PR target/16286
[official-gcc.git] / gcc / gcse.c
blob25c53c77ae06d9526cd6c9728f90d27c968f26b1
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
199 5) Perform another pass of copy/constant propagation.
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
219 **********************
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
225 the expense.
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
232 It was found doing copy propagation between each pass enables further
233 substitutions.
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing register.
269 **********************
271 A fair bit of simplicity is created by creating small functions for simple
272 tasks, even when the function is only called in one place. This may
273 measurably slow things down [or may not] by creating more function call
274 overhead than is necessary. The source is laid out so that it's trivial
275 to make the affected functions inline so that one can measure what speed
276 up, if any, can be achieved, and maybe later when things settle things can
277 be rearranged.
279 Help stamp out big monolithic functions! */
281 /* GCSE global vars. */
283 /* -dG dump file. */
284 static FILE *gcse_file;
286 /* Note whether or not we should run jump optimization after gcse. We
287 want to do this for two cases.
289 * If we changed any jumps via cprop.
291 * If we added any labels via edge splitting. */
292 static int run_jump_opt_after_gcse;
294 /* Bitmaps are normally not included in debugging dumps.
295 However it's useful to be able to print them from GDB.
296 We could create special functions for this, but it's simpler to
297 just allow passing stderr to the dump_foo fns. Since stderr can
298 be a macro, we store a copy here. */
299 static FILE *debug_stderr;
301 /* An obstack for our working variables. */
302 static struct obstack gcse_obstack;
304 struct reg_use {rtx reg_rtx; };
306 /* Hash table of expressions. */
308 struct expr
310 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
311 rtx expr;
312 /* Index in the available expression bitmaps. */
313 int bitmap_index;
314 /* Next entry with the same hash. */
315 struct expr *next_same_hash;
316 /* List of anticipatable occurrences in basic blocks in the function.
317 An "anticipatable occurrence" is one that is the first occurrence in the
318 basic block, the operands are not modified in the basic block prior
319 to the occurrence and the output is not used between the start of
320 the block and the occurrence. */
321 struct occr *antic_occr;
322 /* List of available occurrence in basic blocks in the function.
323 An "available occurrence" is one that is the last occurrence in the
324 basic block and the operands are not modified by following statements in
325 the basic block [including this insn]. */
326 struct occr *avail_occr;
327 /* Non-null if the computation is PRE redundant.
328 The value is the newly created pseudo-reg to record a copy of the
329 expression in all the places that reach the redundant copy. */
330 rtx reaching_reg;
333 /* Occurrence of an expression.
334 There is one per basic block. If a pattern appears more than once the
335 last appearance is used [or first for anticipatable expressions]. */
337 struct occr
339 /* Next occurrence of this expression. */
340 struct occr *next;
341 /* The insn that computes the expression. */
342 rtx insn;
343 /* Nonzero if this [anticipatable] occurrence has been deleted. */
344 char deleted_p;
345 /* Nonzero if this [available] occurrence has been copied to
346 reaching_reg. */
347 /* ??? This is mutually exclusive with deleted_p, so they could share
348 the same byte. */
349 char copied_p;
352 /* Expression and copy propagation hash tables.
353 Each hash table is an array of buckets.
354 ??? It is known that if it were an array of entries, structure elements
355 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
356 not clear whether in the final analysis a sufficient amount of memory would
357 be saved as the size of the available expression bitmaps would be larger
358 [one could build a mapping table without holes afterwards though].
359 Someday I'll perform the computation and figure it out. */
361 struct hash_table
363 /* The table itself.
364 This is an array of `expr_hash_table_size' elements. */
365 struct expr **table;
367 /* Size of the hash table, in elements. */
368 unsigned int size;
370 /* Number of hash table elements. */
371 unsigned int n_elems;
373 /* Whether the table is expression of copy propagation one. */
374 int set_p;
377 /* Expression hash table. */
378 static struct hash_table expr_hash_table;
380 /* Copy propagation hash table. */
381 static struct hash_table set_hash_table;
383 /* Mapping of uids to cuids.
384 Only real insns get cuids. */
385 static int *uid_cuid;
387 /* Highest UID in UID_CUID. */
388 static int max_uid;
390 /* Get the cuid of an insn. */
391 #ifdef ENABLE_CHECKING
392 #define INSN_CUID(INSN) \
393 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
394 #else
395 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
396 #endif
398 /* Number of cuids. */
399 static int max_cuid;
401 /* Mapping of cuids to insns. */
402 static rtx *cuid_insn;
404 /* Get insn from cuid. */
405 #define CUID_INSN(CUID) (cuid_insn[CUID])
407 /* Maximum register number in function prior to doing gcse + 1.
408 Registers created during this pass have regno >= max_gcse_regno.
409 This is named with "gcse" to not collide with global of same name. */
410 static unsigned int max_gcse_regno;
412 /* Table of registers that are modified.
414 For each register, each element is a list of places where the pseudo-reg
415 is set.
417 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
418 requires knowledge of which blocks kill which regs [and thus could use
419 a bitmap instead of the lists `reg_set_table' uses].
421 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
422 num-regs) [however perhaps it may be useful to keep the data as is]. One
423 advantage of recording things this way is that `reg_set_table' is fairly
424 sparse with respect to pseudo regs but for hard regs could be fairly dense
425 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
426 up functions like compute_transp since in the case of pseudo-regs we only
427 need to iterate over the number of times a pseudo-reg is set, not over the
428 number of basic blocks [clearly there is a bit of a slow down in the cases
429 where a pseudo is set more than once in a block, however it is believed
430 that the net effect is to speed things up]. This isn't done for hard-regs
431 because recording call-clobbered hard-regs in `reg_set_table' at each
432 function call can consume a fair bit of memory, and iterating over
433 hard-regs stored this way in compute_transp will be more expensive. */
435 typedef struct reg_set
437 /* The next setting of this register. */
438 struct reg_set *next;
439 /* The insn where it was set. */
440 rtx insn;
441 } reg_set;
443 static reg_set **reg_set_table;
445 /* Size of `reg_set_table'.
446 The table starts out at max_gcse_regno + slop, and is enlarged as
447 necessary. */
448 static int reg_set_table_size;
450 /* Amount to grow `reg_set_table' by when it's full. */
451 #define REG_SET_TABLE_SLOP 100
453 /* This is a list of expressions which are MEMs and will be used by load
454 or store motion.
455 Load motion tracks MEMs which aren't killed by
456 anything except itself. (i.e., loads and stores to a single location).
457 We can then allow movement of these MEM refs with a little special
458 allowance. (all stores copy the same value to the reaching reg used
459 for the loads). This means all values used to store into memory must have
460 no side effects so we can re-issue the setter value.
461 Store Motion uses this structure as an expression table to track stores
462 which look interesting, and might be moveable towards the exit block. */
464 struct ls_expr
466 struct expr * expr; /* Gcse expression reference for LM. */
467 rtx pattern; /* Pattern of this mem. */
468 rtx pattern_regs; /* List of registers mentioned by the mem. */
469 rtx loads; /* INSN list of loads seen. */
470 rtx stores; /* INSN list of stores seen. */
471 struct ls_expr * next; /* Next in the list. */
472 int invalid; /* Invalid for some reason. */
473 int index; /* If it maps to a bitmap index. */
474 unsigned int hash_index; /* Index when in a hash table. */
475 rtx reaching_reg; /* Register to use when re-writing. */
478 /* Array of implicit set patterns indexed by basic block index. */
479 static rtx *implicit_sets;
481 /* Head of the list of load/store memory refs. */
482 static struct ls_expr * pre_ldst_mems = NULL;
484 /* Bitmap containing one bit for each register in the program.
485 Used when performing GCSE to track which registers have been set since
486 the start of the basic block. */
487 static regset reg_set_bitmap;
489 /* For each block, a bitmap of registers set in the block.
490 This is used by compute_transp.
491 It is computed during hash table computation and not by compute_sets
492 as it includes registers added since the last pass (or between cprop and
493 gcse) and it's currently not easy to realloc sbitmap vectors. */
494 static sbitmap *reg_set_in_block;
496 /* Array, indexed by basic block number for a list of insns which modify
497 memory within that block. */
498 static rtx * modify_mem_list;
499 static bitmap modify_mem_list_set;
501 /* This array parallels modify_mem_list, but is kept canonicalized. */
502 static rtx * canon_modify_mem_list;
503 static bitmap canon_modify_mem_list_set;
505 /* Various variables for statistics gathering. */
507 /* Memory used in a pass.
508 This isn't intended to be absolutely precise. Its intent is only
509 to keep an eye on memory usage. */
510 static int bytes_used;
512 /* GCSE substitutions made. */
513 static int gcse_subst_count;
514 /* Number of copy instructions created. */
515 static int gcse_create_count;
516 /* Number of local constants propagated. */
517 static int local_const_prop_count;
518 /* Number of local copys propagated. */
519 static int local_copy_prop_count;
520 /* Number of global constants propagated. */
521 static int global_const_prop_count;
522 /* Number of global copys propagated. */
523 static int global_copy_prop_count;
525 /* For available exprs */
526 static sbitmap *ae_kill, *ae_gen;
528 /* Objects of this type are passed around by the null-pointer check
529 removal routines. */
530 struct null_pointer_info
532 /* The basic block being processed. */
533 basic_block current_block;
534 /* The first register to be handled in this pass. */
535 unsigned int min_reg;
536 /* One greater than the last register to be handled in this pass. */
537 unsigned int max_reg;
538 sbitmap *nonnull_local;
539 sbitmap *nonnull_killed;
542 static void compute_can_copy (void);
543 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
544 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
545 static void *grealloc (void *, size_t);
546 static void *gcse_alloc (unsigned long);
547 static void alloc_gcse_mem (rtx);
548 static void free_gcse_mem (void);
549 static void alloc_reg_set_mem (int);
550 static void free_reg_set_mem (void);
551 static void record_one_set (int, rtx);
552 static void replace_one_set (int, rtx, rtx);
553 static void record_set_info (rtx, rtx, void *);
554 static void compute_sets (rtx);
555 static void hash_scan_insn (rtx, struct hash_table *, int);
556 static void hash_scan_set (rtx, rtx, struct hash_table *);
557 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
558 static void hash_scan_call (rtx, rtx, struct hash_table *);
559 static int want_to_gcse_p (rtx);
560 static bool can_assign_to_reg_p (rtx);
561 static bool gcse_constant_p (rtx);
562 static int oprs_unchanged_p (rtx, rtx, int);
563 static int oprs_anticipatable_p (rtx, rtx);
564 static int oprs_available_p (rtx, rtx);
565 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
566 struct hash_table *);
567 static void insert_set_in_table (rtx, rtx, struct hash_table *);
568 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
569 static unsigned int hash_set (int, int);
570 static int expr_equiv_p (rtx, rtx);
571 static void record_last_reg_set_info (rtx, int);
572 static void record_last_mem_set_info (rtx);
573 static void record_last_set_info (rtx, rtx, void *);
574 static void compute_hash_table (struct hash_table *);
575 static void alloc_hash_table (int, struct hash_table *, int);
576 static void free_hash_table (struct hash_table *);
577 static void compute_hash_table_work (struct hash_table *);
578 static void dump_hash_table (FILE *, const char *, struct hash_table *);
579 static struct expr *lookup_set (unsigned int, struct hash_table *);
580 static struct expr *next_set (unsigned int, struct expr *);
581 static void reset_opr_set_tables (void);
582 static int oprs_not_set_p (rtx, rtx);
583 static void mark_call (rtx);
584 static void mark_set (rtx, rtx);
585 static void mark_clobber (rtx, rtx);
586 static void mark_oprs_set (rtx);
587 static void alloc_cprop_mem (int, int);
588 static void free_cprop_mem (void);
589 static void compute_transp (rtx, int, sbitmap *, int);
590 static void compute_transpout (void);
591 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
592 struct hash_table *);
593 static void compute_cprop_data (void);
594 static void find_used_regs (rtx *, void *);
595 static int try_replace_reg (rtx, rtx, rtx);
596 static struct expr *find_avail_set (int, rtx);
597 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
598 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
599 static int load_killed_in_block_p (basic_block, int, rtx, int);
600 static void canon_list_insert (rtx, rtx, void *);
601 static int cprop_insn (rtx, int);
602 static int cprop (int);
603 static void find_implicit_sets (void);
604 static int one_cprop_pass (int, int, int);
605 static bool constprop_register (rtx, rtx, rtx, int);
606 static struct expr *find_bypass_set (int, int);
607 static bool reg_killed_on_edge (rtx, edge);
608 static int bypass_block (basic_block, rtx, rtx);
609 static int bypass_conditional_jumps (void);
610 static void alloc_pre_mem (int, int);
611 static void free_pre_mem (void);
612 static void compute_pre_data (void);
613 static int pre_expr_reaches_here_p (basic_block, struct expr *,
614 basic_block);
615 static void insert_insn_end_bb (struct expr *, basic_block, int);
616 static void pre_insert_copy_insn (struct expr *, rtx);
617 static void pre_insert_copies (void);
618 static int pre_delete (void);
619 static int pre_gcse (void);
620 static int one_pre_gcse_pass (int);
621 static void add_label_notes (rtx, rtx);
622 static void alloc_code_hoist_mem (int, int);
623 static void free_code_hoist_mem (void);
624 static void compute_code_hoist_vbeinout (void);
625 static void compute_code_hoist_data (void);
626 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
627 static void hoist_code (void);
628 static int one_code_hoisting_pass (void);
629 static rtx process_insert_insn (struct expr *);
630 static int pre_edge_insert (struct edge_list *, struct expr **);
631 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
632 basic_block, char *);
633 static struct ls_expr * ldst_entry (rtx);
634 static void free_ldst_entry (struct ls_expr *);
635 static void free_ldst_mems (void);
636 static void print_ldst_list (FILE *);
637 static struct ls_expr * find_rtx_in_ldst (rtx);
638 static int enumerate_ldsts (void);
639 static inline struct ls_expr * first_ls_expr (void);
640 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
641 static int simple_mem (rtx);
642 static void invalidate_any_buried_refs (rtx);
643 static void compute_ld_motion_mems (void);
644 static void trim_ld_motion_mems (void);
645 static void update_ld_motion_stores (struct expr *);
646 static void reg_set_info (rtx, rtx, void *);
647 static void reg_clear_last_set (rtx, rtx, void *);
648 static bool store_ops_ok (rtx, int *);
649 static rtx extract_mentioned_regs (rtx);
650 static rtx extract_mentioned_regs_helper (rtx, rtx);
651 static void find_moveable_store (rtx, int *, int *);
652 static int compute_store_table (void);
653 static bool load_kills_store (rtx, rtx, int);
654 static bool find_loads (rtx, rtx, int);
655 static bool store_killed_in_insn (rtx, rtx, rtx, int);
656 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
657 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
658 static void build_store_vectors (void);
659 static void insert_insn_start_bb (rtx, basic_block);
660 static int insert_store (struct ls_expr *, edge);
661 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
662 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
663 static void delete_store (struct ls_expr *, basic_block);
664 static void free_store_memory (void);
665 static void store_motion (void);
666 static void free_insn_expr_list_list (rtx *);
667 static void clear_modify_mem_tables (void);
668 static void free_modify_mem_tables (void);
669 static rtx gcse_emit_move_after (rtx, rtx, rtx);
670 static void local_cprop_find_used_regs (rtx *, void *);
671 static bool do_local_cprop (rtx, rtx, int, rtx*);
672 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
673 static void local_cprop_pass (int);
674 static bool is_too_expensive (const char *);
677 /* Entry point for global common subexpression elimination.
678 F is the first instruction in the function. */
681 gcse_main (rtx f, FILE *file)
683 int changed, pass;
684 /* Bytes used at start of pass. */
685 int initial_bytes_used;
686 /* Maximum number of bytes used by a pass. */
687 int max_pass_bytes;
688 /* Point to release obstack data from for each pass. */
689 char *gcse_obstack_bottom;
691 /* We do not construct an accurate cfg in functions which call
692 setjmp, so just punt to be safe. */
693 if (current_function_calls_setjmp)
694 return 0;
696 /* Assume that we do not need to run jump optimizations after gcse. */
697 run_jump_opt_after_gcse = 0;
699 /* For calling dump_foo fns from gdb. */
700 debug_stderr = stderr;
701 gcse_file = file;
703 /* Identify the basic block information for this function, including
704 successors and predecessors. */
705 max_gcse_regno = max_reg_num ();
707 if (file)
708 dump_flow_info (file);
710 /* Return if there's nothing to do, or it is too expensive. */
711 if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
712 return 0;
714 gcc_obstack_init (&gcse_obstack);
715 bytes_used = 0;
717 /* We need alias. */
718 init_alias_analysis ();
719 /* Record where pseudo-registers are set. This data is kept accurate
720 during each pass. ??? We could also record hard-reg information here
721 [since it's unchanging], however it is currently done during hash table
722 computation.
724 It may be tempting to compute MEM set information here too, but MEM sets
725 will be subject to code motion one day and thus we need to compute
726 information about memory sets when we build the hash tables. */
728 alloc_reg_set_mem (max_gcse_regno);
729 compute_sets (f);
731 pass = 0;
732 initial_bytes_used = bytes_used;
733 max_pass_bytes = 0;
734 gcse_obstack_bottom = gcse_alloc (1);
735 changed = 1;
736 while (changed && pass < MAX_GCSE_PASSES)
738 changed = 0;
739 if (file)
740 fprintf (file, "GCSE pass %d\n\n", pass + 1);
742 /* Initialize bytes_used to the space for the pred/succ lists,
743 and the reg_set_table data. */
744 bytes_used = initial_bytes_used;
746 /* Each pass may create new registers, so recalculate each time. */
747 max_gcse_regno = max_reg_num ();
749 alloc_gcse_mem (f);
751 /* Don't allow constant propagation to modify jumps
752 during this pass. */
753 timevar_push (TV_CPROP1);
754 changed = one_cprop_pass (pass + 1, 0, 0);
755 timevar_pop (TV_CPROP1);
757 if (optimize_size)
758 /* Do nothing. */ ;
759 else
761 timevar_push (TV_PRE);
762 changed |= one_pre_gcse_pass (pass + 1);
763 /* We may have just created new basic blocks. Release and
764 recompute various things which are sized on the number of
765 basic blocks. */
766 if (changed)
768 free_modify_mem_tables ();
769 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
770 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
772 free_reg_set_mem ();
773 alloc_reg_set_mem (max_reg_num ());
774 compute_sets (f);
775 run_jump_opt_after_gcse = 1;
776 timevar_pop (TV_PRE);
779 if (max_pass_bytes < bytes_used)
780 max_pass_bytes = bytes_used;
782 /* Free up memory, then reallocate for code hoisting. We can
783 not re-use the existing allocated memory because the tables
784 will not have info for the insns or registers created by
785 partial redundancy elimination. */
786 free_gcse_mem ();
788 /* It does not make sense to run code hoisting unless we are optimizing
789 for code size -- it rarely makes programs faster, and can make
790 them bigger if we did partial redundancy elimination (when optimizing
791 for space, we don't run the partial redundancy algorithms). */
792 if (optimize_size)
794 timevar_push (TV_HOIST);
795 max_gcse_regno = max_reg_num ();
796 alloc_gcse_mem (f);
797 changed |= one_code_hoisting_pass ();
798 free_gcse_mem ();
800 if (max_pass_bytes < bytes_used)
801 max_pass_bytes = bytes_used;
802 timevar_pop (TV_HOIST);
805 if (file)
807 fprintf (file, "\n");
808 fflush (file);
811 obstack_free (&gcse_obstack, gcse_obstack_bottom);
812 pass++;
815 /* Do one last pass of copy propagation, including cprop into
816 conditional jumps. */
818 max_gcse_regno = max_reg_num ();
819 alloc_gcse_mem (f);
820 /* This time, go ahead and allow cprop to alter jumps. */
821 timevar_push (TV_CPROP2);
822 one_cprop_pass (pass + 1, 1, 0);
823 timevar_pop (TV_CPROP2);
824 free_gcse_mem ();
826 if (file)
828 fprintf (file, "GCSE of %s: %d basic blocks, ",
829 current_function_name (), n_basic_blocks);
830 fprintf (file, "%d pass%s, %d bytes\n\n",
831 pass, pass > 1 ? "es" : "", max_pass_bytes);
834 obstack_free (&gcse_obstack, NULL);
835 free_reg_set_mem ();
837 /* We are finished with alias. */
838 end_alias_analysis ();
839 allocate_reg_info (max_reg_num (), FALSE, FALSE);
841 if (!optimize_size && flag_gcse_sm)
843 timevar_push (TV_LSM);
844 store_motion ();
845 timevar_pop (TV_LSM);
848 /* Record where pseudo-registers are set. */
849 return run_jump_opt_after_gcse;
852 /* Misc. utilities. */
854 /* Nonzero for each mode that supports (set (reg) (reg)).
