Require target lra in gcc.dg/pr108095.c
[official-gcc.git] / gcc / alias.cc
blob7c1af1fe96ecbf0d8097db5ec0d9cd09da0c76cd
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2023 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 #include "ipa-utils.h"
44 /* The aliasing API provided here solves related but different problems:
46 Say there exists (in c)
48 struct X {
49 struct Y y1;
50 struct Z z2;
51 } x1, *px1, *px2;
53 struct Y y2, *py;
54 struct Z z2, *pz;
57 py = &x1.y1;
58 px2 = &x1;
60 Consider the four questions:
62 Can a store to x1 interfere with px2->y1?
63 Can a store to x1 interfere with px2->z2?
64 Can a store to x1 change the value pointed to by with py?
65 Can a store to x1 change the value pointed to by with pz?
67 The answer to these questions can be yes, yes, yes, and maybe.
69 The first two questions can be answered with a simple examination
70 of the type system. If structure X contains a field of type Y then
71 a store through a pointer to an X can overwrite any field that is
72 contained (recursively) in an X (unless we know that px1 != px2).
74 The last two questions can be solved in the same way as the first
75 two questions but this is too conservative. The observation is
76 that in some cases we can know which (if any) fields are addressed
77 and if those addresses are used in bad ways. This analysis may be
78 language specific. In C, arbitrary operations may be applied to
79 pointers. However, there is some indication that this may be too
80 conservative for some C++ types.
82 The pass ipa-type-escape does this analysis for the types whose
83 instances do not escape across the compilation boundary.
85 Historically in GCC, these two problems were combined and a single
86 data structure that was used to represent the solution to these
87 problems. We now have two similar but different data structures,
88 The data structure to solve the last two questions is similar to
89 the first, but does not contain the fields whose address are never
90 taken. For types that do escape the compilation unit, the data
91 structures will have identical information.
94 /* The alias sets assigned to MEMs assist the back-end in determining
95 which MEMs can alias which other MEMs. In general, two MEMs in
96 different alias sets cannot alias each other, with one important
97 exception. Consider something like:
99 struct S { int i; double d; };
101 a store to an `S' can alias something of either type `int' or type
102 `double'. (However, a store to an `int' cannot alias a `double'
103 and vice versa.) We indicate this via a tree structure that looks
104 like:
105 struct S
108 |/_ _\|
109 int double
111 (The arrows are directed and point downwards.)
112 In this situation we say the alias set for `struct S' is the
113 `superset' and that those for `int' and `double' are `subsets'.
115 To see whether two alias sets can point to the same memory, we must
116 see if either alias set is a subset of the other. We need not trace
117 past immediate descendants, however, since we propagate all
118 grandchildren up one level.
120 Alias set zero is implicitly a superset of all other alias sets.
121 However, this is no actual entry for alias set zero. It is an
122 error to attempt to explicitly construct a subset of zero. */
124 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
126 struct GTY(()) alias_set_entry {
127 /* The alias set number, as stored in MEM_ALIAS_SET. */
128 alias_set_type alias_set;
130 /* Nonzero if would have a child of zero: this effectively makes this
131 alias set the same as alias set zero. */
132 bool has_zero_child;
133 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134 aggregate contaiing pointer.
135 This is used for a special case where we need an universal pointer type
136 compatible with all other pointer types. */
137 bool is_pointer;
138 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
139 bool has_pointer;
141 /* The children of the alias set. These are not just the immediate
142 children, but, in fact, all descendants. So, if we have:
144 struct T { struct S s; float f; }
146 continuing our example above, the children here will be all of
147 `int', `double', `float', and `struct S'. */
148 hash_map<alias_set_hash, int> *children;
151 static int compare_base_symbol_refs (const_rtx, const_rtx,
152 HOST_WIDE_INT * = NULL);
154 /* Query statistics for the different low-level disambiguators.
155 A high-level query may trigger multiple of them. */
157 static struct {
158 unsigned long long num_alias_zero;
159 unsigned long long num_same_alias_set;
160 unsigned long long num_same_objects;
161 unsigned long long num_volatile;
162 unsigned long long num_dag;
163 unsigned long long num_universal;
164 unsigned long long num_disambiguated;
165 } alias_stats;
168 /* Set up all info needed to perform alias analysis on memory references. */
170 /* Returns the size in bytes of the mode of X. */
171 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
173 /* Cap the number of passes we make over the insns propagating alias
174 information through set chains.
175 ??? 10 is a completely arbitrary choice. This should be based on the
176 maximum loop depth in the CFG, but we do not have this information
177 available (even if current_loops _is_ available). */
178 #define MAX_ALIAS_LOOP_PASSES 10
180 /* reg_base_value[N] gives an address to which register N is related.
181 If all sets after the first add or subtract to the current value
182 or otherwise modify it so it does not point to a different top level
183 object, reg_base_value[N] is equal to the address part of the source
184 of the first set.
186 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
187 expressions represent three types of base:
189 1. incoming arguments. There is just one ADDRESS to represent all
190 arguments, since we do not know at this level whether accesses
191 based on different arguments can alias. The ADDRESS has id 0.
193 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
194 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
195 Each of these rtxes has a separate ADDRESS associated with it,
196 each with a negative id.
198 GCC is (and is required to be) precise in which register it
199 chooses to access a particular region of stack. We can therefore
200 assume that accesses based on one of these rtxes do not alias
201 accesses based on another of these rtxes.
203 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
204 Each such piece of memory has a separate ADDRESS associated
205 with it, each with an id greater than 0.
207 Accesses based on one ADDRESS do not alias accesses based on other
208 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
209 alias globals either; the ADDRESSes have Pmode to indicate this.
210 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
211 indicate this. */
213 static GTY(()) vec<rtx, va_gc> *reg_base_value;
214 static rtx *new_reg_base_value;
216 /* The single VOIDmode ADDRESS that represents all argument bases.
217 It has id 0. */
218 static GTY(()) rtx arg_base_value;
220 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
221 static int unique_id;
223 /* We preserve the copy of old array around to avoid amount of garbage
224 produced. About 8% of garbage produced were attributed to this
225 array. */
226 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
228 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
229 registers. */
230 #define UNIQUE_BASE_VALUE_SP -1
231 #define UNIQUE_BASE_VALUE_ARGP -2
232 #define UNIQUE_BASE_VALUE_FP -3
233 #define UNIQUE_BASE_VALUE_HFP -4
235 #define static_reg_base_value \
236 (this_target_rtl->x_static_reg_base_value)
238 #define REG_BASE_VALUE(X) \
239 (REGNO (X) < vec_safe_length (reg_base_value) \
240 ? (*reg_base_value)[REGNO (X)] : 0)
242 /* Vector indexed by N giving the initial (unchanging) value known for
243 pseudo-register N. This vector is initialized in init_alias_analysis,
244 and does not change until end_alias_analysis is called. */
245 static GTY(()) vec<rtx, va_gc> *reg_known_value;
247 /* Vector recording for each reg_known_value whether it is due to a
248 REG_EQUIV note. Future passes (viz., reload) may replace the
249 pseudo with the equivalent expression and so we account for the
250 dependences that would be introduced if that happens.
252 The REG_EQUIV notes created in assign_parms may mention the arg
253 pointer, and there are explicit insns in the RTL that modify the
254 arg pointer. Thus we must ensure that such insns don't get
255 scheduled across each other because that would invalidate the
256 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
257 wrong, but solving the problem in the scheduler will likely give
258 better code, so we do it here. */
259 static sbitmap reg_known_equiv_p;
261 /* True when scanning insns from the start of the rtl to the
262 NOTE_INSN_FUNCTION_BEG note. */
263 static bool copying_arguments;
266 /* The splay-tree used to store the various alias set entries. */
267 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
269 /* Build a decomposed reference object for querying the alias-oracle
270 from the MEM rtx and store it in *REF.
271 Returns false if MEM is not suitable for the alias-oracle. */
273 static bool
274 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
276 tree expr = MEM_EXPR (mem);
277 tree base;
279 if (!expr)
280 return false;
282 ao_ref_init (ref, expr);
284 /* Get the base of the reference and see if we have to reject or
285 adjust it. */
286 base = ao_ref_base (ref);
287 if (base == NULL_TREE)
288 return false;
290 /* The tree oracle doesn't like bases that are neither decls
291 nor indirect references of SSA names. */
292 if (!(DECL_P (base)
293 || (TREE_CODE (base) == MEM_REF
294 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
295 || (TREE_CODE (base) == TARGET_MEM_REF
296 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
297 return false;
299 ref->ref_alias_set = MEM_ALIAS_SET (mem);
301 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
302 is conservative, so trust it. */
303 if (!MEM_OFFSET_KNOWN_P (mem)
304 || !MEM_SIZE_KNOWN_P (mem))
305 return true;
307 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
308 drop ref->ref. */
309 if (maybe_lt (MEM_OFFSET (mem), 0)
310 || (ref->max_size_known_p ()
311 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
312 ref->max_size)))
313 ref->ref = NULL_TREE;
315 /* Refine size and offset we got from analyzing MEM_EXPR by using
316 MEM_SIZE and MEM_OFFSET. */
318 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
319 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
321 /* The MEM may extend into adjacent fields, so adjust max_size if
322 necessary. */
323 if (ref->max_size_known_p ())
324 ref->max_size = upper_bound (ref->max_size, ref->size);
326 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
327 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
328 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
329 && (maybe_lt (ref->offset, 0)
330 || (DECL_P (ref->base)
331 && (DECL_SIZE (ref->base) == NULL_TREE
332 || !poly_int_tree_p (DECL_SIZE (ref->base))
333 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
334 ref->offset + ref->size)))))
335 return false;
337 return true;
340 /* Query the alias-oracle on whether the two memory rtx X and MEM may
341 alias. If TBAA_P is set also apply TBAA. Returns true if the
342 two rtxen may alias, false otherwise. */
344 static bool
345 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
347 ao_ref ref1, ref2;
349 if (!ao_ref_from_mem (&ref1, x)
350 || !ao_ref_from_mem (&ref2, mem))
351 return true;
353 return refs_may_alias_p_1 (&ref1, &ref2,
354 tbaa_p
355 && MEM_ALIAS_SET (x) != 0
356 && MEM_ALIAS_SET (mem) != 0);
359 /* Return true if the ref EARLIER behaves the same as LATER with respect
360 to TBAA for every memory reference that might follow LATER. */
362 bool
363 refs_same_for_tbaa_p (tree earlier, tree later)
365 ao_ref earlier_ref, later_ref;
366 ao_ref_init (&earlier_ref, earlier);
367 ao_ref_init (&later_ref, later);
368 alias_set_type earlier_set = ao_ref_alias_set (&earlier_ref);
369 alias_set_type later_set = ao_ref_alias_set (&later_ref);
370 if (!(earlier_set == later_set
371 || alias_set_subset_of (later_set, earlier_set)))
372 return false;
373 alias_set_type later_base_set = ao_ref_base_alias_set (&later_ref);
374 alias_set_type earlier_base_set = ao_ref_base_alias_set (&earlier_ref);
375 return (earlier_base_set == later_base_set
376 || alias_set_subset_of (later_base_set, earlier_base_set));
379 /* Similar to refs_same_for_tbaa_p() but for use on MEM rtxs. */
380 bool
381 mems_same_for_tbaa_p (rtx earlier, rtx later)
383 gcc_assert (MEM_P (earlier));
384 gcc_assert (MEM_P (later));
386 return ((MEM_ALIAS_SET (earlier) == MEM_ALIAS_SET (later)
387 || alias_set_subset_of (MEM_ALIAS_SET (later),
388 MEM_ALIAS_SET (earlier)))
389 && (!MEM_EXPR (earlier)
390 || refs_same_for_tbaa_p (MEM_EXPR (earlier), MEM_EXPR (later))));
393 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
394 such an entry, or NULL otherwise. */
396 static inline alias_set_entry *
397 get_alias_set_entry (alias_set_type alias_set)
399 return (*alias_sets)[alias_set];
402 /* Returns true if the alias sets for MEM1 and MEM2 are such that
403 the two MEMs cannot alias each other. */
405 static inline bool
406 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
408 return (flag_strict_aliasing
409 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
410 MEM_ALIAS_SET (mem2)));
413 /* Return true if the first alias set is a subset of the second. */
415 bool
416 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
418 alias_set_entry *ase2;
420 /* Disable TBAA oracle with !flag_strict_aliasing. */
421 if (!flag_strict_aliasing)
422 return true;
424 /* Everything is a subset of the "aliases everything" set. */
425 if (set2 == 0)
426 return true;
428 /* Check if set1 is a subset of set2. */
429 ase2 = get_alias_set_entry (set2);
430 if (ase2 != 0
431 && (ase2->has_zero_child
432 || (ase2->children && ase2->children->get (set1))))
433 return true;
435 /* As a special case we consider alias set of "void *" to be both subset
436 and superset of every alias set of a pointer. This extra symmetry does
437 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
438 to return true on the following testcase:
440 void *ptr;
441 char **ptr2=(char **)&ptr;
442 *ptr2 = ...
