_nv (x, GET_MODE (y),
9553 byte_lowpart_offset (GET_MODE (y),
9554 GET_MODE (x)));
9557 if (x == y || rtx_equal_p (x, y))
9558 return 1;
9560 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9561 return 0;
9563 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9564 Note that all SUBREGs of MEM are paradoxical; otherwise they
9565 would have been rewritten. */
9566 if (MEM_P (x) && GET_CODE (y) == SUBREG
9567 && MEM_P (SUBREG_REG (y))
9568 && rtx_equal_p (SUBREG_REG (y),
9569 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9570 return 1;
9572 if (MEM_P (y) && GET_CODE (x) == SUBREG
9573 && MEM_P (SUBREG_REG (x))
9574 && rtx_equal_p (SUBREG_REG (x),
9575 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9576 return 1;
9578 /* We used to see if get_last_value of X and Y were the same but that's
9579 not correct. In one direction, we'll cause the assignment to have
9580 the wrong destination and in the case, we'll import a register into this
9581 insn that might have already have been dead. So fail if none of the
9582 above cases are true. */
9583 return 0;
9586 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9587 Return that assignment if so.
9589 We only handle the most common cases. */
9591 static rtx
9592 make_field_assignment (rtx x)
9594 rtx dest = SET_DEST (x);
9595 rtx src = SET_SRC (x);
9596 rtx assign;
9597 rtx rhs, lhs;
9598 HOST_WIDE_INT c1;
9599 HOST_WIDE_INT pos;
9600 unsigned HOST_WIDE_INT len;
9601 rtx other;
9603 /* All the rules in this function are specific to scalar integers. */
9604 scalar_int_mode mode;
9605 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9606 return x;
9608 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9609 a clear of a one-bit field. We will have changed it to
9610 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9611 for a SUBREG. */
9613 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9614 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9615 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9616 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9618 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9619 1, 1, 1, 0);
9620 if (assign != 0)
9621 return gen_rtx_SET (assign, const0_rtx);
9622 return x;
9625 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9626 && subreg_lowpart_p (XEXP (src, 0))
9627 && partial_subreg_p (XEXP (src, 0))
9628 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9629 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9630 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9631 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9633 assign = make_extraction (VOIDmode, dest, 0,
9634 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9635 1, 1, 1, 0);
9636 if (assign != 0)
9637 return gen_rtx_SET (assign, const0_rtx);
9638 return x;
9641 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9642 one-bit field. */
9643 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9644 && XEXP (XEXP (src, 0), 0) == const1_rtx
9645 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9647 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9648 1, 1, 1, 0);
9649 if (assign != 0)
9650 return gen_rtx_SET (assign, const1_rtx);
9651 return x;
9654 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9655 SRC is an AND with all bits of that field set, then we can discard
9656 the AND. */
9657 if (GET_CODE (dest) == ZERO_EXTRACT
9658 && CONST_INT_P (XEXP (dest, 1))
9659 && GET_CODE (src) == AND
9660 && CONST_INT_P (XEXP (src, 1)))
9662 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9663 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9664 unsigned HOST_WIDE_INT ze_mask;
9666 if (width >= HOST_BITS_PER_WIDE_INT)
9667 ze_mask = -1;
9668 else
9669 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9671 /* Complete overlap. We can remove the source AND. */
9672 if ((and_mask & ze_mask) == ze_mask)
9673 return gen_rtx_SET (dest, XEXP (src, 0));
9675 /* Partial overlap. We can reduce the source AND. */
9676 if ((and_mask & ze_mask) != and_mask)
9678 src = gen_rtx_AND (mode, XEXP (src, 0),
9679 gen_int_mode (and_mask & ze_mask, mode));
9680 return gen_rtx_SET (dest, src);
9684 /* The other case we handle is assignments into a constant-position
9685 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9686 a mask that has all one bits except for a group of zero bits and
9687 OTHER is known to have zeros where C1 has ones, this is such an
9688 assignment. Compute the position and length from C1. Shift OTHER
9689 to the appropriate position, force it to the required mode, and
9690 make the extraction. Check for the AND in both operands. */
9692 /* One or more SUBREGs might obscure the constant-position field
9693 assignment. The first one we are likely to encounter is an outer
9694 narrowing SUBREG, which we can just strip for the purposes of
9695 identifying the constant-field assignment. */
9696 scalar_int_mode src_mode = mode;
9697 if (GET_CODE (src) == SUBREG
9698 && subreg_lowpart_p (src)
9699 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9700 src = SUBREG_REG (src);
9702 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9703 return x;
9705 rhs = expand_compound_operation (XEXP (src, 0));
9706 lhs = expand_compound_operation (XEXP (src, 1));
9708 if (GET_CODE (rhs) == AND
9709 && CONST_INT_P (XEXP (rhs, 1))
9710 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9711 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9712 /* The second SUBREG that might get in the way is a paradoxical
9713 SUBREG around the first operand of the AND. We want to
9714 pretend the operand is as wide as the destination here. We
9715 do this by adjusting the MEM to wider mode for the sole
9716 purpose of the call to rtx_equal_for_field_assignment_p. Also
9717 note this trick only works for MEMs. */
9718 else if (GET_CODE (rhs) == AND
9719 && paradoxical_subreg_p (XEXP (rhs, 0))
9720 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9721 && CONST_INT_P (XEXP (rhs, 1))
9722 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9723 dest, true))
9724 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9725 else if (GET_CODE (lhs) == AND
9726 && CONST_INT_P (XEXP (lhs, 1))
9727 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9728 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9729 /* The second SUBREG that might get in the way is a paradoxical
9730 SUBREG around the first operand of the AND. We want to
9731 pretend the operand is as wide as the destination here. We
9732 do this by adjusting the MEM to wider mode for the sole
9733 purpose of the call to rtx_equal_for_field_assignment_p. Also
9734 note this trick only works for MEMs. */
9735 else if (GET_CODE (lhs) == AND
9736 && paradoxical_subreg_p (XEXP (lhs, 0))
9737 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9738 && CONST_INT_P (XEXP (lhs, 1))
9739 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9740 dest, true))
9741 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9742 else
9743 return x;
9745 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9746 if (pos < 0
9747 || pos + len > GET_MODE_PRECISION (mode)
9748 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9749 || (c1 & nonzero_bits (other, mode)) != 0)
9750 return x;
9752 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9753 if (assign == 0)
9754 return x;
9756 /* The mode to use for the source is the mode of the assignment, or of
9757 what is inside a possible STRICT_LOW_PART. */
9758 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9759 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9761 /* Shift OTHER right POS places and make it the source, restricting it
9762 to the proper length and mode. */
9764 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9765 src_mode, other, pos),
9766 dest);
9767 src = force_to_mode (src, new_mode,
9768 len >= HOST_BITS_PER_WIDE_INT
9769 ? HOST_WIDE_INT_M1U
9770 : (HOST_WIDE_INT_1U << len) - 1,
9773 /* If SRC is masked by an AND that does not make a difference in
9774 the value being stored, strip it. */
9775 if (GET_CODE (assign) == ZERO_EXTRACT
9776 && CONST_INT_P (XEXP (assign, 1))
9777 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9778 && GET_CODE (src) == AND
9779 && CONST_INT_P (XEXP (src, 1))
9780 && UINTVAL (XEXP (src, 1))
9781 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9782 src = XEXP (src, 0);
9784 return gen_rtx_SET (assign, src);
9787 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9788 if so. */
9790 static rtx
9791 apply_distributive_law (rtx x)
9793 enum rtx_code code = GET_CODE (x);
9794 enum rtx_code inner_code;
9795 rtx lhs, rhs, other;
9796 rtx tem;
9798 /* Distributivity is not true for floating point as it can change the
9799 value. So we don't do it unless -funsafe-math-optimizations. */
9800 if (FLOAT_MODE_P (GET_MODE (x))
9801 && ! flag_unsafe_math_optimizations)
9802 return x;
9804 /* The outer operation can only be one of the following: */
9805 if (code != IOR && code != AND && code != XOR
9806 && code != PLUS && code != MINUS)
9807 return x;
9809 lhs = XEXP (x, 0);
9810 rhs = XEXP (x, 1);
9812 /* If either operand is a primitive we can't do anything, so get out
9813 fast. */
9814 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9815 return x;
9817 lhs = expand_compound_operation (lhs);
9818 rhs = expand_compound_operation (rhs);
9819 inner_code = GET_CODE (lhs);
9820 if (inner_code != GET_CODE (rhs))
9821 return x;
9823 /* See if the inner and outer operations distribute. */
9824 switch (inner_code)
9826 case LSHIFTRT:
9827 case ASHIFTRT:
9828 case AND:
9829 case IOR:
9830 /* These all distribute except over PLUS. */
9831 if (code == PLUS || code == MINUS)
9832 return x;
9833 break;
9835 case MULT:
9836 if (code != PLUS && code != MINUS)
9837 return x;
9838 break;
9840 case ASHIFT:
9841 /* This is also a multiply, so it distributes over everything. */
9842 break;
9844 /* This used to handle SUBREG, but this turned out to be counter-
9845 productive, since (subreg (op ...)) usually is not handled by
9846 insn patterns, and this "optimization" therefore transformed
9847 recognizable patterns into unrecognizable ones. Therefore the
9848 SUBREG case was removed from here.
9850 It is possible that distributing SUBREG over arithmetic operations
9851 leads to an intermediate result than can then be optimized further,
9852 e.g. by moving the outer SUBREG to the other side of a SET as done
9853 in simplify_set. This seems to have been the original intent of
9854 handling SUBREGs here.
9856 However, with current GCC this does not appear to actually happen,
9857 at least on major platforms. If some case is found where removing
9858 the SUBREG case here prevents follow-on optimizations, distributing
9859 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9861 default:
9862 return x;
9865 /* Set LHS and RHS to the inner operands (A and B in the example
9866 above) and set OTHER to the common operand (C in the example).
9867 There is only one way to do this unless the inner operation is
9868 commutative. */
9869 if (COMMUTATIVE_ARITH_P (lhs)
9870 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9871 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9872 else if (COMMUTATIVE_ARITH_P (lhs)
9873 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9874 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9875 else if (COMMUTATIVE_ARITH_P (lhs)
9876 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9877 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9878 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9879 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9880 else
9881 return x;
9883 /* Form the new inner operation, seeing if it simplifies first. */
9884 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9886 /* There is one exception to the general way of distributing:
9887 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9888 if (code == XOR && inner_code == IOR)
9890 inner_code = AND;
9891 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9894 /* We may be able to continuing distributing the result, so call
9895 ourselves recursively on the inner operation before forming the
9896 outer operation, which we return. */
9897 return simplify_gen_binary (inner_code, GET_MODE (x),
9898 apply_distributive_law (tem), other);
9901 /* See if X is of the form (* (+ A B) C), and if so convert to
9902 (+ (* A C) (* B C)) and try to simplify.
9904 Most of the time, this results in no change. However, if some of
9905 the operands are the same or inverses of each other, simplifications
9906 will result.
9908 For example, (and (ior A B) (not B)) can occur as the result of
9909 expanding a bit field assignment. When we apply the distributive
9910 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9911 which then simplifies to (and (A (not B))).
9913 Note that no checks happen on the validity of applying the inverse
9914 distributive law. This is pointless since we can do it in the
9915 few places where this routine is called.
9917 N is the index of the term that is decomposed (the arithmetic operation,
9918 i.e. (+ A B) in the first example above). !N is the index of the term that
9919 is distributed, i.e. of C in the first example above. */
9920 static rtx
9921 distribute_and_simplify_rtx (rtx x, int n)
9923 machine_mode mode;
9924 enum rtx_code outer_code, inner_code;
9925 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9927 /* Distributivity is not true for floating point as it can change the
9928 value. So we don't do it unless -funsafe-math-optimizations. */
9929 if (FLOAT_MODE_P (GET_MODE (x))
9930 && ! flag_unsafe_math_optimizations)
9931 return NULL_RTX;
9933 decomposed = XEXP (x, n);
9934 if (!ARITHMETIC_P (decomposed))
9935 return NULL_RTX;
9937 mode = GET_MODE (x);
9938 outer_code = GET_CODE (x);
9939 distributed = XEXP (x, !n);
9941 inner_code = GET_CODE (decomposed);
9942 inner_op0 = XEXP (decomposed, 0);
9943 inner_op1 = XEXP (decomposed, 1);
9945 /* Special case (and (xor B C) (not A)), which is equivalent to
9946 (xor (ior A B) (ior A C)) */
9947 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9949 distributed = XEXP (distributed, 0);
9950 outer_code = IOR;
9953 if (n == 0)
9955 /* Distribute the second term. */
9956 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9957 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9959 else
9961 /* Distribute the first term. */
9962 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9963 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9966 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9967 new_op0, new_op1));
9968 if (GET_CODE (tmp) != outer_code
9969 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9970 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9971 return tmp;
9973 return NULL_RTX;
9976 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9977 in MODE. Return an equivalent form, if different from (and VAROP
9978 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9980 static rtx
9981 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
9982 unsigned HOST_WIDE_INT constop)
9984 unsigned HOST_WIDE_INT nonzero;
9985 unsigned HOST_WIDE_INT orig_constop;
9986 rtx orig_varop;
9987 int i;
9989 orig_varop = varop;
9990 orig_constop = constop;
9991 if (GET_CODE (varop) == CLOBBER)
9992 return NULL_RTX;
9994 /* Simplify VAROP knowing that we will be only looking at some of the
9995 bits in it.
9997 Note by passing in CONSTOP, we guarantee that the bits not set in
9998 CONSTOP are not significant and will never be examined. We must
9999 ensure that is the case by explicitly masking out those bits
10000 before returning. */
10001 varop = force_to_mode (varop, mode, constop, 0);
10003 /* If VAROP is a CLOBBER, we will fail so return it. */
10004 if (GET_CODE (varop) == CLOBBER)
10005 return varop;
10007 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10008 to VAROP and return the new constant. */
10009 if (CONST_INT_P (varop))
10010 return gen_int_mode (INTVAL (varop) & constop, mode);
10012 /* See what bits may be nonzero in VAROP. Unlike the general case of
10013 a call to nonzero_bits, here we don't care about bits outside
10014 MODE. */
10016 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10018 /* Turn off all bits in the constant that are known to already be zero.
10019 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10020 which is tested below. */
10022 constop &= nonzero;
10024 /* If we don't have any bits left, return zero. */
10025 if (constop == 0)
10026 return const0_rtx;
10028 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10029 a power of two, we can replace this with an ASHIFT. */
10030 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10031 && (i = exact_log2 (constop)) >= 0)
10032 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10034 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10035 or XOR, then try to apply the distributive law. This may eliminate
10036 operations if either branch can be simplified because of the AND.
10037 It may also make some cases more complex, but those cases probably
10038 won't match a pattern either with or without this. */
10040 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10042 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10043 return
10044 gen_lowpart
10045 (mode,
10046 apply_distributive_law
10047 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10048 simplify_and_const_int (NULL_RTX, varop_mode,
10049 XEXP (varop, 0),
10050 constop),
10051 simplify_and_const_int (NULL_RTX, varop_mode,
10052 XEXP (varop, 1),
10053 constop))));
10056 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10057 the AND and see if one of the operands simplifies to zero. If so, we
10058 may eliminate it. */
10060 if (GET_CODE (varop) == PLUS
10061 && pow2p_hwi (constop + 1))
10063 rtx o0, o1;
10065 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10066 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10067 if (o0 == const0_rtx)
10068 return o1;
10069 if (o1 == const0_rtx)
10070 return o0;
10073 /* Make a SUBREG if necessary. If we can't make it, fail. */
10074 varop = gen_lowpart (mode, varop);
10075 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10076 return NULL_RTX;
10078 /* If we are only masking insignificant bits, return VAROP. */
10079 if (constop == nonzero)
10080 return varop;
10082 if (varop == orig_varop && constop == orig_constop)
10083 return NULL_RTX;
10085 /* Otherwise, return an AND. */
10086 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10090 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10091 in MODE.
10093 Return an equivalent form, if different from X. Otherwise, return X. If
10094 X is zero, we are to always construct the equivalent form. */
10096 static rtx
10097 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10098 unsigned HOST_WIDE_INT constop)
10100 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10101 if (tem)
10102 return tem;
10104 if (!x)
10105 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10106 gen_int_mode (constop, mode));
10107 if (GET_MODE (x) != mode)
10108 x = gen_lowpart (mode, x);
10109 return x;
10112 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10113 We don't care about bits outside of those defined in MODE.
10115 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10116 a shift, AND, or zero_extract, we can do better. */
10118 static rtx
10119 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10120 scalar_int_mode mode,
10121 unsigned HOST_WIDE_INT *nonzero)
10123 rtx tem;
10124 reg_stat_type *rsp;
10126 /* If X is a register whose nonzero bits value is current, use it.
10127 Otherwise, if X is a register whose value we can find, use that
10128 value. Otherwise, use the previously-computed global nonzero bits
10129 for this register. */
10131 rsp = &reg_stat[REGNO (x)];
10132 if (rsp->last_set_value != 0
10133 && (rsp->last_set_mode == mode
10134 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10135 && GET_MODE_CLASS (mode) == MODE_INT))
10136 && ((rsp->last_set_label >= label_tick_ebb_start
10137 && rsp->last_set_label < label_tick)
10138 || (rsp->last_set_label == label_tick
10139 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10140 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10141 && REGNO (x) < reg_n_sets_max
10142 && REG_N_SETS (REGNO (x)) == 1
10143 && !REGNO_REG_SET_P
10144 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10145 REGNO (x)))))
10147 /* Note that, even if the precision of last_set_mode is lower than that
10148 of mode, record_value_for_reg invoked nonzero_bits on the register
10149 with nonzero_bits_mode (because last_set_mode is necessarily integral
10150 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10151 are all valid, hence in mode too since nonzero_bits_mode is defined
10152 to the largest HWI_COMPUTABLE_MODE_P mode. */
10153 *nonzero &= rsp->last_set_nonzero_bits;
10154 return NULL;
10157 tem = get_last_value (x);
10158 if (tem)
10160 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10161 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10163 return tem;
10166 if (nonzero_sign_valid && rsp->nonzero_bits)
10168 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10170 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10171 /* We don't know anything about the upper bits. */
10172 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10174 *nonzero &= mask;
10177 return NULL;
10180 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10181 end of X that are known to be equal to the sign bit. X will be used
10182 in mode MODE; the returned value will always be between 1 and the
10183 number of bits in MODE. */
10185 static rtx
10186 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10187 scalar_int_mode mode,
10188 unsigned int *result)
10190 rtx tem;
10191 reg_stat_type *rsp;
10193 rsp = &reg_stat[REGNO (x)];
10194 if (rsp->last_set_value != 0
10195 && rsp->last_set_mode == mode
10196 && ((rsp->last_set_label >= label_tick_ebb_start
10197 && rsp->last_set_label < label_tick)
10198 || (rsp->last_set_label == label_tick
10199 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10200 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10201 && REGNO (x) < reg_n_sets_max
10202 && REG_N_SETS (REGNO (x)) == 1
10203 && !REGNO_REG_SET_P
10204 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10205 REGNO (x)))))
10207 *result = rsp->last_set_sign_bit_copies;
10208 return NULL;
10211 tem = get_last_value (x);
10212 if (tem != 0)
10213 return tem;
10215 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10216 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10217 *result = rsp->sign_bit_copies;
10219 return NULL;
10222 /* Return the number of "extended" bits there are in X, when interpreted
10223 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10224 unsigned quantities, this is the number of high-order zero bits.
