2016-11-10 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / ira.c
blob315b8470b7f28690cf493d61b2f18fea085a2e77
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
396 struct target_ira default_target_ira;
397 struct target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
426 /* All registers that can be eliminated. */
428 HARD_REG_SET eliminable_regset;
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
446 int i, m, hard_regno;
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
453 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
454 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
455 hard_regno + i);
460 #define no_unit_alloc_regs \
461 (this_target_ira_int->x_no_unit_alloc_regs)
463 /* The function sets up the three arrays declared above. */
464 static void
465 setup_class_hard_regs (void)
467 int cl, i, hard_regno, n;
468 HARD_REG_SET processed_hard_reg_set;
470 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
471 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
474 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 #ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485 #else
486 hard_regno = i;
487 #endif
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
499 ira_class_hard_regs_num[cl] = n;
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510 static void
511 setup_alloc_regs (bool use_hard_frame_p)
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515 #endif
516 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
517 if (! use_hard_frame_p)
518 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
519 setup_class_hard_regs ();
524 #define alloc_reg_class_subclasses \
525 (this_target_ira_int->x_alloc_reg_class_subclasses)
527 /* Initialize the table of subclasses of each reg class. */
528 static void
529 setup_reg_subclasses (void)
531 int i, j;
532 HARD_REG_SET temp_hard_regset2;
534 for (i = 0; i < N_REG_CLASSES; i++)
535 for (j = 0; j < N_REG_CLASSES; j++)
536 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538 for (i = 0; i < N_REG_CLASSES; i++)
540 if (i == (int) NO_REGS)
541 continue;
543 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
544 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
545 if (hard_reg_set_empty_p (temp_hard_regset))
546 continue;
547 for (j = 0; j < N_REG_CLASSES; j++)
548 if (i != j)
550 enum reg_class *p;
552 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
553 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
554 if (! hard_reg_set_subset_p (temp_hard_regset,
555 temp_hard_regset2))
556 continue;
557 p = &alloc_reg_class_subclasses[j][0];
558 while (*p != LIM_REG_CLASSES) p++;
559 *p = (enum reg_class) i;
566 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
567 static void
568 setup_class_subset_and_memory_move_costs (void)
570 int cl, cl2, mode, cost;
571 HARD_REG_SET temp_hard_regset2;
573 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
574 ira_memory_move_cost[mode][NO_REGS][0]
575 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
576 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
578 if (cl != (int) NO_REGS)
579 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
581 ira_max_memory_move_cost[mode][cl][0]
582 = ira_memory_move_cost[mode][cl][0]
583 = memory_move_cost ((machine_mode) mode,
584 (reg_class_t) cl, false);
585 ira_max_memory_move_cost[mode][cl][1]
586 = ira_memory_move_cost[mode][cl][1]
587 = memory_move_cost ((machine_mode) mode,
588 (reg_class_t) cl, true);
589 /* Costs for NO_REGS are used in cost calculation on the
590 1st pass when the preferred register classes are not
591 known yet. In this case we take the best scenario. */
592 if (ira_memory_move_cost[mode][NO_REGS][0]
593 > ira_memory_move_cost[mode][cl][0])
594 ira_max_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][NO_REGS][0]
596 = ira_memory_move_cost[mode][cl][0];
597 if (ira_memory_move_cost[mode][NO_REGS][1]
598 > ira_memory_move_cost[mode][cl][1])
599 ira_max_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][NO_REGS][1]
601 = ira_memory_move_cost[mode][cl][1];
604 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
605 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
607 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
608 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
609 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