444 Additionally if a set contains universal pointer, we consider every pointer
445 to be a subset of it, but we do not represent this explicitely - doing so
446 would require us to update transitive closure each time we introduce new
447 pointer type. This makes aliasing_component_refs_p to return true
448 on the following testcase:
450 struct a {void *ptr;}
451 char **ptr = (char **)&a.ptr;
452 ptr = ...
454 This makes void * truly universal pointer type. See pointer handling in
455 get_alias_set for more details. */
456 if (ase2 && ase2->has_pointer)
458 alias_set_entry *ase1 = get_alias_set_entry (set1);
460 if (ase1 && ase1->is_pointer)
462 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
463 /* If one is ptr_type_node and other is pointer, then we consider
464 them subset of each other. */
465 if (set1 == voidptr_set || set2 == voidptr_set)
466 return true;
467 /* If SET2 contains universal pointer's alias set, then we consdier
468 every (non-universal) pointer. */
469 if (ase2->children && set1 != voidptr_set
470 && ase2->children->get (voidptr_set))
471 return true;
474 return false;
477 /* Return true if the two specified alias sets may conflict. */
479 bool
480 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
482 alias_set_entry *ase1;
483 alias_set_entry *ase2;
485 /* The easy case. */
486 if (alias_sets_must_conflict_p (set1, set2))
487 return true;
489 /* See if the first alias set is a subset of the second. */
490 ase1 = get_alias_set_entry (set1);
491 if (ase1 != 0
492 && ase1->children && ase1->children->get (set2))
494 ++alias_stats.num_dag;
495 return true;
498 /* Now do the same, but with the alias sets reversed. */
499 ase2 = get_alias_set_entry (set2);
500 if (ase2 != 0
501 && ase2->children && ase2->children->get (set1))
503 ++alias_stats.num_dag;
504 return true;
507 /* We want void * to be compatible with any other pointer without
508 really dropping it to alias set 0. Doing so would make it
509 compatible with all non-pointer types too.
511 This is not strictly necessary by the C/C++ language
512 standards, but avoids common type punning mistakes. In
513 addition to that, we need the existence of such universal
514 pointer to implement Fortran's C_PTR type (which is defined as
515 type compatible with all C pointers). */
516 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
518 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
520 /* If one of the sets corresponds to universal pointer,
521 we consider it to conflict with anything that is
522 or contains pointer. */
523 if (set1 == voidptr_set || set2 == voidptr_set)
525 ++alias_stats.num_universal;
526 return true;
528 /* If one of sets is (non-universal) pointer and the other
529 contains universal pointer, we also get conflict. */
530 if (ase1->is_pointer && set2 != voidptr_set
531 && ase2->children && ase2->children->get (voidptr_set))
533 ++alias_stats.num_universal;
534 return true;
536 if (ase2->is_pointer && set1 != voidptr_set
537 && ase1->children && ase1->children->get (voidptr_set))
539 ++alias_stats.num_universal;
540 return true;
544 ++alias_stats.num_disambiguated;
546 /* The two alias sets are distinct and neither one is the
547 child of the other. Therefore, they cannot conflict. */
548 return false;
551 /* Return true if the two specified alias sets will always conflict. */
553 bool
554 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
556 /* Disable TBAA oracle with !flag_strict_aliasing. */
557 if (!flag_strict_aliasing)
558 return true;
559 if (set1 == 0 || set2 == 0)
561 ++alias_stats.num_alias_zero;
562 return true;
564 if (set1 == set2)
566 ++alias_stats.num_same_alias_set;
567 return true;
570 return false;
573 /* Return true if any MEM object of type T1 will always conflict (using the
574 dependency routines in this file) with any MEM object of type T2.
575 This is used when allocating temporary storage. If T1 and/or T2 are
576 NULL_TREE, it means we know nothing about the storage. */
578 bool
579 objects_must_conflict_p (tree t1, tree t2)
581 alias_set_type set1, set2;
583 /* If neither has a type specified, we don't know if they'll conflict
584 because we may be using them to store objects of various types, for
585 example the argument and local variables areas of inlined functions. */
586 if (t1 == 0 && t2 == 0)
587 return false;
589 /* If they are the same type, they must conflict. */
590 if (t1 == t2)
592 ++alias_stats.num_same_objects;
593 return true;
595 /* Likewise if both are volatile. */
596 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
598 ++alias_stats.num_volatile;
599 return true;
602 set1 = t1 ? get_alias_set (t1) : 0;
603 set2 = t2 ? get_alias_set (t2) : 0;
605 /* We can't use alias_sets_conflict_p because we must make sure
606 that every subtype of t1 will conflict with every subtype of
607 t2 for which a pair of subobjects of these respective subtypes
608 overlaps on the stack. */
609 return alias_sets_must_conflict_p (set1, set2);
612 /* Return true if T is an end of the access path which can be used
613 by type based alias oracle. */
615 bool
616 ends_tbaa_access_path_p (const_tree t)
618 switch (TREE_CODE (t))
620 case COMPONENT_REF:
621 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
622 return true;
623 /* Permit type-punning when accessing a union, provided the access
624 is directly through the union. For example, this code does not
625 permit taking the address of a union member and then storing
626 through it. Even the type-punning allowed here is a GCC
627 extension, albeit a common and useful one; the C standard says
628 that such accesses have implementation-defined behavior. */
629 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
630 return true;
631 break;
633 case ARRAY_REF:
634 case ARRAY_RANGE_REF:
635 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
636 return true;
637 break;
639 case REALPART_EXPR:
640 case IMAGPART_EXPR:
641 break;
643 case BIT_FIELD_REF:
644 case VIEW_CONVERT_EXPR:
645 /* Bitfields and casts are never addressable. */
646 return true;
647 break;
649 default:
650 gcc_unreachable ();
652 return false;
655 /* Return the outermost parent of component present in the chain of
656 component references handled by get_inner_reference in T with the
657 following property:
658 - the component is non-addressable
659 or NULL_TREE if no such parent exists. In the former cases, the alias
660 set of this parent is the alias set that must be used for T itself. */
662 tree
663 component_uses_parent_alias_set_from (const_tree t)
665 const_tree found = NULL_TREE;
667 while (handled_component_p (t))
669 if (ends_tbaa_access_path_p (t))
670 found = t;
672 t = TREE_OPERAND (t, 0);
675 if (found)
676 return TREE_OPERAND (found, 0);
678 return NULL_TREE;
682 /* Return whether the pointer-type T effective for aliasing may
683 access everything and thus the reference has to be assigned
684 alias-set zero. */
686 static bool
687 ref_all_alias_ptr_type_p (const_tree t)
689 return (VOID_TYPE_P (TREE_TYPE (t))
690 || TYPE_REF_CAN_ALIAS_ALL (t));
693 /* Return the alias set for the memory pointed to by T, which may be
694 either a type or an expression. Return -1 if there is nothing
695 special about dereferencing T. */
697 static alias_set_type
698 get_deref_alias_set_1 (tree t)
700 /* All we care about is the type. */
701 if (! TYPE_P (t))
702 t = TREE_TYPE (t);
704 /* If we have an INDIRECT_REF via a void pointer, we don't
705 know anything about what that might alias. Likewise if the
706 pointer is marked that way. */
707 if (ref_all_alias_ptr_type_p (t))
708 return 0;
710 return -1;
713 /* Return the alias set for the memory pointed to by T, which may be
714 either a type or an expression. */
716 alias_set_type
717 get_deref_alias_set (tree t)
719 /* If we're not doing any alias analysis, just assume everything
720 aliases everything else. */
721 if (!flag_strict_aliasing)
722 return 0;
724 alias_set_type set = get_deref_alias_set_1 (t);
726 /* Fall back to the alias-set of the pointed-to type. */
727 if (set == -1)
729 if (! TYPE_P (t))
730 t = TREE_TYPE (t);
731 set = get_alias_set (TREE_TYPE (t));
734 return set;
737 /* Return the pointer-type relevant for TBAA purposes from the
738 memory reference tree *T or NULL_TREE in which case *T is
739 adjusted to point to the outermost component reference that
740 can be used for assigning an alias set. */
742 tree
743 reference_alias_ptr_type_1 (tree *t)
745 tree inner;
747 /* Get the base object of the reference. */
748 inner = *t;
749 while (handled_component_p (inner))
751 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
752 the type of any component references that wrap it to
753 determine the alias-set. */
754 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
755 *t = TREE_OPERAND (inner, 0);
756 inner = TREE_OPERAND (inner, 0);
759 /* Handle pointer dereferences here, they can override the
760 alias-set. */
761 if (INDIRECT_REF_P (inner)
762 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
763 return TREE_TYPE (TREE_OPERAND (inner, 0));
764 else if (TREE_CODE (inner) == TARGET_MEM_REF)
765 return TREE_TYPE (TMR_OFFSET (inner));
766 else if (TREE_CODE (inner) == MEM_REF
767 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
768 return TREE_TYPE (TREE_OPERAND (inner, 1));
770 /* If the innermost reference is a MEM_REF that has a
771 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
772 using the memory access type for determining the alias-set. */
773 if (TREE_CODE (inner) == MEM_REF
774 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
775 != TYPE_MAIN_VARIANT
776 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
777 return TREE_TYPE (TREE_OPERAND (inner, 1));
779 /* Otherwise, pick up the outermost object that we could have
780 a pointer to. */
781 tree tem = component_uses_parent_alias_set_from (*t);
782 if (tem)
783 *t = tem;
785 return NULL_TREE;
788 /* Return the pointer-type relevant for TBAA purposes from the
789 gimple memory reference tree T. This is the type to be used for
790 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
791 and guarantees that get_alias_set will return the same alias
792 set for T and the replacement. */
794 tree
795 reference_alias_ptr_type (tree t)
797 /* If the frontend assigns this alias-set zero, preserve that. */
798 if (lang_hooks.get_alias_set (t) == 0)
799 return ptr_type_node;
801 tree ptype = reference_alias_ptr_type_1 (&t);
802 /* If there is a given pointer type for aliasing purposes, return it. */
803 if (ptype != NULL_TREE)
804 return ptype;
806 /* Otherwise build one from the outermost component reference we
807 may use. */
808 if (TREE_CODE (t) == MEM_REF
809 || TREE_CODE (t) == TARGET_MEM_REF)
810 return TREE_TYPE (TREE_OPERAND (t, 1));
811 else
812 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
815 /* Return whether the pointer-types T1 and T2 used to determine
816 two alias sets of two references will yield the same answer
817 from get_deref_alias_set. */
819 bool
820 alias_ptr_types_compatible_p (tree t1, tree t2)
822 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
823 return true;
825 if (ref_all_alias_ptr_type_p (t1)
826 || ref_all_alias_ptr_type_p (t2))
827 return false;
829 /* This function originally abstracts from simply comparing
830 get_deref_alias_set so that we are sure this still computes
831 the same result after LTO type merging is applied.
832 When in LTO type merging is done we can actually do this compare.
834 if (in_lto_p)
835 return get_deref_alias_set (t1) == get_deref_alias_set (t2);
836 else
837 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
838 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
841 /* Create emptry alias set entry. */
843 alias_set_entry *
844 init_alias_set_entry (alias_set_type set)
846 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
847 ase->alias_set = set;
848 ase->children = NULL;
849 ase->has_zero_child = false;
850 ase->is_pointer = false;
851 ase->has_pointer = false;
852 gcc_checking_assert (!get_alias_set_entry (set));
853 (*alias_sets)[set] = ase;
854 return ase;
857 /* Return the alias set for T, which may be either a type or an
858 expression. Call language-specific routine for help, if needed. */
860 alias_set_type
861 get_alias_set (tree t)
863 alias_set_type set;
865 /* We cannot give up with -fno-strict-aliasing because we need to build
866 proper type representations for possible functions which are built with
867 -fstrict-aliasing. */
869 /* return 0 if this or its type is an error. */
870 if (t == error_mark_node
871 || (! TYPE_P (t)
872 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
873 return 0;
875 /* We can be passed either an expression or a type. This and the
876 language-specific routine may make mutually-recursive calls to each other
877 to figure out what to do. At each juncture, we see if this is a tree
878 that the language may need to handle specially. First handle things that
879 aren't types. */
880 if (! TYPE_P (t))
882 /* Give the language a chance to do something with this tree
883 before we look at it. */
884 STRIP_NOPS (t);
885 set = lang_hooks.get_alias_set (t);
886 if (set != -1)
887 return set;
889 /* Get the alias pointer-type to use or the outermost object
890 that we could have a pointer to. */
891 tree ptype = reference_alias_ptr_type_1 (&t);
892 if (ptype != NULL)
893 return get_deref_alias_set (ptype);
895 /* If we've already determined the alias set for a decl, just return
896 it. This is necessary for C++ anonymous unions, whose component
897 variables don't look like union members (boo!). */
898 if (VAR_P (t)
899 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
900 return MEM_ALIAS_SET (DECL_RTL (t));
902 /* Now all we care about is the type. */
903 t = TREE_TYPE (t);
906 /* Variant qualifiers don't affect the alias set, so get the main
907 variant. */
908 t = TYPE_MAIN_VARIANT (t);
910 if (AGGREGATE_TYPE_P (t)
911 && TYPE_TYPELESS_STORAGE (t))
912 return 0;
914 /* Always use the canonical type as well. If this is a type that
915 requires structural comparisons to identify compatible types
916 use alias set zero. */
917 if (TYPE_STRUCTURAL_EQUALITY_P (t))
919 /* Allow the language to specify another alias set for this
920 type. */
921 set = lang_hooks.get_alias_set (t);
922 if (set != -1)
923 return set;
924 /* Handle structure type equality for pointer types, arrays and vectors.
