PR target/16286
[official-gcc.git] / gcc / expmed.c
bloba108efaa4eea3650231bf27c2f6d155d6adf2bd5
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
40 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
41 unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT, rtx);
43 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT, rtx, int);
49 static rtx mask_rtx (enum machine_mode, int, int, int);
50 static rtx lshift_value (enum machine_mode, rtx, int, int);
51 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, int);
53 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
54 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
55 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 /* Nonzero means divides or modulus operations are relatively cheap for
58 powers of two, so don't use branches; emit the operation instead.
59 Usually, this will mean that the MD file will emit non-branch
60 sequences. */
62 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
63 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
65 #ifndef SLOW_UNALIGNED_ACCESS
66 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
67 #endif
69 /* For compilers that support multiple targets with different word sizes,
70 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
71 is the H8/300(H) compiler. */
73 #ifndef MAX_BITS_PER_WORD
74 #define MAX_BITS_PER_WORD BITS_PER_WORD
75 #endif
77 /* Reduce conditional compilation elsewhere. */
78 #ifndef HAVE_insv
79 #define HAVE_insv 0
80 #define CODE_FOR_insv CODE_FOR_nothing
81 #define gen_insv(a,b,c,d) NULL_RTX
82 #endif
83 #ifndef HAVE_extv
84 #define HAVE_extv 0
85 #define CODE_FOR_extv CODE_FOR_nothing
86 #define gen_extv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extzv
89 #define HAVE_extzv 0
90 #define CODE_FOR_extzv CODE_FOR_nothing
91 #define gen_extzv(a,b,c,d) NULL_RTX
92 #endif
94 /* Cost of various pieces of RTL. Note that some of these are indexed by
95 shift count and some by mode. */
96 static int zero_cost;
97 static int add_cost[NUM_MACHINE_MODES];
98 static int neg_cost[NUM_MACHINE_MODES];
99 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
100 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
101 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
102 static int mul_cost[NUM_MACHINE_MODES];
103 static int div_cost[NUM_MACHINE_MODES];
104 static int mul_widen_cost[NUM_MACHINE_MODES];
105 static int mul_highpart_cost[NUM_MACHINE_MODES];
107 void
108 init_expmed (void)
110 struct
112 struct rtx_def reg; rtunion reg_fld[2];
113 struct rtx_def plus; rtunion plus_fld1;
114 struct rtx_def neg;
115 struct rtx_def udiv; rtunion udiv_fld1;
116 struct rtx_def mult; rtunion mult_fld1;
117 struct rtx_def div; rtunion div_fld1;
118 struct rtx_def mod; rtunion mod_fld1;
119 struct rtx_def zext;
120 struct rtx_def wide_mult; rtunion wide_mult_fld1;
121 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
122 struct rtx_def wide_trunc;
123 struct rtx_def shift; rtunion shift_fld1;
124 struct rtx_def shift_mult; rtunion shift_mult_fld1;
125 struct rtx_def shift_add; rtunion shift_add_fld1;
126 struct rtx_def shift_sub; rtunion shift_sub_fld1;
127 } all;
129 rtx pow2[MAX_BITS_PER_WORD];
130 rtx cint[MAX_BITS_PER_WORD];
131 int m, n;
132 enum machine_mode mode, wider_mode;
134 zero_cost = rtx_cost (const0_rtx, 0);
136 for (m = 1; m < MAX_BITS_PER_WORD; m++)
138 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
139 cint[m] = GEN_INT (m);
142 memset (&all, 0, sizeof all);
144 PUT_CODE (&all.reg, REG);
145 REGNO (&all.reg) = 10000;
147 PUT_CODE (&all.plus, PLUS);
148 XEXP (&all.plus, 0) = &all.reg;
149 XEXP (&all.plus, 1) = &all.reg;
151 PUT_CODE (&all.neg, NEG);
152 XEXP (&all.neg, 0) = &all.reg;
154 PUT_CODE (&all.udiv, UDIV);
155 XEXP (&all.udiv, 0) = &all.reg;
156 XEXP (&all.udiv, 1) = &all.reg;
158 PUT_CODE (&all.mult, MULT);
159 XEXP (&all.mult, 0) = &all.reg;
160 XEXP (&all.mult, 1) = &all.reg;
162 PUT_CODE (&all.div, DIV);
163 XEXP (&all.div, 0) = &all.reg;
164 XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
166 PUT_CODE (&all.mod, MOD);
167 XEXP (&all.mod, 0) = &all.reg;
168 XEXP (&all.mod, 1) = XEXP (&all.div, 1);
170 PUT_CODE (&all.zext, ZERO_EXTEND);
171 XEXP (&all.zext, 0) = &all.reg;
173 PUT_CODE (&all.wide_mult, MULT);
174 XEXP (&all.wide_mult, 0) = &all.zext;
175 XEXP (&all.wide_mult, 1) = &all.zext;
177 PUT_CODE (&all.wide_lshr, LSHIFTRT);
178 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
180 PUT_CODE (&all.wide_trunc, TRUNCATE);
181 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
183 PUT_CODE (&all.shift, ASHIFT);
184 XEXP (&all.shift, 0) = &all.reg;
186 PUT_CODE (&all.shift_mult, MULT);
187 XEXP (&all.shift_mult, 0) = &all.reg;
189 PUT_CODE (&all.shift_add, PLUS);
190 XEXP (&all.shift_add, 0) = &all.shift_mult;
191 XEXP (&all.shift_add, 1) = &all.reg;
193 PUT_CODE (&all.shift_sub, MINUS);
194 XEXP (&all.shift_sub, 0) = &all.shift_mult;
195 XEXP (&all.shift_sub, 1) = &all.reg;
197 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
198 mode != VOIDmode;
199 mode = GET_MODE_WIDER_MODE (mode))
201 PUT_MODE (&all.reg, mode);
202 PUT_MODE (&all.plus, mode);
203 PUT_MODE (&all.neg, mode);
204 PUT_MODE (&all.udiv, mode);
205 PUT_MODE (&all.mult, mode);
206 PUT_MODE (&all.div, mode);
207 PUT_MODE (&all.mod, mode);
208 PUT_MODE (&all.wide_trunc, mode);
209 PUT_MODE (&all.shift, mode);
210 PUT_MODE (&all.shift_mult, mode);
211 PUT_MODE (&all.shift_add, mode);
212 PUT_MODE (&all.shift_sub, mode);
214 add_cost[mode] = rtx_cost (&all.plus, SET);
215 neg_cost[mode] = rtx_cost (&all.neg, SET);
216 div_cost[mode] = rtx_cost (&all.udiv, SET);
217 mul_cost[mode] = rtx_cost (&all.mult, SET);
219 sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
220 smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 4 * add_cost[mode]);
222 wider_mode = GET_MODE_WIDER_MODE (mode);
223 if (wider_mode != VOIDmode)
225 PUT_MODE (&all.zext, wider_mode);
226 PUT_MODE (&all.wide_mult, wider_mode);
227 PUT_MODE (&all.wide_lshr, wider_mode);
228 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
230 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
231 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
234 shift_cost[mode][0] = 0;
235 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
237 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
238 for (m = 1; m < n; m++)
240 XEXP (&all.shift, 1) = cint[m];
241 XEXP (&all.shift_mult, 1) = pow2[m];
243 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
244 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
245 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
250 /* Return an rtx representing minus the value of X.
251 MODE is the intended mode of the result,
252 useful if X is a CONST_INT. */
255 negate_rtx (enum machine_mode mode, rtx x)
257 rtx result = simplify_unary_operation (NEG, mode, x, mode);
259 if (result == 0)
260 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
262 return result;
265 /* Report on the availability of insv/extv/extzv and the desired mode
266 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
267 is false; else the mode of the specified operand. If OPNO is -1,
268 all the caller cares about is whether the insn is available. */
269 enum machine_mode
270 mode_for_extraction (enum extraction_pattern pattern, int opno)
272 const struct insn_data *data;
274 switch (pattern)
276 case EP_insv:
277 if (HAVE_insv)
279 data = &insn_data[CODE_FOR_insv];
280 break;
282 return MAX_MACHINE_MODE;
284 case EP_extv:
285 if (HAVE_extv)
287 data = &insn_data[CODE_FOR_extv];
288 break;
290 return MAX_MACHINE_MODE;
292 case EP_extzv:
293 if (HAVE_extzv)
295 data = &insn_data[CODE_FOR_extzv];
296 break;
298 return MAX_MACHINE_MODE;
300 default:
301 gcc_unreachable ();
304 if (opno == -1)
305 return VOIDmode;
307 /* Everyone who uses this function used to follow it with
308 if (result == VOIDmode) result = word_mode; */
309 if (data->operand[opno].mode == VOIDmode)
310 return word_mode;
311 return data->operand[opno].mode;
315 /* Generate code to store value from rtx VALUE
316 into a bit-field within structure STR_RTX
317 containing BITSIZE bits starting at bit BITNUM.
318 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
319 ALIGN is the alignment that STR_RTX is known to have.
320 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
322 /* ??? Note that there are two different ideas here for how
323 to determine the size to count bits within, for a register.
324 One is BITS_PER_WORD, and the other is the size of operand 3
325 of the insv pattern.
327 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
328 else, we use the mode of operand 3. */
331 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
332 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
333 rtx value)
335 unsigned int unit
336 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
337 unsigned HOST_WIDE_INT offset = bitnum / unit;
338 unsigned HOST_WIDE_INT bitpos = bitnum % unit;
339 rtx op0 = str_rtx;
340 int byte_offset;
341 rtx orig_value;
343 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
345 while (GET_CODE (op0) == SUBREG)
347 /* The following line once was done only if WORDS_BIG_ENDIAN,
348 but I think that is a mistake. WORDS_BIG_ENDIAN is
349 meaningful at a much higher level; when structures are copied
350 between memory and regs, the higher-numbered regs
351 always get higher addresses. */
352 offset += (SUBREG_BYTE (op0) / UNITS_PER_WORD);
353 /* We used to adjust BITPOS here, but now we do the whole adjustment
354 right after the loop. */
355 op0 = SUBREG_REG (op0);
358 /* Use vec_set patterns for inserting parts of vectors whenever
359 available. */
360 if (VECTOR_MODE_P (GET_MODE (op0))
361 && !MEM_P (op0)
362 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
363 != CODE_FOR_nothing)
364 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
365 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
366 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
368 enum machine_mode outermode = GET_MODE (op0);
369 enum machine_mode innermode = GET_MODE_INNER (outermode);
370 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
371 int pos = bitnum / GET_MODE_BITSIZE (innermode);
372 rtx rtxpos = GEN_INT (pos);
373 rtx src = value;
374 rtx dest = op0;
375 rtx pat, seq;
376 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
377 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
378 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
380 start_sequence ();
382 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
383 src = copy_to_mode_reg (mode1, src);
385 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
386 rtxpos = copy_to_mode_reg (mode1, rtxpos);
388 /* We could handle this, but we should always be called with a pseudo
389 for our targets and all insns should take them as outputs. */
390 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
391 && (*insn_data[icode].operand[1].predicate) (src, mode1)
392 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
393 pat = GEN_FCN (icode) (dest, src, rtxpos);
394 seq = get_insns ();
395 end_sequence ();
396 if (pat)
398 emit_insn (seq);
399 emit_insn (pat);
400 return dest;
404 if (flag_force_mem)
406 int old_generating_concat_p = generating_concat_p;
407 generating_concat_p = 0;
408 value = force_not_mem (value);
409 generating_concat_p = old_generating_concat_p;
412 /* If the target is a register, overwriting the entire object, or storing
413 a full-word or multi-word field can be done with just a SUBREG.
415 If the target is memory, storing any naturally aligned field can be
416 done with a simple store. For targets that support fast unaligned
417 memory, any naturally sized, unit aligned field can be done directly. */
419 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
420 + (offset * UNITS_PER_WORD);
422 if (bitpos == 0
423 && bitsize == GET_MODE_BITSIZE (fieldmode)
424 && (!MEM_P (op0)
425 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
426 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
427 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
428 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
429 || (offset * BITS_PER_UNIT % bitsize == 0
430 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
432 if (GET_MODE (op0) != fieldmode)
434 if (GET_CODE (op0) == SUBREG)
436 /* Else we've got some float mode source being extracted
437 into a different float mode destination -- this
438 combination of subregs results in Severe Tire
439 Damage. */
440 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
441 || GET_MODE_CLASS (fieldmode) == MODE_INT
442 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
443 op0 = SUBREG_REG (op0);
445 if (REG_P (op0))
446 op0 = gen_rtx_SUBREG (fieldmode, op0, byte_offset);
447 else
448 op0 = adjust_address (op0, fieldmode, offset);
450 emit_move_insn (op0, value);
451 return value;
454 /* Make sure we are playing with integral modes. Pun with subregs
455 if we aren't. This must come after the entire register case above,
456 since that case is valid for any mode. The following cases are only
457 valid for integral modes. */
459 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
460 if (imode != GET_MODE (op0))
462 if (MEM_P (op0))
463 op0 = adjust_address (op0, imode, 0);
464 else
466 gcc_assert (imode != BLKmode);
467 op0 = gen_lowpart (imode, op0);
472 /* We may be accessing data outside the field, which means
473 we can alias adjacent data. */
474 if (MEM_P (op0))
476 op0 = shallow_copy_rtx (op0);
477 set_mem_alias_set (op0, 0);
478 set_mem_expr (op0, 0);
481 /* If OP0 is a register, BITPOS must count within a word.
482 But as we have it, it counts within whatever size OP0 now has.
483 On a bigendian machine, these are not the same, so convert. */
484 if (BYTES_BIG_ENDIAN
485 && !MEM_P (op0)
486 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
487 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
489 /* Storing an lsb-aligned field in a register
490 can be done with a movestrict instruction. */
492 if (!MEM_P (op0)
493 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
494 && bitsize == GET_MODE_BITSIZE (fieldmode)
495 && (movstrict_optab->handlers[fieldmode].insn_code
496 != CODE_FOR_nothing))
498 int icode = movstrict_optab->handlers[fieldmode].insn_code;
500 /* Get appropriate low part of the value being stored. */
501 if (GET_CODE (value) == CONST_INT || REG_P (value))
502 value = gen_lowpart (fieldmode, value);
503 else if (!(GET_CODE (value) == SYMBOL_REF
504 || GET_CODE (value) == LABEL_REF
505 || GET_CODE (value) == CONST))
506 value = convert_to_mode (fieldmode, value, 0);
508 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
509 value = copy_to_mode_reg (fieldmode, value);
511 if (GET_CODE (op0) == SUBREG)
513 /* Else we've got some float mode source being extracted into
514 a different float mode destination -- this combination of
515 subregs results in Severe Tire Damage. */
516 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
517 || GET_MODE_CLASS (fieldmode) == MODE_INT
518 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
519 op0 = SUBREG_REG (op0);
522 emit_insn (GEN_FCN (icode)
523 (gen_rtx_SUBREG (fieldmode, op0,
524 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
525 + (offset * UNITS_PER_WORD)),
526 value));
528 return value;
531 /* Handle fields bigger than a word. */
533 if (bitsize > BITS_PER_WORD)
535 /* Here we transfer the words of the field
536 in the order least significant first.
537 This is because the most significant word is the one which may
538 be less than full.
539 However, only do that if the value is not BLKmode. */
541 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
542 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
543 unsigned int i;
545 /* This is the mode we must force value to, so that there will be enough
546 subwords to extract. Note that fieldmode will often (always?) be
547 VOIDmode, because that is what store_field uses to indicate that this
548 is a bit field, but passing VOIDmode to operand_subword_force will
549 result in an abort. */
550 fieldmode = GET_MODE (value);
551 if (fieldmode == VOIDmode)
552 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
554 for (i = 0; i < nwords; i++)
556 /* If I is 0, use the low-order word in both field and target;
557 if I is 1, use the next to lowest word; and so on. */
558 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
559 unsigned int bit_offset = (backwards
560 ? MAX ((int) bitsize - ((int) i + 1)
561 * BITS_PER_WORD,
563 : (int) i * BITS_PER_WORD);
565 store_bit_field (op0, MIN (BITS_PER_WORD,
566 bitsize - i * BITS_PER_WORD),
567 bitnum + bit_offset, word_mode,
568 operand_subword_force (value, wordnum, fieldmode));
570 return value;
573 /* From here on we can assume that the field to be stored in is
574 a full-word (whatever type that is), since it is shorter than a word. */
576 /* OFFSET is the number of words or bytes (UNIT says which)
577 from STR_RTX to the first word or byte containing part of the field. */
579 if (!MEM_P (op0))
581 if (offset != 0
582 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
584 if (!REG_P (op0))
586 /* Since this is a destination (lvalue), we can't copy it to a
587 pseudo. We can trivially remove a SUBREG that does not
588 change the size of the operand. Such a SUBREG may have been
589 added above. Otherwise, abort. */
590 gcc_assert (GET_CODE (op0) == SUBREG
591 && (GET_MODE_SIZE (GET_MODE (op0))
592 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
593 op0 = SUBREG_REG (op0);
595 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
596 op0, (offset * UNITS_PER_WORD));
598 offset = 0;
601 /* If VALUE is a floating-point mode, access it as an integer of the
602 corresponding size. This can occur on a machine with 64 bit registers
603 that uses SFmode for float. This can also occur for unaligned float
604 structure fields. */
605 orig_value = value;
606 if (GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
607 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
608 value = gen_lowpart ((GET_MODE (value) == VOIDmode
609 ? word_mode : int_mode_for_mode (GET_MODE (value))),
610 value);
612 /* Now OFFSET is nonzero only if OP0 is memory
613 and is therefore always measured in bytes. */
615 if (HAVE_insv
616 && GET_MODE (value) != BLKmode
617 && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
618 /* Ensure insv's size is wide enough for this field. */
619 && (GET_MODE_BITSIZE (op_mode) >= bitsize)
620 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
621 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
623 int xbitpos = bitpos;
624 rtx value1;
625 rtx xop0 = op0;
626 rtx last = get_last_insn ();
627 rtx pat;
628 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
629 int save_volatile_ok = volatile_ok;
631 volatile_ok = 1;
633 /* If this machine's insv can only insert into a register, copy OP0
634 into a register and save it back later. */
635 /* This used to check flag_force_mem, but that was a serious
636 de-optimization now that flag_force_mem is enabled by -O2. */
637 if (MEM_P (op0)
638 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
639 (op0, VOIDmode)))
641 rtx tempreg;
642 enum machine_mode bestmode;
644 /* Get the mode to use for inserting into this field. If OP0 is
645 BLKmode, get the smallest mode consistent with the alignment. If
646 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
647 mode. Otherwise, use the smallest mode containing the field. */
649 if (GET_MODE (op0) == BLKmode
650 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
651 bestmode
652 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
653 MEM_VOLATILE_P (op0));
654 else
655 bestmode = GET_MODE (op0);
657 if (bestmode == VOIDmode
658 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
659 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
660 goto insv_loses;
662 /* Adjust address to point to the containing unit of that mode.
663 Compute offset as multiple of this unit, counting in bytes. */
664 unit = GET_MODE_BITSIZE (bestmode);
665 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
666 bitpos = bitnum % unit;
667 op0 = adjust_address (op0, bestmode, offset);
669 /* Fetch that unit, store the bitfield in it, then store
670 the unit. */
671 tempreg = copy_to_reg (op0);
672 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
673 emit_move_insn (op0, tempreg);
674 return value;
676 volatile_ok = save_volatile_ok;
678 /* Add OFFSET into OP0's address. */
679 if (MEM_P (xop0))
680 xop0 = adjust_address (xop0, byte_mode, offset);
682 /* If xop0 is a register, we need it in MAXMODE
683 to make it acceptable to the format of insv. */
684 if (GET_CODE (xop0) == SUBREG)
685 /* We can't just change the mode, because this might clobber op0,
686 and we will need the original value of op0 if insv fails. */
687 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
688 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
689 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
691 /* On big-endian machines, we count bits from the most significant.