610 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
611 ira_class_subset_p[cl][cl2]
612 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
613 if (! hard_reg_set_empty_p (temp_hard_regset2)
614 && hard_reg_set_subset_p (reg_class_contents[cl2],
615 reg_class_contents[cl]))
616 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
618 cost = ira_memory_move_cost[mode][cl2][0];
619 if (cost > ira_max_memory_move_cost[mode][cl][0])
620 ira_max_memory_move_cost[mode][cl][0] = cost;
621 cost = ira_memory_move_cost[mode][cl2][1];
622 if (cost > ira_max_memory_move_cost[mode][cl][1])
623 ira_max_memory_move_cost[mode][cl][1] = cost;
626 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
627 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
629 ira_memory_move_cost[mode][cl][0]
630 = ira_max_memory_move_cost[mode][cl][0];
631 ira_memory_move_cost[mode][cl][1]
632 = ira_max_memory_move_cost[mode][cl][1];
634 setup_reg_subclasses ();
639 /* Define the following macro if allocation through malloc if
640 preferable. */
641 #define IRA_NO_OBSTACK
643 #ifndef IRA_NO_OBSTACK
644 /* Obstack used for storing all dynamic data (except bitmaps) of the
645 IRA. */
646 static struct obstack ira_obstack;
647 #endif
649 /* Obstack used for storing all bitmaps of the IRA. */
650 static struct bitmap_obstack ira_bitmap_obstack;
652 /* Allocate memory of size LEN for IRA data. */
653 void *
654 ira_allocate (size_t len)
656 void *res;
658 #ifndef IRA_NO_OBSTACK
659 res = obstack_alloc (&ira_obstack, len);
660 #else
661 res = xmalloc (len);
662 #endif
663 return res;
666 /* Free memory ADDR allocated for IRA data. */
667 void
668 ira_free (void *addr ATTRIBUTE_UNUSED)
670 #ifndef IRA_NO_OBSTACK
671 /* do nothing */
672 #else
673 free (addr);
674 #endif
678 /* Allocate and returns bitmap for IRA. */
679 bitmap
680 ira_allocate_bitmap (void)
682 return BITMAP_ALLOC (&ira_bitmap_obstack);
685 /* Free bitmap B allocated for IRA. */
686 void
687 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
689 /* do nothing */
694 /* Output information about allocation of all allocnos (except for
695 caps) into file F. */
696 void
697 ira_print_disposition (FILE *f)
699 int i, n, max_regno;
700 ira_allocno_t a;
701 basic_block bb;
703 fprintf (f, "Disposition:");
704 max_regno = max_reg_num ();
705 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
706 for (a = ira_regno_allocno_map[i];
707 a != NULL;
708 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
710 if (n % 4 == 0)
711 fprintf (f, "\n");
712 n++;
713 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
714 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
715 fprintf (f, "b%-3d", bb->index);
716 else
717 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
718 if (ALLOCNO_HARD_REGNO (a) >= 0)
719 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
720 else
721 fprintf (f, " mem");
723 fprintf (f, "\n");
726 /* Outputs information about allocation of all allocnos into
727 stderr. */
728 void
729 ira_debug_disposition (void)
731 ira_print_disposition (stderr);
736 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
737 register class containing stack registers or NO_REGS if there are
738 no stack registers. To find this class, we iterate through all
739 register pressure classes and choose the first register pressure
740 class containing all the stack registers and having the biggest
741 size. */
742 static void
743 setup_stack_reg_pressure_class (void)
745 ira_stack_reg_pressure_class = NO_REGS;
746 #ifdef STACK_REGS
748 int i, best, size;
749 enum reg_class cl;
750 HARD_REG_SET temp_hard_regset2;
752 CLEAR_HARD_REG_SET (temp_hard_regset);
753 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
754 SET_HARD_REG_BIT (temp_hard_regset, i);
755 best = 0;
756 for (i = 0; i < ira_pressure_classes_num; i++)
758 cl = ira_pressure_classes[i];
759 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
760 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
761 size = hard_reg_set_size (temp_hard_regset2);
762 if (best < size)
764 best = size;
765 ira_stack_reg_pressure_class = cl;
769 #endif
772 /* Find pressure classes which are register classes for which we
773 calculate register pressure in IRA, register pressure sensitive
774 insn scheduling, and register pressure sensitive loop invariant
775 motion.
