Require target lra in gcc.dg/pr108095.c
[official-gcc.git] / gcc / gimple-range-gori.cc
blob2694e551d739cc7377e84797de122785544261eb
1 /* Gimple range GORI functions.
2 Copyright (C) 2017-2023 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "gimple-range.h"
32 // Return TRUE if GS is a logical && or || expression.
34 static inline bool
35 is_gimple_logical_p (const gimple *gs)
37 // Look for boolean and/or condition.
38 if (is_gimple_assign (gs))
39 switch (gimple_expr_code (gs))
41 case TRUTH_AND_EXPR:
42 case TRUTH_OR_EXPR:
43 return true;
45 case BIT_AND_EXPR:
46 case BIT_IOR_EXPR:
47 // Bitwise operations on single bits are logical too.
48 if (types_compatible_p (TREE_TYPE (gimple_assign_rhs1 (gs)),
49 boolean_type_node))
50 return true;
51 break;
53 default:
54 break;
56 return false;
59 /* RANGE_DEF_CHAIN is used to determine which SSA names in a block can
60 have range information calculated for them, and what the
61 dependencies on each other are.
63 Information for a basic block is calculated once and stored. It is
64 only calculated the first time a query is made, so if no queries
65 are made, there is little overhead.
67 The def_chain bitmap is indexed by SSA_NAME_VERSION. Bits are set
68 within this bitmap to indicate SSA names that are defined in the
69 SAME block and used to calculate this SSA name.
72 <bb 2> :
73 _1 = x_4(D) + -2;
74 _2 = _1 * 4;
75 j_7 = foo ();
76 q_5 = _2 + 3;
77 if (q_5 <= 13)
79 _1 : x_4(D)
80 _2 : 1 x_4(D)
81 q_5 : _1 _2 x_4(D)
83 This dump indicates the bits set in the def_chain vector.
84 as well as demonstrates the def_chain bits for the related ssa_names.
86 Checking the chain for _2 indicates that _1 and x_4 are used in
87 its evaluation.
89 Def chains also only include statements which are valid gimple
90 so a def chain will only span statements for which the range
91 engine implements operations for. */
94 // Construct a range_def_chain.
96 range_def_chain::range_def_chain ()
98 bitmap_obstack_initialize (&m_bitmaps);
99 m_def_chain.create (0);
100 m_def_chain.safe_grow_cleared (num_ssa_names);
101 m_logical_depth = 0;
104 // Destruct a range_def_chain.
106 range_def_chain::~range_def_chain ()
108 m_def_chain.release ();
109 bitmap_obstack_release (&m_bitmaps);
112 // Return true if NAME is in the def chain of DEF. If BB is provided,
113 // only return true if the defining statement of DEF is in BB.
115 bool
116 range_def_chain::in_chain_p (tree name, tree def)
118 gcc_checking_assert (gimple_range_ssa_p (def));
119 gcc_checking_assert (gimple_range_ssa_p (name));
121 // Get the definition chain for DEF.
122 bitmap chain = get_def_chain (def);
124 if (chain == NULL)
125 return false;
126 return bitmap_bit_p (chain, SSA_NAME_VERSION (name));
129 // Add either IMP or the import list B to the import set of DATA.
131 void
132 range_def_chain::set_import (struct rdc &data, tree imp, bitmap b)
134 // If there are no imports, just return
135 if (imp == NULL_TREE && !b)
136 return;
137 if (!data.m_import)
138 data.m_import = BITMAP_ALLOC (&m_bitmaps);
139 if (imp != NULL_TREE)
140 bitmap_set_bit (data.m_import, SSA_NAME_VERSION (imp));
141 else
142 bitmap_ior_into (data.m_import, b);
145 // Return the import list for NAME.
147 bitmap
148 range_def_chain::get_imports (tree name)
150 if (!has_def_chain (name))
151 get_def_chain (name);
152 bitmap i = m_def_chain[SSA_NAME_VERSION (name)].m_import;
153 return i;
156 // Return true if IMPORT is an import to NAMEs def chain.
158 bool
159 range_def_chain::chain_import_p (tree name, tree import)
161 bitmap b = get_imports (name);
162 if (b)
163 return bitmap_bit_p (b, SSA_NAME_VERSION (import));
164 return false;
167 // Build def_chains for NAME if it is in BB. Copy the def chain into RESULT.
169 void
170 range_def_chain::register_dependency (tree name, tree dep, basic_block bb)
172 if (!gimple_range_ssa_p (dep))
173 return;
175 unsigned v = SSA_NAME_VERSION (name);
176 if (v >= m_def_chain.length ())
177 m_def_chain.safe_grow_cleared (num_ssa_names + 1);
178 struct rdc &src = m_def_chain[v];
179 gimple *def_stmt = SSA_NAME_DEF_STMT (dep);
180 unsigned dep_v = SSA_NAME_VERSION (dep);
181 bitmap b;
183 // Set the direct dependency cache entries.
184 if (!src.ssa1)
185 src.ssa1 = SSA_NAME_VERSION (dep);
186 else if (!src.ssa2 && src.ssa1 != SSA_NAME_VERSION (dep))
187 src.ssa2 = SSA_NAME_VERSION (dep);
189 // Don't calculate imports or export/dep chains if BB is not provided.
190 // This is usually the case for when the temporal cache wants the direct
191 // dependencies of a stmt.
192 if (!bb)
193 return;
195 if (!src.bm)
196 src.bm = BITMAP_ALLOC (&m_bitmaps);
198 // Add this operand into the result.
199 bitmap_set_bit (src.bm, dep_v);
201 if (gimple_bb (def_stmt) == bb && !is_a<gphi *>(def_stmt))
203 // Get the def chain for the operand.
204 b = get_def_chain (dep);
205 // If there was one, copy it into result. Access def_chain directly
206 // as the get_def_chain request above could reallocate the vector.
207 if (b)
208 bitmap_ior_into (m_def_chain[v].bm, b);
209 // And copy the import list.
210 set_import (m_def_chain[v], NULL_TREE, get_imports (dep));
212 else
213 // Originated outside the block, so it is an import.
214 set_import (src, dep, NULL);
217 bool
218 range_def_chain::def_chain_in_bitmap_p (tree name, bitmap b)
220 bitmap a = get_def_chain (name);
221 if (a && b)
222 return bitmap_intersect_p (a, b);
223 return false;
226 void
227 range_def_chain::add_def_chain_to_bitmap (bitmap b, tree name)
229 bitmap r = get_def_chain (name);
230 if (r)
231 bitmap_ior_into (b, r);
235 // Return TRUE if NAME has been processed for a def_chain.
237 inline bool
238 range_def_chain::has_def_chain (tree name)
240 // Ensure there is an entry in the internal vector.