855 This is trivially true for integer and floating point values.
856 It may or may not be true for condition codes. */
857 static char can_copy[(int) NUM_MACHINE_MODES];
859 /* Compute which modes support reg/reg copy operations. */
861 static void
862 compute_can_copy (void)
864 int i;
865 #ifndef AVOID_CCMODE_COPIES
866 rtx reg, insn;
867 #endif
868 memset (can_copy, 0, NUM_MACHINE_MODES);
870 start_sequence ();
871 for (i = 0; i < NUM_MACHINE_MODES; i++)
872 if (GET_MODE_CLASS (i) == MODE_CC)
874 #ifdef AVOID_CCMODE_COPIES
875 can_copy[i] = 0;
876 #else
877 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
878 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
879 if (recog (PATTERN (insn), insn, NULL) >= 0)
880 can_copy[i] = 1;
881 #endif
883 else
884 can_copy[i] = 1;
886 end_sequence ();
889 /* Returns whether the mode supports reg/reg copy operations. */
891 bool
892 can_copy_p (enum machine_mode mode)
894 static bool can_copy_init_p = false;
896 if (! can_copy_init_p)
898 compute_can_copy ();
899 can_copy_init_p = true;
902 return can_copy[mode] != 0;
905 /* Cover function to xmalloc to record bytes allocated. */
907 static void *
908 gmalloc (size_t size)
910 bytes_used += size;
911 return xmalloc (size);
914 /* Cover function to xcalloc to record bytes allocated. */
916 static void *
917 gcalloc (size_t nelem, size_t elsize)
919 bytes_used += nelem * elsize;
920 return xcalloc (nelem, elsize);
923 /* Cover function to xrealloc.
924 We don't record the additional size since we don't know it.
925 It won't affect memory usage stats much anyway. */
927 static void *
928 grealloc (void *ptr, size_t size)
930 return xrealloc (ptr, size);
933 /* Cover function to obstack_alloc. */
935 static void *
936 gcse_alloc (unsigned long size)
938 bytes_used += size;
939 return obstack_alloc (&gcse_obstack, size);
942 /* Allocate memory for the cuid mapping array,
943 and reg/memory set tracking tables.
945 This is called at the start of each pass. */
947 static void
948 alloc_gcse_mem (rtx f)
950 int i;
951 rtx insn;
953 /* Find the largest UID and create a mapping from UIDs to CUIDs.
954 CUIDs are like UIDs except they increase monotonically, have no gaps,
955 and only apply to real insns. */
957 max_uid = get_max_uid ();
958 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
959 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
961 if (INSN_P (insn))
962 uid_cuid[INSN_UID (insn)] = i++;
963 else
964 uid_cuid[INSN_UID (insn)] = i;
967 /* Create a table mapping cuids to insns. */
969 max_cuid = i;
970 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
971 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
972 if (INSN_P (insn))
973 CUID_INSN (i++) = insn;
975 /* Allocate vars to track sets of regs. */
976 reg_set_bitmap = BITMAP_XMALLOC ();
978 /* Allocate vars to track sets of regs, memory per block. */
979 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
980 /* Allocate array to keep a list of insns which modify memory in each
981 basic block. */
982 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
983 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
984 modify_mem_list_set = BITMAP_XMALLOC ();
985 canon_modify_mem_list_set = BITMAP_XMALLOC ();
988 /* Free memory allocated by alloc_gcse_mem. */
990 static void
991 free_gcse_mem (void)
993 free (uid_cuid);
994 free (cuid_insn);
996 BITMAP_XFREE (reg_set_bitmap);
998 sbitmap_vector_free (reg_set_in_block);
999 free_modify_mem_tables ();
1000 BITMAP_XFREE (modify_mem_list_set);
1001 BITMAP_XFREE (canon_modify_mem_list_set);
1004 /* Compute the local properties of each recorded expression.
1006 Local properties are those that are defined by the block, irrespective of
1007 other blocks.
1009 An expression is transparent in a block if its operands are not modified
1010 in the block.
1012 An expression is computed (locally available) in a block if it is computed
1013 at least once and expression would contain the same value if the
1014 computation was moved to the end of the block.
1016 An expression is locally anticipatable in a block if it is computed at
1017 least once and expression would contain the same value if the computation
1018 was moved to the beginning of the block.
1020 We call this routine for cprop, pre and code hoisting. They all compute
1021 basically the same information and thus can easily share this code.
1023 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1024 properties. If NULL, then it is not necessary to compute or record that
1025 particular property.
1027 TABLE controls which hash table to look at. If it is set hash table,
1028 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1029 ABSALTERED. */
1031 static void
1032 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1033 struct hash_table *table)
1035 unsigned int i;
1037 /* Initialize any bitmaps that were passed in. */
1038 if (transp)
1040 if (table->set_p)
1041 sbitmap_vector_zero (transp, last_basic_block);
1042 else
1043 sbitmap_vector_ones (transp, last_basic_block);
1046 if (comp)
1047 sbitmap_vector_zero (comp, last_basic_block);
1048 if (antloc)
1049 sbitmap_vector_zero (antloc, last_basic_block);
1051 for (i = 0; i < table->size; i++)
1053 struct expr *expr;
1055 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1057 int indx = expr->bitmap_index;
1058 struct occr *occr;
1060 /* The expression is transparent in this block if it is not killed.
1061 We start by assuming all are transparent [none are killed], and
1062 then reset the bits for those that are. */
1063 if (transp)
1064 compute_transp (expr->expr, indx, transp, table->set_p);
1066 /* The occurrences recorded in antic_occr are exactly those that
1067 we want to set to nonzero in ANTLOC. */
1068 if (antloc)
1069 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1071 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1073 /* While we're scanning the table, this is a good place to
1074 initialize this. */
1075 occr->deleted_p = 0;
1078 /* The occurrences recorded in avail_occr are exactly those that
1079 we want to set to nonzero in COMP. */
1080 if (comp)
1081 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1083 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1085 /* While we're scanning the table, this is a good place to
1086 initialize this. */
1087 occr->copied_p = 0;
1090 /* While we're scanning the table, this is a good place to
1091 initialize this. */
1092 expr->reaching_reg = 0;
1097 /* Register set information.
1099 `reg_set_table' records where each register is set or otherwise
1100 modified. */
1102 static struct obstack reg_set_obstack;
1104 static void
1105 alloc_reg_set_mem (int n_regs)
1107 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1108 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1110 gcc_obstack_init (&reg_set_obstack);
1113 static void
1114 free_reg_set_mem (void)
1116 free (reg_set_table);
1117 obstack_free (&reg_set_obstack, NULL);
1120 /* An OLD_INSN that used to set REGNO was replaced by NEW_INSN.
1121 Update the corresponding `reg_set_table' entry accordingly.
1122 We assume that NEW_INSN is not already recorded in reg_set_table[regno]. */
1124 static void
1125 replace_one_set (int regno, rtx old_insn, rtx new_insn)
1127 struct reg_set *reg_info;
1128 if (regno >= reg_set_table_size)
1129 return;
1130 for (reg_info = reg_set_table[regno]; reg_info; reg_info = reg_info->next)
1131 if (reg_info->insn == old_insn)
1133 reg_info->insn = new_insn;
1134 break;
1138 /* Record REGNO in the reg_set table. */
1140 static void
1141 record_one_set (int regno, rtx insn)
1143 /* Allocate a new reg_set element and link it onto the list. */
1144 struct reg_set *new_reg_info;
1146 /* If the table isn't big enough, enlarge it. */
1147 if (regno >= reg_set_table_size)
1149 int new_size = regno + REG_SET_TABLE_SLOP;
1151 reg_set_table = grealloc (reg_set_table,
1152 new_size * sizeof (struct reg_set *));
1153 memset (reg_set_table + reg_set_table_size, 0,
1154 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1155 reg_set_table_size = new_size;
1158 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1159 bytes_used += sizeof (struct reg_set);
1160 new_reg_info->insn = insn;
1161 new_reg_info->next = reg_set_table[regno];
1162 reg_set_table[regno] = new_reg_info;
1165 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1166 an insn. The DATA is really the instruction in which the SET is
1167 occurring. */
1169 static void
1170 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1172 rtx record_set_insn = (rtx) data;
1174 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1175 record_one_set (REGNO (dest), record_set_insn);
1178 /* Scan the function and record each set of each pseudo-register.
1180 This is called once, at the start of the gcse pass. See the comments for
1181 `reg_set_table' for further documentation. */
1183 static void
1184 compute_sets (rtx f)
1186 rtx insn;
1188 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1189 if (INSN_P (insn))
1190 note_stores (PATTERN (insn), record_set_info, insn);
1193 /* Hash table support. */
1195 struct reg_avail_info
1197 basic_block last_bb;
1198 int first_set;
1199 int last_set;
1202 static struct reg_avail_info *reg_avail_info;
1203 static basic_block current_bb;
1206 /* See whether X, the source of a set, is something we want to consider for
1207 GCSE. */
1209 static int
1210 want_to_gcse_p (rtx x)
1212 switch (GET_CODE (x))
1214 case REG:
1215 case SUBREG:
1216 case CONST_INT:
1217 case CONST_DOUBLE:
1218 case CONST_VECTOR:
1219 case CALL:
1220 return 0;
1222 default:
1223 return can_assign_to_reg_p (x);
1227 /* Used internally by can_assign_to_reg_p. */
1229 static GTY(()) rtx test_insn;
1231 /* Return true if we can assign X to a pseudo register. */
1233 static bool
1234 can_assign_to_reg_p (rtx x)
1236 int num_clobbers = 0;
1237 int icode;
1239 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1240 if (general_operand (x, GET_MODE (x)))
1241 return 1;
1242 else if (GET_MODE (x) == VOIDmode)
1243 return 0;
1245 /* Otherwise, check if we can make a valid insn from it. First initialize
1246 our test insn if we haven't already. */
1247 if (test_insn == 0)
1249 test_insn
1250 = make_insn_raw (gen_rtx_SET (VOIDmode,
1251 gen_rtx_REG (word_mode,
1252 FIRST_PSEUDO_REGISTER * 2),
1253 const0_rtx));
1254 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1257 /* Now make an insn like the one we would make when GCSE'ing and see if
1258 valid. */
1259 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1260 SET_SRC (PATTERN (test_insn)) = x;
1261 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1262 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1265 /* Return nonzero if the operands of expression X are unchanged from the
1266 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1267 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1269 static int
1270 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1272 int i, j;
1273 enum rtx_code code;
1274 const char *fmt;
1276 if (x == 0)
1277 return 1;
1279 code = GET_CODE (x);
1280 switch (code)
1282 case REG:
1284 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1286 if (info->last_bb != current_bb)
1287 return 1;
1288 if (avail_p)
1289 return info->last_set < INSN_CUID (insn);
1290 else
1291 return info->first_set >= INSN_CUID (insn);
1294 case MEM:
1295 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1296 x, avail_p))
1297 return 0;
1298 else
1299 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1301 case PRE_DEC:
1302 case PRE_INC:
1303 case POST_DEC:
1304 case POST_INC:
1305 case PRE_MODIFY:
1306 case POST_MODIFY:
1307 return 0;
1309 case PC:
1310 case CC0: /*FIXME*/
1311 case CONST:
1312 case CONST_INT:
1313 case CONST_DOUBLE:
1314 case CONST_VECTOR:
1315 case SYMBOL_REF:
1316 case LABEL_REF:
1317 case ADDR_VEC:
1318 case ADDR_DIFF_VEC:
1319 return 1;
1321 default:
1322 break;
1325 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1327 if (fmt[i] == 'e')
1329 /* If we are about to do the last recursive call needed at this
1330 level, change it into iteration. This function is called enough
1331 to be worth it. */
1332 if (i == 0)
1333 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1335 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1336 return 0;
1338 else if (fmt[i] == 'E')
1339 for (j = 0; j < XVECLEN (x, i); j++)
1340 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1341 return 0;
1344 return 1;
1347 /* Used for communication between mems_conflict_for_gcse_p and
1348 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1349 conflict between two memory references. */
1350 static int gcse_mems_conflict_p;
1352 /* Used for communication between mems_conflict_for_gcse_p and
1353 load_killed_in_block_p. A memory reference for a load instruction,
1354 mems_conflict_for_gcse_p will see if a memory store conflicts with
1355 this memory load. */
1356 static rtx gcse_mem_operand;
1358 /* DEST is the output of an instruction. If it is a memory reference, and
1359 possibly conflicts with the load found in gcse_mem_operand, then set
1360 gcse_mems_conflict_p to a nonzero value. */
1362 static void
1363 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1364 void *data ATTRIBUTE_UNUSED)
1366 while (GET_CODE (dest) == SUBREG
1367 || GET_CODE (dest) == ZERO_EXTRACT
1368 || GET_CODE (dest) == SIGN_EXTRACT
1369 || GET_CODE (dest) == STRICT_LOW_PART)
1370 dest = XEXP (dest, 0);
1372 /* If DEST is not a MEM, then it will not conflict with the load. Note
1373 that function calls are assumed to clobber memory, but are handled
1374 elsewhere. */
1375 if (! MEM_P (dest))
1376 return;
1378 /* If we are setting a MEM in our list of specially recognized MEMs,
1379 don't mark as killed this time. */
1381 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1383 if (!find_rtx_in_ldst (dest))
1384 gcse_mems_conflict_p = 1;
1385 return;
1388 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1389 rtx_addr_varies_p))
1390 gcse_mems_conflict_p = 1;
1393 /* Return nonzero if the expression in X (a memory reference) is killed
1394 in block BB before or after the insn with the CUID in UID_LIMIT.
1395 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1396 before UID_LIMIT.
1398 To check the entire block, set UID_LIMIT to max_uid + 1 and
1399 AVAIL_P to 0. */
1401 static int
1402 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1404 rtx list_entry = modify_mem_list[bb->index];
1405 while (list_entry)
1407 rtx setter;
1408 /* Ignore entries in the list that do not apply. */
1409 if ((avail_p
1410 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1411 || (! avail_p
1412 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1414 list_entry = XEXP (list_entry, 1);
1415 continue;
1418 setter = XEXP (list_entry, 0);
1420 /* If SETTER is a call everything is clobbered. Note that calls
1421 to pure functions are never put on the list, so we need not
1422 worry about them. */
1423 if (CALL_P (setter))
1424 return 1;
1426 /* SETTER must be an INSN of some kind that sets memory. Call
1427 note_stores to examine each hunk of memory that is modified.
1429 The note_stores interface is pretty limited, so we have to
1430 communicate via global variables. Yuk. */
1431 gcse_mem_operand = x;
1432 gcse_mems_conflict_p = 0;
1433 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1434 if (gcse_mems_conflict_p)
1435 return 1;
1436 list_entry = XEXP (list_entry, 1);
1438 return 0;
1441 /* Return nonzero if the operands of expression X are unchanged from
1442 the start of INSN's basic block up to but not including INSN. */
1444 static int
1445 oprs_anticipatable_p (rtx x, rtx insn)
1447 return oprs_unchanged_p (x, insn, 0);
1450 /* Return nonzero if the operands of expression X are unchanged from
1451 INSN to the end of INSN's basic block. */
1453 static int
1454 oprs_available_p (rtx x, rtx insn)
1456 return oprs_unchanged_p (x, insn, 1);
1459 /* Hash expression X.
1461 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1462 indicating if a volatile operand is found or if the expression contains
1463 something we don't want to insert in the table. HASH_TABLE_SIZE is
1464 the current size of the hash table to be probed. */
1466 static unsigned int
1467 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1468 int hash_table_size)
1470 unsigned int hash;
1472 *do_not_record_p = 0;
1474 hash = hash_rtx (x, mode, do_not_record_p,
1475 NULL, /*have_reg_qty=*/false);
1476 return hash % hash_table_size;
1479 /* Hash a set of register REGNO.
1481 Sets are hashed on the register that is set. This simplifies the PRE copy
1482 propagation code.
1484 ??? May need to make things more elaborate. Later, as necessary. */
1486 static unsigned int
1487 hash_set (int regno, int hash_table_size)
1489 unsigned int hash;
1491 hash = regno;
1492 return hash % hash_table_size;
1495 /* Return nonzero if exp1 is equivalent to exp2. */
1497 static int
1498 expr_equiv_p (rtx x, rtx y)
1500 return exp_equiv_p (x, y, 0, true);
1503 /* Insert expression X in INSN in the hash TABLE.
1504 If it is already present, record it as the last occurrence in INSN's
1505 basic block.
1507 MODE is the mode of the value X is being stored into.
1508 It is only used if X is a CONST_INT.
1510 ANTIC_P is nonzero if X is an anticipatable expression.
1511 AVAIL_P is nonzero if X is an available expression. */
1513 static void
1514 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1515 int avail_p, struct hash_table *table)
1517 int found, do_not_record_p;
1518 unsigned int hash;
1519 struct expr *cur_expr, *last_expr = NULL;
1520 struct occr *antic_occr, *avail_occr;
1521 struct occr *last_occr = NULL;
1523 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1525 /* Do not insert expression in table if it contains volatile operands,
1526 or if hash_expr determines the expression is something we don't want
1527 to or can't handle. */
1528 if (do_not_record_p)
1529 return;
1531 cur_expr = table->table[hash];
1532 found = 0;
1534 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1536 /* If the expression isn't found, save a pointer to the end of
1537 the list. */
1538 last_expr = cur_expr;
1539 cur_expr = cur_expr->next_same_hash;
1542 if (! found)
1544 cur_expr = gcse_alloc (sizeof (struct expr));
1545 bytes_used += sizeof (struct expr);
1546 if (table->table[hash] == NULL)
1547 /* This is the first pattern that hashed to this index. */
1548 table->table[hash] = cur_expr;
1549 else
1550 /* Add EXPR to end of this hash chain. */
1551 last_expr->next_same_hash = cur_expr;
1553 /* Set the fields of the expr element. */
1554 cur_expr->expr = x;
1555 cur_expr->bitmap_index = table->n_elems++;
1556 cur_expr->next_same_hash = NULL;
1557 cur_expr->antic_occr = NULL;
1558 cur_expr->avail_occr = NULL;
1561 /* Now record the occurrence(s). */
1562 if (antic_p)
1564 antic_occr = cur_expr->antic_occr;
1566 /* Search for another occurrence in the same basic block. */
1567 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1569 /* If an occurrence isn't found, save a pointer to the end of
1570 the list. */
1571 last_occr = antic_occr;
1572 antic_occr = antic_occr->next;
1575 if (antic_occr)
1576 /* Found another instance of the expression in the same basic block.
1577 Prefer the currently recorded one. We want the first one in the
1578 block and the block is scanned from start to end. */
1579 ; /* nothing to do */
1580 else
1582 /* First occurrence of this expression in this basic block. */
1583 antic_occr = gcse_alloc (sizeof (struct occr));
1584 bytes_used += sizeof (struct occr);
1585 /* First occurrence of this expression in any block? */
1586 if (cur_expr->antic_occr == NULL)
1587 cur_expr->antic_occr = antic_occr;
1588 else
1589 last_occr->next = antic_occr;
1591 antic_occr->insn = insn;
1592 antic_occr->next = NULL;
1593 antic_occr->deleted_p = 0;
1597 if (avail_p)
1599 avail_occr = cur_expr->avail_occr;
1601 /* Search for another occurrence in the same basic block. */
1602 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
1604 /* If an occurrence isn't found, save a pointer to the end of
1605 the list. */
1606 last_occr = avail_occr;
1607 avail_occr = avail_occr->next;
1610 if (avail_occr)
1611 /* Found another instance of the expression in the same basic block.
1612 Prefer this occurrence to the currently recorded one. We want
1613 the last one in the block and the block is scanned from start
1614 to end. */
1615 avail_occr->insn = insn;
1616 else
1618 /* First occurrence of this expression in this basic block. */
1619 avail_occr = gcse_alloc (sizeof (struct occr));
1620 bytes_used += sizeof (struct occr);
1622 /* First occurrence of this expression in any block? */
1623 if (cur_expr->avail_occr == NULL)
1624 cur_expr->avail_occr = avail_occr;
1625 else
1626 last_occr->next = avail_occr;
1628 avail_occr->insn = insn;
1629 avail_occr->next = NULL;
1630 avail_occr->deleted_p = 0;
1635 /* Insert pattern X in INSN in the hash table.
1636 X is a SET of a reg to either another reg or a constant.
1637 If it is already present, record it as the last occurrence in INSN's
1638 basic block. */
1640 static void
1641 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1643 int found;
1644 unsigned int hash;
1645 struct expr *cur_expr, *last_expr = NULL;
1646 struct occr *cur_occr, *last_occr = NULL;
1648 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1650 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1652 cur_expr = table->table[hash];
1653 found = 0;
1655 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1657 /* If the expression isn't found, save a pointer to the end of
1658 the list. */
1659 last_expr = cur_expr;
1660 cur_expr = cur_expr->next_same_hash;
1663 if (! found)
1665 cur_expr = gcse_alloc (sizeof (struct expr));
1666 bytes_used += sizeof (struct expr);
1667 if (table->table[hash] == NULL)
1668 /* This is the first pattern that hashed to this index. */
1669 table->table[hash] = cur_expr;
1670 else
1671 /* Add EXPR to end of this hash chain. */
1672 last_expr->next_same_hash = cur_expr;
1674 /* Set the fields of the expr element.
1675 We must copy X because it can be modified when copy propagation is
1676 performed on its operands. */
1677 cur_expr->expr = copy_rtx (x);
1678 cur_expr->bitmap_index = table->n_elems++;
1679 cur_expr->next_same_hash = NULL;
1680 cur_expr->antic_occr = NULL;
1681 cur_expr->avail_occr = NULL;
1684 /* Now record the occurrence. */
1685 cur_occr = cur_expr->avail_occr;
1687 /* Search for another occurrence in the same basic block. */
1688 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
1690 /* If an occurrence isn't found, save a pointer to the end of
1691 the list. */
1692 last_occr = cur_occr;
1693 cur_occr = cur_occr->next;
1696 if (cur_occr)
1697 /* Found another instance of the expression in the same basic block.
