* config/rl78/rl78.c (rl78_asm_file_start): Specify alternate
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blobbd77473e9a30c8064edae78434223fc7b84b6395
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-ssa.h"
32 #include "tree-pass.h"
33 #include "cfgloop.h"
34 #include "diagnostic-core.h"
35 #include "tree-scalar-evolution.h"
36 #include "tree-vectorizer.h"
37 #include "langhooks.h"
39 /*************************************************************************
40 Simple Loop Peeling Utilities
42 Utilities to support loop peeling for vectorization purposes.
43 *************************************************************************/
46 /* Renames the use *OP_P. */
48 static void
49 rename_use_op (use_operand_p op_p)
51 tree new_name;
53 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
54 return;
56 new_name = get_current_def (USE_FROM_PTR (op_p));
58 /* Something defined outside of the loop. */
59 if (!new_name)
60 return;
62 /* An ordinary ssa name defined in the loop. */
64 SET_USE (op_p, new_name);
68 /* Renames the variables in basic block BB. */
70 static void
71 rename_variables_in_bb (basic_block bb)
73 gimple_stmt_iterator gsi;
74 gimple stmt;
75 use_operand_p use_p;
76 ssa_op_iter iter;
77 edge e;
78 edge_iterator ei;
79 struct loop *loop = bb->loop_father;
81 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
83 stmt = gsi_stmt (gsi);
84 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
85 rename_use_op (use_p);
88 FOR_EACH_EDGE (e, ei, bb->preds)
90 if (!flow_bb_inside_loop_p (loop, e->src))
91 continue;
92 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
93 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
98 typedef struct
100 tree from, to;
101 basic_block bb;
102 } adjust_info;
104 /* A stack of values to be adjusted in debug stmts. We have to
105 process them LIFO, so that the closest substitution applies. If we
106 processed them FIFO, without the stack, we might substitute uses
107 with a PHI DEF that would soon become non-dominant, and when we got
108 to the suitable one, it wouldn't have anything to substitute any
109 more. */
110 static vec<adjust_info, va_stack> adjust_vec;
112 /* Adjust any debug stmts that referenced AI->from values to use the
113 loop-closed AI->to, if the references are dominated by AI->bb and
114 not by the definition of AI->from. */
116 static void
117 adjust_debug_stmts_now (adjust_info *ai)
119 basic_block bbphi = ai->bb;
120 tree orig_def = ai->from;
121 tree new_def = ai->to;
122 imm_use_iterator imm_iter;
123 gimple stmt;
124 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
126 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
128 /* Adjust any debug stmts that held onto non-loop-closed
129 references. */
130 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
132 use_operand_p use_p;
133 basic_block bbuse;
135 if (!is_gimple_debug (stmt))
136 continue;
138 gcc_assert (gimple_debug_bind_p (stmt));
140 bbuse = gimple_bb (stmt);
142 if ((bbuse == bbphi
143 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
144 && !(bbuse == bbdef
145 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
147 if (new_def)
148 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
149 SET_USE (use_p, new_def);
150 else
152 gimple_debug_bind_reset_value (stmt);
153 update_stmt (stmt);
159 /* Adjust debug stmts as scheduled before. */
161 static void
162 adjust_vec_debug_stmts (void)
164 if (!MAY_HAVE_DEBUG_STMTS)
165 return;
167 gcc_assert (adjust_vec.exists ());
169 while (!adjust_vec.is_empty ())
171 adjust_debug_stmts_now (&adjust_vec.last ());
172 adjust_vec.pop ();
175 adjust_vec.release ();
178 /* Adjust any debug stmts that referenced FROM values to use the
179 loop-closed TO, if the references are dominated by BB and not by
180 the definition of FROM. If adjust_vec is non-NULL, adjustments
181 will be postponed until adjust_vec_debug_stmts is called. */
183 static void
184 adjust_debug_stmts (tree from, tree to, basic_block bb)
186 adjust_info ai;
188 if (MAY_HAVE_DEBUG_STMTS
189 && TREE_CODE (from) == SSA_NAME
190 && ! SSA_NAME_IS_DEFAULT_DEF (from)
191 && ! virtual_operand_p (from))
193 ai.from = from;
194 ai.to = to;
195 ai.bb = bb;
197 if (adjust_vec.exists ())
198 adjust_vec.safe_push (ai);
199 else
200 adjust_debug_stmts_now (&ai);
204 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
205 to adjust any debug stmts that referenced the old phi arg,
206 presumably non-loop-closed references left over from other
207 transformations. */
209 static void
210 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
212 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
214 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
216 if (MAY_HAVE_DEBUG_STMTS)
217 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
218 gimple_bb (update_phi));
222 /* Update PHI nodes for a guard of the LOOP.
224 Input:
225 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
226 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
227 originates from the guard-bb, skips LOOP and reaches the (unique) exit
228 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
229 We denote this bb NEW_MERGE_BB because before the guard code was added
230 it had a single predecessor (the LOOP header), and now it became a merge
231 point of two paths - the path that ends with the LOOP exit-edge, and
232 the path that ends with GUARD_EDGE.
233 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
234 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
236 ===> The CFG before the guard-code was added:
237 LOOP_header_bb:
238 loop_body
239 if (exit_loop) goto update_bb
240 else goto LOOP_header_bb
241 update_bb:
243 ==> The CFG after the guard-code was added:
244 guard_bb:
245 if (LOOP_guard_condition) goto new_merge_bb
246 else goto LOOP_header_bb
247 LOOP_header_bb:
248 loop_body
249 if (exit_loop_condition) goto new_merge_bb
250 else goto LOOP_header_bb
251 new_merge_bb:
252 goto update_bb
253 update_bb:
255 ==> The CFG after this function:
256 guard_bb:
257 if (LOOP_guard_condition) goto new_merge_bb
258 else goto LOOP_header_bb
259 LOOP_header_bb:
260 loop_body
261 if (exit_loop_condition) goto new_exit_bb
262 else goto LOOP_header_bb
263 new_exit_bb:
264 new_merge_bb:
265 goto update_bb
266 update_bb:
268 This function:
269 1. creates and updates the relevant phi nodes to account for the new
270 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
271 1.1. Create phi nodes at NEW_MERGE_BB.
272 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
273 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
274 2. preserves loop-closed-ssa-form by creating the required phi nodes
275 at the exit of LOOP (i.e, in NEW_EXIT_BB).
277 There are two flavors to this function:
279 slpeel_update_phi_nodes_for_guard1:
280 Here the guard controls whether we enter or skip LOOP, where LOOP is a
281 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
282 for variables that have phis in the loop header.
284 slpeel_update_phi_nodes_for_guard2:
285 Here the guard controls whether we enter or skip LOOP, where LOOP is an
286 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
287 for variables that have phis in the loop exit.
289 I.E., the overall structure is:
291 loop1_preheader_bb:
292 guard1 (goto loop1/merge1_bb)
293 loop1
294 loop1_exit_bb:
295 guard2 (goto merge1_bb/merge2_bb)
296 merge1_bb
297 loop2
298 loop2_exit_bb
299 merge2_bb
300 next_bb
302 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
303 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
304 that have phis in loop1->header).
306 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
307 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
308 that have phis in next_bb). It also adds some of these phis to
309 loop1_exit_bb.
311 slpeel_update_phi_nodes_for_guard1 is always called before
312 slpeel_update_phi_nodes_for_guard2. They are both needed in order
313 to create correct data-flow and loop-closed-ssa-form.
315 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
316 that change between iterations of a loop (and therefore have a phi-node
317 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
318 phis for variables that are used out of the loop (and therefore have
319 loop-closed exit phis). Some variables may be both updated between
320 iterations and used after the loop. This is why in loop1_exit_bb we
321 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
322 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
324 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
325 an original loop. i.e., we have:
327 orig_loop
328 guard_bb (goto LOOP/new_merge)
329 new_loop <-- LOOP
330 new_exit
331 new_merge
332 next_bb
334 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
335 have:
337 new_loop
338 guard_bb (goto LOOP/new_merge)
339 orig_loop <-- LOOP
340 new_exit
341 new_merge
342 next_bb
344 The SSA names defined in the original loop have a current
345 reaching definition that that records the corresponding new
346 ssa-name used in the new duplicated loop copy.
349 /* Function slpeel_update_phi_nodes_for_guard1
351 Input:
352 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
353 - DEFS - a bitmap of ssa names to mark new names for which we recorded
354 information.