692 If the bit field insn does not, we must invert. */
694 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
695 xbitpos = unit - bitsize - xbitpos;
697 /* We have been counting XBITPOS within UNIT.
698 Count instead within the size of the register. */
699 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
700 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
702 unit = GET_MODE_BITSIZE (maxmode);
704 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
705 value1 = value;
706 if (GET_MODE (value) != maxmode)
708 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
710 /* Optimization: Don't bother really extending VALUE
711 if it has all the bits we will actually use. However,
712 if we must narrow it, be sure we do it correctly. */
714 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
716 rtx tmp;
718 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
719 if (! tmp)
720 tmp = simplify_gen_subreg (maxmode,
721 force_reg (GET_MODE (value),
722 value1),
723 GET_MODE (value), 0);
724 value1 = tmp;
726 else
727 value1 = gen_lowpart (maxmode, value1);
729 else if (GET_CODE (value) == CONST_INT)
730 value1 = gen_int_mode (INTVAL (value), maxmode);
731 else
732 /* Parse phase is supposed to make VALUE's data type
733 match that of the component reference, which is a type
734 at least as wide as the field; so VALUE should have
735 a mode that corresponds to that type. */
736 gcc_assert (CONSTANT_P (value));
739 /* If this machine's insv insists on a register,
740 get VALUE1 into a register. */
741 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
742 (value1, maxmode)))
743 value1 = force_reg (maxmode, value1);
745 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
746 if (pat)
747 emit_insn (pat);
748 else
750 delete_insns_since (last);
751 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
754 else
755 insv_loses:
756 /* Insv is not available; store using shifts and boolean ops. */
757 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
758 return value;
761 /* Use shifts and boolean operations to store VALUE
762 into a bit field of width BITSIZE
763 in a memory location specified by OP0 except offset by OFFSET bytes.
764 (OFFSET must be 0 if OP0 is a register.)
765 The field starts at position BITPOS within the byte.
766 (If OP0 is a register, it may be a full word or a narrower mode,
767 but BITPOS still counts within a full word,
768 which is significant on bigendian machines.) */
770 static void
771 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
772 unsigned HOST_WIDE_INT bitsize,
773 unsigned HOST_WIDE_INT bitpos, rtx value)
775 enum machine_mode mode;
776 unsigned int total_bits = BITS_PER_WORD;
777 rtx subtarget, temp;
778 int all_zero = 0;
779 int all_one = 0;
781 /* There is a case not handled here:
782 a structure with a known alignment of just a halfword
783 and a field split across two aligned halfwords within the structure.
784 Or likewise a structure with a known alignment of just a byte
785 and a field split across two bytes.
786 Such cases are not supposed to be able to occur. */
788 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
790 gcc_assert (!offset);
791 /* Special treatment for a bit field split across two registers. */
792 if (bitsize + bitpos > BITS_PER_WORD)
794 store_split_bit_field (op0, bitsize, bitpos, value);
795 return;
798 else
800 /* Get the proper mode to use for this field. We want a mode that
801 includes the entire field. If such a mode would be larger than
802 a word, we won't be doing the extraction the normal way.
803 We don't want a mode bigger than the destination. */
805 mode = GET_MODE (op0);
806 if (GET_MODE_BITSIZE (mode) == 0
807 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
808 mode = word_mode;
809 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
810 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
812 if (mode == VOIDmode)
814 /* The only way this should occur is if the field spans word
815 boundaries. */
816 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
817 value);
818 return;
821 total_bits = GET_MODE_BITSIZE (mode);
823 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
824 be in the range 0 to total_bits-1, and put any excess bytes in
825 OFFSET. */
826 if (bitpos >= total_bits)
828 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
829 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
830 * BITS_PER_UNIT);
833 /* Get ref to an aligned byte, halfword, or word containing the field.
834 Adjust BITPOS to be position within a word,
835 and OFFSET to be the offset of that word.
836 Then alter OP0 to refer to that word. */
837 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
838 offset -= (offset % (total_bits / BITS_PER_UNIT));
839 op0 = adjust_address (op0, mode, offset);
842 mode = GET_MODE (op0);
844 /* Now MODE is either some integral mode for a MEM as OP0,
845 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
846 The bit field is contained entirely within OP0.
847 BITPOS is the starting bit number within OP0.
848 (OP0's mode may actually be narrower than MODE.) */
850 if (BYTES_BIG_ENDIAN)
851 /* BITPOS is the distance between our msb
852 and that of the containing datum.
853 Convert it to the distance from the lsb. */
854 bitpos = total_bits - bitsize - bitpos;
856 /* Now BITPOS is always the distance between our lsb
857 and that of OP0. */
859 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
860 we must first convert its mode to MODE. */
862 if (GET_CODE (value) == CONST_INT)
864 HOST_WIDE_INT v = INTVAL (value);
866 if (bitsize < HOST_BITS_PER_WIDE_INT)
867 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
869 if (v == 0)
870 all_zero = 1;
871 else if ((bitsize < HOST_BITS_PER_WIDE_INT
872 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
873 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
874 all_one = 1;
876 value = lshift_value (mode, value, bitpos, bitsize);
878 else
880 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
881 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
883 if (GET_MODE (value) != mode)
885 if ((REG_P (value) || GET_CODE (value) == SUBREG)
886 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
887 value = gen_lowpart (mode, value);
888 else
889 value = convert_to_mode (mode, value, 1);
892 if (must_and)
893 value = expand_binop (mode, and_optab, value,
894 mask_rtx (mode, 0, bitsize, 0),
895 NULL_RTX, 1, OPTAB_LIB_WIDEN);
896 if (bitpos > 0)
897 value = expand_shift (LSHIFT_EXPR, mode, value,
898 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
901 /* Now clear the chosen bits in OP0,
902 except that if VALUE is -1 we need not bother. */
904 subtarget = (REG_P (op0) || ! flag_force_mem) ? op0 : 0;
906 if (! all_one)
908 temp = expand_binop (mode, and_optab, op0,
909 mask_rtx (mode, bitpos, bitsize, 1),
910 subtarget, 1, OPTAB_LIB_WIDEN);
911 subtarget = temp;
913 else
914 temp = op0;
916 /* Now logical-or VALUE into OP0, unless it is zero. */
918 if (! all_zero)
919 temp = expand_binop (mode, ior_optab, temp, value,
920 subtarget, 1, OPTAB_LIB_WIDEN);
921 if (op0 != temp)
922 emit_move_insn (op0, temp);
925 /* Store a bit field that is split across multiple accessible memory objects.
927 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
928 BITSIZE is the field width; BITPOS the position of its first bit
929 (within the word).
930 VALUE is the value to store.
932 This does not yet handle fields wider than BITS_PER_WORD. */
934 static void
935 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
936 unsigned HOST_WIDE_INT bitpos, rtx value)
938 unsigned int unit;
939 unsigned int bitsdone = 0;
941 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
942 much at a time. */
943 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
944 unit = BITS_PER_WORD;
945 else
946 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
948 /* If VALUE is a constant other than a CONST_INT, get it into a register in
949 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
950 that VALUE might be a floating-point constant. */
951 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
953 rtx word = gen_lowpart_common (word_mode, value);
955 if (word && (value != word))
956 value = word;
957 else
958 value = gen_lowpart_common (word_mode,
959 force_reg (GET_MODE (value) != VOIDmode
960 ? GET_MODE (value)
961 : word_mode, value));
964 while (bitsdone < bitsize)
966 unsigned HOST_WIDE_INT thissize;
967 rtx part, word;
968 unsigned HOST_WIDE_INT thispos;
969 unsigned HOST_WIDE_INT offset;
971 offset = (bitpos + bitsdone) / unit;
972 thispos = (bitpos + bitsdone) % unit;
974 /* THISSIZE must not overrun a word boundary. Otherwise,
975 store_fixed_bit_field will call us again, and we will mutually
976 recurse forever. */
977 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
978 thissize = MIN (thissize, unit - thispos);
980 if (BYTES_BIG_ENDIAN)
982 int total_bits;
984 /* We must do an endian conversion exactly the same way as it is
985 done in extract_bit_field, so that the two calls to
986 extract_fixed_bit_field will have comparable arguments. */
987 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
988 total_bits = BITS_PER_WORD;
989 else
990 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
992 /* Fetch successively less significant portions. */
993 if (GET_CODE (value) == CONST_INT)
994 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
995 >> (bitsize - bitsdone - thissize))
996 & (((HOST_WIDE_INT) 1 << thissize) - 1));
997 else
998 /* The args are chosen so that the last part includes the
999 lsb. Give extract_bit_field the value it needs (with
1000 endianness compensation) to fetch the piece we want. */
1001 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1002 total_bits - bitsize + bitsdone,
1003 NULL_RTX, 1);
1005 else
1007 /* Fetch successively more significant portions. */
1008 if (GET_CODE (value) == CONST_INT)
1009 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1010 >> bitsdone)
1011 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1012 else
1013 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1014 bitsdone, NULL_RTX, 1);
1017 /* If OP0 is a register, then handle OFFSET here.
1019 When handling multiword bitfields, extract_bit_field may pass
1020 down a word_mode SUBREG of a larger REG for a bitfield that actually
1021 crosses a word boundary. Thus, for a SUBREG, we must find
1022 the current word starting from the base register. */
1023 if (GET_CODE (op0) == SUBREG)
1025 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1026 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1027 GET_MODE (SUBREG_REG (op0)));
1028 offset = 0;
1030 else if (REG_P (op0))
1032 word = operand_subword_force (op0, offset, GET_MODE (op0));
1033 offset = 0;
1035 else
1036 word = op0;
1038 /* OFFSET is in UNITs, and UNIT is in bits.
1039 store_fixed_bit_field wants offset in bytes. */
1040 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1041 thispos, part);
1042 bitsdone += thissize;
1046 /* Generate code to extract a byte-field from STR_RTX
1047 containing BITSIZE bits, starting at BITNUM,
1048 and put it in TARGET if possible (if TARGET is nonzero).
1049 Regardless of TARGET, we return the rtx for where the value is placed.
1051 STR_RTX is the structure containing the byte (a REG or MEM).
1052 UNSIGNEDP is nonzero if this is an unsigned bit field.
1053 MODE is the natural mode of the field value once extracted.
1054 TMODE is the mode the caller would like the value to have;
1055 but the value may be returned with type MODE instead.
1057 TOTAL_SIZE is the size in bytes of the containing structure,
1058 or -1 if varying.
1060 If a TARGET is specified and we can store in it at no extra cost,
1061 we do so, and return TARGET.
1062 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1063 if they are equally easy. */
1066 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1067 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1068 enum machine_mode mode, enum machine_mode tmode)
1070 unsigned int unit
1071 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1072 unsigned HOST_WIDE_INT offset = bitnum / unit;
1073 unsigned HOST_WIDE_INT bitpos = bitnum % unit;
1074 rtx op0 = str_rtx;
1075 rtx spec_target = target;
1076 rtx spec_target_subreg = 0;
1077 enum machine_mode int_mode;
1078 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1079 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1080 enum machine_mode mode1;
1081 int byte_offset;
1083 if (tmode == VOIDmode)
1084 tmode = mode;
1086 while (GET_CODE (op0) == SUBREG)
1088 bitpos += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1089 if (bitpos > unit)
1091 offset += (bitpos / unit);
1092 bitpos %= unit;
1094 op0 = SUBREG_REG (op0);
1097 if (REG_P (op0)
1098 && mode == GET_MODE (op0)
1099 && bitnum == 0
1100 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1102 /* We're trying to extract a full register from itself. */
1103 return op0;
1106 /* Use vec_extract patterns for extracting parts of vectors whenever
1107 available. */
1108 if (VECTOR_MODE_P (GET_MODE (op0))
1109 && !MEM_P (op0)
1110 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1111 != CODE_FOR_nothing)
1112 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1113 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1115 enum machine_mode outermode = GET_MODE (op0);
1116 enum machine_mode innermode = GET_MODE_INNER (outermode);
1117 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1118 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1119 rtx rtxpos = GEN_INT (pos);
1120 rtx src = op0;
1121 rtx dest = NULL, pat, seq;
1122 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1123 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1124 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1126 if (innermode == tmode || innermode == mode)
1127 dest = target;
1129 if (!dest)
1130 dest = gen_reg_rtx (innermode);
1132 start_sequence ();
1134 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1135 dest = copy_to_mode_reg (mode0, dest);
1137 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1138 src = copy_to_mode_reg (mode1, src);
1140 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1141 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1143 /* We could handle this, but we should always be called with a pseudo
1144 for our targets and all insns should take them as outputs. */
1145 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1146 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1147 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1149 pat = GEN_FCN (icode) (dest, src, rtxpos);
1150 seq = get_insns ();
1151 end_sequence ();
1152 if (pat)
1154 emit_insn (seq);
1155 emit_insn (pat);
1156 return dest;
1160 /* Make sure we are playing with integral modes. Pun with subregs
1161 if we aren't. */
1163 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1164 if (imode != GET_MODE (op0))
1166 if (MEM_P (op0))
1167 op0 = adjust_address (op0, imode, 0);
1168 else
1170 gcc_assert (imode != BLKmode);
1171 op0 = gen_lowpart (imode, op0);
1176 /* We may be accessing data outside the field, which means
1177 we can alias adjacent data. */
1178 if (MEM_P (op0))
1180 op0 = shallow_copy_rtx (op0);
1181 set_mem_alias_set (op0, 0);
1182 set_mem_expr (op0, 0);
1185 /* Extraction of a full-word or multi-word value from a structure
1186 in a register or aligned memory can be done with just a SUBREG.
1187 A subword value in the least significant part of a register
1188 can also be extracted with a SUBREG. For this, we need the
1189 byte offset of the value in op0. */
1191 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1193 /* If OP0 is a register, BITPOS must count within a word.
1194 But as we have it, it counts within whatever size OP0 now has.
1195 On a bigendian machine, these are not the same, so convert. */
1196 if (BYTES_BIG_ENDIAN
1197 && !MEM_P (op0)
1198 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1199 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1201 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1202 If that's wrong, the solution is to test for it and set TARGET to 0
1203 if needed. */
1205 /* Only scalar integer modes can be converted via subregs. There is an
1206 additional problem for FP modes here in that they can have a precision
1207 which is different from the size. mode_for_size uses precision, but
1208 we want a mode based on the size, so we must avoid calling it for FP
1209 modes. */
1210 mode1 = (SCALAR_INT_MODE_P (tmode)
1211 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1212 : mode);
1214 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1215 && bitpos % BITS_PER_WORD == 0)
1216 || (mode1 != BLKmode
1217 /* ??? The big endian test here is wrong. This is correct
1218 if the value is in a register, and if mode_for_size is not
1219 the same mode as op0. This causes us to get unnecessarily
1220 inefficient code from the Thumb port when -mbig-endian. */
1221 && (BYTES_BIG_ENDIAN
1222 ? bitpos + bitsize == BITS_PER_WORD
1223 : bitpos == 0)))
1224 && ((!MEM_P (op0)
1225 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1226 GET_MODE_BITSIZE (GET_MODE (op0)))
1227 && GET_MODE_SIZE (mode1) != 0
1228 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1229 || (MEM_P (op0)
1230 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1231 || (offset * BITS_PER_UNIT % bitsize == 0
1232 && MEM_ALIGN (op0) % bitsize == 0)))))
1234 if (mode1 != GET_MODE (op0))
1236 if (GET_CODE (op0) == SUBREG)
1238 if (GET_MODE (SUBREG_REG (op0)) == mode1
1239 || GET_MODE_CLASS (mode1) == MODE_INT
1240 || GET_MODE_CLASS (mode1) == MODE_PARTIAL_INT)
1241 op0 = SUBREG_REG (op0);
1242 else
1243 /* Else we've got some float mode source being extracted into
1244 a different float mode destination -- this combination of
1245 subregs results in Severe Tire Damage. */
1246 goto no_subreg_mode_swap;
1248 if (REG_P (op0))
1249 op0 = gen_rtx_SUBREG (mode1, op0, byte_offset);
1250 else
1251 op0 = adjust_address (op0, mode1, offset);
1253 if (mode1 != mode)
1254 return convert_to_mode (tmode, op0, unsignedp);
1255 return op0;
1257 no_subreg_mode_swap:
1259 /* Handle fields bigger than a word. */
1261 if (bitsize > BITS_PER_WORD)
1263 /* Here we transfer the words of the field
1264 in the order least significant first.
1265 This is because the most significant word is the one which may
1266 be less than full. */
1268 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1269 unsigned int i;
1271 if (target == 0 || !REG_P (target))
1272 target = gen_reg_rtx (mode);
1274 /* Indicate for flow that the entire target reg is being set. */
1275 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1277 for (i = 0; i < nwords; i++)
1279 /* If I is 0, use the low-order word in both field and target;
1280 if I is 1, use the next to lowest word; and so on. */
1281 /* Word number in TARGET to use. */
1282 unsigned int wordnum
1283 = (WORDS_BIG_ENDIAN
1284 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1285 : i);
1286 /* Offset from start of field in OP0. */
1287 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1288 ? MAX (0, ((int) bitsize - ((int) i + 1)
1289 * (int) BITS_PER_WORD))
1290 : (int) i * BITS_PER_WORD);
1291 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1292 rtx result_part
1293 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1294 bitsize - i * BITS_PER_WORD),
1295 bitnum + bit_offset, 1, target_part, mode,
1296 word_mode);
1298 gcc_assert (target_part);
1300 if (result_part != target_part)
1301 emit_move_insn (target_part, result_part);
1304 if (unsignedp)
1306 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1307 need to be zero'd out. */
1308 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1310 unsigned int i, total_words;
1312 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1313 for (i = nwords; i < total_words; i++)
1314 emit_move_insn
1315 (operand_subword (target,
1316 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1317 1, VOIDmode),
1318 const0_rtx);
1320 return target;
1323 /* Signed bit field: sign-extend with two arithmetic shifts. */
1324 target = expand_shift (LSHIFT_EXPR, mode, target,
1325 build_int_cst (NULL_TREE,
1326 GET_MODE_BITSIZE (mode) - bitsize),
1327 NULL_RTX, 0);
1328 return expand_shift (RSHIFT_EXPR, mode, target,
1329 build_int_cst (NULL_TREE,
1330 GET_MODE_BITSIZE (mode) - bitsize),
1331 NULL_RTX, 0);
1334 /* From here on we know the desired field is smaller than a word. */
1336 /* Check if there is a correspondingly-sized integer field, so we can
1337 safely extract it as one size of integer, if necessary; then
1338 truncate or extend to the size that is wanted; then use SUBREGs or
1339 convert_to_mode to get one of the modes we really wanted. */
1341 int_mode = int_mode_for_mode (tmode);
1342 if (int_mode == BLKmode)
1343 int_mode = int_mode_for_mode (mode);
1344 /* Should probably push op0 out to memory and then do a load. */
1345 gcc_assert (int_mode != BLKmode);
1347 /* OFFSET is the number of words or bytes (UNIT says which)
1348 from STR_RTX to the first word or byte containing part of the field. */
1349 if (!MEM_P (op0))
1351 if (offset != 0
1352 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1354 if (!REG_P (op0))
1355 op0 = copy_to_reg (op0);
1356 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1357 op0, (offset * UNITS_PER_WORD));
1359 offset = 0;
1362 /* Now OFFSET is nonzero only for memory operands. */
1364 if (unsignedp)
1366 if (HAVE_extzv
1367 && (GET_MODE_BITSIZE (extzv_mode) >= bitsize)
1368 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1369 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1371 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1372 rtx bitsize_rtx, bitpos_rtx;
1373 rtx last = get_last_insn ();
1374 rtx xop0 = op0;
1375 rtx xtarget = target;
1376 rtx xspec_target = spec_target;
1377 rtx xspec_target_subreg = spec_target_subreg;
1378 rtx pat;
1379 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1381 if (MEM_P (xop0))
1383 int save_volatile_ok = volatile_ok;
1384 volatile_ok = 1;
1386 /* Is the memory operand acceptable? */
1387 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1388 (xop0, GET_MODE (xop0))))
1390 /* No, load into a reg and extract from there. */
1391 enum machine_mode bestmode;
1393 /* Get the mode to use for inserting into this field. If
1394 OP0 is BLKmode, get the smallest mode consistent with the
1395 alignment. If OP0 is a non-BLKmode object that is no
1396 wider than MAXMODE, use its mode. Otherwise, use the
1397 smallest mode containing the field. */
1399 if (GET_MODE (xop0) == BLKmode
1400 || (GET_MODE_SIZE (GET_MODE (op0))
1401 > GET_MODE_SIZE (maxmode)))
1402 bestmode = get_best_mode (bitsize, bitnum,
1403 MEM_ALIGN (xop0), maxmode,
1404 MEM_VOLATILE_P (xop0));
1405 else
1406 bestmode = GET_MODE (xop0);
1408 if (bestmode == VOIDmode
1409 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1410 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1411 goto extzv_loses;
1413 /* Compute offset as multiple of this unit,
1414 counting in bytes. */
1415 unit = GET_MODE_BITSIZE (bestmode);
1416 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1417 xbitpos = bitnum % unit;
1418 xop0 = adjust_address (xop0, bestmode, xoffset);
1420 /* Fetch it to a register in that size. */
1421 xop0 = force_reg (bestmode, xop0);
1423 /* XBITPOS counts within UNIT, which is what is expected. */
1425 else
1426 /* Get ref to first byte containing part of the field. */
1427 xop0 = adjust_address (xop0, byte_mode, xoffset);
1429 volatile_ok = save_volatile_ok;
1432 /* If op0 is a register, we need it in MAXMODE (which is usually
1433 SImode). to make it acceptable to the format of extzv. */
1434 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1435 goto extzv_loses;
1436 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1437 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1439 /* On big-endian machines, we count bits from the most significant.