1698 Prefer this occurrence to the currently recorded one. We want the
1699 last one in the block and the block is scanned from start to end. */
1700 cur_occr->insn = insn;
1701 else
1703 /* First occurrence of this expression in this basic block. */
1704 cur_occr = gcse_alloc (sizeof (struct occr));
1705 bytes_used += sizeof (struct occr);
1707 /* First occurrence of this expression in any block? */
1708 if (cur_expr->avail_occr == NULL)
1709 cur_expr->avail_occr = cur_occr;
1710 else
1711 last_occr->next = cur_occr;
1713 cur_occr->insn = insn;
1714 cur_occr->next = NULL;
1715 cur_occr->deleted_p = 0;
1719 /* Determine whether the rtx X should be treated as a constant for
1720 the purposes of GCSE's constant propagation. */
1722 static bool
1723 gcse_constant_p (rtx x)
1725 /* Consider a COMPARE of two integers constant. */
1726 if (GET_CODE (x) == COMPARE
1727 && GET_CODE (XEXP (x, 0)) == CONST_INT
1728 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1729 return true;
1731 /* Consider a COMPARE of the same registers is a constant
1732 if they are not floating point registers. */
1733 if (GET_CODE(x) == COMPARE
1734 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1735 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1736 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1737 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1738 return true;
1740 return CONSTANT_P (x);
1743 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1744 expression one). */
1746 static void
1747 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1749 rtx src = SET_SRC (pat);
1750 rtx dest = SET_DEST (pat);
1751 rtx note;
1753 if (GET_CODE (src) == CALL)
1754 hash_scan_call (src, insn, table);
1756 else if (REG_P (dest))
1758 unsigned int regno = REGNO (dest);
1759 rtx tmp;
1761 /* If this is a single set and we are doing constant propagation,
1762 see if a REG_NOTE shows this equivalent to a constant. */
1763 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
1764 && gcse_constant_p (XEXP (note, 0)))
1765 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1767 /* Only record sets of pseudo-regs in the hash table. */
1768 if (! table->set_p
1769 && regno >= FIRST_PSEUDO_REGISTER
1770 /* Don't GCSE something if we can't do a reg/reg copy. */
1771 && can_copy_p (GET_MODE (dest))
1772 /* GCSE commonly inserts instruction after the insn. We can't
1773 do that easily for EH_REGION notes so disable GCSE on these
1774 for now. */
1775 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1776 /* Is SET_SRC something we want to gcse? */
1777 && want_to_gcse_p (src)
1778 /* Don't CSE a nop. */
1779 && ! set_noop_p (pat)
1780 /* Don't GCSE if it has attached REG_EQUIV note.
1781 At this point this only function parameters should have
1782 REG_EQUIV notes and if the argument slot is used somewhere
1783 explicitly, it means address of parameter has been taken,
1784 so we should not extend the lifetime of the pseudo. */
1785 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1786 || ! MEM_P (XEXP (note, 0))))
1788 /* An expression is not anticipatable if its operands are
1789 modified before this insn or if this is not the only SET in
1790 this insn. */
1791 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1792 /* An expression is not available if its operands are
1793 subsequently modified, including this insn. It's also not
1794 available if this is a branch, because we can't insert
1795 a set after the branch. */
1796 int avail_p = (oprs_available_p (src, insn)
1797 && ! JUMP_P (insn));
1799 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1802 /* Record sets for constant/copy propagation. */
1803 else if (table->set_p
1804 && regno >= FIRST_PSEUDO_REGISTER
1805 && ((REG_P (src)
1806 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1807 && can_copy_p (GET_MODE (dest))
1808 && REGNO (src) != regno)
1809 || gcse_constant_p (src))
1810 /* A copy is not available if its src or dest is subsequently
1811 modified. Here we want to search from INSN+1 on, but
1812 oprs_available_p searches from INSN on. */
1813 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1814 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1815 && oprs_available_p (pat, tmp))))
1816 insert_set_in_table (pat, insn, table);
1818 /* In case of store we want to consider the memory value as available in
1819 the REG stored in that memory. This makes it possible to remove
1820 redundant loads from due to stores to the same location. */
1821 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1823 unsigned int regno = REGNO (src);
1825 /* Do not do this for constant/copy propagation. */
1826 if (! table->set_p
1827 /* Only record sets of pseudo-regs in the hash table. */
1828 && regno >= FIRST_PSEUDO_REGISTER
1829 /* Don't GCSE something if we can't do a reg/reg copy. */
1830 && can_copy_p (GET_MODE (src))
1831 /* GCSE commonly inserts instruction after the insn. We can't
1832 do that easily for EH_REGION notes so disable GCSE on these
1833 for now. */
1834 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1835 /* Is SET_DEST something we want to gcse? */
1836 && want_to_gcse_p (dest)
1837 /* Don't CSE a nop. */
1838 && ! set_noop_p (pat)
1839 /* Don't GCSE if it has attached REG_EQUIV note.
1840 At this point this only function parameters should have
1841 REG_EQUIV notes and if the argument slot is used somewhere
1842 explicitly, it means address of parameter has been taken,
1843 so we should not extend the lifetime of the pseudo. */
1844 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1845 || ! MEM_P (XEXP (note, 0))))
1847 /* Stores are never anticipatable. */
1848 int antic_p = 0;
1849 /* An expression is not available if its operands are
1850 subsequently modified, including this insn. It's also not
1851 available if this is a branch, because we can't insert
1852 a set after the branch. */
1853 int avail_p = oprs_available_p (dest, insn)
1854 && ! JUMP_P (insn);
1856 /* Record the memory expression (DEST) in the hash table. */
1857 insert_expr_in_table (dest, GET_MODE (dest), insn,
1858 antic_p, avail_p, table);
1863 static void
1864 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1865 struct hash_table *table ATTRIBUTE_UNUSED)
1867 /* Currently nothing to do. */
1870 static void
1871 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1872 struct hash_table *table ATTRIBUTE_UNUSED)
1874 /* Currently nothing to do. */
1877 /* Process INSN and add hash table entries as appropriate.
1879 Only available expressions that set a single pseudo-reg are recorded.
1881 Single sets in a PARALLEL could be handled, but it's an extra complication
1882 that isn't dealt with right now. The trick is handling the CLOBBERs that
1883 are also in the PARALLEL. Later.
1885 If SET_P is nonzero, this is for the assignment hash table,
1886 otherwise it is for the expression hash table.
1887 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1888 not record any expressions. */
1890 static void
1891 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1893 rtx pat = PATTERN (insn);
1894 int i;
1896 if (in_libcall_block)
1897 return;
1899 /* Pick out the sets of INSN and for other forms of instructions record
1900 what's been modified. */
1902 if (GET_CODE (pat) == SET)
1903 hash_scan_set (pat, insn, table);
1904 else if (GET_CODE (pat) == PARALLEL)
1905 for (i = 0; i < XVECLEN (pat, 0); i++)
1907 rtx x = XVECEXP (pat, 0, i);
1909 if (GET_CODE (x) == SET)
1910 hash_scan_set (x, insn, table);
1911 else if (GET_CODE (x) == CLOBBER)
1912 hash_scan_clobber (x, insn, table);
1913 else if (GET_CODE (x) == CALL)
1914 hash_scan_call (x, insn, table);
1917 else if (GET_CODE (pat) == CLOBBER)
1918 hash_scan_clobber (pat, insn, table);
1919 else if (GET_CODE (pat) == CALL)
1920 hash_scan_call (pat, insn, table);
1923 static void
1924 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1926 int i;
1927 /* Flattened out table, so it's printed in proper order. */
1928 struct expr **flat_table;
1929 unsigned int *hash_val;
1930 struct expr *expr;
1932 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1933 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1935 for (i = 0; i < (int) table->size; i++)
1936 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1938 flat_table[expr->bitmap_index] = expr;
1939 hash_val[expr->bitmap_index] = i;
1942 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1943 name, table->size, table->n_elems);
1945 for (i = 0; i < (int) table->n_elems; i++)
1946 if (flat_table[i] != 0)
1948 expr = flat_table[i];
1949 fprintf (file, "Index %d (hash value %d)\n ",
1950 expr->bitmap_index, hash_val[i]);
1951 print_rtl (file, expr->expr);
1952 fprintf (file, "\n");
1955 fprintf (file, "\n");
1957 free (flat_table);
1958 free (hash_val);
1961 /* Record register first/last/block set information for REGNO in INSN.
1963 first_set records the first place in the block where the register
1964 is set and is used to compute "anticipatability".
1966 last_set records the last place in the block where the register
1967 is set and is used to compute "availability".
1969 last_bb records the block for which first_set and last_set are
1970 valid, as a quick test to invalidate them.
1972 reg_set_in_block records whether the register is set in the block
1973 and is used to compute "transparency". */
1975 static void
1976 record_last_reg_set_info (rtx insn, int regno)
1978 struct reg_avail_info *info = &reg_avail_info[regno];
1979 int cuid = INSN_CUID (insn);
1981 info->last_set = cuid;
1982 if (info->last_bb != current_bb)
1984 info->last_bb = current_bb;
1985 info->first_set = cuid;
1986 SET_BIT (reg_set_in_block[current_bb->index], regno);
1991 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1992 Note we store a pair of elements in the list, so they have to be
1993 taken off pairwise. */
1995 static void
1996 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1997 void * v_insn)
1999 rtx dest_addr, insn;
2000 int bb;
2002 while (GET_CODE (dest) == SUBREG
2003 || GET_CODE (dest) == ZERO_EXTRACT
2004 || GET_CODE (dest) == SIGN_EXTRACT
2005 || GET_CODE (dest) == STRICT_LOW_PART)
2006 dest = XEXP (dest, 0);
2008 /* If DEST is not a MEM, then it will not conflict with a load. Note
2009 that function calls are assumed to clobber memory, but are handled
2010 elsewhere. */
2012 if (! MEM_P (dest))
2013 return;
2015 dest_addr = get_addr (XEXP (dest, 0));
2016 dest_addr = canon_rtx (dest_addr);
2017 insn = (rtx) v_insn;
2018 bb = BLOCK_NUM (insn);
2020 canon_modify_mem_list[bb] =
2021 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2022 canon_modify_mem_list[bb] =
2023 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2024 bitmap_set_bit (canon_modify_mem_list_set, bb);
2027 /* Record memory modification information for INSN. We do not actually care
2028 about the memory location(s) that are set, or even how they are set (consider
2029 a CALL_INSN). We merely need to record which insns modify memory. */
2031 static void
2032 record_last_mem_set_info (rtx insn)
2034 int bb = BLOCK_NUM (insn);
2036 /* load_killed_in_block_p will handle the case of calls clobbering
2037 everything. */
2038 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2039 bitmap_set_bit (modify_mem_list_set, bb);
2041 if (CALL_P (insn))
2043 /* Note that traversals of this loop (other than for free-ing)
2044 will break after encountering a CALL_INSN. So, there's no
2045 need to insert a pair of items, as canon_list_insert does. */
2046 canon_modify_mem_list[bb] =
2047 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2048 bitmap_set_bit (canon_modify_mem_list_set, bb);
2050 else
2051 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2054 /* Called from compute_hash_table via note_stores to handle one
2055 SET or CLOBBER in an insn. DATA is really the instruction in which
2056 the SET is taking place. */
2058 static void
2059 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
2061 rtx last_set_insn = (rtx) data;
2063 if (GET_CODE (dest) == SUBREG)
2064 dest = SUBREG_REG (dest);
2066 if (REG_P (dest))
2067 record_last_reg_set_info (last_set_insn, REGNO (dest));
2068 else if (MEM_P (dest)
2069 /* Ignore pushes, they clobber nothing. */
2070 && ! push_operand (dest, GET_MODE (dest)))
2071 record_last_mem_set_info (last_set_insn);
2074 /* Top level function to create an expression or assignment hash table.
2076 Expression entries are placed in the hash table if
2077 - they are of the form (set (pseudo-reg) src),
2078 - src is something we want to perform GCSE on,
2079 - none of the operands are subsequently modified in the block
2081 Assignment entries are placed in the hash table if
2082 - they are of the form (set (pseudo-reg) src),
2083 - src is something we want to perform const/copy propagation on,
2084 - none of the operands or target are subsequently modified in the block
2086 Currently src must be a pseudo-reg or a const_int.
2088 TABLE is the table computed. */
2090 static void
2091 compute_hash_table_work (struct hash_table *table)
2093 unsigned int i;
2095 /* While we compute the hash table we also compute a bit array of which
2096 registers are set in which blocks.
2097 ??? This isn't needed during const/copy propagation, but it's cheap to
2098 compute. Later. */
2099 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2101 /* re-Cache any INSN_LIST nodes we have allocated. */
2102 clear_modify_mem_tables ();
2103 /* Some working arrays used to track first and last set in each block. */
2104 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2106 for (i = 0; i < max_gcse_regno; ++i)
2107 reg_avail_info[i].last_bb = NULL;
2109 FOR_EACH_BB (current_bb)
2111 rtx insn;
2112 unsigned int regno;
2113 int in_libcall_block;
2115 /* First pass over the instructions records information used to
2116 determine when registers and memory are first and last set.
2117 ??? hard-reg reg_set_in_block computation
2118 could be moved to compute_sets since they currently don't change. */
2120 for (insn = BB_HEAD (current_bb);
2121 insn && insn != NEXT_INSN (BB_END (current_bb));
2122 insn = NEXT_INSN (insn))
2124 if (! INSN_P (insn))
2125 continue;
2127 if (CALL_P (insn))
2129 bool clobbers_all = false;
2130 #ifdef NON_SAVING_SETJMP
2131 if (NON_SAVING_SETJMP
2132 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2133 clobbers_all = true;
2134 #endif
2136 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2137 if (clobbers_all
2138 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2139 record_last_reg_set_info (insn, regno);
2141 mark_call (insn);
2144 note_stores (PATTERN (insn), record_last_set_info, insn);
2147 /* Insert implicit sets in the hash table. */
2148 if (table->set_p
2149 && implicit_sets[current_bb->index] != NULL_RTX)
2150 hash_scan_set (implicit_sets[current_bb->index],
2151 BB_HEAD (current_bb), table);
2153 /* The next pass builds the hash table. */
2155 for (insn = BB_HEAD (current_bb), in_libcall_block = 0;
2156 insn && insn != NEXT_INSN (BB_END (current_bb));
2157 insn = NEXT_INSN (insn))
2158 if (INSN_P (insn))
2160 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2161 in_libcall_block = 1;
2162 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2163 in_libcall_block = 0;
2164 hash_scan_insn (insn, table, in_libcall_block);
2165 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2166 in_libcall_block = 0;
2170 free (reg_avail_info);
2171 reg_avail_info = NULL;
2174 /* Allocate space for the set/expr hash TABLE.
2175 N_INSNS is the number of instructions in the function.
2176 It is used to determine the number of buckets to use.
2177 SET_P determines whether set or expression table will
2178 be created. */
2180 static void
2181 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2183 int n;
2185 table->size = n_insns / 4;
2186 if (table->size < 11)
2187 table->size = 11;
2189 /* Attempt to maintain efficient use of hash table.
2190 Making it an odd number is simplest for now.
2191 ??? Later take some measurements. */
2192 table->size |= 1;
2193 n = table->size * sizeof (struct expr *);
2194 table->table = gmalloc (n);
2195 table->set_p = set_p;
2198 /* Free things allocated by alloc_hash_table. */
2200 static void
2201 free_hash_table (struct hash_table *table)
2203 free (table->table);
2206 /* Compute the hash TABLE for doing copy/const propagation or
2207 expression hash table. */
2209 static void
2210 compute_hash_table (struct hash_table *table)
2212 /* Initialize count of number of entries in hash table. */
2213 table->n_elems = 0;
2214 memset (table->table, 0, table->size * sizeof (struct expr *));
2216 compute_hash_table_work (table);
2219 /* Expression tracking support. */
2221 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2222 table entry, or NULL if not found. */
2224 static struct expr *
2225 lookup_set (unsigned int regno, struct hash_table *table)
2227 unsigned int hash = hash_set (regno, table->size);
2228 struct expr *expr;
2230 expr = table->table[hash];
2232 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2233 expr = expr->next_same_hash;
2235 return expr;
2238 /* Return the next entry for REGNO in list EXPR. */
2240 static struct expr *
2241 next_set (unsigned int regno, struct expr *expr)
2244 expr = expr->next_same_hash;
2245 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2247 return expr;
2250 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2251 types may be mixed. */
2253 static void
2254 free_insn_expr_list_list (rtx *listp)
2256 rtx list, next;
2258 for (list = *listp; list ; list = next)
2260 next = XEXP (list, 1);
2261 if (GET_CODE (list) == EXPR_LIST)
2262 free_EXPR_LIST_node (list);
2263 else
2264 free_INSN_LIST_node (list);
2267 *listp = NULL;
2270 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2271 static void
2272 clear_modify_mem_tables (void)
2274 unsigned i;
2275 bitmap_iterator bi;
2277 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2279 free_INSN_LIST_list (modify_mem_list + i);
2281 bitmap_clear (modify_mem_list_set);
2283 EXECUTE_IF_SET_IN_BITMAP (canon_modify_mem_list_set, 0, i, bi)
2285 free_insn_expr_list_list (canon_modify_mem_list + i);
2287 bitmap_clear (canon_modify_mem_list_set);
2290 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2292 static void
2293 free_modify_mem_tables (void)
2295 clear_modify_mem_tables ();
2296 free (modify_mem_list);
2297 free (canon_modify_mem_list);
2298 modify_mem_list = 0;
2299 canon_modify_mem_list = 0;
2302 /* Reset tables used to keep track of what's still available [since the
2303 start of the block]. */
2305 static void
2306 reset_opr_set_tables (void)
2308 /* Maintain a bitmap of which regs have been set since beginning of
2309 the block. */
2310 CLEAR_REG_SET (reg_set_bitmap);
2312 /* Also keep a record of the last instruction to modify memory.
2313 For now this is very trivial, we only record whether any memory
2314 location has been modified. */
2315 clear_modify_mem_tables ();
2318 /* Return nonzero if the operands of X are not set before INSN in
2319 INSN's basic block. */
2321 static int
2322 oprs_not_set_p (rtx x, rtx insn)
2324 int i, j;
2325 enum rtx_code code;
2326 const char *fmt;
2328 if (x == 0)
2329 return 1;
2331 code = GET_CODE (x);
2332 switch (code)
2334 case PC:
2335 case CC0:
2336 case CONST:
2337 case CONST_INT:
2338 case CONST_DOUBLE:
2339 case CONST_VECTOR:
2340 case SYMBOL_REF:
2341 case LABEL_REF:
2342 case ADDR_VEC:
2343 case ADDR_DIFF_VEC:
2344 return 1;
2346 case MEM:
2347 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2348 INSN_CUID (insn), x, 0))
2349 return 0;
2350 else
2351 return oprs_not_set_p (XEXP (x, 0), insn);
2353 case REG:
2354 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2356 default:
2357 break;
2360 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2362 if (fmt[i] == 'e')
2364 /* If we are about to do the last recursive call
2365 needed at this level, change it into iteration.
2366 This function is called enough to be worth it. */
2367 if (i == 0)
2368 return oprs_not_set_p (XEXP (x, i), insn);
2370 if (! oprs_not_set_p (XEXP (x, i), insn))
2371 return 0;
2373 else if (fmt[i] == 'E')
2374 for (j = 0; j < XVECLEN (x, i); j++)
2375 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2376 return 0;
2379 return 1;
2382 /* Mark things set by a CALL. */
2384 static void
2385 mark_call (rtx insn)
2387 if (! CONST_OR_PURE_CALL_P (insn))
2388 record_last_mem_set_info (insn);
2391 /* Mark things set by a SET. */
2393 static void
2394 mark_set (rtx pat, rtx insn)
2396 rtx dest = SET_DEST (pat);
2398 while (GET_CODE (dest) == SUBREG
2399 || GET_CODE (dest) == ZERO_EXTRACT
2400 || GET_CODE (dest) == SIGN_EXTRACT
2401 || GET_CODE (dest) == STRICT_LOW_PART)
2402 dest = XEXP (dest, 0);
2404 if (REG_P (dest))
2405 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2406 else if (MEM_P (dest))
2407 record_last_mem_set_info (insn);
2409 if (GET_CODE (SET_SRC (pat)) == CALL)
2410 mark_call (insn);
2413 /* Record things set by a CLOBBER. */
2415 static void
2416 mark_clobber (rtx pat, rtx insn)
2418 rtx clob = XEXP (pat, 0);
2420 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2421 clob = XEXP (clob, 0);
2423 if (REG_P (clob))
2424 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2425 else
2426 record_last_mem_set_info (insn);
2429 /* Record things set by INSN.