356 In the context of the overall structure, we have:
358 loop1_preheader_bb:
359 guard1 (goto loop1/merge1_bb)
360 LOOP-> loop1
361 loop1_exit_bb:
362 guard2 (goto merge1_bb/merge2_bb)
363 merge1_bb
364 loop2
365 loop2_exit_bb
366 merge2_bb
367 next_bb
369 For each name updated between loop iterations (i.e - for each name that has
370 an entry (loop-header) phi in LOOP) we create a new phi in:
371 1. merge1_bb (to account for the edge from guard1)
372 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
375 static void
376 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
377 bool is_new_loop, basic_block *new_exit_bb)
379 gimple orig_phi, new_phi;
380 gimple update_phi, update_phi2;
381 tree guard_arg, loop_arg;
382 basic_block new_merge_bb = guard_edge->dest;
383 edge e = EDGE_SUCC (new_merge_bb, 0);
384 basic_block update_bb = e->dest;
385 basic_block orig_bb = loop->header;
386 edge new_exit_e;
387 tree current_new_name;
388 gimple_stmt_iterator gsi_orig, gsi_update;
390 /* Create new bb between loop and new_merge_bb. */
391 *new_exit_bb = split_edge (single_exit (loop));
393 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
395 for (gsi_orig = gsi_start_phis (orig_bb),
396 gsi_update = gsi_start_phis (update_bb);
397 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
398 gsi_next (&gsi_orig), gsi_next (&gsi_update))
400 source_location loop_locus, guard_locus;
401 tree new_res;
402 orig_phi = gsi_stmt (gsi_orig);
403 update_phi = gsi_stmt (gsi_update);
405 /** 1. Handle new-merge-point phis **/
407 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
408 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
409 new_phi = create_phi_node (new_res, new_merge_bb);
411 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
412 of LOOP. Set the two phi args in NEW_PHI for these edges: */
413 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
414 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
415 EDGE_SUCC (loop->latch,
416 0));
417 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
418 guard_locus
419 = gimple_phi_arg_location_from_edge (orig_phi,
420 loop_preheader_edge (loop));
422 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
423 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
425 /* 1.3. Update phi in successor block. */
426 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
427 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
428 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
429 update_phi2 = new_phi;
432 /** 2. Handle loop-closed-ssa-form phis **/
434 if (virtual_operand_p (PHI_RESULT (orig_phi)))
435 continue;
437 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
438 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
439 new_phi = create_phi_node (new_res, *new_exit_bb);
441 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
442 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
444 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
445 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
446 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
447 PHI_RESULT (new_phi));
449 /* 2.4. Record the newly created name with set_current_def.
450 We want to find a name such that
451 name = get_current_def (orig_loop_name)
452 and to set its current definition as follows:
453 set_current_def (name, new_phi_name)
455 If LOOP is a new loop then loop_arg is already the name we're
456 looking for. If LOOP is the original loop, then loop_arg is
457 the orig_loop_name and the relevant name is recorded in its
458 current reaching definition. */
459 if (is_new_loop)
460 current_new_name = loop_arg;
461 else
463 current_new_name = get_current_def (loop_arg);
464 /* current_def is not available only if the variable does not
465 change inside the loop, in which case we also don't care
466 about recording a current_def for it because we won't be
467 trying to create loop-exit-phis for it. */
468 if (!current_new_name)
469 continue;
471 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
473 set_current_def (current_new_name, PHI_RESULT (new_phi));
478 /* Function slpeel_update_phi_nodes_for_guard2
480 Input:
481 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
483 In the context of the overall structure, we have:
485 loop1_preheader_bb:
486 guard1 (goto loop1/merge1_bb)
487 loop1
488 loop1_exit_bb:
489 guard2 (goto merge1_bb/merge2_bb)
490 merge1_bb
491 LOOP-> loop2
492 loop2_exit_bb
493 merge2_bb
494 next_bb
496 For each name used out side the loop (i.e - for each name that has an exit
497 phi in next_bb) we create a new phi in:
498 1. merge2_bb (to account for the edge from guard_bb)
499 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
500 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
501 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
504 static void
505 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
506 bool is_new_loop, basic_block *new_exit_bb)
508 gimple orig_phi, new_phi;
509 gimple update_phi, update_phi2;
510 tree guard_arg, loop_arg;
511 basic_block new_merge_bb = guard_edge->dest;
512 edge e = EDGE_SUCC (new_merge_bb, 0);
513 basic_block update_bb = e->dest;
514 edge new_exit_e;
515 tree orig_def, orig_def_new_name;
516 tree new_name, new_name2;
517 tree arg;
518 gimple_stmt_iterator gsi;
520 /* Create new bb between loop and new_merge_bb. */
521 *new_exit_bb = split_edge (single_exit (loop));
523 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
525 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
527 tree new_res;
528 update_phi = gsi_stmt (gsi);
529 orig_phi = update_phi;
530 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
531 /* This loop-closed-phi actually doesn't represent a use
532 out of the loop - the phi arg is a constant. */
533 if (TREE_CODE (orig_def) != SSA_NAME)
534 continue;
535 orig_def_new_name = get_current_def (orig_def);
536 arg = NULL_TREE;
538 /** 1. Handle new-merge-point phis **/
540 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
541 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
542 new_phi = create_phi_node (new_res, new_merge_bb);
544 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
545 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
546 new_name = orig_def;
547 new_name2 = NULL_TREE;
548 if (orig_def_new_name)
550 new_name = orig_def_new_name;
551 /* Some variables have both loop-entry-phis and loop-exit-phis.
552 Such variables were given yet newer names by phis placed in
553 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
554 new_name2 = get_current_def (get_current_def (orig_name)). */
555 new_name2 = get_current_def (new_name);
558 if (is_new_loop)
560 guard_arg = orig_def;
561 loop_arg = new_name;
563 else
565 guard_arg = new_name;
566 loop_arg = orig_def;
568 if (new_name2)
569 guard_arg = new_name2;
571 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
572 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
574 /* 1.3. Update phi in successor block. */
575 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
576 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
577 update_phi2 = new_phi;
580 /** 2. Handle loop-closed-ssa-form phis **/
582 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
583 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
584 new_phi = create_phi_node (new_res, *new_exit_bb);
586 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
587 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
589 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
590 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
591 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
592 PHI_RESULT (new_phi));
595 /** 3. Handle loop-closed-ssa-form phis for first loop **/
597 /* 3.1. Find the relevant names that need an exit-phi in
598 GUARD_BB, i.e. names for which
599 slpeel_update_phi_nodes_for_guard1 had not already created a
600 phi node. This is the case for names that are used outside
601 the loop (and therefore need an exit phi) but are not updated
602 across loop iterations (and therefore don't have a
603 loop-header-phi).
605 slpeel_update_phi_nodes_for_guard1 is responsible for
606 creating loop-exit phis in GUARD_BB for names that have a
607 loop-header-phi. When such a phi is created we also record
608 the new name in its current definition. If this new name
609 exists, then guard_arg was set to this new name (see 1.2
610 above). Therefore, if guard_arg is not this new name, this
611 is an indication that an exit-phi in GUARD_BB was not yet
612 created, so we take care of it here. */
613 if (guard_arg == new_name2)
614 continue;
615 arg = guard_arg;
617 /* 3.2. Generate new phi node in GUARD_BB: */
618 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
619 new_phi = create_phi_node (new_res, guard_edge->src);
621 /* 3.3. GUARD_BB has one incoming edge: */
622 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
623 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
624 UNKNOWN_LOCATION);
626 /* 3.4. Update phi in successor of GUARD_BB: */
627 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
628 == guard_arg);
629 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
630 PHI_RESULT (new_phi));
635 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
636 that starts at zero, increases by one and its limit is NITERS.