1440 If the bit field insn does not, we must invert. */
1441 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1442 xbitpos = unit - bitsize - xbitpos;
1444 /* Now convert from counting within UNIT to counting in MAXMODE. */
1445 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1446 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1448 unit = GET_MODE_BITSIZE (maxmode);
1450 if (xtarget == 0
1451 || (flag_force_mem && MEM_P (xtarget)))
1452 xtarget = xspec_target = gen_reg_rtx (tmode);
1454 if (GET_MODE (xtarget) != maxmode)
1456 if (REG_P (xtarget))
1458 int wider = (GET_MODE_SIZE (maxmode)
1459 > GET_MODE_SIZE (GET_MODE (xtarget)));
1460 xtarget = gen_lowpart (maxmode, xtarget);
1461 if (wider)
1462 xspec_target_subreg = xtarget;
1464 else
1465 xtarget = gen_reg_rtx (maxmode);
1468 /* If this machine's extzv insists on a register target,
1469 make sure we have one. */
1470 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1471 (xtarget, maxmode)))
1472 xtarget = gen_reg_rtx (maxmode);
1474 bitsize_rtx = GEN_INT (bitsize);
1475 bitpos_rtx = GEN_INT (xbitpos);
1477 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1478 if (pat)
1480 emit_insn (pat);
1481 target = xtarget;
1482 spec_target = xspec_target;
1483 spec_target_subreg = xspec_target_subreg;
1485 else
1487 delete_insns_since (last);
1488 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1489 bitpos, target, 1);
1492 else
1493 extzv_loses:
1494 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1495 bitpos, target, 1);
1497 else
1499 if (HAVE_extv
1500 && (GET_MODE_BITSIZE (extv_mode) >= bitsize)
1501 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1502 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1504 int xbitpos = bitpos, xoffset = offset;
1505 rtx bitsize_rtx, bitpos_rtx;
1506 rtx last = get_last_insn ();
1507 rtx xop0 = op0, xtarget = target;
1508 rtx xspec_target = spec_target;
1509 rtx xspec_target_subreg = spec_target_subreg;
1510 rtx pat;
1511 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1513 if (MEM_P (xop0))
1515 /* Is the memory operand acceptable? */
1516 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1517 (xop0, GET_MODE (xop0))))
1519 /* No, load into a reg and extract from there. */
1520 enum machine_mode bestmode;
1522 /* Get the mode to use for inserting into this field. If
1523 OP0 is BLKmode, get the smallest mode consistent with the
1524 alignment. If OP0 is a non-BLKmode object that is no
1525 wider than MAXMODE, use its mode. Otherwise, use the
1526 smallest mode containing the field. */
1528 if (GET_MODE (xop0) == BLKmode
1529 || (GET_MODE_SIZE (GET_MODE (op0))
1530 > GET_MODE_SIZE (maxmode)))
1531 bestmode = get_best_mode (bitsize, bitnum,
1532 MEM_ALIGN (xop0), maxmode,
1533 MEM_VOLATILE_P (xop0));
1534 else
1535 bestmode = GET_MODE (xop0);
1537 if (bestmode == VOIDmode
1538 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1539 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1540 goto extv_loses;
1542 /* Compute offset as multiple of this unit,
1543 counting in bytes. */
1544 unit = GET_MODE_BITSIZE (bestmode);
1545 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1546 xbitpos = bitnum % unit;
1547 xop0 = adjust_address (xop0, bestmode, xoffset);
1549 /* Fetch it to a register in that size. */
1550 xop0 = force_reg (bestmode, xop0);
1552 /* XBITPOS counts within UNIT, which is what is expected. */
1554 else
1555 /* Get ref to first byte containing part of the field. */
1556 xop0 = adjust_address (xop0, byte_mode, xoffset);
1559 /* If op0 is a register, we need it in MAXMODE (which is usually
1560 SImode) to make it acceptable to the format of extv. */
1561 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1562 goto extv_loses;
1563 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1564 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1566 /* On big-endian machines, we count bits from the most significant.
1567 If the bit field insn does not, we must invert. */
1568 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1569 xbitpos = unit - bitsize - xbitpos;
1571 /* XBITPOS counts within a size of UNIT.
1572 Adjust to count within a size of MAXMODE. */
1573 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1574 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1576 unit = GET_MODE_BITSIZE (maxmode);
1578 if (xtarget == 0
1579 || (flag_force_mem && MEM_P (xtarget)))
1580 xtarget = xspec_target = gen_reg_rtx (tmode);
1582 if (GET_MODE (xtarget) != maxmode)
1584 if (REG_P (xtarget))
1586 int wider = (GET_MODE_SIZE (maxmode)
1587 > GET_MODE_SIZE (GET_MODE (xtarget)));
1588 xtarget = gen_lowpart (maxmode, xtarget);
1589 if (wider)
1590 xspec_target_subreg = xtarget;
1592 else
1593 xtarget = gen_reg_rtx (maxmode);
1596 /* If this machine's extv insists on a register target,
1597 make sure we have one. */
1598 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1599 (xtarget, maxmode)))
1600 xtarget = gen_reg_rtx (maxmode);
1602 bitsize_rtx = GEN_INT (bitsize);
1603 bitpos_rtx = GEN_INT (xbitpos);
1605 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1606 if (pat)
1608 emit_insn (pat);
1609 target = xtarget;
1610 spec_target = xspec_target;
1611 spec_target_subreg = xspec_target_subreg;
1613 else
1615 delete_insns_since (last);
1616 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1617 bitpos, target, 0);
1620 else
1621 extv_loses:
1622 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1623 bitpos, target, 0);
1625 if (target == spec_target)
1626 return target;
1627 if (target == spec_target_subreg)
1628 return spec_target;
1629 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1631 /* If the target mode is floating-point, first convert to the
1632 integer mode of that size and then access it as a floating-point
1633 value via a SUBREG. */
1634 if (GET_MODE_CLASS (tmode) != MODE_INT
1635 && GET_MODE_CLASS (tmode) != MODE_PARTIAL_INT)
1637 target = convert_to_mode (mode_for_size (GET_MODE_BITSIZE (tmode),
1638 MODE_INT, 0),
1639 target, unsignedp);
1640 return gen_lowpart (tmode, target);
1642 else
1643 return convert_to_mode (tmode, target, unsignedp);
1645 return target;
1648 /* Extract a bit field using shifts and boolean operations
1649 Returns an rtx to represent the value.
1650 OP0 addresses a register (word) or memory (byte).
1651 BITPOS says which bit within the word or byte the bit field starts in.
1652 OFFSET says how many bytes farther the bit field starts;
1653 it is 0 if OP0 is a register.
1654 BITSIZE says how many bits long the bit field is.
1655 (If OP0 is a register, it may be narrower than a full word,
1656 but BITPOS still counts within a full word,
1657 which is significant on bigendian machines.)
1659 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1660 If TARGET is nonzero, attempts to store the value there
1661 and return TARGET, but this is not guaranteed.
1662 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1664 static rtx
1665 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1666 unsigned HOST_WIDE_INT offset,
1667 unsigned HOST_WIDE_INT bitsize,
1668 unsigned HOST_WIDE_INT bitpos, rtx target,
1669 int unsignedp)
1671 unsigned int total_bits = BITS_PER_WORD;
1672 enum machine_mode mode;
1674 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1676 /* Special treatment for a bit field split across two registers. */
1677 if (bitsize + bitpos > BITS_PER_WORD)
1678 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1680 else
1682 /* Get the proper mode to use for this field. We want a mode that
1683 includes the entire field. If such a mode would be larger than
1684 a word, we won't be doing the extraction the normal way. */
1686 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1687 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1689 if (mode == VOIDmode)
1690 /* The only way this should occur is if the field spans word
1691 boundaries. */
1692 return extract_split_bit_field (op0, bitsize,
1693 bitpos + offset * BITS_PER_UNIT,
1694 unsignedp);
1696 total_bits = GET_MODE_BITSIZE (mode);
1698 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1699 be in the range 0 to total_bits-1, and put any excess bytes in
1700 OFFSET. */
1701 if (bitpos >= total_bits)
1703 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1704 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1705 * BITS_PER_UNIT);
1708 /* Get ref to an aligned byte, halfword, or word containing the field.
1709 Adjust BITPOS to be position within a word,
1710 and OFFSET to be the offset of that word.
1711 Then alter OP0 to refer to that word. */
1712 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1713 offset -= (offset % (total_bits / BITS_PER_UNIT));
1714 op0 = adjust_address (op0, mode, offset);
1717 mode = GET_MODE (op0);
1719 if (BYTES_BIG_ENDIAN)
1720 /* BITPOS is the distance between our msb and that of OP0.
1721 Convert it to the distance from the lsb. */
1722 bitpos = total_bits - bitsize - bitpos;
1724 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1725 We have reduced the big-endian case to the little-endian case. */
1727 if (unsignedp)
1729 if (bitpos)
1731 /* If the field does not already start at the lsb,
1732 shift it so it does. */
1733 tree amount = build_int_cst (NULL_TREE, bitpos);
1734 /* Maybe propagate the target for the shift. */
1735 /* But not if we will return it--could confuse integrate.c. */
1736 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1737 if (tmode != mode) subtarget = 0;
1738 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1740 /* Convert the value to the desired mode. */
1741 if (mode != tmode)
1742 op0 = convert_to_mode (tmode, op0, 1);
1744 /* Unless the msb of the field used to be the msb when we shifted,
1745 mask out the upper bits. */
1747 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1748 return expand_binop (GET_MODE (op0), and_optab, op0,
1749 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1750 target, 1, OPTAB_LIB_WIDEN);
1751 return op0;
1754 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1755 then arithmetic-shift its lsb to the lsb of the word. */
1756 op0 = force_reg (mode, op0);
1757 if (mode != tmode)
1758 target = 0;
1760 /* Find the narrowest integer mode that contains the field. */
1762 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1763 mode = GET_MODE_WIDER_MODE (mode))
1764 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1766 op0 = convert_to_mode (mode, op0, 0);
1767 break;
1770 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1772 tree amount
1773 = build_int_cst (NULL_TREE,
1774 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1775 /* Maybe propagate the target for the shift. */
1776 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1777 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1780 return expand_shift (RSHIFT_EXPR, mode, op0,
1781 build_int_cst (NULL_TREE,
1782 GET_MODE_BITSIZE (mode) - bitsize),
1783 target, 0);
1786 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1787 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1788 complement of that if COMPLEMENT. The mask is truncated if
1789 necessary to the width of mode MODE. The mask is zero-extended if
1790 BITSIZE+BITPOS is too small for MODE. */
1792 static rtx
1793 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1795 HOST_WIDE_INT masklow, maskhigh;
1797 if (bitsize == 0)
1798 masklow = 0;
1799 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1800 masklow = (HOST_WIDE_INT) -1 << bitpos;
1801 else
1802 masklow = 0;
1804 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1805 masklow &= ((unsigned HOST_WIDE_INT) -1
1806 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1808 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1809 maskhigh = -1;
1810 else
1811 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1813 if (bitsize == 0)
1814 maskhigh = 0;
1815 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1816 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1817 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1818 else
1819 maskhigh = 0;
1821 if (complement)
1823 maskhigh = ~maskhigh;
1824 masklow = ~masklow;
1827 return immed_double_const (masklow, maskhigh, mode);
1830 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1831 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1833 static rtx
1834 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1836 unsigned HOST_WIDE_INT v = INTVAL (value);
1837 HOST_WIDE_INT low, high;
1839 if (bitsize < HOST_BITS_PER_WIDE_INT)
1840 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1842 if (bitpos < HOST_BITS_PER_WIDE_INT)
1844 low = v << bitpos;
1845 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1847 else
1849 low = 0;
1850 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1853 return immed_double_const (low, high, mode);
1856 /* Extract a bit field from a memory by forcing the alignment of the
1857 memory. This efficient only if the field spans at least 4 boundaries.
1859 OP0 is the MEM.
1860 BITSIZE is the field width; BITPOS is the position of the first bit.
1861 UNSIGNEDP is true if the result should be zero-extended. */
1863 static rtx
1864 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1865 unsigned HOST_WIDE_INT bitpos,
1866 int unsignedp)
1868 enum machine_mode mode, dmode;
1869 unsigned int m_bitsize, m_size;
1870 unsigned int sign_shift_up, sign_shift_dn;
1871 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1873 /* Choose a mode that will fit BITSIZE. */
1874 mode = smallest_mode_for_size (bitsize, MODE_INT);
1875 m_size = GET_MODE_SIZE (mode);
1876 m_bitsize = GET_MODE_BITSIZE (mode);
1878 /* Choose a mode twice as wide. Fail if no such mode exists. */
1879 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1880 if (dmode == BLKmode)
1881 return NULL;
1883 do_pending_stack_adjust ();
1884 start = get_last_insn ();
1886 /* At the end, we'll need an additional shift to deal with sign/zero
1887 extension. By default this will be a left+right shift of the
1888 appropriate size. But we may be able to eliminate one of them. */
1889 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1891 if (STRICT_ALIGNMENT)
1893 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1894 base = force_operand (base, NULL);
1895 bitpos %= BITS_PER_UNIT;
1897 /* Force alignment of the address; load two sequential values. */
1898 a1 = expand_simple_binop (Pmode, AND, base,
1899 GEN_INT (-(HOST_WIDE_INT)m_size),
1900 NULL, true, OPTAB_LIB_WIDEN);
1901 mark_reg_pointer (a1, m_bitsize);
1902 v1 = gen_rtx_MEM (mode, a1);
1903 set_mem_align (v1, m_bitsize);
1904 v1 = force_reg (mode, validize_mem (v1));
1906 a2 = plus_constant (a1, GET_MODE_SIZE (mode));
1907 v2 = gen_rtx_MEM (mode, a2);
1908 set_mem_align (v2, m_bitsize);
1909 v2 = force_reg (mode, validize_mem (v2));
1911 /* Combine these two values into a double-word value. */
1912 if (m_bitsize == BITS_PER_WORD)
1914 comb = gen_reg_rtx (dmode);
1915 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1916 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1917 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1919 else
1921 if (BYTES_BIG_ENDIAN)
1922 comb = v1, v1 = v2, v2 = comb;
1923 v1 = convert_modes (dmode, mode, v1, true);
1924 if (v1 == NULL)
1925 goto fail;
1926 v2 = convert_modes (dmode, mode, v2, true);
1927 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1928 NULL, true, OPTAB_LIB_WIDEN);
1929 if (v2 == NULL)
1930 goto fail;
1931 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1932 true, OPTAB_LIB_WIDEN);
1933 if (comb == NULL)
1934 goto fail;
1937 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1938 NULL, true, OPTAB_LIB_WIDEN);
1939 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1941 if (bitpos != 0)
1943 if (sign_shift_up <= bitpos)
1944 bitpos -= sign_shift_up, sign_shift_up = 0;
1945 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1946 NULL, true, OPTAB_LIB_WIDEN);
1949 else
1951 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1952 bitpos %= BITS_PER_UNIT;
1954 /* When strict alignment is not required, we can just load directly
1955 from memory without masking. If the remaining BITPOS offset is
1956 small enough, we may be able to do all operations in MODE as
1957 opposed to DMODE. */
1958 if (bitpos + bitsize <= m_bitsize)
1959 dmode = mode;
1960 comb = adjust_address (op0, dmode, offset);
1962 if (sign_shift_up <= bitpos)
1963 bitpos -= sign_shift_up, sign_shift_up = 0;
1964 shift = GEN_INT (bitpos);
1967 /* Shift down the double-word such that the requested value is at bit 0. */
1968 if (shift != const0_rtx)
1969 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1970 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1971 if (comb == NULL)
1972 goto fail;
1974 /* If the field exactly matches MODE, then all we need to do is return the
1975 lowpart. Otherwise, shift to get the sign bits set properly. */
1976 result = force_reg (mode, gen_lowpart (mode, comb));
1978 if (sign_shift_up)
1979 result = expand_simple_binop (mode, ASHIFT, result,
1980 GEN_INT (sign_shift_up),
1981 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1982 if (sign_shift_dn)
1983 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
1984 result, GEN_INT (sign_shift_dn),
1985 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1987 return result;
1989 fail:
1990 delete_insns_since (start);
1991 return NULL;
1994 /* Extract a bit field that is split across two words
1995 and return an RTX for the result.
1997 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1998 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1999 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2001 static rtx
2002 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2003 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2005 unsigned int unit;
2006 unsigned int bitsdone = 0;
2007 rtx result = NULL_RTX;
2008 int first = 1;
2010 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2011 much at a time. */
2012 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2013 unit = BITS_PER_WORD;
2014 else
2016 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2017 if (bitsize / unit > 2)
2019 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2020 unsignedp);
2021 if (tmp)
2022 return tmp;
2026 while (bitsdone < bitsize)
2028 unsigned HOST_WIDE_INT thissize;
2029 rtx part, word;
2030 unsigned HOST_WIDE_INT thispos;
2031 unsigned HOST_WIDE_INT offset;
2033 offset = (bitpos + bitsdone) / unit;
2034 thispos = (bitpos + bitsdone) % unit;
2036 /* THISSIZE must not overrun a word boundary. Otherwise,
2037 extract_fixed_bit_field will call us again, and we will mutually
2038 recurse forever. */
2039 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2040 thissize = MIN (thissize, unit - thispos);
2042 /* If OP0 is a register, then handle OFFSET here.
2044 When handling multiword bitfields, extract_bit_field may pass
2045 down a word_mode SUBREG of a larger REG for a bitfield that actually
2046 crosses a word boundary. Thus, for a SUBREG, we must find
2047 the current word starting from the base register. */
2048 if (GET_CODE (op0) == SUBREG)
2050 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2051 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2052 GET_MODE (SUBREG_REG (op0)));
2053 offset = 0;
2055 else if (REG_P (op0))
2057 word = operand_subword_force (op0, offset, GET_MODE (op0));
2058 offset = 0;
2060 else
2061 word = op0;
2063 /* Extract the parts in bit-counting order,
2064 whose meaning is determined by BYTES_PER_UNIT.