2430 This data is used by oprs_not_set_p. */
2432 static void
2433 mark_oprs_set (rtx insn)
2435 rtx pat = PATTERN (insn);
2436 int i;
2438 if (GET_CODE (pat) == SET)
2439 mark_set (pat, insn);
2440 else if (GET_CODE (pat) == PARALLEL)
2441 for (i = 0; i < XVECLEN (pat, 0); i++)
2443 rtx x = XVECEXP (pat, 0, i);
2445 if (GET_CODE (x) == SET)
2446 mark_set (x, insn);
2447 else if (GET_CODE (x) == CLOBBER)
2448 mark_clobber (x, insn);
2449 else if (GET_CODE (x) == CALL)
2450 mark_call (insn);
2453 else if (GET_CODE (pat) == CLOBBER)
2454 mark_clobber (pat, insn);
2455 else if (GET_CODE (pat) == CALL)
2456 mark_call (insn);
2460 /* Compute copy/constant propagation working variables. */
2462 /* Local properties of assignments. */
2463 static sbitmap *cprop_pavloc;
2464 static sbitmap *cprop_absaltered;
2466 /* Global properties of assignments (computed from the local properties). */
2467 static sbitmap *cprop_avin;
2468 static sbitmap *cprop_avout;
2470 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2471 basic blocks. N_SETS is the number of sets. */
2473 static void
2474 alloc_cprop_mem (int n_blocks, int n_sets)
2476 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2477 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2479 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2480 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2483 /* Free vars used by copy/const propagation. */
2485 static void
2486 free_cprop_mem (void)
2488 sbitmap_vector_free (cprop_pavloc);
2489 sbitmap_vector_free (cprop_absaltered);
2490 sbitmap_vector_free (cprop_avin);
2491 sbitmap_vector_free (cprop_avout);
2494 /* For each block, compute whether X is transparent. X is either an
2495 expression or an assignment [though we don't care which, for this context
2496 an assignment is treated as an expression]. For each block where an
2497 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2498 bit in BMAP. */
2500 static void
2501 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2503 int i, j;
2504 basic_block bb;
2505 enum rtx_code code;
2506 reg_set *r;
2507 const char *fmt;
2509 /* repeat is used to turn tail-recursion into iteration since GCC
2510 can't do it when there's no return value. */
2511 repeat:
2513 if (x == 0)
2514 return;
2516 code = GET_CODE (x);
2517 switch (code)
2519 case REG:
2520 if (set_p)
2522 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2524 FOR_EACH_BB (bb)
2525 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2526 SET_BIT (bmap[bb->index], indx);
2528 else
2530 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2531 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2534 else
2536 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2538 FOR_EACH_BB (bb)
2539 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2540 RESET_BIT (bmap[bb->index], indx);
2542 else
2544 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2545 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2549 return;
2551 case MEM:
2552 FOR_EACH_BB (bb)
2554 rtx list_entry = canon_modify_mem_list[bb->index];
2556 while (list_entry)
2558 rtx dest, dest_addr;
2560 if (CALL_P (XEXP (list_entry, 0)))
2562 if (set_p)
2563 SET_BIT (bmap[bb->index], indx);
2564 else
2565 RESET_BIT (bmap[bb->index], indx);
2566 break;
2568 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2569 Examine each hunk of memory that is modified. */
2571 dest = XEXP (list_entry, 0);
2572 list_entry = XEXP (list_entry, 1);
2573 dest_addr = XEXP (list_entry, 0);
2575 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2576 x, rtx_addr_varies_p))
2578 if (set_p)
2579 SET_BIT (bmap[bb->index], indx);
2580 else
2581 RESET_BIT (bmap[bb->index], indx);
2582 break;
2584 list_entry = XEXP (list_entry, 1);
2588 x = XEXP (x, 0);
2589 goto repeat;
2591 case PC:
2592 case CC0: /*FIXME*/
2593 case CONST:
2594 case CONST_INT:
2595 case CONST_DOUBLE:
2596 case CONST_VECTOR:
2597 case SYMBOL_REF:
2598 case LABEL_REF:
2599 case ADDR_VEC:
2600 case ADDR_DIFF_VEC:
2601 return;
2603 default:
2604 break;
2607 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2609 if (fmt[i] == 'e')
2611 /* If we are about to do the last recursive call
2612 needed at this level, change it into iteration.
2613 This function is called enough to be worth it. */
2614 if (i == 0)
2616 x = XEXP (x, i);
2617 goto repeat;
2620 compute_transp (XEXP (x, i), indx, bmap, set_p);
2622 else if (fmt[i] == 'E')
2623 for (j = 0; j < XVECLEN (x, i); j++)
2624 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2628 /* Top level routine to do the dataflow analysis needed by copy/const
2629 propagation. */
2631 static void
2632 compute_cprop_data (void)
2634 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2635 compute_available (cprop_pavloc, cprop_absaltered,
2636 cprop_avout, cprop_avin);
2639 /* Copy/constant propagation. */
2641 /* Maximum number of register uses in an insn that we handle. */
2642 #define MAX_USES 8
2644 /* Table of uses found in an insn.
2645 Allocated statically to avoid alloc/free complexity and overhead. */
2646 static struct reg_use reg_use_table[MAX_USES];
2648 /* Index into `reg_use_table' while building it. */
2649 static int reg_use_count;
2651 /* Set up a list of register numbers used in INSN. The found uses are stored
2652 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2653 and contains the number of uses in the table upon exit.
2655 ??? If a register appears multiple times we will record it multiple times.
2656 This doesn't hurt anything but it will slow things down. */
2658 static void
2659 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2661 int i, j;
2662 enum rtx_code code;
2663 const char *fmt;
2664 rtx x = *xptr;
2666 /* repeat is used to turn tail-recursion into iteration since GCC
2667 can't do it when there's no return value. */
2668 repeat:
2669 if (x == 0)
2670 return;
2672 code = GET_CODE (x);
2673 if (REG_P (x))
2675 if (reg_use_count == MAX_USES)
2676 return;
2678 reg_use_table[reg_use_count].reg_rtx = x;
2679 reg_use_count++;
2682 /* Recursively scan the operands of this expression. */
2684 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2686 if (fmt[i] == 'e')
2688 /* If we are about to do the last recursive call
2689 needed at this level, change it into iteration.
2690 This function is called enough to be worth it. */
2691 if (i == 0)
2693 x = XEXP (x, 0);
2694 goto repeat;
2697 find_used_regs (&XEXP (x, i), data);
2699 else if (fmt[i] == 'E')
2700 for (j = 0; j < XVECLEN (x, i); j++)
2701 find_used_regs (&XVECEXP (x, i, j), data);
2705 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2706 Returns nonzero is successful. */
2708 static int
2709 try_replace_reg (rtx from, rtx to, rtx insn)
2711 rtx note = find_reg_equal_equiv_note (insn);
2712 rtx src = 0;
2713 int success = 0;
2714 rtx set = single_set (insn);
2716 validate_replace_src_group (from, to, insn);
2717 if (num_changes_pending () && apply_change_group ())
2718 success = 1;
2720 /* Try to simplify SET_SRC if we have substituted a constant. */
2721 if (success && set && CONSTANT_P (to))
2723 src = simplify_rtx (SET_SRC (set));
2725 if (src)
2726 validate_change (insn, &SET_SRC (set), src, 0);
2729 /* If there is already a NOTE, update the expression in it with our
2730 replacement. */
2731 if (note != 0)
2732 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2734 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2736 /* If above failed and this is a single set, try to simplify the source of
2737 the set given our substitution. We could perhaps try this for multiple
2738 SETs, but it probably won't buy us anything. */
2739 src = simplify_replace_rtx (SET_SRC (set), from, to);
2741 if (!rtx_equal_p (src, SET_SRC (set))
2742 && validate_change (insn, &SET_SRC (set), src, 0))
2743 success = 1;
2745 /* If we've failed to do replacement, have a single SET, don't already
2746 have a note, and have no special SET, add a REG_EQUAL note to not
2747 lose information. */
2748 if (!success && note == 0 && set != 0
2749 && GET_CODE (XEXP (set, 0)) != ZERO_EXTRACT
2750 && GET_CODE (XEXP (set, 0)) != SIGN_EXTRACT)
2751 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2754 /* REG_EQUAL may get simplified into register.
2755 We don't allow that. Remove that note. This code ought
2756 not to happen, because previous code ought to synthesize
2757 reg-reg move, but be on the safe side. */
2758 if (note && REG_P (XEXP (note, 0)))
2759 remove_note (insn, note);
2761 return success;
2764 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2765 NULL no such set is found. */
2767 static struct expr *
2768 find_avail_set (int regno, rtx insn)
2770 /* SET1 contains the last set found that can be returned to the caller for
2771 use in a substitution. */
2772 struct expr *set1 = 0;
2774 /* Loops are not possible here. To get a loop we would need two sets
2775 available at the start of the block containing INSN. i.e. we would
2776 need two sets like this available at the start of the block:
2778 (set (reg X) (reg Y))
2779 (set (reg Y) (reg X))
2781 This can not happen since the set of (reg Y) would have killed the
2782 set of (reg X) making it unavailable at the start of this block. */
2783 while (1)
2785 rtx src;
2786 struct expr *set = lookup_set (regno, &set_hash_table);
2788 /* Find a set that is available at the start of the block
2789 which contains INSN. */
2790 while (set)
2792 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2793 break;
2794 set = next_set (regno, set);
2797 /* If no available set was found we've reached the end of the
2798 (possibly empty) copy chain. */
2799 if (set == 0)
2800 break;
2802 gcc_assert (GET_CODE (set->expr) == SET);
2804 src = SET_SRC (set->expr);
2806 /* We know the set is available.
2807 Now check that SRC is ANTLOC (i.e. none of the source operands
2808 have changed since the start of the block).
2810 If the source operand changed, we may still use it for the next
2811 iteration of this loop, but we may not use it for substitutions. */
2813 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2814 set1 = set;
2816 /* If the source of the set is anything except a register, then
2817 we have reached the end of the copy chain. */
2818 if (! REG_P (src))
2819 break;
2821 /* Follow the copy chain, i.e. start another iteration of the loop
2822 and see if we have an available copy into SRC. */
2823 regno = REGNO (src);
2826 /* SET1 holds the last set that was available and anticipatable at
2827 INSN. */
2828 return set1;
2831 /* Subroutine of cprop_insn that tries to propagate constants into
2832 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2833 it is the instruction that immediately precedes JUMP, and must be a
2834 single SET of a register. FROM is what we will try to replace,
2835 SRC is the constant we will try to substitute for it. Returns nonzero
2836 if a change was made. */
2838 static int
2839 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2841 rtx new, set_src, note_src;
2842 rtx set = pc_set (jump);
2843 rtx note = find_reg_equal_equiv_note (jump);
2845 if (note)
2847 note_src = XEXP (note, 0);
2848 if (GET_CODE (note_src) == EXPR_LIST)
2849 note_src = NULL_RTX;
2851 else note_src = NULL_RTX;
2853 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2854 set_src = note_src ? note_src : SET_SRC (set);
2856 /* First substitute the SETCC condition into the JUMP instruction,
2857 then substitute that given values into this expanded JUMP. */
2858 if (setcc != NULL_RTX
2859 && !modified_between_p (from, setcc, jump)
2860 && !modified_between_p (src, setcc, jump))
2862 rtx setcc_src;
2863 rtx setcc_set = single_set (setcc);
2864 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2865 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2866 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2867 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2868 setcc_src);
2870 else
2871 setcc = NULL_RTX;
2873 new = simplify_replace_rtx (set_src, from, src);
2875 /* If no simplification can be made, then try the next register. */
2876 if (rtx_equal_p (new, SET_SRC (set)))
2877 return 0;
2879 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2880 if (new == pc_rtx)
2881 delete_insn (jump);
2882 else
2884 /* Ensure the value computed inside the jump insn to be equivalent
2885 to one computed by setcc. */
2886 if (setcc && modified_in_p (new, setcc))
2887 return 0;
2888 if (! validate_change (jump, &SET_SRC (set), new, 0))
2890 /* When (some) constants are not valid in a comparison, and there
2891 are two registers to be replaced by constants before the entire
2892 comparison can be folded into a constant, we need to keep
2893 intermediate information in REG_EQUAL notes. For targets with
2894 separate compare insns, such notes are added by try_replace_reg.
2895 When we have a combined compare-and-branch instruction, however,
2896 we need to attach a note to the branch itself to make this
2897 optimization work. */
2899 if (!rtx_equal_p (new, note_src))
2900 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2901 return 0;
2904 /* Remove REG_EQUAL note after simplification. */
2905 if (note_src)
2906 remove_note (jump, note);
2908 /* If this has turned into an unconditional jump,
2909 then put a barrier after it so that the unreachable
2910 code will be deleted. */
2911 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2912 emit_barrier_after (jump);
2915 #ifdef HAVE_cc0
2916 /* Delete the cc0 setter. */
2917 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2918 delete_insn (setcc);
2919 #endif
2921 run_jump_opt_after_gcse = 1;
2923 global_const_prop_count++;
2924 if (gcse_file != NULL)
2926 fprintf (gcse_file,
2927 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2928 REGNO (from), INSN_UID (jump));
2929 print_rtl (gcse_file, src);
2930 fprintf (gcse_file, "\n");
2932 purge_dead_edges (bb);
2934 return 1;
2937 static bool
2938 constprop_register (rtx insn, rtx from, rtx to, int alter_jumps)
2940 rtx sset;
2942 /* Check for reg or cc0 setting instructions followed by
2943 conditional branch instructions first. */
2944 if (alter_jumps
2945 && (sset = single_set (insn)) != NULL
2946 && NEXT_INSN (insn)
2947 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2949 rtx dest = SET_DEST (sset);
2950 if ((REG_P (dest) || CC0_P (dest))
2951 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2952 return 1;
2955 /* Handle normal insns next. */
2956 if (NONJUMP_INSN_P (insn)
2957 && try_replace_reg (from, to, insn))
2958 return 1;
2960 /* Try to propagate a CONST_INT into a conditional jump.
2961 We're pretty specific about what we will handle in this
2962 code, we can extend this as necessary over time.
2964 Right now the insn in question must look like
2965 (set (pc) (if_then_else ...)) */
2966 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2967 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2968 return 0;
2971 /* Perform constant and copy propagation on INSN.
2972 The result is nonzero if a change was made. */
2974 static int
2975 cprop_insn (rtx insn, int alter_jumps)
2977 struct reg_use *reg_used;
2978 int changed = 0;
2979 rtx note;
2981 if (!INSN_P (insn))
2982 return 0;
2984 reg_use_count = 0;
2985 note_uses (&PATTERN (insn), find_used_regs, NULL);
2987 note = find_reg_equal_equiv_note (insn);
2989 /* We may win even when propagating constants into notes. */
2990 if (note)
2991 find_used_regs (&XEXP (note, 0), NULL);
2993 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2994 reg_used++, reg_use_count--)
2996 unsigned int regno = REGNO (reg_used->reg_rtx);
2997 rtx pat, src;
2998 struct expr *set;
3000 /* Ignore registers created by GCSE.
3001 We do this because ... */
3002 if (regno >= max_gcse_regno)
3003 continue;
3005 /* If the register has already been set in this block, there's
3006 nothing we can do. */
3007 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
3008 continue;
3010 /* Find an assignment that sets reg_used and is available
3011 at the start of the block. */
3012 set = find_avail_set (regno, insn);
3013 if (! set)
3014 continue;
3016 pat = set->expr;
3017 /* ??? We might be able to handle PARALLELs. Later. */
3018 gcc_assert (GET_CODE (pat) == SET);
3020 src = SET_SRC (pat);
3022 /* Constant propagation. */
3023 if (gcse_constant_p (src))
3025 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
3027 changed = 1;
3028 global_const_prop_count++;
3029 if (gcse_file != NULL)
3031 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
3032 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
3033 print_rtl (gcse_file, src);
3034 fprintf (gcse_file, "\n");
3036 if (INSN_DELETED_P (insn))
3037 return 1;
3040 else if (REG_P (src)
3041 && REGNO (src) >= FIRST_PSEUDO_REGISTER
3042 && REGNO (src) != regno)
3044 if (try_replace_reg (reg_used->reg_rtx, src, insn))
3046 changed = 1;
3047 global_copy_prop_count++;
3048 if (gcse_file != NULL)
3050 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
3051 regno, INSN_UID (insn));
3052 fprintf (gcse_file, " with reg %d\n", REGNO (src));
3055 /* The original insn setting reg_used may or may not now be
3056 deletable. We leave the deletion to flow. */
3057 /* FIXME: If it turns out that the insn isn't deletable,
3058 then we may have unnecessarily extended register lifetimes
3059 and made things worse. */
3064 return changed;
3067 /* Like find_used_regs, but avoid recording uses that appear in
3068 input-output contexts such as zero_extract or pre_dec. This
3069 restricts the cases we consider to those for which local cprop
3070 can legitimately make replacements. */
3072 static void
3073 local_cprop_find_used_regs (rtx *xptr, void *data)
3075 rtx x = *xptr;
3077 if (x == 0)
3078 return;
3080 switch (GET_CODE (x))
3082 case ZERO_EXTRACT:
3083 case SIGN_EXTRACT:
3084 case STRICT_LOW_PART:
3085 return;
3087 case PRE_DEC:
3088 case PRE_INC:
3089 case POST_DEC:
3090 case POST_INC:
3091 case PRE_MODIFY:
3092 case POST_MODIFY:
3093 /* Can only legitimately appear this early in the context of
3094 stack pushes for function arguments, but handle all of the
3095 codes nonetheless. */
3096 return;
3098 case SUBREG:
3099 /* Setting a subreg of a register larger than word_mode leaves
3100 the non-written words unchanged. */
3101 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3102 return;
3103 break;
3105 default:
3106 break;
3109 find_used_regs (xptr, data);
3112 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3113 their REG_EQUAL notes need updating. */
3115 static bool
3116 do_local_cprop (rtx x, rtx insn, int alter_jumps, rtx *libcall_sp)
3118 rtx newreg = NULL, newcnst = NULL;
3120 /* Rule out USE instructions and ASM statements as we don't want to
3121 change the hard registers mentioned. */
3122 if (REG_P (x)
3123 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3124 || (GET_CODE (PATTERN (insn)) != USE
3125 && asm_noperands (PATTERN (insn)) < 0)))
3127 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3128 struct elt_loc_list *l;
3130 if (!val)
3131 return false;
3132 for (l = val->locs; l; l = l->next)
3134 rtx this_rtx = l->loc;
3135 rtx note;
3137 /* Don't CSE non-constant values out of libcall blocks. */
3138 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3139 continue;
3141 if (gcse_constant_p (this_rtx))
3142 newcnst = this_rtx;
3143 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3144 /* Don't copy propagate if it has attached REG_EQUIV note.
3145 At this point this only function parameters should have
3146 REG_EQUIV notes and if the argument slot is used somewhere
3147 explicitly, it means address of parameter has been taken,
3148 so we should not extend the lifetime of the pseudo. */
3149 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3150 || ! MEM_P (XEXP (note, 0))))
3151 newreg = this_rtx;
3153 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3155 /* If we find a case where we can't fix the retval REG_EQUAL notes
3156 match the new register, we either have to abandon this replacement
3157 or fix delete_trivially_dead_insns to preserve the setting insn,
3158 or make it delete the REG_EUAQL note, and fix up all passes that
3159 require the REG_EQUAL note there. */
3160 bool adjusted;
3162 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3163 gcc_assert (adjusted);
3165 if (gcse_file != NULL)
3167 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3168 REGNO (x));
3169 fprintf (gcse_file, "insn %d with constant ",
3170 INSN_UID (insn));
3171 print_rtl (gcse_file, newcnst);
3172 fprintf (gcse_file, "\n");
3174 local_const_prop_count++;
3175 return true;
3177 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3179 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3180 if (gcse_file != NULL)
3182 fprintf (gcse_file,
3183 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3184 REGNO (x), INSN_UID (insn));
3185 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3187 local_copy_prop_count++;
3188 return true;
3191 return false;
3194 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3195 their REG_EQUAL notes need updating to reflect that OLDREG has been
3196 replaced with NEWVAL in INSN. Return true if all substitutions could
3197 be made. */
3198 static bool
3199 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3201 rtx end;
3203 while ((end = *libcall_sp++))
3205 rtx note = find_reg_equal_equiv_note (end);
3207 if (! note)
3208 continue;
3210 if (REG_P (newval))
3212 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3216 note = find_reg_equal_equiv_note (end);
3217 if (! note)
3218 continue;
3219 if (reg_mentioned_p (newval, XEXP (note, 0)))
3220 return false;
3222 while ((end = *libcall_sp++));
3223 return true;
3226 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3227 insn = end;
3229 return true;
3232 #define MAX_NESTED_LIBCALLS 9
3234 static void
3235 local_cprop_pass (int alter_jumps)
3237 rtx insn;
3238 struct reg_use *reg_used;
3239 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3240 bool changed = false;
3242 cselib_init (false);
3243 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3244 *libcall_sp = 0;
3245 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3247 if (INSN_P (insn))
3249 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3251 if (note)
3253 gcc_assert (libcall_sp != libcall_stack);
3254 *--libcall_sp = XEXP (note, 0);
3256 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3257 if (note)
3258 libcall_sp++;
3259 note = find_reg_equal_equiv_note (insn);
3262 reg_use_count = 0;
3263 note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
3264 if (note)
3265 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3267 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3268 reg_used++, reg_use_count--)
3269 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3270 libcall_sp))
3272 changed = true;
3273 break;
3275 if (INSN_DELETED_P (insn))
3276 break;
3278 while (reg_use_count);
3280 cselib_process_insn (insn);
3282 cselib_finish ();
3283 /* Global analysis may get into infinite loops for unreachable blocks. */
3284 if (changed && alter_jumps)
3286 delete_unreachable_blocks ();
3287 free_reg_set_mem ();
3288 alloc_reg_set_mem (max_reg_num ());
3289 compute_sets (get_insns ());
3293 /* Forward propagate copies. This includes copies and constants. Return
3294 nonzero if a change was made. */
3296 static int
3297 cprop (int alter_jumps)
3299 int changed;
3300 basic_block bb;
3301 rtx insn;
3303 /* Note we start at block 1. */
3304 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3306 if (gcse_file != NULL)
3307 fprintf (gcse_file, "\n");
3308 return 0;
3311 changed = 0;
3312 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3314 /* Reset tables used to keep track of what's still valid [since the
3315 start of the block]. */
3316 reset_opr_set_tables ();
3318 for (insn = BB_HEAD (bb);
3319 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3320 insn = NEXT_INSN (insn))
3321 if (INSN_P (insn))
3323 changed |= cprop_insn (insn, alter_jumps);
3325 /* Keep track of everything modified by this insn. */
3326 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3327 call mark_oprs_set if we turned the insn into a NOTE. */
3328 if (! NOTE_P (insn))
3329 mark_oprs_set (insn);
3333 if (gcse_file != NULL)
3334 fprintf (gcse_file, "\n");
3336 return changed;
3339 /* Similar to get_condition, only the resulting condition must be
3340 valid at JUMP, instead of at EARLIEST.