10225 For signed quantities, this is the number of copies of the sign bit
10226 minus 1. In both case, this function returns the number of "spare"
10227 bits. For example, if two quantities for which this function returns
10228 at least 1 are added, the addition is known not to overflow.
10230 This function will always return 0 unless called during combine, which
10231 implies that it must be called from a define_split. */
10233 unsigned int
10234 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10236 if (nonzero_sign_valid == 0)
10237 return 0;
10239 scalar_int_mode int_mode;
10240 return (unsignedp
10241 ? (is_a <scalar_int_mode> (mode, &int_mode)
10242 && HWI_COMPUTABLE_MODE_P (int_mode)
10243 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10244 - floor_log2 (nonzero_bits (x, int_mode)))
10245 : 0)
10246 : num_sign_bit_copies (x, mode) - 1);
10249 /* This function is called from `simplify_shift_const' to merge two
10250 outer operations. Specifically, we have already found that we need
10251 to perform operation *POP0 with constant *PCONST0 at the outermost
10252 position. We would now like to also perform OP1 with constant CONST1
10253 (with *POP0 being done last).
10255 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10256 the resulting operation. *PCOMP_P is set to 1 if we would need to
10257 complement the innermost operand, otherwise it is unchanged.
10259 MODE is the mode in which the operation will be done. No bits outside
10260 the width of this mode matter. It is assumed that the width of this mode
10261 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10263 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10264 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10265 result is simply *PCONST0.
10267 If the resulting operation cannot be expressed as one operation, we
10268 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10270 static int
10271 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10273 enum rtx_code op0 = *pop0;
10274 HOST_WIDE_INT const0 = *pconst0;
10276 const0 &= GET_MODE_MASK (mode);
10277 const1 &= GET_MODE_MASK (mode);
10279 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10280 if (op0 == AND)
10281 const1 &= const0;
10283 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10284 if OP0 is SET. */
10286 if (op1 == UNKNOWN || op0 == SET)
10287 return 1;
10289 else if (op0 == UNKNOWN)
10290 op0 = op1, const0 = const1;
10292 else if (op0 == op1)
10294 switch (op0)
10296 case AND:
10297 const0 &= const1;
10298 break;
10299 case IOR:
10300 const0 |= const1;
10301 break;
10302 case XOR:
10303 const0 ^= const1;
10304 break;
10305 case PLUS:
10306 const0 += const1;
10307 break;
10308 case NEG:
10309 op0 = UNKNOWN;
10310 break;
10311 default:
10312 break;
10316 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10317 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10318 return 0;
10320 /* If the two constants aren't the same, we can't do anything. The
10321 remaining six cases can all be done. */
10322 else if (const0 != const1)
10323 return 0;
10325 else
10326 switch (op0)
10328 case IOR:
10329 if (op1 == AND)
10330 /* (a & b) | b == b */
10331 op0 = SET;
10332 else /* op1 == XOR */
10333 /* (a ^ b) | b == a | b */
10335 break;
10337 case XOR:
10338 if (op1 == AND)
10339 /* (a & b) ^ b == (~a) & b */
10340 op0 = AND, *pcomp_p = 1;
10341 else /* op1 == IOR */
10342 /* (a | b) ^ b == a & ~b */
10343 op0 = AND, const0 = ~const0;
10344 break;
10346 case AND:
10347 if (op1 == IOR)
10348 /* (a | b) & b == b */
10349 op0 = SET;
10350 else /* op1 == XOR */
10351 /* (a ^ b) & b) == (~a) & b */
10352 *pcomp_p = 1;
10353 break;
10354 default:
10355 break;
10358 /* Check for NO-OP cases. */
10359 const0 &= GET_MODE_MASK (mode);
10360 if (const0 == 0
10361 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10362 op0 = UNKNOWN;
10363 else if (const0 == 0 && op0 == AND)
10364 op0 = SET;
10365 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10366 && op0 == AND)
10367 op0 = UNKNOWN;
10369 *pop0 = op0;
10371 /* ??? Slightly redundant with the above mask, but not entirely.
10372 Moving this above means we'd have to sign-extend the mode mask
10373 for the final test. */
10374 if (op0 != UNKNOWN && op0 != NEG)
10375 *pconst0 = trunc_int_for_mode (const0, mode);
10377 return 1;
10380 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10381 the shift in. The original shift operation CODE is performed on OP in
10382 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10383 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10384 result of the shift is subject to operation OUTER_CODE with operand
10385 OUTER_CONST. */
10387 static scalar_int_mode
10388 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10389 scalar_int_mode orig_mode, scalar_int_mode mode,
10390 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10392 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10394 /* In general we can't perform in wider mode for right shift and rotate. */
10395 switch (code)
10397 case ASHIFTRT:
10398 /* We can still widen if the bits brought in from the left are identical
10399 to the sign bit of ORIG_MODE. */
10400 if (num_sign_bit_copies (op, mode)
10401 > (unsigned) (GET_MODE_PRECISION (mode)
10402 - GET_MODE_PRECISION (orig_mode)))
10403 return mode;
10404 return orig_mode;
10406 case LSHIFTRT:
10407 /* Similarly here but with zero bits. */
10408 if (HWI_COMPUTABLE_MODE_P (mode)
10409 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10410 return mode;
10412 /* We can also widen if the bits brought in will be masked off. This
10413 operation is performed in ORIG_MODE. */
10414 if (outer_code == AND)
10416 int care_bits = low_bitmask_len (orig_mode, outer_const);
10418 if (care_bits >= 0
10419 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10420 return mode;
10422 /* fall through */
10424 case ROTATE:
10425 return orig_mode;
10427 case ROTATERT:
10428 gcc_unreachable ();
10430 default:
10431 return mode;
10435 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10436 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10437 if we cannot simplify it. Otherwise, return a simplified value.
10439 The shift is normally computed in the widest mode we find in VAROP, as
10440 long as it isn't a different number of words than RESULT_MODE. Exceptions
10441 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10443 static rtx
10444 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10445 rtx varop, int orig_count)
10447 enum rtx_code orig_code = code;
10448 rtx orig_varop = varop;
10449 int count;
10450 machine_mode mode = result_mode;
10451 machine_mode shift_mode;
10452 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10453 unsigned int mode_words
10454 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10455 /* We form (outer_op (code varop count) (outer_const)). */
10456 enum rtx_code outer_op = UNKNOWN;
10457 HOST_WIDE_INT outer_const = 0;
10458 int complement_p = 0;
10459 rtx new_rtx, x;
10461 /* Make sure and truncate the "natural" shift on the way in. We don't
10462 want to do this inside the loop as it makes it more difficult to
10463 combine shifts. */
10464 if (SHIFT_COUNT_TRUNCATED)
10465 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10467 /* If we were given an invalid count, don't do anything except exactly
10468 what was requested. */
10470 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10471 return NULL_RTX;
10473 count = orig_count;
10475 /* Unless one of the branches of the `if' in this loop does a `continue',
10476 we will `break' the loop after the `if'. */
10478 while (count != 0)
10480 /* If we have an operand of (clobber (const_int 0)), fail. */
10481 if (GET_CODE (varop) == CLOBBER)
10482 return NULL_RTX;
10484 /* Convert ROTATERT to ROTATE. */
10485 if (code == ROTATERT)
10487 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10488 code = ROTATE;
10489 count = bitsize - count;
10492 shift_mode = result_mode;
10493 if (shift_mode != mode)
10495 /* We only change the modes of scalar shifts. */
10496 int_mode = as_a <scalar_int_mode> (mode);
10497 int_result_mode = as_a <scalar_int_mode> (result_mode);
10498 shift_mode = try_widen_shift_mode (code, varop, count,
10499 int_result_mode, int_mode,
10500 outer_op, outer_const);
10503 scalar_int_mode shift_unit_mode
10504 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10506 /* Handle cases where the count is greater than the size of the mode
10507 minus 1. For ASHIFT, use the size minus one as the count (this can
10508 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10509 take the count modulo the size. For other shifts, the result is
10510 zero.
10512 Since these shifts are being produced by the compiler by combining
10513 multiple operations, each of which are defined, we know what the
10514 result is supposed to be. */
10516 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10518 if (code == ASHIFTRT)
10519 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10520 else if (code == ROTATE || code == ROTATERT)
10521 count %= GET_MODE_PRECISION (shift_unit_mode);
10522 else
10524 /* We can't simply return zero because there may be an
10525 outer op. */
10526 varop = const0_rtx;
10527 count = 0;
10528 break;
10532 /* If we discovered we had to complement VAROP, leave. Making a NOT
10533 here would cause an infinite loop. */
10534 if (complement_p)
10535 break;
10537 if (shift_mode == shift_unit_mode)
10539 /* An arithmetic right shift of a quantity known to be -1 or 0
10540 is a no-op. */
10541 if (code == ASHIFTRT
10542 && (num_sign_bit_copies (varop, shift_unit_mode)
10543 == GET_MODE_PRECISION (shift_unit_mode)))
10545 count = 0;
10546 break;
10549 /* If we are doing an arithmetic right shift and discarding all but
10550 the sign bit copies, this is equivalent to doing a shift by the
10551 bitsize minus one. Convert it into that shift because it will
10552 often allow other simplifications. */
10554 if (code == ASHIFTRT
10555 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10556 >= GET_MODE_PRECISION (shift_unit_mode)))
10557 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10559 /* We simplify the tests below and elsewhere by converting
10560 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10561 `make_compound_operation' will convert it to an ASHIFTRT for
10562 those machines (such as VAX) that don't have an LSHIFTRT. */
10563 if (code == ASHIFTRT
10564 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10565 && val_signbit_known_clear_p (shift_unit_mode,
10566 nonzero_bits (varop,
10567 shift_unit_mode)))
10568 code = LSHIFTRT;
10570 if (((code == LSHIFTRT
10571 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10572 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10573 || (code == ASHIFT
10574 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10575 && !((nonzero_bits (varop, shift_unit_mode) << count)
10576 & GET_MODE_MASK (shift_unit_mode))))
10577 && !side_effects_p (varop))
10578 varop = const0_rtx;
10581 switch (GET_CODE (varop))
10583 case SIGN_EXTEND:
10584 case ZERO_EXTEND:
10585 case SIGN_EXTRACT:
10586 case ZERO_EXTRACT:
10587 new_rtx = expand_compound_operation (varop);
10588 if (new_rtx != varop)
10590 varop = new_rtx;
10591 continue;
10593 break;
10595 case MEM:
10596 /* The following rules apply only to scalars. */
10597 if (shift_mode != shift_unit_mode)
10598 break;
10599 int_mode = as_a <scalar_int_mode> (mode);
10601 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10602 minus the width of a smaller mode, we can do this with a
10603 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10604 if ((code == ASHIFTRT || code == LSHIFTRT)
10605 && ! mode_dependent_address_p (XEXP (varop, 0),
10606 MEM_ADDR_SPACE (varop))
10607 && ! MEM_VOLATILE_P (varop)
10608 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10609 .exists (&tmode)))
10611 new_rtx = adjust_address_nv (varop, tmode,
10612 BYTES_BIG_ENDIAN ? 0
10613 : count / BITS_PER_UNIT);
10615 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10616 : ZERO_EXTEND, int_mode, new_rtx);
10617 count = 0;
10618 continue;
10620 break;
10622 case SUBREG:
10623 /* The following rules apply only to scalars. */
10624 if (shift_mode != shift_unit_mode)
10625 break;
10626 int_mode = as_a <scalar_int_mode> (mode);
10627 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10629 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10630 the same number of words as what we've seen so far. Then store
10631 the widest mode in MODE. */
10632 if (subreg_lowpart_p (varop)
10633 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10634 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10635 && (unsigned int) ((GET_MODE_SIZE (inner_mode)
10636 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10637 == mode_words
10638 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10640 varop = SUBREG_REG (varop);
10641 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10642 mode = inner_mode;
10643 continue;
10645 break;
10647 case MULT:
10648 /* Some machines use MULT instead of ASHIFT because MULT
10649 is cheaper. But it is still better on those machines to
10650 merge two shifts into one. */
10651 if (CONST_INT_P (XEXP (varop, 1))
10652 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10654 varop
10655 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10656 XEXP (varop, 0),
10657 GEN_INT (exact_log2 (
10658 UINTVAL (XEXP (varop, 1)))));
10659 continue;
10661 break;
10663 case UDIV:
10664 /* Similar, for when divides are cheaper. */
10665 if (CONST_INT_P (XEXP (varop, 1))
10666 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10668 varop
10669 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10670 XEXP (varop, 0),
10671 GEN_INT (exact_log2 (
10672 UINTVAL (XEXP (varop, 1)))));
10673 continue;
10675 break;
10677 case ASHIFTRT:
10678 /* If we are extracting just the sign bit of an arithmetic
10679 right shift, that shift is not needed. However, the sign
10680 bit of a wider mode may be different from what would be
10681 interpreted as the sign bit in a narrower mode, so, if
10682 the result is narrower, don't discard the shift. */
10683 if (code == LSHIFTRT
10684 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10685 && (GET_MODE_UNIT_BITSIZE (result_mode)
10686 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10688 varop = XEXP (varop, 0);
10689 continue;
10692 /* fall through */
10694 case LSHIFTRT:
10695 case ASHIFT:
10696 case ROTATE:
10697 /* The following rules apply only to scalars. */
10698 if (shift_mode != shift_unit_mode)
10699 break;
10700 int_mode = as_a <scalar_int_mode> (mode);
10701 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10702 int_result_mode = as_a <scalar_int_mode> (result_mode);
10704 /* Here we have two nested shifts. The result is usually the
10705 AND of a new shift with a mask. We compute the result below. */
10706 if (CONST_INT_P (XEXP (varop, 1))
10707 && INTVAL (XEXP (varop, 1)) >= 0
10708 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10709 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10710 && HWI_COMPUTABLE_MODE_P (int_mode))
10712 enum rtx_code first_code = GET_CODE (varop);
10713 unsigned int first_count = INTVAL (XEXP (varop, 1));
10714 unsigned HOST_WIDE_INT mask;
10715 rtx mask_rtx;
10717 /* We have one common special case. We can't do any merging if
10718 the inner code is an ASHIFTRT of a smaller mode. However, if
10719 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10720 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10721 we can convert it to
10722 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10723 This simplifies certain SIGN_EXTEND operations. */
10724 if (code == ASHIFT && first_code == ASHIFTRT
10725 && count == (GET_MODE_PRECISION (int_result_mode)
10726 - GET_MODE_PRECISION (int_varop_mode)))
10728 /* C3 has the low-order C1 bits zero. */
10730 mask = GET_MODE_MASK (int_mode)
10731 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10733 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10734 XEXP (varop, 0), mask);
10735 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10736 int_result_mode, varop, count);
10737 count = first_count;
10738 code = ASHIFTRT;
10739 continue;
10742 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10743 than C1 high-order bits equal to the sign bit, we can convert
10744 this to either an ASHIFT or an ASHIFTRT depending on the
10745 two counts.
10747 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10749 if (code == ASHIFTRT && first_code == ASHIFT
10750 && int_varop_mode == shift_unit_mode
10751 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10752 > first_count))
10754 varop = XEXP (varop, 0);
10755 count -= first_count;
10756 if (count < 0)
10758 count = -count;
10759 code = ASHIFT;
10762 continue;
10765 /* There are some cases we can't do. If CODE is ASHIFTRT,
10766 we can only do this if FIRST_CODE is also ASHIFTRT.
10768 We can't do the case when CODE is ROTATE and FIRST_CODE is
10769 ASHIFTRT.
10771 If the mode of this shift is not the mode of the outer shift,
10772 we can't do this if either shift is a right shift or ROTATE.
10774 Finally, we can't do any of these if the mode is too wide
10775 unless the codes are the same.