2065 OFFSET is in UNITs, and UNIT is in bits.
2066 extract_fixed_bit_field wants offset in bytes. */
2067 part = extract_fixed_bit_field (word_mode, word,
2068 offset * unit / BITS_PER_UNIT,
2069 thissize, thispos, 0, 1);
2070 bitsdone += thissize;
2072 /* Shift this part into place for the result. */
2073 if (BYTES_BIG_ENDIAN)
2075 if (bitsize != bitsdone)
2076 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2077 build_int_cst (NULL_TREE, bitsize - bitsdone),
2078 0, 1);
2080 else
2082 if (bitsdone != thissize)
2083 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2084 build_int_cst (NULL_TREE,
2085 bitsdone - thissize), 0, 1);
2088 if (first)
2089 result = part;
2090 else
2091 /* Combine the parts with bitwise or. This works
2092 because we extracted each part as an unsigned bit field. */
2093 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2094 OPTAB_LIB_WIDEN);
2096 first = 0;
2099 /* Unsigned bit field: we are done. */
2100 if (unsignedp)
2101 return result;
2102 /* Signed bit field: sign-extend with two arithmetic shifts. */
2103 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2104 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2105 NULL_RTX, 0);
2106 return expand_shift (RSHIFT_EXPR, word_mode, result,
2107 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2108 NULL_RTX, 0);
2111 /* Add INC into TARGET. */
2113 void
2114 expand_inc (rtx target, rtx inc)
2116 rtx value = expand_binop (GET_MODE (target), add_optab,
2117 target, inc,
2118 target, 0, OPTAB_LIB_WIDEN);
2119 if (value != target)
2120 emit_move_insn (target, value);
2123 /* Subtract DEC from TARGET. */
2125 void
2126 expand_dec (rtx target, rtx dec)
2128 rtx value = expand_binop (GET_MODE (target), sub_optab,
2129 target, dec,
2130 target, 0, OPTAB_LIB_WIDEN);
2131 if (value != target)
2132 emit_move_insn (target, value);
2135 /* Output a shift instruction for expression code CODE,
2136 with SHIFTED being the rtx for the value to shift,
2137 and AMOUNT the tree for the amount to shift by.
2138 Store the result in the rtx TARGET, if that is convenient.
2139 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2140 Return the rtx for where the value is. */
2143 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2144 tree amount, rtx target, int unsignedp)
2146 rtx op1, temp = 0;
2147 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2148 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2149 int try;
2151 /* Previously detected shift-counts computed by NEGATE_EXPR
2152 and shifted in the other direction; but that does not work
2153 on all machines. */
2155 op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
2157 if (SHIFT_COUNT_TRUNCATED)
2159 if (GET_CODE (op1) == CONST_INT
2160 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2161 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2162 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2163 % GET_MODE_BITSIZE (mode));
2164 else if (GET_CODE (op1) == SUBREG
2165 && subreg_lowpart_p (op1))
2166 op1 = SUBREG_REG (op1);
2169 if (op1 == const0_rtx)
2170 return shifted;
2172 /* Check whether its cheaper to implement a left shift by a constant
2173 bit count by a sequence of additions. */
2174 if (code == LSHIFT_EXPR
2175 && GET_CODE (op1) == CONST_INT
2176 && INTVAL (op1) > 0
2177 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2178 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2180 int i;
2181 for (i = 0; i < INTVAL (op1); i++)
2183 temp = force_reg (mode, shifted);
2184 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2185 unsignedp, OPTAB_LIB_WIDEN);
2187 return shifted;
2190 for (try = 0; temp == 0 && try < 3; try++)
2192 enum optab_methods methods;
2194 if (try == 0)
2195 methods = OPTAB_DIRECT;
2196 else if (try == 1)
2197 methods = OPTAB_WIDEN;
2198 else
2199 methods = OPTAB_LIB_WIDEN;
2201 if (rotate)
2203 /* Widening does not work for rotation. */
2204 if (methods == OPTAB_WIDEN)
2205 continue;
2206 else if (methods == OPTAB_LIB_WIDEN)
2208 /* If we have been unable to open-code this by a rotation,
2209 do it as the IOR of two shifts. I.e., to rotate A
2210 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2211 where C is the bitsize of A.
2213 It is theoretically possible that the target machine might
2214 not be able to perform either shift and hence we would
2215 be making two libcalls rather than just the one for the
2216 shift (similarly if IOR could not be done). We will allow
2217 this extremely unlikely lossage to avoid complicating the
2218 code below. */
2220 rtx subtarget = target == shifted ? 0 : target;
2221 rtx temp1;
2222 tree type = TREE_TYPE (amount);
2223 tree new_amount = make_tree (type, op1);
2224 tree other_amount
2225 = fold (build2 (MINUS_EXPR, type, convert
2226 (type, build_int_cst
2227 (NULL_TREE, GET_MODE_BITSIZE (mode))),
2228 amount));
2230 shifted = force_reg (mode, shifted);
2232 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2233 mode, shifted, new_amount, subtarget, 1);
2234 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2235 mode, shifted, other_amount, 0, 1);
2236 return expand_binop (mode, ior_optab, temp, temp1, target,
2237 unsignedp, methods);
2240 temp = expand_binop (mode,
2241 left ? rotl_optab : rotr_optab,
2242 shifted, op1, target, unsignedp, methods);
2244 /* If we don't have the rotate, but we are rotating by a constant
2245 that is in range, try a rotate in the opposite direction. */
2247 if (temp == 0 && GET_CODE (op1) == CONST_INT
2248 && INTVAL (op1) > 0
2249 && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
2250 temp = expand_binop (mode,
2251 left ? rotr_optab : rotl_optab,
2252 shifted,
2253 GEN_INT (GET_MODE_BITSIZE (mode)
2254 - INTVAL (op1)),
2255 target, unsignedp, methods);
2257 else if (unsignedp)
2258 temp = expand_binop (mode,
2259 left ? ashl_optab : lshr_optab,
2260 shifted, op1, target, unsignedp, methods);
2262 /* Do arithmetic shifts.
2263 Also, if we are going to widen the operand, we can just as well
2264 use an arithmetic right-shift instead of a logical one. */
2265 if (temp == 0 && ! rotate
2266 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2268 enum optab_methods methods1 = methods;
2270 /* If trying to widen a log shift to an arithmetic shift,
2271 don't accept an arithmetic shift of the same size. */
2272 if (unsignedp)
2273 methods1 = OPTAB_MUST_WIDEN;
2275 /* Arithmetic shift */
2277 temp = expand_binop (mode,
2278 left ? ashl_optab : ashr_optab,
2279 shifted, op1, target, unsignedp, methods1);
2282 /* We used to try extzv here for logical right shifts, but that was
2283 only useful for one machine, the VAX, and caused poor code
2284 generation there for lshrdi3, so the code was deleted and a
2285 define_expand for lshrsi3 was added to vax.md. */
2288 gcc_assert (temp);
2289 return temp;
2292 enum alg_code { alg_zero, alg_m, alg_shift,
2293 alg_add_t_m2, alg_sub_t_m2,
2294 alg_add_factor, alg_sub_factor,
2295 alg_add_t2_m, alg_sub_t2_m };
2297 /* This structure holds the "cost" of a multiply sequence. The
2298 "cost" field holds the total rtx_cost of every operator in the
2299 synthetic multiplication sequence, hence cost(a op b) is defined
2300 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2301 The "latency" field holds the minimum possible latency of the
2302 synthetic multiply, on a hypothetical infinitely parallel CPU.
2303 This is the critical path, or the maximum height, of the expression
2304 tree which is the sum of rtx_costs on the most expensive path from
2305 any leaf to the root. Hence latency(a op b) is defined as zero for
2306 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2308 struct mult_cost {
2309 short cost; /* Total rtx_cost of the multiplication sequence. */
2310 short latency; /* The latency of the multiplication sequence. */
2313 /* This macro is used to compare a pointer to a mult_cost against an
2314 single integer "rtx_cost" value. This is equivalent to the macro
2315 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2316 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2317 || ((X)->cost == (Y) && (X)->latency < (Y)))
2319 /* This macro is used to compare two pointers to mult_costs against
2320 each other. The macro returns true if X is cheaper than Y.
2321 Currently, the cheaper of two mult_costs is the one with the
2322 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2323 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2324 || ((X)->cost == (Y)->cost \
2325 && (X)->latency < (Y)->latency))
2327 /* This structure records a sequence of operations.
2328 `ops' is the number of operations recorded.
2329 `cost' is their total cost.
2330 The operations are stored in `op' and the corresponding
2331 logarithms of the integer coefficients in `log'.
2333 These are the operations:
2334 alg_zero total := 0;
2335 alg_m total := multiplicand;
2336 alg_shift total := total * coeff
2337 alg_add_t_m2 total := total + multiplicand * coeff;
2338 alg_sub_t_m2 total := total - multiplicand * coeff;
2339 alg_add_factor total := total * coeff + total;
2340 alg_sub_factor total := total * coeff - total;
2341 alg_add_t2_m total := total * coeff + multiplicand;
2342 alg_sub_t2_m total := total * coeff - multiplicand;
2344 The first operand must be either alg_zero or alg_m. */
2346 struct algorithm
2348 struct mult_cost cost;
2349 short ops;
2350 /* The size of the OP and LOG fields are not directly related to the
2351 word size, but the worst-case algorithms will be if we have few
2352 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2353 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2354 in total wordsize operations. */
2355 enum alg_code op[MAX_BITS_PER_WORD];
2356 char log[MAX_BITS_PER_WORD];
2359 /* Indicates the type of fixup needed after a constant multiplication.
2360 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2361 the result should be negated, and ADD_VARIANT means that the
2362 multiplicand should be added to the result. */
2363 enum mult_variant {basic_variant, negate_variant, add_variant};
2365 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2366 const struct mult_cost *, enum machine_mode mode);
2367 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2368 struct algorithm *, enum mult_variant *, int);
2369 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2370 const struct algorithm *, enum mult_variant);
2371 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2372 int, unsigned HOST_WIDE_INT *,
2373 int *, int *);
2374 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2375 static rtx extract_high_half (enum machine_mode, rtx);
2376 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2377 int, int);
2378 /* Compute and return the best algorithm for multiplying by T.
2379 The algorithm must cost less than cost_limit
2380 If retval.cost >= COST_LIMIT, no algorithm was found and all
2381 other field of the returned struct are undefined.
2382 MODE is the machine mode of the multiplication. */
2384 static void
2385 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2386 const struct mult_cost *cost_limit, enum machine_mode mode)
2388 int m;
2389 struct algorithm *alg_in, *best_alg;
2390 struct mult_cost best_cost;
2391 struct mult_cost new_limit;
2392 int op_cost, op_latency;
2393 unsigned HOST_WIDE_INT q;
2394 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2396 /* Indicate that no algorithm is yet found. If no algorithm
2397 is found, this value will be returned and indicate failure. */
2398 alg_out->cost.cost = cost_limit->cost + 1;
2399 alg_out->cost.latency = cost_limit->latency + 1;
2401 if (cost_limit->cost < 0
2402 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2403 return;
2405 /* Restrict the bits of "t" to the multiplication's mode. */
2406 t &= GET_MODE_MASK (mode);
2408 /* t == 1 can be done in zero cost. */
2409 if (t == 1)
2411 alg_out->ops = 1;
2412 alg_out->cost.cost = 0;
2413 alg_out->cost.latency = 0;
2414 alg_out->op[0] = alg_m;
2415 return;
2418 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2419 fail now. */
2420 if (t == 0)
2422 if (MULT_COST_LESS (cost_limit, zero_cost))
2423 return;
2424 else
2426 alg_out->ops = 1;
2427 alg_out->cost.cost = zero_cost;
2428 alg_out->cost.latency = zero_cost;
2429 alg_out->op[0] = alg_zero;
2430 return;
2434 /* We'll be needing a couple extra algorithm structures now. */
2436 alg_in = alloca (sizeof (struct algorithm));
2437 best_alg = alloca (sizeof (struct algorithm));
2438 best_cost = *cost_limit;
2440 /* If we have a group of zero bits at the low-order part of T, try
2441 multiplying by the remaining bits and then doing a shift. */
2443 if ((t & 1) == 0)
2445 m = floor_log2 (t & -t); /* m = number of low zero bits */
2446 if (m < maxm)
2448 q = t >> m;
2449 /* The function expand_shift will choose between a shift and
2450 a sequence of additions, so the observed cost is given as
2451 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2452 op_cost = m * add_cost[mode];
2453 if (shift_cost[mode][m] < op_cost)
2454 op_cost = shift_cost[mode][m];
2455 new_limit.cost = best_cost.cost - op_cost;
2456 new_limit.latency = best_cost.latency - op_cost;
2457 synth_mult (alg_in, q, &new_limit, mode);
2459 alg_in->cost.cost += op_cost;
2460 alg_in->cost.latency += op_cost;
2461 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2463 struct algorithm *x;
2464 best_cost = alg_in->cost;
2465 x = alg_in, alg_in = best_alg, best_alg = x;
2466 best_alg->log[best_alg->ops] = m;
2467 best_alg->op[best_alg->ops] = alg_shift;
2472 /* If we have an odd number, add or subtract one. */
2473 if ((t & 1) != 0)
2475 unsigned HOST_WIDE_INT w;
2477 for (w = 1; (w & t) != 0; w <<= 1)
2479 /* If T was -1, then W will be zero after the loop. This is another
2480 case where T ends with ...111. Handling this with (T + 1) and
2481 subtract 1 produces slightly better code and results in algorithm
2482 selection much faster than treating it like the ...0111 case
2483 below. */
2484 if (w == 0
2485 || (w > 2
2486 /* Reject the case where t is 3.
2487 Thus we prefer addition in that case. */
2488 && t != 3))
2490 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2492 op_cost = add_cost[mode];
2493 new_limit.cost = best_cost.cost - op_cost;
2494 new_limit.latency = best_cost.latency - op_cost;
2495 synth_mult (alg_in, t + 1, &new_limit, mode);
2497 alg_in->cost.cost += op_cost;
2498 alg_in->cost.latency += op_cost;
2499 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2501 struct algorithm *x;
2502 best_cost = alg_in->cost;
2503 x = alg_in, alg_in = best_alg, best_alg = x;
2504 best_alg->log[best_alg->ops] = 0;
2505 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2508 else
2510 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2512 op_cost = add_cost[mode];
2513 new_limit.cost = best_cost.cost - op_cost;
2514 new_limit.latency = best_cost.latency - op_cost;
2515 synth_mult (alg_in, t - 1, &new_limit, mode);
2517 alg_in->cost.cost += op_cost;
2518 alg_in->cost.latency += op_cost;
2519 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2521 struct algorithm *x;
2522 best_cost = alg_in->cost;
2523 x = alg_in, alg_in = best_alg, best_alg = x;
2524 best_alg->log[best_alg->ops] = 0;
2525 best_alg->op[best_alg->ops] = alg_add_t_m2;
2530 /* Look for factors of t of the form
2531 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2532 If we find such a factor, we can multiply by t using an algorithm that
2533 multiplies by q, shift the result by m and add/subtract it to itself.
2535 We search for large factors first and loop down, even if large factors
2536 are less probable than small; if we find a large factor we will find a
2537 good sequence quickly, and therefore be able to prune (by decreasing
2538 COST_LIMIT) the search. */
2540 for (m = floor_log2 (t - 1); m >= 2; m--)
2542 unsigned HOST_WIDE_INT d;
2544 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2545 if (t % d == 0 && t > d && m < maxm)
2547 /* If the target has a cheap shift-and-add instruction use
2548 that in preference to a shift insn followed by an add insn.
2549 Assume that the shift-and-add is "atomic" with a latency
2550 equal to it's cost, otherwise assume that on superscalar
2551 hardware the shift may be executed concurrently with the
2552 earlier steps in the algorithm. */
2553 op_cost = add_cost[mode] + shift_cost[mode][m];
2554 if (shiftadd_cost[mode][m] < op_cost)
2556 op_cost = shiftadd_cost[mode][m];
2557 op_latency = op_cost;
2559 else
2560 op_latency = add_cost[mode];
2562 new_limit.cost = best_cost.cost - op_cost;
2563 new_limit.latency = best_cost.latency - op_latency;
2564 synth_mult (alg_in, t / d, &new_limit, mode);
2566 alg_in->cost.cost += op_cost;
2567 alg_in->cost.latency += op_latency;
2568 if (alg_in->cost.latency < op_cost)
2569 alg_in->cost.latency = op_cost;
2570 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2572 struct algorithm *x;
2573 best_cost = alg_in->cost;
2574 x = alg_in, alg_in = best_alg, best_alg = x;
2575 best_alg->log[best_alg->ops] = m;
2576 best_alg->op[best_alg->ops] = alg_add_factor;
2578 /* Other factors will have been taken care of in the recursion. */
2579 break;
2582 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2583 if (t % d == 0 && t > d && m < maxm)
2585 /* If the target has a cheap shift-and-subtract insn use
2586 that in preference to a shift insn followed by a sub insn.
2587 Assume that the shift-and-sub is "atomic" with a latency
2588 equal to it's cost, otherwise assume that on superscalar
2589 hardware the shift may be executed concurrently with the
2590 earlier steps in the algorithm. */
2591 op_cost = add_cost[mode] + shift_cost[mode][m];
2592 if (shiftsub_cost[mode][m] < op_cost)
2594 op_cost = shiftsub_cost[mode][m];
2595 op_latency = op_cost;
2597 else
2598 op_latency = add_cost[mode];
2600 new_limit.cost = best_cost.cost - op_cost;
2601 new_limit.cost = best_cost.cost - op_latency;
2602 synth_mult (alg_in, t / d, &new_limit, mode);
2604 alg_in->cost.cost += op_cost;
2605 alg_in->cost.latency += op_latency;
2606 if (alg_in->cost.latency < op_cost)
2607 alg_in->cost.latency = op_cost;
2608 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2610 struct algorithm *x;
2611 best_cost = alg_in->cost;
2612 x = alg_in, alg_in = best_alg, best_alg = x;
2613 best_alg->log[best_alg->ops] = m;
2614 best_alg->op[best_alg->ops] = alg_sub_factor;
2616 break;
2620 /* Try shift-and-add (load effective address) instructions,
2621 i.e. do a*3, a*5, a*9. */
2622 if ((t & 1) != 0)
2624 q = t - 1;
2625 q = q & -q;
2626 m = exact_log2 (q);
2627 if (m >= 0 && m < maxm)
2629 op_cost = shiftadd_cost[mode][m];
2630 new_limit.cost = best_cost.cost - op_cost;
2631 new_limit.latency = best_cost.latency - op_cost;
2632 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2634 alg_in->cost.cost += op_cost;
2635 alg_in->cost.latency += op_cost;
2636 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2638 struct algorithm *x;
2639 best_cost = alg_in->cost;
2640 x = alg_in, alg_in = best_alg, best_alg = x;
2641 best_alg->log[best_alg->ops] = m;
2642 best_alg->op[best_alg->ops] = alg_add_t2_m;
2646 q = t + 1;
2647 q = q & -q;
2648 m = exact_log2 (q);
2649 if (m >= 0 && m < maxm)
2651 op_cost = shiftsub_cost[mode][m];
2652 new_limit.cost = best_cost.cost - op_cost;
2653 new_limit.latency = best_cost.latency - op_cost;
2654 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2656 alg_in->cost.cost += op_cost;
2657 alg_in->cost.latency += op_cost;
2658 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2660 struct algorithm *x;
2661 best_cost = alg_in->cost;
2662 x = alg_in, alg_in = best_alg, best_alg = x;
2663 best_alg->log[best_alg->ops] = m;
2664 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2669 /* If best_cost has not decreased, we have not found any algorithm. */
2670 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2671 return;
2673 /* If we are getting a too long sequence for `struct algorithm'
2674 to record, make this search fail. */
2675 if (best_alg->ops == MAX_BITS_PER_WORD)
2676 return;
2678 /* Copy the algorithm from temporary space to the space at alg_out.
2679 We avoid using structure assignment because the majority of
2680 best_alg is normally undefined, and this is a critical function. */
2681 alg_out->ops = best_alg->ops + 1;
2682 alg_out->cost = best_cost;
2683 memcpy (alg_out->op, best_alg->op,
2684 alg_out->ops * sizeof *alg_out->op);
2685 memcpy (alg_out->log, best_alg->log,
2686 alg_out->ops * sizeof *alg_out->log);
2689 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2690 Try three variations:
2692 - a shift/add sequence based on VAL itself
2693 - a shift/add sequence based on -VAL, followed by a negation
2694 - a shift/add sequence based on VAL - 1, followed by an addition.