3342 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3343 settle for the condition variable in the jump instruction being integral.
3344 We prefer to be able to record the value of a user variable, rather than
3345 the value of a temporary used in a condition. This could be solved by
3346 recording the value of *every* register scaned by canonicalize_condition,
3347 but this would require some code reorganization. */
3350 fis_get_condition (rtx jump)
3352 return get_condition (jump, NULL, false, true);
3355 /* Check the comparison COND to see if we can safely form an implicit set from
3356 it. COND is either an EQ or NE comparison. */
3358 static bool
3359 implicit_set_cond_p (rtx cond)
3361 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3362 rtx cst = XEXP (cond, 1);
3364 /* We can't perform this optimization if either operand might be or might
3365 contain a signed zero. */
3366 if (HONOR_SIGNED_ZEROS (mode))
3368 /* It is sufficient to check if CST is or contains a zero. We must
3369 handle float, complex, and vector. If any subpart is a zero, then
3370 the optimization can't be performed. */
3371 /* ??? The complex and vector checks are not implemented yet. We just
3372 always return zero for them. */
3373 if (GET_CODE (cst) == CONST_DOUBLE)
3375 REAL_VALUE_TYPE d;
3376 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3377 if (REAL_VALUES_EQUAL (d, dconst0))
3378 return 0;
3380 else
3381 return 0;
3384 return gcse_constant_p (cst);
3387 /* Find the implicit sets of a function. An "implicit set" is a constraint
3388 on the value of a variable, implied by a conditional jump. For example,
3389 following "if (x == 2)", the then branch may be optimized as though the
3390 conditional performed an "explicit set", in this example, "x = 2". This
3391 function records the set patterns that are implicit at the start of each
3392 basic block. */
3394 static void
3395 find_implicit_sets (void)
3397 basic_block bb, dest;
3398 unsigned int count;
3399 rtx cond, new;
3401 count = 0;
3402 FOR_EACH_BB (bb)
3403 /* Check for more than one successor. */
3404 if (EDGE_COUNT (bb->succs) > 1)
3406 cond = fis_get_condition (BB_END (bb));
3408 if (cond
3409 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3410 && REG_P (XEXP (cond, 0))
3411 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3412 && implicit_set_cond_p (cond))
3414 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3415 : FALLTHRU_EDGE (bb)->dest;
3417 if (dest && EDGE_COUNT (dest->preds) == 1
3418 && dest != EXIT_BLOCK_PTR)
3420 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3421 XEXP (cond, 1));
3422 implicit_sets[dest->index] = new;
3423 if (gcse_file)
3425 fprintf(gcse_file, "Implicit set of reg %d in ",
3426 REGNO (XEXP (cond, 0)));
3427 fprintf(gcse_file, "basic block %d\n", dest->index);
3429 count++;
3434 if (gcse_file)
3435 fprintf (gcse_file, "Found %d implicit sets\n", count);
3438 /* Perform one copy/constant propagation pass.
3439 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3440 propagation into conditional jumps. If BYPASS_JUMPS is true,
3441 perform conditional jump bypassing optimizations. */
3443 static int
3444 one_cprop_pass (int pass, int cprop_jumps, int bypass_jumps)
3446 int changed = 0;
3448 global_const_prop_count = local_const_prop_count = 0;
3449 global_copy_prop_count = local_copy_prop_count = 0;
3451 local_cprop_pass (cprop_jumps);
3453 /* Determine implicit sets. */
3454 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3455 find_implicit_sets ();
3457 alloc_hash_table (max_cuid, &set_hash_table, 1);
3458 compute_hash_table (&set_hash_table);
3460 /* Free implicit_sets before peak usage. */
3461 free (implicit_sets);
3462 implicit_sets = NULL;
3464 if (gcse_file)
3465 dump_hash_table (gcse_file, "SET", &set_hash_table);
3466 if (set_hash_table.n_elems > 0)
3468 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3469 compute_cprop_data ();
3470 changed = cprop (cprop_jumps);
3471 if (bypass_jumps)
3472 changed |= bypass_conditional_jumps ();
3473 free_cprop_mem ();
3476 free_hash_table (&set_hash_table);
3478 if (gcse_file)
3480 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3481 current_function_name (), pass, bytes_used);
3482 fprintf (gcse_file, "%d local const props, %d local copy props\n\n",
3483 local_const_prop_count, local_copy_prop_count);
3484 fprintf (gcse_file, "%d global const props, %d global copy props\n\n",
3485 global_const_prop_count, global_copy_prop_count);
3487 /* Global analysis may get into infinite loops for unreachable blocks. */
3488 if (changed && cprop_jumps)
3489 delete_unreachable_blocks ();
3491 return changed;
3494 /* Bypass conditional jumps. */
3496 /* The value of last_basic_block at the beginning of the jump_bypass
3497 pass. The use of redirect_edge_and_branch_force may introduce new
3498 basic blocks, but the data flow analysis is only valid for basic
3499 block indices less than bypass_last_basic_block. */
3501 static int bypass_last_basic_block;
3503 /* Find a set of REGNO to a constant that is available at the end of basic
3504 block BB. Returns NULL if no such set is found. Based heavily upon
3505 find_avail_set. */
3507 static struct expr *
3508 find_bypass_set (int regno, int bb)
3510 struct expr *result = 0;
3512 for (;;)
3514 rtx src;
3515 struct expr *set = lookup_set (regno, &set_hash_table);
3517 while (set)
3519 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3520 break;
3521 set = next_set (regno, set);
3524 if (set == 0)
3525 break;
3527 gcc_assert (GET_CODE (set->expr) == SET);
3529 src = SET_SRC (set->expr);
3530 if (gcse_constant_p (src))
3531 result = set;
3533 if (! REG_P (src))
3534 break;
3536 regno = REGNO (src);
3538 return result;
3542 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3543 any of the instructions inserted on an edge. Jump bypassing places
3544 condition code setters on CFG edges using insert_insn_on_edge. This
3545 function is required to check that our data flow analysis is still
3546 valid prior to commit_edge_insertions. */
3548 static bool
3549 reg_killed_on_edge (rtx reg, edge e)
3551 rtx insn;
3553 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3554 if (INSN_P (insn) && reg_set_p (reg, insn))
3555 return true;
3557 return false;
3560 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3561 basic block BB which has more than one predecessor. If not NULL, SETCC
3562 is the first instruction of BB, which is immediately followed by JUMP_INSN
3563 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3564 Returns nonzero if a change was made.
3566 During the jump bypassing pass, we may place copies of SETCC instructions
3567 on CFG edges. The following routine must be careful to pay attention to
3568 these inserted insns when performing its transformations. */
3570 static int
3571 bypass_block (basic_block bb, rtx setcc, rtx jump)
3573 rtx insn, note;
3574 edge e, edest;
3575 int i, change;
3576 int may_be_loop_header;
3577 unsigned removed_p;
3578 edge_iterator ei;
3580 insn = (setcc != NULL) ? setcc : jump;
3582 /* Determine set of register uses in INSN. */
3583 reg_use_count = 0;
3584 note_uses (&PATTERN (insn), find_used_regs, NULL);
3585 note = find_reg_equal_equiv_note (insn);
3586 if (note)
3587 find_used_regs (&XEXP (note, 0), NULL);
3589 may_be_loop_header = false;
3590 FOR_EACH_EDGE (e, ei, bb->preds)
3591 if (e->flags & EDGE_DFS_BACK)
3593 may_be_loop_header = true;
3594 break;
3597 change = 0;
3598 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3600 removed_p = 0;
3602 if (e->flags & EDGE_COMPLEX)
3604 ei_next (&ei);
3605 continue;
3608 /* We can't redirect edges from new basic blocks. */
3609 if (e->src->index >= bypass_last_basic_block)
3611 ei_next (&ei);
3612 continue;
3615 /* The irreducible loops created by redirecting of edges entering the
3616 loop from outside would decrease effectiveness of some of the following
3617 optimizations, so prevent this. */
3618 if (may_be_loop_header
3619 && !(e->flags & EDGE_DFS_BACK))
3621 ei_next (&ei);
3622 continue;
3625 for (i = 0; i < reg_use_count; i++)
3627 struct reg_use *reg_used = &reg_use_table[i];
3628 unsigned int regno = REGNO (reg_used->reg_rtx);
3629 basic_block dest, old_dest;
3630 struct expr *set;
3631 rtx src, new;
3633 if (regno >= max_gcse_regno)
3634 continue;
3636 set = find_bypass_set (regno, e->src->index);
3638 if (! set)
3639 continue;
3641 /* Check the data flow is valid after edge insertions. */
3642 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3643 continue;
3645 src = SET_SRC (pc_set (jump));
3647 if (setcc != NULL)
3648 src = simplify_replace_rtx (src,
3649 SET_DEST (PATTERN (setcc)),
3650 SET_SRC (PATTERN (setcc)));
3652 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3653 SET_SRC (set->expr));
3655 /* Jump bypassing may have already placed instructions on
3656 edges of the CFG. We can't bypass an outgoing edge that
3657 has instructions associated with it, as these insns won't
3658 get executed if the incoming edge is redirected. */
3660 if (new == pc_rtx)
3662 edest = FALLTHRU_EDGE (bb);
3663 dest = edest->insns.r ? NULL : edest->dest;
3665 else if (GET_CODE (new) == LABEL_REF)
3667 edge_iterator ei2;
3669 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3670 /* Don't bypass edges containing instructions. */
3671 FOR_EACH_EDGE (edest, ei2, bb->succs)
3672 if (edest->dest == dest && edest->insns.r)
3674 dest = NULL;
3675 break;
3678 else
3679 dest = NULL;
3681 /* Avoid unification of the edge with other edges from original
3682 branch. We would end up emitting the instruction on "both"
3683 edges. */
3685 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc))))
3687 edge e2;
3688 edge_iterator ei2;
3690 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3691 if (e2->dest == dest)
3693 dest = NULL;
3694 break;
3698 old_dest = e->dest;
3699 if (dest != NULL
3700 && dest != old_dest
3701 && dest != EXIT_BLOCK_PTR)
3703 redirect_edge_and_branch_force (e, dest);
3705 /* Copy the register setter to the redirected edge.
3706 Don't copy CC0 setters, as CC0 is dead after jump. */
3707 if (setcc)
3709 rtx pat = PATTERN (setcc);
3710 if (!CC0_P (SET_DEST (pat)))
3711 insert_insn_on_edge (copy_insn (pat), e);
3714 if (gcse_file != NULL)
3716 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d "
3717 "in jump_insn %d equals constant ",
3718 regno, INSN_UID (jump));
3719 print_rtl (gcse_file, SET_SRC (set->expr));
3720 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
3721 e->src->index, old_dest->index, dest->index);
3723 change = 1;
3724 removed_p = 1;
3725 break;
3728 if (!removed_p)
3729 ei_next (&ei);
3731 return change;
3734 /* Find basic blocks with more than one predecessor that only contain a
3735 single conditional jump. If the result of the comparison is known at
3736 compile-time from any incoming edge, redirect that edge to the
3737 appropriate target. Returns nonzero if a change was made.
3739 This function is now mis-named, because we also handle indirect jumps. */
3741 static int
3742 bypass_conditional_jumps (void)
3744 basic_block bb;
3745 int changed;
3746 rtx setcc;
3747 rtx insn;
3748 rtx dest;
3750 /* Note we start at block 1. */
3751 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3752 return 0;
3754 bypass_last_basic_block = last_basic_block;
3755 mark_dfs_back_edges ();
3757 changed = 0;
3758 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3759 EXIT_BLOCK_PTR, next_bb)
3761 /* Check for more than one predecessor. */
3762 if (EDGE_COUNT (bb->preds) > 1)
3764 setcc = NULL_RTX;
3765 for (insn = BB_HEAD (bb);
3766 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3767 insn = NEXT_INSN (insn))
3768 if (NONJUMP_INSN_P (insn))
3770 if (setcc)
3771 break;
3772 if (GET_CODE (PATTERN (insn)) != SET)
3773 break;
3775 dest = SET_DEST (PATTERN (insn));
3776 if (REG_P (dest) || CC0_P (dest))
3777 setcc = insn;
3778 else
3779 break;
3781 else if (JUMP_P (insn))
3783 if ((any_condjump_p (insn) || computed_jump_p (insn))
3784 && onlyjump_p (insn))
3785 changed |= bypass_block (bb, setcc, insn);
3786 break;
3788 else if (INSN_P (insn))
3789 break;
3793 /* If we bypassed any register setting insns, we inserted a
3794 copy on the redirected edge. These need to be committed. */
3795 if (changed)
3796 commit_edge_insertions();
3798 return changed;
3801 /* Compute PRE+LCM working variables. */
3803 /* Local properties of expressions. */
3804 /* Nonzero for expressions that are transparent in the block. */
3805 static sbitmap *transp;
3807 /* Nonzero for expressions that are transparent at the end of the block.
3808 This is only zero for expressions killed by abnormal critical edge
3809 created by a calls. */
3810 static sbitmap *transpout;
3812 /* Nonzero for expressions that are computed (available) in the block. */
3813 static sbitmap *comp;
3815 /* Nonzero for expressions that are locally anticipatable in the block. */
3816 static sbitmap *antloc;
3818 /* Nonzero for expressions where this block is an optimal computation
3819 point. */
3820 static sbitmap *pre_optimal;
3822 /* Nonzero for expressions which are redundant in a particular block. */
3823 static sbitmap *pre_redundant;
3825 /* Nonzero for expressions which should be inserted on a specific edge. */
3826 static sbitmap *pre_insert_map;
3828 /* Nonzero for expressions which should be deleted in a specific block. */
3829 static sbitmap *pre_delete_map;
3831 /* Contains the edge_list returned by pre_edge_lcm. */
3832 static struct edge_list *edge_list;
3834 /* Redundant insns. */
3835 static sbitmap pre_redundant_insns;
3837 /* Allocate vars used for PRE analysis. */
3839 static void
3840 alloc_pre_mem (int n_blocks, int n_exprs)
3842 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3843 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3844 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3846 pre_optimal = NULL;
3847 pre_redundant = NULL;
3848 pre_insert_map = NULL;
3849 pre_delete_map = NULL;
3850 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3852 /* pre_insert and pre_delete are allocated later. */
3855 /* Free vars used for PRE analysis. */
3857 static void
3858 free_pre_mem (void)
3860 sbitmap_vector_free (transp);
3861 sbitmap_vector_free (comp);
3863 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3865 if (pre_optimal)
3866 sbitmap_vector_free (pre_optimal);
3867 if (pre_redundant)
3868 sbitmap_vector_free (pre_redundant);
3869 if (pre_insert_map)
3870 sbitmap_vector_free (pre_insert_map);
3871 if (pre_delete_map)
3872 sbitmap_vector_free (pre_delete_map);
3874 transp = comp = NULL;
3875 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3878 /* Top level routine to do the dataflow analysis needed by PRE. */
3880 static void
3881 compute_pre_data (void)
3883 sbitmap trapping_expr;
3884 basic_block bb;
3885 unsigned int ui;
3887 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3888 sbitmap_vector_zero (ae_kill, last_basic_block);
3890 /* Collect expressions which might trap. */
3891 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3892 sbitmap_zero (trapping_expr);
3893 for (ui = 0; ui < expr_hash_table.size; ui++)
3895 struct expr *e;
3896 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3897 if (may_trap_p (e->expr))
3898 SET_BIT (trapping_expr, e->bitmap_index);
3901 /* Compute ae_kill for each basic block using:
3903 ~(TRANSP | COMP)
3906 FOR_EACH_BB (bb)
3908 edge e;
3909 edge_iterator ei;
3911 /* If the current block is the destination of an abnormal edge, we
3912 kill all trapping expressions because we won't be able to properly
3913 place the instruction on the edge. So make them neither
3914 anticipatable nor transparent. This is fairly conservative. */
3915 FOR_EACH_EDGE (e, ei, bb->preds)
3916 if (e->flags & EDGE_ABNORMAL)
3918 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3919 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3920 break;
3923 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3924 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3927 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
3928 ae_kill, &pre_insert_map, &pre_delete_map);
3929 sbitmap_vector_free (antloc);
3930 antloc = NULL;
3931 sbitmap_vector_free (ae_kill);
3932 ae_kill = NULL;
3933 sbitmap_free (trapping_expr);
3936 /* PRE utilities */
3938 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3939 block BB.
3941 VISITED is a pointer to a working buffer for tracking which BB's have
3942 been visited. It is NULL for the top-level call.
3944 We treat reaching expressions that go through blocks containing the same
3945 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3946 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3947 2 as not reaching. The intent is to improve the probability of finding
3948 only one reaching expression and to reduce register lifetimes by picking
3949 the closest such expression. */
3951 static int
3952 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3954 edge pred;
3955 edge_iterator ei;
3957 FOR_EACH_EDGE (pred, ei, bb->preds)
3959 basic_block pred_bb = pred->src;
3961 if (pred->src == ENTRY_BLOCK_PTR
3962 /* Has predecessor has already been visited? */
3963 || visited[pred_bb->index])
3964 ;/* Nothing to do. */
3966 /* Does this predecessor generate this expression? */
3967 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3969 /* Is this the occurrence we're looking for?
3970 Note that there's only one generating occurrence per block
3971 so we just need to check the block number. */
3972 if (occr_bb == pred_bb)
3973 return 1;
3975 visited[pred_bb->index] = 1;
3977 /* Ignore this predecessor if it kills the expression. */
3978 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3979 visited[pred_bb->index] = 1;
3981 /* Neither gen nor kill. */
3982 else
3984 visited[pred_bb->index] = 1;
3985 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3986 return 1;
3990 /* All paths have been checked. */
3991 return 0;
3994 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3995 memory allocated for that function is returned. */
3997 static int
3998 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
4000 int rval;
4001 char *visited = xcalloc (last_basic_block, 1);
4003 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
4005 free (visited);
4006 return rval;
4010 /* Given an expr, generate RTL which we can insert at the end of a BB,
4011 or on an edge. Set the block number of any insns generated to
4012 the value of BB. */
4014 static rtx
4015 process_insert_insn (struct expr *expr)
4017 rtx reg = expr->reaching_reg;
4018 rtx exp = copy_rtx (expr->expr);
4019 rtx pat;
4021 start_sequence ();
4023 /* If the expression is something that's an operand, like a constant,
4024 just copy it to a register. */
4025 if (general_operand (exp, GET_MODE (reg)))
4026 emit_move_insn (reg, exp);
4028 /* Otherwise, make a new insn to compute this expression and make sure the
4029 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4030 expression to make sure we don't have any sharing issues. */
4031 else
4033 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
4035 if (insn_invalid_p (insn))
4036 gcc_unreachable ();
4040 pat = get_insns ();
4041 end_sequence ();
4043 return pat;
4046 /* Add EXPR to the end of basic block BB.
4048 This is used by both the PRE and code hoisting.
4050 For PRE, we want to verify that the expr is either transparent
4051 or locally anticipatable in the target block. This check makes
4052 no sense for code hoisting. */
4054 static void
4055 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
4057 rtx insn = BB_END (bb);
4058 rtx new_insn;
4059 rtx reg = expr->reaching_reg;
4060 int regno = REGNO (reg);
4061 rtx pat, pat_end;
4063 pat = process_insert_insn (expr);
4064 gcc_assert (pat && INSN_P (pat));
4066 pat_end = pat;
4067 while (NEXT_INSN (pat_end) != NULL_RTX)
4068 pat_end = NEXT_INSN (pat_end);
4070 /* If the last insn is a jump, insert EXPR in front [taking care to
4071 handle cc0, etc. properly]. Similarly we need to care trapping
4072 instructions in presence of non-call exceptions. */
4074 if (JUMP_P (insn)
4075 || (NONJUMP_INSN_P (insn)
4076 && (EDGE_COUNT (bb->succs) > 1
4077 || EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL)))
4079 #ifdef HAVE_cc0
4080 rtx note;
4081 #endif
4082 /* It should always be the case that we can put these instructions
4083 anywhere in the basic block with performing PRE optimizations.
4084 Check this. */
4085 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4086 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4087 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4089 /* If this is a jump table, then we can't insert stuff here. Since
4090 we know the previous real insn must be the tablejump, we insert
4091 the new instruction just before the tablejump. */
4092 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4093 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4094 insn = prev_real_insn (insn);
4096 #ifdef HAVE_cc0
4097 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4098 if cc0 isn't set. */
4099 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4100 if (note)
4101 insn = XEXP (note, 0);
4102 else
4104 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4105 if (maybe_cc0_setter
4106 && INSN_P (maybe_cc0_setter)
4107 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4108 insn = maybe_cc0_setter;
4110 #endif
4111 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4112 new_insn = emit_insn_before_noloc (pat, insn);
4115 /* Likewise if the last insn is a call, as will happen in the presence
4116 of exception handling. */
4117 else if (CALL_P (insn)
4118 && (EDGE_COUNT (bb->succs) > 1 || EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL))
4120 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4121 we search backward and place the instructions before the first
4122 parameter is loaded. Do this for everyone for consistency and a
4123 presumption that we'll get better code elsewhere as well.