638 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
640 void
641 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
643 tree indx_before_incr, indx_after_incr;
644 gimple cond_stmt;
645 gimple orig_cond;
646 edge exit_edge = single_exit (loop);
647 gimple_stmt_iterator loop_cond_gsi;
648 gimple_stmt_iterator incr_gsi;
649 bool insert_after;
650 tree init = build_int_cst (TREE_TYPE (niters), 0);
651 tree step = build_int_cst (TREE_TYPE (niters), 1);
652 LOC loop_loc;
653 enum tree_code code;
655 orig_cond = get_loop_exit_condition (loop);
656 gcc_assert (orig_cond);
657 loop_cond_gsi = gsi_for_stmt (orig_cond);
659 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
660 create_iv (init, step, NULL_TREE, loop,
661 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
663 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
664 true, NULL_TREE, true,
665 GSI_SAME_STMT);
666 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
667 true, GSI_SAME_STMT);
669 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
670 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
671 NULL_TREE);
673 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
675 /* Remove old loop exit test: */
676 gsi_remove (&loop_cond_gsi, true);
677 free_stmt_vec_info (orig_cond);
679 loop_loc = find_loop_location (loop);
680 if (dump_enabled_p ())
682 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOC)
683 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOC_FILE (loop_loc),
684 LOC_LINE (loop_loc));
685 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
686 dump_printf (MSG_NOTE, "\n");
688 loop->nb_iterations = niters;
692 /* Given LOOP this function generates a new copy of it and puts it
693 on E which is either the entry or exit of LOOP. */
695 struct loop *
696 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
698 struct loop *new_loop;
699 basic_block *new_bbs, *bbs;
700 bool at_exit;
701 bool was_imm_dom;
702 basic_block exit_dest;
703 edge exit, new_exit;
705 exit = single_exit (loop);
706 at_exit = (e == exit);
707 if (!at_exit && e != loop_preheader_edge (loop))
708 return NULL;
710 bbs = XNEWVEC (basic_block, loop->num_nodes + 1);
711 get_loop_body_with_size (loop, bbs, loop->num_nodes);
713 /* Check whether duplication is possible. */
714 if (!can_copy_bbs_p (bbs, loop->num_nodes))
716 free (bbs);
717 return NULL;
720 /* Generate new loop structure. */
721 new_loop = duplicate_loop (loop, loop_outer (loop));
722 duplicate_subloops (loop, new_loop);
724 exit_dest = exit->dest;
725 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
726 exit_dest) == loop->header ?
727 true : false);
729 /* Also copy the pre-header, this avoids jumping through hoops to
730 duplicate the loop entry PHI arguments. Create an empty
731 pre-header unconditionally for this. */
732 basic_block preheader = split_edge (loop_preheader_edge (loop));
733 edge entry_e = single_pred_edge (preheader);
734 bbs[loop->num_nodes] = preheader;
735 new_bbs = XNEWVEC (basic_block, loop->num_nodes + 1);
737 copy_bbs (bbs, loop->num_nodes + 1, new_bbs,
738 &exit, 1, &new_exit, NULL,
739 e->src, true);
740 basic_block new_preheader = new_bbs[loop->num_nodes];
742 add_phi_args_after_copy (new_bbs, loop->num_nodes + 1, NULL);
744 if (at_exit) /* Add the loop copy at exit. */
746 redirect_edge_and_branch_force (e, new_preheader);
747 flush_pending_stmts (e);
748 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
749 if (was_imm_dom)
750 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
752 /* And remove the non-necessary forwarder again. Keep the other
753 one so we have a proper pre-header for the loop at the exit edge. */
754 redirect_edge_pred (single_succ_edge (preheader), single_pred (preheader));
755 delete_basic_block (preheader);
756 set_immediate_dominator (CDI_DOMINATORS, loop->header,
757 loop_preheader_edge (loop)->src);
759 else /* Add the copy at entry. */
761 redirect_edge_and_branch_force (entry_e, new_preheader);
762 flush_pending_stmts (entry_e);
763 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
765 redirect_edge_and_branch_force (new_exit, preheader);
766 flush_pending_stmts (new_exit);
767 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
769 /* And remove the non-necessary forwarder again. Keep the other
770 one so we have a proper pre-header for the loop at the exit edge. */
771 redirect_edge_pred (single_succ_edge (new_preheader), single_pred (new_preheader));
772 delete_basic_block (new_preheader);
773 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
774 loop_preheader_edge (new_loop)->src);
777 for (unsigned i = 0; i < loop->num_nodes+1; i++)
778 rename_variables_in_bb (new_bbs[i]);
780 free (new_bbs);
781 free (bbs);
783 #ifdef ENABLE_CHECKING
784 verify_dominators (CDI_DOMINATORS);
785 #endif
787 return new_loop;
791 /* Given the condition statement COND, put it as the last statement
792 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
793 Assumes that this is the single exit of the guarded loop.
794 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
796 static edge
797 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
798 gimple_seq cond_expr_stmt_list,
799 basic_block exit_bb, basic_block dom_bb,
800 int probability)
802 gimple_stmt_iterator gsi;
803 edge new_e, enter_e;
804 gimple cond_stmt;
805 gimple_seq gimplify_stmt_list = NULL;
807 enter_e = EDGE_SUCC (guard_bb, 0);
808 enter_e->flags &= ~EDGE_FALLTHRU;
809 enter_e->flags |= EDGE_FALSE_VALUE;
810 gsi = gsi_last_bb (guard_bb);
812 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
813 NULL_TREE);
814 if (gimplify_stmt_list)
815 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
816 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
817 if (cond_expr_stmt_list)
818 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
820 gsi = gsi_last_bb (guard_bb);
821 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
823 /* Add new edge to connect guard block to the merge/loop-exit block. */
824 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
826 new_e->count = guard_bb->count;
827 new_e->probability = probability;
828 new_e->count = apply_probability (enter_e->count, probability);
829 enter_e->count -= new_e->count;
830 enter_e->probability = inverse_probability (probability);
831 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
832 return new_e;
836 /* This function verifies that the following restrictions apply to LOOP:
837 (1) it is innermost
838 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
839 (3) it is single entry, single exit
840 (4) its exit condition is the last stmt in the header
841 (5) E is the entry/exit edge of LOOP.
844 bool
845 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
847 edge exit_e = single_exit (loop);
848 edge entry_e = loop_preheader_edge (loop);
849 gimple orig_cond = get_loop_exit_condition (loop);
850 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
852 if (loop->inner
853 /* All loops have an outer scope; the only case loop->outer is NULL is for
854 the function itself. */
855 || !loop_outer (loop)
856 || loop->num_nodes != 2
857 || !empty_block_p (loop->latch)
858 || !single_exit (loop)
859 /* Verify that new loop exit condition can be trivially modified. */
860 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
861 || (e != exit_e && e != entry_e))
862 return false;
864 return true;
867 #ifdef ENABLE_CHECKING
868 static void
869 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
870 struct loop *second_loop)
872 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
873 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
874 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
876 /* A guard that controls whether the second_loop is to be executed or skipped
877 is placed in first_loop->exit. first_loop->exit therefore has two
878 successors - one is the preheader of second_loop, and the other is a bb
879 after second_loop.
881 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
883 /* 1. Verify that one of the successors of first_loop->exit is the preheader
884 of second_loop. */
886 /* The preheader of new_loop is expected to have two predecessors:
887 first_loop->exit and the block that precedes first_loop. */
889 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
890 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
891 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
892 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
893 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
895 /* Verify that the other successor of first_loop->exit is after the
896 second_loop. */
897 /* TODO */
899 #endif
901 /* If the run time cost model check determines that vectorization is
902 not profitable and hence scalar loop should be generated then set
903 FIRST_NITERS to prologue peeled iterations. This will allow all the
904 iterations to be executed in the prologue peeled scalar loop. */
906 static void
907 set_prologue_iterations (basic_block bb_before_first_loop,
908 tree *first_niters,
909 struct loop *loop,
910 unsigned int th,
911 int probability)
913 edge e;
914 basic_block cond_bb, then_bb;
915 tree var, prologue_after_cost_adjust_name;
916 gimple_stmt_iterator gsi;
917 gimple newphi;
918 edge e_true, e_false, e_fallthru;
919 gimple cond_stmt;
920 gimple_seq stmts = NULL;
921 tree cost_pre_condition = NULL_TREE;
922 tree scalar_loop_iters =
923 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
925 e = single_pred_edge (bb_before_first_loop);
926 cond_bb = split_edge(e);
928 e = single_pred_edge (bb_before_first_loop);
929 then_bb = split_edge(e);
930 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
932 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
933 EDGE_FALSE_VALUE);
934 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
936 e_true = EDGE_PRED (then_bb, 0);
937 e_true->flags &= ~EDGE_FALLTHRU;
938 e_true->flags |= EDGE_TRUE_VALUE;
940 e_true->probability = probability;
941 e_false->probability = inverse_probability (probability);
942 e_true->count = apply_probability (cond_bb->count, probability);
943 e_false->count = cond_bb->count - e_true->count;
944 then_bb->frequency = EDGE_FREQUENCY (e_true);
945 then_bb->count = e_true->count;
947 e_fallthru = EDGE_SUCC (then_bb, 0);
948 e_fallthru->count = then_bb->count;
950 gsi = gsi_last_bb (cond_bb);
951 cost_pre_condition =
952 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
953 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
954 cost_pre_condition =
955 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
956 NULL_TREE, false, GSI_CONTINUE_LINKING);
957 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
958 NULL_TREE, NULL_TREE);
959 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
961 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
962 "prologue_after_cost_adjust");
963 prologue_after_cost_adjust_name =
964 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
966 gsi = gsi_last_bb (then_bb);
967 if (stmts)
968 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
970 newphi = create_phi_node (var, bb_before_first_loop);
971 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
972 UNKNOWN_LOCATION);
973 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
975 *first_niters = PHI_RESULT (newphi);
978 /* Function slpeel_tree_peel_loop_to_edge.