777 To make register pressure calculation easy, we always use
778 non-intersected register pressure classes. A move of hard
779 registers from one register pressure class is not more expensive
780 than load and store of the hard registers. Most likely an allocno
781 class will be a subset of a register pressure class and in many
782 cases a register pressure class. That makes usage of register
783 pressure classes a good approximation to find a high register
784 pressure. */
785 static void
786 setup_pressure_classes (void)
788 int cost, i, n, curr;
789 int cl, cl2;
790 enum reg_class pressure_classes[N_REG_CLASSES];
791 int m;
792 HARD_REG_SET temp_hard_regset2;
793 bool insert_p;
795 if (targetm.compute_pressure_classes)
796 n = targetm.compute_pressure_classes (pressure_classes);
797 else
799 n = 0;
800 for (cl = 0; cl < N_REG_CLASSES; cl++)
802 if (ira_class_hard_regs_num[cl] == 0)
803 continue;
804 if (ira_class_hard_regs_num[cl] != 1
805 /* A register class without subclasses may contain a few
806 hard registers and movement between them is costly
807 (e.g. SPARC FPCC registers). We still should consider it
808 as a candidate for a pressure class. */
809 && alloc_reg_class_subclasses[cl][0] < cl)
811 /* Check that the moves between any hard registers of the
812 current class are not more expensive for a legal mode
813 than load/store of the hard registers of the current
814 class. Such class is a potential candidate to be a
815 register pressure class. */
816 for (m = 0; m < NUM_MACHINE_MODES; m++)
818 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
819 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
820 AND_COMPL_HARD_REG_SET (temp_hard_regset,
821 ira_prohibited_class_mode_regs[cl][m]);
822 if (hard_reg_set_empty_p (temp_hard_regset))
823 continue;
824 ira_init_register_move_cost_if_necessary ((machine_mode) m);
825 cost = ira_register_move_cost[m][cl][cl];
826 if (cost <= ira_max_memory_move_cost[m][cl][1]
827 || cost <= ira_max_memory_move_cost[m][cl][0])
828 break;
830 if (m >= NUM_MACHINE_MODES)
831 continue;
833 curr = 0;
834 insert_p = true;
835 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
836 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
837 /* Remove so far added pressure classes which are subset of the
838 current candidate class. Prefer GENERAL_REGS as a pressure
839 register class to another class containing the same
840 allocatable hard registers. We do this because machine
841 dependent cost hooks might give wrong costs for the latter
842 class but always give the right cost for the former class
843 (GENERAL_REGS). */
844 for (i = 0; i < n; i++)
846 cl2 = pressure_classes[i];
847 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
848 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
849 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
850 && (! hard_reg_set_equal_p (temp_hard_regset,
851 temp_hard_regset2)
852 || cl2 == (int) GENERAL_REGS))
854 pressure_classes[curr++] = (enum reg_class) cl2;
855 insert_p = false;
856 continue;
858 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
859 && (! hard_reg_set_equal_p (temp_hard_regset2,
860 temp_hard_regset)
861 || cl == (int) GENERAL_REGS))
862 continue;
863 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
864 insert_p = false;
865 pressure_classes[curr++] = (enum reg_class) cl2;
867 /* If the current candidate is a subset of a so far added
868 pressure class, don't add it to the list of the pressure
869 classes. */
870 if (insert_p)
871 pressure_classes[curr++] = (enum reg_class) cl;
872 n = curr;
875 #ifdef ENABLE_IRA_CHECKING
877 HARD_REG_SET ignore_hard_regs;
879 /* Check pressure classes correctness: here we check that hard
880 registers from all register pressure classes contains all hard
881 registers available for the allocation. */
882 CLEAR_HARD_REG_SET (temp_hard_regset);
883 CLEAR_HARD_REG_SET (temp_hard_regset2);
884 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
885 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
887 /* For some targets (like MIPS with MD_REGS), there are some
888 classes with hard registers available for allocation but
889 not able to hold value of any mode. */
890 for (m = 0; m < NUM_MACHINE_MODES; m++)
891 if (contains_reg_of_mode[cl][m])
892 break;
893 if (m >= NUM_MACHINE_MODES)
895 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
896 continue;
898 for (i = 0; i < n; i++)
899 if ((int) pressure_classes[i] == cl)
900 break;
901 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
902 if (i < n)
903 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
905 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
906 /* Some targets (like SPARC with ICC reg) have allocatable regs
907 for which no reg class is defined. */
908 if (REGNO_REG_CLASS (i) == NO_REGS)
909 SET_HARD_REG_BIT (ignore_hard_regs, i);
910 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
911 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
912 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
914 #endif
915 ira_pressure_classes_num = 0;
916 for (i = 0; i < n; i++)
918 cl = (int) pressure_classes[i];
919 ira_reg_pressure_class_p[cl] = true;
920 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
922 setup_stack_reg_pressure_class ();
925 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
926 whose register move cost between any registers of the class is the
927 same as for all its subclasses. We use the data to speed up the
928 2nd pass of calculations of allocno costs. */
929 static void
930 setup_uniform_class_p (void)
932 int i, cl, cl2, m;
934 for (cl = 0; cl < N_REG_CLASSES; cl++)