241 unsigned v = SSA_NAME_VERSION (name);
242 if (v >= m_def_chain.length ())
243 m_def_chain.safe_grow_cleared (num_ssa_names + 1);
244 return (m_def_chain[v].ssa1 != 0);
249 // Calculate the def chain for NAME and all of its dependent
250 // operands. Only using names in the same BB. Return the bitmap of
251 // all names in the m_def_chain. This only works for supported range
252 // statements.
254 bitmap
255 range_def_chain::get_def_chain (tree name)
257 tree ssa[3];
258 unsigned v = SSA_NAME_VERSION (name);
260 // If it has already been processed, just return the cached value.
261 if (has_def_chain (name) && m_def_chain[v].bm)
262 return m_def_chain[v].bm;
264 // No definition chain for default defs.
265 if (SSA_NAME_IS_DEFAULT_DEF (name))
267 // A Default def is always an import.
268 set_import (m_def_chain[v], name, NULL);
269 return NULL;
272 gimple *stmt = SSA_NAME_DEF_STMT (name);
273 unsigned count = gimple_range_ssa_names (ssa, 3, stmt);
274 if (count == 0)
276 // Stmts not understood or with no operands are always imports.
277 set_import (m_def_chain[v], name, NULL);
278 return NULL;
281 // Terminate the def chains if we see too many cascading stmts.
282 if (m_logical_depth == param_ranger_logical_depth)
283 return NULL;
285 // Increase the depth if we have a pair of ssa-names.
286 if (count > 1)
287 m_logical_depth++;
289 for (unsigned x = 0; x < count; x++)
290 register_dependency (name, ssa[x], gimple_bb (stmt));
292 if (count > 1)
293 m_logical_depth--;
295 return m_def_chain[v].bm;
298 // Dump what we know for basic block BB to file F.
300 void
301 range_def_chain::dump (FILE *f, basic_block bb, const char *prefix)
303 unsigned x, y;
304 bitmap_iterator bi;
306 // Dump the def chain for each SSA_NAME defined in BB.
307 for (x = 1; x < num_ssa_names; x++)
309 tree name = ssa_name (x);
310 if (!name)
311 continue;
312 gimple *stmt = SSA_NAME_DEF_STMT (name);
313 if (!stmt || (bb && gimple_bb (stmt) != bb))
314 continue;
315 bitmap chain = (has_def_chain (name) ? get_def_chain (name) : NULL);
316 if (chain && !bitmap_empty_p (chain))
318 fprintf (f, prefix);
319 print_generic_expr (f, name, TDF_SLIM);
320 fprintf (f, " : ");
322 bitmap imports = get_imports (name);
323 EXECUTE_IF_SET_IN_BITMAP (chain, 0, y, bi)
325 print_generic_expr (f, ssa_name (y), TDF_SLIM);
326 if (imports && bitmap_bit_p (imports, y))
327 fprintf (f, "(I)");
328 fprintf (f, " ");
330 fprintf (f, "\n");
336 // -------------------------------------------------------------------
338 /* GORI_MAP is used to accumulate what SSA names in a block can
339 generate range information, and provides tools for the block ranger
340 to enable it to efficiently calculate these ranges.
342 GORI stands for "Generates Outgoing Range Information."
344 It utilizes the range_def_chain class to construct def_chains.
345 Information for a basic block is calculated once and stored. It is
346 only calculated the first time a query is made. If no queries are
347 made, there is little overhead.
349 one bitmap is maintained for each basic block:
350 m_outgoing : a set bit indicates a range can be generated for a name.
352 Generally speaking, the m_outgoing vector is the union of the
353 entire def_chain of all SSA names used in the last statement of the
354 block which generate ranges. */
357 // Initialize a gori-map structure.
359 gori_map::gori_map ()
361 m_outgoing.create (0);
362 m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
363 m_incoming.create (0);
364 m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
365 m_maybe_variant = BITMAP_ALLOC (&m_bitmaps);
368 // Free any memory the GORI map allocated.
370 gori_map::~gori_map ()
372 m_incoming.release ();
373 m_outgoing.release ();
376 // Return the bitmap vector of all export from BB. Calculate if necessary.
378 bitmap
379 gori_map::exports (basic_block bb)
381 if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
382 calculate_gori (bb);
383 return m_outgoing[bb->index];
386 // Return the bitmap vector of all imports to BB. Calculate if necessary.
388 bitmap
389 gori_map::imports (basic_block bb)
391 if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
392 calculate_gori (bb);
393 return m_incoming[bb->index];
396 // Return true if NAME is can have ranges generated for it from basic
397 // block BB.
399 bool
400 gori_map::is_export_p (tree name, basic_block bb)
402 // If no BB is specified, test if it is exported anywhere in the IL.
403 if (!bb)
404 return bitmap_bit_p (m_maybe_variant, SSA_NAME_VERSION (name));
405 return bitmap_bit_p (exports (bb), SSA_NAME_VERSION (name));
408 // Set or clear the m_maybe_variant bit to determine if ranges will be tracked
409 // for NAME. A clear bit means they will NOT be tracked.
411 void
412 gori_map::set_range_invariant (tree name, bool invariant)
414 if (invariant)
415 bitmap_clear_bit (m_maybe_variant, SSA_NAME_VERSION (name));
416 else
417 bitmap_set_bit (m_maybe_variant, SSA_NAME_VERSION (name));
420 // Return true if NAME is an import to block BB.
422 bool
423 gori_map::is_import_p (tree name, basic_block bb)
425 // If no BB is specified, test if it is exported anywhere in the IL.
426 return bitmap_bit_p (imports (bb), SSA_NAME_VERSION (name));
429 // If NAME is non-NULL and defined in block BB, calculate the def
430 // chain and add it to m_outgoing.
432 void
433 gori_map::maybe_add_gori (tree name, basic_block bb)
435 if (name)
437 // Check if there is a def chain, regardless of the block.
438 add_def_chain_to_bitmap (m_outgoing[bb->index], name);
439 // Check for any imports.
440 bitmap imp = get_imports (name);
441 // If there were imports, add them so we can recompute
442 if (imp)
443 bitmap_ior_into (m_incoming[bb->index], imp);
444 // This name is always an import.
445 if (gimple_bb (SSA_NAME_DEF_STMT (name)) != bb)
446 bitmap_set_bit (m_incoming[bb->index], SSA_NAME_VERSION (name));
448 // Def chain doesn't include itself, and even if there isn't a
449 // def chain, this name should be added to exports.
450 bitmap_set_bit (m_outgoing[bb->index], SSA_NAME_VERSION (name));
454 // Calculate all the required information for BB.