2696 Return true if the cheapest of these cost less than MULT_COST,
2697 describing the algorithm in *ALG and final fixup in *VARIANT. */
2699 static bool
2700 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2701 struct algorithm *alg, enum mult_variant *variant,
2702 int mult_cost)
2704 struct algorithm alg2;
2705 struct mult_cost limit;
2706 int op_cost;
2708 *variant = basic_variant;
2709 limit.cost = mult_cost;
2710 limit.latency = mult_cost;
2711 synth_mult (alg, val, &limit, mode);
2713 /* This works only if the inverted value actually fits in an
2714 `unsigned int' */
2715 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2717 op_cost = neg_cost[mode];
2718 if (MULT_COST_LESS (&alg->cost, mult_cost))
2720 limit.cost = alg->cost.cost - op_cost;
2721 limit.latency = alg->cost.latency - op_cost;
2723 else
2725 limit.cost = mult_cost - op_cost;
2726 limit.latency = mult_cost - op_cost;
2729 synth_mult (&alg2, -val, &limit, mode);
2730 alg2.cost.cost += op_cost;
2731 alg2.cost.latency += op_cost;
2732 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2733 *alg = alg2, *variant = negate_variant;
2736 /* This proves very useful for division-by-constant. */
2737 op_cost = add_cost[mode];
2738 if (MULT_COST_LESS (&alg->cost, mult_cost))
2740 limit.cost = alg->cost.cost - op_cost;
2741 limit.latency = alg->cost.latency - op_cost;
2743 else
2745 limit.cost = mult_cost - op_cost;
2746 limit.latency = mult_cost - op_cost;
2749 synth_mult (&alg2, val - 1, &limit, mode);
2750 alg2.cost.cost += op_cost;
2751 alg2.cost.latency += op_cost;
2752 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2753 *alg = alg2, *variant = add_variant;
2755 return MULT_COST_LESS (&alg->cost, mult_cost);
2758 /* A subroutine of expand_mult, used for constant multiplications.
2759 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2760 convenient. Use the shift/add sequence described by ALG and apply
2761 the final fixup specified by VARIANT. */
2763 static rtx
2764 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2765 rtx target, const struct algorithm *alg,
2766 enum mult_variant variant)
2768 HOST_WIDE_INT val_so_far;
2769 rtx insn, accum, tem;
2770 int opno;
2771 enum machine_mode nmode;
2773 /* Avoid referencing memory over and over.
2774 For speed, but also for correctness when mem is volatile. */
2775 if (MEM_P (op0))
2776 op0 = force_reg (mode, op0);
2778 /* ACCUM starts out either as OP0 or as a zero, depending on
2779 the first operation. */
2781 if (alg->op[0] == alg_zero)
2783 accum = copy_to_mode_reg (mode, const0_rtx);
2784 val_so_far = 0;
2786 else if (alg->op[0] == alg_m)
2788 accum = copy_to_mode_reg (mode, op0);
2789 val_so_far = 1;
2791 else
2792 gcc_unreachable ();
2794 for (opno = 1; opno < alg->ops; opno++)
2796 int log = alg->log[opno];
2797 rtx shift_subtarget = optimize ? 0 : accum;
2798 rtx add_target
2799 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2800 && !optimize)
2801 ? target : 0;
2802 rtx accum_target = optimize ? 0 : accum;
2804 switch (alg->op[opno])
2806 case alg_shift:
2807 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2808 build_int_cst (NULL_TREE, log),
2809 NULL_RTX, 0);
2810 val_so_far <<= log;
2811 break;
2813 case alg_add_t_m2:
2814 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2815 build_int_cst (NULL_TREE, log),
2816 NULL_RTX, 0);
2817 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2818 add_target ? add_target : accum_target);
2819 val_so_far += (HOST_WIDE_INT) 1 << log;
2820 break;
2822 case alg_sub_t_m2:
2823 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2824 build_int_cst (NULL_TREE, log),
2825 NULL_RTX, 0);
2826 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2827 add_target ? add_target : accum_target);
2828 val_so_far -= (HOST_WIDE_INT) 1 << log;
2829 break;
2831 case alg_add_t2_m:
2832 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2833 build_int_cst (NULL_TREE, log),
2834 shift_subtarget,
2836 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2837 add_target ? add_target : accum_target);
2838 val_so_far = (val_so_far << log) + 1;
2839 break;
2841 case alg_sub_t2_m:
2842 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2843 build_int_cst (NULL_TREE, log),
2844 shift_subtarget, 0);
2845 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2846 add_target ? add_target : accum_target);
2847 val_so_far = (val_so_far << log) - 1;
2848 break;
2850 case alg_add_factor:
2851 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2852 build_int_cst (NULL_TREE, log),
2853 NULL_RTX, 0);
2854 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2855 add_target ? add_target : accum_target);
2856 val_so_far += val_so_far << log;
2857 break;
2859 case alg_sub_factor:
2860 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2861 build_int_cst (NULL_TREE, log),
2862 NULL_RTX, 0);
2863 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2864 (add_target
2865 ? add_target : (optimize ? 0 : tem)));
2866 val_so_far = (val_so_far << log) - val_so_far;
2867 break;
2869 default:
2870 gcc_unreachable ();
2873 /* Write a REG_EQUAL note on the last insn so that we can cse
2874 multiplication sequences. Note that if ACCUM is a SUBREG,
2875 we've set the inner register and must properly indicate
2876 that. */
2878 tem = op0, nmode = mode;
2879 if (GET_CODE (accum) == SUBREG)
2881 nmode = GET_MODE (SUBREG_REG (accum));
2882 tem = gen_lowpart (nmode, op0);
2885 insn = get_last_insn ();
2886 set_unique_reg_note (insn, REG_EQUAL,
2887 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
2890 if (variant == negate_variant)
2892 val_so_far = -val_so_far;
2893 accum = expand_unop (mode, neg_optab, accum, target, 0);
2895 else if (variant == add_variant)
2897 val_so_far = val_so_far + 1;
2898 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2901 /* Compare only the bits of val and val_so_far that are significant
2902 in the result mode, to avoid sign-/zero-extension confusion. */
2903 val &= GET_MODE_MASK (mode);
2904 val_so_far &= GET_MODE_MASK (mode);
2905 gcc_assert (val == val_so_far);
2907 return accum;
2910 /* Perform a multiplication and return an rtx for the result.
2911 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
2912 TARGET is a suggestion for where to store the result (an rtx).
2914 We check specially for a constant integer as OP1.
2915 If you want this check for OP0 as well, then before calling
2916 you should swap the two operands if OP0 would be constant. */
2919 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
2920 int unsignedp)
2922 rtx const_op1 = op1;
2923 enum mult_variant variant;
2924 struct algorithm algorithm;
2926 /* synth_mult does an `unsigned int' multiply. As long as the mode is
2927 less than or equal in size to `unsigned int' this doesn't matter.
2928 If the mode is larger than `unsigned int', then synth_mult works only
2929 if the constant value exactly fits in an `unsigned int' without any
2930 truncation. This means that multiplying by negative values does
2931 not work; results are off by 2^32 on a 32 bit machine. */
2933 /* If we are multiplying in DImode, it may still be a win
2934 to try to work with shifts and adds. */
2935 if (GET_CODE (op1) == CONST_DOUBLE
2936 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT
2937 && HOST_BITS_PER_INT >= BITS_PER_WORD
2938 && CONST_DOUBLE_HIGH (op1) == 0)
2939 const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
2940 else if (HOST_BITS_PER_INT < GET_MODE_BITSIZE (mode)
2941 && GET_CODE (op1) == CONST_INT
2942 && INTVAL (op1) < 0)
2943 const_op1 = 0;
2945 /* We used to test optimize here, on the grounds that it's better to
2946 produce a smaller program when -O is not used.
2947 But this causes such a terrible slowdown sometimes
2948 that it seems better to use synth_mult always. */
2950 if (const_op1 && GET_CODE (const_op1) == CONST_INT
2951 && (unsignedp || !flag_trapv))
2953 int mult_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET);
2955 if (choose_mult_variant (mode, INTVAL (const_op1), &algorithm, &variant,
2956 mult_cost))
2957 return expand_mult_const (mode, op0, INTVAL (const_op1), target,
2958 &algorithm, variant);
2961 if (GET_CODE (op0) == CONST_DOUBLE)
2963 rtx temp = op0;
2964 op0 = op1;
2965 op1 = temp;
2968 /* Expand x*2.0 as x+x. */
2969 if (GET_CODE (op1) == CONST_DOUBLE
2970 && GET_MODE_CLASS (mode) == MODE_FLOAT)
2972 REAL_VALUE_TYPE d;
2973 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
2975 if (REAL_VALUES_EQUAL (d, dconst2))
2977 op0 = force_reg (GET_MODE (op0), op0);
2978 return expand_binop (mode, add_optab, op0, op0,
2979 target, unsignedp, OPTAB_LIB_WIDEN);
2983 /* This used to use umul_optab if unsigned, but for non-widening multiply
2984 there is no difference between signed and unsigned. */
2985 op0 = expand_binop (mode,
2986 ! unsignedp
2987 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
2988 ? smulv_optab : smul_optab,
2989 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
2990 gcc_assert (op0);
2991 return op0;
2994 /* Return the smallest n such that 2**n >= X. */
2997 ceil_log2 (unsigned HOST_WIDE_INT x)
2999 return floor_log2 (x - 1) + 1;
3002 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3003 replace division by D, and put the least significant N bits of the result
3004 in *MULTIPLIER_PTR and return the most significant bit.
3006 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3007 needed precision is in PRECISION (should be <= N).
3009 PRECISION should be as small as possible so this function can choose
3010 multiplier more freely.
3012 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3013 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3015 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3016 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3018 static
3019 unsigned HOST_WIDE_INT
3020 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3021 unsigned HOST_WIDE_INT *multiplier_ptr,
3022 int *post_shift_ptr, int *lgup_ptr)
3024 HOST_WIDE_INT mhigh_hi, mlow_hi;
3025 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3026 int lgup, post_shift;
3027 int pow, pow2;
3028 unsigned HOST_WIDE_INT nl, dummy1;
3029 HOST_WIDE_INT nh, dummy2;
3031 /* lgup = ceil(log2(divisor)); */
3032 lgup = ceil_log2 (d);
3034 gcc_assert (lgup <= n);
3036 pow = n + lgup;
3037 pow2 = n + lgup - precision;
3039 /* We could handle this with some effort, but this case is much
3040 better handled directly with a scc insn, so rely on caller using
3041 that. */
3042 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3044 /* mlow = 2^(N + lgup)/d */
3045 if (pow >= HOST_BITS_PER_WIDE_INT)
3047 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3048 nl = 0;
3050 else
3052 nh = 0;
3053 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3055 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3056 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3058 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3059 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3060 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3061 else
3062 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3063 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3064 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3066 gcc_assert (!mhigh_hi || nh - d < d);
3067 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3068 /* Assert that mlow < mhigh. */
3069 gcc_assert (mlow_hi < mhigh_hi
3070 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3072 /* If precision == N, then mlow, mhigh exceed 2^N
3073 (but they do not exceed 2^(N+1)). */
3075 /* Reduce to lowest terms. */
3076 for (post_shift = lgup; post_shift > 0; post_shift--)
3078 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3079 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3080 if (ml_lo >= mh_lo)
3081 break;
3083 mlow_hi = 0;
3084 mlow_lo = ml_lo;
3085 mhigh_hi = 0;
3086 mhigh_lo = mh_lo;
3089 *post_shift_ptr = post_shift;
3090 *lgup_ptr = lgup;
3091 if (n < HOST_BITS_PER_WIDE_INT)
3093 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3094 *multiplier_ptr = mhigh_lo & mask;
3095 return mhigh_lo >= mask;
3097 else
3099 *multiplier_ptr = mhigh_lo;
3100 return mhigh_hi;
3104 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3105 congruent to 1 (mod 2**N). */
3107 static unsigned HOST_WIDE_INT
3108 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3110 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3112 /* The algorithm notes that the choice y = x satisfies
3113 x*y == 1 mod 2^3, since x is assumed odd.
3114 Each iteration doubles the number of bits of significance in y. */
3116 unsigned HOST_WIDE_INT mask;
3117 unsigned HOST_WIDE_INT y = x;
3118 int nbit = 3;
3120 mask = (n == HOST_BITS_PER_WIDE_INT
3121 ? ~(unsigned HOST_WIDE_INT) 0
3122 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3124 while (nbit < n)
3126 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3127 nbit *= 2;
3129 return y;
3132 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3133 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3134 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3135 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3136 become signed.
3138 The result is put in TARGET if that is convenient.
3140 MODE is the mode of operation. */
3143 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3144 rtx op1, rtx target, int unsignedp)
3146 rtx tem;
3147 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3149 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3150 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3151 NULL_RTX, 0);
3152 tem = expand_and (mode, tem, op1, NULL_RTX);
3153 adj_operand
3154 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3155 adj_operand);
3157 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3158 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3159 NULL_RTX, 0);
3160 tem = expand_and (mode, tem, op0, NULL_RTX);
3161 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3162 target);
3164 return target;
3167 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3169 static rtx
3170 extract_high_half (enum machine_mode mode, rtx op)
3172 enum machine_mode wider_mode;
3174 if (mode == word_mode)
3175 return gen_highpart (mode, op);
3177 wider_mode = GET_MODE_WIDER_MODE (mode);
3178 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3179 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3180 return convert_modes (mode, wider_mode, op, 0);
3183 /* Like expand_mult_highpart, but only consider using a multiplication
3184 optab. OP1 is an rtx for the constant operand. */
3186 static rtx
3187 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3188 rtx target, int unsignedp, int max_cost)
3190 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3191 enum machine_mode wider_mode;
3192 optab moptab;
3193 rtx tem;
3194 int size;
3196 wider_mode = GET_MODE_WIDER_MODE (mode);
3197 size = GET_MODE_BITSIZE (mode);
3199 /* Firstly, try using a multiplication insn that only generates the needed
3200 high part of the product, and in the sign flavor of unsignedp. */
3201 if (mul_highpart_cost[mode] < max_cost)
3203 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3204 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3205 unsignedp, OPTAB_DIRECT);
3206 if (tem)
3207 return tem;
3210 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3211 Need to adjust the result after the multiplication. */
3212 if (size - 1 < BITS_PER_WORD
3213 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3214 + 4 * add_cost[mode] < max_cost))
3216 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3217 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3218 unsignedp, OPTAB_DIRECT);
3219 if (tem)
3220 /* We used the wrong signedness. Adjust the result. */
3221 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3222 tem, unsignedp);
3225 /* Try widening multiplication. */
3226 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3227 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3228 && mul_widen_cost[wider_mode] < max_cost)
3230 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3231 unsignedp, OPTAB_WIDEN);
3232 if (tem)
3233 return extract_high_half (mode, tem);
3236 /* Try widening the mode and perform a non-widening multiplication. */
3237 moptab = smul_optab;
3238 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3239 && size - 1 < BITS_PER_WORD
3240 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3242 tem = expand_binop (wider_mode, moptab, op0, op1, 0,
3243 unsignedp, OPTAB_WIDEN);
3244 if (tem)
3245 return extract_high_half (mode, tem);
3248 /* Try widening multiplication of opposite signedness, and adjust. */
3249 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3250 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3251 && size - 1 < BITS_PER_WORD
3252 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3253 + 4 * add_cost[mode] < max_cost))
3255 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3256 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3257 if (tem != 0)
3259 tem = extract_high_half (mode, tem);
3260 /* We used the wrong signedness. Adjust the result. */
3261 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3262 target, unsignedp);
3266 return 0;
3269 /* Emit code to multiply OP0 and CNST1, putting the high half of the result
3270 in TARGET if that is convenient, and return where the result is. If the
3271 operation can not be performed, 0 is returned.
3273 MODE is the mode of operation and result.
3275 UNSIGNEDP nonzero means unsigned multiply.
3277 MAX_COST is the total allowed cost for the expanded RTL. */
3280 expand_mult_highpart (enum machine_mode mode, rtx op0,
3281 unsigned HOST_WIDE_INT cnst1, rtx target,
3282 int unsignedp, int max_cost)
3284 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3285 int extra_cost;
3286 bool sign_adjust = false;
3287 enum mult_variant variant;
3288 struct algorithm alg;
3289 rtx op1, tem;
3291 /* We can't support modes wider than HOST_BITS_PER_INT. */
3292 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3294 op1 = gen_int_mode (cnst1, wider_mode);
3295 cnst1 &= GET_MODE_MASK (mode);
3297 /* We can't optimize modes wider than BITS_PER_WORD.
3298 ??? We might be able to perform double-word arithmetic if
3299 mode == word_mode, however all the cost calculations in
3300 synth_mult etc. assume single-word operations. */
3301 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3302 return expand_mult_highpart_optab (mode, op0, op1, target,
3303 unsignedp, max_cost);
3305 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3307 /* Check whether we try to multiply by a negative constant. */
3308 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3310 sign_adjust = true;
3311 extra_cost += add_cost[mode];
3314 /* See whether shift/add multiplication is cheap enough. */
3315 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3316 max_cost - extra_cost))
3318 /* See whether the specialized multiplication optabs are
3319 cheaper than the shift/add version. */
3320 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3321 alg.cost.cost + extra_cost);
3322 if (tem)
3323 return tem;
3325 tem = convert_to_mode (wider_mode, op0, unsignedp);
3326 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3327 tem = extract_high_half (mode, tem);
3329 /* Adjust result for signedness. */
3330 if (sign_adjust)
3331 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3333 return tem;
3335 return expand_mult_highpart_optab (mode, op0, op1, target,
3336 unsignedp, max_cost);
3340 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3342 static rtx
3343 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3345 unsigned HOST_WIDE_INT masklow, maskhigh;
3346 rtx result, temp, shift, label;
3347 int logd;
3349 logd = floor_log2 (d);
3350 result = gen_reg_rtx (mode);
3352 /* Avoid conditional branches when they're expensive. */
3353 if (BRANCH_COST >= 2
3354 && !optimize_size)
3356 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3357 mode, 0, -1);
3358 if (signmask)
3360 signmask = force_reg (mode, signmask);
3361 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3362 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3364 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3365 which instruction sequence to use. If logical right shifts
3366 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3367 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3369 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3370 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3371 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3373 temp = expand_binop (mode, xor_optab, op0, signmask,
3374 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3375 temp = expand_binop (mode, sub_optab, temp, signmask,
3376 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3377 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3378 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3379 temp = expand_binop (mode, xor_optab, temp, signmask,
3380 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3381 temp = expand_binop (mode, sub_optab, temp, signmask,
3382 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3384 else
3386 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3387 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3388 signmask = force_reg (mode, signmask);
3390 temp = expand_binop (mode, add_optab, op0, signmask,
3391 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3392 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3393 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3394 temp = expand_binop (mode, sub_optab, temp, signmask,
3395 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3397 return temp;
3401 /* Mask contains the mode's signbit and the significant bits of the
3402 modulus. By including the signbit in the operation, many targets
3403 can avoid an explicit compare operation in the following comparison
3404 against zero. */
3406 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3407 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3409 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3410 maskhigh = -1;
3412 else
3413 maskhigh = (HOST_WIDE_INT) -1
3414 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3416 temp = expand_binop (mode, and_optab, op0,
3417 immed_double_const (masklow, maskhigh, mode),
3418 result, 1, OPTAB_LIB_WIDEN);
3419 if (temp != result)
3420 emit_move_insn (result, temp);
3422 label = gen_label_rtx ();
3423 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3425 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3426 0, OPTAB_LIB_WIDEN);
3427 masklow = (HOST_WIDE_INT) -1 << logd;
3428 maskhigh = -1;
3429 temp = expand_binop (mode, ior_optab, temp,
3430 immed_double_const (masklow, maskhigh, mode),
3431 result, 1, OPTAB_LIB_WIDEN);
3432 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3433 0, OPTAB_LIB_WIDEN);
3434 if (temp != result)
3435 emit_move_insn (result, temp);
3436 emit_label (label);
3437 return result;
3440 /* Expand signed division of OP0 by a power of two D in mode MODE.