4125 It should always be the case that we can put these instructions
4126 anywhere in the basic block with performing PRE optimizations.
4127 Check this. */
4129 gcc_assert (!pre
4130 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4131 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4133 /* Since different machines initialize their parameter registers
4134 in different orders, assume nothing. Collect the set of all
4135 parameter registers. */
4136 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4138 /* If we found all the parameter loads, then we want to insert
4139 before the first parameter load.
4141 If we did not find all the parameter loads, then we might have
4142 stopped on the head of the block, which could be a CODE_LABEL.
4143 If we inserted before the CODE_LABEL, then we would be putting
4144 the insn in the wrong basic block. In that case, put the insn
4145 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4146 while (LABEL_P (insn)
4147 || NOTE_INSN_BASIC_BLOCK_P (insn))
4148 insn = NEXT_INSN (insn);
4150 new_insn = emit_insn_before_noloc (pat, insn);
4152 else
4153 new_insn = emit_insn_after_noloc (pat, insn);
4155 while (1)
4157 if (INSN_P (pat))
4159 add_label_notes (PATTERN (pat), new_insn);
4160 note_stores (PATTERN (pat), record_set_info, pat);
4162 if (pat == pat_end)
4163 break;
4164 pat = NEXT_INSN (pat);
4167 gcse_create_count++;
4169 if (gcse_file)
4171 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4172 bb->index, INSN_UID (new_insn));
4173 fprintf (gcse_file, "copying expression %d to reg %d\n",
4174 expr->bitmap_index, regno);
4178 /* Insert partially redundant expressions on edges in the CFG to make
4179 the expressions fully redundant. */
4181 static int
4182 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4184 int e, i, j, num_edges, set_size, did_insert = 0;
4185 sbitmap *inserted;
4187 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4188 if it reaches any of the deleted expressions. */
4190 set_size = pre_insert_map[0]->size;
4191 num_edges = NUM_EDGES (edge_list);
4192 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4193 sbitmap_vector_zero (inserted, num_edges);
4195 for (e = 0; e < num_edges; e++)
4197 int indx;
4198 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4200 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4202 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4204 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4205 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4207 struct expr *expr = index_map[j];
4208 struct occr *occr;
4210 /* Now look at each deleted occurrence of this expression. */
4211 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4213 if (! occr->deleted_p)
4214 continue;
4216 /* Insert this expression on this edge if if it would
4217 reach the deleted occurrence in BB. */
4218 if (!TEST_BIT (inserted[e], j))
4220 rtx insn;
4221 edge eg = INDEX_EDGE (edge_list, e);
4223 /* We can't insert anything on an abnormal and
4224 critical edge, so we insert the insn at the end of
4225 the previous block. There are several alternatives
4226 detailed in Morgans book P277 (sec 10.5) for
4227 handling this situation. This one is easiest for
4228 now. */
4230 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4231 insert_insn_end_bb (index_map[j], bb, 0);
4232 else
4234 insn = process_insert_insn (index_map[j]);
4235 insert_insn_on_edge (insn, eg);
4238 if (gcse_file)
4240 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4241 bb->index,
4242 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4243 fprintf (gcse_file, "copy expression %d\n",
4244 expr->bitmap_index);
4247 update_ld_motion_stores (expr);
4248 SET_BIT (inserted[e], j);
4249 did_insert = 1;
4250 gcse_create_count++;
4257 sbitmap_vector_free (inserted);
4258 return did_insert;
4261 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4262 Given "old_reg <- expr" (INSN), instead of adding after it
4263 reaching_reg <- old_reg
4264 it's better to do the following:
4265 reaching_reg <- expr
4266 old_reg <- reaching_reg
4267 because this way copy propagation can discover additional PRE
4268 opportunities. But if this fails, we try the old way.
4269 When "expr" is a store, i.e.
4270 given "MEM <- old_reg", instead of adding after it
4271 reaching_reg <- old_reg
4272 it's better to add it before as follows:
4273 reaching_reg <- old_reg
4274 MEM <- reaching_reg. */
4276 static void
4277 pre_insert_copy_insn (struct expr *expr, rtx insn)
4279 rtx reg = expr->reaching_reg;
4280 int regno = REGNO (reg);
4281 int indx = expr->bitmap_index;
4282 rtx pat = PATTERN (insn);
4283 rtx set, new_insn;
4284 rtx old_reg;
4285 int i;
4287 /* This block matches the logic in hash_scan_insn. */
4288 switch (GET_CODE (pat))
4290 case SET:
4291 set = pat;
4292 break;
4294 case PARALLEL:
4295 /* Search through the parallel looking for the set whose
4296 source was the expression that we're interested in. */
4297 set = NULL_RTX;
4298 for (i = 0; i < XVECLEN (pat, 0); i++)
4300 rtx x = XVECEXP (pat, 0, i);
4301 if (GET_CODE (x) == SET
4302 && expr_equiv_p (SET_SRC (x), expr->expr))
4304 set = x;
4305 break;
4308 break;
4310 default:
4311 gcc_unreachable ();
4314 if (REG_P (SET_DEST (set)))
4316 old_reg = SET_DEST (set);
4317 /* Check if we can modify the set destination in the original insn. */
4318 if (validate_change (insn, &SET_DEST (set), reg, 0))
4320 new_insn = gen_move_insn (old_reg, reg);
4321 new_insn = emit_insn_after (new_insn, insn);
4323 /* Keep register set table up to date. */
4324 replace_one_set (REGNO (old_reg), insn, new_insn);
4325 record_one_set (regno, insn);
4327 else
4329 new_insn = gen_move_insn (reg, old_reg);
4330 new_insn = emit_insn_after (new_insn, insn);
4332 /* Keep register set table up to date. */
4333 record_one_set (regno, new_insn);
4336 else /* This is possible only in case of a store to memory. */
4338 old_reg = SET_SRC (set);
4339 new_insn = gen_move_insn (reg, old_reg);
4341 /* Check if we can modify the set source in the original insn. */
4342 if (validate_change (insn, &SET_SRC (set), reg, 0))
4343 new_insn = emit_insn_before (new_insn, insn);
4344 else
4345 new_insn = emit_insn_after (new_insn, insn);
4347 /* Keep register set table up to date. */
4348 record_one_set (regno, new_insn);
4351 gcse_create_count++;
4353 if (gcse_file)
4354 fprintf (gcse_file,
4355 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4356 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4357 INSN_UID (insn), regno);
4360 /* Copy available expressions that reach the redundant expression
4361 to `reaching_reg'. */
4363 static void
4364 pre_insert_copies (void)
4366 unsigned int i, added_copy;
4367 struct expr *expr;
4368 struct occr *occr;
4369 struct occr *avail;
4371 /* For each available expression in the table, copy the result to
4372 `reaching_reg' if the expression reaches a deleted one.
4374 ??? The current algorithm is rather brute force.
4375 Need to do some profiling. */
4377 for (i = 0; i < expr_hash_table.size; i++)
4378 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4380 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4381 we don't want to insert a copy here because the expression may not
4382 really be redundant. So only insert an insn if the expression was
4383 deleted. This test also avoids further processing if the
4384 expression wasn't deleted anywhere. */
4385 if (expr->reaching_reg == NULL)
4386 continue;
4388 /* Set when we add a copy for that expression. */
4389 added_copy = 0;
4391 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4393 if (! occr->deleted_p)
4394 continue;
4396 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4398 rtx insn = avail->insn;
4400 /* No need to handle this one if handled already. */
4401 if (avail->copied_p)
4402 continue;
4404 /* Don't handle this one if it's a redundant one. */
4405 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4406 continue;
4408 /* Or if the expression doesn't reach the deleted one. */
4409 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4410 expr,
4411 BLOCK_FOR_INSN (occr->insn)))
4412 continue;
4414 added_copy = 1;
4416 /* Copy the result of avail to reaching_reg. */
4417 pre_insert_copy_insn (expr, insn);
4418 avail->copied_p = 1;
4422 if (added_copy)
4423 update_ld_motion_stores (expr);
4427 /* Emit move from SRC to DEST noting the equivalence with expression computed
4428 in INSN. */
4429 static rtx
4430 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4432 rtx new;
4433 rtx set = single_set (insn), set2;
4434 rtx note;
4435 rtx eqv;
4437 /* This should never fail since we're creating a reg->reg copy
4438 we've verified to be valid. */
4440 new = emit_insn_after (gen_move_insn (dest, src), insn);
4442 /* Note the equivalence for local CSE pass. */
4443 set2 = single_set (new);
4444 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4445 return new;
4446 if ((note = find_reg_equal_equiv_note (insn)))
4447 eqv = XEXP (note, 0);
4448 else
4449 eqv = SET_SRC (set);
4451 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4453 return new;
4456 /* Delete redundant computations.
4457 Deletion is done by changing the insn to copy the `reaching_reg' of
4458 the expression into the result of the SET. It is left to later passes
4459 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4461 Returns nonzero if a change is made. */
4463 static int
4464 pre_delete (void)
4466 unsigned int i;
4467 int changed;
4468 struct expr *expr;
4469 struct occr *occr;
4471 changed = 0;
4472 for (i = 0; i < expr_hash_table.size; i++)
4473 for (expr = expr_hash_table.table[i];
4474 expr != NULL;
4475 expr = expr->next_same_hash)
4477 int indx = expr->bitmap_index;
4479 /* We only need to search antic_occr since we require
4480 ANTLOC != 0. */
4482 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4484 rtx insn = occr->insn;
4485 rtx set;
4486 basic_block bb = BLOCK_FOR_INSN (insn);
4488 /* We only delete insns that have a single_set. */
4489 if (TEST_BIT (pre_delete_map[bb->index], indx)
4490 && (set = single_set (insn)) != 0)
4492 /* Create a pseudo-reg to store the result of reaching
4493 expressions into. Get the mode for the new pseudo from
4494 the mode of the original destination pseudo. */
4495 if (expr->reaching_reg == NULL)
4496 expr->reaching_reg
4497 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4499 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4500 delete_insn (insn);
4501 occr->deleted_p = 1;
4502 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4503 changed = 1;
4504 gcse_subst_count++;
4506 if (gcse_file)
4508 fprintf (gcse_file,
4509 "PRE: redundant insn %d (expression %d) in ",
4510 INSN_UID (insn), indx);
4511 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4512 bb->index, REGNO (expr->reaching_reg));
4518 return changed;
4521 /* Perform GCSE optimizations using PRE.
4522 This is called by one_pre_gcse_pass after all the dataflow analysis
4523 has been done.
4525 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4526 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4527 Compiler Design and Implementation.
4529 ??? A new pseudo reg is created to hold the reaching expression. The nice
4530 thing about the classical approach is that it would try to use an existing
4531 reg. If the register can't be adequately optimized [i.e. we introduce
4532 reload problems], one could add a pass here to propagate the new register
4533 through the block.
4535 ??? We don't handle single sets in PARALLELs because we're [currently] not
4536 able to copy the rest of the parallel when we insert copies to create full
4537 redundancies from partial redundancies. However, there's no reason why we
4538 can't handle PARALLELs in the cases where there are no partial
4539 redundancies. */
4541 static int
4542 pre_gcse (void)
4544 unsigned int i;
4545 int did_insert, changed;
4546 struct expr **index_map;
4547 struct expr *expr;
4549 /* Compute a mapping from expression number (`bitmap_index') to
4550 hash table entry. */
4552 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4553 for (i = 0; i < expr_hash_table.size; i++)
4554 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4555 index_map[expr->bitmap_index] = expr;
4557 /* Reset bitmap used to track which insns are redundant. */
4558 pre_redundant_insns = sbitmap_alloc (max_cuid);
4559 sbitmap_zero (pre_redundant_insns);
4561 /* Delete the redundant insns first so that
4562 - we know what register to use for the new insns and for the other
4563 ones with reaching expressions
4564 - we know which insns are redundant when we go to create copies */
4566 changed = pre_delete ();
4568 did_insert = pre_edge_insert (edge_list, index_map);
4570 /* In other places with reaching expressions, copy the expression to the
4571 specially allocated pseudo-reg that reaches the redundant expr. */
4572 pre_insert_copies ();
4573 if (did_insert)
4575 commit_edge_insertions ();
4576 changed = 1;
4579 free (index_map);
4580 sbitmap_free (pre_redundant_insns);
4581 return changed;
4584 /* Top level routine to perform one PRE GCSE pass.
4586 Return nonzero if a change was made. */
4588 static int
4589 one_pre_gcse_pass (int pass)
4591 int changed = 0;
4593 gcse_subst_count = 0;
4594 gcse_create_count = 0;
4596 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4597 add_noreturn_fake_exit_edges ();
4598 if (flag_gcse_lm)
4599 compute_ld_motion_mems ();
4601 compute_hash_table (&expr_hash_table);
4602 trim_ld_motion_mems ();
4603 if (gcse_file)
4604 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4606 if (expr_hash_table.n_elems > 0)
4608 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4609 compute_pre_data ();
4610 changed |= pre_gcse ();
4611 free_edge_list (edge_list);
4612 free_pre_mem ();
4615 free_ldst_mems ();
4616 remove_fake_exit_edges ();
4617 free_hash_table (&expr_hash_table);
4619 if (gcse_file)
4621 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4622 current_function_name (), pass, bytes_used);
4623 fprintf (gcse_file, "%d substs, %d insns created\n",
4624 gcse_subst_count, gcse_create_count);
4627 return changed;
4630 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4631 If notes are added to an insn which references a CODE_LABEL, the
4632 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4633 because the following loop optimization pass requires them. */
4635 /* ??? This is very similar to the loop.c add_label_notes function. We
4636 could probably share code here. */
4638 /* ??? If there was a jump optimization pass after gcse and before loop,
4639 then we would not need to do this here, because jump would add the
4640 necessary REG_LABEL notes. */
4642 static void
4643 add_label_notes (rtx x, rtx insn)
4645 enum rtx_code code = GET_CODE (x);
4646 int i, j;
4647 const char *fmt;
4649 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4651 /* This code used to ignore labels that referred to dispatch tables to
4652 avoid flow generating (slightly) worse code.
4654 We no longer ignore such label references (see LABEL_REF handling in
4655 mark_jump_label for additional information). */
4657 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4658 REG_NOTES (insn));
4659 if (LABEL_P (XEXP (x, 0)))
4660 LABEL_NUSES (XEXP (x, 0))++;
4661 return;
4664 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4666 if (fmt[i] == 'e')
4667 add_label_notes (XEXP (x, i), insn);
4668 else if (fmt[i] == 'E')
4669 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4670 add_label_notes (XVECEXP (x, i, j), insn);
4674 /* Compute transparent outgoing information for each block.
4676 An expression is transparent to an edge unless it is killed by
4677 the edge itself. This can only happen with abnormal control flow,
4678 when the edge is traversed through a call. This happens with
4679 non-local labels and exceptions.
4681 This would not be necessary if we split the edge. While this is
4682 normally impossible for abnormal critical edges, with some effort
4683 it should be possible with exception handling, since we still have
4684 control over which handler should be invoked. But due to increased
4685 EH table sizes, this may not be worthwhile. */
4687 static void
4688 compute_transpout (void)
4690 basic_block bb;
4691 unsigned int i;
4692 struct expr *expr;
4694 sbitmap_vector_ones (transpout, last_basic_block);
4696 FOR_EACH_BB (bb)
4698 /* Note that flow inserted a nop a the end of basic blocks that
4699 end in call instructions for reasons other than abnormal
4700 control flow. */
4701 if (! CALL_P (BB_END (bb)))
4702 continue;
4704 for (i = 0; i < expr_hash_table.size; i++)
4705 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4706 if (MEM_P (expr->expr))
4708 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4709 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4710 continue;
4712 /* ??? Optimally, we would use interprocedural alias
4713 analysis to determine if this mem is actually killed
4714 by this call. */
4715 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4720 /* Code Hoisting variables and subroutines. */
4722 /* Very busy expressions. */
4723 static sbitmap *hoist_vbein;
4724 static sbitmap *hoist_vbeout;
4726 /* Hoistable expressions. */
4727 static sbitmap *hoist_exprs;
4729 /* ??? We could compute post dominators and run this algorithm in
4730 reverse to perform tail merging, doing so would probably be
4731 more effective than the tail merging code in jump.c.
4733 It's unclear if tail merging could be run in parallel with
4734 code hoisting. It would be nice. */
4736 /* Allocate vars used for code hoisting analysis. */
4738 static void
4739 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4741 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4742 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4743 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4745 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4746 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4747 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4748 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4751 /* Free vars used for code hoisting analysis. */
4753 static void
4754 free_code_hoist_mem (void)
4756 sbitmap_vector_free (antloc);
4757 sbitmap_vector_free (transp);
4758 sbitmap_vector_free (comp);
4760 sbitmap_vector_free (hoist_vbein);
4761 sbitmap_vector_free (hoist_vbeout);
4762 sbitmap_vector_free (hoist_exprs);
4763 sbitmap_vector_free (transpout);
4765 free_dominance_info (CDI_DOMINATORS);
4768 /* Compute the very busy expressions at entry/exit from each block.
4770 An expression is very busy if all paths from a given point
4771 compute the expression. */
4773 static void
4774 compute_code_hoist_vbeinout (void)
4776 int changed, passes;
4777 basic_block bb;
4779 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4780 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4782 passes = 0;
4783 changed = 1;
4785 while (changed)
4787 changed = 0;
4789 /* We scan the blocks in the reverse order to speed up
4790 the convergence. */
4791 FOR_EACH_BB_REVERSE (bb)
4793 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4794 hoist_vbeout[bb->index], transp[bb->index]);
4795 if (bb->next_bb != EXIT_BLOCK_PTR)
4796 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4799 passes++;
4802 if (gcse_file)
4803 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
4806 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4808 static void
4809 compute_code_hoist_data (void)
4811 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4812 compute_transpout ();
4813 compute_code_hoist_vbeinout ();
4814 calculate_dominance_info (CDI_DOMINATORS);
4815 if (gcse_file)
4816 fprintf (gcse_file, "\n");
4819 /* Determine if the expression identified by EXPR_INDEX would
4820 reach BB unimpared if it was placed at the end of EXPR_BB.
4822 It's unclear exactly what Muchnick meant by "unimpared". It seems
4823 to me that the expression must either be computed or transparent in
4824 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4825 would allow the expression to be hoisted out of loops, even if
4826 the expression wasn't a loop invariant.
4828 Contrast this to reachability for PRE where an expression is
4829 considered reachable if *any* path reaches instead of *all*
4830 paths. */
4832 static int
4833 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4835 edge pred;
4836 edge_iterator ei;
4837 int visited_allocated_locally = 0;
4840 if (visited == NULL)
4842 visited_allocated_locally = 1;
4843 visited = xcalloc (last_basic_block, 1);
4846 FOR_EACH_EDGE (pred, ei, bb->preds)
4848 basic_block pred_bb = pred->src;
4850 if (pred->src == ENTRY_BLOCK_PTR)
4851 break;
4852 else if (pred_bb == expr_bb)
4853 continue;
4854 else if (visited[pred_bb->index])
4855 continue;
4857 /* Does this predecessor generate this expression? */
4858 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4859 break;
4860 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4861 break;
4863 /* Not killed. */
4864 else
4866 visited[pred_bb->index] = 1;
4867 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4868 pred_bb, visited))
4869 break;
4872 if (visited_allocated_locally)
4873 free (visited);
4875 return (pred == NULL);
4878 /* Actually perform code hoisting. */
4880 static void
4881 hoist_code (void)
4883 basic_block bb, dominated;
4884 basic_block *domby;
4885 unsigned int domby_len;
4886 unsigned int i,j;
4887 struct expr **index_map;
4888 struct expr *expr;
4890 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4892 /* Compute a mapping from expression number (`bitmap_index') to
4893 hash table entry. */
4895 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4896 for (i = 0; i < expr_hash_table.size; i++)
4897 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4898 index_map[expr->bitmap_index] = expr;
4900 /* Walk over each basic block looking for potentially hoistable
4901 expressions, nothing gets hoisted from the entry block. */
4902 FOR_EACH_BB (bb)
4904 int found = 0;
4905 int insn_inserted_p;
4907 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4908 /* Examine each expression that is very busy at the exit of this
4909 block. These are the potentially hoistable expressions. */
4910 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4912 int hoistable = 0;
4914 if (TEST_BIT (hoist_vbeout[bb->index], i)
4915 && TEST_BIT (transpout[bb->index], i))
4917 /* We've found a potentially hoistable expression, now
4918 we look at every block BB dominates to see if it
4919 computes the expression. */
4920 for (j = 0; j < domby_len; j++)
4922 dominated = domby[j];
4923 /* Ignore self dominance. */
4924 if (bb == dominated)
4925 continue;
4926 /* We've found a dominated block, now see if it computes
4927 the busy expression and whether or not moving that
4928 expression to the "beginning" of that block is safe. */
4929 if (!TEST_BIT (antloc[dominated->index], i))
4930 continue;
4932 /* Note if the expression would reach the dominated block
4933 unimpared if it was placed at the end of BB.