936 ira_uniform_class_p[cl] = false;
937 if (ira_class_hard_regs_num[cl] == 0)
938 continue;
939 /* We can not use alloc_reg_class_subclasses here because move
940 cost hooks does not take into account that some registers are
941 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
942 is element of alloc_reg_class_subclasses for GENERAL_REGS
943 because SSE regs are unavailable. */
944 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
946 if (ira_class_hard_regs_num[cl2] == 0)
947 continue;
948 for (m = 0; m < NUM_MACHINE_MODES; m++)
949 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
951 ira_init_register_move_cost_if_necessary ((machine_mode) m);
952 if (ira_register_move_cost[m][cl][cl]
953 != ira_register_move_cost[m][cl2][cl2])
954 break;
956 if (m < NUM_MACHINE_MODES)
957 break;
959 if (cl2 == LIM_REG_CLASSES)
960 ira_uniform_class_p[cl] = true;
964 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
965 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
967 Target may have many subtargets and not all target hard registers can
968 be used for allocation, e.g. x86 port in 32-bit mode can not use
969 hard registers introduced in x86-64 like r8-r15). Some classes
970 might have the same allocatable hard registers, e.g. INDEX_REGS
971 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
972 calculations efforts we introduce allocno classes which contain
973 unique non-empty sets of allocatable hard-registers.
975 Pseudo class cost calculation in ira-costs.c is very expensive.
976 Therefore we are trying to decrease number of classes involved in
977 such calculation. Register classes used in the cost calculation
978 are called important classes. They are allocno classes and other
979 non-empty classes whose allocatable hard register sets are inside
980 of an allocno class hard register set. From the first sight, it
981 looks like that they are just allocno classes. It is not true. In
982 example of x86-port in 32-bit mode, allocno classes will contain
983 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
984 registers are the same for the both classes). The important
985 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
986 because a machine description insn constraint may refers for
987 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
988 of the insn constraints. */
989 static void
990 setup_allocno_and_important_classes (void)
992 int i, j, n, cl;
993 bool set_p;
994 HARD_REG_SET temp_hard_regset2;
995 static enum reg_class classes[LIM_REG_CLASSES + 1];
997 n = 0;
998 /* Collect classes which contain unique sets of allocatable hard
999 registers. Prefer GENERAL_REGS to other classes containing the
1000 same set of hard registers. */
1001 for (i = 0; i < LIM_REG_CLASSES; i++)
1003 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1004 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1005 for (j = 0; j < n; j++)
1007 cl = classes[j];
1008 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1009 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1010 no_unit_alloc_regs);
1011 if (hard_reg_set_equal_p (temp_hard_regset,
1012 temp_hard_regset2))
1013 break;
1015 if (j >= n || targetm.additional_allocno_class_p (i))
1016 classes[n++] = (enum reg_class) i;
1017 else if (i == GENERAL_REGS)
1018 /* Prefer general regs. For i386 example, it means that
1019 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1020 (all of them consists of the same available hard
1021 registers). */
1022 classes[j] = (enum reg_class) i;
1024 classes[n] = LIM_REG_CLASSES;
1026 /* Set up classes which can be used for allocnos as classes
1027 containing non-empty unique sets of allocatable hard
1028 registers. */
1029 ira_allocno_classes_num = 0;
1030 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1031 if (ira_class_hard_regs_num[cl] > 0)
1032 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1033 ira_important_classes_num = 0;
1034 /* Add non-allocno classes containing to non-empty set of
1035 allocatable hard regs. */
1036 for (cl = 0; cl < N_REG_CLASSES; cl++)
1037 if (ira_class_hard_regs_num[cl] > 0)
1039 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1040 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1041 set_p = false;
1042 for (j = 0; j < ira_allocno_classes_num; j++)
1044 COPY_HARD_REG_SET (temp_hard_regset2,
1045 reg_class_contents[ira_allocno_classes[j]]);
1046 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1047 if ((enum reg_class) cl == ira_allocno_classes[j])
1048 break;
1049 else if (hard_reg_set_subset_p (temp_hard_regset,
1050 temp_hard_regset2))
1051 set_p = true;
1053 if (set_p && j >= ira_allocno_classes_num)
1054 ira_important_classes[ira_important_classes_num++]
1055 = (enum reg_class) cl;
1057 /* Now add allocno classes to the important classes. */
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_important_classes[ira_important_classes_num++]
1060 = ira_allocno_classes[j];
1061 for (cl = 0; cl < N_REG_CLASSES; cl++)
1063 ira_reg_allocno_class_p[cl] = false;
1064 ira_reg_pressure_class_p[cl] = false;
1066 for (j = 0; j < ira_allocno_classes_num; j++)
1067 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1068 setup_pressure_classes ();
1069 setup_uniform_class_p ();
1072 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1073 given by array CLASSES of length CLASSES_NUM. The function is used
1074 make translation any reg class to an allocno class or to an
1075 pressure class. This translation is necessary for some
1076 calculations when we can use only allocno or pressure classes and
1077 such translation represents an approximate representation of all
1078 classes.