456 void
457 gori_map::calculate_gori (basic_block bb)
459 tree name;
460 if (bb->index >= (signed int)m_outgoing.length ())
462 m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
463 m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
465 gcc_checking_assert (m_outgoing[bb->index] == NULL);
466 m_outgoing[bb->index] = BITMAP_ALLOC (&m_bitmaps);
467 m_incoming[bb->index] = BITMAP_ALLOC (&m_bitmaps);
469 if (single_succ_p (bb))
470 return;
472 // If this block's last statement may generate range information, go
473 // calculate it.
474 gimple *stmt = gimple_outgoing_range_stmt_p (bb);
475 if (!stmt)
476 return;
477 if (is_a<gcond *> (stmt))
479 gcond *gc = as_a<gcond *>(stmt);
480 name = gimple_range_ssa_p (gimple_cond_lhs (gc));
481 maybe_add_gori (name, gimple_bb (stmt));
483 name = gimple_range_ssa_p (gimple_cond_rhs (gc));
484 maybe_add_gori (name, gimple_bb (stmt));
486 else
488 // Do not process switches if they are too large.
489 if (EDGE_COUNT (bb->succs) > (unsigned)param_vrp_switch_limit)
490 return;
491 gswitch *gs = as_a<gswitch *>(stmt);
492 name = gimple_range_ssa_p (gimple_switch_index (gs));
493 maybe_add_gori (name, gimple_bb (stmt));
495 // Add this bitmap to the aggregate list of all outgoing names.
496 bitmap_ior_into (m_maybe_variant, m_outgoing[bb->index]);
499 // Dump the table information for BB to file F.
501 void
502 gori_map::dump (FILE *f, basic_block bb, bool verbose)
504 // BB was not processed.
505 if (!m_outgoing[bb->index] || bitmap_empty_p (m_outgoing[bb->index]))
506 return;
508 tree name;
510 bitmap imp = imports (bb);
511 if (!bitmap_empty_p (imp))
513 if (verbose)
514 fprintf (f, "bb<%u> Imports: ",bb->index);
515 else
516 fprintf (f, "Imports: ");
517 FOR_EACH_GORI_IMPORT_NAME (*this, bb, name)
519 print_generic_expr (f, name, TDF_SLIM);
520 fprintf (f, " ");
522 fputc ('\n', f);
525 if (verbose)
526 fprintf (f, "bb<%u> Exports: ",bb->index);
527 else
528 fprintf (f, "Exports: ");
529 // Dump the export vector.
530 FOR_EACH_GORI_EXPORT_NAME (*this, bb, name)
532 print_generic_expr (f, name, TDF_SLIM);
533 fprintf (f, " ");
535 fputc ('\n', f);
537 range_def_chain::dump (f, bb, " ");
540 // Dump the entire GORI map structure to file F.
542 void
543 gori_map::dump (FILE *f)
545 basic_block bb;
546 FOR_EACH_BB_FN (bb, cfun)
547 dump (f, bb);
550 DEBUG_FUNCTION void
551 debug (gori_map &g)
553 g.dump (stderr);
556 // -------------------------------------------------------------------
558 // Construct a gori_compute object.
560 gori_compute::gori_compute (int not_executable_flag)
561 : outgoing (param_vrp_switch_limit), tracer ("GORI ")
563 m_not_executable_flag = not_executable_flag;
564 // Create a boolean_type true and false range.
565 m_bool_zero = range_false ();
566 m_bool_one = range_true ();
567 if (dump_file && (param_ranger_debug & RANGER_DEBUG_GORI))
568 tracer.enable_trace ();
571 // Given the switch S, return an evaluation in R for NAME when the lhs
572 // evaluates to LHS. Returning false means the name being looked for
573 // was not resolvable.
575 bool
576 gori_compute::compute_operand_range_switch (vrange &r, gswitch *s,
577 const vrange &lhs,
578 tree name, fur_source &src)
580 tree op1 = gimple_switch_index (s);
582 // If name matches, the range is simply the range from the edge.
583 // Empty ranges are viral as they are on a path which isn't
584 // executable.
585 if (op1 == name || lhs.undefined_p ())
587 r = lhs;
588 return true;
591 // If op1 is in the definition chain, pass lhs back.
592 if (gimple_range_ssa_p (op1) && in_chain_p (name, op1))
593 return compute_operand_range (r, SSA_NAME_DEF_STMT (op1), lhs, name, src);
595 return false;
599 // Return an evaluation for NAME as it would appear in STMT when the
600 // statement's lhs evaluates to LHS. If successful, return TRUE and
601 // store the evaluation in R, otherwise return FALSE.
603 bool
604 gori_compute::compute_operand_range (vrange &r, gimple *stmt,
605 const vrange &lhs, tree name,
606 fur_source &src, value_relation *rel)
608 value_relation vrel;
609 value_relation *vrel_ptr = rel;
610 // Empty ranges are viral as they are on an unexecutable path.
611 if (lhs.undefined_p ())
613 r.set_undefined ();
614 return true;
616 if (is_a<gswitch *> (stmt))
617 return compute_operand_range_switch (r, as_a<gswitch *> (stmt), lhs, name,
618 src);
619 gimple_range_op_handler handler (stmt);
620 if (!handler)
621 return false;
623 tree op1 = gimple_range_ssa_p (handler.operand1 ());
624 tree op2 = gimple_range_ssa_p (handler.operand2 ());
626 // If there is a relation betwen op1 and op2, use it instead as it is
627 // likely to be more applicable.
628 if (op1 && op2)
630 Value_Range r1, r2;
631 r1.set_varying (TREE_TYPE (op1));
632 r2.set_varying (TREE_TYPE (op2));
633 relation_kind k = handler.op1_op2_relation (lhs, r1, r2);
634 if (k != VREL_VARYING)
636 vrel.set_relation (k, op1, op2);
637 vrel_ptr = &vrel;
641 // Handle end of lookup first.
642 if (op1 == name)
643 return compute_operand1_range (r, handler, lhs, src, vrel_ptr);
644 if (op2 == name)
645 return compute_operand2_range (r, handler, lhs, src, vrel_ptr);
647 // NAME is not in this stmt, but one of the names in it ought to be
648 // derived from it.
649 bool op1_in_chain = op1 && in_chain_p (name, op1);
650 bool op2_in_chain = op2 && in_chain_p (name, op2);
652 // If neither operand is derived, then this stmt tells us nothing.
653 if (!op1_in_chain && !op2_in_chain)
654 return false;
656 // If either operand is in the def chain of the other (or they are equal), it
657 // will be evaluated twice and can result in an exponential time calculation.
658 // Instead just evaluate the one operand.