3441 This routine is only called for positive values of D. */
3443 static rtx
3444 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3446 rtx temp, label;
3447 tree shift;
3448 int logd;
3450 logd = floor_log2 (d);
3451 shift = build_int_cst (NULL_TREE, logd);
3453 if (d == 2 && BRANCH_COST >= 1)
3455 temp = gen_reg_rtx (mode);
3456 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3457 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3458 0, OPTAB_LIB_WIDEN);
3459 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3462 #ifdef HAVE_conditional_move
3463 if (BRANCH_COST >= 2)
3465 rtx temp2;
3467 /* ??? emit_conditional_move forces a stack adjustment via
3468 compare_from_rtx so, if the sequence is discarded, it will
3469 be lost. Do it now instead. */
3470 do_pending_stack_adjust ();
3472 start_sequence ();
3473 temp2 = copy_to_mode_reg (mode, op0);
3474 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3475 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3476 temp = force_reg (mode, temp);
3478 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3479 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3480 mode, temp, temp2, mode, 0);
3481 if (temp2)
3483 rtx seq = get_insns ();
3484 end_sequence ();
3485 emit_insn (seq);
3486 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3488 end_sequence ();
3490 #endif
3492 if (BRANCH_COST >= 2)
3494 int ushift = GET_MODE_BITSIZE (mode) - logd;
3496 temp = gen_reg_rtx (mode);
3497 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3498 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3499 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3500 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3501 else
3502 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3503 build_int_cst (NULL_TREE, ushift),
3504 NULL_RTX, 1);
3505 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3506 0, OPTAB_LIB_WIDEN);
3507 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3510 label = gen_label_rtx ();
3511 temp = copy_to_mode_reg (mode, op0);
3512 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3513 expand_inc (temp, GEN_INT (d - 1));
3514 emit_label (label);
3515 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3518 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3519 if that is convenient, and returning where the result is.
3520 You may request either the quotient or the remainder as the result;
3521 specify REM_FLAG nonzero to get the remainder.
3523 CODE is the expression code for which kind of division this is;
3524 it controls how rounding is done. MODE is the machine mode to use.
3525 UNSIGNEDP nonzero means do unsigned division. */
3527 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3528 and then correct it by or'ing in missing high bits
3529 if result of ANDI is nonzero.
3530 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3531 This could optimize to a bfexts instruction.
3532 But C doesn't use these operations, so their optimizations are
3533 left for later. */
3534 /* ??? For modulo, we don't actually need the highpart of the first product,
3535 the low part will do nicely. And for small divisors, the second multiply
3536 can also be a low-part only multiply or even be completely left out.
3537 E.g. to calculate the remainder of a division by 3 with a 32 bit
3538 multiply, multiply with 0x55555556 and extract the upper two bits;
3539 the result is exact for inputs up to 0x1fffffff.
3540 The input range can be reduced by using cross-sum rules.
3541 For odd divisors >= 3, the following table gives right shift counts
3542 so that if a number is shifted by an integer multiple of the given
3543 amount, the remainder stays the same:
3544 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3545 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3546 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3547 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3548 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3550 Cross-sum rules for even numbers can be derived by leaving as many bits
3551 to the right alone as the divisor has zeros to the right.
3552 E.g. if x is an unsigned 32 bit number:
3553 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3556 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
3559 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3560 rtx op0, rtx op1, rtx target, int unsignedp)
3562 enum machine_mode compute_mode;
3563 rtx tquotient;
3564 rtx quotient = 0, remainder = 0;
3565 rtx last;
3566 int size;
3567 rtx insn, set;
3568 optab optab1, optab2;
3569 int op1_is_constant, op1_is_pow2 = 0;
3570 int max_cost, extra_cost;
3571 static HOST_WIDE_INT last_div_const = 0;
3572 static HOST_WIDE_INT ext_op1;
3574 op1_is_constant = GET_CODE (op1) == CONST_INT;
3575 if (op1_is_constant)
3577 ext_op1 = INTVAL (op1);
3578 if (unsignedp)
3579 ext_op1 &= GET_MODE_MASK (mode);
3580 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3581 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3585 This is the structure of expand_divmod:
3587 First comes code to fix up the operands so we can perform the operations
3588 correctly and efficiently.
3590 Second comes a switch statement with code specific for each rounding mode.
3591 For some special operands this code emits all RTL for the desired
3592 operation, for other cases, it generates only a quotient and stores it in
3593 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3594 to indicate that it has not done anything.
3596 Last comes code that finishes the operation. If QUOTIENT is set and
3597 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3598 QUOTIENT is not set, it is computed using trunc rounding.
3600 We try to generate special code for division and remainder when OP1 is a
3601 constant. If |OP1| = 2**n we can use shifts and some other fast
3602 operations. For other values of OP1, we compute a carefully selected
3603 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3604 by m.
3606 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3607 half of the product. Different strategies for generating the product are
3608 implemented in expand_mult_highpart.
3610 If what we actually want is the remainder, we generate that by another
3611 by-constant multiplication and a subtraction. */
3613 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3614 code below will malfunction if we are, so check here and handle
3615 the special case if so. */
3616 if (op1 == const1_rtx)
3617 return rem_flag ? const0_rtx : op0;
3619 /* When dividing by -1, we could get an overflow.
3620 negv_optab can handle overflows. */
3621 if (! unsignedp && op1 == constm1_rtx)
3623 if (rem_flag)
3624 return const0_rtx;
3625 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3626 ? negv_optab : neg_optab, op0, target, 0);
3629 if (target
3630 /* Don't use the function value register as a target
3631 since we have to read it as well as write it,
3632 and function-inlining gets confused by this. */
3633 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3634 /* Don't clobber an operand while doing a multi-step calculation. */
3635 || ((rem_flag || op1_is_constant)
3636 && (reg_mentioned_p (target, op0)
3637 || (MEM_P (op0) && MEM_P (target))))
3638 || reg_mentioned_p (target, op1)
3639 || (MEM_P (op1) && MEM_P (target))))
3640 target = 0;
3642 /* Get the mode in which to perform this computation. Normally it will
3643 be MODE, but sometimes we can't do the desired operation in MODE.
3644 If so, pick a wider mode in which we can do the operation. Convert
3645 to that mode at the start to avoid repeated conversions.
3647 First see what operations we need. These depend on the expression
3648 we are evaluating. (We assume that divxx3 insns exist under the
3649 same conditions that modxx3 insns and that these insns don't normally
3650 fail. If these assumptions are not correct, we may generate less
3651 efficient code in some cases.)
3653 Then see if we find a mode in which we can open-code that operation
3654 (either a division, modulus, or shift). Finally, check for the smallest
3655 mode for which we can do the operation with a library call. */
3657 /* We might want to refine this now that we have division-by-constant
3658 optimization. Since expand_mult_highpart tries so many variants, it is
3659 not straightforward to generalize this. Maybe we should make an array
3660 of possible modes in init_expmed? Save this for GCC 2.7. */
3662 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3663 ? (unsignedp ? lshr_optab : ashr_optab)
3664 : (unsignedp ? udiv_optab : sdiv_optab));
3665 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3666 ? optab1
3667 : (unsignedp ? udivmod_optab : sdivmod_optab));
3669 for (compute_mode = mode; compute_mode != VOIDmode;
3670 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3671 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3672 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3673 break;
3675 if (compute_mode == VOIDmode)
3676 for (compute_mode = mode; compute_mode != VOIDmode;
3677 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3678 if (optab1->handlers[compute_mode].libfunc
3679 || optab2->handlers[compute_mode].libfunc)
3680 break;
3682 /* If we still couldn't find a mode, use MODE, but we'll probably abort
3683 in expand_binop. */
3684 if (compute_mode == VOIDmode)
3685 compute_mode = mode;
3687 if (target && GET_MODE (target) == compute_mode)
3688 tquotient = target;
3689 else
3690 tquotient = gen_reg_rtx (compute_mode);
3692 size = GET_MODE_BITSIZE (compute_mode);
3693 #if 0
3694 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3695 (mode), and thereby get better code when OP1 is a constant. Do that
3696 later. It will require going over all usages of SIZE below. */
3697 size = GET_MODE_BITSIZE (mode);
3698 #endif
3700 /* Only deduct something for a REM if the last divide done was
3701 for a different constant. Then set the constant of the last
3702 divide. */
3703 max_cost = div_cost[compute_mode]
3704 - (rem_flag && ! (last_div_const != 0 && op1_is_constant
3705 && INTVAL (op1) == last_div_const)
3706 ? mul_cost[compute_mode] + add_cost[compute_mode]
3707 : 0);
3709 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3711 /* Now convert to the best mode to use. */
3712 if (compute_mode != mode)
3714 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3715 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3717 /* convert_modes may have placed op1 into a register, so we
3718 must recompute the following. */
3719 op1_is_constant = GET_CODE (op1) == CONST_INT;
3720 op1_is_pow2 = (op1_is_constant
3721 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3722 || (! unsignedp
3723 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3726 /* If one of the operands is a volatile MEM, copy it into a register. */
3728 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3729 op0 = force_reg (compute_mode, op0);
3730 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3731 op1 = force_reg (compute_mode, op1);
3733 /* If we need the remainder or if OP1 is constant, we need to
3734 put OP0 in a register in case it has any queued subexpressions. */
3735 if (rem_flag || op1_is_constant)
3736 op0 = force_reg (compute_mode, op0);
3738 last = get_last_insn ();
3740 /* Promote floor rounding to trunc rounding for unsigned operations. */
3741 if (unsignedp)
3743 if (code == FLOOR_DIV_EXPR)
3744 code = TRUNC_DIV_EXPR;
3745 if (code == FLOOR_MOD_EXPR)
3746 code = TRUNC_MOD_EXPR;
3747 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3748 code = TRUNC_DIV_EXPR;
3751 if (op1 != const0_rtx)
3752 switch (code)
3754 case TRUNC_MOD_EXPR:
3755 case TRUNC_DIV_EXPR:
3756 if (op1_is_constant)
3758 if (unsignedp)
3760 unsigned HOST_WIDE_INT mh, ml;
3761 int pre_shift, post_shift;
3762 int dummy;
3763 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3764 & GET_MODE_MASK (compute_mode));
3766 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3768 pre_shift = floor_log2 (d);
3769 if (rem_flag)
3771 remainder
3772 = expand_binop (compute_mode, and_optab, op0,
3773 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3774 remainder, 1,
3775 OPTAB_LIB_WIDEN);
3776 if (remainder)
3777 return gen_lowpart (mode, remainder);
3779 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3780 build_int_cst (NULL_TREE,
3781 pre_shift),
3782 tquotient, 1);
3784 else if (size <= HOST_BITS_PER_WIDE_INT)
3786 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3788 /* Most significant bit of divisor is set; emit an scc
3789 insn. */
3790 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3791 compute_mode, 1, 1);
3792 if (quotient == 0)
3793 goto fail1;
3795 else
3797 /* Find a suitable multiplier and right shift count
3798 instead of multiplying with D. */
3800 mh = choose_multiplier (d, size, size,
3801 &ml, &post_shift, &dummy);
3803 /* If the suggested multiplier is more than SIZE bits,
3804 we can do better for even divisors, using an
3805 initial right shift. */
3806 if (mh != 0 && (d & 1) == 0)
3808 pre_shift = floor_log2 (d & -d);
3809 mh = choose_multiplier (d >> pre_shift, size,
3810 size - pre_shift,
3811 &ml, &post_shift, &dummy);
3812 gcc_assert (!mh);
3814 else
3815 pre_shift = 0;
3817 if (mh != 0)
3819 rtx t1, t2, t3, t4;
3821 if (post_shift - 1 >= BITS_PER_WORD)
3822 goto fail1;
3824 extra_cost
3825 = (shift_cost[compute_mode][post_shift - 1]
3826 + shift_cost[compute_mode][1]
3827 + 2 * add_cost[compute_mode]);
3828 t1 = expand_mult_highpart (compute_mode, op0, ml,
3829 NULL_RTX, 1,
3830 max_cost - extra_cost);
3831 if (t1 == 0)
3832 goto fail1;
3833 t2 = force_operand (gen_rtx_MINUS (compute_mode,
3834 op0, t1),
3835 NULL_RTX);
3836 t3 = expand_shift
3837 (RSHIFT_EXPR, compute_mode, t2,
3838 build_int_cst (NULL_TREE, 1),
3839 NULL_RTX,1);
3840 t4 = force_operand (gen_rtx_PLUS (compute_mode,
3841 t1, t3),
3842 NULL_RTX);
3843 quotient = expand_shift
3844 (RSHIFT_EXPR, compute_mode, t4,
3845 build_int_cst (NULL_TREE, post_shift - 1),
3846 tquotient, 1);
3848 else
3850 rtx t1, t2;
3852 if (pre_shift >= BITS_PER_WORD
3853 || post_shift >= BITS_PER_WORD)
3854 goto fail1;
3856 t1 = expand_shift
3857 (RSHIFT_EXPR, compute_mode, op0,
3858 build_int_cst (NULL_TREE, pre_shift),
3859 NULL_RTX, 1);
3860 extra_cost
3861 = (shift_cost[compute_mode][pre_shift]
3862 + shift_cost[compute_mode][post_shift]);
3863 t2 = expand_mult_highpart (compute_mode, t1, ml,
3864 NULL_RTX, 1,
3865 max_cost - extra_cost);
3866 if (t2 == 0)
3867 goto fail1;
3868 quotient = expand_shift
3869 (RSHIFT_EXPR, compute_mode, t2,
3870 build_int_cst (NULL_TREE, post_shift),
3871 tquotient, 1);
3875 else /* Too wide mode to use tricky code */
3876 break;
3878 insn = get_last_insn ();
3879 if (insn != last
3880 && (set = single_set (insn)) != 0
3881 && SET_DEST (set) == quotient)
3882 set_unique_reg_note (insn,
3883 REG_EQUAL,
3884 gen_rtx_UDIV (compute_mode, op0, op1));
3886 else /* TRUNC_DIV, signed */
3888 unsigned HOST_WIDE_INT ml;
3889 int lgup, post_shift;
3890 HOST_WIDE_INT d = INTVAL (op1);
3891 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
3893 /* n rem d = n rem -d */
3894 if (rem_flag && d < 0)
3896 d = abs_d;
3897 op1 = gen_int_mode (abs_d, compute_mode);
3900 if (d == 1)
3901 quotient = op0;
3902 else if (d == -1)
3903 quotient = expand_unop (compute_mode, neg_optab, op0,
3904 tquotient, 0);
3905 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
3907 /* This case is not handled correctly below. */
3908 quotient = emit_store_flag (tquotient, EQ, op0, op1,
3909 compute_mode, 1, 1);
3910 if (quotient == 0)
3911 goto fail1;
3913 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
3914 && (rem_flag ? smod_pow2_cheap[compute_mode]
3915 : sdiv_pow2_cheap[compute_mode])
3916 /* We assume that cheap metric is true if the
3917 optab has an expander for this mode. */
3918 && (((rem_flag ? smod_optab : sdiv_optab)
3919 ->handlers[compute_mode].insn_code
3920 != CODE_FOR_nothing)
3921 || (sdivmod_optab->handlers[compute_mode]
3922 .insn_code != CODE_FOR_nothing)))
3924 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
3926 if (rem_flag)
3928 remainder = expand_smod_pow2 (compute_mode, op0, d);
3929 if (remainder)
3930 return gen_lowpart (mode, remainder);
3933 if (sdiv_pow2_cheap[compute_mode]
3934 && ((sdiv_optab->handlers[compute_mode].insn_code
3935 != CODE_FOR_nothing)
3936 || (sdivmod_optab->handlers[compute_mode].insn_code
3937 != CODE_FOR_nothing)))
3938 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
3939 compute_mode, op0,
3940 gen_int_mode (abs_d,
3941 compute_mode),
3942 NULL_RTX, 0);
3943 else
3944 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
3946 /* We have computed OP0 / abs(OP1). If OP1 is negative,
3947 negate the quotient. */
3948 if (d < 0)
3950 insn = get_last_insn ();
3951 if (insn != last
3952 && (set = single_set (insn)) != 0
3953 && SET_DEST (set) == quotient
3954 && abs_d < ((unsigned HOST_WIDE_INT) 1
3955 << (HOST_BITS_PER_WIDE_INT - 1)))
3956 set_unique_reg_note (insn,
3957 REG_EQUAL,
3958 gen_rtx_DIV (compute_mode,
3959 op0,
3960 GEN_INT
3961 (trunc_int_for_mode
3962 (abs_d,
3963 compute_mode))));
3965 quotient = expand_unop (compute_mode, neg_optab,
3966 quotient, quotient, 0);
3969 else if (size <= HOST_BITS_PER_WIDE_INT)
3971 choose_multiplier (abs_d, size, size - 1,
3972 &ml, &post_shift, &lgup);
3973 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
3975 rtx t1, t2, t3;
3977 if (post_shift >= BITS_PER_WORD
3978 || size - 1 >= BITS_PER_WORD)
3979 goto fail1;
3981 extra_cost = (shift_cost[compute_mode][post_shift]
3982 + shift_cost[compute_mode][size - 1]
3983 + add_cost[compute_mode]);
3984 t1 = expand_mult_highpart (compute_mode, op0, ml,
3985 NULL_RTX, 0,
3986 max_cost - extra_cost);
3987 if (t1 == 0)
3988 goto fail1;
3989 t2 = expand_shift
3990 (RSHIFT_EXPR, compute_mode, t1,
3991 build_int_cst (NULL_TREE, post_shift),
3992 NULL_RTX, 0);
3993 t3 = expand_shift
3994 (RSHIFT_EXPR, compute_mode, op0,
3995 build_int_cst (NULL_TREE, size - 1),
3996 NULL_RTX, 0);
3997 if (d < 0)
3998 quotient
3999 = force_operand (gen_rtx_MINUS (compute_mode,
4000 t3, t2),
4001 tquotient);
4002 else
4003 quotient
4004 = force_operand (gen_rtx_MINUS (compute_mode,
4005 t2, t3),
4006 tquotient);
4008 else
4010 rtx t1, t2, t3, t4;
4012 if (post_shift >= BITS_PER_WORD
4013 || size - 1 >= BITS_PER_WORD)
4014 goto fail1;
4016 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4017 extra_cost = (shift_cost[compute_mode][post_shift]
4018 + shift_cost[compute_mode][size - 1]
4019 + 2 * add_cost[compute_mode]);
4020 t1 = expand_mult_highpart (compute_mode, op0, ml,
4021 NULL_RTX, 0,
4022 max_cost - extra_cost);
4023 if (t1 == 0)
4024 goto fail1;
4025 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4026 t1, op0),
4027 NULL_RTX);
4028 t3 = expand_shift
4029 (RSHIFT_EXPR, compute_mode, t2,
4030 build_int_cst (NULL_TREE, post_shift),
4031 NULL_RTX, 0);
4032 t4 = expand_shift
4033 (RSHIFT_EXPR, compute_mode, op0,
4034 build_int_cst (NULL_TREE, size - 1),
4035 NULL_RTX, 0);
4036 if (d < 0)
4037 quotient
4038 = force_operand (gen_rtx_MINUS (compute_mode,
4039 t4, t3),
4040 tquotient);
4041 else
4042 quotient
4043 = force_operand (gen_rtx_MINUS (compute_mode,
4044 t3, t4),
4045 tquotient);
4048 else /* Too wide mode to use tricky code */
4049 break;
4051 insn = get_last_insn ();
4052 if (insn != last
4053 && (set = single_set (insn)) != 0
4054 && SET_DEST (set) == quotient)
4055 set_unique_reg_note (insn,
4056 REG_EQUAL,
4057 gen_rtx_DIV (compute_mode, op0, op1));
4059 break;
4061 fail1:
4062 delete_insns_since (last);
4063 break;
4065 case FLOOR_DIV_EXPR:
4066 case FLOOR_MOD_EXPR:
4067 /* We will come here only for signed operations. */
4068 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4070 unsigned HOST_WIDE_INT mh, ml;
4071 int pre_shift, lgup, post_shift;
4072 HOST_WIDE_INT d = INTVAL (op1);
4074 if (d > 0)
4076 /* We could just as easily deal with negative constants here,
4077 but it does not seem worth the trouble for GCC 2.6. */
4078 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4080 pre_shift = floor_log2 (d);
4081 if (rem_flag)
4083 remainder = expand_binop (compute_mode, and_optab, op0,
4084 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4085 remainder, 0, OPTAB_LIB_WIDEN);
4086 if (remainder)
4087 return gen_lowpart (mode, remainder);
4089 quotient = expand_shift
4090 (RSHIFT_EXPR, compute_mode, op0,
4091 build_int_cst (NULL_TREE, pre_shift),
4092 tquotient, 0);
4094 else
4096 rtx t1, t2, t3, t4;
4098 mh = choose_multiplier (d, size, size - 1,
4099 &ml, &post_shift, &lgup);
4100 gcc_assert (!mh);
4102 if (post_shift < BITS_PER_WORD
4103 && size - 1 < BITS_PER_WORD)
4105 t1 = expand_shift
4106 (RSHIFT_EXPR, compute_mode, op0,
4107 build_int_cst (NULL_TREE, size - 1),
4108 NULL_RTX, 0);
4109 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4110 NULL_RTX, 0, OPTAB_WIDEN);
4111 extra_cost = (shift_cost[compute_mode][post_shift]
4112 + shift_cost[compute_mode][size - 1]
4113 + 2 * add_cost[compute_mode]);
4114 t3 = expand_mult_highpart (compute_mode, t2, ml,
4115 NULL_RTX, 1,
4116 max_cost - extra_cost);
4117 if (t3 != 0)
4119 t4 = expand_shift
4120 (RSHIFT_EXPR, compute_mode, t3,
4121 build_int_cst (NULL_TREE, post_shift),
4122 NULL_RTX, 1);
4123 quotient = expand_binop (compute_mode, xor_optab,
4124 t4, t1, tquotient, 0,
4125 OPTAB_WIDEN);
4130 else
4132 rtx nsign, t1, t2, t3, t4;
4133 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4134 op0, constm1_rtx), NULL_RTX);
4135 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4136 0, OPTAB_WIDEN);
4137 nsign = expand_shift
4138 (RSHIFT_EXPR, compute_mode, t2,
4139 build_int_cst (NULL_TREE, size - 1),
4140 NULL_RTX, 0);
4141 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4142 NULL_RTX);
4143 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4144 NULL_RTX, 0);
4145 if (t4)
4147 rtx t5;
4148 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4149 NULL_RTX, 0);
4150 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4151 t4, t5),
4152 tquotient);
4157 if (quotient != 0)
4158 break;
4159 delete_insns_since (last);
4161 /* Try using an instruction that produces both the quotient and
4162 remainder, using truncation. We can easily compensate the quotient
4163 or remainder to get floor rounding, once we have the remainder.