1080 The translation in case when allocatable hard register set of a
1081 given class is subset of allocatable hard register set of a class
1082 in CLASSES is pretty simple. We use smallest classes from CLASSES
1083 containing a given class. If allocatable hard register set of a
1084 given class is not a subset of any corresponding set of a class
1085 from CLASSES, we use the cheapest (with load/store point of view)
1086 class from CLASSES whose set intersects with given class set. */
1087 static void
1088 setup_class_translate_array (enum reg_class *class_translate,
1089 int classes_num, enum reg_class *classes)
1091 int cl, mode;
1092 enum reg_class aclass, best_class, *cl_ptr;
1093 int i, cost, min_cost, best_cost;
1095 for (cl = 0; cl < N_REG_CLASSES; cl++)
1096 class_translate[cl] = NO_REGS;
1098 for (i = 0; i < classes_num; i++)
1100 aclass = classes[i];
1101 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1102 (cl = *cl_ptr) != LIM_REG_CLASSES;
1103 cl_ptr++)
1104 if (class_translate[cl] == NO_REGS)
1105 class_translate[cl] = aclass;
1106 class_translate[aclass] = aclass;
1108 /* For classes which are not fully covered by one of given classes
1109 (in other words covered by more one given class), use the
1110 cheapest class. */
1111 for (cl = 0; cl < N_REG_CLASSES; cl++)
1113 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1114 continue;
1115 best_class = NO_REGS;
1116 best_cost = INT_MAX;
1117 for (i = 0; i < classes_num; i++)
1119 aclass = classes[i];
1120 COPY_HARD_REG_SET (temp_hard_regset,
1121 reg_class_contents[aclass]);
1122 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1123 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1124 if (! hard_reg_set_empty_p (temp_hard_regset))
1126 min_cost = INT_MAX;
1127 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1129 cost = (ira_memory_move_cost[mode][aclass][0]
1130 + ira_memory_move_cost[mode][aclass][1]);
1131 if (min_cost > cost)
1132 min_cost = cost;
1134 if (best_class == NO_REGS || best_cost > min_cost)
1136 best_class = aclass;
1137 best_cost = min_cost;
1141 class_translate[cl] = best_class;
1145 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1146 IRA_PRESSURE_CLASS_TRANSLATE. */
1147 static void
1148 setup_class_translate (void)
1150 setup_class_translate_array (ira_allocno_class_translate,
1151 ira_allocno_classes_num, ira_allocno_classes);
1152 setup_class_translate_array (ira_pressure_class_translate,
1153 ira_pressure_classes_num, ira_pressure_classes);
1156 /* Order numbers of allocno classes in original target allocno class
1157 array, -1 for non-allocno classes. */
1158 static int allocno_class_order[N_REG_CLASSES];
1160 /* The function used to sort the important classes. */
1161 static int
1162 comp_reg_classes_func (const void *v1p, const void *v2p)
1164 enum reg_class cl1 = *(const enum reg_class *) v1p;
1165 enum reg_class cl2 = *(const enum reg_class *) v2p;
1166 enum reg_class tcl1, tcl2;
1167 int diff;
1169 tcl1 = ira_allocno_class_translate[cl1];
1170 tcl2 = ira_allocno_class_translate[cl2];
1171 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1172 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1173 return diff;
1174 return (int) cl1 - (int) cl2;
1177 /* For correct work of function setup_reg_class_relation we need to
1178 reorder important classes according to the order of their allocno
1179 classes. It places important classes containing the same
1180 allocatable hard register set adjacent to each other and allocno
1181 class with the allocatable hard register set right after the other
1182 important classes with the same set.