925 This is easy to do, because the code below ignores canonical types on
926 these anyway. This is important for LTO, where TYPE_CANONICAL for
927 pointers cannot be meaningfully computed by the frontend. */
928 if (canonical_type_used_p (t))
930 /* In LTO we set canonical types for all types where it makes
931 sense to do so. Double check we did not miss some type. */
932 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
933 return 0;
936 else
938 t = TYPE_CANONICAL (t);
939 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
942 /* If this is a type with a known alias set, return it. */
943 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
944 if (TYPE_ALIAS_SET_KNOWN_P (t))
945 return TYPE_ALIAS_SET (t);
947 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
948 if (!COMPLETE_TYPE_P (t))
950 /* For arrays with unknown size the conservative answer is the
951 alias set of the element type. */
952 if (TREE_CODE (t) == ARRAY_TYPE)
953 return get_alias_set (TREE_TYPE (t));
955 /* But return zero as a conservative answer for incomplete types. */
956 return 0;
959 /* See if the language has special handling for this type. */
960 set = lang_hooks.get_alias_set (t);
961 if (set != -1)
962 return set;
964 /* There are no objects of FUNCTION_TYPE, so there's no point in
965 using up an alias set for them. (There are, of course, pointers
966 and references to functions, but that's different.) */
967 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
968 set = 0;
970 /* Unless the language specifies otherwise, let vector types alias
971 their components. This avoids some nasty type punning issues in
972 normal usage. And indeed lets vectors be treated more like an
973 array slice. */
974 else if (TREE_CODE (t) == VECTOR_TYPE)
975 set = get_alias_set (TREE_TYPE (t));
977 /* Unless the language specifies otherwise, treat array types the
978 same as their components. This avoids the asymmetry we get
979 through recording the components. Consider accessing a
980 character(kind=1) through a reference to a character(kind=1)[1:1].
981 Or consider if we want to assign integer(kind=4)[0:D.1387] and
982 integer(kind=4)[4] the same alias set or not.
983 Just be pragmatic here and make sure the array and its element
984 type get the same alias set assigned. */
985 else if (TREE_CODE (t) == ARRAY_TYPE
986 && (!TYPE_NONALIASED_COMPONENT (t)
987 || TYPE_STRUCTURAL_EQUALITY_P (t)))
988 set = get_alias_set (TREE_TYPE (t));
990 /* From the former common C and C++ langhook implementation:
992 Unfortunately, there is no canonical form of a pointer type.
993 In particular, if we have `typedef int I', then `int *', and
994 `I *' are different types. So, we have to pick a canonical
995 representative. We do this below.
997 Technically, this approach is actually more conservative that
998 it needs to be. In particular, `const int *' and `int *'
999 should be in different alias sets, according to the C and C++
1000 standard, since their types are not the same, and so,
1001 technically, an `int **' and `const int **' cannot point at
1002 the same thing.
1004 But, the standard is wrong. In particular, this code is
1005 legal C++:
1007 int *ip;
1008 int **ipp = &ip;
1009 const int* const* cipp = ipp;
1010 And, it doesn't make sense for that to be legal unless you
1011 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
1012 the pointed-to types. This issue has been reported to the
1013 C++ committee.
1015 For this reason go to canonical type of the unqalified pointer type.
1016 Until GCC 6 this code set all pointers sets to have alias set of
1017 ptr_type_node but that is a bad idea, because it prevents disabiguations
1018 in between pointers. For Firefox this accounts about 20% of all
1019 disambiguations in the program. */
1020 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
1022 tree p;
1023 auto_vec <bool, 8> reference;
1025 /* Unnest all pointers and references.
1026 We also want to make pointer to array/vector equivalent to pointer to
1027 its element (see the reasoning above). Skip all those types, too. */
1028 for (p = t; POINTER_TYPE_P (p)
1029 || (TREE_CODE (p) == ARRAY_TYPE
1030 && (!TYPE_NONALIASED_COMPONENT (p)
1031 || !COMPLETE_TYPE_P (p)
1032 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1033 || TREE_CODE (p) == VECTOR_TYPE;
1034 p = TREE_TYPE (p))
1036 /* Ada supports recursive pointers. Instead of doing recursion
1037 check, just give up once the preallocated space of 8 elements
1038 is up. In this case just punt to void * alias set. */
1039 if (reference.length () == 8)
1041 p = ptr_type_node;
1042 break;
1044 if (TREE_CODE (p) == REFERENCE_TYPE)
1045 /* In LTO we want languages that use references to be compatible
1046 with languages that use pointers. */
1047 reference.safe_push (true && !in_lto_p);
1048 if (TREE_CODE (p) == POINTER_TYPE)
1049 reference.safe_push (false);
1051 p = TYPE_MAIN_VARIANT (p);
1053 /* In LTO for C++ programs we can turn incomplete types to complete
1054 using ODR name lookup. */
1055 if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1057 p = prevailing_odr_type (p);
1058 gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1061 /* Make void * compatible with char * and also void **.
1062 Programs are commonly violating TBAA by this.
1064 We also make void * to conflict with every pointer
1065 (see record_component_aliases) and thus it is safe it to use it for
1066 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1067 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1068 set = get_alias_set (ptr_type_node);
1069 else
1071 /* Rebuild pointer type starting from canonical types using
1072 unqualified pointers and references only. This way all such
1073 pointers will have the same alias set and will conflict with
1074 each other.
1076 Most of time we already have pointers or references of a given type.
1077 If not we build new one just to be sure that if someone later
1078 (probably only middle-end can, as we should assign all alias
1079 classes only after finishing translation unit) builds the pointer
1080 type, the canonical type will match. */
1081 p = TYPE_CANONICAL (p);
1082 while (!reference.is_empty ())
1084 if (reference.pop ())
1085 p = build_reference_type (p);
1086 else
1087 p = build_pointer_type (p);
1088 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1089 /* build_pointer_type should always return the canonical type.
1090 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1091 them. Be sure that frontends do not glob canonical types of
1092 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1093 in all other cases. */
1094 gcc_checking_assert (!TYPE_CANONICAL (p)
1095 || p == TYPE_CANONICAL (p));
1098 /* Assign the alias set to both p and t.
1099 We cannot call get_alias_set (p) here as that would trigger
1100 infinite recursion when p == t. In other cases it would just
1101 trigger unnecesary legwork of rebuilding the pointer again. */
1102 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1103 if (TYPE_ALIAS_SET_KNOWN_P (p))
1104 set = TYPE_ALIAS_SET (p);
1105 else
1107 set = new_alias_set ();
1108 TYPE_ALIAS_SET (p) = set;
1112 /* Alias set of ptr_type_node is special and serve as universal pointer which
1113 is TBAA compatible with every other pointer type. Be sure we have the
1114 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1115 of pointer types NULL. */
1116 else if (t == ptr_type_node)
1117 set = new_alias_set ();
1119 /* Otherwise make a new alias set for this type. */
1120 else
1122 /* Each canonical type gets its own alias set, so canonical types
1123 shouldn't form a tree. It doesn't really matter for types
1124 we handle specially above, so only check it where it possibly
1125 would result in a bogus alias set. */
1126 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1128 set = new_alias_set ();
1131 TYPE_ALIAS_SET (t) = set;
1133 /* If this is an aggregate type or a complex type, we must record any
1134 component aliasing information. */
1135 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1136 record_component_aliases (t);
1138 /* We treat pointer types specially in alias_set_subset_of. */
1139 if (POINTER_TYPE_P (t) && set)
1141 alias_set_entry *ase = get_alias_set_entry (set);
1142 if (!ase)
1143 ase = init_alias_set_entry (set);
1144 ase->is_pointer = true;
1145 ase->has_pointer = true;
1148 return set;
1151 /* Return a brand-new alias set. */
1153 alias_set_type
1154 new_alias_set (void)
1156 if (alias_sets == 0)
1157 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1158 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1159 return alias_sets->length () - 1;
1162 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1163 not everything that aliases SUPERSET also aliases SUBSET. For example,
1164 in C, a store to an `int' can alias a load of a structure containing an
1165 `int', and vice versa. But it can't alias a load of a 'double' member
1166 of the same structure. Here, the structure would be the SUPERSET and
1167 `int' the SUBSET. This relationship is also described in the comment at
1168 the beginning of this file.
1170 This function should be called only once per SUPERSET/SUBSET pair.
1172 It is illegal for SUPERSET to be zero; everything is implicitly a
1173 subset of alias set zero. */
1175 void
1176 record_alias_subset (alias_set_type superset, alias_set_type subset)
1178 alias_set_entry *superset_entry;
1179 alias_set_entry *subset_entry;
1181 /* It is possible in complex type situations for both sets to be the same,
1182 in which case we can ignore this operation. */
1183 if (superset == subset)
1184 return;
1186 gcc_assert (superset);
1188 superset_entry = get_alias_set_entry (superset);
1189 if (superset_entry == 0)
1191 /* Create an entry for the SUPERSET, so that we have a place to
1192 attach the SUBSET. */
1193 superset_entry = init_alias_set_entry (superset);
1196 if (subset == 0)
1197 superset_entry->has_zero_child = 1;
1198 else
1200 if (!superset_entry->children)
1201 superset_entry->children
1202 = hash_map<alias_set_hash, int>::create_ggc (64);
1204 /* Enter the SUBSET itself as a child of the SUPERSET. If it was
1205 already there we're done. */
1206 if (superset_entry->children->put (subset, 0))
1207 return;
1209 subset_entry = get_alias_set_entry (subset);
1210 /* If there is an entry for the subset, enter all of its children
1211 (if they are not already present) as children of the SUPERSET. */
1212 if (subset_entry)
1214 if (subset_entry->has_zero_child)
1215 superset_entry->has_zero_child = true;
1216 if (subset_entry->has_pointer)
1217 superset_entry->has_pointer = true;
1219 if (subset_entry->children)
1221 hash_map<alias_set_hash, int>::iterator iter
1222 = subset_entry->children->begin ();
1223 for (; iter != subset_entry->children->end (); ++iter)
1224 superset_entry->children->put ((*iter).first, (*iter).second);
1230 /* Record that component types of TYPE, if any, are part of SUPERSET for
1231 aliasing purposes. For record types, we only record component types
1232 for fields that are not marked non-addressable. For array types, we
1233 only record the component type if it is not marked non-aliased. */
1235 void
1236 record_component_aliases (tree type, alias_set_type superset)
1238 tree field;
1240 if (superset == 0)
1241 return;
1243 switch (TREE_CODE (type))
1245 case RECORD_TYPE:
1246 case UNION_TYPE:
1247 case QUAL_UNION_TYPE:
1249 /* LTO non-ODR type merging does not make any difference between
1250 component pointer types. We may have
1252 struct foo {int *a;};
1254 as TYPE_CANONICAL of
1256 struct bar {float *a;};
1258 Because accesses to int * and float * do not alias, we would get
1259 false negative when accessing the same memory location by
1260 float ** and bar *. We thus record the canonical type as:
1262 struct {void *a;};
1264 void * is special cased and works as a universal pointer type.