659 if (op1_in_chain && op2_in_chain)
661 if (in_chain_p (op1, op2) || op1 == op2)
662 op1_in_chain = false;
663 else if (in_chain_p (op2, op1))
664 op2_in_chain = false;
667 bool res = false;
668 // If the lhs doesn't tell us anything only a relation can possibly enhance
669 // the result.
670 if (lhs.varying_p ())
672 if (!vrel_ptr)
673 return false;
674 // If there is a relation (ie: x != y) , it can only be relevant if
675 // a) both elements are in the defchain
676 // c = x > y // (x and y are in c's defchain)
677 if (op1_in_chain)
678 res = in_chain_p (vrel_ptr->op1 (), op1)
679 && in_chain_p (vrel_ptr->op2 (), op1);
680 if (!res && op2_in_chain)
681 res = in_chain_p (vrel_ptr->op1 (), op2)
682 || in_chain_p (vrel_ptr->op2 (), op2);
683 if (!res)
685 // or b) one relation element is in the defchain of the other and the
686 // other is the LHS of this stmt.
687 // x = y + 2
688 if (vrel_ptr->op1 () == handler.lhs ()
689 && (vrel_ptr->op2 () == op1 || vrel_ptr->op2 () == op2))
690 res = true;
691 else if (vrel_ptr->op2 () == handler.lhs ()
692 && (vrel_ptr->op1 () == op1 || vrel_ptr->op1 () == op2))
693 res = true;
695 if (!res)
696 return false;
699 // Process logicals as they have special handling.
700 if (is_gimple_logical_p (stmt))
702 // If the lhs doesn't tell us anything, neither will combining operands.
703 if (lhs.varying_p ())
704 return false;
706 unsigned idx;
707 if ((idx = tracer.header ("compute_operand ")))
709 print_generic_expr (dump_file, name, TDF_SLIM);
710 fprintf (dump_file, " with LHS = ");
711 lhs.dump (dump_file);
712 fprintf (dump_file, " at stmt ");
713 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
716 tree type = TREE_TYPE (name);
717 Value_Range op1_trange (type), op1_frange (type);
718 Value_Range op2_trange (type), op2_frange (type);
719 compute_logical_operands (op1_trange, op1_frange, handler,
720 as_a <irange> (lhs),
721 name, src, op1, op1_in_chain);
722 compute_logical_operands (op2_trange, op2_frange, handler,
723 as_a <irange> (lhs),
724 name, src, op2, op2_in_chain);
725 res = logical_combine (r,
726 gimple_expr_code (stmt),
727 as_a <irange> (lhs),
728 op1_trange, op1_frange, op2_trange, op2_frange);
729 if (idx)
730 tracer.trailer (idx, "compute_operand", res, name, r);
731 return res;
733 // Follow the appropriate operands now.
734 if (op1_in_chain && op2_in_chain)
735 return compute_operand1_and_operand2_range (r, handler, lhs, name, src,
736 vrel_ptr);
737 Value_Range vr;
738 gimple *src_stmt;
739 if (op1_in_chain)
741 vr.set_type (TREE_TYPE (op1));
742 if (!compute_operand1_range (vr, handler, lhs, src, vrel_ptr))
743 return false;
744 src_stmt = SSA_NAME_DEF_STMT (op1);
746 else
748 gcc_checking_assert (op2_in_chain);
749 vr.set_type (TREE_TYPE (op2));
750 if (!compute_operand2_range (vr, handler, lhs, src, vrel_ptr))
751 return false;
752 src_stmt = SSA_NAME_DEF_STMT (op2);
755 gcc_checking_assert (src_stmt);
756 // Then feed this range back as the LHS of the defining statement.
757 return compute_operand_range (r, src_stmt, vr, name, src, vrel_ptr);
758 // If neither operand is derived, this statement tells us nothing.
762 // Return TRUE if range R is either a true or false compatible range.
764 static bool
765 range_is_either_true_or_false (const irange &r)
767 if (r.undefined_p ())
768 return false;
770 // This is complicated by the fact that Ada has multi-bit booleans,
771 // so true can be ~[0, 0] (i.e. [1,MAX]).
772 tree type = r.type ();
773 gcc_checking_assert (range_compatible_p (type, boolean_type_node));
774 return (r.singleton_p ()
775 || !r.contains_p (wi::zero (TYPE_PRECISION (type))));
778 // Evaluate a binary logical expression by combining the true and
779 // false ranges for each of the operands based on the result value in
780 // the LHS.
782 bool
783 gori_compute::logical_combine (vrange &r, enum tree_code code,
784 const irange &lhs,
785 const vrange &op1_true, const vrange &op1_false,
786 const vrange &op2_true, const vrange &op2_false)
788 if (op1_true.varying_p () && op1_false.varying_p ()
789 && op2_true.varying_p () && op2_false.varying_p ())
790 return false;
792 unsigned idx;
793 if ((idx = tracer.header ("logical_combine")))
795 switch (code)
797 case TRUTH_OR_EXPR:
798 case BIT_IOR_EXPR:
799 fprintf (dump_file, " || ");
800 break;
801 case TRUTH_AND_EXPR:
802 case BIT_AND_EXPR:
803 fprintf (dump_file, " && ");
804 break;
805 default:
806 break;
808 fprintf (dump_file, " with LHS = ");
809 lhs.dump (dump_file);
810 fputc ('\n', dump_file);
812 tracer.print (idx, "op1_true = ");
813 op1_true.dump (dump_file);
814 fprintf (dump_file, " op1_false = ");
815 op1_false.dump (dump_file);
816 fputc ('\n', dump_file);
817 tracer.print (idx, "op2_true = ");
818 op2_true.dump (dump_file);
819 fprintf (dump_file, " op2_false = ");
820 op2_false.dump (dump_file);
821 fputc ('\n', dump_file);
824 // This is not a simple fold of a logical expression, rather it
825 // determines ranges which flow through the logical expression.
827 // Assuming x_8 is an unsigned char, and relational statements:
828 // b_1 = x_8 < 20
829 // b_2 = x_8 > 5
830 // consider the logical expression and branch:
831 // c_2 = b_1 && b_2
832 // if (c_2)
834 // To determine the range of x_8 on either edge of the branch, one
835 // must first determine what the range of x_8 is when the boolean
836 // values of b_1 and b_2 are both true and false.
837 // b_1 TRUE x_8 = [0, 19]
838 // b_1 FALSE x_8 = [20, 255]
839 // b_2 TRUE x_8 = [6, 255]
840 // b_2 FALSE x_8 = [0,5].
842 // These ranges are then combined based on the expected outcome of
843 // the branch. The range on the TRUE side of the branch must satisfy
844 // b_1 == true && b_2 == true
846 // In terms of x_8, that means both x_8 == [0, 19] and x_8 = [6, 255]
847 // must be true. The range of x_8 on the true side must be the
848 // intersection of both ranges since both must be true. Thus the
849 // range of x_8 on the true side is [6, 19].