980 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
981 that is placed on the entry (exit) edge E of LOOP. After this transformation
982 we have two loops one after the other - first-loop iterates FIRST_NITERS
983 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
984 If the cost model indicates that it is profitable to emit a scalar
985 loop instead of the vector one, then the prolog (epilog) loop will iterate
986 for the entire unchanged scalar iterations of the loop.
988 Input:
989 - LOOP: the loop to be peeled.
990 - E: the exit or entry edge of LOOP.
991 If it is the entry edge, we peel the first iterations of LOOP. In this
992 case first-loop is LOOP, and second-loop is the newly created loop.
993 If it is the exit edge, we peel the last iterations of LOOP. In this
994 case, first-loop is the newly created loop, and second-loop is LOOP.
995 - NITERS: the number of iterations that LOOP iterates.
996 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
997 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
998 for updating the loop bound of the first-loop to FIRST_NITERS. If it
999 is false, the caller of this function may want to take care of this
1000 (this can be useful if we don't want new stmts added to first-loop).
1001 - TH: cost model profitability threshold of iterations for vectorization.
1002 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1003 during versioning and hence needs to occur during
1004 prologue generation or whether cost model check
1005 has not occurred during prologue generation and hence
1006 needs to occur during epilogue generation.
1007 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1008 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1011 Output:
1012 The function returns a pointer to the new loop-copy, or NULL if it failed
1013 to perform the transformation.
1015 The function generates two if-then-else guards: one before the first loop,
1016 and the other before the second loop:
1017 The first guard is:
1018 if (FIRST_NITERS == 0) then skip the first loop,
1019 and go directly to the second loop.
1020 The second guard is:
1021 if (FIRST_NITERS == NITERS) then skip the second loop.
1023 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1024 then the generated condition is combined with COND_EXPR and the
1025 statements in COND_EXPR_STMT_LIST are emitted together with it.
1027 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1028 FORNOW the resulting code will not be in loop-closed-ssa form.
1031 static struct loop*
1032 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1033 edge e, tree *first_niters,
1034 tree niters, bool update_first_loop_count,
1035 unsigned int th, bool check_profitability,
1036 tree cond_expr, gimple_seq cond_expr_stmt_list,
1037 int bound1, int bound2)
1039 struct loop *new_loop = NULL, *first_loop, *second_loop;
1040 edge skip_e;
1041 tree pre_condition = NULL_TREE;
1042 basic_block bb_before_second_loop, bb_after_second_loop;
1043 basic_block bb_before_first_loop;
1044 basic_block bb_between_loops;
1045 basic_block new_exit_bb;
1046 gimple_stmt_iterator gsi;
1047 edge exit_e = single_exit (loop);
1048 LOC loop_loc;
1049 tree cost_pre_condition = NULL_TREE;
1050 /* There are many aspects to how likely the first loop is going to be executed.
1051 Without histogram we can't really do good job. Simply set it to
1052 2/3, so the first loop is not reordered to the end of function and
1053 the hot path through stays short. */
1054 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1055 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1056 int probability_of_second_loop;
1058 if (!slpeel_can_duplicate_loop_p (loop, e))
1059 return NULL;
1061 /* We might have a queued need to update virtual SSA form. As we
1062 delete the update SSA machinery below after doing a regular
1063 incremental SSA update during loop copying make sure we don't
1064 lose that fact.
1065 ??? Needing to update virtual SSA form by renaming is unfortunate
1066 but not all of the vectorizer code inserting new loads / stores
1067 properly assigns virtual operands to those statements. */
1068 update_ssa (TODO_update_ssa_only_virtuals);
1070 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1071 in the exit bb and rename all the uses after the loop. This simplifies
1072 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1073 (but normally loop closed SSA form doesn't require virtual PHIs to be
1074 in the same form). Doing this early simplifies the checking what
1075 uses should be renamed. */
1076 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1077 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1079 gimple phi = gsi_stmt (gsi);
1080 for (gsi = gsi_start_phis (exit_e->dest);
1081 !gsi_end_p (gsi); gsi_next (&gsi))
1082 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1083 break;
1084 if (gsi_end_p (gsi))
1086 tree new_vop = copy_ssa_name (PHI_RESULT (phi), NULL);
1087 gimple new_phi = create_phi_node (new_vop, exit_e->dest);
1088 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1089 imm_use_iterator imm_iter;
1090 gimple stmt;
1091 use_operand_p use_p;
1093 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1094 gimple_phi_set_result (new_phi, new_vop);
1095 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1096 if (stmt != new_phi && gimple_bb (stmt) != loop->header)
1097 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1098 SET_USE (use_p, new_vop);
1100 break;
1103 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1104 Resulting CFG would be:
1106 first_loop:
1107 do {
1108 } while ...
1110 second_loop:
1111 do {
1112 } while ...
1114 orig_exit_bb:
1117 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1119 loop_loc = find_loop_location (loop);
1120 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1121 "tree_duplicate_loop_to_edge_cfg failed.\n");
1122 return NULL;
1125 if (MAY_HAVE_DEBUG_STMTS)
1127 gcc_assert (!adjust_vec.exists ());
1128 vec_stack_alloc (adjust_info, adjust_vec, 32);
1131 if (e == exit_e)
1133 /* NEW_LOOP was placed after LOOP. */
1134 first_loop = loop;
1135 second_loop = new_loop;
1137 else
1139 /* NEW_LOOP was placed before LOOP. */
1140 first_loop = new_loop;
1141 second_loop = loop;
1144 /* 2. Add the guard code in one of the following ways:
1146 2.a Add the guard that controls whether the first loop is executed.
1147 This occurs when this function is invoked for prologue or epilogue
1148 generation and when the cost model check can be done at compile time.
1150 Resulting CFG would be:
1152 bb_before_first_loop:
1153 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1154 GOTO first-loop
1156 first_loop:
1157 do {
1158 } while ...
1160 bb_before_second_loop:
1162 second_loop:
1163 do {
1164 } while ...
1166 orig_exit_bb:
1168 2.b Add the cost model check that allows the prologue
1169 to iterate for the entire unchanged scalar
1170 iterations of the loop in the event that the cost
1171 model indicates that the scalar loop is more
1172 profitable than the vector one. This occurs when
1173 this function is invoked for prologue generation
1174 and the cost model check needs to be done at run
1175 time.
1177 Resulting CFG after prologue peeling would be:
1179 if (scalar_loop_iterations <= th)
1180 FIRST_NITERS = scalar_loop_iterations
1182 bb_before_first_loop:
1183 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1184 GOTO first-loop
1186 first_loop:
1187 do {
1188 } while ...
1190 bb_before_second_loop:
1192 second_loop:
1193 do {
1194 } while ...
1196 orig_exit_bb:
1198 2.c Add the cost model check that allows the epilogue
1199 to iterate for the entire unchanged scalar
1200 iterations of the loop in the event that the cost
1201 model indicates that the scalar loop is more
1202 profitable than the vector one. This occurs when
1203 this function is invoked for epilogue generation
1204 and the cost model check needs to be done at run
1205 time. This check is combined with any pre-existing
1206 check in COND_EXPR to avoid versioning.
1208 Resulting CFG after prologue peeling would be:
1210 bb_before_first_loop:
1211 if ((scalar_loop_iterations <= th)
1213 FIRST_NITERS == 0) GOTO bb_before_second_loop
1214 GOTO first-loop
1216 first_loop:
1217 do {
1218 } while ...
1220 bb_before_second_loop:
1222 second_loop:
1223 do {
1224 } while ...