1184 In example from comments of function
1185 setup_allocno_and_important_classes, it places LEGACY_REGS and
1186 GENERAL_REGS close to each other and GENERAL_REGS is after
1187 LEGACY_REGS. */
1188 static void
1189 reorder_important_classes (void)
1191 int i;
1193 for (i = 0; i < N_REG_CLASSES; i++)
1194 allocno_class_order[i] = -1;
1195 for (i = 0; i < ira_allocno_classes_num; i++)
1196 allocno_class_order[ira_allocno_classes[i]] = i;
1197 qsort (ira_important_classes, ira_important_classes_num,
1198 sizeof (enum reg_class), comp_reg_classes_func);
1199 for (i = 0; i < ira_important_classes_num; i++)
1200 ira_important_class_nums[ira_important_classes[i]] = i;
1203 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1204 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1205 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1206 please see corresponding comments in ira-int.h. */
1207 static void
1208 setup_reg_class_relations (void)
1210 int i, cl1, cl2, cl3;
1211 HARD_REG_SET intersection_set, union_set, temp_set2;
1212 bool important_class_p[N_REG_CLASSES];
1214 memset (important_class_p, 0, sizeof (important_class_p));
1215 for (i = 0; i < ira_important_classes_num; i++)
1216 important_class_p[ira_important_classes[i]] = true;
1217 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1219 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1220 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1222 ira_reg_classes_intersect_p[cl1][cl2] = false;
1223 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1224 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1225 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1226 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1227 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1228 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1229 if (hard_reg_set_empty_p (temp_hard_regset)
1230 && hard_reg_set_empty_p (temp_set2))
1232 /* The both classes have no allocatable hard registers
1233 -- take all class hard registers into account and use
1234 reg_class_subunion and reg_class_superunion. */
1235 for (i = 0;; i++)
1237 cl3 = reg_class_subclasses[cl1][i];
1238 if (cl3 == LIM_REG_CLASSES)
1239 break;
1240 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1241 (enum reg_class) cl3))
1242 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1244 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1245 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1246 continue;
1248 ira_reg_classes_intersect_p[cl1][cl2]
1249 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1250 if (important_class_p[cl1] && important_class_p[cl2]
1251 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1253 /* CL1 and CL2 are important classes and CL1 allocatable
1254 hard register set is inside of CL2 allocatable hard
1255 registers -- make CL1 a superset of CL2. */
1256 enum reg_class *p;
1258 p = &ira_reg_class_super_classes[cl1][0];
1259 while (*p != LIM_REG_CLASSES)
1260 p++;
1261 *p++ = (enum reg_class) cl2;
1262 *p = LIM_REG_CLASSES;
1264 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1265 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1266 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1267 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1268 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1269 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1270 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1271 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1272 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1274 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1275 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1276 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1278 /* CL3 allocatable hard register set is inside of
1279 intersection of allocatable hard register sets
1280 of CL1 and CL2. */
1281 if (important_class_p[cl3])
1283 COPY_HARD_REG_SET
1284 (temp_set2,
1285 reg_class_contents
1286 [(int) ira_reg_class_intersect[cl1][cl2]]);
1287 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1288 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1289 /* If the allocatable hard register sets are
1290 the same, prefer GENERAL_REGS or the
1291 smallest class for debugging
1292 purposes. */
1293 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1294 && (cl3 == GENERAL_REGS
1295 || ((ira_reg_class_intersect[cl1][cl2]
1296 != GENERAL_REGS)
1297 && hard_reg_set_subset_p
1298 (reg_class_contents[cl3],
1299 reg_class_contents
1300 [(int)
1301 ira_reg_class_intersect[cl1][cl2]])))))
1302 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1304 COPY_HARD_REG_SET
1305 (temp_set2,
1306 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1307 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1308 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1309 /* Ignore unavailable hard registers and prefer
1310 smallest class for debugging purposes. */