851 // To determine the ranges on the FALSE side, all 3 combinations of
852 // failing ranges must be considered, and combined as any of them
853 // can cause the false result.
855 // If the LHS can be TRUE or FALSE, then evaluate both a TRUE and
856 // FALSE results and combine them. If we fell back to VARYING any
857 // range restrictions that have been discovered up to this point
858 // would be lost.
859 if (!range_is_either_true_or_false (lhs))
861 bool res;
862 Value_Range r1 (r);
863 if (logical_combine (r1, code, m_bool_zero, op1_true, op1_false,
864 op2_true, op2_false)
865 && logical_combine (r, code, m_bool_one, op1_true, op1_false,
866 op2_true, op2_false))
868 r.union_ (r1);
869 res = true;
871 else
872 res = false;
873 if (idx && res)
875 tracer.print (idx, "logical_combine produced ");
876 r.dump (dump_file);
877 fputc ('\n', dump_file);
879 return res;
882 switch (code)
884 // A logical AND combines ranges from 2 boolean conditions.
885 // c_2 = b_1 && b_2
886 case TRUTH_AND_EXPR:
887 case BIT_AND_EXPR:
888 if (!lhs.zero_p ())
890 // The TRUE side is the intersection of the 2 true ranges.
891 r = op1_true;
892 r.intersect (op2_true);
894 else
896 // The FALSE side is the union of the other 3 cases.
897 Value_Range ff (op1_false);
898 ff.intersect (op2_false);
899 Value_Range tf (op1_true);
900 tf.intersect (op2_false);
901 Value_Range ft (op1_false);
902 ft.intersect (op2_true);
903 r = ff;
904 r.union_ (tf);
905 r.union_ (ft);
907 break;
908 // A logical OR combines ranges from 2 boolean conditions.
909 // c_2 = b_1 || b_2
910 case TRUTH_OR_EXPR:
911 case BIT_IOR_EXPR:
912 if (lhs.zero_p ())
914 // An OR operation will only take the FALSE path if both
915 // operands are false simultaneously, which means they should
916 // be intersected. !(x || y) == !x && !y
917 r = op1_false;
918 r.intersect (op2_false);
920 else
922 // The TRUE side of an OR operation will be the union of
923 // the other three combinations.
924 Value_Range tt (op1_true);
925 tt.intersect (op2_true);
926 Value_Range tf (op1_true);
927 tf.intersect (op2_false);
928 Value_Range ft (op1_false);
929 ft.intersect (op2_true);
930 r = tt;
931 r.union_ (tf);
932 r.union_ (ft);
934 break;
935 default:
936 gcc_unreachable ();
939 if (idx)
940 tracer.trailer (idx, "logical_combine", true, NULL_TREE, r);
941 return true;
945 // Given a logical STMT, calculate true and false ranges for each
946 // potential path of NAME, assuming NAME came through the OP chain if
947 // OP_IN_CHAIN is true.
949 void
950 gori_compute::compute_logical_operands (vrange &true_range, vrange &false_range,
951 gimple_range_op_handler &handler,
952 const irange &lhs,
953 tree name, fur_source &src,
954 tree op, bool op_in_chain)
956 gimple *stmt = handler.stmt ();
957 gimple *src_stmt = gimple_range_ssa_p (op) ? SSA_NAME_DEF_STMT (op) : NULL;
958 if (!op_in_chain || !src_stmt || chain_import_p (handler.lhs (), op))
960 // If op is not in the def chain, or defined in this block,
961 // use its known value on entry to the block.
962 src.get_operand (true_range, name);
963 false_range = true_range;
964 unsigned idx;
965 if ((idx = tracer.header ("logical_operand")))
967 print_generic_expr (dump_file, op, TDF_SLIM);
968 fprintf (dump_file, " not in computation chain. Queried.\n");
969 tracer.trailer (idx, "logical_operand", true, NULL_TREE, true_range);
971 return;
974 enum tree_code code = gimple_expr_code (stmt);
975 // Optimize [0 = x | y], since neither operand can ever be non-zero.
976 if ((code == BIT_IOR_EXPR || code == TRUTH_OR_EXPR) && lhs.zero_p ())
978 if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name,
979 src))
980 src.get_operand (false_range, name);
981 true_range = false_range;
982 return;
985 // Optimize [1 = x & y], since neither operand can ever be zero.
986 if ((code == BIT_AND_EXPR || code == TRUTH_AND_EXPR) && lhs == m_bool_one)
988 if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
989 src.get_operand (true_range, name);
990 false_range = true_range;
991 return;
994 // Calculate ranges for true and false on both sides, since the false
995 // path is not always a simple inversion of the true side.
996 if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
997 src.get_operand (true_range, name);
998 if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name, src))
999 src.get_operand (false_range, name);
1003 // This routine will try to refine the ranges of OP1 and OP2 given a relation
1004 // K between them. In order to perform this refinement, one of the operands
1005 // must be in the definition chain of the other. The use is refined using
1006 // op1/op2_range on the statement, and the definition is then recalculated
1007 // using the relation.
1009 bool
1010 gori_compute::refine_using_relation (tree op1, vrange &op1_range,
1011 tree op2, vrange &op2_range,
1012 fur_source &src, relation_kind k)
1014 gcc_checking_assert (TREE_CODE (op1) == SSA_NAME);
1015 gcc_checking_assert (TREE_CODE (op2) == SSA_NAME);
1017 if (k == VREL_VARYING || k == VREL_EQ || k == VREL_UNDEFINED)
1018 return false;
1020 bool change = false;
1021 bool op1_def_p = in_chain_p (op2, op1);
1022 if (!op1_def_p)
1023 if (!in_chain_p (op1, op2))
1024 return false;
1026 tree def_op = op1_def_p ? op1 : op2;
1027 tree use_op = op1_def_p ? op2 : op1;
1029 if (!op1_def_p)
1030 k = relation_swap (k);
1032 // op1_def is true if we want to look up op1, otherwise we want op2.
1033 // if neither is the case, we returned in the above check.
1035 gimple *def_stmt = SSA_NAME_DEF_STMT (def_op);
1036 gimple_range_op_handler op_handler (def_stmt);
1037 if (!op_handler)
1038 return false;
1039 tree def_op1 = op_handler.operand1 ();
1040 tree def_op2 = op_handler.operand2 ();
1041 // if the def isn't binary, the relation will not be useful.
1042 if (!def_op2)
1043 return false;
1045 // Determine if op2 is directly referenced as an operand.
1046 if (def_op1 == use_op)
1048 // def_stmt has op1 in the 1st operand position.