4935 Keep track of how many times this expression is hoistable
4936 from a dominated block into BB. */
4937 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4938 hoistable++;
4941 /* If we found more than one hoistable occurrence of this
4942 expression, then note it in the bitmap of expressions to
4943 hoist. It makes no sense to hoist things which are computed
4944 in only one BB, and doing so tends to pessimize register
4945 allocation. One could increase this value to try harder
4946 to avoid any possible code expansion due to register
4947 allocation issues; however experiments have shown that
4948 the vast majority of hoistable expressions are only movable
4949 from two successors, so raising this threshold is likely
4950 to nullify any benefit we get from code hoisting. */
4951 if (hoistable > 1)
4953 SET_BIT (hoist_exprs[bb->index], i);
4954 found = 1;
4958 /* If we found nothing to hoist, then quit now. */
4959 if (! found)
4961 free (domby);
4962 continue;
4965 /* Loop over all the hoistable expressions. */
4966 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4968 /* We want to insert the expression into BB only once, so
4969 note when we've inserted it. */
4970 insn_inserted_p = 0;
4972 /* These tests should be the same as the tests above. */
4973 if (TEST_BIT (hoist_vbeout[bb->index], i))
4975 /* We've found a potentially hoistable expression, now
4976 we look at every block BB dominates to see if it
4977 computes the expression. */
4978 for (j = 0; j < domby_len; j++)
4980 dominated = domby[j];
4981 /* Ignore self dominance. */
4982 if (bb == dominated)
4983 continue;
4985 /* We've found a dominated block, now see if it computes
4986 the busy expression and whether or not moving that
4987 expression to the "beginning" of that block is safe. */
4988 if (!TEST_BIT (antloc[dominated->index], i))
4989 continue;
4991 /* The expression is computed in the dominated block and
4992 it would be safe to compute it at the start of the
4993 dominated block. Now we have to determine if the
4994 expression would reach the dominated block if it was
4995 placed at the end of BB. */
4996 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4998 struct expr *expr = index_map[i];
4999 struct occr *occr = expr->antic_occr;
5000 rtx insn;
5001 rtx set;
5003 /* Find the right occurrence of this expression. */
5004 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
5005 occr = occr->next;
5007 gcc_assert (occr);
5008 insn = occr->insn;
5009 set = single_set (insn);
5010 gcc_assert (set);
5012 /* Create a pseudo-reg to store the result of reaching
5013 expressions into. Get the mode for the new pseudo
5014 from the mode of the original destination pseudo. */
5015 if (expr->reaching_reg == NULL)
5016 expr->reaching_reg
5017 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5019 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
5020 delete_insn (insn);
5021 occr->deleted_p = 1;
5022 if (!insn_inserted_p)
5024 insert_insn_end_bb (index_map[i], bb, 0);
5025 insn_inserted_p = 1;
5031 free (domby);
5034 free (index_map);
5037 /* Top level routine to perform one code hoisting (aka unification) pass
5039 Return nonzero if a change was made. */
5041 static int
5042 one_code_hoisting_pass (void)
5044 int changed = 0;
5046 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5047 compute_hash_table (&expr_hash_table);
5048 if (gcse_file)
5049 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
5051 if (expr_hash_table.n_elems > 0)
5053 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
5054 compute_code_hoist_data ();
5055 hoist_code ();
5056 free_code_hoist_mem ();
5059 free_hash_table (&expr_hash_table);
5061 return changed;
5064 /* Here we provide the things required to do store motion towards
5065 the exit. In order for this to be effective, gcse also needed to
5066 be taught how to move a load when it is kill only by a store to itself.
5068 int i;
5069 float a[10];
5071 void foo(float scale)
5073 for (i=0; i<10; i++)
5074 a[i] *= scale;
5077 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5078 the load out since its live around the loop, and stored at the bottom
5079 of the loop.
5081 The 'Load Motion' referred to and implemented in this file is
5082 an enhancement to gcse which when using edge based lcm, recognizes
5083 this situation and allows gcse to move the load out of the loop.
5085 Once gcse has hoisted the load, store motion can then push this
5086 load towards the exit, and we end up with no loads or stores of 'i'
5087 in the loop. */
5089 /* This will search the ldst list for a matching expression. If it
5090 doesn't find one, we create one and initialize it. */
5092 static struct ls_expr *
5093 ldst_entry (rtx x)
5095 int do_not_record_p = 0;
5096 struct ls_expr * ptr;
5097 unsigned int hash;
5099 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5100 NULL, /*have_reg_qty=*/false);
5102 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5103 if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
5104 return ptr;
5106 ptr = xmalloc (sizeof (struct ls_expr));
5108 ptr->next = pre_ldst_mems;
5109 ptr->expr = NULL;
5110 ptr->pattern = x;
5111 ptr->pattern_regs = NULL_RTX;
5112 ptr->loads = NULL_RTX;
5113 ptr->stores = NULL_RTX;
5114 ptr->reaching_reg = NULL_RTX;
5115 ptr->invalid = 0;
5116 ptr->index = 0;
5117 ptr->hash_index = hash;
5118 pre_ldst_mems = ptr;
5120 return ptr;
5123 /* Free up an individual ldst entry. */
5125 static void
5126 free_ldst_entry (struct ls_expr * ptr)
5128 free_INSN_LIST_list (& ptr->loads);
5129 free_INSN_LIST_list (& ptr->stores);
5131 free (ptr);
5134 /* Free up all memory associated with the ldst list. */
5136 static void
5137 free_ldst_mems (void)
5139 while (pre_ldst_mems)
5141 struct ls_expr * tmp = pre_ldst_mems;
5143 pre_ldst_mems = pre_ldst_mems->next;
5145 free_ldst_entry (tmp);
5148 pre_ldst_mems = NULL;
5151 /* Dump debugging info about the ldst list. */
5153 static void
5154 print_ldst_list (FILE * file)
5156 struct ls_expr * ptr;
5158 fprintf (file, "LDST list: \n");
5160 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5162 fprintf (file, " Pattern (%3d): ", ptr->index);
5164 print_rtl (file, ptr->pattern);
5166 fprintf (file, "\n Loads : ");
5168 if (ptr->loads)
5169 print_rtl (file, ptr->loads);
5170 else
5171 fprintf (file, "(nil)");
5173 fprintf (file, "\n Stores : ");
5175 if (ptr->stores)
5176 print_rtl (file, ptr->stores);
5177 else
5178 fprintf (file, "(nil)");
5180 fprintf (file, "\n\n");
5183 fprintf (file, "\n");
5186 /* Returns 1 if X is in the list of ldst only expressions. */
5188 static struct ls_expr *
5189 find_rtx_in_ldst (rtx x)
5191 struct ls_expr * ptr;
5193 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5194 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
5195 return ptr;
5197 return NULL;
5200 /* Assign each element of the list of mems a monotonically increasing value. */
5202 static int
5203 enumerate_ldsts (void)
5205 struct ls_expr * ptr;
5206 int n = 0;
5208 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5209 ptr->index = n++;
5211 return n;
5214 /* Return first item in the list. */
5216 static inline struct ls_expr *
5217 first_ls_expr (void)
5219 return pre_ldst_mems;
5222 /* Return the next item in the list after the specified one. */
5224 static inline struct ls_expr *
5225 next_ls_expr (struct ls_expr * ptr)
5227 return ptr->next;
5230 /* Load Motion for loads which only kill themselves. */
5232 /* Return true if x is a simple MEM operation, with no registers or
5233 side effects. These are the types of loads we consider for the
5234 ld_motion list, otherwise we let the usual aliasing take care of it. */
5236 static int
5237 simple_mem (rtx x)
5239 if (! MEM_P (x))
5240 return 0;
5242 if (MEM_VOLATILE_P (x))
5243 return 0;
5245 if (GET_MODE (x) == BLKmode)
5246 return 0;
5248 /* If we are handling exceptions, we must be careful with memory references
5249 that may trap. If we are not, the behavior is undefined, so we may just
5250 continue. */
5251 if (flag_non_call_exceptions && may_trap_p (x))
5252 return 0;
5254 if (side_effects_p (x))
5255 return 0;
5257 /* Do not consider function arguments passed on stack. */
5258 if (reg_mentioned_p (stack_pointer_rtx, x))
5259 return 0;
5261 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5262 return 0;
5264 return 1;
5267 /* Make sure there isn't a buried reference in this pattern anywhere.
5268 If there is, invalidate the entry for it since we're not capable
5269 of fixing it up just yet.. We have to be sure we know about ALL
5270 loads since the aliasing code will allow all entries in the
5271 ld_motion list to not-alias itself. If we miss a load, we will get
5272 the wrong value since gcse might common it and we won't know to
5273 fix it up. */
5275 static void
5276 invalidate_any_buried_refs (rtx x)
5278 const char * fmt;
5279 int i, j;
5280 struct ls_expr * ptr;
5282 /* Invalidate it in the list. */
5283 if (MEM_P (x) && simple_mem (x))
5285 ptr = ldst_entry (x);
5286 ptr->invalid = 1;
5289 /* Recursively process the insn. */
5290 fmt = GET_RTX_FORMAT (GET_CODE (x));
5292 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5294 if (fmt[i] == 'e')
5295 invalidate_any_buried_refs (XEXP (x, i));
5296 else if (fmt[i] == 'E')
5297 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5298 invalidate_any_buried_refs (XVECEXP (x, i, j));
5302 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5303 being defined as MEM loads and stores to symbols, with no side effects
5304 and no registers in the expression. For a MEM destination, we also
5305 check that the insn is still valid if we replace the destination with a
5306 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5307 which don't match this criteria, they are invalidated and trimmed out
5308 later. */
5310 static void
5311 compute_ld_motion_mems (void)
5313 struct ls_expr * ptr;
5314 basic_block bb;
5315 rtx insn;
5317 pre_ldst_mems = NULL;
5319 FOR_EACH_BB (bb)
5321 for (insn = BB_HEAD (bb);
5322 insn && insn != NEXT_INSN (BB_END (bb));
5323 insn = NEXT_INSN (insn))
5325 if (INSN_P (insn))
5327 if (GET_CODE (PATTERN (insn)) == SET)
5329 rtx src = SET_SRC (PATTERN (insn));
5330 rtx dest = SET_DEST (PATTERN (insn));
5332 /* Check for a simple LOAD... */
5333 if (MEM_P (src) && simple_mem (src))
5335 ptr = ldst_entry (src);
5336 if (REG_P (dest))
5337 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5338 else
5339 ptr->invalid = 1;
5341 else
5343 /* Make sure there isn't a buried load somewhere. */
5344 invalidate_any_buried_refs (src);
5347 /* Check for stores. Don't worry about aliased ones, they
5348 will block any movement we might do later. We only care
5349 about this exact pattern since those are the only
5350 circumstance that we will ignore the aliasing info. */
5351 if (MEM_P (dest) && simple_mem (dest))
5353 ptr = ldst_entry (dest);
5355 if (! MEM_P (src)
5356 && GET_CODE (src) != ASM_OPERANDS
5357 /* Check for REG manually since want_to_gcse_p
5358 returns 0 for all REGs. */
5359 && can_assign_to_reg_p (src))
5360 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5361 else
5362 ptr->invalid = 1;
5365 else
5366 invalidate_any_buried_refs (PATTERN (insn));
5372 /* Remove any references that have been either invalidated or are not in the
5373 expression list for pre gcse. */
5375 static void
5376 trim_ld_motion_mems (void)
5378 struct ls_expr * * last = & pre_ldst_mems;
5379 struct ls_expr * ptr = pre_ldst_mems;
5381 while (ptr != NULL)
5383 struct expr * expr;
5385 /* Delete if entry has been made invalid. */
5386 if (! ptr->invalid)
5388 /* Delete if we cannot find this mem in the expression list. */
5389 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5391 for (expr = expr_hash_table.table[hash];
5392 expr != NULL;
5393 expr = expr->next_same_hash)
5394 if (expr_equiv_p (expr->expr, ptr->pattern))
5395 break;
5397 else
5398 expr = (struct expr *) 0;
5400 if (expr)
5402 /* Set the expression field if we are keeping it. */
5403 ptr->expr = expr;
5404 last = & ptr->next;
5405 ptr = ptr->next;
5407 else
5409 *last = ptr->next;
5410 free_ldst_entry (ptr);
5411 ptr = * last;
5415 /* Show the world what we've found. */
5416 if (gcse_file && pre_ldst_mems != NULL)
5417 print_ldst_list (gcse_file);
5420 /* This routine will take an expression which we are replacing with
5421 a reaching register, and update any stores that are needed if
5422 that expression is in the ld_motion list. Stores are updated by
5423 copying their SRC to the reaching register, and then storing
5424 the reaching register into the store location. These keeps the
5425 correct value in the reaching register for the loads. */
5427 static void
5428 update_ld_motion_stores (struct expr * expr)
5430 struct ls_expr * mem_ptr;
5432 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5434 /* We can try to find just the REACHED stores, but is shouldn't
5435 matter to set the reaching reg everywhere... some might be
5436 dead and should be eliminated later. */
5438 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5439 where reg is the reaching reg used in the load. We checked in
5440 compute_ld_motion_mems that we can replace (set mem expr) with
5441 (set reg expr) in that insn. */
5442 rtx list = mem_ptr->stores;
5444 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5446 rtx insn = XEXP (list, 0);
5447 rtx pat = PATTERN (insn);
5448 rtx src = SET_SRC (pat);
5449 rtx reg = expr->reaching_reg;
5450 rtx copy, new;
5452 /* If we've already copied it, continue. */
5453 if (expr->reaching_reg == src)
5454 continue;
5456 if (gcse_file)
5458 fprintf (gcse_file, "PRE: store updated with reaching reg ");
5459 print_rtl (gcse_file, expr->reaching_reg);
5460 fprintf (gcse_file, ":\n ");
5461 print_inline_rtx (gcse_file, insn, 8);
5462 fprintf (gcse_file, "\n");
5465 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5466 new = emit_insn_before (copy, insn);
5467 record_one_set (REGNO (reg), new);
5468 SET_SRC (pat) = reg;
5470 /* un-recognize this pattern since it's probably different now. */
5471 INSN_CODE (insn) = -1;
5472 gcse_create_count++;
5477 /* Store motion code. */
5479 #define ANTIC_STORE_LIST(x) ((x)->loads)
5480 #define AVAIL_STORE_LIST(x) ((x)->stores)
5481 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5483 /* This is used to communicate the target bitvector we want to use in the
5484 reg_set_info routine when called via the note_stores mechanism. */
5485 static int * regvec;
5487 /* And current insn, for the same routine. */
5488 static rtx compute_store_table_current_insn;
5490 /* Used in computing the reverse edge graph bit vectors. */
5491 static sbitmap * st_antloc;
5493 /* Global holding the number of store expressions we are dealing with. */
5494 static int num_stores;
5496 /* Checks to set if we need to mark a register set. Called from
5497 note_stores. */
5499 static void
5500 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5501 void *data)
5503 sbitmap bb_reg = data;
5505 if (GET_CODE (dest) == SUBREG)
5506 dest = SUBREG_REG (dest);
5508 if (REG_P (dest))
5510 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5511 if (bb_reg)
5512 SET_BIT (bb_reg, REGNO (dest));
5516 /* Clear any mark that says that this insn sets dest. Called from
5517 note_stores. */
5519 static void
5520 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5521 void *data)
5523 int *dead_vec = data;
5525 if (GET_CODE (dest) == SUBREG)
5526 dest = SUBREG_REG (dest);
5528 if (REG_P (dest) &&
5529 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5530 dead_vec[REGNO (dest)] = 0;
5533 /* Return zero if some of the registers in list X are killed
5534 due to set of registers in bitmap REGS_SET. */
5536 static bool
5537 store_ops_ok (rtx x, int *regs_set)
5539 rtx reg;
5541 for (; x; x = XEXP (x, 1))
5543 reg = XEXP (x, 0);
5544 if (regs_set[REGNO(reg)])
5545 return false;
5548 return true;
5551 /* Returns a list of registers mentioned in X. */
5552 static rtx
5553 extract_mentioned_regs (rtx x)
5555 return extract_mentioned_regs_helper (x, NULL_RTX);
5558 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5559 registers. */
5560 static rtx
5561 extract_mentioned_regs_helper (rtx x, rtx accum)
5563 int i;
5564 enum rtx_code code;
5565 const char * fmt;
5567 /* Repeat is used to turn tail-recursion into iteration. */
5568 repeat:
5570 if (x == 0)
5571 return accum;
5573 code = GET_CODE (x);
5574 switch (code)
5576 case REG:
5577 return alloc_EXPR_LIST (0, x, accum);
5579 case MEM:
5580 x = XEXP (x, 0);
5581 goto repeat;
5583 case PRE_DEC:
5584 case PRE_INC:
5585 case POST_DEC:
5586 case POST_INC:
5587 /* We do not run this function with arguments having side effects. */
5588 gcc_unreachable ();
5590 case PC:
5591 case CC0: /*FIXME*/
5592 case CONST:
5593 case CONST_INT:
5594 case CONST_DOUBLE:
5595 case CONST_VECTOR:
5596 case SYMBOL_REF:
5597 case LABEL_REF:
5598 case ADDR_VEC:
5599 case ADDR_DIFF_VEC:
5600 return accum;
5602 default:
5603 break;
5606 i = GET_RTX_LENGTH (code) - 1;
5607 fmt = GET_RTX_FORMAT (code);
5609 for (; i >= 0; i--)
5611 if (fmt[i] == 'e')
5613 rtx tem = XEXP (x, i);
5615 /* If we are about to do the last recursive call
5616 needed at this level, change it into iteration. */
5617 if (i == 0)
5619 x = tem;
5620 goto repeat;
5623 accum = extract_mentioned_regs_helper (tem, accum);
5625 else if (fmt[i] == 'E')
5627 int j;
5629 for (j = 0; j < XVECLEN (x, i); j++)
5630 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5634 return accum;
5637 /* Determine whether INSN is MEM store pattern that we will consider moving.
5638 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5639 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5640 including) the insn in this basic block. We must be passing through BB from
5641 head to end, as we are using this fact to speed things up.
5643 The results are stored this way:
5645 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5646 -- if the processed expression is not anticipatable, NULL_RTX is added
5647 there instead, so that we can use it as indicator that no further
5648 expression of this type may be anticipatable
5649 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5650 consequently, all of them but this head are dead and may be deleted.
5651 -- if the expression is not available, the insn due to that it fails to be
5652 available is stored in reaching_reg.
5654 The things are complicated a bit by fact that there already may be stores
5655 to the same MEM from other blocks; also caller must take care of the
5656 necessary cleanup of the temporary markers after end of the basic block.
5659 static void
5660 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5662 struct ls_expr * ptr;
5663 rtx dest, set, tmp;
5664 int check_anticipatable, check_available;
5665 basic_block bb = BLOCK_FOR_INSN (insn);
5667 set = single_set (insn);
5668 if (!set)
5669 return;
5671 dest = SET_DEST (set);
5673 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5674 || GET_MODE (dest) == BLKmode)
5675 return;
5677 if (side_effects_p (dest))
5678 return;
5680 /* If we are handling exceptions, we must be careful with memory references
5681 that may trap. If we are not, the behavior is undefined, so we may just
5682 continue. */
5683 if (flag_non_call_exceptions && may_trap_p (dest))
5684 return;
5686 /* Even if the destination cannot trap, the source may. In this case we'd
5687 need to handle updating the REG_EH_REGION note. */
5688 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5689 return;
5691 ptr = ldst_entry (dest);
5692 if (!ptr->pattern_regs)
5693 ptr->pattern_regs = extract_mentioned_regs (dest);
5695 /* Do not check for anticipatability if we either found one anticipatable
5696 store already, or tested for one and found out that it was killed. */
5697 check_anticipatable = 0;
5698 if (!ANTIC_STORE_LIST (ptr))
5699 check_anticipatable = 1;
5700 else
5702 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5703 if (tmp != NULL_RTX
5704 && BLOCK_FOR_INSN (tmp) != bb)
5705 check_anticipatable = 1;
5707 if (check_anticipatable)
5709 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5710 tmp = NULL_RTX;
5711 else
5712 tmp = insn;
5713 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5714 ANTIC_STORE_LIST (ptr));
5717 /* It is not necessary to check whether store is available if we did
5718 it successfully before; if we failed before, do not bother to check
5719 until we reach the insn that caused us to fail. */
5720 check_available = 0;
5721 if (!AVAIL_STORE_LIST (ptr))
5722 check_available = 1;
5723 else
5725 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5726 if (BLOCK_FOR_INSN (tmp) != bb)
5727 check_available = 1;
5729 if (check_available)
5731 /* Check that we have already reached the insn at that the check
5732 failed last time. */
5733 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5735 for (tmp = BB_END (bb);
5736 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5737 tmp = PREV_INSN (tmp))
5738 continue;
5739 if (tmp == insn)
5740 check_available = 0;
5742 else
5743 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5744 bb, regs_set_after,
5745 &LAST_AVAIL_CHECK_FAILURE (ptr));
5747 if (!check_available)
5748 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5751 /* Find available and anticipatable stores. */
5753 static int
5754 compute_store_table (void)
5756 int ret;
5757 basic_block bb;
5758 unsigned regno;
5759 rtx insn, pat, tmp;
5760 int *last_set_in, *already_set;
5761 struct ls_expr * ptr, **prev_next_ptr_ptr;
5763 max_gcse_regno = max_reg_num ();
5765 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5766 max_gcse_regno);
5767 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5768 pre_ldst_mems = 0;
5769 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
5770 already_set = xmalloc (sizeof (int) * max_gcse_regno);
5772 /* Find all the stores we care about. */
5773 FOR_EACH_BB (bb)
5775 /* First compute the registers set in this block. */
5776 regvec = last_set_in;
5778 for (insn = BB_HEAD (bb);
5779 insn != NEXT_INSN (BB_END (bb));
5780 insn = NEXT_INSN (insn))
5782 if (! INSN_P (insn))
5783 continue;
5785 if (CALL_P (insn))
5787 bool clobbers_all = false;
5788 #ifdef NON_SAVING_SETJMP
5789 if (NON_SAVING_SETJMP
5790 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5791 clobbers_all = true;
5792 #endif
5794 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5795 if (clobbers_all
5796 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5798 last_set_in[regno] = INSN_UID (insn);
5799 SET_BIT (reg_set_in_block[bb->index], regno);
5803 pat = PATTERN (insn);
5804 compute_store_table_current_insn = insn;
5805 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5808 /* Now find the stores. */
5809 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5810 regvec = already_set;
5811 for (insn = BB_HEAD (bb);
5812 insn != NEXT_INSN (BB_END (bb));
5813 insn = NEXT_INSN (insn))
5815 if (! INSN_P (insn))
5816 continue;
5818 if (CALL_P (insn))
5820 bool clobbers_all = false;
5821 #ifdef NON_SAVING_SETJMP
5822 if (NON_SAVING_SETJMP
5823 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5824 clobbers_all = true;
5825 #endif
5827 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5828 if (clobbers_all
5829 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5830 already_set[regno] = 1;
5833 pat = PATTERN (insn);
5834 note_stores (pat, reg_set_info, NULL);
5836 /* Now that we've marked regs, look for stores. */
5837 find_moveable_store (insn, already_set, last_set_in);
5839 /* Unmark regs that are no longer set. */
5840 compute_store_table_current_insn = insn;
5841 note_stores (pat, reg_clear_last_set, last_set_in);
5842 if (CALL_P (insn))
5844 bool clobbers_all = false;
5845 #ifdef NON_SAVING_SETJMP
5846 if (NON_SAVING_SETJMP
5847 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
5848 clobbers_all = true;
5849 #endif
5851 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5852 if ((clobbers_all
5853 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5854 && last_set_in[regno] == INSN_UID (insn))
5855 last_set_in[regno] = 0;
5859 #ifdef ENABLE_CHECKING
5860 /* last_set_in should now be all-zero. */
5861 for (regno = 0; regno < max_gcse_regno; regno++)
5862 gcc_assert (!last_set_in[regno]);
5863 #endif
5865 /* Clear temporary marks. */
5866 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5868 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5869 if (ANTIC_STORE_LIST (ptr)
5870 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5871 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5875 /* Remove the stores that are not available anywhere, as there will
5876 be no opportunity to optimize them. */
5877 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5878 ptr != NULL;
5879 ptr = *prev_next_ptr_ptr)
5881 if (!AVAIL_STORE_LIST (ptr))
5883 *prev_next_ptr_ptr = ptr->next;
5884 free_ldst_entry (ptr);
5886 else
5887 prev_next_ptr_ptr = &ptr->next;
5890 ret = enumerate_ldsts ();
5892 if (gcse_file)
5894 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
5895 print_ldst_list (gcse_file);
5898 free (last_set_in);
5899 free (already_set);
5900 return ret;
5903 /* Check to see if the load X is aliased with STORE_PATTERN.