1226 orig_exit_bb:
1229 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1230 /* Loop copying insterted a forwarder block for us here. */
1231 bb_before_second_loop = single_exit (first_loop)->dest;
1233 probability_of_second_loop = (inverse_probability (first_guard_probability)
1234 + combine_probabilities (second_guard_probability,
1235 first_guard_probability));
1236 /* Theoretically preheader edge of first loop and exit edge should have
1237 same frequencies. Loop exit probablities are however easy to get wrong.
1238 It is safer to copy value from original loop entry. */
1239 bb_before_second_loop->frequency
1240 = combine_probabilities (bb_before_first_loop->frequency,
1241 probability_of_second_loop);
1242 bb_before_second_loop->count
1243 = apply_probability (bb_before_first_loop->count,
1244 probability_of_second_loop);
1245 single_succ_edge (bb_before_second_loop)->count
1246 = bb_before_second_loop->count;
1248 /* Epilogue peeling. */
1249 if (!update_first_loop_count)
1251 pre_condition =
1252 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1253 build_int_cst (TREE_TYPE (*first_niters), 0));
1254 if (check_profitability)
1256 tree scalar_loop_iters
1257 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1258 (loop_vec_info_for_loop (loop)));
1259 cost_pre_condition =
1260 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1261 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1263 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1264 cost_pre_condition, pre_condition);
1266 if (cond_expr)
1268 pre_condition =
1269 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1270 pre_condition,
1271 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1272 cond_expr));
1276 /* Prologue peeling. */
1277 else
1279 if (check_profitability)
1280 set_prologue_iterations (bb_before_first_loop, first_niters,
1281 loop, th, first_guard_probability);
1283 pre_condition =
1284 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1285 build_int_cst (TREE_TYPE (*first_niters), 0));
1288 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1289 cond_expr_stmt_list,
1290 bb_before_second_loop, bb_before_first_loop,
1291 inverse_probability (first_guard_probability));
1292 scale_loop_profile (first_loop, first_guard_probability,
1293 check_profitability && (int)th > bound1 ? th : bound1);
1294 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1295 first_loop == new_loop,
1296 &new_exit_bb);
1299 /* 3. Add the guard that controls whether the second loop is executed.
1300 Resulting CFG would be:
1302 bb_before_first_loop:
1303 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1304 GOTO first-loop
1306 first_loop:
1307 do {
1308 } while ...
1310 bb_between_loops:
1311 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1312 GOTO bb_before_second_loop
1314 bb_before_second_loop:
1316 second_loop:
1317 do {
1318 } while ...
1320 bb_after_second_loop:
1322 orig_exit_bb:
1325 bb_between_loops = new_exit_bb;
1326 bb_after_second_loop = split_edge (single_exit (second_loop));
1328 pre_condition =
1329 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1330 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1331 bb_after_second_loop, bb_before_first_loop,
1332 inverse_probability (second_guard_probability));
1333 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
1334 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1335 second_loop == new_loop, &new_exit_bb);
1337 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1339 if (update_first_loop_count)
1340 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1342 delete_update_ssa ();
1344 adjust_vec_debug_stmts ();
1346 return new_loop;
1349 /* Function vect_get_loop_location.
1351 Extract the location of the loop in the source code.
1352 If the loop is not well formed for vectorization, an estimated
1353 location is calculated.
1354 Return the loop location if succeed and NULL if not. */
1357 find_loop_location (struct loop *loop)
1359 gimple stmt = NULL;
1360 basic_block bb;
1361 gimple_stmt_iterator si;
1363 if (!loop)
1364 return UNKNOWN_LOC;
1366 stmt = get_loop_exit_condition (loop);
1368 if (stmt
1369 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1370 return gimple_location (stmt);
1372 /* If we got here the loop is probably not "well formed",
1373 try to estimate the loop location */
1375 if (!loop->header)
1376 return UNKNOWN_LOC;
1378 bb = loop->header;
1380 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1382 stmt = gsi_stmt (si);
1383 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1384 return gimple_location (stmt);
1387 return UNKNOWN_LOC;
1391 /* This function builds ni_name = number of iterations loop executes
1392 on the loop preheader. If SEQ is given the stmt is instead emitted
1393 there. */
1395 static tree
1396 vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
1398 tree ni_name, var;
1399 gimple_seq stmts = NULL;
1400 edge pe;
1401 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1402 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1404 var = create_tmp_var (TREE_TYPE (ni), "niters");
1405 ni_name = force_gimple_operand (ni, &stmts, false, var);
1407 pe = loop_preheader_edge (loop);
1408 if (stmts)
1410 if (seq)
1411 gimple_seq_add_seq (&seq, stmts);
1412 else
1414 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1415 gcc_assert (!new_bb);
1419 return ni_name;
1423 /* This function generates the following statements:
1425 ni_name = number of iterations loop executes
1426 ratio = ni_name / vf
1427 ratio_mult_vf_name = ratio * vf
1429 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1430 if that is non-NULL. */
1432 static void
1433 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
1434 tree *ni_name_ptr,
1435 tree *ratio_mult_vf_name_ptr,
1436 tree *ratio_name_ptr,
1437 gimple_seq cond_expr_stmt_list)
1440 edge pe;
1441 basic_block new_bb;
1442 gimple_seq stmts;
1443 tree ni_name, ni_minus_gap_name;
1444 tree var;
1445 tree ratio_name;
1446 tree ratio_mult_vf_name;
1447 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1448 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1449 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1450 tree log_vf;
1452 pe = loop_preheader_edge (loop);
1454 /* Generate temporary variable that contains
1455 number of iterations loop executes. */
1457 ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
1458 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1460 /* If epilogue loop is required because of data accesses with gaps, we
1461 subtract one iteration from the total number of iterations here for
1462 correct calculation of RATIO. */
1463 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1465 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
1466 ni_name,
1467 build_one_cst (TREE_TYPE (ni_name)));
1468 if (!is_gimple_val (ni_minus_gap_name))
1470 var = create_tmp_var (TREE_TYPE (ni), "ni_gap");
1472 stmts = NULL;
1473 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
1474 true, var);
1475 if (cond_expr_stmt_list)
1476 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1477 else
1479 pe = loop_preheader_edge (loop);
1480 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1481 gcc_assert (!new_bb);
1485 else
1486 ni_minus_gap_name = ni_name;
1488 /* Create: ratio = ni >> log2(vf) */
1490 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
1491 ni_minus_gap_name, log_vf);
1492 if (!is_gimple_val (ratio_name))
1494 var = create_tmp_var (TREE_TYPE (ni), "bnd");
1496 stmts = NULL;
1497 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
1498 if (cond_expr_stmt_list)
1499 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1500 else
1502 pe = loop_preheader_edge (loop);
1503 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1504 gcc_assert (!new_bb);
1508 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1510 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1511 ratio_name, log_vf);
1512 if (!is_gimple_val (ratio_mult_vf_name))
1514 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1516 stmts = NULL;
1517 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1518 true, var);
1519 if (cond_expr_stmt_list)
1520 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1521 else
1523 pe = loop_preheader_edge (loop);
1524 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1525 gcc_assert (!new_bb);
1529 *ni_name_ptr = ni_name;
1530 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1531 *ratio_name_ptr = ratio_name;
1533 return;
1536 /* Function vect_can_advance_ivs_p
1538 In case the number of iterations that LOOP iterates is unknown at compile
1539 time, an epilog loop will be generated, and the loop induction variables
1540 (IVs) will be "advanced" to the value they are supposed to take just before
1541 the epilog loop. Here we check that the access function of the loop IVs
1542 and the expression that represents the loop bound are simple enough.
1543 These restrictions will be relaxed in the future. */
1545 bool
1546 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1548 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1549 basic_block bb = loop->header;
1550 gimple phi;
1551 gimple_stmt_iterator gsi;
1553 /* Analyze phi functions of the loop header. */
1555 if (dump_enabled_p ())
1556 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1557 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1559 tree evolution_part;
1561 phi = gsi_stmt (gsi);
1562 if (dump_enabled_p ())
1564 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1565 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1566 dump_printf (MSG_NOTE, "\n");
1569 /* Skip virtual phi's. The data dependences that are associated with
1570 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1572 if (virtual_operand_p (PHI_RESULT (phi)))
1574 if (dump_enabled_p ())
1575 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1576 "virtual phi. skip.\n");
1577 continue;
1580 /* Skip reduction phis. */
1582 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1584 if (dump_enabled_p ())
1585 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1586 "reduc phi. skip.\n");
1587 continue;
1590 /* Analyze the evolution function. */
1592 evolution_part
1593 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1594 if (evolution_part == NULL_TREE)
1596 if (dump_enabled_p ())
1597 dump_printf (MSG_MISSED_OPTIMIZATION,
1598 "No access function or evolution.\n");
1599 return false;
1602 /* FORNOW: We do not transform initial conditions of IVs
1603 which evolution functions are a polynomial of degree >= 2. */
1605 if (tree_is_chrec (evolution_part))
1606 return false;
1609 return true;
1613 /* Function vect_update_ivs_after_vectorizer.