1265 Accesses to it conflicts with accesses to any other pointer
1266 type. */
1267 bool void_pointers = in_lto_p
1268 && (!odr_type_p (type)
1269 || !odr_based_tbaa_p (type));
1270 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1271 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1273 tree t = TREE_TYPE (field);
1274 if (void_pointers)
1276 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1277 element type and that type has to be normalized to void *,
1278 too, in the case it is a pointer. */
1279 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1281 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1282 t = TREE_TYPE (t);
1284 if (POINTER_TYPE_P (t))
1285 t = ptr_type_node;
1286 else if (flag_checking)
1287 gcc_checking_assert (get_alias_set (t)
1288 == get_alias_set (TREE_TYPE (field)));
1291 alias_set_type set = get_alias_set (t);
1292 record_alias_subset (superset, set);
1293 /* If the field has alias-set zero make sure to still record
1294 any componets of it. This makes sure that for
1295 struct A {
1296 struct B {
1297 int i;
1298 char c[4];
1299 } b;
1301 in C++ even though 'B' has alias-set zero because
1302 TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1303 'int' as subset. */
1304 if (set == 0)
1305 record_component_aliases (t, superset);
1308 break;
1310 case COMPLEX_TYPE:
1311 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1312 break;
1314 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1315 element type. */
1317 default:
1318 break;
1322 /* Record that component types of TYPE, if any, are part of that type for
1323 aliasing purposes. For record types, we only record component types
1324 for fields that are not marked non-addressable. For array types, we
1325 only record the component type if it is not marked non-aliased. */
1327 void
1328 record_component_aliases (tree type)
1330 alias_set_type superset = get_alias_set (type);
1331 record_component_aliases (type, superset);
1335 /* Allocate an alias set for use in storing and reading from the varargs
1336 spill area. */
1338 static GTY(()) alias_set_type varargs_set = -1;
1340 alias_set_type
1341 get_varargs_alias_set (void)
1343 #if 1
1344 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1345 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1346 consistently use the varargs alias set for loads from the varargs
1347 area. So don't use it anywhere. */
1348 return 0;
1349 #else
1350 if (varargs_set == -1)
1351 varargs_set = new_alias_set ();
1353 return varargs_set;
1354 #endif
1357 /* Likewise, but used for the fixed portions of the frame, e.g., register
1358 save areas. */
1360 static GTY(()) alias_set_type frame_set = -1;
1362 alias_set_type
1363 get_frame_alias_set (void)
1365 if (frame_set == -1)
1366 frame_set = new_alias_set ();
1368 return frame_set;
1371 /* Create a new, unique base with id ID. */
1373 static rtx
1374 unique_base_value (HOST_WIDE_INT id)
1376 return gen_rtx_ADDRESS (Pmode, id);
1379 /* Return true if accesses based on any other base value cannot alias
1380 those based on X. */
1382 static bool
1383 unique_base_value_p (rtx x)
1385 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1388 /* Return true if X is known to be a base value. */
1390 static bool
1391 known_base_value_p (rtx x)
1393 switch (GET_CODE (x))
1395 case LABEL_REF:
1396 case SYMBOL_REF:
1397 return true;
1399 case ADDRESS:
1400 /* Arguments may or may not be bases; we don't know for sure. */
1401 return GET_MODE (x) != VOIDmode;
1403 default:
1404 return false;
1408 /* Inside SRC, the source of a SET, find a base address. */
1410 static rtx
1411 find_base_value (rtx src)
1413 unsigned int regno;
1414 scalar_int_mode int_mode;
1416 #if defined (FIND_BASE_TERM)
1417 /* Try machine-dependent ways to find the base term. */
1418 src = FIND_BASE_TERM (src);
1419 #endif
1421 switch (GET_CODE (src))
1423 case SYMBOL_REF:
1424 case LABEL_REF:
1425 return src;
1427 case REG:
1428 regno = REGNO (src);
1429 /* At the start of a function, argument registers have known base
1430 values which may be lost later. Returning an ADDRESS
1431 expression here allows optimization based on argument values
1432 even when the argument registers are used for other purposes. */
1433 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1434 return new_reg_base_value[regno];
1436 /* If a pseudo has a known base value, return it. Do not do this
1437 for non-fixed hard regs since it can result in a circular
1438 dependency chain for registers which have values at function entry.
1440 The test above is not sufficient because the scheduler may move
1441 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1442 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1443 && regno < vec_safe_length (reg_base_value))
1445 /* If we're inside init_alias_analysis, use new_reg_base_value
1446 to reduce the number of relaxation iterations. */
1447 if (new_reg_base_value && new_reg_base_value[regno]
1448 && DF_REG_DEF_COUNT (regno) == 1)
1449 return new_reg_base_value[regno];
1451 if ((*reg_base_value)[regno])
1452 return (*reg_base_value)[regno];
1455 return 0;
1457 case MEM:
1458 /* Check for an argument passed in memory. Only record in the
1459 copying-arguments block; it is too hard to track changes
1460 otherwise. */
1461 if (copying_arguments
1462 && (XEXP (src, 0) == arg_pointer_rtx
1463 || (GET_CODE (XEXP (src, 0)) == PLUS
1464 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1465 return arg_base_value;
1466 return 0;
1468 case CONST:
1469 src = XEXP (src, 0);
1470 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1471 break;
1473 /* fall through */
1475 case PLUS:
1476 case MINUS:
1478 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1480 /* If either operand is a REG that is a known pointer, then it
1481 is the base. */
1482 if (REG_P (src_0) && REG_POINTER (src_0))
1483 return find_base_value (src_0);
1484 if (REG_P (src_1) && REG_POINTER (src_1))
1485 return find_base_value (src_1);
1487 /* If either operand is a REG, then see if we already have
1488 a known value for it. */
1489 if (REG_P (src_0))
1491 temp = find_base_value (src_0);
1492 if (temp != 0)
1493 src_0 = temp;
1496 if (REG_P (src_1))
1498 temp = find_base_value (src_1);
1499 if (temp!= 0)
1500 src_1 = temp;
1503 /* If either base is named object or a special address
1504 (like an argument or stack reference), then use it for the
1505 base term. */
1506 if (src_0 != 0 && known_base_value_p (src_0))
1507 return src_0;
1509 if (src_1 != 0 && known_base_value_p (src_1))
1510 return src_1;
1512 /* Guess which operand is the base address:
1513 If either operand is a symbol, then it is the base. If
1514 either operand is a CONST_INT, then the other is the base. */
1515 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1516 return find_base_value (src_0);
1517 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1518 return find_base_value (src_1);
1520 return 0;
1523 case LO_SUM:
1524 /* The standard form is (lo_sum reg sym) so look only at the
1525 second operand. */
1526 return find_base_value (XEXP (src, 1));
1528 case AND:
1529 /* Look through aligning ANDs. And AND with zero or one with
1530 the LSB set isn't one (see for example PR92462). */
1531 if (CONST_INT_P (XEXP (src, 1))
1532 && INTVAL (XEXP (src, 1)) != 0
1533 && (INTVAL (XEXP (src, 1)) & 1) == 0)
1534 return find_base_value (XEXP (src, 0));
1535 return 0;
1537 case TRUNCATE:
1538 /* As we do not know which address space the pointer is referring to, we can
1539 handle this only if the target does not support different pointer or
1540 address modes depending on the address space. */
1541 if (!target_default_pointer_address_modes_p ())
1542 break;
1543 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1544 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1545 break;
1546 /* Fall through. */
1547 case HIGH:
1548 case PRE_INC:
1549 case PRE_DEC:
1550 case POST_INC:
1551 case POST_DEC:
1552 case PRE_MODIFY:
1553 case POST_MODIFY:
1554 return find_base_value (XEXP (src, 0));
1556 case ZERO_EXTEND:
1557 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1558 /* As we do not know which address space the pointer is referring to, we can
1559 handle this only if the target does not support different pointer or
1560 address modes depending on the address space. */
1561 if (!target_default_pointer_address_modes_p ())
1562 break;
1565 rtx temp = find_base_value (XEXP (src, 0));
1567 if (temp != 0 && CONSTANT_P (temp))
1568 temp = convert_memory_address (Pmode, temp);
1570 return temp;
1573 default:
1574 break;
1577 return 0;
1580 /* Called from init_alias_analysis indirectly through note_stores,
1581 or directly if DEST is a register with a REG_NOALIAS note attached.
1582 SET is null in the latter case. */
1584 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1585 register N has been set in this function. */
1586 static sbitmap reg_seen;
1588 static void
1589 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1591 unsigned regno;
1592 rtx src;
1593 int n;
1595 if (!REG_P (dest))
1596 return;
1598 regno = REGNO (dest);
1600 gcc_checking_assert (regno < reg_base_value->length ());
1602 n = REG_NREGS (dest);
1603 if (n != 1)
1605 while (--n >= 0)
1607 bitmap_set_bit (reg_seen, regno + n);
1608 new_reg_base_value[regno + n] = 0;
1610 return;
1613 if (set)
1615 /* A CLOBBER wipes out any old value but does not prevent a previously
1616 unset register from acquiring a base address (i.e. reg_seen is not
1617 set). */
1618 if (GET_CODE (set) == CLOBBER)
1620 new_reg_base_value[regno] = 0;
1621 return;
1624 src = SET_SRC (set);
1626 else
1628 /* There's a REG_NOALIAS note against DEST. */
1629 if (bitmap_bit_p (reg_seen, regno))
1631 new_reg_base_value[regno] = 0;
1632 return;
1634 bitmap_set_bit (reg_seen, regno);
1635 new_reg_base_value[regno] = unique_base_value (unique_id++);
1636 return;
1639 /* If this is not the first set of REGNO, see whether the new value
1640 is related to the old one. There are two cases of interest:
1642 (1) The register might be assigned an entirely new value
1643 that has the same base term as the original set.
1645 (2) The set might be a simple self-modification that
1646 cannot change REGNO's base value.
1648 If neither case holds, reject the original base value as invalid.
1649 Note that the following situation is not detected:
1651 extern int x, y; int *p = &x; p += (&y-&x);
1653 ANSI C does not allow computing the difference of addresses
1654 of distinct top level objects. */
1655 if (new_reg_base_value[regno] != 0
1656 && find_base_value (src) != new_reg_base_value[regno])
1657 switch (GET_CODE (src))
1659 case LO_SUM:
1660 case MINUS:
1661 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1662 new_reg_base_value[regno] = 0;
1663 break;
1664 case PLUS:
1665 /* If the value we add in the PLUS is also a valid base value,
1666 this might be the actual base value, and the original value
1667 an index. */
1669 rtx other = NULL_RTX;
1671 if (XEXP (src, 0) == dest)
1672 other = XEXP (src, 1);
1673 else if (XEXP (src, 1) == dest)
1674 other = XEXP (src, 0);
1676 if (! other || find_base_value (other))
1677 new_reg_base_value[regno] = 0;
1678 break;
1680 case AND:
1681 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1682 new_reg_base_value[regno] = 0;
1683 break;
1684 default:
1685 new_reg_base_value[regno] = 0;
1686 break;
1688 /* If this is the first set of a register, record the value. */
1689 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1690 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1691 new_reg_base_value[regno] = find_base_value (src);
1693 bitmap_set_bit (reg_seen, regno);
1696 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1697 using hard registers with non-null REG_BASE_VALUE for renaming. */
1699 get_reg_base_value (unsigned int regno)
1701 return (*reg_base_value)[regno];
1704 /* If a value is known for REGNO, return it. */
1707 get_reg_known_value (unsigned int regno)
1709 if (regno >= FIRST_PSEUDO_REGISTER)
1711 regno -= FIRST_PSEUDO_REGISTER;
1712 if (regno < vec_safe_length (reg_known_value))
1713 return (*reg_known_value)[regno];
1715 return NULL;
1718 /* Set it. */
1720 static void
1721 set_reg_known_value (unsigned int regno, rtx val)
1723 if (regno >= FIRST_PSEUDO_REGISTER)
1725 regno -= FIRST_PSEUDO_REGISTER;
1726 if (regno < vec_safe_length (reg_known_value))
1727 (*reg_known_value)[regno] = val;
1731 /* Similarly for reg_known_equiv_p. */
1733 bool
1734 get_reg_known_equiv_p (unsigned int regno)
1736 if (regno >= FIRST_PSEUDO_REGISTER)
1738 regno -= FIRST_PSEUDO_REGISTER;
1739 if (regno < vec_safe_length (reg_known_value))
1740 return bitmap_bit_p (reg_known_equiv_p, regno);
1742 return false;
1745 static void
1746 set_reg_known_equiv_p (unsigned int regno, bool val)
1748 if (regno >= FIRST_PSEUDO_REGISTER)
1750 regno -= FIRST_PSEUDO_REGISTER;
1751 if (regno < vec_safe_length (reg_known_value))
1753 if (val)
1754 bitmap_set_bit (reg_known_equiv_p, regno);
1755 else
1756 bitmap_clear_bit (reg_known_equiv_p, regno);
1762 /* Returns a canonical version of X, from the point of view alias
1763 analysis. (For example, if X is a MEM whose address is a register,
1764 and the register has a known value (say a SYMBOL_REF), then a MEM
1765 whose address is the SYMBOL_REF is returned.) */
1768 canon_rtx (rtx x)
1770 /* Recursively look for equivalences. */
1771 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1773 rtx t = get_reg_known_value (REGNO (x));
1774 if (t == x)
1775 return x;
1776 if (t)
1777 return canon_rtx (t);
1780 if (GET_CODE (x) == PLUS)
1782 rtx x0 = canon_rtx (XEXP (x, 0));
1783 rtx x1 = canon_rtx (XEXP (x, 1));
1785 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1786 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1789 /* This gives us much better alias analysis when called from
1790 the loop optimizer. Note we want to leave the original
1791 MEM alone, but need to return the canonicalized MEM with
1792 all the flags with their original values. */
1793 else if (MEM_P (x))
1794 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1796 return x;
1799 /* Return true if X and Y are identical-looking rtx's.