10777 Handle the case where the shift codes are the same
10778 first. */
10780 if (code == first_code)
10782 if (int_varop_mode != int_result_mode
10783 && (code == ASHIFTRT || code == LSHIFTRT
10784 || code == ROTATE))
10785 break;
10787 count += first_count;
10788 varop = XEXP (varop, 0);
10789 continue;
10792 if (code == ASHIFTRT
10793 || (code == ROTATE && first_code == ASHIFTRT)
10794 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10795 || (int_varop_mode != int_result_mode
10796 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10797 || first_code == ROTATE
10798 || code == ROTATE)))
10799 break;
10801 /* To compute the mask to apply after the shift, shift the
10802 nonzero bits of the inner shift the same way the
10803 outer shift will. */
10805 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10806 int_result_mode);
10808 mask_rtx
10809 = simplify_const_binary_operation (code, int_result_mode,
10810 mask_rtx, GEN_INT (count));
10812 /* Give up if we can't compute an outer operation to use. */
10813 if (mask_rtx == 0
10814 || !CONST_INT_P (mask_rtx)
10815 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10816 INTVAL (mask_rtx),
10817 int_result_mode, &complement_p))
10818 break;
10820 /* If the shifts are in the same direction, we add the
10821 counts. Otherwise, we subtract them. */
10822 if ((code == ASHIFTRT || code == LSHIFTRT)
10823 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10824 count += first_count;
10825 else
10826 count -= first_count;
10828 /* If COUNT is positive, the new shift is usually CODE,
10829 except for the two exceptions below, in which case it is
10830 FIRST_CODE. If the count is negative, FIRST_CODE should
10831 always be used */
10832 if (count > 0
10833 && ((first_code == ROTATE && code == ASHIFT)
10834 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10835 code = first_code;
10836 else if (count < 0)
10837 code = first_code, count = -count;
10839 varop = XEXP (varop, 0);
10840 continue;
10843 /* If we have (A << B << C) for any shift, we can convert this to
10844 (A << C << B). This wins if A is a constant. Only try this if
10845 B is not a constant. */
10847 else if (GET_CODE (varop) == code
10848 && CONST_INT_P (XEXP (varop, 0))
10849 && !CONST_INT_P (XEXP (varop, 1)))
10851 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10852 sure the result will be masked. See PR70222. */
10853 if (code == LSHIFTRT
10854 && int_mode != int_result_mode
10855 && !merge_outer_ops (&outer_op, &outer_const, AND,
10856 GET_MODE_MASK (int_result_mode)
10857 >> orig_count, int_result_mode,
10858 &complement_p))
10859 break;
10860 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10861 up outer sign extension (often left and right shift) is
10862 hardly more efficient than the original. See PR70429. */
10863 if (code == ASHIFTRT && int_mode != int_result_mode)
10864 break;
10866 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10867 XEXP (varop, 0),
10868 GEN_INT (count));
10869 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10870 count = 0;
10871 continue;
10873 break;
10875 case NOT:
10876 /* The following rules apply only to scalars. */
10877 if (shift_mode != shift_unit_mode)
10878 break;
10880 /* Make this fit the case below. */
10881 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10882 continue;
10884 case IOR:
10885 case AND:
10886 case XOR:
10887 /* The following rules apply only to scalars. */
10888 if (shift_mode != shift_unit_mode)
10889 break;
10890 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10891 int_result_mode = as_a <scalar_int_mode> (result_mode);
10893 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10894 with C the size of VAROP - 1 and the shift is logical if
10895 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10896 we have an (le X 0) operation. If we have an arithmetic shift
10897 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10898 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10900 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10901 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10902 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10903 && (code == LSHIFTRT || code == ASHIFTRT)
10904 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10905 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10907 count = 0;
10908 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10909 const0_rtx);
10911 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10912 varop = gen_rtx_NEG (int_varop_mode, varop);
10914 continue;
10917 /* If we have (shift (logical)), move the logical to the outside
10918 to allow it to possibly combine with another logical and the
10919 shift to combine with another shift. This also canonicalizes to
10920 what a ZERO_EXTRACT looks like. Also, some machines have
10921 (and (shift)) insns. */
10923 if (CONST_INT_P (XEXP (varop, 1))
10924 /* We can't do this if we have (ashiftrt (xor)) and the
10925 constant has its sign bit set in shift_unit_mode with
10926 shift_unit_mode wider than result_mode. */
10927 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10928 && int_result_mode != shift_unit_mode
10929 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10930 shift_unit_mode))
10931 && (new_rtx = simplify_const_binary_operation
10932 (code, int_result_mode,
10933 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10934 GEN_INT (count))) != 0
10935 && CONST_INT_P (new_rtx)
10936 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10937 INTVAL (new_rtx), int_result_mode,
10938 &complement_p))
10940 varop = XEXP (varop, 0);
10941 continue;
10944 /* If we can't do that, try to simplify the shift in each arm of the
10945 logical expression, make a new logical expression, and apply
10946 the inverse distributive law. This also can't be done for
10947 (ashiftrt (xor)) where we've widened the shift and the constant
10948 changes the sign bit. */
10949 if (CONST_INT_P (XEXP (varop, 1))
10950 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10951 && int_result_mode != shift_unit_mode
10952 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10953 shift_unit_mode)))
10955 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10956 XEXP (varop, 0), count);
10957 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10958 XEXP (varop, 1), count);
10960 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
10961 lhs, rhs);
10962 varop = apply_distributive_law (varop);
10964 count = 0;
10965 continue;
10967 break;
10969 case EQ:
10970 /* The following rules apply only to scalars. */
10971 if (shift_mode != shift_unit_mode)
10972 break;
10973 int_result_mode = as_a <scalar_int_mode> (result_mode);
10975 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10976 says that the sign bit can be tested, FOO has mode MODE, C is
10977 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10978 that may be nonzero. */
10979 if (code == LSHIFTRT
10980 && XEXP (varop, 1) == const0_rtx
10981 && GET_MODE (XEXP (varop, 0)) == int_result_mode
10982 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10983 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10984 && STORE_FLAG_VALUE == -1
10985 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
10986 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
10987 int_result_mode, &complement_p))
10989 varop = XEXP (varop, 0);
10990 count = 0;
10991 continue;
10993 break;
10995 case NEG:
10996 /* The following rules apply only to scalars. */
10997 if (shift_mode != shift_unit_mode)
10998 break;
10999 int_result_mode = as_a <scalar_int_mode> (result_mode);
11001 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11002 than the number of bits in the mode is equivalent to A. */
11003 if (code == LSHIFTRT
11004 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11005 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11007 varop = XEXP (varop, 0);
11008 count = 0;
11009 continue;
11012 /* NEG commutes with ASHIFT since it is multiplication. Move the
11013 NEG outside to allow shifts to combine. */
11014 if (code == ASHIFT
11015 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11016 int_result_mode, &complement_p))
11018 varop = XEXP (varop, 0);
11019 continue;
11021 break;
11023 case PLUS:
11024 /* The following rules apply only to scalars. */
11025 if (shift_mode != shift_unit_mode)
11026 break;
11027 int_result_mode = as_a <scalar_int_mode> (result_mode);
11029 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11030 is one less than the number of bits in the mode is
11031 equivalent to (xor A 1). */
11032 if (code == LSHIFTRT
11033 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11034 && XEXP (varop, 1) == constm1_rtx
11035 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11036 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11037 int_result_mode, &complement_p))
11039 count = 0;
11040 varop = XEXP (varop, 0);
11041 continue;
11044 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11045 that might be nonzero in BAR are those being shifted out and those
11046 bits are known zero in FOO, we can replace the PLUS with FOO.
11047 Similarly in the other operand order. This code occurs when
11048 we are computing the size of a variable-size array. */
11050 if ((code == ASHIFTRT || code == LSHIFTRT)
11051 && count < HOST_BITS_PER_WIDE_INT
11052 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11053 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11054 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11056 varop = XEXP (varop, 0);
11057 continue;
11059 else if ((code == ASHIFTRT || code == LSHIFTRT)
11060 && count < HOST_BITS_PER_WIDE_INT
11061 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11062 && 0 == (nonzero_bits (XEXP (varop, 0), int_result_mode)
11063 >> count)
11064 && 0 == (nonzero_bits (XEXP (varop, 0), int_result_mode)
11065 & nonzero_bits (XEXP (varop, 1), int_result_mode)))
11067 varop = XEXP (varop, 1);
11068 continue;
11071 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11072 if (code == ASHIFT
11073 && CONST_INT_P (XEXP (varop, 1))
11074 && (new_rtx = simplify_const_binary_operation
11075 (ASHIFT, int_result_mode,
11076 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11077 GEN_INT (count))) != 0
11078 && CONST_INT_P (new_rtx)
11079 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11080 INTVAL (new_rtx), int_result_mode,
11081 &complement_p))
11083 varop = XEXP (varop, 0);
11084 continue;
11087 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11088 signbit', and attempt to change the PLUS to an XOR and move it to
11089 the outer operation as is done above in the AND/IOR/XOR case
11090 leg for shift(logical). See details in logical handling above
11091 for reasoning in doing so. */
11092 if (code == LSHIFTRT
11093 && CONST_INT_P (XEXP (varop, 1))
11094 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11095 && (new_rtx = simplify_const_binary_operation
11096 (code, int_result_mode,
11097 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11098 GEN_INT (count))) != 0
11099 && CONST_INT_P (new_rtx)
11100 && merge_outer_ops (&outer_op, &outer_const, XOR,
11101 INTVAL (new_rtx), int_result_mode,
11102 &complement_p))
11104 varop = XEXP (varop, 0);
11105 continue;
11108 break;
11110 case MINUS:
11111 /* The following rules apply only to scalars. */
11112 if (shift_mode != shift_unit_mode)
11113 break;
11114 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11116 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11117 with C the size of VAROP - 1 and the shift is logical if
11118 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11119 we have a (gt X 0) operation. If the shift is arithmetic with
11120 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11121 we have a (neg (gt X 0)) operation. */
11123 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11124 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11125 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11126 && (code == LSHIFTRT || code == ASHIFTRT)
11127 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11128 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11129 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11131 count = 0;
11132 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11133 const0_rtx);
11135 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11136 varop = gen_rtx_NEG (int_varop_mode, varop);
11138 continue;
11140 break;
11142 case TRUNCATE:
11143 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11144 if the truncate does not affect the value. */
11145 if (code == LSHIFTRT
11146 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11147 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11148 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11149 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11150 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11152 rtx varop_inner = XEXP (varop, 0);
11154 varop_inner
11155 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11156 XEXP (varop_inner, 0),
11157 GEN_INT
11158 (count + INTVAL (XEXP (varop_inner, 1))));
11159 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11160 count = 0;
11161 continue;
11163 break;
11165 default:
11166 break;
11169 break;
11172 shift_mode = result_mode;
11173 if (shift_mode != mode)
11175 /* We only change the modes of scalar shifts. */
11176 int_mode = as_a <scalar_int_mode> (mode);
11177 int_result_mode = as_a <scalar_int_mode> (result_mode);
11178 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11179 int_mode, outer_op, outer_const);
11182 /* We have now finished analyzing the shift. The result should be
11183 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11184 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11185 to the result of the shift. OUTER_CONST is the relevant constant,
11186 but we must turn off all bits turned off in the shift. */
11188 if (outer_op == UNKNOWN
11189 && orig_code == code && orig_count == count
11190 && varop == orig_varop
11191 && shift_mode == GET_MODE (varop))
11192 return NULL_RTX;
11194 /* Make a SUBREG if necessary. If we can't make it, fail. */
11195 varop = gen_lowpart (shift_mode, varop);
11196 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11197 return NULL_RTX;
11199 /* If we have an outer operation and we just made a shift, it is
11200 possible that we could have simplified the shift were it not
11201 for the outer operation. So try to do the simplification
11202 recursively. */
11204 if (outer_op != UNKNOWN)
11205 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11206 else
11207 x = NULL_RTX;
11209 if (x == NULL_RTX)
11210 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11212 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11213 turn off all the bits that the shift would have turned off. */
11214 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11215 /* We only change the modes of scalar shifts. */
11216 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11217 x, GET_MODE_MASK (result_mode) >> orig_count);
11219 /* Do the remainder of the processing in RESULT_MODE. */
11220 x = gen_lowpart_or_truncate (result_mode, x);
11222 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11223 operation. */
11224 if (complement_p)
11225 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11227 if (outer_op != UNKNOWN)
11229 int_result_mode = as_a <scalar_int_mode> (result_mode);
11231 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11232 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11233 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11235 if (outer_op == AND)
11236 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11237 else if (outer_op == SET)
11239 /* This means that we have determined that the result is
11240 equivalent to a constant. This should be rare. */
11241 if (!side_effects_p (x))
11242 x = GEN_INT (outer_const);
11244 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11245 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11246 else
11247 x = simplify_gen_binary (outer_op, int_result_mode, x,
11248 GEN_INT (outer_const));
11251 return x;
11254 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11255 The result of the shift is RESULT_MODE. If we cannot simplify it,
11256 return X or, if it is NULL, synthesize the expression with
11257 simplify_gen_binary. Otherwise, return a simplified value.
11259 The shift is normally computed in the widest mode we find in VAROP, as
11260 long as it isn't a different number of words than RESULT_MODE. Exceptions
11261 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11263 static rtx
11264 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11265 rtx varop, int count)
11267 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11268 if (tem)
11269 return tem;
11271 if (!x)
11272 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11273 if (GET_MODE (x) != result_mode)
11274 x = gen_lowpart (result_mode, x);
11275 return x;
11279 /* A subroutine of recog_for_combine. See there for arguments and
11280 return value. */
11282 static int
11283 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11285 rtx pat = *pnewpat;
11286 rtx pat_without_clobbers;
11287 int insn_code_number;
11288 int num_clobbers_to_add = 0;
11289 int i;
11290 rtx notes = NULL_RTX;
11291 rtx old_notes, old_pat;
11292 int old_icode;
11294 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11295 we use to indicate that something didn't match. If we find such a
11296 thing, force rejection. */
11297 if (GET_CODE (pat) == PARALLEL)
11298 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11299 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11300 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11301 return -1;
11303 old_pat = PATTERN (insn);
11304 old_notes = REG_NOTES (insn);
11305 PATTERN (insn) = pat;
11306 REG_NOTES (insn) = NULL_RTX;
11308 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11309 if (dump_file && (dump_flags & TDF_DETAILS))
11311 if (insn_code_number < 0)
11312 fputs ("Failed to match this instruction:\n", dump_file);
11313 else
11314 fputs ("Successfully matched this instruction:\n", dump_file);
11315 print_rtl_single (dump_file, pat);
11318 /* If it isn't, there is the possibility that we previously had an insn
11319 that clobbered some register as a side effect, but the combined
11320 insn doesn't need to do that. So try once more without the clobbers
11321 unless this represents an ASM insn. */
11323 if (insn_code_number < 0 && ! check_asm_operands (pat)
11324 && GET_CODE (pat) == PARALLEL)
11326 int pos;
11328 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11329 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11331 if (i != pos)
11332 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11333 pos++;
11336 SUBST_INT (XVECLEN (pat, 0), pos);
11338 if (pos == 1)
11339 pat = XVECEXP (pat, 0, 0);
11341 PATTERN (insn) = pat;
11342 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11343 if (dump_file && (dump_flags & TDF_DETAILS))
11345 if (insn_code_number < 0)
11346 fputs ("Failed to match this instruction:\n", dump_file);
11347 else
11348 fputs ("Successfully matched this instruction:\n", dump_file);
11349 print_rtl_single (dump_file, pat);
11353 pat_without_clobbers = pat;
11355 PATTERN (insn) = old_pat;
11356 REG_NOTES (insn) = old_notes;
11358 /* Recognize all noop sets, these will be killed by followup pass. */
11359 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11360 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11362 /* If we had any clobbers to add, make a new pattern than contains
11363 them. Then check to make sure that all of them are dead. */
11364 if (num_clobbers_to_add)
11366 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11367 rtvec_alloc (GET_CODE (pat) == PARALLEL
11368 ? (XVECLEN (pat, 0)
11369 + num_clobbers_to_add)
11370 : num_clobbers_to_add + 1));
11372 if (GET_CODE (pat) == PARALLEL)
11373 for (i = 0; i < XVECLEN (pat, 0); i++)
11374 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11375 else
11376 XVECEXP (newpat, 0, 0) = pat;
11378 add_clobbers (newpat, insn_code_number);
11380 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11381 i < XVECLEN (newpat, 0); i++)
11383 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11384 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11385 return -1;
11386 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11388 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11389 notes = alloc_reg_note (REG_UNUSED,
11390 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11393 pat = newpat;
11396 if (insn_code_number >= 0
11397 && insn_code_number != NOOP_MOVE_INSN_CODE)
11399 old_pat = PATTERN (insn);
11400 old_notes = REG_NOTES (insn);
11401 old_icode = INSN_CODE (insn);
11402 PATTERN (insn) = pat;
11403 REG_NOTES (insn) = notes;
11404 INSN_CODE (insn) = insn_code_number;
11406 /* Allow targets to reject combined insn. */
11407 if (!targetm.legitimate_combined_insn (insn))
11409 if (dump_file && (dump_flags & TDF_DETAILS))
11410 fputs ("Instruction not appropriate for target.",
11411 dump_file);
11413 /* Callers expect recog_for_combine to strip
11414 clobbers from the pattern on failure. */
11415 pat = pat_without_clobbers;
11416 notes = NULL_RTX;
11418 insn_code_number = -1;
11421 PATTERN (insn) = old_pat;
11422 REG_NOTES (insn) = old_notes;
11423 INSN_CODE (insn) = old_icode;
11426 *pnewpat = pat;
11427 *pnotes = notes;
11429 return insn_code_number;
11432 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11433 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11434 Return whether anything was so changed. */
11436 static bool
11437 change_zero_ext (rtx pat)
11439 bool changed = false;
11440 rtx *src = &SET_SRC (pat);
11442 subrtx_ptr_iterator::array_type array;
11443 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11445 rtx x = **iter;
11446 scalar_int_mode mode, inner_mode;
11447 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11448 continue;
11449 int size;
11451 if (GET_CODE (x) == ZERO_EXTRACT
11452 && CONST_INT_P (XEXP (x, 1))
11453 && CONST_INT_P (XEXP (x, 2))
11454 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11455 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11457 size = INTVAL (XEXP (x, 1));
11459 int start = INTVAL (XEXP (x, 2));
11460 if (BITS_BIG_ENDIAN)
11461 start = GET_MODE_PRECISION (inner_mode) - size - start;
11463 if (start)
11464 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11465 else
11466 x = XEXP (x, 0);
11467 if (mode != inner_mode)
11468 x = gen_lowpart_SUBREG (mode, x);
11470 else if (GET_CODE (x) == ZERO_EXTEND
11471 && GET_CODE (XEXP (x, 0)) == SUBREG
11472 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11473 && !paradoxical_subreg_p (XEXP (x, 0))
11474 && subreg_lowpart_p (XEXP (x, 0)))
11476 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11477 size = GET_MODE_PRECISION (inner_mode);
11478 x = SUBREG_REG (XEXP (x, 0));
11479 if (GET_MODE (x) != mode)
11480 x = gen_lowpart_SUBREG (mode, x);
11482 else if (GET_CODE (x) == ZERO_EXTEND
11483 && REG_P (XEXP (x, 0))
11484 && HARD_REGISTER_P (XEXP (x, 0))
11485 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11487 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11488 size = GET_MODE_PRECISION (inner_mode);
11489 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11491 else
11492 continue;
11494 if (!(GET_CODE (x) == LSHIFTRT
11495 && CONST_INT_P (XEXP (x, 1))
11496 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11498 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11499 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11502 SUBST (**iter, x);
11503 changed = true;
11506 if (changed)
11507 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11508 maybe_swap_commutative_operands (**iter);
11510 rtx *dst = &SET_DEST (pat);
11511 scalar_int_mode mode;
11512 if (GET_CODE (*dst) == ZERO_EXTRACT
11513 && REG_P (XEXP (*dst, 0))
11514 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11515 && CONST_INT_P (XEXP (*dst, 1))
11516 && CONST_INT_P (XEXP (*dst, 2)))
11518 rtx reg = XEXP (*dst, 0);
11519 int width = INTVAL (XEXP (*dst, 1));
11520 int offset = INTVAL (XEXP (*dst, 2));
11521 int reg_width = GET_MODE_PRECISION (mode);
11522 if (BITS_BIG_ENDIAN)
11523 offset = reg_width - width - offset;
11525 rtx x, y, z, w;
11526 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11527 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11528 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11529 if (offset)
11530 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11531 else
11532 y = SET_SRC (pat);
11533 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11534 w = gen_rtx_IOR (mode, x, z);
11535 SUBST (SET_DEST (pat), reg);
11536 SUBST (SET_SRC (pat), w);
11538 changed = true;
11541 return changed;
11544 /* Like recog, but we receive the address of a pointer to a new pattern.
11545 We try to match the rtx that the pointer points to.
11546 If that fails, we may try to modify or replace the pattern,
11547 storing the replacement into the same pointer object.
11549 Modifications include deletion or addition of CLOBBERs. If the
11550 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11551 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11552 (and undo if that fails).
11554 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11555 the CLOBBERs are placed.