4164 Notice that we compute also the final remainder value here,
4165 and return the result right away. */
4166 if (target == 0 || GET_MODE (target) != compute_mode)
4167 target = gen_reg_rtx (compute_mode);
4169 if (rem_flag)
4171 remainder
4172 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4173 quotient = gen_reg_rtx (compute_mode);
4175 else
4177 quotient
4178 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4179 remainder = gen_reg_rtx (compute_mode);
4182 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4183 quotient, remainder, 0))
4185 /* This could be computed with a branch-less sequence.
4186 Save that for later. */
4187 rtx tem;
4188 rtx label = gen_label_rtx ();
4189 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4190 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4191 NULL_RTX, 0, OPTAB_WIDEN);
4192 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4193 expand_dec (quotient, const1_rtx);
4194 expand_inc (remainder, op1);
4195 emit_label (label);
4196 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4199 /* No luck with division elimination or divmod. Have to do it
4200 by conditionally adjusting op0 *and* the result. */
4202 rtx label1, label2, label3, label4, label5;
4203 rtx adjusted_op0;
4204 rtx tem;
4206 quotient = gen_reg_rtx (compute_mode);
4207 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4208 label1 = gen_label_rtx ();
4209 label2 = gen_label_rtx ();
4210 label3 = gen_label_rtx ();
4211 label4 = gen_label_rtx ();
4212 label5 = gen_label_rtx ();
4213 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4214 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4215 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4216 quotient, 0, OPTAB_LIB_WIDEN);
4217 if (tem != quotient)
4218 emit_move_insn (quotient, tem);
4219 emit_jump_insn (gen_jump (label5));
4220 emit_barrier ();
4221 emit_label (label1);
4222 expand_inc (adjusted_op0, const1_rtx);
4223 emit_jump_insn (gen_jump (label4));
4224 emit_barrier ();
4225 emit_label (label2);
4226 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4227 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4228 quotient, 0, OPTAB_LIB_WIDEN);
4229 if (tem != quotient)
4230 emit_move_insn (quotient, tem);
4231 emit_jump_insn (gen_jump (label5));
4232 emit_barrier ();
4233 emit_label (label3);
4234 expand_dec (adjusted_op0, const1_rtx);
4235 emit_label (label4);
4236 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4237 quotient, 0, OPTAB_LIB_WIDEN);
4238 if (tem != quotient)
4239 emit_move_insn (quotient, tem);
4240 expand_dec (quotient, const1_rtx);
4241 emit_label (label5);
4243 break;
4245 case CEIL_DIV_EXPR:
4246 case CEIL_MOD_EXPR:
4247 if (unsignedp)
4249 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4251 rtx t1, t2, t3;
4252 unsigned HOST_WIDE_INT d = INTVAL (op1);
4253 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4254 build_int_cst (NULL_TREE, floor_log2 (d)),
4255 tquotient, 1);
4256 t2 = expand_binop (compute_mode, and_optab, op0,
4257 GEN_INT (d - 1),
4258 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4259 t3 = gen_reg_rtx (compute_mode);
4260 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4261 compute_mode, 1, 1);
4262 if (t3 == 0)
4264 rtx lab;
4265 lab = gen_label_rtx ();
4266 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4267 expand_inc (t1, const1_rtx);
4268 emit_label (lab);
4269 quotient = t1;
4271 else
4272 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4273 t1, t3),
4274 tquotient);
4275 break;
4278 /* Try using an instruction that produces both the quotient and
4279 remainder, using truncation. We can easily compensate the
4280 quotient or remainder to get ceiling rounding, once we have the
4281 remainder. Notice that we compute also the final remainder
4282 value here, and return the result right away. */
4283 if (target == 0 || GET_MODE (target) != compute_mode)
4284 target = gen_reg_rtx (compute_mode);
4286 if (rem_flag)
4288 remainder = (REG_P (target)
4289 ? target : gen_reg_rtx (compute_mode));
4290 quotient = gen_reg_rtx (compute_mode);
4292 else
4294 quotient = (REG_P (target)
4295 ? target : gen_reg_rtx (compute_mode));
4296 remainder = gen_reg_rtx (compute_mode);
4299 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4300 remainder, 1))
4302 /* This could be computed with a branch-less sequence.
4303 Save that for later. */
4304 rtx label = gen_label_rtx ();
4305 do_cmp_and_jump (remainder, const0_rtx, EQ,
4306 compute_mode, label);
4307 expand_inc (quotient, const1_rtx);
4308 expand_dec (remainder, op1);
4309 emit_label (label);
4310 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4313 /* No luck with division elimination or divmod. Have to do it
4314 by conditionally adjusting op0 *and* the result. */
4316 rtx label1, label2;
4317 rtx adjusted_op0, tem;
4319 quotient = gen_reg_rtx (compute_mode);
4320 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4321 label1 = gen_label_rtx ();
4322 label2 = gen_label_rtx ();
4323 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4324 compute_mode, label1);
4325 emit_move_insn (quotient, const0_rtx);
4326 emit_jump_insn (gen_jump (label2));
4327 emit_barrier ();
4328 emit_label (label1);
4329 expand_dec (adjusted_op0, const1_rtx);
4330 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4331 quotient, 1, OPTAB_LIB_WIDEN);
4332 if (tem != quotient)
4333 emit_move_insn (quotient, tem);
4334 expand_inc (quotient, const1_rtx);
4335 emit_label (label2);
4338 else /* signed */
4340 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4341 && INTVAL (op1) >= 0)
4343 /* This is extremely similar to the code for the unsigned case
4344 above. For 2.7 we should merge these variants, but for
4345 2.6.1 I don't want to touch the code for unsigned since that
4346 get used in C. The signed case will only be used by other
4347 languages (Ada). */
4349 rtx t1, t2, t3;
4350 unsigned HOST_WIDE_INT d = INTVAL (op1);
4351 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4352 build_int_cst (NULL_TREE, floor_log2 (d)),
4353 tquotient, 0);
4354 t2 = expand_binop (compute_mode, and_optab, op0,
4355 GEN_INT (d - 1),
4356 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4357 t3 = gen_reg_rtx (compute_mode);
4358 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4359 compute_mode, 1, 1);
4360 if (t3 == 0)
4362 rtx lab;
4363 lab = gen_label_rtx ();
4364 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4365 expand_inc (t1, const1_rtx);
4366 emit_label (lab);
4367 quotient = t1;
4369 else
4370 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4371 t1, t3),
4372 tquotient);
4373 break;
4376 /* Try using an instruction that produces both the quotient and
4377 remainder, using truncation. We can easily compensate the
4378 quotient or remainder to get ceiling rounding, once we have the
4379 remainder. Notice that we compute also the final remainder
4380 value here, and return the result right away. */
4381 if (target == 0 || GET_MODE (target) != compute_mode)
4382 target = gen_reg_rtx (compute_mode);
4383 if (rem_flag)
4385 remainder= (REG_P (target)
4386 ? target : gen_reg_rtx (compute_mode));
4387 quotient = gen_reg_rtx (compute_mode);
4389 else
4391 quotient = (REG_P (target)
4392 ? target : gen_reg_rtx (compute_mode));
4393 remainder = gen_reg_rtx (compute_mode);
4396 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4397 remainder, 0))
4399 /* This could be computed with a branch-less sequence.
4400 Save that for later. */
4401 rtx tem;
4402 rtx label = gen_label_rtx ();
4403 do_cmp_and_jump (remainder, const0_rtx, EQ,
4404 compute_mode, label);
4405 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4406 NULL_RTX, 0, OPTAB_WIDEN);
4407 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4408 expand_inc (quotient, const1_rtx);
4409 expand_dec (remainder, op1);
4410 emit_label (label);
4411 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4414 /* No luck with division elimination or divmod. Have to do it
4415 by conditionally adjusting op0 *and* the result. */
4417 rtx label1, label2, label3, label4, label5;
4418 rtx adjusted_op0;
4419 rtx tem;
4421 quotient = gen_reg_rtx (compute_mode);
4422 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4423 label1 = gen_label_rtx ();
4424 label2 = gen_label_rtx ();
4425 label3 = gen_label_rtx ();
4426 label4 = gen_label_rtx ();
4427 label5 = gen_label_rtx ();
4428 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4429 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4430 compute_mode, label1);
4431 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4432 quotient, 0, OPTAB_LIB_WIDEN);
4433 if (tem != quotient)
4434 emit_move_insn (quotient, tem);
4435 emit_jump_insn (gen_jump (label5));
4436 emit_barrier ();
4437 emit_label (label1);
4438 expand_dec (adjusted_op0, const1_rtx);
4439 emit_jump_insn (gen_jump (label4));
4440 emit_barrier ();
4441 emit_label (label2);
4442 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4443 compute_mode, label3);
4444 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4445 quotient, 0, OPTAB_LIB_WIDEN);
4446 if (tem != quotient)
4447 emit_move_insn (quotient, tem);
4448 emit_jump_insn (gen_jump (label5));
4449 emit_barrier ();
4450 emit_label (label3);
4451 expand_inc (adjusted_op0, const1_rtx);
4452 emit_label (label4);
4453 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4454 quotient, 0, OPTAB_LIB_WIDEN);
4455 if (tem != quotient)
4456 emit_move_insn (quotient, tem);
4457 expand_inc (quotient, const1_rtx);
4458 emit_label (label5);
4461 break;
4463 case EXACT_DIV_EXPR:
4464 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4466 HOST_WIDE_INT d = INTVAL (op1);
4467 unsigned HOST_WIDE_INT ml;
4468 int pre_shift;
4469 rtx t1;
4471 pre_shift = floor_log2 (d & -d);
4472 ml = invert_mod2n (d >> pre_shift, size);
4473 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4474 build_int_cst (NULL_TREE, pre_shift),
4475 NULL_RTX, unsignedp);
4476 quotient = expand_mult (compute_mode, t1,
4477 gen_int_mode (ml, compute_mode),
4478 NULL_RTX, 1);
4480 insn = get_last_insn ();
4481 set_unique_reg_note (insn,
4482 REG_EQUAL,
4483 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4484 compute_mode,
4485 op0, op1));
4487 break;
4489 case ROUND_DIV_EXPR:
4490 case ROUND_MOD_EXPR:
4491 if (unsignedp)
4493 rtx tem;
4494 rtx label;
4495 label = gen_label_rtx ();
4496 quotient = gen_reg_rtx (compute_mode);
4497 remainder = gen_reg_rtx (compute_mode);
4498 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4500 rtx tem;
4501 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4502 quotient, 1, OPTAB_LIB_WIDEN);
4503 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4504 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4505 remainder, 1, OPTAB_LIB_WIDEN);
4507 tem = plus_constant (op1, -1);
4508 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4509 build_int_cst (NULL_TREE, 1),
4510 NULL_RTX, 1);
4511 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4512 expand_inc (quotient, const1_rtx);
4513 expand_dec (remainder, op1);
4514 emit_label (label);
4516 else
4518 rtx abs_rem, abs_op1, tem, mask;
4519 rtx label;
4520 label = gen_label_rtx ();
4521 quotient = gen_reg_rtx (compute_mode);
4522 remainder = gen_reg_rtx (compute_mode);
4523 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4525 rtx tem;
4526 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4527 quotient, 0, OPTAB_LIB_WIDEN);
4528 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4529 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4530 remainder, 0, OPTAB_LIB_WIDEN);
4532 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4533 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4534 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4535 build_int_cst (NULL_TREE, 1),
4536 NULL_RTX, 1);
4537 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4538 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4539 NULL_RTX, 0, OPTAB_WIDEN);
4540 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4541 build_int_cst (NULL_TREE, size - 1),
4542 NULL_RTX, 0);
4543 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4544 NULL_RTX, 0, OPTAB_WIDEN);
4545 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4546 NULL_RTX, 0, OPTAB_WIDEN);
4547 expand_inc (quotient, tem);
4548 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4549 NULL_RTX, 0, OPTAB_WIDEN);
4550 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4551 NULL_RTX, 0, OPTAB_WIDEN);
4552 expand_dec (remainder, tem);
4553 emit_label (label);
4555 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4557 default:
4558 gcc_unreachable ();
4561 if (quotient == 0)
4563 if (target && GET_MODE (target) != compute_mode)
4564 target = 0;
4566 if (rem_flag)
4568 /* Try to produce the remainder without producing the quotient.
4569 If we seem to have a divmod pattern that does not require widening,
4570 don't try widening here. We should really have a WIDEN argument
4571 to expand_twoval_binop, since what we'd really like to do here is
4572 1) try a mod insn in compute_mode
4573 2) try a divmod insn in compute_mode
4574 3) try a div insn in compute_mode and multiply-subtract to get
4575 remainder
4576 4) try the same things with widening allowed. */
4577 remainder
4578 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4579 op0, op1, target,
4580 unsignedp,
4581 ((optab2->handlers[compute_mode].insn_code
4582 != CODE_FOR_nothing)
4583 ? OPTAB_DIRECT : OPTAB_WIDEN));
4584 if (remainder == 0)
4586 /* No luck there. Can we do remainder and divide at once
4587 without a library call? */
4588 remainder = gen_reg_rtx (compute_mode);
4589 if (! expand_twoval_binop ((unsignedp
4590 ? udivmod_optab
4591 : sdivmod_optab),
4592 op0, op1,
4593 NULL_RTX, remainder, unsignedp))
4594 remainder = 0;
4597 if (remainder)
4598 return gen_lowpart (mode, remainder);
4601 /* Produce the quotient. Try a quotient insn, but not a library call.
4602 If we have a divmod in this mode, use it in preference to widening
4603 the div (for this test we assume it will not fail). Note that optab2
4604 is set to the one of the two optabs that the call below will use. */
4605 quotient
4606 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4607 op0, op1, rem_flag ? NULL_RTX : target,
4608 unsignedp,
4609 ((optab2->handlers[compute_mode].insn_code
4610 != CODE_FOR_nothing)
4611 ? OPTAB_DIRECT : OPTAB_WIDEN));
4613 if (quotient == 0)
4615 /* No luck there. Try a quotient-and-remainder insn,
4616 keeping the quotient alone. */
4617 quotient = gen_reg_rtx (compute_mode);
4618 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4619 op0, op1,
4620 quotient, NULL_RTX, unsignedp))
4622 quotient = 0;
4623 if (! rem_flag)
4624 /* Still no luck. If we are not computing the remainder,
4625 use a library call for the quotient. */
4626 quotient = sign_expand_binop (compute_mode,
4627 udiv_optab, sdiv_optab,
4628 op0, op1, target,
4629 unsignedp, OPTAB_LIB_WIDEN);
4634 if (rem_flag)
4636 if (target && GET_MODE (target) != compute_mode)
4637 target = 0;
4639 if (quotient == 0)
4641 /* No divide instruction either. Use library for remainder. */
4642 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4643 op0, op1, target,
4644 unsignedp, OPTAB_LIB_WIDEN);
4645 /* No remainder function. Try a quotient-and-remainder
4646 function, keeping the remainder. */
4647 if (!remainder)
4649 remainder = gen_reg_rtx (compute_mode);
4650 if (!expand_twoval_binop_libfunc
4651 (unsignedp ? udivmod_optab : sdivmod_optab,
4652 op0, op1,
4653 NULL_RTX, remainder,
4654 unsignedp ? UMOD : MOD))
4655 remainder = NULL_RTX;
4658 else
4660 /* We divided. Now finish doing X - Y * (X / Y). */
4661 remainder = expand_mult (compute_mode, quotient, op1,
4662 NULL_RTX, unsignedp);
4663 remainder = expand_binop (compute_mode, sub_optab, op0,
4664 remainder, target, unsignedp,
4665 OPTAB_LIB_WIDEN);
4669 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4672 /* Return a tree node with data type TYPE, describing the value of X.