1800 Expect that X and Y has been already canonicalized.
1802 We use the data in reg_known_value above to see if two registers with
1803 different numbers are, in fact, equivalent. */
1805 static bool
1806 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1808 int i;
1809 int j;
1810 enum rtx_code code;
1811 const char *fmt;
1813 if (x == 0 && y == 0)
1814 return true;
1815 if (x == 0 || y == 0)
1816 return false;
1818 if (x == y)
1819 return true;
1821 code = GET_CODE (x);
1822 /* Rtx's of different codes cannot be equal. */
1823 if (code != GET_CODE (y))
1824 return false;
1826 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1827 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1829 if (GET_MODE (x) != GET_MODE (y))
1830 return false;
1832 /* Some RTL can be compared without a recursive examination. */
1833 switch (code)
1835 case REG:
1836 return REGNO (x) == REGNO (y);
1838 case LABEL_REF:
1839 return label_ref_label (x) == label_ref_label (y);
1841 case SYMBOL_REF:
1843 HOST_WIDE_INT distance = 0;
1844 return (compare_base_symbol_refs (x, y, &distance) == 1
1845 && distance == 0);
1848 case ENTRY_VALUE:
1849 /* This is magic, don't go through canonicalization et al. */
1850 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1852 case VALUE:
1853 CASE_CONST_UNIQUE:
1854 /* Pointer equality guarantees equality for these nodes. */
1855 return false;
1857 default:
1858 break;
1861 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1862 if (code == PLUS)
1863 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1864 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1865 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1866 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1867 /* For commutative operations, the RTX match if the operand match in any
1868 order. Also handle the simple binary and unary cases without a loop. */
1869 if (COMMUTATIVE_P (x))
1871 rtx xop0 = canon_rtx (XEXP (x, 0));
1872 rtx yop0 = canon_rtx (XEXP (y, 0));
1873 rtx yop1 = canon_rtx (XEXP (y, 1));
1875 return ((rtx_equal_for_memref_p (xop0, yop0)
1876 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1877 || (rtx_equal_for_memref_p (xop0, yop1)
1878 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1880 else if (NON_COMMUTATIVE_P (x))
1882 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1883 canon_rtx (XEXP (y, 0)))
1884 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1885 canon_rtx (XEXP (y, 1))));
1887 else if (UNARY_P (x))
1888 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1889 canon_rtx (XEXP (y, 0)));
1891 /* Compare the elements. If any pair of corresponding elements
1892 fail to match, return false for the whole things.
1894 Limit cases to types which actually appear in addresses. */
1896 fmt = GET_RTX_FORMAT (code);
1897 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1899 switch (fmt[i])
1901 case 'i':
1902 if (XINT (x, i) != XINT (y, i))
1903 return false;
1904 break;
1906 case 'p':
1907 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1908 return false;
1909 break;
1911 case 'E':
1912 /* Two vectors must have the same length. */
1913 if (XVECLEN (x, i) != XVECLEN (y, i))
1914 return false;
1916 /* And the corresponding elements must match. */
1917 for (j = 0; j < XVECLEN (x, i); j++)
1918 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1919 canon_rtx (XVECEXP (y, i, j))) == 0)
1920 return false;
1921 break;
1923 case 'e':
1924 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1925 canon_rtx (XEXP (y, i))) == 0)
1926 return false;
1927 break;
1929 /* This can happen for asm operands. */
1930 case 's':
1931 if (strcmp (XSTR (x, i), XSTR (y, i)))
1932 return false;
1933 break;
1935 /* This can happen for an asm which clobbers memory. */
1936 case '0':
1937 break;
1939 /* It is believed that rtx's at this level will never
1940 contain anything but integers and other rtx's,
1941 except for within LABEL_REFs and SYMBOL_REFs. */
1942 default:
1943 gcc_unreachable ();
1946 return true;
1949 static rtx
1950 find_base_term (rtx x, vec<std::pair<cselib_val *,
1951 struct elt_loc_list *> > &visited_vals)
1953 cselib_val *val;
1954 struct elt_loc_list *l, *f;
1955 rtx ret;
1956 scalar_int_mode int_mode;
1958 #if defined (FIND_BASE_TERM)
1959 /* Try machine-dependent ways to find the base term. */
1960 x = FIND_BASE_TERM (x);
1961 #endif
1963 switch (GET_CODE (x))
1965 case REG:
1966 return REG_BASE_VALUE (x);
1968 case TRUNCATE:
1969 /* As we do not know which address space the pointer is referring to, we can
1970 handle this only if the target does not support different pointer or
1971 address modes depending on the address space. */
1972 if (!target_default_pointer_address_modes_p ())
1973 return 0;
1974 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1975 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1976 return 0;
1977 /* Fall through. */
1978 case HIGH:
1979 case PRE_INC:
1980 case PRE_DEC:
1981 case POST_INC:
1982 case POST_DEC:
1983 case PRE_MODIFY:
1984 case POST_MODIFY:
1985 return find_base_term (XEXP (x, 0), visited_vals);
1987 case ZERO_EXTEND:
1988 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1989 /* As we do not know which address space the pointer is referring to, we can
1990 handle this only if the target does not support different pointer or
1991 address modes depending on the address space. */
1992 if (!target_default_pointer_address_modes_p ())
1993 return 0;
1996 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1998 if (temp != 0 && CONSTANT_P (temp))
1999 temp = convert_memory_address (Pmode, temp);
2001 return temp;
2004 case VALUE:
2005 val = CSELIB_VAL_PTR (x);
2006 ret = NULL_RTX;
2008 if (!val)
2009 return ret;
2011 if (cselib_sp_based_value_p (val))
2012 return static_reg_base_value[STACK_POINTER_REGNUM];
2014 if (visited_vals.length () > (unsigned) param_max_find_base_term_values)
2015 return ret;
2017 f = val->locs;
2018 /* Reset val->locs to avoid infinite recursion. */
2019 if (f)
2020 visited_vals.safe_push (std::make_pair (val, f));
2021 val->locs = NULL;
2023 for (l = f; l; l = l->next)
2024 if (GET_CODE (l->loc) == VALUE
2025 && CSELIB_VAL_PTR (l->loc)->locs
2026 && !CSELIB_VAL_PTR (l->loc)->locs->next
2027 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
2028 continue;
2029 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
2030 break;
2032 return ret;
2034 case LO_SUM:
2035 /* The standard form is (lo_sum reg sym) so look only at the
2036 second operand. */
2037 return find_base_term (XEXP (x, 1), visited_vals);
2039 case CONST:
2040 x = XEXP (x, 0);
2041 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
2042 return 0;
2043 /* Fall through. */
2044 case PLUS:
2045 case MINUS:
2047 rtx tmp1 = XEXP (x, 0);
2048 rtx tmp2 = XEXP (x, 1);
2050 /* This is a little bit tricky since we have to determine which of
2051 the two operands represents the real base address. Otherwise this
2052 routine may return the index register instead of the base register.
2054 That may cause us to believe no aliasing was possible, when in
2055 fact aliasing is possible.
2057 We use a few simple tests to guess the base register. Additional
2058 tests can certainly be added. For example, if one of the operands
2059 is a shift or multiply, then it must be the index register and the
2060 other operand is the base register. */
2062 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
2063 return find_base_term (tmp2, visited_vals);
2065 /* If either operand is known to be a pointer, then prefer it
2066 to determine the base term. */
2067 if (REG_P (tmp1) && REG_POINTER (tmp1))
2069 else if (REG_P (tmp2) && REG_POINTER (tmp2))
2070 std::swap (tmp1, tmp2);
2071 /* If second argument is constant which has base term, prefer it
2072 over variable tmp1. See PR64025. */
2073 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2074 std::swap (tmp1, tmp2);
2076 /* Go ahead and find the base term for both operands. If either base
2077 term is from a pointer or is a named object or a special address
2078 (like an argument or stack reference), then use it for the
2079 base term. */
2080 rtx base = find_base_term (tmp1, visited_vals);
2081 if (base != NULL_RTX
2082 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2083 || known_base_value_p (base)))
2084 return base;
2085 base = find_base_term (tmp2, visited_vals);
2086 if (base != NULL_RTX
2087 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2088 || known_base_value_p (base)))
2089 return base;
2091 /* We could not determine which of the two operands was the
2092 base register and which was the index. So we can determine
2093 nothing from the base alias check. */
2094 return 0;
2097 case AND:
2098 /* Look through aligning ANDs. And AND with zero or one with
2099 the LSB set isn't one (see for example PR92462). */
2100 if (CONST_INT_P (XEXP (x, 1))
2101 && INTVAL (XEXP (x, 1)) != 0
2102 && (INTVAL (XEXP (x, 1)) & 1) == 0)
2103 return find_base_term (XEXP (x, 0), visited_vals);
2104 return 0;
2106 case SYMBOL_REF:
2107 case LABEL_REF:
2108 return x;
2110 default:
2111 return 0;
2115 /* Wrapper around the worker above which removes locs from visited VALUEs
2116 to avoid visiting them multiple times. We unwind that changes here. */
2118 static rtx
2119 find_base_term (rtx x)
2121 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2122 rtx res = find_base_term (x, visited_vals);
2123 for (unsigned i = 0; i < visited_vals.length (); ++i)
2124 visited_vals[i].first->locs = visited_vals[i].second;
2125 return res;
2128 /* Return true if accesses to address X may alias accesses based
2129 on the stack pointer. */
2131 bool
2132 may_be_sp_based_p (rtx x)
2134 rtx base = find_base_term (x);
2135 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2138 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2139 if they refer to different objects and -1 if we cannot decide. */
2142 compare_base_decls (tree base1, tree base2)
2144 int ret;
2145 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2146 if (base1 == base2)
2147 return 1;
2149 /* If we have two register decls with register specification we
2150 cannot decide unless their assembler names are the same. */
2151 if (VAR_P (base1)
2152 && VAR_P (base2)
2153 && DECL_HARD_REGISTER (base1)
2154 && DECL_HARD_REGISTER (base2)
2155 && DECL_ASSEMBLER_NAME_SET_P (base1)
2156 && DECL_ASSEMBLER_NAME_SET_P (base2))
2158 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2159 return 1;
2160 return -1;
2163 /* Declarations of non-automatic variables may have aliases. All other
2164 decls are unique. */
2165 if (!decl_in_symtab_p (base1)
2166 || !decl_in_symtab_p (base2))
2167 return 0;
2169 /* Don't cause symbols to be inserted by the act of checking. */
2170 symtab_node *node1 = symtab_node::get (base1);
2171 if (!node1)
2172 return 0;
2173 symtab_node *node2 = symtab_node::get (base2);
2174 if (!node2)
2175 return 0;
2177 ret = node1->equal_address_to (node2, true);
2178 return ret;
2181 /* Compare SYMBOL_REFs X_BASE and Y_BASE.
2183 - Return 1 if Y_BASE - X_BASE is constant, adding that constant
2184 to *DISTANCE if DISTANCE is nonnull.
2186 - Return 0 if no accesses based on X_BASE can alias Y_BASE.