5904 AFTER is true if we are checking the case when STORE_PATTERN occurs
5905 after the X. */
5907 static bool
5908 load_kills_store (rtx x, rtx store_pattern, int after)
5910 if (after)
5911 return anti_dependence (x, store_pattern);
5912 else
5913 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5914 rtx_addr_varies_p);
5917 /* Go through the entire insn X, looking for any loads which might alias
5918 STORE_PATTERN. Return true if found.
5919 AFTER is true if we are checking the case when STORE_PATTERN occurs
5920 after the insn X. */
5922 static bool
5923 find_loads (rtx x, rtx store_pattern, int after)
5925 const char * fmt;
5926 int i, j;
5927 int ret = false;
5929 if (!x)
5930 return false;
5932 if (GET_CODE (x) == SET)
5933 x = SET_SRC (x);
5935 if (MEM_P (x))
5937 if (load_kills_store (x, store_pattern, after))
5938 return true;
5941 /* Recursively process the insn. */
5942 fmt = GET_RTX_FORMAT (GET_CODE (x));
5944 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5946 if (fmt[i] == 'e')
5947 ret |= find_loads (XEXP (x, i), store_pattern, after);
5948 else if (fmt[i] == 'E')
5949 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5950 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5952 return ret;
5955 /* Check if INSN kills the store pattern X (is aliased with it).
5956 AFTER is true if we are checking the case when store X occurs
5957 after the insn. Return true if it it does. */
5959 static bool
5960 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5962 rtx reg, base, note;
5964 if (!INSN_P (insn))
5965 return false;
5967 if (CALL_P (insn))
5969 /* A normal or pure call might read from pattern,
5970 but a const call will not. */
5971 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5972 return true;
5974 /* But even a const call reads its parameters. Check whether the
5975 base of some of registers used in mem is stack pointer. */
5976 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5978 base = find_base_term (XEXP (reg, 0));
5979 if (!base
5980 || (GET_CODE (base) == ADDRESS
5981 && GET_MODE (base) == Pmode
5982 && XEXP (base, 0) == stack_pointer_rtx))
5983 return true;
5986 return false;
5989 if (GET_CODE (PATTERN (insn)) == SET)
5991 rtx pat = PATTERN (insn);
5992 rtx dest = SET_DEST (pat);
5994 if (GET_CODE (dest) == SIGN_EXTRACT
5995 || GET_CODE (dest) == ZERO_EXTRACT)
5996 dest = XEXP (dest, 0);
5998 /* Check for memory stores to aliased objects. */
5999 if (MEM_P (dest)
6000 && !expr_equiv_p (dest, x))
6002 if (after)
6004 if (output_dependence (dest, x))
6005 return true;
6007 else
6009 if (output_dependence (x, dest))
6010 return true;
6013 if (find_loads (SET_SRC (pat), x, after))
6014 return true;
6016 else if (find_loads (PATTERN (insn), x, after))
6017 return true;
6019 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
6020 location aliased with X, then this insn kills X. */
6021 note = find_reg_equal_equiv_note (insn);
6022 if (! note)
6023 return false;
6024 note = XEXP (note, 0);
6026 /* However, if the note represents a must alias rather than a may
6027 alias relationship, then it does not kill X. */
6028 if (expr_equiv_p (note, x))
6029 return false;
6031 /* See if there are any aliased loads in the note. */
6032 return find_loads (note, x, after);
6035 /* Returns true if the expression X is loaded or clobbered on or after INSN
6036 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
6037 or after the insn. X_REGS is list of registers mentioned in X. If the store
6038 is killed, return the last insn in that it occurs in FAIL_INSN. */
6040 static bool
6041 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
6042 int *regs_set_after, rtx *fail_insn)
6044 rtx last = BB_END (bb), act;
6046 if (!store_ops_ok (x_regs, regs_set_after))
6048 /* We do not know where it will happen. */
6049 if (fail_insn)
6050 *fail_insn = NULL_RTX;
6051 return true;
6054 /* Scan from the end, so that fail_insn is determined correctly. */
6055 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6056 if (store_killed_in_insn (x, x_regs, act, false))
6058 if (fail_insn)
6059 *fail_insn = act;
6060 return true;
6063 return false;
6066 /* Returns true if the expression X is loaded or clobbered on or before INSN
6067 within basic block BB. X_REGS is list of registers mentioned in X.
6068 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6069 static bool
6070 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6071 int *regs_set_before)
6073 rtx first = BB_HEAD (bb);
6075 if (!store_ops_ok (x_regs, regs_set_before))
6076 return true;
6078 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6079 if (store_killed_in_insn (x, x_regs, insn, true))
6080 return true;
6082 return false;
6085 /* Fill in available, anticipatable, transparent and kill vectors in
6086 STORE_DATA, based on lists of available and anticipatable stores. */
6087 static void
6088 build_store_vectors (void)
6090 basic_block bb;
6091 int *regs_set_in_block;
6092 rtx insn, st;
6093 struct ls_expr * ptr;
6094 unsigned regno;
6096 /* Build the gen_vector. This is any store in the table which is not killed
6097 by aliasing later in its block. */
6098 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6099 sbitmap_vector_zero (ae_gen, last_basic_block);
6101 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6102 sbitmap_vector_zero (st_antloc, last_basic_block);
6104 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6106 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6108 insn = XEXP (st, 0);
6109 bb = BLOCK_FOR_INSN (insn);
6111 /* If we've already seen an available expression in this block,
6112 we can delete this one (It occurs earlier in the block). We'll
6113 copy the SRC expression to an unused register in case there
6114 are any side effects. */
6115 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6117 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6118 if (gcse_file)
6119 fprintf (gcse_file, "Removing redundant store:\n");
6120 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6121 continue;
6123 SET_BIT (ae_gen[bb->index], ptr->index);
6126 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6128 insn = XEXP (st, 0);
6129 bb = BLOCK_FOR_INSN (insn);
6130 SET_BIT (st_antloc[bb->index], ptr->index);
6134 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6135 sbitmap_vector_zero (ae_kill, last_basic_block);
6137 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6138 sbitmap_vector_zero (transp, last_basic_block);
6139 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6141 FOR_EACH_BB (bb)
6143 for (regno = 0; regno < max_gcse_regno; regno++)
6144 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6146 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6148 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6149 bb, regs_set_in_block, NULL))
6151 /* It should not be necessary to consider the expression
6152 killed if it is both anticipatable and available. */
6153 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6154 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6155 SET_BIT (ae_kill[bb->index], ptr->index);
6157 else
6158 SET_BIT (transp[bb->index], ptr->index);
6162 free (regs_set_in_block);
6164 if (gcse_file)
6166 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6167 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6168 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6169 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6173 /* Insert an instruction at the beginning of a basic block, and update
6174 the BB_HEAD if needed. */
6176 static void
6177 insert_insn_start_bb (rtx insn, basic_block bb)
6179 /* Insert at start of successor block. */
6180 rtx prev = PREV_INSN (BB_HEAD (bb));
6181 rtx before = BB_HEAD (bb);
6182 while (before != 0)
6184 if (! LABEL_P (before)
6185 && (! NOTE_P (before)
6186 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6187 break;
6188 prev = before;
6189 if (prev == BB_END (bb))
6190 break;
6191 before = NEXT_INSN (before);
6194 insn = emit_insn_after_noloc (insn, prev);
6196 if (gcse_file)
6198 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6199 bb->index);
6200 print_inline_rtx (gcse_file, insn, 6);
6201 fprintf (gcse_file, "\n");
6205 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6206 the memory reference, and E is the edge to insert it on. Returns nonzero
6207 if an edge insertion was performed. */
6209 static int
6210 insert_store (struct ls_expr * expr, edge e)
6212 rtx reg, insn;
6213 basic_block bb;
6214 edge tmp;
6215 edge_iterator ei;
6217 /* We did all the deleted before this insert, so if we didn't delete a
6218 store, then we haven't set the reaching reg yet either. */
6219 if (expr->reaching_reg == NULL_RTX)
6220 return 0;
6222 if (e->flags & EDGE_FAKE)
6223 return 0;
6225 reg = expr->reaching_reg;
6226 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6228 /* If we are inserting this expression on ALL predecessor edges of a BB,
6229 insert it at the start of the BB, and reset the insert bits on the other
6230 edges so we don't try to insert it on the other edges. */
6231 bb = e->dest;
6232 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6233 if (!(tmp->flags & EDGE_FAKE))
6235 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6237 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6238 if (! TEST_BIT (pre_insert_map[index], expr->index))
6239 break;
6242 /* If tmp is NULL, we found an insertion on every edge, blank the
6243 insertion vector for these edges, and insert at the start of the BB. */
6244 if (!tmp && bb != EXIT_BLOCK_PTR)
6246 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6248 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6249 RESET_BIT (pre_insert_map[index], expr->index);
6251 insert_insn_start_bb (insn, bb);
6252 return 0;
6255 /* We can't insert on this edge, so we'll insert at the head of the
6256 successors block. See Morgan, sec 10.5. */
6257 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
6259 insert_insn_start_bb (insn, bb);
6260 return 0;
6263 insert_insn_on_edge (insn, e);
6265 if (gcse_file)
6267 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6268 e->src->index, e->dest->index);
6269 print_inline_rtx (gcse_file, insn, 6);
6270 fprintf (gcse_file, "\n");
6273 return 1;
6276 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6277 memory location in SMEXPR set in basic block BB.
6279 This could be rather expensive. */
6281 static void
6282 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6284 edge_iterator *stack, ei;
6285 int sp;
6286 edge act;
6287 sbitmap visited = sbitmap_alloc (last_basic_block);
6288 rtx last, insn, note;
6289 rtx mem = smexpr->pattern;
6291 stack = xmalloc (sizeof (edge_iterator) * n_basic_blocks);
6292 sp = 0;
6293 ei = ei_start (bb->succs);
6295 sbitmap_zero (visited);
6297 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6298 while (1)
6300 if (!act)
6302 if (!sp)
6304 free (stack);
6305 sbitmap_free (visited);
6306 return;
6308 act = ei_edge (stack[--sp]);
6310 bb = act->dest;
6312 if (bb == EXIT_BLOCK_PTR
6313 || TEST_BIT (visited, bb->index))
6315 if (!ei_end_p (ei))
6316 ei_next (&ei);
6317 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6318 continue;
6320 SET_BIT (visited, bb->index);
6322 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6324 for (last = ANTIC_STORE_LIST (smexpr);
6325 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6326 last = XEXP (last, 1))
6327 continue;
6328 last = XEXP (last, 0);
6330 else
6331 last = NEXT_INSN (BB_END (bb));
6333 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6334 if (INSN_P (insn))
6336 note = find_reg_equal_equiv_note (insn);
6337 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6338 continue;
6340 if (gcse_file)
6341 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6342 INSN_UID (insn));
6343 remove_note (insn, note);
6346 if (!ei_end_p (ei))
6347 ei_next (&ei);
6348 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6350 if (EDGE_COUNT (bb->succs) > 0)
6352 if (act)
6353 stack[sp++] = ei;
6354 ei = ei_start (bb->succs);
6355 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6360 /* This routine will replace a store with a SET to a specified register. */
6362 static void
6363 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6365 rtx insn, mem, note, set, ptr, pair;
6367 mem = smexpr->pattern;
6368 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6369 insn = emit_insn_after (insn, del);
6371 if (gcse_file)
6373 fprintf (gcse_file,
6374 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6375 print_inline_rtx (gcse_file, del, 6);
6376 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6377 print_inline_rtx (gcse_file, insn, 6);
6378 fprintf (gcse_file, "\n");
6381 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6382 if (XEXP (ptr, 0) == del)
6384 XEXP (ptr, 0) = insn;
6385 break;
6388 /* Move the notes from the deleted insn to its replacement, and patch
6389 up the LIBCALL notes. */
6390 REG_NOTES (insn) = REG_NOTES (del);
6392 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6393 if (note)
6395 pair = XEXP (note, 0);
6396 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6397 XEXP (note, 0) = insn;
6399 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6400 if (note)
6402 pair = XEXP (note, 0);
6403 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6404 XEXP (note, 0) = insn;
6407 delete_insn (del);
6409 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6410 they are no longer accurate provided that they are reached by this
6411 definition, so drop them. */
6412 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6413 if (INSN_P (insn))
6415 set = single_set (insn);
6416 if (!set)
6417 continue;
6418 if (expr_equiv_p (SET_DEST (set), mem))
6419 return;
6420 note = find_reg_equal_equiv_note (insn);
6421 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6422 continue;
6424 if (gcse_file)
6425 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6426 INSN_UID (insn));
6427 remove_note (insn, note);
6429 remove_reachable_equiv_notes (bb, smexpr);
6433 /* Delete a store, but copy the value that would have been stored into
6434 the reaching_reg for later storing. */
6436 static void
6437 delete_store (struct ls_expr * expr, basic_block bb)
6439 rtx reg, i, del;
6441 if (expr->reaching_reg == NULL_RTX)
6442 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6444 reg = expr->reaching_reg;
6446 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6448 del = XEXP (i, 0);
6449 if (BLOCK_FOR_INSN (del) == bb)
6451 /* We know there is only one since we deleted redundant
6452 ones during the available computation. */
6453 replace_store_insn (reg, del, bb, expr);
6454 break;
6459 /* Free memory used by store motion. */
6461 static void
6462 free_store_memory (void)
6464 free_ldst_mems ();
6466 if (ae_gen)
6467 sbitmap_vector_free (ae_gen);
6468 if (ae_kill)
6469 sbitmap_vector_free (ae_kill);
6470 if (transp)
6471 sbitmap_vector_free (transp);
6472 if (st_antloc)
6473 sbitmap_vector_free (st_antloc);
6474 if (pre_insert_map)
6475 sbitmap_vector_free (pre_insert_map);
6476 if (pre_delete_map)
6477 sbitmap_vector_free (pre_delete_map);
6478 if (reg_set_in_block)
6479 sbitmap_vector_free (reg_set_in_block);
6481 ae_gen = ae_kill = transp = st_antloc = NULL;
6482 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6485 /* Perform store motion. Much like gcse, except we move expressions the
6486 other way by looking at the flowgraph in reverse. */
6488 static void
6489 store_motion (void)
6491 basic_block bb;
6492 int x;
6493 struct ls_expr * ptr;
6494 int update_flow = 0;
6496 if (gcse_file)
6498 fprintf (gcse_file, "before store motion\n");
6499 print_rtl (gcse_file, get_insns ());
6502 init_alias_analysis ();
6504 /* Find all the available and anticipatable stores. */
6505 num_stores = compute_store_table ();
6506 if (num_stores == 0)
6508 sbitmap_vector_free (reg_set_in_block);
6509 end_alias_analysis ();
6510 return;
6513 /* Now compute kill & transp vectors. */
6514 build_store_vectors ();
6515 add_noreturn_fake_exit_edges ();
6516 connect_infinite_loops_to_exit ();
6518 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6519 st_antloc, ae_kill, &pre_insert_map,
6520 &pre_delete_map);
6522 /* Now we want to insert the new stores which are going to be needed. */
6523 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6525 FOR_EACH_BB (bb)
6526 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6527 delete_store (ptr, bb);
6529 for (x = 0; x < NUM_EDGES (edge_list); x++)
6530 if (TEST_BIT (pre_insert_map[x], ptr->index))
6531 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6534 if (update_flow)
6535 commit_edge_insertions ();
6537 free_store_memory ();
6538 free_edge_list (edge_list);
6539 remove_fake_exit_edges ();
6540 end_alias_analysis ();
6544 /* Entry point for jump bypassing optimization pass. */
6547 bypass_jumps (FILE *file)
6549 int changed;
6551 /* We do not construct an accurate cfg in functions which call
6552 setjmp, so just punt to be safe. */
6553 if (current_function_calls_setjmp)
6554 return 0;
6556 /* For calling dump_foo fns from gdb. */
6557 debug_stderr = stderr;
6558 gcse_file = file;
6560 /* Identify the basic block information for this function, including
6561 successors and predecessors. */
6562 max_gcse_regno = max_reg_num ();
6564 if (file)
6565 dump_flow_info (file);
6567 /* Return if there's nothing to do, or it is too expensive. */
6568 if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6569 return 0;
6571 gcc_obstack_init (&gcse_obstack);
6572 bytes_used = 0;
6574 /* We need alias. */
6575 init_alias_analysis ();
6577 /* Record where pseudo-registers are set. This data is kept accurate
6578 during each pass. ??? We could also record hard-reg information here
6579 [since it's unchanging], however it is currently done during hash table
6580 computation.
6582 It may be tempting to compute MEM set information here too, but MEM sets
6583 will be subject to code motion one day and thus we need to compute
6584 information about memory sets when we build the hash tables. */
6586 alloc_reg_set_mem (max_gcse_regno);
6587 compute_sets (get_insns ());
6589 max_gcse_regno = max_reg_num ();
6590 alloc_gcse_mem (get_insns ());
6591 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, 1, 1);
6592 free_gcse_mem ();
6594 if (file)
6596 fprintf (file, "BYPASS of %s: %d basic blocks, ",
6597 current_function_name (), n_basic_blocks);
6598 fprintf (file, "%d bytes\n\n", bytes_used);
6601 obstack_free (&gcse_obstack, NULL);
6602 free_reg_set_mem ();
6604 /* We are finished with alias. */
6605 end_alias_analysis ();
6606 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6608 return changed;
6611 /* Return true if the graph is too expensive to optimize. PASS is the
6612 optimization about to be performed. */
6614 static bool
6615 is_too_expensive (const char *pass)
6617 /* Trying to perform global optimizations on flow graphs which have
6618 a high connectivity will take a long time and is unlikely to be
6619 particularly useful.
6621 In normal circumstances a cfg should have about twice as many
6622 edges as blocks. But we do not want to punish small functions
6623 which have a couple switch statements. Rather than simply
6624 threshold the number of blocks, uses something with a more
6625 graceful degradation. */
6626 if (n_edges > 20000 + n_basic_blocks * 4)
6628 if (warn_disabled_optimization)
6629 warning ("%s: %d basic blocks and %d edges/basic block",
6630 pass, n_basic_blocks, n_edges / n_basic_blocks);
6632 return true;
6635 /* If allocating memory for the cprop bitmap would take up too much
6636 storage it's better just to disable the optimization. */
6637 if ((n_basic_blocks
6638 * SBITMAP_SET_SIZE (max_reg_num ())
6639 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6641 if (warn_disabled_optimization)
6642 warning ("%s: %d basic blocks and %d registers",
6643 pass, n_basic_blocks, max_reg_num ());
6645 return true;
6648 return false;
6651 #include "gt-gcse.h"