1049 Value_Range other_op (TREE_TYPE (def_op2));
1050 src.get_operand (other_op, def_op2);
1052 // Using op1_range as the LHS, and relation REL, evaluate op2.
1053 tree type = TREE_TYPE (def_op1);
1054 Value_Range new_result (type);
1055 if (!op_handler.op1_range (new_result, type,
1056 op1_def_p ? op1_range : op2_range,
1057 other_op, relation_trio::lhs_op1 (k)))
1058 return false;
1059 if (op1_def_p)
1061 change |= op2_range.intersect (new_result);
1062 // Recalculate op2.
1063 if (op_handler.fold_range (new_result, type, op2_range, other_op))
1065 change |= op1_range.intersect (new_result);
1068 else
1070 change |= op1_range.intersect (new_result);
1071 // Recalculate op1.
1072 if (op_handler.fold_range (new_result, type, op1_range, other_op))
1074 change |= op2_range.intersect (new_result);
1078 else if (def_op2 == use_op)
1080 // def_stmt has op1 in the 1st operand position.
1081 Value_Range other_op (TREE_TYPE (def_op1));
1082 src.get_operand (other_op, def_op1);
1084 // Using op1_range as the LHS, and relation REL, evaluate op2.
1085 tree type = TREE_TYPE (def_op2);
1086 Value_Range new_result (type);
1087 if (!op_handler.op2_range (new_result, type,
1088 op1_def_p ? op1_range : op2_range,
1089 other_op, relation_trio::lhs_op2 (k)))
1090 return false;
1091 if (op1_def_p)
1093 change |= op2_range.intersect (new_result);
1094 // Recalculate op1.
1095 if (op_handler.fold_range (new_result, type, other_op, op2_range))
1097 change |= op1_range.intersect (new_result);
1100 else
1102 change |= op1_range.intersect (new_result);
1103 // Recalculate op2.
1104 if (op_handler.fold_range (new_result, type, other_op, op1_range))
1106 change |= op2_range.intersect (new_result);
1110 return change;
1113 // Calculate a range for NAME from the operand 1 position of STMT
1114 // assuming the result of the statement is LHS. Return the range in
1115 // R, or false if no range could be calculated.
1117 bool
1118 gori_compute::compute_operand1_range (vrange &r,
1119 gimple_range_op_handler &handler,
1120 const vrange &lhs,
1121 fur_source &src, value_relation *rel)
1123 gimple *stmt = handler.stmt ();
1124 tree op1 = handler.operand1 ();
1125 tree op2 = handler.operand2 ();
1126 tree lhs_name = gimple_get_lhs (stmt);
1128 relation_trio trio;
1129 if (rel)
1130 trio = rel->create_trio (lhs_name, op1, op2);
1132 Value_Range op1_range (TREE_TYPE (op1));
1133 Value_Range op2_range (op2 ? TREE_TYPE (op2) : TREE_TYPE (op1));
1135 // Fetch the known range for op1 in this block.
1136 src.get_operand (op1_range, op1);
1138 // Now range-op calculate and put that result in r.
1139 if (op2)
1141 src.get_operand (op2_range, op2);
1143 relation_kind op_op = trio.op1_op2 ();
1144 if (op_op != VREL_VARYING)
1145 refine_using_relation (op1, op1_range, op2, op2_range, src, op_op);
1147 // If op1 == op2, create a new trio for just this call.
1148 if (op1 == op2 && gimple_range_ssa_p (op1))
1150 relation_kind k = get_identity_relation (op1, op1_range);
1151 trio = relation_trio (trio.lhs_op1 (), trio.lhs_op2 (), k);
1153 if (!handler.calc_op1 (r, lhs, op2_range, trio))
1154 return false;
1156 else
1158 // We pass op1_range to the unary operation. Normally it's a
1159 // hidden range_for_type parameter, but sometimes having the
1160 // actual range can result in better information.
1161 if (!handler.calc_op1 (r, lhs, op1_range, trio))
1162 return false;
1165 unsigned idx;
1166 if ((idx = tracer.header ("compute op 1 (")))
1168 print_generic_expr (dump_file, op1, TDF_SLIM);
1169 fprintf (dump_file, ") at ");
1170 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1171 tracer.print (idx, "LHS =");
1172 lhs.dump (dump_file);
1173 if (op2 && TREE_CODE (op2) == SSA_NAME)
1175 fprintf (dump_file, ", ");
1176 print_generic_expr (dump_file, op2, TDF_SLIM);
1177 fprintf (dump_file, " = ");
1178 op2_range.dump (dump_file);
1180 fprintf (dump_file, "\n");
1181 tracer.print (idx, "Computes ");
1182 print_generic_expr (dump_file, op1, TDF_SLIM);
1183 fprintf (dump_file, " = ");
1184 r.dump (dump_file);
1185 fprintf (dump_file, " intersect Known range : ");
1186 op1_range.dump (dump_file);
1187 fputc ('\n', dump_file);
1190 r.intersect (op1_range);
1191 if (idx)
1192 tracer.trailer (idx, "produces ", true, op1, r);
1193 return true;
1197 // Calculate a range for NAME from the operand 2 position of S
1198 // assuming the result of the statement is LHS. Return the range in
1199 // R, or false if no range could be calculated.
1201 bool
1202 gori_compute::compute_operand2_range (vrange &r,
1203 gimple_range_op_handler &handler,
1204 const vrange &lhs,
1205 fur_source &src, value_relation *rel)
1207 gimple *stmt = handler.stmt ();
1208 tree op1 = handler.operand1 ();
1209 tree op2 = handler.operand2 ();
1210 tree lhs_name = gimple_get_lhs (stmt);
1212 Value_Range op1_range (TREE_TYPE (op1));
1213 Value_Range op2_range (TREE_TYPE (op2));
1215 src.get_operand (op1_range, op1);
1216 src.get_operand (op2_range, op2);
1218 relation_trio trio;
1219 if (rel)
1220 trio = rel->create_trio (lhs_name, op1, op2);
1221 relation_kind op_op = trio.op1_op2 ();
1223 if (op_op != VREL_VARYING)
1224 refine_using_relation (op1, op1_range, op2, op2_range, src, op_op);
1226 // If op1 == op2, create a new trio for this stmt.
1227 if (op1 == op2 && gimple_range_ssa_p (op1))
1229 relation_kind k = get_identity_relation (op1, op1_range);
1230 trio = relation_trio (trio.lhs_op1 (), trio.lhs_op2 (), k);
1232 // Intersect with range for op2 based on lhs and op1.