11557 The value is the final insn code from the pattern ultimately matched,
11558 or -1. */
11560 static int
11561 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11563 rtx pat = *pnewpat;
11564 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11565 if (insn_code_number >= 0 || check_asm_operands (pat))
11566 return insn_code_number;
11568 void *marker = get_undo_marker ();
11569 bool changed = false;
11571 if (GET_CODE (pat) == SET)
11572 changed = change_zero_ext (pat);
11573 else if (GET_CODE (pat) == PARALLEL)
11575 int i;
11576 for (i = 0; i < XVECLEN (pat, 0); i++)
11578 rtx set = XVECEXP (pat, 0, i);
11579 if (GET_CODE (set) == SET)
11580 changed |= change_zero_ext (set);
11584 if (changed)
11586 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11588 if (insn_code_number < 0)
11589 undo_to_marker (marker);
11592 return insn_code_number;
11595 /* Like gen_lowpart_general but for use by combine. In combine it
11596 is not possible to create any new pseudoregs. However, it is
11597 safe to create invalid memory addresses, because combine will
11598 try to recognize them and all they will do is make the combine
11599 attempt fail.
11601 If for some reason this cannot do its job, an rtx
11602 (clobber (const_int 0)) is returned.
11603 An insn containing that will not be recognized. */
11605 static rtx
11606 gen_lowpart_for_combine (machine_mode omode, rtx x)
11608 machine_mode imode = GET_MODE (x);
11609 unsigned int osize = GET_MODE_SIZE (omode);
11610 unsigned int isize = GET_MODE_SIZE (imode);
11611 rtx result;
11613 if (omode == imode)
11614 return x;
11616 /* We can only support MODE being wider than a word if X is a
11617 constant integer or has a mode the same size. */
11618 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11619 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11620 goto fail;
11622 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11623 won't know what to do. So we will strip off the SUBREG here and
11624 process normally. */
11625 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11627 x = SUBREG_REG (x);
11629 /* For use in case we fall down into the address adjustments
11630 further below, we need to adjust the known mode and size of
11631 x; imode and isize, since we just adjusted x. */
11632 imode = GET_MODE (x);
11634 if (imode == omode)
11635 return x;
11637 isize = GET_MODE_SIZE (imode);
11640 result = gen_lowpart_common (omode, x);
11642 if (result)
11643 return result;
11645 if (MEM_P (x))
11647 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11648 address. */
11649 if (MEM_VOLATILE_P (x)
11650 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11651 goto fail;
11653 /* If we want to refer to something bigger than the original memref,
11654 generate a paradoxical subreg instead. That will force a reload
11655 of the original memref X. */
11656 if (paradoxical_subreg_p (omode, imode))
11657 return gen_rtx_SUBREG (omode, x, 0);
11659 HOST_WIDE_INT offset = byte_lowpart_offset (omode, imode);
11660 return adjust_address_nv (x, omode, offset);
11663 /* If X is a comparison operator, rewrite it in a new mode. This
11664 probably won't match, but may allow further simplifications. */
11665 else if (COMPARISON_P (x))
11666 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11668 /* If we couldn't simplify X any other way, just enclose it in a
11669 SUBREG. Normally, this SUBREG won't match, but some patterns may
11670 include an explicit SUBREG or we may simplify it further in combine. */
11671 else
11673 rtx res;
11675 if (imode == VOIDmode)
11677 imode = int_mode_for_mode (omode).require ();
11678 x = gen_lowpart_common (imode, x);
11679 if (x == NULL)
11680 goto fail;
11682 res = lowpart_subreg (omode, x, imode);
11683 if (res)
11684 return res;
11687 fail:
11688 return gen_rtx_CLOBBER (omode, const0_rtx);
11691 /* Try to simplify a comparison between OP0 and a constant OP1,
11692 where CODE is the comparison code that will be tested, into a
11693 (CODE OP0 const0_rtx) form.
11695 The result is a possibly different comparison code to use.
11696 *POP1 may be updated. */
11698 static enum rtx_code
11699 simplify_compare_const (enum rtx_code code, machine_mode mode,
11700 rtx op0, rtx *pop1)
11702 scalar_int_mode int_mode;
11703 HOST_WIDE_INT const_op = INTVAL (*pop1);
11705 /* Get the constant we are comparing against and turn off all bits
11706 not on in our mode. */
11707 if (mode != VOIDmode)
11708 const_op = trunc_int_for_mode (const_op, mode);
11710 /* If we are comparing against a constant power of two and the value
11711 being compared can only have that single bit nonzero (e.g., it was
11712 `and'ed with that bit), we can replace this with a comparison
11713 with zero. */
11714 if (const_op
11715 && (code == EQ || code == NE || code == GE || code == GEU
11716 || code == LT || code == LTU)
11717 && is_a <scalar_int_mode> (mode, &int_mode)
11718 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11719 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11720 && (nonzero_bits (op0, int_mode)
11721 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11723 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11724 const_op = 0;
11727 /* Similarly, if we are comparing a value known to be either -1 or
11728 0 with -1, change it to the opposite comparison against zero. */
11729 if (const_op == -1
11730 && (code == EQ || code == NE || code == GT || code == LE
11731 || code == GEU || code == LTU)
11732 && is_a <scalar_int_mode> (mode, &int_mode)
11733 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11735 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11736 const_op = 0;
11739 /* Do some canonicalizations based on the comparison code. We prefer
11740 comparisons against zero and then prefer equality comparisons.
11741 If we can reduce the size of a constant, we will do that too. */
11742 switch (code)
11744 case LT:
11745 /* < C is equivalent to <= (C - 1) */
11746 if (const_op > 0)
11748 const_op -= 1;
11749 code = LE;
11750 /* ... fall through to LE case below. */
11751 gcc_fallthrough ();
11753 else
11754 break;
11756 case LE:
11757 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11758 if (const_op < 0)
11760 const_op += 1;
11761 code = LT;
11764 /* If we are doing a <= 0 comparison on a value known to have
11765 a zero sign bit, we can replace this with == 0. */
11766 else if (const_op == 0
11767 && is_a <scalar_int_mode> (mode, &int_mode)
11768 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11769 && (nonzero_bits (op0, int_mode)
11770 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11771 == 0)
11772 code = EQ;
11773 break;
11775 case GE:
11776 /* >= C is equivalent to > (C - 1). */
11777 if (const_op > 0)
11779 const_op -= 1;
11780 code = GT;
11781 /* ... fall through to GT below. */
11782 gcc_fallthrough ();
11784 else
11785 break;
11787 case GT:
11788 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11789 if (const_op < 0)
11791 const_op += 1;
11792 code = GE;
11795 /* If we are doing a > 0 comparison on a value known to have
11796 a zero sign bit, we can replace this with != 0. */
11797 else if (const_op == 0
11798 && is_a <scalar_int_mode> (mode, &int_mode)
11799 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11800 && (nonzero_bits (op0, int_mode)
11801 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11802 == 0)
11803 code = NE;
11804 break;
11806 case LTU:
11807 /* < C is equivalent to <= (C - 1). */
11808 if (const_op > 0)
11810 const_op -= 1;
11811 code = LEU;
11812 /* ... fall through ... */
11813 gcc_fallthrough ();
11815 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11816 else if (is_a <scalar_int_mode> (mode, &int_mode)
11817 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11818 && ((unsigned HOST_WIDE_INT) const_op
11819 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11821 const_op = 0;
11822 code = GE;
11823 break;
11825 else
11826 break;
11828 case LEU:
11829 /* unsigned <= 0 is equivalent to == 0 */
11830 if (const_op == 0)
11831 code = EQ;
11832 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11833 else if (is_a <scalar_int_mode> (mode, &int_mode)
11834 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11835 && ((unsigned HOST_WIDE_INT) const_op
11836 == ((HOST_WIDE_INT_1U
11837 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11839 const_op = 0;
11840 code = GE;
11842 break;
11844 case GEU:
11845 /* >= C is equivalent to > (C - 1). */
11846 if (const_op > 1)
11848 const_op -= 1;
11849 code = GTU;
11850 /* ... fall through ... */
11851 gcc_fallthrough ();
11854 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11855 else if (is_a <scalar_int_mode> (mode, &int_mode)
11856 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11857 && ((unsigned HOST_WIDE_INT) const_op
11858 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11860 const_op = 0;
11861 code = LT;
11862 break;
11864 else
11865 break;
11867 case GTU:
11868 /* unsigned > 0 is equivalent to != 0 */
11869 if (const_op == 0)
11870 code = NE;
11871 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11872 else if (is_a <scalar_int_mode> (mode, &int_mode)
11873 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11874 && ((unsigned HOST_WIDE_INT) const_op
11875 == (HOST_WIDE_INT_1U
11876 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11878 const_op = 0;
11879 code = LT;
11881 break;
11883 default:
11884 break;
11887 *pop1 = GEN_INT (const_op);
11888 return code;
11891 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11892 comparison code that will be tested.
11894 The result is a possibly different comparison code to use. *POP0 and
11895 *POP1 may be updated.
11897 It is possible that we might detect that a comparison is either always
11898 true or always false. However, we do not perform general constant
11899 folding in combine, so this knowledge isn't useful. Such tautologies
11900 should have been detected earlier. Hence we ignore all such cases. */
11902 static enum rtx_code
11903 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11905 rtx op0 = *pop0;
11906 rtx op1 = *pop1;
11907 rtx tem, tem1;
11908 int i;
11909 scalar_int_mode mode, inner_mode, tmode;
11910 opt_scalar_int_mode tmode_iter;
11912 /* Try a few ways of applying the same transformation to both operands. */
11913 while (1)
11915 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11916 so check specially. */
11917 if (!WORD_REGISTER_OPERATIONS
11918 && code != GTU && code != GEU && code != LTU && code != LEU
11919 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11920 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11921 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11922 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11923 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11924 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11925 && (is_a <scalar_int_mode>
11926 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11927 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11928 && CONST_INT_P (XEXP (op0, 1))
11929 && XEXP (op0, 1) == XEXP (op1, 1)
11930 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11931 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11932 && (INTVAL (XEXP (op0, 1))
11933 == (GET_MODE_PRECISION (mode)
11934 - GET_MODE_PRECISION (inner_mode))))
11936 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11937 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11940 /* If both operands are the same constant shift, see if we can ignore the
11941 shift. We can if the shift is a rotate or if the bits shifted out of
11942 this shift are known to be zero for both inputs and if the type of
11943 comparison is compatible with the shift. */
11944 if (GET_CODE (op0) == GET_CODE (op1)
11945 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11946 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11947 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11948 && (code != GT && code != LT && code != GE && code != LE))
11949 || (GET_CODE (op0) == ASHIFTRT
11950 && (code != GTU && code != LTU
11951 && code != GEU && code != LEU)))
11952 && CONST_INT_P (XEXP (op0, 1))
11953 && INTVAL (XEXP (op0, 1)) >= 0
11954 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11955 && XEXP (op0, 1) == XEXP (op1, 1))
11957 machine_mode mode = GET_MODE (op0);
11958 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11959 int shift_count = INTVAL (XEXP (op0, 1));
11961 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11962 mask &= (mask >> shift_count) << shift_count;
11963 else if (GET_CODE (op0) == ASHIFT)
11964 mask = (mask & (mask << shift_count)) >> shift_count;
11966 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11967 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11968 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11969 else
11970 break;
11973 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11974 SUBREGs are of the same mode, and, in both cases, the AND would
11975 be redundant if the comparison was done in the narrower mode,
11976 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11977 and the operand's possibly nonzero bits are 0xffffff01; in that case
11978 if we only care about QImode, we don't need the AND). This case
11979 occurs if the output mode of an scc insn is not SImode and
11980 STORE_FLAG_VALUE == 1 (e.g., the 386).
11982 Similarly, check for a case where the AND's are ZERO_EXTEND
11983 operations from some narrower mode even though a SUBREG is not
11984 present. */
11986 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11987 && CONST_INT_P (XEXP (op0, 1))
11988 && CONST_INT_P (XEXP (op1, 1)))
11990 rtx inner_op0 = XEXP (op0, 0);
11991 rtx inner_op1 = XEXP (op1, 0);
11992 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11993 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11994 int changed = 0;
11996 if (paradoxical_subreg_p (inner_op0)
11997 && GET_CODE (inner_op1) == SUBREG
11998 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
11999 && (GET_MODE (SUBREG_REG (inner_op0))
12000 == GET_MODE (SUBREG_REG (inner_op1)))
12001 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12002 GET_MODE (SUBREG_REG (inner_op0)))))
12003 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12004 GET_MODE (SUBREG_REG (inner_op1))))))
12006 op0 = SUBREG_REG (inner_op0);
12007 op1 = SUBREG_REG (inner_op1);
12009 /* The resulting comparison is always unsigned since we masked
12010 off the original sign bit. */
12011 code = unsigned_condition (code);
12013 changed = 1;
12016 else if (c0 == c1)
12017 FOR_EACH_MODE_UNTIL (tmode,
12018 as_a <scalar_int_mode> (GET_MODE (op0)))
12019 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12021 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12022 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12023 code = unsigned_condition (code);
12024 changed = 1;
12025 break;
12028 if (! changed)
12029 break;
12032 /* If both operands are NOT, we can strip off the outer operation
12033 and adjust the comparison code for swapped operands; similarly for
12034 NEG, except that this must be an equality comparison. */
12035 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12036 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12037 && (code == EQ || code == NE)))
12038 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12040 else
12041 break;
12044 /* If the first operand is a constant, swap the operands and adjust the
12045 comparison code appropriately, but don't do this if the second operand
12046 is already a constant integer. */
12047 if (swap_commutative_operands_p (op0, op1))
12049 std::swap (op0, op1);
12050 code = swap_condition (code);
12053 /* We now enter a loop during which we will try to simplify the comparison.
12054 For the most part, we only are concerned with comparisons with zero,
12055 but some things may really be comparisons with zero but not start
12056 out looking that way. */
12058 while (CONST_INT_P (op1))
12060 machine_mode raw_mode = GET_MODE (op0);
12061 scalar_int_mode int_mode;
12062 int equality_comparison_p;
12063 int sign_bit_comparison_p;
12064 int unsigned_comparison_p;
12065 HOST_WIDE_INT const_op;
12067 /* We only want to handle integral modes. This catches VOIDmode,
12068 CCmode, and the floating-point modes. An exception is that we
12069 can handle VOIDmode if OP0 is a COMPARE or a comparison
12070 operation. */
12072 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12073 && ! (raw_mode == VOIDmode
12074 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12075 break;
12077 /* Try to simplify the compare to constant, possibly changing the
12078 comparison op, and/or changing op1 to zero. */
12079 code = simplify_compare_const (code, raw_mode, op0, &op1);
12080 const_op = INTVAL (op1);
12082 /* Compute some predicates to simplify code below. */
12084 equality_comparison_p = (code == EQ || code == NE);
12085 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12086 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12087 || code == GEU);
12089 /* If this is a sign bit comparison and we can do arithmetic in
12090 MODE, say that we will only be needing the sign bit of OP0. */
12091 if (sign_bit_comparison_p
12092 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12093 && HWI_COMPUTABLE_MODE_P (int_mode))
12094 op0 = force_to_mode (op0, int_mode,
12095 HOST_WIDE_INT_1U
12096 << (GET_MODE_PRECISION (int_mode) - 1),
12099 if (COMPARISON_P (op0))
12101 /* We can't do anything if OP0 is a condition code value, rather
12102 than an actual data value. */
12103 if (const_op != 0
12104 || CC0_P (XEXP (op0, 0))
12105 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12106 break;
12108 /* Get the two operands being compared. */
12109 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12110 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12111 else
12112 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12114 /* Check for the cases where we simply want the result of the
12115 earlier test or the opposite of that result. */
12116 if (code == NE || code == EQ
12117 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12118 && (code == LT || code == GE)))
12120 enum rtx_code new_code;
12121 if (code == LT || code == NE)
12122 new_code = GET_CODE (op0);
12123 else
12124 new_code = reversed_comparison_code (op0, NULL);
12126 if (new_code != UNKNOWN)
12128 code = new_code;
12129 op0 = tem;
12130 op1 = tem1;
12131 continue;
12134 break;
12137 if (raw_mode == VOIDmode)
12138 break;
12139 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12141 /* Now try cases based on the opcode of OP0. If none of the cases
12142 does a "continue", we exit this loop immediately after the
12143 switch. */
12145 unsigned int mode_width = GET_MODE_PRECISION (mode);
12146 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12147 switch (GET_CODE (op0))
12149 case ZERO_EXTRACT:
12150 /* If we are extracting a single bit from a variable position in
12151 a constant that has only a single bit set and are comparing it
12152 with zero, we can convert this into an equality comparison
12153 between the position and the location of the single bit. */
12154 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12155 have already reduced the shift count modulo the word size. */
12156 if (!SHIFT_COUNT_TRUNCATED
12157 && CONST_INT_P (XEXP (op0, 0))
12158 && XEXP (op0, 1) == const1_rtx
12159 && equality_comparison_p && const_op == 0
12160 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12162 if (BITS_BIG_ENDIAN)
12163 i = BITS_PER_WORD - 1 - i;
12165 op0 = XEXP (op0, 2);
12166 op1 = GEN_INT (i);
12167 const_op = i;
12169 /* Result is nonzero iff shift count is equal to I. */
12170 code = reverse_condition (code);
12171 continue;
12174 /* fall through */
12176 case SIGN_EXTRACT:
12177 tem = expand_compound_operation (op0);
12178 if (tem != op0)
12180 op0 = tem;
12181 continue;
12183 break;
12185 case NOT:
12186 /* If testing for equality, we can take the NOT of the constant. */
12187 if (equality_comparison_p
12188 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12190 op0 = XEXP (op0, 0);
12191 op1 = tem;
12192 continue;
12195 /* If just looking at the sign bit, reverse the sense of the
12196 comparison. */
12197 if (sign_bit_comparison_p)
12199 op0 = XEXP (op0, 0);
12200 code = (code == GE ? LT : GE);
12201 continue;
12203 break;
12205 case NEG:
12206 /* If testing for equality, we can take the NEG of the constant. */
12207 if (equality_comparison_p
12208 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12210 op0 = XEXP (op0, 0);
12211 op1 = tem;
12212 continue;
12215 /* The remaining cases only apply to comparisons with zero. */
12216 if (const_op != 0)
12217 break;
12219 /* When X is ABS or is known positive,
12220 (neg X) is < 0 if and only if X != 0. */
12222 if (sign_bit_comparison_p
12223 && (GET_CODE (XEXP (op0, 0)) == ABS
12224 || (mode_width <= HOST_BITS_PER_WIDE_INT
12225 && (nonzero_bits (XEXP (op0, 0), mode)
12226 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12227 == 0)))
12229 op0 = XEXP (op0, 0);
12230 code = (code == LT ? NE : EQ);
12231 continue;
12234 /* If we have NEG of something whose two high-order bits are the
12235 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12236 if (num_sign_bit_copies (op0, mode) >= 2)
12238 op0 = XEXP (op0, 0);
12239 code = swap_condition (code);
12240 continue;
12242 break;
12244 case ROTATE:
12245 /* If we are testing equality and our count is a constant, we
12246 can perform the inverse operation on our RHS. */
12247 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12248 && (tem = simplify_binary_operation (ROTATERT, mode,
12249 op1, XEXP (op0, 1))) != 0)
12251 op0 = XEXP (op0, 0);
12252 op1 = tem;
12253 continue;
12256 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12257 a particular bit. Convert it to an AND of a constant of that
12258 bit. This will be converted into a ZERO_EXTRACT. */
12259 if (const_op == 0 && sign_bit_comparison_p
12260 && CONST_INT_P (XEXP (op0, 1))
12261 && mode_width <= HOST_BITS_PER_WIDE_INT)
12263 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12264 (HOST_WIDE_INT_1U
12265 << (mode_width - 1
12266 - INTVAL (XEXP (op0, 1)))));
12267 code = (code == LT ? NE : EQ);
12268 continue;
12271 /* Fall through. */
12273 case ABS:
12274 /* ABS is ignorable inside an equality comparison with zero. */
12275 if (const_op == 0 && equality_comparison_p)
12277 op0 = XEXP (op0, 0);
12278 continue;
12280 break;
12282 case SIGN_EXTEND:
12283 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12284 (compare FOO CONST) if CONST fits in FOO's mode and we
12285 are either testing inequality or have an unsigned
12286 comparison with ZERO_EXTEND or a signed comparison with
12287 SIGN_EXTEND. But don't do it if we don't have a compare
12288 insn of the given mode, since we'd have to revert it
12289 later on, and then we wouldn't know whether to sign- or
12290 zero-extend. */
12291 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12292 && ! unsigned_comparison_p
12293 && HWI_COMPUTABLE_MODE_P (mode)
12294 && trunc_int_for_mode (const_op, mode) == const_op
12295 && have_insn_for (COMPARE, mode))
12297 op0 = XEXP (op0, 0);
12298 continue;
12300 break;
12302 case SUBREG:
12303 /* Check for the case where we are comparing A - C1 with C2, that is
12305 (subreg:MODE (plus (A) (-C1))) op (C2)
12307 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12308 comparison in the wider mode. One of the following two conditions
12309 must be true in order for this to be valid:
12311 1. The mode extension results in the same bit pattern being added
12312 on both sides and the comparison is equality or unsigned. As
12313 C2 has been truncated to fit in MODE, the pattern can only be
12314 all 0s or all 1s.