1615 "Advance" the induction variables of LOOP to the value they should take
1616 after the execution of LOOP. This is currently necessary because the
1617 vectorizer does not handle induction variables that are used after the
1618 loop. Such a situation occurs when the last iterations of LOOP are
1619 peeled, because:
1620 1. We introduced new uses after LOOP for IVs that were not originally used
1621 after LOOP: the IVs of LOOP are now used by an epilog loop.
1622 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1623 times, whereas the loop IVs should be bumped N times.
1625 Input:
1626 - LOOP - a loop that is going to be vectorized. The last few iterations
1627 of LOOP were peeled.
1628 - NITERS - the number of iterations that LOOP executes (before it is
1629 vectorized). i.e, the number of times the ivs should be bumped.
1630 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1631 coming out from LOOP on which there are uses of the LOOP ivs
1632 (this is the path from LOOP->exit to epilog_loop->preheader).
1634 The new definitions of the ivs are placed in LOOP->exit.
1635 The phi args associated with the edge UPDATE_E in the bb
1636 UPDATE_E->dest are updated accordingly.
1638 Assumption 1: Like the rest of the vectorizer, this function assumes
1639 a single loop exit that has a single predecessor.
1641 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1642 organized in the same order.
1644 Assumption 3: The access function of the ivs is simple enough (see
1645 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1647 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1648 coming out of LOOP on which the ivs of LOOP are used (this is the path
1649 that leads to the epilog loop; other paths skip the epilog loop). This
1650 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1651 needs to have its phis updated.
1654 static void
1655 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1656 edge update_e)
1658 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1659 basic_block exit_bb = single_exit (loop)->dest;
1660 gimple phi, phi1;
1661 gimple_stmt_iterator gsi, gsi1;
1662 basic_block update_bb = update_e->dest;
1664 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1666 /* Make sure there exists a single-predecessor exit bb: */
1667 gcc_assert (single_pred_p (exit_bb));
1669 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1670 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1671 gsi_next (&gsi), gsi_next (&gsi1))
1673 tree init_expr;
1674 tree step_expr, off;
1675 tree type;
1676 tree var, ni, ni_name;
1677 gimple_stmt_iterator last_gsi;
1678 stmt_vec_info stmt_info;
1680 phi = gsi_stmt (gsi);
1681 phi1 = gsi_stmt (gsi1);
1682 if (dump_enabled_p ())
1684 dump_printf_loc (MSG_NOTE, vect_location,
1685 "vect_update_ivs_after_vectorizer: phi: ");
1686 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1687 dump_printf (MSG_NOTE, "\n");
1690 /* Skip virtual phi's. */
1691 if (virtual_operand_p (PHI_RESULT (phi)))
1693 if (dump_enabled_p ())
1694 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1695 "virtual phi. skip.\n");
1696 continue;
1699 /* Skip reduction phis. */
1700 stmt_info = vinfo_for_stmt (phi);
1701 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
1703 if (dump_enabled_p ())
1704 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1705 "reduc phi. skip.\n");
1706 continue;
1709 type = TREE_TYPE (gimple_phi_result (phi));
1710 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1711 step_expr = unshare_expr (step_expr);
1713 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1714 of degree >= 2 or exponential. */
1715 gcc_assert (!tree_is_chrec (step_expr));
1717 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1719 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1720 fold_convert (TREE_TYPE (step_expr), niters),
1721 step_expr);
1722 if (POINTER_TYPE_P (type))
1723 ni = fold_build_pointer_plus (init_expr, off);
1724 else
1725 ni = fold_build2 (PLUS_EXPR, type,
1726 init_expr, fold_convert (type, off));
1728 var = create_tmp_var (type, "tmp");
1730 last_gsi = gsi_last_bb (exit_bb);
1731 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1732 true, GSI_SAME_STMT);
1734 /* Fix phi expressions in the successor bb. */
1735 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1739 /* Function vect_do_peeling_for_loop_bound
1741 Peel the last iterations of the loop represented by LOOP_VINFO.
1742 The peeled iterations form a new epilog loop. Given that the loop now
1743 iterates NITERS times, the new epilog loop iterates
1744 NITERS % VECTORIZATION_FACTOR times.
1746 The original loop will later be made to iterate
1747 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1749 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1750 test. */
1752 void
1753 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1754 unsigned int th, bool check_profitability)
1756 tree ni_name, ratio_mult_vf_name;
1757 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1758 struct loop *new_loop;
1759 edge update_e;
1760 basic_block preheader;
1761 int loop_num;
1762 int max_iter;
1763 tree cond_expr = NULL_TREE;
1764 gimple_seq cond_expr_stmt_list = NULL;
1766 if (dump_enabled_p ())
1767 dump_printf_loc (MSG_NOTE, vect_location,
1768 "=== vect_do_peeling_for_loop_bound ===\n");
1770 initialize_original_copy_tables ();
1772 /* Generate the following variables on the preheader of original loop:
1774 ni_name = number of iteration the original loop executes
1775 ratio = ni_name / vf
1776 ratio_mult_vf_name = ratio * vf */
1777 vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
1778 &ratio_mult_vf_name, ratio,
1779 cond_expr_stmt_list);
1781 loop_num = loop->num;
1783 new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
1784 &ratio_mult_vf_name, ni_name, false,
1785 th, check_profitability,
1786 cond_expr, cond_expr_stmt_list,
1787 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1788 gcc_assert (new_loop);
1789 gcc_assert (loop_num == loop->num);
1790 #ifdef ENABLE_CHECKING
1791 slpeel_verify_cfg_after_peeling (loop, new_loop);
1792 #endif
1794 /* A guard that controls whether the new_loop is to be executed or skipped
1795 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1796 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1797 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1798 is on the path where the LOOP IVs are used and need to be updated. */
1800 preheader = loop_preheader_edge (new_loop)->src;
1801 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1802 update_e = EDGE_PRED (preheader, 0);
1803 else
1804 update_e = EDGE_PRED (preheader, 1);
1806 /* Update IVs of original loop as if they were advanced
1807 by ratio_mult_vf_name steps. */
1808 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1810 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1811 and this means N-2 loopback edge executions.
1813 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1814 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1815 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1816 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1817 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
1818 if (check_profitability)
1819 max_iter = MAX (max_iter, (int) th - 1);
1820 record_niter_bound (new_loop, double_int::from_shwi (max_iter), false, true);
1821 dump_printf (MSG_NOTE,
1822 "Setting upper bound of nb iterations for epilogue "
1823 "loop to %d\n", max_iter);
1825 /* After peeling we have to reset scalar evolution analyzer. */
1826 scev_reset ();
1828 free_original_copy_tables ();
1832 /* Function vect_gen_niters_for_prolog_loop
1834 Set the number of iterations for the loop represented by LOOP_VINFO
1835 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1836 and the misalignment of DR - the data reference recorded in
1837 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1838 this loop, the data reference DR will refer to an aligned location.
1840 The following computation is generated:
1842 If the misalignment of DR is known at compile time:
1843 addr_mis = int mis = DR_MISALIGNMENT (dr);
1844 Else, compute address misalignment in bytes:
1845 addr_mis = addr & (vectype_align - 1)
1847 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1849 (elem_size = element type size; an element is the scalar element whose type
1850 is the inner type of the vectype)
1852 When the step of the data-ref in the loop is not 1 (as in interleaved data
1853 and SLP), the number of iterations of the prolog must be divided by the step
1854 (which is equal to the size of interleaved group).
1856 The above formulas assume that VF == number of elements in the vector. This
1857 may not hold when there are multiple-types in the loop.