1233 if (!handler.calc_op2 (r, lhs, op1_range, trio))
1234 return false;
1236 unsigned idx;
1237 if ((idx = tracer.header ("compute op 2 (")))
1239 print_generic_expr (dump_file, op2, TDF_SLIM);
1240 fprintf (dump_file, ") at ");
1241 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1242 tracer.print (idx, "LHS = ");
1243 lhs.dump (dump_file);
1244 if (TREE_CODE (op1) == SSA_NAME)
1246 fprintf (dump_file, ", ");
1247 print_generic_expr (dump_file, op1, TDF_SLIM);
1248 fprintf (dump_file, " = ");
1249 op1_range.dump (dump_file);
1251 fprintf (dump_file, "\n");
1252 tracer.print (idx, "Computes ");
1253 print_generic_expr (dump_file, op2, TDF_SLIM);
1254 fprintf (dump_file, " = ");
1255 r.dump (dump_file);
1256 fprintf (dump_file, " intersect Known range : ");
1257 op2_range.dump (dump_file);
1258 fputc ('\n', dump_file);
1260 // Intersect the calculated result with the known result and return if done.
1261 r.intersect (op2_range);
1262 if (idx)
1263 tracer.trailer (idx, " produces ", true, op2, r);
1264 return true;
1267 // Calculate a range for NAME from both operand positions of S
1268 // assuming the result of the statement is LHS. Return the range in
1269 // R, or false if no range could be calculated.
1271 bool
1272 gori_compute::compute_operand1_and_operand2_range (vrange &r,
1273 gimple_range_op_handler
1274 &handler,
1275 const vrange &lhs,
1276 tree name,
1277 fur_source &src,
1278 value_relation *rel)
1280 Value_Range op_range (TREE_TYPE (name));
1282 Value_Range vr (TREE_TYPE (handler.operand2 ()));
1283 // Calculate a good a range through op2.
1284 if (!compute_operand2_range (vr, handler, lhs, src, rel))
1285 return false;
1286 gimple *src_stmt = SSA_NAME_DEF_STMT (handler.operand2 ());
1287 gcc_checking_assert (src_stmt);
1288 // Then feed this range back as the LHS of the defining statement.
1289 if (!compute_operand_range (r, src_stmt, vr, name, src, rel))
1290 return false;
1292 // Now get the range thru op1.
1293 vr.set_type (TREE_TYPE (handler.operand1 ()));
1294 if (!compute_operand1_range (vr, handler, lhs, src, rel))
1295 return false;
1296 src_stmt = SSA_NAME_DEF_STMT (handler.operand1 ());
1297 gcc_checking_assert (src_stmt);
1298 // Then feed this range back as the LHS of the defining statement.
1299 if (!compute_operand_range (op_range, src_stmt, vr, name, src, rel))
1300 return false;
1302 // Both operands have to be simultaneously true, so perform an intersection.
1303 r.intersect (op_range);
1304 return true;
1307 // Return TRUE if NAME can be recomputed on any edge exiting BB. If any
1308 // direct dependent is exported, it may also change the computed value of NAME.
1310 bool
1311 gori_compute::may_recompute_p (tree name, basic_block bb, int depth)
1313 tree dep1 = depend1 (name);
1314 tree dep2 = depend2 (name);
1316 // If the first dependency is not set, there is no recomputation.
1317 // Dependencies reflect original IL, not current state. Check if the
1318 // SSA_NAME is still valid as well.
1319 if (!dep1)
1320 return false;
1322 // Don't recalculate PHIs or statements with side_effects.
1323 gimple *s = SSA_NAME_DEF_STMT (name);
1324 if (is_a<gphi *> (s) || gimple_has_side_effects (s))
1325 return false;
1327 if (!dep2)
1329 // -1 indicates a default param, convert it to the real default.
1330 if (depth == -1)
1332 depth = (int)param_ranger_recompute_depth;
1333 gcc_checking_assert (depth >= 1);
1336 bool res = (bb ? is_export_p (dep1, bb) : is_export_p (dep1));
1337 if (res || depth <= 1)
1338 return res;
1339 // Check another level of recomputation.
1340 return may_recompute_p (dep1, bb, --depth);
1342 // Two dependencies terminate the depth of the search.
1343 if (bb)
1344 return is_export_p (dep1, bb) || is_export_p (dep2, bb);
1345 else
1346 return is_export_p (dep1) || is_export_p (dep2);
1349 // Return TRUE if NAME can be recomputed on edge E. If any direct dependent
1350 // is exported on edge E, it may change the computed value of NAME.
1352 bool
1353 gori_compute::may_recompute_p (tree name, edge e, int depth)
1355 gcc_checking_assert (e);
1356 return may_recompute_p (name, e->src, depth);
1360 // Return TRUE if a range can be calculated or recomputed for NAME on any
1361 // edge exiting BB.
1363 bool
1364 gori_compute::has_edge_range_p (tree name, basic_block bb)
1366 // Check if NAME is an export or can be recomputed.
1367 if (bb)
1368 return is_export_p (name, bb) || may_recompute_p (name, bb);
1370 // If no block is specified, check for anywhere in the IL.
1371 return is_export_p (name) || may_recompute_p (name);
1374 // Return TRUE if a range can be calculated or recomputed for NAME on edge E.
1376 bool
1377 gori_compute::has_edge_range_p (tree name, edge e)
1379 gcc_checking_assert (e);
1380 return has_edge_range_p (name, e->src);
1383 // Calculate a range on edge E and return it in R. Try to evaluate a
1384 // range for NAME on this edge. Return FALSE if this is either not a
1385 // control edge or NAME is not defined by this edge.
1387 bool
1388 gori_compute::outgoing_edge_range_p (vrange &r, edge e, tree name,
1389 range_query &q)
1391 unsigned idx;
1393 if ((e->flags & m_not_executable_flag))
1395 r.set_undefined ();
1396 if (dump_file && (dump_flags & TDF_DETAILS))
1397 fprintf (dump_file, "Outgoing edge %d->%d unexecutable.\n",
1398 e->src->index, e->dest->index);
1399 return true;
1402 gcc_checking_assert (gimple_range_ssa_p (name));
1403 int_range_max lhs;
1404 // Determine if there is an outgoing edge.
1405 gimple *stmt = outgoing.edge_range_p (lhs, e);
1406 if (!stmt)
1407 return false;
1409 fur_stmt src (stmt, &q);
1410 // If NAME can be calculated on the edge, use that.
1411 if (is_export_p (name, e->src))
1413 bool res;
1414 if ((idx = tracer.header ("outgoing_edge")))
1416 fprintf (dump_file, " for ");
1417 print_generic_expr (dump_file, name, TDF_SLIM);
1418 fprintf (dump_file, " on edge %d->%d\n",
1419 e->src->index, e->dest->index);
1421 if ((res = compute_operand_range (r, stmt, lhs, name, src)))
1423 // Sometimes compatible types get interchanged. See PR97360.