12316 2. The mode extension results in the sign bit being copied on
12317 each side.
12319 The difficulty here is that we have predicates for A but not for
12320 (A - C1) so we need to check that C1 is within proper bounds so
12321 as to perturbate A as little as possible. */
12323 if (mode_width <= HOST_BITS_PER_WIDE_INT
12324 && subreg_lowpart_p (op0)
12325 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12326 &inner_mode)
12327 && GET_MODE_PRECISION (inner_mode) > mode_width
12328 && GET_CODE (SUBREG_REG (op0)) == PLUS
12329 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12331 rtx a = XEXP (SUBREG_REG (op0), 0);
12332 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12334 if ((c1 > 0
12335 && (unsigned HOST_WIDE_INT) c1
12336 < HOST_WIDE_INT_1U << (mode_width - 1)
12337 && (equality_comparison_p || unsigned_comparison_p)
12338 /* (A - C1) zero-extends if it is positive and sign-extends
12339 if it is negative, C2 both zero- and sign-extends. */
12340 && ((0 == (nonzero_bits (a, inner_mode)
12341 & ~GET_MODE_MASK (mode))
12342 && const_op >= 0)
12343 /* (A - C1) sign-extends if it is positive and 1-extends
12344 if it is negative, C2 both sign- and 1-extends. */
12345 || (num_sign_bit_copies (a, inner_mode)
12346 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12347 - mode_width)
12348 && const_op < 0)))
12349 || ((unsigned HOST_WIDE_INT) c1
12350 < HOST_WIDE_INT_1U << (mode_width - 2)
12351 /* (A - C1) always sign-extends, like C2. */
12352 && num_sign_bit_copies (a, inner_mode)
12353 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12354 - (mode_width - 1))))
12356 op0 = SUBREG_REG (op0);
12357 continue;
12361 /* If the inner mode is narrower and we are extracting the low part,
12362 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12363 if (paradoxical_subreg_p (op0))
12365 else if (subreg_lowpart_p (op0)
12366 && GET_MODE_CLASS (mode) == MODE_INT
12367 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12368 && (code == NE || code == EQ)
12369 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12370 && !paradoxical_subreg_p (op0)
12371 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12372 & ~GET_MODE_MASK (mode)) == 0)
12374 /* Remove outer subregs that don't do anything. */
12375 tem = gen_lowpart (inner_mode, op1);
12377 if ((nonzero_bits (tem, inner_mode)
12378 & ~GET_MODE_MASK (mode)) == 0)
12380 op0 = SUBREG_REG (op0);
12381 op1 = tem;
12382 continue;
12384 break;
12386 else
12387 break;
12389 /* FALLTHROUGH */
12391 case ZERO_EXTEND:
12392 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12393 && (unsigned_comparison_p || equality_comparison_p)
12394 && HWI_COMPUTABLE_MODE_P (mode)
12395 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12396 && const_op >= 0
12397 && have_insn_for (COMPARE, mode))
12399 op0 = XEXP (op0, 0);
12400 continue;
12402 break;
12404 case PLUS:
12405 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12406 this for equality comparisons due to pathological cases involving
12407 overflows. */
12408 if (equality_comparison_p
12409 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12410 op1, XEXP (op0, 1))))
12412 op0 = XEXP (op0, 0);
12413 op1 = tem;
12414 continue;
12417 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12418 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12419 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12421 op0 = XEXP (XEXP (op0, 0), 0);
12422 code = (code == LT ? EQ : NE);
12423 continue;
12425 break;
12427 case MINUS:
12428 /* We used to optimize signed comparisons against zero, but that
12429 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12430 arrive here as equality comparisons, or (GEU, LTU) are
12431 optimized away. No need to special-case them. */
12433 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12434 (eq B (minus A C)), whichever simplifies. We can only do
12435 this for equality comparisons due to pathological cases involving
12436 overflows. */
12437 if (equality_comparison_p
12438 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12439 XEXP (op0, 1), op1)))
12441 op0 = XEXP (op0, 0);
12442 op1 = tem;
12443 continue;
12446 if (equality_comparison_p
12447 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12448 XEXP (op0, 0), op1)))
12450 op0 = XEXP (op0, 1);
12451 op1 = tem;
12452 continue;
12455 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12456 of bits in X minus 1, is one iff X > 0. */
12457 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12458 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12459 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12460 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12462 op0 = XEXP (op0, 1);
12463 code = (code == GE ? LE : GT);
12464 continue;
12466 break;
12468 case XOR:
12469 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12470 if C is zero or B is a constant. */
12471 if (equality_comparison_p
12472 && 0 != (tem = simplify_binary_operation (XOR, mode,
12473 XEXP (op0, 1), op1)))
12475 op0 = XEXP (op0, 0);
12476 op1 = tem;
12477 continue;
12479 break;
12482 case IOR:
12483 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12484 iff X <= 0. */
12485 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12486 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12487 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12489 op0 = XEXP (op0, 1);
12490 code = (code == GE ? GT : LE);
12491 continue;
12493 break;
12495 case AND:
12496 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12497 will be converted to a ZERO_EXTRACT later. */
12498 if (const_op == 0 && equality_comparison_p
12499 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12500 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12502 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12503 XEXP (XEXP (op0, 0), 1));
12504 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12505 continue;
12508 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12509 zero and X is a comparison and C1 and C2 describe only bits set
12510 in STORE_FLAG_VALUE, we can compare with X. */
12511 if (const_op == 0 && equality_comparison_p
12512 && mode_width <= HOST_BITS_PER_WIDE_INT
12513 && CONST_INT_P (XEXP (op0, 1))
12514 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12515 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12516 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12517 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12519 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12520 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12521 if ((~STORE_FLAG_VALUE & mask) == 0
12522 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12523 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12524 && COMPARISON_P (tem))))
12526 op0 = XEXP (XEXP (op0, 0), 0);
12527 continue;
12531 /* If we are doing an equality comparison of an AND of a bit equal
12532 to the sign bit, replace this with a LT or GE comparison of
12533 the underlying value. */
12534 if (equality_comparison_p
12535 && const_op == 0
12536 && CONST_INT_P (XEXP (op0, 1))
12537 && mode_width <= HOST_BITS_PER_WIDE_INT
12538 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12539 == HOST_WIDE_INT_1U << (mode_width - 1)))
12541 op0 = XEXP (op0, 0);
12542 code = (code == EQ ? GE : LT);
12543 continue;
12546 /* If this AND operation is really a ZERO_EXTEND from a narrower
12547 mode, the constant fits within that mode, and this is either an
12548 equality or unsigned comparison, try to do this comparison in
12549 the narrower mode.
12551 Note that in:
12553 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12554 -> (ne:DI (reg:SI 4) (const_int 0))
12556 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12557 known to hold a value of the required mode the
12558 transformation is invalid. */
12559 if ((equality_comparison_p || unsigned_comparison_p)
12560 && CONST_INT_P (XEXP (op0, 1))
12561 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12562 & GET_MODE_MASK (mode))
12563 + 1)) >= 0
12564 && const_op >> i == 0
12565 && int_mode_for_size (i, 1).exists (&tmode))
12567 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12568 continue;
12571 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12572 fits in both M1 and M2 and the SUBREG is either paradoxical
12573 or represents the low part, permute the SUBREG and the AND
12574 and try again. */
12575 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12576 && CONST_INT_P (XEXP (op0, 1)))
12578 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12579 /* Require an integral mode, to avoid creating something like
12580 (AND:SF ...). */
12581 if ((is_a <scalar_int_mode>
12582 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12583 /* It is unsafe to commute the AND into the SUBREG if the
12584 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12585 not defined. As originally written the upper bits
12586 have a defined value due to the AND operation.
12587 However, if we commute the AND inside the SUBREG then
12588 they no longer have defined values and the meaning of
12589 the code has been changed.
12590 Also C1 should not change value in the smaller mode,
12591 see PR67028 (a positive C1 can become negative in the
12592 smaller mode, so that the AND does no longer mask the
12593 upper bits). */
12594 && ((WORD_REGISTER_OPERATIONS
12595 && mode_width > GET_MODE_PRECISION (tmode)
12596 && mode_width <= BITS_PER_WORD
12597 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12598 || (mode_width <= GET_MODE_PRECISION (tmode)
12599 && subreg_lowpart_p (XEXP (op0, 0))))
12600 && mode_width <= HOST_BITS_PER_WIDE_INT
12601 && HWI_COMPUTABLE_MODE_P (tmode)
12602 && (c1 & ~mask) == 0
12603 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12604 && c1 != mask
12605 && c1 != GET_MODE_MASK (tmode))
12607 op0 = simplify_gen_binary (AND, tmode,
12608 SUBREG_REG (XEXP (op0, 0)),
12609 gen_int_mode (c1, tmode));
12610 op0 = gen_lowpart (mode, op0);
12611 continue;
12615 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12616 if (const_op == 0 && equality_comparison_p
12617 && XEXP (op0, 1) == const1_rtx
12618 && GET_CODE (XEXP (op0, 0)) == NOT)
12620 op0 = simplify_and_const_int (NULL_RTX, mode,
12621 XEXP (XEXP (op0, 0), 0), 1);
12622 code = (code == NE ? EQ : NE);
12623 continue;
12626 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12627 (eq (and (lshiftrt X) 1) 0).
12628 Also handle the case where (not X) is expressed using xor. */
12629 if (const_op == 0 && equality_comparison_p
12630 && XEXP (op0, 1) == const1_rtx
12631 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12633 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12634 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12636 if (GET_CODE (shift_op) == NOT
12637 || (GET_CODE (shift_op) == XOR
12638 && CONST_INT_P (XEXP (shift_op, 1))
12639 && CONST_INT_P (shift_count)
12640 && HWI_COMPUTABLE_MODE_P (mode)
12641 && (UINTVAL (XEXP (shift_op, 1))
12642 == HOST_WIDE_INT_1U
12643 << INTVAL (shift_count))))
12646 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12647 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12648 code = (code == NE ? EQ : NE);
12649 continue;
12652 break;
12654 case ASHIFT:
12655 /* If we have (compare (ashift FOO N) (const_int C)) and
12656 the high order N bits of FOO (N+1 if an inequality comparison)
12657 are known to be zero, we can do this by comparing FOO with C
12658 shifted right N bits so long as the low-order N bits of C are
12659 zero. */
12660 if (CONST_INT_P (XEXP (op0, 1))
12661 && INTVAL (XEXP (op0, 1)) >= 0
12662 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12663 < HOST_BITS_PER_WIDE_INT)
12664 && (((unsigned HOST_WIDE_INT) const_op
12665 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12666 - 1)) == 0)
12667 && mode_width <= HOST_BITS_PER_WIDE_INT
12668 && (nonzero_bits (XEXP (op0, 0), mode)
12669 & ~(mask >> (INTVAL (XEXP (op0, 1))
12670 + ! equality_comparison_p))) == 0)
12672 /* We must perform a logical shift, not an arithmetic one,
12673 as we want the top N bits of C to be zero. */
12674 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12676 temp >>= INTVAL (XEXP (op0, 1));
12677 op1 = gen_int_mode (temp, mode);
12678 op0 = XEXP (op0, 0);
12679 continue;
12682 /* If we are doing a sign bit comparison, it means we are testing
12683 a particular bit. Convert it to the appropriate AND. */
12684 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12685 && mode_width <= HOST_BITS_PER_WIDE_INT)
12687 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12688 (HOST_WIDE_INT_1U
12689 << (mode_width - 1
12690 - INTVAL (XEXP (op0, 1)))));
12691 code = (code == LT ? NE : EQ);
12692 continue;
12695 /* If this an equality comparison with zero and we are shifting
12696 the low bit to the sign bit, we can convert this to an AND of the
12697 low-order bit. */
12698 if (const_op == 0 && equality_comparison_p
12699 && CONST_INT_P (XEXP (op0, 1))
12700 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12702 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12703 continue;
12705 break;
12707 case ASHIFTRT:
12708 /* If this is an equality comparison with zero, we can do this
12709 as a logical shift, which might be much simpler. */
12710 if (equality_comparison_p && const_op == 0
12711 && CONST_INT_P (XEXP (op0, 1)))
12713 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12714 XEXP (op0, 0),
12715 INTVAL (XEXP (op0, 1)));
12716 continue;
12719 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12720 do the comparison in a narrower mode. */
12721 if (! unsigned_comparison_p
12722 && CONST_INT_P (XEXP (op0, 1))
12723 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12724 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12725 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12726 .exists (&tmode))
12727 && (((unsigned HOST_WIDE_INT) const_op
12728 + (GET_MODE_MASK (tmode) >> 1) + 1)
12729 <= GET_MODE_MASK (tmode)))
12731 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12732 continue;
12735 /* Likewise if OP0 is a PLUS of a sign extension with a
12736 constant, which is usually represented with the PLUS
12737 between the shifts. */
12738 if (! unsigned_comparison_p
12739 && CONST_INT_P (XEXP (op0, 1))
12740 && GET_CODE (XEXP (op0, 0)) == PLUS
12741 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12742 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12743 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12744 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12745 .exists (&tmode))
12746 && (((unsigned HOST_WIDE_INT) const_op
12747 + (GET_MODE_MASK (tmode) >> 1) + 1)
12748 <= GET_MODE_MASK (tmode)))
12750 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12751 rtx add_const = XEXP (XEXP (op0, 0), 1);
12752 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12753 add_const, XEXP (op0, 1));
12755 op0 = simplify_gen_binary (PLUS, tmode,
12756 gen_lowpart (tmode, inner),
12757 new_const);
12758 continue;
12761 /* FALLTHROUGH */
12762 case LSHIFTRT:
12763 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12764 the low order N bits of FOO are known to be zero, we can do this
12765 by comparing FOO with C shifted left N bits so long as no
12766 overflow occurs. Even if the low order N bits of FOO aren't known
12767 to be zero, if the comparison is >= or < we can use the same
12768 optimization and for > or <= by setting all the low
12769 order N bits in the comparison constant. */
12770 if (CONST_INT_P (XEXP (op0, 1))
12771 && INTVAL (XEXP (op0, 1)) > 0
12772 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12773 && mode_width <= HOST_BITS_PER_WIDE_INT
12774 && (((unsigned HOST_WIDE_INT) const_op
12775 + (GET_CODE (op0) != LSHIFTRT
12776 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12777 + 1)
12778 : 0))
12779 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12781 unsigned HOST_WIDE_INT low_bits
12782 = (nonzero_bits (XEXP (op0, 0), mode)
12783 & ((HOST_WIDE_INT_1U
12784 << INTVAL (XEXP (op0, 1))) - 1));
12785 if (low_bits == 0 || !equality_comparison_p)
12787 /* If the shift was logical, then we must make the condition
12788 unsigned. */
12789 if (GET_CODE (op0) == LSHIFTRT)
12790 code = unsigned_condition (code);
12792 const_op = (unsigned HOST_WIDE_INT) const_op
12793 << INTVAL (XEXP (op0, 1));
12794 if (low_bits != 0
12795 && (code == GT || code == GTU
12796 || code == LE || code == LEU))
12797 const_op
12798 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12799 op1 = GEN_INT (const_op);
12800 op0 = XEXP (op0, 0);
12801 continue;
12805 /* If we are using this shift to extract just the sign bit, we
12806 can replace this with an LT or GE comparison. */
12807 if (const_op == 0
12808 && (equality_comparison_p || sign_bit_comparison_p)
12809 && CONST_INT_P (XEXP (op0, 1))
12810 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12812 op0 = XEXP (op0, 0);
12813 code = (code == NE || code == GT ? LT : GE);
12814 continue;
12816 break;
12818 default:
12819 break;
12822 break;
12825 /* Now make any compound operations involved in this comparison. Then,
12826 check for an outmost SUBREG on OP0 that is not doing anything or is
12827 paradoxical. The latter transformation must only be performed when
12828 it is known that the "extra" bits will be the same in op0 and op1 or
12829 that they don't matter. There are three cases to consider:
12831 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12832 care bits and we can assume they have any convenient value. So
12833 making the transformation is safe.
12835 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12836 In this case the upper bits of op0 are undefined. We should not make
12837 the simplification in that case as we do not know the contents of
12838 those bits.
12840 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12841 In that case we know those bits are zeros or ones. We must also be
12842 sure that they are the same as the upper bits of op1.