1858 In this case, for some data-references in the loop the VF does not represent
1859 the number of elements that fit in the vector. Therefore, instead of VF we
1860 use TYPE_VECTOR_SUBPARTS. */
1862 static tree
1863 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
1865 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1866 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1867 tree var;
1868 gimple_seq stmts;
1869 tree iters, iters_name;
1870 edge pe;
1871 basic_block new_bb;
1872 gimple dr_stmt = DR_STMT (dr);
1873 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1874 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1875 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1876 tree niters_type = TREE_TYPE (loop_niters);
1877 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1879 pe = loop_preheader_edge (loop);
1881 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1883 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
1885 if (dump_enabled_p ())
1886 dump_printf_loc (MSG_NOTE, vect_location,
1887 "known peeling = %d.\n", npeel);
1889 iters = build_int_cst (niters_type, npeel);
1890 *bound = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
1892 else
1894 gimple_seq new_stmts = NULL;
1895 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1896 tree offset = negative
1897 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
1898 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
1899 &new_stmts, offset, loop);
1900 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1901 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
1902 HOST_WIDE_INT elem_size =
1903 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1904 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1905 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1906 tree nelements_tree = build_int_cst (type, nelements);
1907 tree byte_misalign;
1908 tree elem_misalign;
1910 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1911 gcc_assert (!new_bb);
1913 /* Create: byte_misalign = addr & (vectype_align - 1) */
1914 byte_misalign =
1915 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
1916 vectype_align_minus_1);
1918 /* Create: elem_misalign = byte_misalign / element_size */
1919 elem_misalign =
1920 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1922 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1923 if (negative)
1924 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1925 else
1926 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1927 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1928 iters = fold_convert (niters_type, iters);
1929 *bound = nelements;
1932 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1933 /* If the loop bound is known at compile time we already verified that it is
1934 greater than vf; since the misalignment ('iters') is at most vf, there's
1935 no need to generate the MIN_EXPR in this case. */
1936 if (TREE_CODE (loop_niters) != INTEGER_CST)
1937 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1939 if (dump_enabled_p ())
1941 dump_printf_loc (MSG_NOTE, vect_location,
1942 "niters for prolog loop: ");
1943 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1944 dump_printf (MSG_NOTE, "\n");
1947 var = create_tmp_var (niters_type, "prolog_loop_niters");
1948 stmts = NULL;
1949 iters_name = force_gimple_operand (iters, &stmts, false, var);
1951 /* Insert stmt on loop preheader edge. */
1952 if (stmts)
1954 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1955 gcc_assert (!new_bb);
1958 return iters_name;
1962 /* Function vect_update_init_of_dr
1964 NITERS iterations were peeled from LOOP. DR represents a data reference
1965 in LOOP. This function updates the information recorded in DR to
1966 account for the fact that the first NITERS iterations had already been
1967 executed. Specifically, it updates the OFFSET field of DR. */
1969 static void
1970 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1972 tree offset = DR_OFFSET (dr);
1974 niters = fold_build2 (MULT_EXPR, sizetype,
1975 fold_convert (sizetype, niters),
1976 fold_convert (sizetype, DR_STEP (dr)));
1977 offset = fold_build2 (PLUS_EXPR, sizetype,
1978 fold_convert (sizetype, offset), niters);
1979 DR_OFFSET (dr) = offset;
1983 /* Function vect_update_inits_of_drs
1985 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1986 This function updates the information recorded for the data references in
1987 the loop to account for the fact that the first NITERS iterations had
1988 already been executed. Specifically, it updates the initial_condition of
1989 the access_function of all the data_references in the loop. */
1991 static void
1992 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1994 unsigned int i;
1995 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1996 struct data_reference *dr;
1998 if (dump_enabled_p ())
1999 dump_printf_loc (MSG_NOTE, vect_location,
2000 "=== vect_update_inits_of_dr ===\n");
2002 FOR_EACH_VEC_ELT (datarefs, i, dr)
2003 vect_update_init_of_dr (dr, niters);
2007 /* Function vect_do_peeling_for_alignment
2009 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2010 'niters' is set to the misalignment of one of the data references in the
2011 loop, thereby forcing it to refer to an aligned location at the beginning
2012 of the execution of this loop. The data reference for which we are
2013 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2015 void
2016 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo,
2017 unsigned int th, bool check_profitability)
2019 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2020 tree niters_of_prolog_loop, ni_name;
2021 tree n_iters;
2022 tree wide_prolog_niters;
2023 struct loop *new_loop;
2024 int max_iter;
2025 int bound = 0;
2027 if (dump_enabled_p ())
2028 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2029 "loop peeled for vectorization to enhance"
2030 " alignment\n");
2032 initialize_original_copy_tables ();
2034 ni_name = vect_build_loop_niters (loop_vinfo, NULL);
2035 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2036 ni_name,
2037 &bound);
2039 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2040 new_loop =
2041 slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
2042 &niters_of_prolog_loop, ni_name, true,
2043 th, check_profitability, NULL_TREE, NULL,
2044 bound,
2047 gcc_assert (new_loop);
2048 #ifdef ENABLE_CHECKING
2049 slpeel_verify_cfg_after_peeling (new_loop, loop);
2050 #endif
2051 /* For vectorization factor N, we need to copy at most N-1 values
2052 for alignment and this means N-2 loopback edge executions. */
2053 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
2054 if (check_profitability)
2055 max_iter = MAX (max_iter, (int) th - 1);
2056 record_niter_bound (new_loop, double_int::from_shwi (max_iter), false, true);
2057 dump_printf (MSG_NOTE,
2058 "Setting upper bound of nb iterations for prologue "
2059 "loop to %d\n", max_iter);
2061 /* Update number of times loop executes. */
2062 n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2063 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2064 TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2066 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2067 wide_prolog_niters = niters_of_prolog_loop;
2068 else
2070 gimple_seq seq = NULL;
2071 edge pe = loop_preheader_edge (loop);
2072 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2073 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2074 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2075 var);
2076 if (seq)
2078 /* Insert stmt on loop preheader edge. */
2079 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2080 gcc_assert (!new_bb);
2084 /* Update the init conditions of the access functions of all data refs. */
2085 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2087 /* After peeling we have to reset scalar evolution analyzer. */
2088 scev_reset ();
2090 free_original_copy_tables ();
2094 /* Function vect_create_cond_for_align_checks.
2096 Create a conditional expression that represents the alignment checks for
2097 all of data references (array element references) whose alignment must be
2098 checked at runtime.
2100 Input:
2101 COND_EXPR - input conditional expression. New conditions will be chained
2102 with logical AND operation.
2103 LOOP_VINFO - two fields of the loop information are used.
2104 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2105 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2107 Output:
2108 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2109 expression.
2110 The returned value is the conditional expression to be used in the if
2111 statement that controls which version of the loop gets executed at runtime.
2113 The algorithm makes two assumptions:
2114 1) The number of bytes "n" in a vector is a power of 2.
2115 2) An address "a" is aligned if a%n is zero and that this
2116 test can be done as a&(n-1) == 0. For example, for 16
2117 byte vectors the test is a&0xf == 0. */
2119 static void
2120 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2121 tree *cond_expr,
2122 gimple_seq *cond_expr_stmt_list)
2124 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2125 vec<gimple> may_misalign_stmts
2126 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2127 gimple ref_stmt;
2128 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2129 tree mask_cst;
2130 unsigned int i;
2131 tree int_ptrsize_type;
2132 char tmp_name[20];
2133 tree or_tmp_name = NULL_TREE;
2134 tree and_tmp_name;
2135 gimple and_stmt;
2136 tree ptrsize_zero;
2137 tree part_cond_expr;
2139 /* Check that mask is one less than a power of 2, i.e., mask is
2140 all zeros followed by all ones. */
2141 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2143 int_ptrsize_type = signed_type_for (ptr_type_node);
2145 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2146 of the first vector of the i'th data reference. */
2148 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2150 gimple_seq new_stmt_list = NULL;
2151 tree addr_base;
2152 tree addr_tmp_name;
2153 tree new_or_tmp_name;
2154 gimple addr_stmt, or_stmt;
2155 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2156 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2157 bool negative = tree_int_cst_compare
2158 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2159 tree offset = negative
2160 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2162 /* create: addr_tmp = (int)(address_of_first_vector) */
2163 addr_base =
2164 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2165 offset, loop);
2166 if (new_stmt_list != NULL)
2167 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2169 sprintf (tmp_name, "addr2int%d", i);
2170 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2171 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2172 addr_base, NULL_TREE);
2173 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2175 /* The addresses are OR together. */
2177 if (or_tmp_name != NULL_TREE)
2179 /* create: or_tmp = or_tmp | addr_tmp */
2180 sprintf (tmp_name, "orptrs%d", i);
2181 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2182 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2183 new_or_tmp_name,
2184 or_tmp_name, addr_tmp_name);
2185 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2186 or_tmp_name = new_or_tmp_name;
2188 else
2189 or_tmp_name = addr_tmp_name;
2191 } /* end for i */
2193 mask_cst = build_int_cst (int_ptrsize_type, mask);
2195 /* create: and_tmp = or_tmp & mask */
2196 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2198 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2199 or_tmp_name, mask_cst);
2200 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2202 /* Make and_tmp the left operand of the conditional test against zero.