2188 - Return -1 if one of the two results applies, but we can't tell
2189 which at compile time. Update DISTANCE in the same way as
2190 for a return value of 1, for the case in which that holds. */
2192 static int
2193 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base,
2194 HOST_WIDE_INT *distance)
2196 tree x_decl = SYMBOL_REF_DECL (x_base);
2197 tree y_decl = SYMBOL_REF_DECL (y_base);
2198 bool binds_def = true;
2199 bool swap = false;
2201 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2202 return 1;
2203 if (x_decl && y_decl)
2204 return compare_base_decls (x_decl, y_decl);
2205 if (x_decl || y_decl)
2207 if (!x_decl)
2209 swap = true;
2210 std::swap (x_decl, y_decl);
2211 std::swap (x_base, y_base);
2213 /* We handle specially only section anchors. Other symbols are
2214 either equal (via aliasing) or refer to different objects. */
2215 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2216 return -1;
2217 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2218 to ignore CONST_DECLs because they are readonly. */
2219 if (!VAR_P (x_decl)
2220 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2221 return 0;
2223 symtab_node *x_node = symtab_node::get_create (x_decl)
2224 ->ultimate_alias_target ();
2225 /* External variable cannot be in section anchor. */
2226 if (!x_node->definition)
2227 return 0;
2228 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2229 /* If not in anchor, we can disambiguate. */
2230 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2231 return 0;
2233 /* We have an alias of anchored variable. If it can be interposed;
2234 we must assume it may or may not alias its anchor. */
2235 binds_def = decl_binds_to_current_def_p (x_decl);
2237 /* If we have variable in section anchor, we can compare by offset. */
2238 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2239 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2241 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2242 return 0;
2243 if (distance)
2244 *distance += (swap ? -1 : 1) * (SYMBOL_REF_BLOCK_OFFSET (y_base)
2245 - SYMBOL_REF_BLOCK_OFFSET (x_base));
2246 return binds_def ? 1 : -1;
2248 /* Either the symbols are equal (via aliasing) or they refer to
2249 different objects. */
2250 return -1;
2253 /* Return false if the addresses X and Y are known to point to different
2254 objects, true if they might be pointers to the same object. */
2256 static bool
2257 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2258 machine_mode x_mode, machine_mode y_mode)
2260 /* If the address itself has no known base see if a known equivalent
2261 value has one. If either address still has no known base, nothing
2262 is known about aliasing. */
2263 if (x_base == 0)
2265 rtx x_c;
2267 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2268 return true;
2270 x_base = find_base_term (x_c);
2271 if (x_base == 0)
2272 return true;
2275 if (y_base == 0)
2277 rtx y_c;
2278 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2279 return true;
2281 y_base = find_base_term (y_c);
2282 if (y_base == 0)
2283 return true;
2286 /* If the base addresses are equal nothing is known about aliasing. */
2287 if (rtx_equal_p (x_base, y_base))
2288 return true;
2290 /* The base addresses are different expressions. If they are not accessed
2291 via AND, there is no conflict. We can bring knowledge of object
2292 alignment into play here. For example, on alpha, "char a, b;" can
2293 alias one another, though "char a; long b;" cannot. AND addresses may
2294 implicitly alias surrounding objects; i.e. unaligned access in DImode
2295 via AND address can alias all surrounding object types except those
2296 with aligment 8 or higher. */
2297 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2298 return true;
2299 if (GET_CODE (x) == AND
2300 && (!CONST_INT_P (XEXP (x, 1))
2301 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2302 return true;
2303 if (GET_CODE (y) == AND
2304 && (!CONST_INT_P (XEXP (y, 1))
2305 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2306 return true;
2308 /* Differing symbols not accessed via AND never alias. */
2309 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2310 return compare_base_symbol_refs (x_base, y_base) != 0;
2312 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2313 return false;
2315 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2316 return false;
2318 return true;
2321 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2322 (or equal to) that of V. */
2324 static bool
2325 refs_newer_value_p (const_rtx expr, rtx v)
2327 int minuid = CSELIB_VAL_PTR (v)->uid;
2328 subrtx_iterator::array_type array;
2329 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2330 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2331 return true;
2332 return false;
2335 /* Convert the address X into something we can use. This is done by returning
2336 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2337 we call cselib to get a more useful rtx. */
2340 get_addr (rtx x)
2342 cselib_val *v;
2343 struct elt_loc_list *l;
2345 if (GET_CODE (x) != VALUE)
2347 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2348 && GET_CODE (XEXP (x, 0)) == VALUE
2349 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2351 rtx op0 = get_addr (XEXP (x, 0));
2352 if (op0 != XEXP (x, 0))
2354 poly_int64 c;
2355 if (GET_CODE (x) == PLUS
2356 && poly_int_rtx_p (XEXP (x, 1), &c))
2357 return plus_constant (GET_MODE (x), op0, c);
2358 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2359 op0, XEXP (x, 1));
2362 return x;
2364 v = CSELIB_VAL_PTR (x);
2365 if (v)
2367 bool have_equivs = cselib_have_permanent_equivalences ();
2368 if (have_equivs)
2369 v = canonical_cselib_val (v);
2370 for (l = v->locs; l; l = l->next)
2371 if (CONSTANT_P (l->loc))
2372 return l->loc;
2373 for (l = v->locs; l; l = l->next)
2374 if (!REG_P (l->loc) && !MEM_P (l->loc)
2375 /* Avoid infinite recursion when potentially dealing with
2376 var-tracking artificial equivalences, by skipping the
2377 equivalences themselves, and not choosing expressions
2378 that refer to newer VALUEs. */
2379 && (!have_equivs
2380 || (GET_CODE (l->loc) != VALUE
2381 && !refs_newer_value_p (l->loc, x))))
2382 return l->loc;
2383 if (have_equivs)
2385 for (l = v->locs; l; l = l->next)
2386 if (REG_P (l->loc)
2387 || (GET_CODE (l->loc) != VALUE
2388 && !refs_newer_value_p (l->loc, x)))
2389 return l->loc;
2390 /* Return the canonical value. */
2391 return v->val_rtx;
2393 if (v->locs)
2394 return v->locs->loc;
2396 return x;
2399 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2400 where SIZE is the size in bytes of the memory reference. If ADDR
2401 is not modified by the memory reference then ADDR is returned. */
2403 static rtx
2404 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2406 poly_int64 offset = 0;
2408 switch (GET_CODE (addr))
2410 case PRE_INC:
2411 offset = (n_refs + 1) * size;
2412 break;
2413 case PRE_DEC:
2414 offset = -(n_refs + 1) * size;
2415 break;
2416 case POST_INC:
2417 offset = n_refs * size;
2418 break;
2419 case POST_DEC:
2420 offset = -n_refs * size;
2421 break;
2423 default:
2424 return addr;
2427 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2428 addr = canon_rtx (addr);
2430 return addr;
2433 /* Return TRUE if an object X sized at XSIZE bytes and another object
2434 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2435 any of the sizes is zero, assume an overlap, otherwise use the
2436 absolute value of the sizes as the actual sizes. */
2438 static inline bool
2439 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2441 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2442 return true;
2444 if (maybe_ge (c, 0))
2445 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2446 else
2447 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2450 /* Return one if X and Y (memory addresses) reference the
2451 same location in memory or if the references overlap.
2452 Return zero if they do not overlap, else return
2453 minus one in which case they still might reference the same location.
2455 C is an offset accumulator. When
2456 C is nonzero, we are testing aliases between X and Y + C.
2457 XSIZE is the size in bytes of the X reference,
2458 similarly YSIZE is the size in bytes for Y.
2459 Expect that canon_rtx has been already called for X and Y.
2461 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2462 referenced (the reference was BLKmode), so make the most pessimistic
2463 assumptions.
2465 If XSIZE or YSIZE is negative, we may access memory outside the object
2466 being referenced as a side effect. This can happen when using AND to
2467 align memory references, as is done on the Alpha.
2469 Nice to notice that varying addresses cannot conflict with fp if no
2470 local variables had their addresses taken, but that's too hard now.
2472 ??? Contrary to the tree alias oracle this does not return
2473 one for X + non-constant and Y + non-constant when X and Y are equal.
2474 If that is fixed the TBAA hack for union type-punning can be removed. */
2476 static int
2477 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2478 poly_int64 c)
2480 if (GET_CODE (x) == VALUE)
2482 if (REG_P (y))
2484 struct elt_loc_list *l = NULL;
2485 if (CSELIB_VAL_PTR (x))
2486 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2487 l; l = l->next)
2488 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2489 break;
2490 if (l)
2491 x = y;
2492 else
2493 x = get_addr (x);
2495 /* Don't call get_addr if y is the same VALUE. */
2496 else if (x != y)
2497 x = get_addr (x);
2499 if (GET_CODE (y) == VALUE)
2501 if (REG_P (x))
2503 struct elt_loc_list *l = NULL;
2504 if (CSELIB_VAL_PTR (y))
2505 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2506 l; l = l->next)
2507 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2508 break;
2509 if (l)
2510 y = x;
2511 else
2512 y = get_addr (y);
2514 /* Don't call get_addr if x is the same VALUE. */
2515 else if (y != x)
2516 y = get_addr (y);
2518 if (GET_CODE (x) == HIGH)
2519 x = XEXP (x, 0);
2520 else if (GET_CODE (x) == LO_SUM)
2521 x = XEXP (x, 1);
2522 else
2523 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2524 if (GET_CODE (y) == HIGH)
2525 y = XEXP (y, 0);
2526 else if (GET_CODE (y) == LO_SUM)
2527 y = XEXP (y, 1);
2528 else
2529 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2531 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2533 HOST_WIDE_INT distance = 0;
2534 int cmp = compare_base_symbol_refs (x, y, &distance);
2536 /* If both decls are the same, decide by offsets. */
2537 if (cmp == 1)
2538 return offset_overlap_p (c + distance, xsize, ysize);
2539 /* Assume a potential overlap for symbolic addresses that went
2540 through alignment adjustments (i.e., that have negative
2541 sizes), because we can't know how far they are from each
2542 other. */
2543 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2544 return -1;
2545 /* If decls are different or we know by offsets that there is no overlap,
2546 we win. */
2547 if (!cmp || !offset_overlap_p (c + distance, xsize, ysize))
2548 return 0;
2549 /* Decls may or may not be different and offsets overlap....*/
2550 return -1;
2552 else if (rtx_equal_for_memref_p (x, y))
2554 return offset_overlap_p (c, xsize, ysize);
2557 /* This code used to check for conflicts involving stack references and
2558 globals but the base address alias code now handles these cases. */
2560 if (GET_CODE (x) == PLUS)
2562 /* The fact that X is canonicalized means that this
2563 PLUS rtx is canonicalized. */
2564 rtx x0 = XEXP (x, 0);
2565 rtx x1 = XEXP (x, 1);
2567 /* However, VALUEs might end up in different positions even in
2568 canonical PLUSes. Comparing their addresses is enough. */
2569 if (x0 == y)
2570 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2571 else if (x1 == y)
2572 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2574 poly_int64 cx1, cy1;
2575 if (GET_CODE (y) == PLUS)
2577 /* The fact that Y is canonicalized means that this
2578 PLUS rtx is canonicalized. */
2579 rtx y0 = XEXP (y, 0);
2580 rtx y1 = XEXP (y, 1);
2582 if (x0 == y1)
2583 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2584 if (x1 == y0)
2585 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2587 if (rtx_equal_for_memref_p (x1, y1))
2588 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2589 if (rtx_equal_for_memref_p (x0, y0))
2590 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2591 if (poly_int_rtx_p (x1, &cx1))
2593 if (poly_int_rtx_p (y1, &cy1))
2594 return memrefs_conflict_p (xsize, x0, ysize, y0,
2595 c - cx1 + cy1);
2596 else
2597 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2599 else if (poly_int_rtx_p (y1, &cy1))
2600 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2602 return -1;
2604 else if (poly_int_rtx_p (x1, &cx1))
2605 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2607 else if (GET_CODE (y) == PLUS)
2609 /* The fact that Y is canonicalized means that this
2610 PLUS rtx is canonicalized. */
2611 rtx y0 = XEXP (y, 0);
2612 rtx y1 = XEXP (y, 1);
2614 if (x == y0)
2615 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2616 if (x == y1)
2617 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2619 poly_int64 cy1;
2620 if (poly_int_rtx_p (y1, &cy1))
2621 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2622 else
2623 return -1;
2626 if (GET_CODE (x) == GET_CODE (y))
2627 switch (GET_CODE (x))
2629 case MULT:
2631 /* Handle cases where we expect the second operands to be the
2632 same, and check only whether the first operand would conflict
2633 or not. */
2634 rtx x0, y0;
2635 rtx x1 = canon_rtx (XEXP (x, 1));
2636 rtx y1 = canon_rtx (XEXP (y, 1));
2637 if (! rtx_equal_for_memref_p (x1, y1))
2638 return -1;
2639 x0 = canon_rtx (XEXP (x, 0));
2640 y0 = canon_rtx (XEXP (y, 0));
2641 if (rtx_equal_for_memref_p (x0, y0))
2642 return offset_overlap_p (c, xsize, ysize);
2644 /* Can't properly adjust our sizes. */
2645 poly_int64 c1;
2646 if (!poly_int_rtx_p (x1, &c1)
2647 || !can_div_trunc_p (xsize, c1, &xsize)
2648 || !can_div_trunc_p (ysize, c1, &ysize)
2649 || !can_div_trunc_p (c, c1, &c))
2650 return -1;
2651 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2654 default:
2655 break;
2658 /* Deal with alignment ANDs by adjusting offset and size so as to
2659 cover the maximum range, without taking any previously known
2660 alignment into account. Make a size negative after such an
2661 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2662 assume a potential overlap, because they may end up in contiguous
2663 memory locations and the stricter-alignment access may span over
2664 part of both. */
2665 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2667 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2668 unsigned HOST_WIDE_INT uc = sc;
2669 if (sc < 0 && pow2_or_zerop (-uc))
2671 if (maybe_gt (xsize, 0))
2672 xsize = -xsize;
2673 if (maybe_ne (xsize, 0))
2674 xsize += sc + 1;
2675 c -= sc + 1;
2676 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2677 ysize, y, c);
2680 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2682 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2683 unsigned HOST_WIDE_INT uc = sc;
2684 if (sc < 0 && pow2_or_zerop (-uc))
2686 if (maybe_gt (ysize, 0))
2687 ysize = -ysize;
2688 if (maybe_ne (ysize, 0))
2689 ysize += sc + 1;
2690 c += sc + 1;
2691 return memrefs_conflict_p (xsize, x,
2692 ysize, canon_rtx (XEXP (y, 0)), c);
2696 if (CONSTANT_P (x))
2698 poly_int64 cx, cy;
2699 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2701 c += cy - cx;
2702 return offset_overlap_p (c, xsize, ysize);
2705 if (GET_CODE (x) == CONST)
2707 if (GET_CODE (y) == CONST)
2708 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2709 ysize, canon_rtx (XEXP (y, 0)), c);
2710 else
2711 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2712 ysize, y, c);
2714 if (GET_CODE (y) == CONST)
2715 return memrefs_conflict_p (xsize, x, ysize,
2716 canon_rtx (XEXP (y, 0)), c);
2718 /* Assume a potential overlap for symbolic addresses that went
2719 through alignment adjustments (i.e., that have negative
2720 sizes), because we can't know how far they are from each
2721 other. */
2722 if (CONSTANT_P (y))
2723 return (maybe_lt (xsize, 0)
2724 || maybe_lt (ysize, 0)
2725 || offset_overlap_p (c, xsize, ysize));
2727 return -1;
2730 return -1;
2733 /* Functions to compute memory dependencies.