12844 We can never remove a SUBREG for a non-equality comparison because
12845 the sign bit is in a different place in the underlying object. */
12847 rtx_code op0_mco_code = SET;
12848 if (op1 == const0_rtx)
12849 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12851 op0 = make_compound_operation (op0, op0_mco_code);
12852 op1 = make_compound_operation (op1, SET);
12854 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12855 && is_int_mode (GET_MODE (op0), &mode)
12856 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12857 && (code == NE || code == EQ))
12859 if (paradoxical_subreg_p (op0))
12861 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12862 implemented. */
12863 if (REG_P (SUBREG_REG (op0)))
12865 op0 = SUBREG_REG (op0);
12866 op1 = gen_lowpart (inner_mode, op1);
12869 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12870 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12871 & ~GET_MODE_MASK (mode)) == 0)
12873 tem = gen_lowpart (inner_mode, op1);
12875 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12876 op0 = SUBREG_REG (op0), op1 = tem;
12880 /* We now do the opposite procedure: Some machines don't have compare
12881 insns in all modes. If OP0's mode is an integer mode smaller than a
12882 word and we can't do a compare in that mode, see if there is a larger
12883 mode for which we can do the compare. There are a number of cases in
12884 which we can use the wider mode. */
12886 if (is_int_mode (GET_MODE (op0), &mode)
12887 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12888 && ! have_insn_for (COMPARE, mode))
12889 FOR_EACH_WIDER_MODE (tmode_iter, mode)
12891 tmode = tmode_iter.require ();
12892 if (!HWI_COMPUTABLE_MODE_P (tmode))
12893 break;
12894 if (have_insn_for (COMPARE, tmode))
12896 int zero_extended;
12898 /* If this is a test for negative, we can make an explicit
12899 test of the sign bit. Test this first so we can use
12900 a paradoxical subreg to extend OP0. */
12902 if (op1 == const0_rtx && (code == LT || code == GE)
12903 && HWI_COMPUTABLE_MODE_P (mode))
12905 unsigned HOST_WIDE_INT sign
12906 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12907 op0 = simplify_gen_binary (AND, tmode,
12908 gen_lowpart (tmode, op0),
12909 gen_int_mode (sign, tmode));
12910 code = (code == LT) ? NE : EQ;
12911 break;
12914 /* If the only nonzero bits in OP0 and OP1 are those in the
12915 narrower mode and this is an equality or unsigned comparison,
12916 we can use the wider mode. Similarly for sign-extended
12917 values, in which case it is true for all comparisons. */
12918 zero_extended = ((code == EQ || code == NE
12919 || code == GEU || code == GTU
12920 || code == LEU || code == LTU)
12921 && (nonzero_bits (op0, tmode)
12922 & ~GET_MODE_MASK (mode)) == 0
12923 && ((CONST_INT_P (op1)
12924 || (nonzero_bits (op1, tmode)
12925 & ~GET_MODE_MASK (mode)) == 0)));
12927 if (zero_extended
12928 || ((num_sign_bit_copies (op0, tmode)
12929 > (unsigned int) (GET_MODE_PRECISION (tmode)
12930 - GET_MODE_PRECISION (mode)))
12931 && (num_sign_bit_copies (op1, tmode)
12932 > (unsigned int) (GET_MODE_PRECISION (tmode)
12933 - GET_MODE_PRECISION (mode)))))
12935 /* If OP0 is an AND and we don't have an AND in MODE either,
12936 make a new AND in the proper mode. */
12937 if (GET_CODE (op0) == AND
12938 && !have_insn_for (AND, mode))
12939 op0 = simplify_gen_binary (AND, tmode,
12940 gen_lowpart (tmode,
12941 XEXP (op0, 0)),
12942 gen_lowpart (tmode,
12943 XEXP (op0, 1)));
12944 else
12946 if (zero_extended)
12948 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
12949 op0, mode);
12950 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
12951 op1, mode);
12953 else
12955 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
12956 op0, mode);
12957 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
12958 op1, mode);
12960 break;
12966 /* We may have changed the comparison operands. Re-canonicalize. */
12967 if (swap_commutative_operands_p (op0, op1))
12969 std::swap (op0, op1);
12970 code = swap_condition (code);
12973 /* If this machine only supports a subset of valid comparisons, see if we
12974 can convert an unsupported one into a supported one. */
12975 target_canonicalize_comparison (&code, &op0, &op1, 0);
12977 *pop0 = op0;
12978 *pop1 = op1;
12980 return code;
12983 /* Utility function for record_value_for_reg. Count number of
12984 rtxs in X. */
12985 static int
12986 count_rtxs (rtx x)
12988 enum rtx_code code = GET_CODE (x);
12989 const char *fmt;
12990 int i, j, ret = 1;
12992 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12993 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12995 rtx x0 = XEXP (x, 0);
12996 rtx x1 = XEXP (x, 1);
12998 if (x0 == x1)
12999 return 1 + 2 * count_rtxs (x0);
13001 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13002 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13003 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13004 return 2 + 2 * count_rtxs (x0)
13005 + count_rtxs (x == XEXP (x1, 0)
13006 ? XEXP (x1, 1) : XEXP (x1, 0));
13008 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13009 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13010 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13011 return 2 + 2 * count_rtxs (x1)
13012 + count_rtxs (x == XEXP (x0, 0)
13013 ? XEXP (x0, 1) : XEXP (x0, 0));
13016 fmt = GET_RTX_FORMAT (code);
13017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13018 if (fmt[i] == 'e')
13019 ret += count_rtxs (XEXP (x, i));
13020 else if (fmt[i] == 'E')
13021 for (j = 0; j < XVECLEN (x, i); j++)
13022 ret += count_rtxs (XVECEXP (x, i, j));
13024 return ret;
13027 /* Utility function for following routine. Called when X is part of a value
13028 being stored into last_set_value. Sets last_set_table_tick
13029 for each register mentioned. Similar to mention_regs in cse.c */
13031 static void
13032 update_table_tick (rtx x)
13034 enum rtx_code code = GET_CODE (x);
13035 const char *fmt = GET_RTX_FORMAT (code);
13036 int i, j;
13038 if (code == REG)
13040 unsigned int regno = REGNO (x);
13041 unsigned int endregno = END_REGNO (x);
13042 unsigned int r;
13044 for (r = regno; r < endregno; r++)
13046 reg_stat_type *rsp = &reg_stat[r];
13047 rsp->last_set_table_tick = label_tick;
13050 return;
13053 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13054 if (fmt[i] == 'e')
13056 /* Check for identical subexpressions. If x contains
13057 identical subexpression we only have to traverse one of
13058 them. */
13059 if (i == 0 && ARITHMETIC_P (x))
13061 /* Note that at this point x1 has already been
13062 processed. */
13063 rtx x0 = XEXP (x, 0);
13064 rtx x1 = XEXP (x, 1);
13066 /* If x0 and x1 are identical then there is no need to
13067 process x0. */
13068 if (x0 == x1)
13069 break;
13071 /* If x0 is identical to a subexpression of x1 then while
13072 processing x1, x0 has already been processed. Thus we
13073 are done with x. */
13074 if (ARITHMETIC_P (x1)
13075 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13076 break;
13078 /* If x1 is identical to a subexpression of x0 then we
13079 still have to process the rest of x0. */
13080 if (ARITHMETIC_P (x0)
13081 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13083 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13084 break;
13088 update_table_tick (XEXP (x, i));
13090 else if (fmt[i] == 'E')
13091 for (j = 0; j < XVECLEN (x, i); j++)
13092 update_table_tick (XVECEXP (x, i, j));
13095 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13096 are saying that the register is clobbered and we no longer know its
13097 value. If INSN is zero, don't update reg_stat[].last_set; this is
13098 only permitted with VALUE also zero and is used to invalidate the
13099 register. */
13101 static void
13102 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13104 unsigned int regno = REGNO (reg);
13105 unsigned int endregno = END_REGNO (reg);
13106 unsigned int i;
13107 reg_stat_type *rsp;
13109 /* If VALUE contains REG and we have a previous value for REG, substitute
13110 the previous value. */
13111 if (value && insn && reg_overlap_mentioned_p (reg, value))
13113 rtx tem;
13115 /* Set things up so get_last_value is allowed to see anything set up to
13116 our insn. */
13117 subst_low_luid = DF_INSN_LUID (insn);
13118 tem = get_last_value (reg);
13120 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13121 it isn't going to be useful and will take a lot of time to process,
13122 so just use the CLOBBER. */
13124 if (tem)
13126 if (ARITHMETIC_P (tem)
13127 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13128 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13129 tem = XEXP (tem, 0);
13130 else if (count_occurrences (value, reg, 1) >= 2)
13132 /* If there are two or more occurrences of REG in VALUE,
13133 prevent the value from growing too much. */
13134 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13135 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13138 value = replace_rtx (copy_rtx (value), reg, tem);
13142 /* For each register modified, show we don't know its value, that
13143 we don't know about its bitwise content, that its value has been
13144 updated, and that we don't know the location of the death of the
13145 register. */
13146 for (i = regno; i < endregno; i++)
13148 rsp = &reg_stat[i];
13150 if (insn)
13151 rsp->last_set = insn;
13153 rsp->last_set_value = 0;
13154 rsp->last_set_mode = VOIDmode;
13155 rsp->last_set_nonzero_bits = 0;
13156 rsp->last_set_sign_bit_copies = 0;
13157 rsp->last_death = 0;
13158 rsp->truncated_to_mode = VOIDmode;
13161 /* Mark registers that are being referenced in this value. */
13162 if (value)
13163 update_table_tick (value);
13165 /* Now update the status of each register being set.
13166 If someone is using this register in this block, set this register
13167 to invalid since we will get confused between the two lives in this
13168 basic block. This makes using this register always invalid. In cse, we
13169 scan the table to invalidate all entries using this register, but this
13170 is too much work for us. */
13172 for (i = regno; i < endregno; i++)
13174 rsp = &reg_stat[i];
13175 rsp->last_set_label = label_tick;
13176 if (!insn
13177 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13178 rsp->last_set_invalid = 1;
13179 else
13180 rsp->last_set_invalid = 0;
13183 /* The value being assigned might refer to X (like in "x++;"). In that
13184 case, we must replace it with (clobber (const_int 0)) to prevent
13185 infinite loops. */
13186 rsp = &reg_stat[regno];
13187 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13189 value = copy_rtx (value);
13190 if (!get_last_value_validate (&value, insn, label_tick, 1))
13191 value = 0;
13194 /* For the main register being modified, update the value, the mode, the
13195 nonzero bits, and the number of sign bit copies. */
13197 rsp->last_set_value = value;
13199 if (value)
13201 machine_mode mode = GET_MODE (reg);
13202 subst_low_luid = DF_INSN_LUID (insn);
13203 rsp->last_set_mode = mode;
13204 if (GET_MODE_CLASS (mode) == MODE_INT
13205 && HWI_COMPUTABLE_MODE_P (mode))
13206 mode = nonzero_bits_mode;
13207 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13208 rsp->last_set_sign_bit_copies
13209 = num_sign_bit_copies (value, GET_MODE (reg));
13213 /* Called via note_stores from record_dead_and_set_regs to handle one
13214 SET or CLOBBER in an insn. DATA is the instruction in which the
13215 set is occurring. */
13217 static void
13218 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13220 rtx_insn *record_dead_insn = (rtx_insn *) data;
13222 if (GET_CODE (dest) == SUBREG)
13223 dest = SUBREG_REG (dest);
13225 if (!record_dead_insn)
13227 if (REG_P (dest))
13228 record_value_for_reg (dest, NULL, NULL_RTX);
13229 return;
13232 if (REG_P (dest))
13234 /* If we are setting the whole register, we know its value. Otherwise
13235 show that we don't know the value. We can handle SUBREG in
13236 some cases. */
13237 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13238 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13239 else if (GET_CODE (setter) == SET
13240 && GET_CODE (SET_DEST (setter)) == SUBREG
13241 && SUBREG_REG (SET_DEST (setter)) == dest
13242 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13243 && subreg_lowpart_p (SET_DEST (setter)))
13244 record_value_for_reg (dest, record_dead_insn,
13245 gen_lowpart (GET_MODE (dest),
13246 SET_SRC (setter)));
13247 else
13248 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13250 else if (MEM_P (dest)
13251 /* Ignore pushes, they clobber nothing. */
13252 && ! push_operand (dest, GET_MODE (dest)))
13253 mem_last_set = DF_INSN_LUID (record_dead_insn);
13256 /* Update the records of when each REG was most recently set or killed
13257 for the things done by INSN. This is the last thing done in processing
13258 INSN in the combiner loop.
13260 We update reg_stat[], in particular fields last_set, last_set_value,
13261 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13262 last_death, and also the similar information mem_last_set (which insn
13263 most recently modified memory) and last_call_luid (which insn was the
13264 most recent subroutine call). */
13266 static void
13267 record_dead_and_set_regs (rtx_insn *insn)
13269 rtx link;
13270 unsigned int i;
13272 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13274 if (REG_NOTE_KIND (link) == REG_DEAD
13275 && REG_P (XEXP (link, 0)))
13277 unsigned int regno = REGNO (XEXP (link, 0));
13278 unsigned int endregno = END_REGNO (XEXP (link, 0));
13280 for (i = regno; i < endregno; i++)
13282 reg_stat_type *rsp;
13284 rsp = &reg_stat[i];
13285 rsp->last_death = insn;
13288 else if (REG_NOTE_KIND (link) == REG_INC)
13289 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13292 if (CALL_P (insn))
13294 hard_reg_set_iterator hrsi;
13295 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13297 reg_stat_type *rsp;
13299 rsp = &reg_stat[i];
13300 rsp->last_set_invalid = 1;
13301 rsp->last_set = insn;
13302 rsp->last_set_value = 0;
13303 rsp->last_set_mode = VOIDmode;
13304 rsp->last_set_nonzero_bits = 0;
13305 rsp->last_set_sign_bit_copies = 0;
13306 rsp->last_death = 0;
13307 rsp->truncated_to_mode = VOIDmode;
13310 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13312 /* We can't combine into a call pattern. Remember, though, that
13313 the return value register is set at this LUID. We could
13314 still replace a register with the return value from the
13315 wrong subroutine call! */
13316 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13318 else
13319 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13322 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13323 register present in the SUBREG, so for each such SUBREG go back and
13324 adjust nonzero and sign bit information of the registers that are
13325 known to have some zero/sign bits set.
13327 This is needed because when combine blows the SUBREGs away, the
13328 information on zero/sign bits is lost and further combines can be
13329 missed because of that. */
13331 static void
13332 record_promoted_value (rtx_insn *insn, rtx subreg)
13334 struct insn_link *links;
13335 rtx set;
13336 unsigned int regno = REGNO (SUBREG_REG (subreg));
13337 machine_mode mode = GET_MODE (subreg);
13339 if (!HWI_COMPUTABLE_MODE_P (mode))
13340 return;
13342 for (links = LOG_LINKS (insn); links;)
13344 reg_stat_type *rsp;
13346 insn = links->insn;
13347 set = single_set (insn);
13349 if (! set || !REG_P (SET_DEST (set))
13350 || REGNO (SET_DEST (set)) != regno
13351 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13353 links = links->next;
13354 continue;
13357 rsp = &reg_stat[regno];
13358 if (rsp->last_set == insn)
13360 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13361 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13364 if (REG_P (SET_SRC (set)))
13366 regno = REGNO (SET_SRC (set));
13367 links = LOG_LINKS (insn);
13369 else
13370 break;
13374 /* Check if X, a register, is known to contain a value already
13375 truncated to MODE. In this case we can use a subreg to refer to
13376 the truncated value even though in the generic case we would need
13377 an explicit truncation. */
13379 static bool
13380 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13382 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13383 machine_mode truncated = rsp->truncated_to_mode;
13385 if (truncated == 0
13386 || rsp->truncation_label < label_tick_ebb_start)
13387 return false;
13388 if (!partial_subreg_p (mode, truncated))
13389 return true;
13390 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13391 return true;
13392 return false;
13395 /* If X is a hard reg or a subreg record the mode that the register is
13396 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13397 able to turn a truncate into a subreg using this information. Return true
13398 if traversing X is complete. */
13400 static bool
13401 record_truncated_value (rtx x)
13403 machine_mode truncated_mode;
13404 reg_stat_type *rsp;
13406 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13408 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13409 truncated_mode = GET_MODE (x);
13411 if (!partial_subreg_p (truncated_mode, original_mode))
13412 return true;
13414 truncated_mode = GET_MODE (x);
13415 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13416 return true;
13418 x = SUBREG_REG (x);
13420 /* ??? For hard-regs we now record everything. We might be able to
13421 optimize this using last_set_mode. */
13422 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13423 truncated_mode = GET_MODE (x);
13424 else
13425 return false;
13427 rsp = &reg_stat[REGNO (x)];
13428 if (rsp->truncated_to_mode == 0
13429 || rsp->truncation_label < label_tick_ebb_start
13430 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13432 rsp->truncated_to_mode = truncated_mode;
13433 rsp->truncation_label = label_tick;
13436 return true;
13439 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13440 the modes they are used in. This can help truning TRUNCATEs into
13441 SUBREGs. */
13443 static void
13444 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13446 subrtx_var_iterator::array_type array;
13447 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13448 if (record_truncated_value (*iter))
13449 iter.skip_subrtxes ();
13452 /* Scan X for promoted SUBREGs. For each one found,
13453 note what it implies to the registers used in it. */
13455 static void
13456 check_promoted_subreg (rtx_insn *insn, rtx x)
13458 if (GET_CODE (x) == SUBREG
13459 && SUBREG_PROMOTED_VAR_P (x)
13460 && REG_P (SUBREG_REG (x)))
13461 record_promoted_value (insn, x);
13462 else
13464 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13465 int i, j;
13467 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13468 switch (format[i])
13470 case 'e':
13471 check_promoted_subreg (insn, XEXP (x, i));
13472 break;
13473 case 'V':
13474 case 'E':
13475 if (XVEC (x, i) != 0)
13476 for (j = 0; j < XVECLEN (x, i); j++)
13477 check_promoted_subreg (insn, XVECEXP (x, i, j));
13478 break;
13483 /* Verify that all the registers and memory references mentioned in *LOC are
13484 still valid. *LOC was part of a value set in INSN when label_tick was
13485 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13486 the invalid references with (clobber (const_int 0)) and return 1. This
13487 replacement is useful because we often can get useful information about
13488 the form of a value (e.g., if it was produced by a shift that always
13489 produces -1 or 0) even though we don't know exactly what registers it
13490 was produced from. */
13492 static int
13493 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13495 rtx x = *loc;
13496 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13497 int len = GET_RTX_LENGTH (GET_CODE (x));
13498 int i, j;
13500 if (REG_P (x))
13502 unsigned int regno = REGNO (x);
13503 unsigned int endregno = END_REGNO (x);
13504 unsigned int j;
13506 for (j = regno; j < endregno; j++)
13508 reg_stat_type *rsp = &reg_stat[j];
13509 if (rsp->last_set_invalid
13510 /* If this is a pseudo-register that was only set once and not
13511 live at the beginning of the function, it is always valid. */
13512 || (! (regno >= FIRST_PSEUDO_REGISTER
13513 && regno < reg_n_sets_max
13514 && REG_N_SETS (regno) == 1
13515 && (!REGNO_REG_SET_P
13516 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13517 regno)))
13518 && rsp->last_set_label > tick))
13520 if (replace)
13521 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13522 return replace;
13526 return 1;
13528 /* If this is a memory reference, make sure that there were no stores after
13529 it that might have clobbered the value. We don't have alias info, so we
13530 assume any store invalidates it. Moreover, we only have local UIDs, so
13531 we also assume that there were stores in the intervening basic blocks. */
13532 else if (MEM_P (x) && !MEM_READONLY_P (x)
13533 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13535 if (replace)
13536 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13537 return replace;
13540 for (i = 0; i < len; i++)
13542 if (fmt[i] == 'e')
13544 /* Check for identical subexpressions. If x contains
13545 identical subexpression we only have to traverse one of
13546 them. */
13547 if (i == 1 && ARITHMETIC_P (x))
13549 /* Note that at this point x0 has already been checked
13550 and found valid. */
13551 rtx x0 = XEXP (x, 0);
13552 rtx x1 = XEXP (x, 1);
13554 /* If x0 and x1 are identical then x is also valid. */
13555 if (x0 == x1)
13556 return 1;
13558 /* If x1 is identical to a subexpression of x0 then
13559 while checking x0, x1 has already been checked. Thus
13560 it is valid and so as x. */
13561 if (ARITHMETIC_P (x0)
13562 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13563 return 1;
13565 /* If x0 is identical to a subexpression of x1 then x is
13566 valid iff the rest of x1 is valid. */
13567 if (ARITHMETIC_P (x1)
13568 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13569 return
13570 get_last_value_validate (&XEXP (x1,
13571 x0 == XEXP (x1, 0) ? 1 : 0),
13572 insn, tick, replace);
13575 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13576 replace) == 0)
13577 return 0;
13579 else if (fmt[i] == 'E')
13580 for (j = 0; j < XVECLEN (x, i); j++)
13581 if (get_last_value_validate (&XVECEXP (x, i, j),
13582 insn, tick, replace) == 0)
13583 return 0;
13586 /* If we haven't found a reason for it to be invalid, it is valid. */
13587 return 1;
13590 /* Get the last value assigned to X, if known. Some registers
13591 in the value may be replaced with (clobber (const_int 0)) if their value
13592 is known longer known reliably. */
13594 static rtx
13595 get_last_value (const_rtx x)
13597 unsigned int regno;
13598 rtx value;
13599 reg_stat_type *rsp;
13601 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13602 then convert it to the desired mode. If this is a paradoxical SUBREG,
13603 we cannot predict what values the "extra" bits might have. */
13604 if (GET_CODE (x) == SUBREG
13605 && subreg_lowpart_p (x)
13606 && !paradoxical_subreg_p (x)
13607 && (value = get_last_value (SUBREG_REG (x))) != 0)
13608 return gen_lowpart (GET_MODE (x), value);
13610 if (!REG_P (x))
13611 return 0;
13613 regno = REGNO (x);
13614 rsp = &reg_stat[regno];
13615 value = rsp->last_set_value;
13617 /* If we don't have a value, or if it isn't for this basic block and
13618 it's either a hard register, set more than once, or it's a live
13619 at the beginning of the function, return 0.