2203 if and_tmp has a nonzero bit then some address is unaligned. */
2204 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2205 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2206 and_tmp_name, ptrsize_zero);
2207 if (*cond_expr)
2208 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2209 *cond_expr, part_cond_expr);
2210 else
2211 *cond_expr = part_cond_expr;
2215 /* Function vect_vfa_segment_size.
2217 Create an expression that computes the size of segment
2218 that will be accessed for a data reference. The functions takes into
2219 account that realignment loads may access one more vector.
2221 Input:
2222 DR: The data reference.
2223 LENGTH_FACTOR: segment length to consider.
2225 Return an expression whose value is the size of segment which will be
2226 accessed by DR. */
2228 static tree
2229 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2231 tree segment_length;
2233 if (integer_zerop (DR_STEP (dr)))
2234 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2235 else
2236 segment_length = size_binop (MULT_EXPR,
2237 fold_convert (sizetype, DR_STEP (dr)),
2238 fold_convert (sizetype, length_factor));
2240 if (vect_supportable_dr_alignment (dr, false)
2241 == dr_explicit_realign_optimized)
2243 tree vector_size = TYPE_SIZE_UNIT
2244 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2246 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2248 return segment_length;
2252 /* Function vect_create_cond_for_alias_checks.
2254 Create a conditional expression that represents the run-time checks for
2255 overlapping of address ranges represented by a list of data references
2256 relations passed as input.
2258 Input:
2259 COND_EXPR - input conditional expression. New conditions will be chained
2260 with logical AND operation.
2261 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2262 to be checked.
2264 Output:
2265 COND_EXPR - conditional expression.
2267 The returned value is the conditional expression to be used in the if
2268 statement that controls which version of the loop gets executed at runtime.
2271 static void
2272 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2274 vec<ddr_p> may_alias_ddrs =
2275 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2276 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2277 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2279 ddr_p ddr;
2280 unsigned int i;
2281 tree part_cond_expr, length_factor;
2283 /* Create expression
2284 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2285 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2289 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2290 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2292 if (may_alias_ddrs.is_empty ())
2293 return;
2295 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
2297 struct data_reference *dr_a, *dr_b;
2298 gimple dr_group_first_a, dr_group_first_b;
2299 tree addr_base_a, addr_base_b;
2300 tree segment_length_a, segment_length_b;
2301 gimple stmt_a, stmt_b;
2302 tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
2304 dr_a = DDR_A (ddr);
2305 stmt_a = DR_STMT (DDR_A (ddr));
2306 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2307 if (dr_group_first_a)
2309 stmt_a = dr_group_first_a;
2310 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2313 dr_b = DDR_B (ddr);
2314 stmt_b = DR_STMT (DDR_B (ddr));
2315 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2316 if (dr_group_first_b)
2318 stmt_b = dr_group_first_b;
2319 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2322 addr_base_a
2323 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a),
2324 size_binop (PLUS_EXPR, DR_OFFSET (dr_a),
2325 DR_INIT (dr_a)));
2326 addr_base_b
2327 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b),
2328 size_binop (PLUS_EXPR, DR_OFFSET (dr_b),
2329 DR_INIT (dr_b)));
2331 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2332 length_factor = scalar_loop_iters;
2333 else
2334 length_factor = size_int (vect_factor);
2335 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2336 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2338 if (dump_enabled_p ())
2340 dump_printf_loc (MSG_NOTE, vect_location,
2341 "create runtime check for data references ");
2342 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a));
2343 dump_printf (MSG_NOTE, " and ");
2344 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b));
2345 dump_printf (MSG_NOTE, "\n");
2348 seg_a_min = addr_base_a;
2349 seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2350 if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
2351 seg_a_min = seg_a_max, seg_a_max = addr_base_a;
2353 seg_b_min = addr_base_b;
2354 seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2355 if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
2356 seg_b_min = seg_b_max, seg_b_max = addr_base_b;
2358 part_cond_expr =
2359 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2360 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2361 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2363 if (*cond_expr)
2364 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2365 *cond_expr, part_cond_expr);
2366 else
2367 *cond_expr = part_cond_expr;
2370 if (dump_enabled_p ())
2371 dump_printf_loc (MSG_NOTE, vect_location,
2372 "created %u versioning for alias checks.\n",
2373 may_alias_ddrs.length ());
2377 /* Function vect_loop_versioning.
2379 If the loop has data references that may or may not be aligned or/and
2380 has data reference relations whose independence was not proven then
2381 two versions of the loop need to be generated, one which is vectorized
2382 and one which isn't. A test is then generated to control which of the
2383 loops is executed. The test checks for the alignment of all of the
2384 data references that may or may not be aligned. An additional
2385 sequence of runtime tests is generated for each pairs of DDRs whose
2386 independence was not proven. The vectorized version of loop is
2387 executed only if both alias and alignment tests are passed.
2389 The test generated to check which version of loop is executed
2390 is modified to also check for profitability as indicated by the
2391 cost model initially.
2393 The versioning precondition(s) are placed in *COND_EXPR and
2394 *COND_EXPR_STMT_LIST. */
2396 void
2397 vect_loop_versioning (loop_vec_info loop_vinfo,
2398 unsigned int th, bool check_profitability)
2400 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2401 basic_block condition_bb;
2402 gimple_stmt_iterator gsi, cond_exp_gsi;
2403 basic_block merge_bb;
2404 basic_block new_exit_bb;
2405 edge new_exit_e, e;
2406 gimple orig_phi, new_phi;
2407 tree cond_expr = NULL_TREE;
2408 gimple_seq cond_expr_stmt_list = NULL;
2409 tree arg;
2410 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2411 gimple_seq gimplify_stmt_list = NULL;
2412 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2413 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2414 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2416 if (check_profitability)
2418 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2419 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2420 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2421 is_gimple_condexpr, NULL_TREE);
2424 if (version_align)
2425 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2426 &cond_expr_stmt_list);
2428 if (version_alias)
2429 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2431 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2432 is_gimple_condexpr, NULL_TREE);
2433 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2435 initialize_original_copy_tables ();
2436 loop_version (loop, cond_expr, &condition_bb,
2437 prob, prob, REG_BR_PROB_BASE - prob, true);
2439 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOC
2440 && dump_enabled_p ())
2442 if (version_alias)
2443 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2444 "loop versioned for vectorization because of "
2445 "possible aliasing\n");
2446 if (version_align)
2447 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2448 "loop versioned for vectorization to enhance "
2449 "alignment\n");
2452 free_original_copy_tables();
2454 /* Loop versioning violates an assumption we try to maintain during
2455 vectorization - that the loop exit block has a single predecessor.
2456 After versioning, the exit block of both loop versions is the same
2457 basic block (i.e. it has two predecessors). Just in order to simplify
2458 following transformations in the vectorizer, we fix this situation
2459 here by adding a new (empty) block on the exit-edge of the loop,
2460 with the proper loop-exit phis to maintain loop-closed-form. */
2462 merge_bb = single_exit (loop)->dest;
2463 gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2464 new_exit_bb = split_edge (single_exit (loop));
2465 new_exit_e = single_exit (loop);
2466 e = EDGE_SUCC (new_exit_bb, 0);
2468 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2470 tree new_res;
2471 orig_phi = gsi_stmt (gsi);
2472 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
2473 new_phi = create_phi_node (new_res, new_exit_bb);
2474 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2475 add_phi_arg (new_phi, arg, new_exit_e,
2476 gimple_phi_arg_location_from_edge (orig_phi, e));
2477 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2480 /* End loop-exit-fixes after versioning. */
2482 if (cond_expr_stmt_list)
2484 cond_exp_gsi = gsi_last_bb (condition_bb);
2485 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2486 GSI_SAME_STMT);
2488 update_ssa (TODO_update_ssa);