2735 Since we process the insns in execution order, we can build tables
2736 to keep track of what registers are fixed (and not aliased), what registers
2737 are varying in known ways, and what registers are varying in unknown
2738 ways.
2740 If both memory references are volatile, then there must always be a
2741 dependence between the two references, since their order cannot be
2742 changed. A volatile and non-volatile reference can be interchanged
2743 though.
2745 We also must allow AND addresses, because they may generate accesses
2746 outside the object being referenced. This is used to generate aligned
2747 addresses from unaligned addresses, for instance, the alpha
2748 storeqi_unaligned pattern. */
2750 /* Read dependence: X is read after read in MEM takes place. There can
2751 only be a dependence here if both reads are volatile, or if either is
2752 an explicit barrier. */
2754 bool
2755 read_dependence (const_rtx mem, const_rtx x)
2757 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2758 return true;
2759 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2760 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2761 return true;
2762 return false;
2765 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2767 static tree
2768 decl_for_component_ref (tree x)
2772 x = TREE_OPERAND (x, 0);
2774 while (x && TREE_CODE (x) == COMPONENT_REF);
2776 return x && DECL_P (x) ? x : NULL_TREE;
2779 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2780 for the offset of the field reference. *KNOWN_P says whether the
2781 offset is known. */
2783 static void
2784 adjust_offset_for_component_ref (tree x, bool *known_p,
2785 poly_int64 *offset)
2787 if (!*known_p)
2788 return;
2791 tree xoffset = component_ref_field_offset (x);
2792 tree field = TREE_OPERAND (x, 1);
2793 if (!poly_int_tree_p (xoffset))
2795 *known_p = false;
2796 return;
2799 poly_offset_int woffset
2800 = (wi::to_poly_offset (xoffset)
2801 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2802 >> LOG2_BITS_PER_UNIT)
2803 + *offset);
2804 if (!woffset.to_shwi (offset))
2806 *known_p = false;
2807 return;
2810 x = TREE_OPERAND (x, 0);
2812 while (x && TREE_CODE (x) == COMPONENT_REF);
2815 /* Return true if we can determine the exprs corresponding to memrefs
2816 X and Y and they do not overlap.
2817 If LOOP_VARIANT is set, skip offset-based disambiguation */
2819 bool
2820 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2822 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2823 rtx rtlx, rtly;
2824 rtx basex, basey;
2825 bool moffsetx_known_p, moffsety_known_p;
2826 poly_int64 moffsetx = 0, moffsety = 0;
2827 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2829 /* Unless both have exprs, we can't tell anything. */
2830 if (exprx == 0 || expry == 0)
2831 return false;
2833 /* For spill-slot accesses make sure we have valid offsets. */
2834 if ((exprx == get_spill_slot_decl (false)
2835 && ! MEM_OFFSET_KNOWN_P (x))
2836 || (expry == get_spill_slot_decl (false)
2837 && ! MEM_OFFSET_KNOWN_P (y)))
2838 return false;
2840 /* If the field reference test failed, look at the DECLs involved. */
2841 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2842 if (moffsetx_known_p)
2843 moffsetx = MEM_OFFSET (x);
2844 if (TREE_CODE (exprx) == COMPONENT_REF)
2846 tree t = decl_for_component_ref (exprx);
2847 if (! t)
2848 return false;
2849 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2850 exprx = t;
2853 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2854 if (moffsety_known_p)
2855 moffsety = MEM_OFFSET (y);
2856 if (TREE_CODE (expry) == COMPONENT_REF)
2858 tree t = decl_for_component_ref (expry);
2859 if (! t)
2860 return false;
2861 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2862 expry = t;
2865 if (! DECL_P (exprx) || ! DECL_P (expry))
2866 return false;
2868 /* If we refer to different gimple registers, or one gimple register
2869 and one non-gimple-register, we know they can't overlap. First,
2870 gimple registers don't have their addresses taken. Now, there
2871 could be more than one stack slot for (different versions of) the
2872 same gimple register, but we can presumably tell they don't
2873 overlap based on offsets from stack base addresses elsewhere.
2874 It's important that we don't proceed to DECL_RTL, because gimple
2875 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2876 able to do anything about them since no SSA information will have
2877 remained to guide it. */
2878 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2879 return exprx != expry
2880 || (moffsetx_known_p && moffsety_known_p
2881 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2882 && !offset_overlap_p (moffsety - moffsetx,
2883 MEM_SIZE (x), MEM_SIZE (y)));
2885 /* With invalid code we can end up storing into the constant pool.
2886 Bail out to avoid ICEing when creating RTL for this.
2887 See gfortran.dg/lto/20091028-2_0.f90. */
2888 if (TREE_CODE (exprx) == CONST_DECL
2889 || TREE_CODE (expry) == CONST_DECL)
2890 return true;
2892 /* If one decl is known to be a function or label in a function and
2893 the other is some kind of data, they can't overlap. */
2894 if ((TREE_CODE (exprx) == FUNCTION_DECL
2895 || TREE_CODE (exprx) == LABEL_DECL)
2896 != (TREE_CODE (expry) == FUNCTION_DECL
2897 || TREE_CODE (expry) == LABEL_DECL))
2898 return true;
2900 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2901 living in multiple places), we can't tell anything. Exception
2902 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2903 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2904 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2905 return false;
2907 rtlx = DECL_RTL (exprx);
2908 rtly = DECL_RTL (expry);
2910 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2911 can't overlap unless they are the same because we never reuse that part
2912 of the stack frame used for locals for spilled pseudos. */
2913 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2914 && ! rtx_equal_p (rtlx, rtly))
2915 return true;
2917 /* If we have MEMs referring to different address spaces (which can
2918 potentially overlap), we cannot easily tell from the addresses
2919 whether the references overlap. */
2920 if (MEM_P (rtlx) && MEM_P (rtly)
2921 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2922 return false;
2924 /* Get the base and offsets of both decls. If either is a register, we
2925 know both are and are the same, so use that as the base. The only
2926 we can avoid overlap is if we can deduce that they are nonoverlapping
2927 pieces of that decl, which is very rare. */
2928 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2929 basex = strip_offset_and_add (basex, &offsetx);
2931 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2932 basey = strip_offset_and_add (basey, &offsety);
2934 /* If the bases are different, we know they do not overlap if both
2935 are constants or if one is a constant and the other a pointer into the
2936 stack frame. Otherwise a different base means we can't tell if they
2937 overlap or not. */
2938 if (compare_base_decls (exprx, expry) == 0)
2939 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2940 || (CONSTANT_P (basex) && REG_P (basey)
2941 && REGNO_PTR_FRAME_P (REGNO (basey)))
2942 || (CONSTANT_P (basey) && REG_P (basex)
2943 && REGNO_PTR_FRAME_P (REGNO (basex))));
2945 /* Offset based disambiguation not appropriate for loop invariant */
2946 if (loop_invariant)
2947 return false;
2949 /* Offset based disambiguation is OK even if we do not know that the
2950 declarations are necessarily different
2951 (i.e. compare_base_decls (exprx, expry) == -1) */
2953 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2954 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2955 : -1);
2956 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2957 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2958 : -1);
2960 /* If we have an offset for either memref, it can update the values computed
2961 above. */
2962 if (moffsetx_known_p)
2963 offsetx += moffsetx, sizex -= moffsetx;
2964 if (moffsety_known_p)
2965 offsety += moffsety, sizey -= moffsety;
2967 /* If a memref has both a size and an offset, we can use the smaller size.
2968 We can't do this if the offset isn't known because we must view this
2969 memref as being anywhere inside the DECL's MEM. */
2970 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2971 sizex = MEM_SIZE (x);
2972 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2973 sizey = MEM_SIZE (y);
2975 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2978 /* Helper for true_dependence and canon_true_dependence.
2979 Checks for true dependence: X is read after store in MEM takes place.
2981 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2982 NULL_RTX, and the canonical addresses of MEM and X are both computed
2983 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2985 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2987 Returns true if there is a true dependence, false otherwise. */
2989 static bool
2990 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2991 const_rtx x, rtx x_addr, bool mem_canonicalized)
2993 rtx true_mem_addr;
2994 rtx base;
2995 int ret;
2997 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2998 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
3000 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3001 return true;
3003 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3004 This is used in epilogue deallocation functions, and in cselib. */
3005 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3006 return true;
3007 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3008 return true;
3009 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3010 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3011 return true;
3013 if (! x_addr)
3014 x_addr = XEXP (x, 0);
3015 x_addr = get_addr (x_addr);
3017 if (! mem_addr)
3019 mem_addr = XEXP (mem, 0);
3020 if (mem_mode == VOIDmode)
3021 mem_mode = GET_MODE (mem);
3023 true_mem_addr = get_addr (mem_addr);
3025 /* Read-only memory is by definition never modified, and therefore can't
3026 conflict with anything. However, don't assume anything when AND
3027 addresses are involved and leave to the code below to determine
3028 dependence. We don't expect to find read-only set on MEM, but
3029 stupid user tricks can produce them, so don't die. */
3030 if (MEM_READONLY_P (x)
3031 && GET_CODE (x_addr) != AND
3032 && GET_CODE (true_mem_addr) != AND)
3033 return false;
3035 /* If we have MEMs referring to different address spaces (which can
3036 potentially overlap), we cannot easily tell from the addresses
3037 whether the references overlap. */
3038 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3039 return true;
3041 base = find_base_term (x_addr);
3042 if (base && (GET_CODE (base) == LABEL_REF
3043 || (GET_CODE (base) == SYMBOL_REF
3044 && CONSTANT_POOL_ADDRESS_P (base))))
3045 return false;
3047 rtx mem_base = find_base_term (true_mem_addr);
3048 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
3049 GET_MODE (x), mem_mode))
3050 return false;
3052 x_addr = canon_rtx (x_addr);
3053 if (!mem_canonicalized)
3054 mem_addr = canon_rtx (true_mem_addr);
3056 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
3057 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
3058 return !!ret;
3060 if (mems_in_disjoint_alias_sets_p (x, mem))
3061 return false;
3063 if (nonoverlapping_memrefs_p (mem, x, false))
3064 return false;
3066 return rtx_refs_may_alias_p (x, mem, true);
3069 /* True dependence: X is read after store in MEM takes place. */
3071 bool
3072 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
3074 return true_dependence_1 (mem, mem_mode, NULL_RTX,
3075 x, NULL_RTX, /*mem_canonicalized=*/false);
3078 /* Canonical true dependence: X is read after store in MEM takes place.
3079 Variant of true_dependence which assumes MEM has already been
3080 canonicalized (hence we no longer do that here).
3081 The mem_addr argument has been added, since true_dependence_1 computed
3082 this value prior to canonicalizing. */
3084 bool
3085 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3086 const_rtx x, rtx x_addr)
3088 return true_dependence_1 (mem, mem_mode, mem_addr,
3089 x, x_addr, /*mem_canonicalized=*/true);
3092 /* Returns true if a write to X might alias a previous read from
3093 (or, if WRITEP is true, a write to) MEM.
3094 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3095 and X_MODE the mode for that access.
3096 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3098 static bool
3099 write_dependence_p (const_rtx mem,
3100 const_rtx x, machine_mode x_mode, rtx x_addr,
3101 bool mem_canonicalized, bool x_canonicalized, bool writep)
3103 rtx mem_addr;
3104 rtx true_mem_addr, true_x_addr;
3105 rtx base;
3106 int ret;
3108 gcc_checking_assert (x_canonicalized
3109 ? (x_addr != NULL_RTX
3110 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3111 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3113 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3114 return true;
3116 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3117 This is used in epilogue deallocation functions. */
3118 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3119 return true;
3120 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3121 return true;
3122 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3123 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3124 return true;
3126 if (!x_addr)
3127 x_addr = XEXP (x, 0);
3128 true_x_addr = get_addr (x_addr);
3130 mem_addr = XEXP (mem, 0);
3131 true_mem_addr = get_addr (mem_addr);
3133 /* A read from read-only memory can't conflict with read-write memory.