13621 Because if it's not live at the beginning of the function then the reg
13622 is always set before being used (is never used without being set).
13623 And, if it's set only once, and it's always set before use, then all
13624 uses must have the same last value, even if it's not from this basic
13625 block. */
13627 if (value == 0
13628 || (rsp->last_set_label < label_tick_ebb_start
13629 && (regno < FIRST_PSEUDO_REGISTER
13630 || regno >= reg_n_sets_max
13631 || REG_N_SETS (regno) != 1
13632 || REGNO_REG_SET_P
13633 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13634 return 0;
13636 /* If the value was set in a later insn than the ones we are processing,
13637 we can't use it even if the register was only set once. */
13638 if (rsp->last_set_label == label_tick
13639 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13640 return 0;
13642 /* If fewer bits were set than what we are asked for now, we cannot use
13643 the value. */
13644 if (GET_MODE_PRECISION (rsp->last_set_mode)
13645 < GET_MODE_PRECISION (GET_MODE (x)))
13646 return 0;
13648 /* If the value has all its registers valid, return it. */
13649 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13650 return value;
13652 /* Otherwise, make a copy and replace any invalid register with
13653 (clobber (const_int 0)). If that fails for some reason, return 0. */
13655 value = copy_rtx (value);
13656 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13657 return value;
13659 return 0;
13662 /* Define three variables used for communication between the following
13663 routines. */
13665 static unsigned int reg_dead_regno, reg_dead_endregno;
13666 static int reg_dead_flag;
13668 /* Function called via note_stores from reg_dead_at_p.
13670 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13671 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13673 static void
13674 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13676 unsigned int regno, endregno;
13678 if (!REG_P (dest))
13679 return;
13681 regno = REGNO (dest);
13682 endregno = END_REGNO (dest);
13683 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13684 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13687 /* Return nonzero if REG is known to be dead at INSN.
13689 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13690 referencing REG, it is dead. If we hit a SET referencing REG, it is
13691 live. Otherwise, see if it is live or dead at the start of the basic
13692 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13693 must be assumed to be always live. */
13695 static int
13696 reg_dead_at_p (rtx reg, rtx_insn *insn)
13698 basic_block block;
13699 unsigned int i;
13701 /* Set variables for reg_dead_at_p_1. */
13702 reg_dead_regno = REGNO (reg);
13703 reg_dead_endregno = END_REGNO (reg);
13705 reg_dead_flag = 0;
13707 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13708 we allow the machine description to decide whether use-and-clobber
13709 patterns are OK. */
13710 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13712 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13713 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13714 return 0;
13717 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13718 beginning of basic block. */
13719 block = BLOCK_FOR_INSN (insn);
13720 for (;;)
13722 if (INSN_P (insn))
13724 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13725 return 1;
13727 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13728 if (reg_dead_flag)
13729 return reg_dead_flag == 1 ? 1 : 0;
13731 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13732 return 1;
13735 if (insn == BB_HEAD (block))
13736 break;
13738 insn = PREV_INSN (insn);
13741 /* Look at live-in sets for the basic block that we were in. */
13742 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13743 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13744 return 0;
13746 return 1;
13749 /* Note hard registers in X that are used. */
13751 static void
13752 mark_used_regs_combine (rtx x)
13754 RTX_CODE code = GET_CODE (x);
13755 unsigned int regno;
13756 int i;
13758 switch (code)
13760 case LABEL_REF:
13761 case SYMBOL_REF:
13762 case CONST:
13763 CASE_CONST_ANY:
13764 case PC:
13765 case ADDR_VEC:
13766 case ADDR_DIFF_VEC:
13767 case ASM_INPUT:
13768 /* CC0 must die in the insn after it is set, so we don't need to take
13769 special note of it here. */
13770 case CC0:
13771 return;
13773 case CLOBBER:
13774 /* If we are clobbering a MEM, mark any hard registers inside the
13775 address as used. */
13776 if (MEM_P (XEXP (x, 0)))
13777 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13778 return;
13780 case REG:
13781 regno = REGNO (x);
13782 /* A hard reg in a wide mode may really be multiple registers.
13783 If so, mark all of them just like the first. */
13784 if (regno < FIRST_PSEUDO_REGISTER)
13786 /* None of this applies to the stack, frame or arg pointers. */
13787 if (regno == STACK_POINTER_REGNUM
13788 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13789 && regno == HARD_FRAME_POINTER_REGNUM)
13790 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13791 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13792 || regno == FRAME_POINTER_REGNUM)
13793 return;
13795 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13797 return;
13799 case SET:
13801 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13802 the address. */
13803 rtx testreg = SET_DEST (x);
13805 while (GET_CODE (testreg) == SUBREG
13806 || GET_CODE (testreg) == ZERO_EXTRACT
13807 || GET_CODE (testreg) == STRICT_LOW_PART)
13808 testreg = XEXP (testreg, 0);
13810 if (MEM_P (testreg))
13811 mark_used_regs_combine (XEXP (testreg, 0));
13813 mark_used_regs_combine (SET_SRC (x));
13815 return;
13817 default:
13818 break;
13821 /* Recursively scan the operands of this expression. */
13824 const char *fmt = GET_RTX_FORMAT (code);
13826 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13828 if (fmt[i] == 'e')
13829 mark_used_regs_combine (XEXP (x, i));
13830 else if (fmt[i] == 'E')
13832 int j;
13834 for (j = 0; j < XVECLEN (x, i); j++)
13835 mark_used_regs_combine (XVECEXP (x, i, j));
13841 /* Remove register number REGNO from the dead registers list of INSN.
13843 Return the note used to record the death, if there was one. */
13846 remove_death (unsigned int regno, rtx_insn *insn)
13848 rtx note = find_regno_note (insn, REG_DEAD, regno);
13850 if (note)
13851 remove_note (insn, note);
13853 return note;
13856 /* For each register (hardware or pseudo) used within expression X, if its
13857 death is in an instruction with luid between FROM_LUID (inclusive) and
13858 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13859 list headed by PNOTES.
13861 That said, don't move registers killed by maybe_kill_insn.
13863 This is done when X is being merged by combination into TO_INSN. These
13864 notes will then be distributed as needed. */
13866 static void
13867 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13868 rtx *pnotes)
13870 const char *fmt;
13871 int len, i;
13872 enum rtx_code code = GET_CODE (x);
13874 if (code == REG)
13876 unsigned int regno = REGNO (x);
13877 rtx_insn *where_dead = reg_stat[regno].last_death;
13879 /* If we do not know where the register died, it may still die between
13880 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
13881 if (!where_dead)
13883 rtx_insn *insn = prev_real_insn (to_insn);
13884 while (insn
13885 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
13886 && DF_INSN_LUID (insn) >= from_luid)
13888 if (dead_or_set_regno_p (insn, regno))
13890 if (find_regno_note (insn, REG_DEAD, regno))
13891 where_dead = insn;
13892 break;
13895 insn = prev_real_insn (insn);
13899 /* Don't move the register if it gets killed in between from and to. */
13900 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13901 && ! reg_referenced_p (x, maybe_kill_insn))
13902 return;
13904 if (where_dead
13905 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13906 && DF_INSN_LUID (where_dead) >= from_luid
13907 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13909 rtx note = remove_death (regno, where_dead);
13911 /* It is possible for the call above to return 0. This can occur
13912 when last_death points to I2 or I1 that we combined with.
13913 In that case make a new note.
13915 We must also check for the case where X is a hard register
13916 and NOTE is a death note for a range of hard registers
13917 including X. In that case, we must put REG_DEAD notes for
13918 the remaining registers in place of NOTE. */
13920 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13921 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
13923 unsigned int deadregno = REGNO (XEXP (note, 0));
13924 unsigned int deadend = END_REGNO (XEXP (note, 0));
13925 unsigned int ourend = END_REGNO (x);
13926 unsigned int i;
13928 for (i = deadregno; i < deadend; i++)
13929 if (i < regno || i >= ourend)
13930 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13933 /* If we didn't find any note, or if we found a REG_DEAD note that
13934 covers only part of the given reg, and we have a multi-reg hard
13935 register, then to be safe we must check for REG_DEAD notes
13936 for each register other than the first. They could have
13937 their own REG_DEAD notes lying around. */
13938 else if ((note == 0
13939 || (note != 0
13940 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
13941 GET_MODE (x))))
13942 && regno < FIRST_PSEUDO_REGISTER
13943 && REG_NREGS (x) > 1)
13945 unsigned int ourend = END_REGNO (x);
13946 unsigned int i, offset;
13947 rtx oldnotes = 0;
13949 if (note)
13950 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
13951 else
13952 offset = 1;
13954 for (i = regno + offset; i < ourend; i++)
13955 move_deaths (regno_reg_rtx[i],
13956 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13959 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13961 XEXP (note, 1) = *pnotes;
13962 *pnotes = note;
13964 else
13965 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13968 return;
13971 else if (GET_CODE (x) == SET)
13973 rtx dest = SET_DEST (x);
13975 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13977 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13978 that accesses one word of a multi-word item, some
13979 piece of everything register in the expression is used by
13980 this insn, so remove any old death. */
13981 /* ??? So why do we test for equality of the sizes? */
13983 if (GET_CODE (dest) == ZERO_EXTRACT
13984 || GET_CODE (dest) == STRICT_LOW_PART
13985 || (GET_CODE (dest) == SUBREG
13986 && !read_modify_subreg_p (dest)))
13988 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13989 return;
13992 /* If this is some other SUBREG, we know it replaces the entire
13993 value, so use that as the destination. */
13994 if (GET_CODE (dest) == SUBREG)
13995 dest = SUBREG_REG (dest);
13997 /* If this is a MEM, adjust deaths of anything used in the address.
13998 For a REG (the only other possibility), the entire value is
13999 being replaced so the old value is not used in this insn. */
14001 if (MEM_P (dest))
14002 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14003 to_insn, pnotes);
14004 return;
14007 else if (GET_CODE (x) == CLOBBER)
14008 return;
14010 len = GET_RTX_LENGTH (code);
14011 fmt = GET_RTX_FORMAT (code);
14013 for (i = 0; i < len; i++)
14015 if (fmt[i] == 'E')
14017 int j;
14018 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14019 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14020 to_insn, pnotes);
14022 else if (fmt[i] == 'e')
14023 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14027 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14028 pattern of an insn. X must be a REG. */
14030 static int
14031 reg_bitfield_target_p (rtx x, rtx body)
14033 int i;
14035 if (GET_CODE (body) == SET)
14037 rtx dest = SET_DEST (body);
14038 rtx target;
14039 unsigned int regno, tregno, endregno, endtregno;
14041 if (GET_CODE (dest) == ZERO_EXTRACT)
14042 target = XEXP (dest, 0);
14043 else if (GET_CODE (dest) == STRICT_LOW_PART)
14044 target = SUBREG_REG (XEXP (dest, 0));
14045 else
14046 return 0;
14048 if (GET_CODE (target) == SUBREG)
14049 target = SUBREG_REG (target);
14051 if (!REG_P (target))
14052 return 0;
14054 tregno = REGNO (target), regno = REGNO (x);
14055 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14056 return target == x;
14058 endtregno = end_hard_regno (GET_MODE (target), tregno);
14059 endregno = end_hard_regno (GET_MODE (x), regno);
14061 return endregno > tregno && regno < endtregno;
14064 else if (GET_CODE (body) == PARALLEL)
14065 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14066 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14067 return 1;
14069 return 0;
14072 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14073 as appropriate. I3 and I2 are the insns resulting from the combination
14074 insns including FROM (I2 may be zero).
14076 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14077 not need REG_DEAD notes because they are being substituted for. This
14078 saves searching in the most common cases.
14080 Each note in the list is either ignored or placed on some insns, depending
14081 on the type of note. */
14083 static void
14084 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14085 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14087 rtx note, next_note;
14088 rtx tem_note;
14089 rtx_insn *tem_insn;
14091 for (note = notes; note; note = next_note)
14093 rtx_insn *place = 0, *place2 = 0;
14095 next_note = XEXP (note, 1);
14096 switch (REG_NOTE_KIND (note))
14098 case REG_BR_PROB:
14099 case REG_BR_PRED:
14100 /* Doesn't matter much where we put this, as long as it's somewhere.
14101 It is preferable to keep these notes on branches, which is most
14102 likely to be i3. */
14103 place = i3;
14104 break;
14106 case REG_NON_LOCAL_GOTO:
14107 if (JUMP_P (i3))
14108 place = i3;
14109 else
14111 gcc_assert (i2 && JUMP_P (i2));
14112 place = i2;
14114 break;
14116 case REG_EH_REGION:
14117 /* These notes must remain with the call or trapping instruction. */
14118 if (CALL_P (i3))
14119 place = i3;
14120 else if (i2 && CALL_P (i2))
14121 place = i2;
14122 else
14124 gcc_assert (cfun->can_throw_non_call_exceptions);
14125 if (may_trap_p (i3))
14126 place = i3;
14127 else if (i2 && may_trap_p (i2))
14128 place = i2;
14129 /* ??? Otherwise assume we've combined things such that we
14130 can now prove that the instructions can't trap. Drop the
14131 note in this case. */
14133 break;
14135 case REG_ARGS_SIZE:
14136 /* ??? How to distribute between i3-i1. Assume i3 contains the
14137 entire adjustment. Assert i3 contains at least some adjust. */
14138 if (!noop_move_p (i3))
14140 int old_size, args_size = INTVAL (XEXP (note, 0));
14141 /* fixup_args_size_notes looks at REG_NORETURN note,
14142 so ensure the note is placed there first. */
14143 if (CALL_P (i3))
14145 rtx *np;
14146 for (np = &next_note; *np; np = &XEXP (*np, 1))
14147 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14149 rtx n = *np;
14150 *np = XEXP (n, 1);
14151 XEXP (n, 1) = REG_NOTES (i3);
14152 REG_NOTES (i3) = n;
14153 break;
14156 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14157 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14158 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14159 gcc_assert (old_size != args_size
14160 || (CALL_P (i3)
14161 && !ACCUMULATE_OUTGOING_ARGS
14162 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14164 break;
14166 case REG_NORETURN:
14167 case REG_SETJMP:
14168 case REG_TM:
14169 case REG_CALL_DECL:
14170 case REG_CALL_NOCF_CHECK:
14171 /* These notes must remain with the call. It should not be
14172 possible for both I2 and I3 to be a call. */
14173 if (CALL_P (i3))
14174 place = i3;
14175 else
14177 gcc_assert (i2 && CALL_P (i2));
14178 place = i2;
14180 break;
14182 case REG_UNUSED:
14183 /* Any clobbers for i3 may still exist, and so we must process
14184 REG_UNUSED notes from that insn.
14186 Any clobbers from i2 or i1 can only exist if they were added by
14187 recog_for_combine. In that case, recog_for_combine created the
14188 necessary REG_UNUSED notes. Trying to keep any original
14189 REG_UNUSED notes from these insns can cause incorrect output
14190 if it is for the same register as the original i3 dest.