1311 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1312 && hard_reg_set_subset_p
1313 (reg_class_contents[cl3],
1314 reg_class_contents
1315 [(int) ira_reg_class_subset[cl1][cl2]])))
1316 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1318 if (important_class_p[cl3]
1319 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1321 /* CL3 allocatable hard register set is inside of
1322 union of allocatable hard register sets of CL1
1323 and CL2. */
1324 COPY_HARD_REG_SET
1325 (temp_set2,
1326 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1327 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1328 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1329 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1331 && (! hard_reg_set_equal_p (temp_set2,
1332 temp_hard_regset)
1333 || cl3 == GENERAL_REGS
1334 /* If the allocatable hard register sets are the
1335 same, prefer GENERAL_REGS or the smallest
1336 class for debugging purposes. */
1337 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1338 && hard_reg_set_subset_p
1339 (reg_class_contents[cl3],
1340 reg_class_contents
1341 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1342 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1344 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1346 /* CL3 allocatable hard register set contains union
1347 of allocatable hard register sets of CL1 and
1348 CL2. */
1349 COPY_HARD_REG_SET
1350 (temp_set2,
1351 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1352 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1353 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1354 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1356 && (! hard_reg_set_equal_p (temp_set2,
1357 temp_hard_regset)
1358 || cl3 == GENERAL_REGS
1359 /* If the allocatable hard register sets are the
1360 same, prefer GENERAL_REGS or the smallest
1361 class for debugging purposes. */
1362 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1363 && hard_reg_set_subset_p
1364 (reg_class_contents[cl3],
1365 reg_class_contents
1366 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1367 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1374 /* Output all uniform and important classes into file F. */
1375 static void
1376 print_uniform_and_important_classes (FILE *f)
1378 int i, cl;
1380 fprintf (f, "Uniform classes:\n");
1381 for (cl = 0; cl < N_REG_CLASSES; cl++)
1382 if (ira_uniform_class_p[cl])
1383 fprintf (f, " %s", reg_class_names[cl]);
1384 fprintf (f, "\nImportant classes:\n");
1385 for (i = 0; i < ira_important_classes_num; i++)
1386 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1387 fprintf (f, "\n");
1390 /* Output all possible allocno or pressure classes and their
1391 translation map into file F. */
1392 static void
1393 print_translated_classes (FILE *f, bool pressure_p)
1395 int classes_num = (pressure_p
1396 ? ira_pressure_classes_num : ira_allocno_classes_num);
1397 enum reg_class *classes = (pressure_p
1398 ? ira_pressure_classes : ira_allocno_classes);
1399 enum reg_class *class_translate = (pressure_p
1400 ? ira_pressure_class_translate
1401 : ira_allocno_class_translate);
1402 int i;
1404 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1405 for (i = 0; i < classes_num; i++)
1406 fprintf (f, " %s", reg_class_names[classes[i]]);
1407 fprintf (f, "\nClass translation:\n");
1408 for (i = 0; i < N_REG_CLASSES; i++)
1409 fprintf (f, " %s -> %s\n", reg_class_names[i],
1410 reg_class_names[class_translate[i]]);
1413 /* Output all possible allocno and translation classes and the
1414 translation maps into stderr. */
1415 void
1416 ira_debug_allocno_classes (void)
1418 print_uniform_and_important_classes (stderr);
1419 print_translated_classes (stderr, false);
1420 print_translated_classes (stderr, true);
1423 /* Set up different arrays concerning class subsets, allocno and
1424 important classes. */
1425 static void
1426 find_reg_classes (void)
1428 setup_allocno_and_important_classes ();
1429 setup_class_translate ();
1430 reorder_important_classes ();
1431 setup_reg_class_relations ();
1436 /* Set up the array above. */
1437 static void
1438 setup_hard_regno_aclass (void)
1440 int i;
1442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1444 #if 1
1445 ira_hard_regno_allocno_class[i]
1446 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1447 ? NO_REGS
1448 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1449 #else
1450 int j;
1451 enum reg_class cl;
1452 ira_hard_regno_allocno_class[i] = NO_REGS;
1453 for (j = 0; j < ira_allocno_classes_num; j++)
1455 cl = ira_allocno_classes[j];
1456 if (ira_class_hard_reg_index[cl][i] >= 0)
1458 ira_hard_regno_allocno_class[i] = cl;
1459 break;
1462 #endif
1468 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1469 static void
1470 setup_reg_class_nregs (void)
1472 int i, cl, cl2, m;
1474 for (m = 0; m < MAX_MACHINE_MODE; m++)
1476 for (cl = 0; cl < N_REG_CLASSES; cl++)
1477 ira_reg_class_max_nregs[cl][m]