4673 Usually this is an VAR_DECL, if there is no obvious better choice.
4674 X may be an expression, however we only support those expressions
4675 generated by loop.c. */
4677 tree
4678 make_tree (tree type, rtx x)
4680 tree t;
4682 switch (GET_CODE (x))
4684 case CONST_INT:
4686 HOST_WIDE_INT hi = 0;
4688 if (INTVAL (x) < 0
4689 && !(TYPE_UNSIGNED (type)
4690 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4691 < HOST_BITS_PER_WIDE_INT)))
4692 hi = -1;
4694 t = build_int_cst_wide (type, INTVAL (x), hi);
4696 return t;
4699 case CONST_DOUBLE:
4700 if (GET_MODE (x) == VOIDmode)
4701 t = build_int_cst_wide (type,
4702 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4703 else
4705 REAL_VALUE_TYPE d;
4707 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4708 t = build_real (type, d);
4711 return t;
4713 case CONST_VECTOR:
4715 int i, units;
4716 rtx elt;
4717 tree t = NULL_TREE;
4719 units = CONST_VECTOR_NUNITS (x);
4721 /* Build a tree with vector elements. */
4722 for (i = units - 1; i >= 0; --i)
4724 elt = CONST_VECTOR_ELT (x, i);
4725 t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4728 return build_vector (type, t);
4731 case PLUS:
4732 return fold (build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4733 make_tree (type, XEXP (x, 1))));
4735 case MINUS:
4736 return fold (build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4737 make_tree (type, XEXP (x, 1))));
4739 case NEG:
4740 return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))));
4742 case MULT:
4743 return fold (build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4744 make_tree (type, XEXP (x, 1))));
4746 case ASHIFT:
4747 return fold (build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4748 make_tree (type, XEXP (x, 1))));
4750 case LSHIFTRT:
4751 t = lang_hooks.types.unsigned_type (type);
4752 return fold (convert (type,
4753 build2 (RSHIFT_EXPR, t,
4754 make_tree (t, XEXP (x, 0)),
4755 make_tree (type, XEXP (x, 1)))));
4757 case ASHIFTRT:
4758 t = lang_hooks.types.signed_type (type);
4759 return fold (convert (type,
4760 build2 (RSHIFT_EXPR, t,
4761 make_tree (t, XEXP (x, 0)),
4762 make_tree (type, XEXP (x, 1)))));
4764 case DIV:
4765 if (TREE_CODE (type) != REAL_TYPE)
4766 t = lang_hooks.types.signed_type (type);
4767 else
4768 t = type;
4770 return fold (convert (type,
4771 build2 (TRUNC_DIV_EXPR, t,
4772 make_tree (t, XEXP (x, 0)),
4773 make_tree (t, XEXP (x, 1)))));
4774 case UDIV:
4775 t = lang_hooks.types.unsigned_type (type);
4776 return fold (convert (type,
4777 build2 (TRUNC_DIV_EXPR, t,
4778 make_tree (t, XEXP (x, 0)),
4779 make_tree (t, XEXP (x, 1)))));
4781 case SIGN_EXTEND:
4782 case ZERO_EXTEND:
4783 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4784 GET_CODE (x) == ZERO_EXTEND);
4785 return fold (convert (type, make_tree (t, XEXP (x, 0))));
4787 default:
4788 t = build_decl (VAR_DECL, NULL_TREE, type);
4790 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4791 ptr_mode. So convert. */
4792 if (POINTER_TYPE_P (type))
4793 x = convert_memory_address (TYPE_MODE (type), x);
4795 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4796 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4797 t->decl.rtl = x;
4799 return t;
4803 /* Check whether the multiplication X * MULT + ADD overflows.
4804 X, MULT and ADD must be CONST_*.
4805 MODE is the machine mode for the computation.
4806 X and MULT must have mode MODE. ADD may have a different mode.
4807 So can X (defaults to same as MODE).
4808 UNSIGNEDP is nonzero to do unsigned multiplication. */
4810 bool
4811 const_mult_add_overflow_p (rtx x, rtx mult, rtx add,
4812 enum machine_mode mode, int unsignedp)
4814 tree type, mult_type, add_type, result;
4816 type = lang_hooks.types.type_for_mode (mode, unsignedp);
4818 /* In order to get a proper overflow indication from an unsigned
4819 type, we have to pretend that it's a sizetype. */
4820 mult_type = type;
4821 if (unsignedp)
4823 /* FIXME:It would be nice if we could step directly from this
4824 type to its sizetype equivalent. */
4825 mult_type = build_distinct_type_copy (type);
4826 TYPE_IS_SIZETYPE (mult_type) = 1;
4829 add_type = (GET_MODE (add) == VOIDmode ? mult_type
4830 : lang_hooks.types.type_for_mode (GET_MODE (add), unsignedp));
4832 result = fold (build2 (PLUS_EXPR, mult_type,
4833 fold (build2 (MULT_EXPR, mult_type,
4834 make_tree (mult_type, x),
4835 make_tree (mult_type, mult))),
4836 make_tree (add_type, add)));
4838 return TREE_CONSTANT_OVERFLOW (result);
4841 /* Return an rtx representing the value of X * MULT + ADD.
4842 TARGET is a suggestion for where to store the result (an rtx).
4843 MODE is the machine mode for the computation.
4844 X and MULT must have mode MODE. ADD may have a different mode.
4845 So can X (defaults to same as MODE).
4846 UNSIGNEDP is nonzero to do unsigned multiplication.
4847 This may emit insns. */
4850 expand_mult_add (rtx x, rtx target, rtx mult, rtx add, enum machine_mode mode,
4851 int unsignedp)
4853 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
4854 tree add_type = (GET_MODE (add) == VOIDmode
4855 ? type: lang_hooks.types.type_for_mode (GET_MODE (add),
4856 unsignedp));
4857 tree result = fold (build2 (PLUS_EXPR, type,
4858 fold (build2 (MULT_EXPR, type,
4859 make_tree (type, x),
4860 make_tree (type, mult))),
4861 make_tree (add_type, add)));
4863 return expand_expr (result, target, VOIDmode, 0);
4866 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
4867 and returning TARGET.
4869 If TARGET is 0, a pseudo-register or constant is returned. */
4872 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
4874 rtx tem = 0;
4876 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
4877 tem = simplify_binary_operation (AND, mode, op0, op1);
4878 if (tem == 0)
4879 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
4881 if (target == 0)
4882 target = tem;
4883 else if (tem != target)
4884 emit_move_insn (target, tem);
4885 return target;
4888 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
4889 and storing in TARGET. Normally return TARGET.
4890 Return 0 if that cannot be done.
4892 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
4893 it is VOIDmode, they cannot both be CONST_INT.
4895 UNSIGNEDP is for the case where we have to widen the operands
4896 to perform the operation. It says to use zero-extension.
4898 NORMALIZEP is 1 if we should convert the result to be either zero
4899 or one. Normalize is -1 if we should convert the result to be
4900 either zero or -1. If NORMALIZEP is zero, the result will be left
4901 "raw" out of the scc insn. */
4904 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
4905 enum machine_mode mode, int unsignedp, int normalizep)
4907 rtx subtarget;
4908 enum insn_code icode;
4909 enum machine_mode compare_mode;
4910 enum machine_mode target_mode = GET_MODE (target);
4911 rtx tem;
4912 rtx last = get_last_insn ();
4913 rtx pattern, comparison;
4915 if (unsignedp)
4916 code = unsigned_condition (code);
4918 /* If one operand is constant, make it the second one. Only do this
4919 if the other operand is not constant as well. */
4921 if (swap_commutative_operands_p (op0, op1))
4923 tem = op0;
4924 op0 = op1;
4925 op1 = tem;
4926 code = swap_condition (code);
4929 if (mode == VOIDmode)
4930 mode = GET_MODE (op0);
4932 /* For some comparisons with 1 and -1, we can convert this to
4933 comparisons with zero. This will often produce more opportunities for
4934 store-flag insns. */
4936 switch (code)
4938 case LT:
4939 if (op1 == const1_rtx)
4940 op1 = const0_rtx, code = LE;
4941 break;
4942 case LE:
4943 if (op1 == constm1_rtx)
4944 op1 = const0_rtx, code = LT;
4945 break;
4946 case GE:
4947 if (op1 == const1_rtx)
4948 op1 = const0_rtx, code = GT;
4949 break;
4950 case GT:
4951 if (op1 == constm1_rtx)
4952 op1 = const0_rtx, code = GE;
4953 break;
4954 case GEU:
4955 if (op1 == const1_rtx)
4956 op1 = const0_rtx, code = NE;
4957 break;
4958 case LTU:
4959 if (op1 == const1_rtx)
4960 op1 = const0_rtx, code = EQ;
4961 break;
4962 default:
4963 break;
4966 /* If we are comparing a double-word integer with zero or -1, we can
4967 convert the comparison into one involving a single word. */
4968 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
4969 && GET_MODE_CLASS (mode) == MODE_INT
4970 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
4972 if ((code == EQ || code == NE)
4973 && (op1 == const0_rtx || op1 == constm1_rtx))
4975 rtx op00, op01, op0both;
4977 /* Do a logical OR or AND of the two words and compare the result. */
4978 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
4979 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
4980 op0both = expand_binop (word_mode,
4981 op1 == const0_rtx ? ior_optab : and_optab,
4982 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
4984 if (op0both != 0)
4985 return emit_store_flag (target, code, op0both, op1, word_mode,
4986 unsignedp, normalizep);
4988 else if ((code == LT || code == GE) && op1 == const0_rtx)
4990 rtx op0h;
4992 /* If testing the sign bit, can just test on high word. */
4993 op0h = simplify_gen_subreg (word_mode, op0, mode,
4994 subreg_highpart_offset (word_mode, mode));
4995 return emit_store_flag (target, code, op0h, op1, word_mode,
4996 unsignedp, normalizep);
5000 /* From now on, we won't change CODE, so set ICODE now. */
5001 icode = setcc_gen_code[(int) code];
5003 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5004 complement of A (for GE) and shifting the sign bit to the low bit. */
5005 if (op1 == const0_rtx && (code == LT || code == GE)
5006 && GET_MODE_CLASS (mode) == MODE_INT
5007 && (normalizep || STORE_FLAG_VALUE == 1
5008 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5009 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5010 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5012 subtarget = target;
5014 /* If the result is to be wider than OP0, it is best to convert it
5015 first. If it is to be narrower, it is *incorrect* to convert it
5016 first. */
5017 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5019 op0 = convert_modes (target_mode, mode, op0, 0);
5020 mode = target_mode;
5023 if (target_mode != mode)
5024 subtarget = 0;
5026 if (code == GE)
5027 op0 = expand_unop (mode, one_cmpl_optab, op0,
5028 ((STORE_FLAG_VALUE == 1 || normalizep)
5029 ? 0 : subtarget), 0);
5031 if (STORE_FLAG_VALUE == 1 || normalizep)
5032 /* If we are supposed to produce a 0/1 value, we want to do
5033 a logical shift from the sign bit to the low-order bit; for
5034 a -1/0 value, we do an arithmetic shift. */
5035 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5036 size_int (GET_MODE_BITSIZE (mode) - 1),
5037 subtarget, normalizep != -1);
5039 if (mode != target_mode)
5040 op0 = convert_modes (target_mode, mode, op0, 0);
5042 return op0;
5045 if (icode != CODE_FOR_nothing)
5047 insn_operand_predicate_fn pred;
5049 /* We think we may be able to do this with a scc insn. Emit the
5050 comparison and then the scc insn. */
5052 do_pending_stack_adjust ();
5053 last = get_last_insn ();
5055 comparison
5056 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5057 if (CONSTANT_P (comparison))
5059 switch (GET_CODE (comparison))
5061 case CONST_INT:
5062 if (comparison == const0_rtx)
5063 return const0_rtx;
5064 break;
5066 #ifdef FLOAT_STORE_FLAG_VALUE
5067 case CONST_DOUBLE:
5068 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5069 return const0_rtx;
5070 break;
5071 #endif
5072 default:
5073 gcc_unreachable ();
5076 if (normalizep == 1)
5077 return const1_rtx;
5078 if (normalizep == -1)
5079 return constm1_rtx;
5080 return const_true_rtx;
5083 /* The code of COMPARISON may not match CODE if compare_from_rtx
5084 decided to swap its operands and reverse the original code.
5086 We know that compare_from_rtx returns either a CONST_INT or
5087 a new comparison code, so it is safe to just extract the
5088 code from COMPARISON. */
5089 code = GET_CODE (comparison);
5091 /* Get a reference to the target in the proper mode for this insn. */
5092 compare_mode = insn_data[(int) icode].operand[0].mode;
5093 subtarget = target;
5094 pred = insn_data[(int) icode].operand[0].predicate;
5095 if (optimize || ! (*pred) (subtarget, compare_mode))
5096 subtarget = gen_reg_rtx (compare_mode);
5098 pattern = GEN_FCN (icode) (subtarget);
5099 if (pattern)
5101 emit_insn (pattern);
5103 /* If we are converting to a wider mode, first convert to
5104 TARGET_MODE, then normalize. This produces better combining
5105 opportunities on machines that have a SIGN_EXTRACT when we are
5106 testing a single bit. This mostly benefits the 68k.
5108 If STORE_FLAG_VALUE does not have the sign bit set when
5109 interpreted in COMPARE_MODE, we can do this conversion as
5110 unsigned, which is usually more efficient. */
5111 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5113 convert_move (target, subtarget,
5114 (GET_MODE_BITSIZE (compare_mode)
5115 <= HOST_BITS_PER_WIDE_INT)
5116 && 0 == (STORE_FLAG_VALUE
5117 & ((HOST_WIDE_INT) 1
5118 << (GET_MODE_BITSIZE (compare_mode) -1))));
5119 op0 = target;
5120 compare_mode = target_mode;
5122 else
5123 op0 = subtarget;
5125 /* If we want to keep subexpressions around, don't reuse our
5126 last target. */
5128 if (optimize)
5129 subtarget = 0;
5131 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5132 we don't have to do anything. */
5133 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5135 /* STORE_FLAG_VALUE might be the most negative number, so write
5136 the comparison this way to avoid a compiler-time warning. */
5137 else if (- normalizep == STORE_FLAG_VALUE)
5138 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5140 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5141 makes it hard to use a value of just the sign bit due to
5142 ANSI integer constant typing rules. */
5143 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5144 && (STORE_FLAG_VALUE
5145 & ((HOST_WIDE_INT) 1
5146 << (GET_MODE_BITSIZE (compare_mode) - 1))))
5147 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5148 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5149 subtarget, normalizep == 1);
5150 else
5152 gcc_assert (STORE_FLAG_VALUE & 1);
5154 op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5155 if (normalizep == -1)
5156 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5159 /* If we were converting to a smaller mode, do the
5160 conversion now. */
5161 if (target_mode != compare_mode)
5163 convert_move (target, op0, 0);
5164 return target;
5166 else
5167 return op0;
5171 delete_insns_since (last);
5173 /* If optimizing, use different pseudo registers for each insn, instead
5174 of reusing the same pseudo. This leads to better CSE, but slows
5175 down the compiler, since there are more pseudos */
5176 subtarget = (!optimize
5177 && (target_mode == mode)) ? target : NULL_RTX;
5179 /* If we reached here, we can't do this with a scc insn. However, there
5180 are some comparisons that can be done directly. For example, if
5181 this is an equality comparison of integers, we can try to exclusive-or
5182 (or subtract) the two operands and use a recursive call to try the
5183 comparison with zero. Don't do any of these cases if branches are
5184 very cheap. */
5186 if (BRANCH_COST > 0
5187 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5188 && op1 != const0_rtx)
5190 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5191 OPTAB_WIDEN);
5193 if (tem == 0)
5194 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5195 OPTAB_WIDEN);
5196 if (tem != 0)
5197 tem = emit_store_flag (target, code, tem, const0_rtx,
5198 mode, unsignedp, normalizep);
5199 if (tem == 0)
5200 delete_insns_since (last);
5201 return tem;
5204 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5205 the constant zero. Reject all other comparisons at this point. Only
5206 do LE and GT if branches are expensive since they are expensive on
5207 2-operand machines. */
5209 if (BRANCH_COST == 0
5210 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5211 || (code != EQ && code != NE
5212 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5213 return 0;
5215 /* See what we need to return. We can only return a 1, -1, or the
5216 sign bit. */
5218 if (normalizep == 0)
5220 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5221 normalizep = STORE_FLAG_VALUE;
5223 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5224 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5225 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5227 else
5228 return 0;
5231 /* Try to put the result of the comparison in the sign bit. Assume we can't
5232 do the necessary operation below. */
5234 tem = 0;
5236 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5237 the sign bit set. */
5239 if (code == LE)
5241 /* This is destructive, so SUBTARGET can't be OP0. */
5242 if (rtx_equal_p (subtarget, op0))
5243 subtarget = 0;
5245 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5246 OPTAB_WIDEN);
5247 if (tem)
5248 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5249 OPTAB_WIDEN);
5252 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5253 number of bits in the mode of OP0, minus one. */
5255 if (code == GT)
5257 if (rtx_equal_p (subtarget, op0))
5258 subtarget = 0;
5260 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5261 size_int (GET_MODE_BITSIZE (mode) - 1),
5262 subtarget, 0);
5263 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5264 OPTAB_WIDEN);
5267 if (code == EQ || code == NE)
5269 /* For EQ or NE, one way to do the comparison is to apply an operation
5270 that converts the operand into a positive number if it is nonzero
5271 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5272 for NE we negate. This puts the result in the sign bit. Then we
5273 normalize with a shift, if needed.
5275 Two operations that can do the above actions are ABS and FFS, so try
5276 them. If that doesn't work, and MODE is smaller than a full word,
5277 we can use zero-extension to the wider mode (an unsigned conversion)
5278 as the operation. */
5280 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5281 that is compensated by the subsequent overflow when subtracting
5282 one / negating. */
5284 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5285 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5286 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5287 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5288 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5290 tem = convert_modes (word_mode, mode, op0, 1);
5291 mode = word_mode;
5294 if (tem != 0)
5296 if (code == EQ)
5297 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5298 0, OPTAB_WIDEN);
5299 else
5300 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5303 /* If we couldn't do it that way, for NE we can "or" the two's complement
5304 of the value with itself. For EQ, we take the one's complement of
5305 that "or", which is an extra insn, so we only handle EQ if branches
5306 are expensive. */
5308 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5310 if (rtx_equal_p (subtarget, op0))
5311 subtarget = 0;
5313 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5314 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5315 OPTAB_WIDEN);
5317 if (tem && code == EQ)
5318 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5322 if (tem && normalizep)
5323 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5324 size_int (GET_MODE_BITSIZE (mode) - 1),
5325 subtarget, normalizep == 1);
5327 if (tem)
5329 if (GET_MODE (tem) != target_mode)
5331 convert_move (target, tem, 0);
5332 tem = target;
5334 else if (!subtarget)
5336 emit_move_insn (target, tem);
5337 tem = target;
5340 else
5341 delete_insns_since (last);
5343 return tem;
5346 /* Like emit_store_flag, but always succeeds. */
5349 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5350 enum machine_mode mode, int unsignedp, int normalizep)
5352 rtx tem, label;
5354 /* First see if emit_store_flag can do the job. */
5355 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5356 if (tem != 0)
5357 return tem;
5359 if (normalizep == 0)
5360 normalizep = 1;
5362 /* If this failed, we have to do this with set/compare/jump/set code. */
5364 if (!REG_P (target)
5365 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5366 target = gen_reg_rtx (GET_MODE (target));
5368 emit_move_insn (target, const1_rtx);
5369 label = gen_label_rtx ();
5370 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5371 NULL_RTX, label);
5373 emit_move_insn (target, const0_rtx);
5374 emit_label (label);
5376 return target;
5379 /* Perform possibly multi-word comparison and conditional jump to LABEL
5380 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
5382 The algorithm is based on the code in expr.c:do_jump.
5384 Note that this does not perform a general comparison. Only variants
5385 generated within expmed.c are correctly handled, others abort (but could
5386 be handled if needed). */
5388 static void
5389 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5390 rtx label)
5392 /* If this mode is an integer too wide to compare properly,
5393 compare word by word. Rely on cse to optimize constant cases. */
5395 if (GET_MODE_CLASS (mode) == MODE_INT
5396 && ! can_compare_p (op, mode, ccp_jump))
5398 rtx label2 = gen_label_rtx ();
5400 switch (op)
5402 case LTU:
5403 do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
5404 break;
5406 case LEU:
5407 do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
5408 break;
5410 case LT:
5411 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
5412 break;
5414 case GT:
5415 do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
5416 break;
5418 case GE:
5419 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
5420 break;
5422 /* do_jump_by_parts_equality_rtx compares with zero. Luckily
5423 that's the only equality operations we do */
5424 case EQ:
5425 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5426 do_jump_by_parts_equality_rtx (arg1, label2, label);
5427 break;
5429 case NE:
5430 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5431 do_jump_by_parts_equality_rtx (arg1, label, label2);
5432 break;
5434 default:
5435 gcc_unreachable ();
5438 emit_label (label2);
5440 else
5441 emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, label);