14191 In that case, we will notice that the register is set in i3,
14192 and then add a REG_UNUSED note for the destination of i3, which
14193 is wrong. However, it is possible to have REG_UNUSED notes from
14194 i2 or i1 for register which were both used and clobbered, so
14195 we keep notes from i2 or i1 if they will turn into REG_DEAD
14196 notes. */
14198 /* If this register is set or clobbered in I3, put the note there
14199 unless there is one already. */
14200 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14202 if (from_insn != i3)
14203 break;
14205 if (! (REG_P (XEXP (note, 0))
14206 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14207 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14208 place = i3;
14210 /* Otherwise, if this register is used by I3, then this register
14211 now dies here, so we must put a REG_DEAD note here unless there
14212 is one already. */
14213 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14214 && ! (REG_P (XEXP (note, 0))
14215 ? find_regno_note (i3, REG_DEAD,
14216 REGNO (XEXP (note, 0)))
14217 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14219 PUT_REG_NOTE_KIND (note, REG_DEAD);
14220 place = i3;
14223 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14224 but we can't tell which at this point. We must reset any
14225 expectations we had about the value that was previously
14226 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14227 and, if appropriate, restore its previous value, but we
14228 don't have enough information for that at this point. */
14229 else
14231 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14233 /* Otherwise, if this register is now referenced in i2
14234 then the register used to be modified in one of the
14235 original insns. If it was i3 (say, in an unused
14236 parallel), it's now completely gone, so the note can
14237 be discarded. But if it was modified in i2, i1 or i0
14238 and we still reference it in i2, then we're
14239 referencing the previous value, and since the
14240 register was modified and REG_UNUSED, we know that
14241 the previous value is now dead. So, if we only
14242 reference the register in i2, we change the note to
14243 REG_DEAD, to reflect the previous value. However, if
14244 we're also setting or clobbering the register as
14245 scratch, we know (because the register was not
14246 referenced in i3) that it's unused, just as it was
14247 unused before, and we place the note in i2. */
14248 if (from_insn != i3 && i2 && INSN_P (i2)
14249 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14251 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14252 PUT_REG_NOTE_KIND (note, REG_DEAD);
14253 if (! (REG_P (XEXP (note, 0))
14254 ? find_regno_note (i2, REG_NOTE_KIND (note),
14255 REGNO (XEXP (note, 0)))
14256 : find_reg_note (i2, REG_NOTE_KIND (note),
14257 XEXP (note, 0))))
14258 place = i2;
14262 break;
14264 case REG_EQUAL:
14265 case REG_EQUIV:
14266 case REG_NOALIAS:
14267 /* These notes say something about results of an insn. We can
14268 only support them if they used to be on I3 in which case they
14269 remain on I3. Otherwise they are ignored.
14271 If the note refers to an expression that is not a constant, we
14272 must also ignore the note since we cannot tell whether the
14273 equivalence is still true. It might be possible to do
14274 slightly better than this (we only have a problem if I2DEST
14275 or I1DEST is present in the expression), but it doesn't
14276 seem worth the trouble. */
14278 if (from_insn == i3
14279 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14280 place = i3;
14281 break;
14283 case REG_INC:
14284 /* These notes say something about how a register is used. They must
14285 be present on any use of the register in I2 or I3. */
14286 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14287 place = i3;
14289 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14291 if (place)
14292 place2 = i2;
14293 else
14294 place = i2;
14296 break;
14298 case REG_LABEL_TARGET:
14299 case REG_LABEL_OPERAND:
14300 /* This can show up in several ways -- either directly in the
14301 pattern, or hidden off in the constant pool with (or without?)
14302 a REG_EQUAL note. */
14303 /* ??? Ignore the without-reg_equal-note problem for now. */
14304 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14305 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14306 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14307 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14308 place = i3;
14310 if (i2
14311 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14312 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14313 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14314 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14316 if (place)
14317 place2 = i2;
14318 else
14319 place = i2;
14322 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14323 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14324 there. */
14325 if (place && JUMP_P (place)
14326 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14327 && (JUMP_LABEL (place) == NULL
14328 || JUMP_LABEL (place) == XEXP (note, 0)))
14330 rtx label = JUMP_LABEL (place);
14332 if (!label)
14333 JUMP_LABEL (place) = XEXP (note, 0);
14334 else if (LABEL_P (label))
14335 LABEL_NUSES (label)--;
14338 if (place2 && JUMP_P (place2)
14339 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14340 && (JUMP_LABEL (place2) == NULL
14341 || JUMP_LABEL (place2) == XEXP (note, 0)))
14343 rtx label = JUMP_LABEL (place2);
14345 if (!label)
14346 JUMP_LABEL (place2) = XEXP (note, 0);
14347 else if (LABEL_P (label))
14348 LABEL_NUSES (label)--;
14349 place2 = 0;
14351 break;
14353 case REG_NONNEG:
14354 /* This note says something about the value of a register prior
14355 to the execution of an insn. It is too much trouble to see
14356 if the note is still correct in all situations. It is better
14357 to simply delete it. */
14358 break;
14360 case REG_DEAD:
14361 /* If we replaced the right hand side of FROM_INSN with a
14362 REG_EQUAL note, the original use of the dying register
14363 will not have been combined into I3 and I2. In such cases,
14364 FROM_INSN is guaranteed to be the first of the combined
14365 instructions, so we simply need to search back before
14366 FROM_INSN for the previous use or set of this register,
14367 then alter the notes there appropriately.
14369 If the register is used as an input in I3, it dies there.
14370 Similarly for I2, if it is nonzero and adjacent to I3.
14372 If the register is not used as an input in either I3 or I2
14373 and it is not one of the registers we were supposed to eliminate,
14374 there are two possibilities. We might have a non-adjacent I2
14375 or we might have somehow eliminated an additional register
14376 from a computation. For example, we might have had A & B where
14377 we discover that B will always be zero. In this case we will
14378 eliminate the reference to A.
14380 In both cases, we must search to see if we can find a previous
14381 use of A and put the death note there. */
14383 if (from_insn
14384 && from_insn == i2mod
14385 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14386 tem_insn = from_insn;
14387 else
14389 if (from_insn
14390 && CALL_P (from_insn)
14391 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14392 place = from_insn;
14393 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14395 /* If the new I2 sets the same register that is marked
14396 dead in the note, we do not in general know where to
14397 put the note. One important case we _can_ handle is
14398 when the note comes from I3. */
14399 if (from_insn == i3)
14400 place = i3;
14401 else
14402 break;
14404 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14405 place = i3;
14406 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14407 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14408 place = i2;
14409 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14410 && !(i2mod
14411 && reg_overlap_mentioned_p (XEXP (note, 0),
14412 i2mod_old_rhs)))
14413 || rtx_equal_p (XEXP (note, 0), elim_i1)
14414 || rtx_equal_p (XEXP (note, 0), elim_i0))
14415 break;
14416 tem_insn = i3;
14419 if (place == 0)
14421 basic_block bb = this_basic_block;
14423 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14425 if (!NONDEBUG_INSN_P (tem_insn))
14427 if (tem_insn == BB_HEAD (bb))
14428 break;
14429 continue;
14432 /* If the register is being set at TEM_INSN, see if that is all
14433 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14434 into a REG_UNUSED note instead. Don't delete sets to
14435 global register vars. */
14436 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14437 || !global_regs[REGNO (XEXP (note, 0))])
14438 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14440 rtx set = single_set (tem_insn);
14441 rtx inner_dest = 0;
14442 rtx_insn *cc0_setter = NULL;
14444 if (set != 0)
14445 for (inner_dest = SET_DEST (set);
14446 (GET_CODE (inner_dest) == STRICT_LOW_PART
14447 || GET_CODE (inner_dest) == SUBREG
14448 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14449 inner_dest = XEXP (inner_dest, 0))
14452 /* Verify that it was the set, and not a clobber that
14453 modified the register.
14455 CC0 targets must be careful to maintain setter/user
14456 pairs. If we cannot delete the setter due to side
14457 effects, mark the user with an UNUSED note instead
14458 of deleting it. */
14460 if (set != 0 && ! side_effects_p (SET_SRC (set))
14461 && rtx_equal_p (XEXP (note, 0), inner_dest)
14462 && (!HAVE_cc0
14463 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14464 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14465 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14467 /* Move the notes and links of TEM_INSN elsewhere.
14468 This might delete other dead insns recursively.
14469 First set the pattern to something that won't use
14470 any register. */
14471 rtx old_notes = REG_NOTES (tem_insn);
14473 PATTERN (tem_insn) = pc_rtx;
14474 REG_NOTES (tem_insn) = NULL;
14476 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14477 NULL_RTX, NULL_RTX, NULL_RTX);
14478 distribute_links (LOG_LINKS (tem_insn));
14480 unsigned int regno = REGNO (XEXP (note, 0));
14481 reg_stat_type *rsp = &reg_stat[regno];
14482 if (rsp->last_set == tem_insn)
14483 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14485 SET_INSN_DELETED (tem_insn);
14486 if (tem_insn == i2)
14487 i2 = NULL;
14489 /* Delete the setter too. */
14490 if (cc0_setter)
14492 PATTERN (cc0_setter) = pc_rtx;
14493 old_notes = REG_NOTES (cc0_setter);
14494 REG_NOTES (cc0_setter) = NULL;
14496 distribute_notes (old_notes, cc0_setter,
14497 cc0_setter, NULL,
14498 NULL_RTX, NULL_RTX, NULL_RTX);
14499 distribute_links (LOG_LINKS (cc0_setter));
14501 SET_INSN_DELETED (cc0_setter);
14502 if (cc0_setter == i2)
14503 i2 = NULL;
14506 else
14508 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14510 /* If there isn't already a REG_UNUSED note, put one
14511 here. Do not place a REG_DEAD note, even if
14512 the register is also used here; that would not
14513 match the algorithm used in lifetime analysis
14514 and can cause the consistency check in the
14515 scheduler to fail. */
14516 if (! find_regno_note (tem_insn, REG_UNUSED,
14517 REGNO (XEXP (note, 0))))
14518 place = tem_insn;
14519 break;
14522 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14523 || (CALL_P (tem_insn)
14524 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14526 place = tem_insn;
14528 /* If we are doing a 3->2 combination, and we have a
14529 register which formerly died in i3 and was not used
14530 by i2, which now no longer dies in i3 and is used in
14531 i2 but does not die in i2, and place is between i2
14532 and i3, then we may need to move a link from place to
14533 i2. */
14534 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14535 && from_insn
14536 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14537 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14539 struct insn_link *links = LOG_LINKS (place);
14540 LOG_LINKS (place) = NULL;
14541 distribute_links (links);
14543 break;
14546 if (tem_insn == BB_HEAD (bb))
14547 break;
14552 /* If the register is set or already dead at PLACE, we needn't do
14553 anything with this note if it is still a REG_DEAD note.
14554 We check here if it is set at all, not if is it totally replaced,
14555 which is what `dead_or_set_p' checks, so also check for it being
14556 set partially. */
14558 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14560 unsigned int regno = REGNO (XEXP (note, 0));
14561 reg_stat_type *rsp = &reg_stat[regno];
14563 if (dead_or_set_p (place, XEXP (note, 0))
14564 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14566 /* Unless the register previously died in PLACE, clear
14567 last_death. [I no longer understand why this is
14568 being done.] */
14569 if (rsp->last_death != place)
14570 rsp->last_death = 0;
14571 place = 0;
14573 else
14574 rsp->last_death = place;
14576 /* If this is a death note for a hard reg that is occupying
14577 multiple registers, ensure that we are still using all
14578 parts of the object. If we find a piece of the object
14579 that is unused, we must arrange for an appropriate REG_DEAD
14580 note to be added for it. However, we can't just emit a USE
14581 and tag the note to it, since the register might actually
14582 be dead; so we recourse, and the recursive call then finds
14583 the previous insn that used this register. */
14585 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14587 unsigned int endregno = END_REGNO (XEXP (note, 0));
14588 bool all_used = true;
14589 unsigned int i;
14591 for (i = regno; i < endregno; i++)
14592 if ((! refers_to_regno_p (i, PATTERN (place))
14593 && ! find_regno_fusage (place, USE, i))
14594 || dead_or_set_regno_p (place, i))
14596 all_used = false;
14597 break;
14600 if (! all_used)
14602 /* Put only REG_DEAD notes for pieces that are
14603 not already dead or set. */
14605 for (i = regno; i < endregno;
14606 i += hard_regno_nregs (i, reg_raw_mode[i]))
14608 rtx piece = regno_reg_rtx[i];
14609 basic_block bb = this_basic_block;
14611 if (! dead_or_set_p (place, piece)
14612 && ! reg_bitfield_target_p (piece,
14613 PATTERN (place)))
14615 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14616 NULL_RTX);
14618 distribute_notes (new_note, place, place,
14619 NULL, NULL_RTX, NULL_RTX,
14620 NULL_RTX);
14622 else if (! refers_to_regno_p (i, PATTERN (place))
14623 && ! find_regno_fusage (place, USE, i))
14624 for (tem_insn = PREV_INSN (place); ;
14625 tem_insn = PREV_INSN (tem_insn))
14627 if (!NONDEBUG_INSN_P (tem_insn))
14629 if (tem_insn == BB_HEAD (bb))
14630 break;
14631 continue;
14633 if (dead_or_set_p (tem_insn, piece)
14634 || reg_bitfield_target_p (piece,
14635 PATTERN (tem_insn)))
14637 add_reg_note (tem_insn, REG_UNUSED, piece);
14638 break;
14643 place = 0;
14647 break;
14649 default:
14650 /* Any other notes should not be present at this point in the
14651 compilation. */
14652 gcc_unreachable ();
14655 if (place)
14657 XEXP (note, 1) = REG_NOTES (place);
14658 REG_NOTES (place) = note;
14660 /* Set added_notes_insn to the earliest insn we added a note to. */
14661 if (added_notes_insn == 0
14662 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14663 added_notes_insn = place;
14666 if (place2)
14668 add_shallow_copy_of_reg_note (place2, note);
14670 /* Set added_notes_insn to the earliest insn we added a note to. */
14671 if (added_notes_insn == 0
14672 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14673 added_notes_insn = place2;
14678 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14679 I3, I2, and I1 to new locations. This is also called to add a link
14680 pointing at I3 when I3's destination is changed. */
14682 static void
14683 distribute_links (struct insn_link *links)
14685 struct insn_link *link, *next_link;
14687 for (link = links; link; link = next_link)
14689 rtx_insn *place = 0;
14690 rtx_insn *insn;
14691 rtx set, reg;
14693 next_link = link->next;
14695 /* If the insn that this link points to is a NOTE, ignore it. */
14696 if (NOTE_P (link->insn))
14697 continue;
14699 set = 0;
14700 rtx pat = PATTERN (link->insn);
14701 if (GET_CODE (pat) == SET)
14702 set = pat;
14703 else if (GET_CODE (pat) == PARALLEL)
14705 int i;
14706 for (i = 0; i < XVECLEN (pat, 0); i++)
14708 set = XVECEXP (pat, 0, i);
14709 if (GET_CODE (set) != SET)
14710 continue;
14712 reg = SET_DEST (set);
14713 while (GET_CODE (reg) == ZERO_EXTRACT
14714 || GET_CODE (reg) == STRICT_LOW_PART
14715 || GET_CODE (reg) == SUBREG)
14716 reg = XEXP (reg, 0);
14718 if (!REG_P (reg))
14719 continue;
14721 if (REGNO (reg) == link->regno)
14722 break;
14724 if (i == XVECLEN (pat, 0))
14725 continue;
14727 else
14728 continue;
14730 reg = SET_DEST (set);
14732 while (GET_CODE (reg) == ZERO_EXTRACT
14733 || GET_CODE (reg) == STRICT_LOW_PART
14734 || GET_CODE (reg) == SUBREG)
14735 reg = XEXP (reg, 0);
14737 /* A LOG_LINK is defined as being placed on the first insn that uses
14738 a register and points to the insn that sets the register. Start
14739 searching at the next insn after the target of the link and stop
14740 when we reach a set of the register or the end of the basic block.
14742 Note that this correctly handles the link that used to point from
14743 I3 to I2. Also note that not much searching is typically done here
14744 since most links don't point very far away. */
14746 for (insn = NEXT_INSN (link->insn);
14747 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14748 || BB_HEAD (this_basic_block->next_bb) != insn));
14749 insn = NEXT_INSN (insn))
14750 if (DEBUG_INSN_P (insn))
14751 continue;
14752 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14754 if (reg_referenced_p (reg, PATTERN (insn)))
14755 place = insn;
14756 break;
14758 else if (CALL_P (insn)
14759 && find_reg_fusage (insn, USE, reg))
14761 place = insn;
14762 break;
14764 else if (INSN_P (insn) && reg_set_p (reg, insn))
14765 break;
14767 /* If we found a place to put the link, place it there unless there
14768 is already a link to the same insn as LINK at that point. */
14770 if (place)
14772 struct insn_link *link2;
14774 FOR_EACH_LOG_LINK (link2, place)
14775 if (link2->insn == link->insn && link2->regno == link->regno)
14776 break;
14778 if (link2 == NULL)
14780 link->next = LOG_LINKS (place);
14781 LOG_LINKS (place) = link;
14783 /* Set added_links_insn to the earliest insn we added a
14784 link to. */
14785 if (added_links_insn == 0
14786 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14787 added_links_insn = place;
14793 /* Check for any register or memory mentioned in EQUIV that is not
14794 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14795 of EXPR where some registers may have been replaced by constants. */
14797 static bool
14798 unmentioned_reg_p (rtx equiv, rtx expr)
14800 subrtx_iterator::array_type array;
14801 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14803 const_rtx x = *iter;
14804 if ((REG_P (x) || MEM_P (x))
14805 && !reg_mentioned_p (x, expr))
14806 return true;
14808 return false;
14811 DEBUG_FUNCTION void
14812 dump_combine_stats (FILE *file)
14814 fprintf
14815 (file,
14816 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14817 combine_attempts, combine_merges, combine_extras, combine_successes);
14820 void
14821 dump_combine_total_stats (FILE *file)
14823 fprintf
14824 (file,
14825 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14826 total_attempts, total_merges, total_extras, total_successes);
14829 /* Try combining insns through substitution. */
14830 static unsigned int
14831 rest_of_handle_combine (void)
14833 int rebuild_jump_labels_after_combine;
14835 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14836 df_note_add_problem ();
14837 df_analyze ();
14839 regstat_init_n_sets_and_refs ();
14840 reg_n_sets_max = max_reg_num ();
14842 rebuild_jump_labels_after_combine
14843 = combine_instructions (get_insns (), max_reg_num ());
14845 /* Combining insns may have turned an indirect jump into a
14846 direct jump. Rebuild the JUMP_LABEL fields of jumping
14847 instructions. */
14848 if (rebuild_jump_labels_after_combine)
14850 if (dom_info_available_p (CDI_DOMINATORS))
14851 free_dominance_info (CDI_DOMINATORS);
14852 timevar_push (TV_JUMP);
14853 rebuild_jump_labels (get_insns ());
14854 cleanup_cfg (0);
14855 timevar_pop (TV_JUMP);
14858 regstat_free_n_sets_and_refs ();
14859 return 0;
14862 namespace {
14864 const pass_data pass_data_combine =
14866 RTL_PASS, /* type */
14867 "combine", /* name */
14868 OPTGROUP_NONE, /* optinfo_flags */
14869 TV_COMBINE, /* tv_id */
14870 PROP_cfglayout, /* properties_required */
14871 0, /* properties_provided */
14872 0, /* properties_destroyed */
14873 0, /* todo_flags_start */
14874 TODO_df_finish, /* todo_flags_finish */
14877 class pass_combine : public rtl_opt_pass
14879 public:
14880 pass_combine (gcc::context *ctxt)
14881 : rtl_opt_pass (pass_data_combine, ctxt)
14884 /* opt_pass methods: */
14885 virtual bool gate (function *) { return (optimize > 0); }
14886 virtual unsigned int execute (function *)
14888 return rest_of_handle_combine ();
14891 }; // class pass_combine
14893 } // anon namespace
14895 rtl_opt_pass *
14896 make_pass_combine (gcc::context *ctxt)
14898 return new pass_combine (ctxt);