1424 // Make sure we are returning the type of the thing we asked for.
1425 if (!r.undefined_p () && r.type () != TREE_TYPE (name))
1427 gcc_checking_assert (range_compatible_p (r.type (),
1428 TREE_TYPE (name)));
1429 range_cast (r, TREE_TYPE (name));
1432 if (idx)
1433 tracer.trailer (idx, "outgoing_edge", res, name, r);
1434 return res;
1436 // If NAME isn't exported, check if it can be recomputed.
1437 else if (may_recompute_p (name, e))
1439 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1441 if ((idx = tracer.header ("recomputation")))
1443 fprintf (dump_file, " attempt on edge %d->%d for ",
1444 e->src->index, e->dest->index);
1445 print_gimple_stmt (dump_file, def_stmt, 0, TDF_SLIM);
1447 // Simply calculate DEF_STMT on edge E using the range query Q.
1448 fold_range (r, def_stmt, e, &q);
1449 if (idx)
1450 tracer.trailer (idx, "recomputation", true, name, r);
1451 return true;
1453 return false;
1456 // Given COND ? OP1 : OP2 with ranges R1 for OP1 and R2 for OP2, Use gori
1457 // to further resolve R1 and R2 if there are any dependencies between
1458 // OP1 and COND or OP2 and COND. All values can are to be calculated using SRC
1459 // as the origination source location for operands..
1460 // Effectively, use COND an the edge condition and solve for OP1 on the true
1461 // edge and OP2 on the false edge.
1463 bool
1464 gori_compute::condexpr_adjust (vrange &r1, vrange &r2, gimple *, tree cond,
1465 tree op1, tree op2, fur_source &src)
1467 tree ssa1 = gimple_range_ssa_p (op1);
1468 tree ssa2 = gimple_range_ssa_p (op2);
1469 if (!ssa1 && !ssa2)
1470 return false;
1471 if (TREE_CODE (cond) != SSA_NAME)
1472 return false;
1473 gassign *cond_def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (cond));
1474 if (!cond_def
1475 || TREE_CODE_CLASS (gimple_assign_rhs_code (cond_def)) != tcc_comparison)
1476 return false;
1477 tree type = TREE_TYPE (gimple_assign_rhs1 (cond_def));
1478 if (!range_compatible_p (type, TREE_TYPE (gimple_assign_rhs2 (cond_def))))
1479 return false;
1480 range_op_handler hand (gimple_assign_rhs_code (cond_def));
1481 if (!hand)
1482 return false;
1484 tree c1 = gimple_range_ssa_p (gimple_assign_rhs1 (cond_def));
1485 tree c2 = gimple_range_ssa_p (gimple_assign_rhs2 (cond_def));
1487 // Only solve if there is one SSA name in the condition.
1488 if ((!c1 && !c2) || (c1 && c2))
1489 return false;
1491 // Pick up the current values of each part of the condition.
1492 tree rhs1 = gimple_assign_rhs1 (cond_def);
1493 tree rhs2 = gimple_assign_rhs2 (cond_def);
1494 Value_Range cl (TREE_TYPE (rhs1));
1495 Value_Range cr (TREE_TYPE (rhs2));
1496 src.get_operand (cl, rhs1);
1497 src.get_operand (cr, rhs2);
1499 tree cond_name = c1 ? c1 : c2;
1500 gimple *def_stmt = SSA_NAME_DEF_STMT (cond_name);
1502 // Evaluate the value of COND_NAME on the true and false edges, using either
1503 // the op1 or op2 routines based on its location.
1504 Value_Range cond_true (type), cond_false (type);
1505 if (c1)
1507 if (!hand.op1_range (cond_false, type, m_bool_zero, cr))
1508 return false;
1509 if (!hand.op1_range (cond_true, type, m_bool_one, cr))
1510 return false;
1511 cond_false.intersect (cl);
1512 cond_true.intersect (cl);
1514 else
1516 if (!hand.op2_range (cond_false, type, m_bool_zero, cl))
1517 return false;
1518 if (!hand.op2_range (cond_true, type, m_bool_one, cl))
1519 return false;
1520 cond_false.intersect (cr);
1521 cond_true.intersect (cr);
1524 unsigned idx;
1525 if ((idx = tracer.header ("cond_expr evaluation : ")))
1527 fprintf (dump_file, " range1 = ");
1528 r1.dump (dump_file);
1529 fprintf (dump_file, ", range2 = ");
1530 r1.dump (dump_file);
1531 fprintf (dump_file, "\n");
1534 // Now solve for SSA1 or SSA2 if they are in the dependency chain.
1535 if (ssa1 && in_chain_p (ssa1, cond_name))
1537 Value_Range tmp1 (TREE_TYPE (ssa1));
1538 if (compute_operand_range (tmp1, def_stmt, cond_true, ssa1, src))
1539 r1.intersect (tmp1);
1541 if (ssa2 && in_chain_p (ssa2, cond_name))
1543 Value_Range tmp2 (TREE_TYPE (ssa2));
1544 if (compute_operand_range (tmp2, def_stmt, cond_false, ssa2, src))
1545 r2.intersect (tmp2);
1547 if (idx)
1549 tracer.print (idx, "outgoing: range1 = ");
1550 r1.dump (dump_file);
1551 fprintf (dump_file, ", range2 = ");
1552 r1.dump (dump_file);
1553 fprintf (dump_file, "\n");
1554 tracer.trailer (idx, "cond_expr", true, cond_name, cond_true);
1556 return true;
1559 // Dump what is known to GORI computes to listing file F.
1561 void
1562 gori_compute::dump (FILE *f)
1564 gori_map::dump (f);
1567 // ------------------------------------------------------------------------
1568 // GORI iterator. Although we have bitmap iterators, don't expose that it
1569 // is currently a bitmap. Use an export iterator to hide future changes.
1571 // Construct a basic iterator over an export bitmap.
1573 gori_export_iterator::gori_export_iterator (bitmap b)
1575 bm = b;
1576 if (b)
1577 bmp_iter_set_init (&bi, b, 1, &y);
1581 // Move to the next export bitmap spot.
1583 void
1584 gori_export_iterator::next ()
1586 bmp_iter_next (&bi, &y);
1590 // Fetch the name of the next export in the export list. Return NULL if
1591 // iteration is done.
1593 tree
1594 gori_export_iterator::get_name ()
1596 if (!bm)
1597 return NULL_TREE;
1599 while (bmp_iter_set (&bi, &y))
1601 tree t = ssa_name (y);
1602 if (t)
1603 return t;
1604 next ();
1606 return NULL_TREE;