3134 Don't assume anything when AND addresses are involved and leave to
3135 the code below to determine dependence. */
3136 if (!writep
3137 && MEM_READONLY_P (mem)
3138 && GET_CODE (true_x_addr) != AND
3139 && GET_CODE (true_mem_addr) != AND)
3140 return false;
3142 /* If we have MEMs referring to different address spaces (which can
3143 potentially overlap), we cannot easily tell from the addresses
3144 whether the references overlap. */
3145 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3146 return true;
3148 base = find_base_term (true_mem_addr);
3149 if (! writep
3150 && base
3151 && (GET_CODE (base) == LABEL_REF
3152 || (GET_CODE (base) == SYMBOL_REF
3153 && CONSTANT_POOL_ADDRESS_P (base))))
3154 return false;
3156 rtx x_base = find_base_term (true_x_addr);
3157 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3158 GET_MODE (x), GET_MODE (mem)))
3159 return false;
3161 if (!x_canonicalized)
3163 x_addr = canon_rtx (true_x_addr);
3164 x_mode = GET_MODE (x);
3166 if (!mem_canonicalized)
3167 mem_addr = canon_rtx (true_mem_addr);
3169 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3170 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3171 return !!ret;
3173 if (nonoverlapping_memrefs_p (x, mem, false))
3174 return false;
3176 return rtx_refs_may_alias_p (x, mem, false);
3179 /* Anti dependence: X is written after read in MEM takes place. */
3181 bool
3182 anti_dependence (const_rtx mem, const_rtx x)
3184 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3185 /*mem_canonicalized=*/false,
3186 /*x_canonicalized*/false, /*writep=*/false);
3189 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3190 Also, consider X in X_MODE (which might be from an enclosing
3191 STRICT_LOW_PART / ZERO_EXTRACT).
3192 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3194 bool
3195 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3196 const_rtx x, machine_mode x_mode, rtx x_addr)
3198 return write_dependence_p (mem, x, x_mode, x_addr,
3199 mem_canonicalized, /*x_canonicalized=*/true,
3200 /*writep=*/false);
3203 /* Output dependence: X is written after store in MEM takes place. */
3205 bool
3206 output_dependence (const_rtx mem, const_rtx x)
3208 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3209 /*mem_canonicalized=*/false,
3210 /*x_canonicalized*/false, /*writep=*/true);
3213 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3214 Also, consider X in X_MODE (which might be from an enclosing
3215 STRICT_LOW_PART / ZERO_EXTRACT).
3216 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3218 bool
3219 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3220 const_rtx x, machine_mode x_mode, rtx x_addr)
3222 return write_dependence_p (mem, x, x_mode, x_addr,
3223 mem_canonicalized, /*x_canonicalized=*/true,
3224 /*writep=*/true);
3229 /* Check whether X may be aliased with MEM. Don't do offset-based
3230 memory disambiguation & TBAA. */
3231 bool
3232 may_alias_p (const_rtx mem, const_rtx x)
3234 rtx x_addr, mem_addr;
3236 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3237 return true;
3239 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3240 This is used in epilogue deallocation functions. */
3241 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3242 return true;
3243 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3244 return true;
3245 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3246 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3247 return true;
3249 x_addr = XEXP (x, 0);
3250 x_addr = get_addr (x_addr);
3252 mem_addr = XEXP (mem, 0);
3253 mem_addr = get_addr (mem_addr);
3255 /* Read-only memory is by definition never modified, and therefore can't
3256 conflict with anything. However, don't assume anything when AND
3257 addresses are involved and leave to the code below to determine
3258 dependence. We don't expect to find read-only set on MEM, but
3259 stupid user tricks can produce them, so don't die. */
3260 if (MEM_READONLY_P (x)
3261 && GET_CODE (x_addr) != AND
3262 && GET_CODE (mem_addr) != AND)
3263 return false;
3265 /* If we have MEMs referring to different address spaces (which can
3266 potentially overlap), we cannot easily tell from the addresses
3267 whether the references overlap. */
3268 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3269 return true;
3271 rtx x_base = find_base_term (x_addr);
3272 rtx mem_base = find_base_term (mem_addr);
3273 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3274 GET_MODE (x), GET_MODE (mem_addr)))
3275 return false;
3277 if (nonoverlapping_memrefs_p (mem, x, true))
3278 return false;
3280 /* TBAA not valid for loop_invarint */
3281 return rtx_refs_may_alias_p (x, mem, false);
3284 void
3285 init_alias_target (void)
3287 int i;
3289 if (!arg_base_value)
3290 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3292 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3294 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3295 /* Check whether this register can hold an incoming pointer
3296 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3297 numbers, so translate if necessary due to register windows. */
3298 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3299 && targetm.hard_regno_mode_ok (i, Pmode))
3300 static_reg_base_value[i] = arg_base_value;
3302 /* RTL code is required to be consistent about whether it uses the
3303 stack pointer, the frame pointer or the argument pointer to
3304 access a given area of the frame. We can therefore use the
3305 base address to distinguish between the different areas. */
3306 static_reg_base_value[STACK_POINTER_REGNUM]
3307 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3308 static_reg_base_value[ARG_POINTER_REGNUM]
3309 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3310 static_reg_base_value[FRAME_POINTER_REGNUM]
3311 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3313 /* The above rules extend post-reload, with eliminations applying
3314 consistently to each of the three pointers. Cope with cases in
3315 which the frame pointer is eliminated to the hard frame pointer
3316 rather than the stack pointer. */
3317 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3318 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3319 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3322 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3323 to be memory reference. */
3324 static bool memory_modified;
3325 static void
3326 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3328 if (MEM_P (x))
3330 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3331 memory_modified = true;
3336 /* Return true when INSN possibly modify memory contents of MEM
3337 (i.e. address can be modified). */
3338 bool
3339 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3341 if (!INSN_P (insn))
3342 return false;
3343 /* Conservatively assume all non-readonly MEMs might be modified in
3344 calls. */
3345 if (CALL_P (insn))
3346 return true;
3347 memory_modified = false;
3348 note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3349 CONST_CAST_RTX(mem));
3350 return memory_modified;
3353 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3354 array. */
3356 void
3357 init_alias_analysis (void)
3359 const bool frame_pointer_eliminated
3360 = reload_completed
3361 && !frame_pointer_needed
3362 && targetm.can_eliminate (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM);
3363 unsigned int maxreg = max_reg_num ();
3364 bool changed;
3365 int pass, i;
3366 unsigned int ui;
3367 rtx_insn *insn;
3368 rtx val;
3369 int rpo_cnt;
3370 int *rpo;
3372 timevar_push (TV_ALIAS_ANALYSIS);
3374 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER,
3375 true);
3376 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3377 bitmap_clear (reg_known_equiv_p);
3379 /* If we have memory allocated from the previous run, use it. */
3380 if (old_reg_base_value)
3381 reg_base_value = old_reg_base_value;
3383 if (reg_base_value)
3384 reg_base_value->truncate (0);
3386 vec_safe_grow_cleared (reg_base_value, maxreg, true);
3388 new_reg_base_value = XNEWVEC (rtx, maxreg);
3389 reg_seen = sbitmap_alloc (maxreg);
3391 /* The basic idea is that each pass through this loop will use the
3392 "constant" information from the previous pass to propagate alias
3393 information through another level of assignments.
3395 The propagation is done on the CFG in reverse post-order, to propagate
3396 things forward as far as possible in each iteration.
3398 This could get expensive if the assignment chains are long. Maybe
3399 we should throttle the number of iterations, possibly based on
3400 the optimization level or flag_expensive_optimizations.
3402 We could propagate more information in the first pass by making use
3403 of DF_REG_DEF_COUNT to determine immediately that the alias information
3404 for a pseudo is "constant".
3406 A program with an uninitialized variable can cause an infinite loop
3407 here. Instead of doing a full dataflow analysis to detect such problems
3408 we just cap the number of iterations for the loop.
3410 The state of the arrays for the set chain in question does not matter
3411 since the program has undefined behavior. */
3413 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3414 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3416 pass = 0;
3419 /* Assume nothing will change this iteration of the loop. */
3420 changed = false;
3422 /* We want to assign the same IDs each iteration of this loop, so
3423 start counting from one each iteration of the loop. */
3424 unique_id = 1;
3426 /* We're at the start of the function each iteration through the
3427 loop, so we're copying arguments. */
3428 copying_arguments = true;
3430 /* Wipe the potential alias information clean for this pass. */
3431 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3433 /* Wipe the reg_seen array clean. */
3434 bitmap_clear (reg_seen);
3436 /* Initialize the alias information for this pass. */
3437 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3438 if (static_reg_base_value[i]
3439 /* Don't treat the hard frame pointer as special if we
3440 eliminated the frame pointer to the stack pointer. */
3441 && !(i == HARD_FRAME_POINTER_REGNUM && frame_pointer_eliminated))
3443 new_reg_base_value[i] = static_reg_base_value[i];
3444 bitmap_set_bit (reg_seen, i);
3447 /* Walk the insns adding values to the new_reg_base_value array. */
3448 for (i = 0; i < rpo_cnt; i++)
3450 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3451 FOR_BB_INSNS (bb, insn)
3453 if (NONDEBUG_INSN_P (insn))
3455 rtx note, set;
3457 /* Treat the hard frame pointer as special unless we
3458 eliminated the frame pointer to the stack pointer. */
3459 if (!frame_pointer_eliminated
3460 && modified_in_p (hard_frame_pointer_rtx, insn))
3461 continue;
3463 /* If this insn has a noalias note, process it, Otherwise,
3464 scan for sets. A simple set will have no side effects
3465 which could change the base value of any other register. */
3466 if (GET_CODE (PATTERN (insn)) == SET
3467 && REG_NOTES (insn) != 0
3468 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3469 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3470 else
3471 note_stores (insn, record_set, NULL);
3473 set = single_set (insn);
3475 if (set != 0
3476 && REG_P (SET_DEST (set))
3477 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3479 unsigned int regno = REGNO (SET_DEST (set));
3480 rtx src = SET_SRC (set);
3481 rtx t;
3483 note = find_reg_equal_equiv_note (insn);
3484 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3485 && DF_REG_DEF_COUNT (regno) != 1)
3486 note = NULL_RTX;
3488 poly_int64 offset;
3489 if (note != NULL_RTX
3490 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3491 && ! rtx_varies_p (XEXP (note, 0), 1)
3492 && ! reg_overlap_mentioned_p (SET_DEST (set),
3493 XEXP (note, 0)))
3495 set_reg_known_value (regno, XEXP (note, 0));
3496 set_reg_known_equiv_p (regno,
3497 REG_NOTE_KIND (note) == REG_EQUIV);
3499 else if (DF_REG_DEF_COUNT (regno) == 1
3500 && GET_CODE (src) == PLUS
3501 && REG_P (XEXP (src, 0))
3502 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3503 && poly_int_rtx_p (XEXP (src, 1), &offset))
3505 t = plus_constant (GET_MODE (src), t, offset);
3506 set_reg_known_value (regno, t);
3507 set_reg_known_equiv_p (regno, false);
3509 else if (DF_REG_DEF_COUNT (regno) == 1
3510 && ! rtx_varies_p (src, 1))
3512 set_reg_known_value (regno, src);
3513 set_reg_known_equiv_p (regno, false);
3517 else if (NOTE_P (insn)
3518 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3519 copying_arguments = false;
3523 /* Now propagate values from new_reg_base_value to reg_base_value. */
3524 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3526 for (ui = 0; ui < maxreg; ui++)
3528 if (new_reg_base_value[ui]
3529 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3530 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3532 (*reg_base_value)[ui] = new_reg_base_value[ui];
3533 changed = true;
3537 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3538 XDELETEVEC (rpo);
3540 /* Fill in the remaining entries. */
3541 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3543 int regno = i + FIRST_PSEUDO_REGISTER;
3544 if (! val)
3545 set_reg_known_value (regno, regno_reg_rtx[regno]);
3548 /* Clean up. */
3549 free (new_reg_base_value);
3550 new_reg_base_value = 0;
3551 sbitmap_free (reg_seen);
3552 reg_seen = 0;
3553 timevar_pop (TV_ALIAS_ANALYSIS);
3556 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3557 Special API for var-tracking pass purposes. */
3559 void
3560 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3562 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3565 void
3566 end_alias_analysis (void)
3568 old_reg_base_value = reg_base_value;
3569 vec_free (reg_known_value);
3570 sbitmap_free (reg_known_equiv_p);
3573 void
3574 dump_alias_stats_in_alias_c (FILE *s)
3576 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3577 " %llu are in alias set 0\n"
3578 " %llu queries asked about the same object\n"
3579 " %llu queries asked about the same alias set\n"
3580 " %llu access volatile\n"
3581 " %llu are dependent in the DAG\n"
3582 " %llu are aritificially in conflict with void *\n",
3583 alias_stats.num_disambiguated,
3584 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3585 + alias_stats.num_same_objects + alias_stats.num_volatile
3586 + alias_stats.num_dag + alias_stats.num_disambiguated
3587 + alias_stats.num_universal,
3588 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3589 alias_stats.num_same_objects, alias_stats.num_volatile,
3590 alias_stats.num_dag, alias_stats.num_universal);
3592 #include "gt-alias.h"