1478 = ira_reg_class_min_nregs[cl][m]
1479 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1480 for (cl = 0; cl < N_REG_CLASSES; cl++)
1481 for (i = 0;
1482 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1483 i++)
1484 if (ira_reg_class_min_nregs[cl2][m]
1485 < ira_reg_class_min_nregs[cl][m])
1486 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1492 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1493 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1494 static void
1495 setup_prohibited_class_mode_regs (void)
1497 int j, k, hard_regno, cl, last_hard_regno, count;
1499 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1501 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1502 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1503 for (j = 0; j < NUM_MACHINE_MODES; j++)
1505 count = 0;
1506 last_hard_regno = -1;
1507 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1508 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1510 hard_regno = ira_class_hard_regs[cl][k];
1511 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1512 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1513 hard_regno);
1514 else if (in_hard_reg_set_p (temp_hard_regset,
1515 (machine_mode) j, hard_regno))
1517 last_hard_regno = hard_regno;
1518 count++;
1521 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1526 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1527 spanning from one register pressure class to another one. It is
1528 called after defining the pressure classes. */
1529 static void
1530 clarify_prohibited_class_mode_regs (void)
1532 int j, k, hard_regno, cl, pclass, nregs;
1534 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1535 for (j = 0; j < NUM_MACHINE_MODES; j++)
1537 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1538 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1540 hard_regno = ira_class_hard_regs[cl][k];
1541 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1542 continue;
1543 nregs = hard_regno_nregs[hard_regno][j];
1544 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1546 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1547 hard_regno);
1548 continue;
1550 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1551 for (nregs-- ;nregs >= 0; nregs--)
1552 if (((enum reg_class) pclass
1553 != ira_pressure_class_translate[REGNO_REG_CLASS
1554 (hard_regno + nregs)]))
1556 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1557 hard_regno);
1558 break;
1560 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1561 hard_regno))
1562 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1563 (machine_mode) j, hard_regno);
1568 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1569 and IRA_MAY_MOVE_OUT_COST for MODE. */
1570 void
1571 ira_init_register_move_cost (machine_mode mode)
1573 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1574 bool all_match = true;
1575 unsigned int cl1, cl2;
1577 ira_assert (ira_register_move_cost[mode] == NULL
1578 && ira_may_move_in_cost[mode] == NULL
1579 && ira_may_move_out_cost[mode] == NULL);
1580 ira_assert (have_regs_of_mode[mode]);
1581 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1582 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1584 int cost;
1585 if (!contains_reg_of_mode[cl1][mode]
1586 || !contains_reg_of_mode[cl2][mode])
1588 if ((ira_reg_class_max_nregs[cl1][mode]
1589 > ira_class_hard_regs_num[cl1])
1590 || (ira_reg_class_max_nregs[cl2][mode]
1591 > ira_class_hard_regs_num[cl2]))
1592 cost = 65535;
1593 else
1594 cost = (ira_memory_move_cost[mode][cl1][0]
1595 + ira_memory_move_cost[mode][cl2][1]) * 2;
1597 else
1599 cost = register_move_cost (mode, (enum reg_class) cl1,
1600 (enum reg_class) cl2);
1601 ira_assert (cost < 65535);
1603 all_match &= (last_move_cost[cl1][cl2] == cost);
1604 last_move_cost[cl1][cl2] = cost;
1606 if (all_match && last_mode_for_init_move_cost != -1)
1608 ira_register_move_cost[mode]
1609 = ira_register_move_cost[last_mode_for_init_move_cost];
1610 ira_may_move_in_cost[mode]
1611 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1612 ira_may_move_out_cost[mode]
1613 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1614 return;
1616 last_mode_for_init_move_cost = mode;
1617 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1618 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1619 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1620 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1621 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1623 int cost;
1624 enum reg_class *p1, *p2;
1626 if (last_move_cost[cl1][cl2] == 65535)
1628 ira_register_move_cost[mode][cl1][cl2] = 65535;
1629 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1630 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1632 else
1634 cost = last_move_cost[cl1][cl2];
1636 for (p2 = &reg_class_subclasses[cl2][0];
1637 *p2 != LIM_REG_CLASSES; p2++)
1638 if (ira_class_hard_regs_num[*p2] > 0
1639 && (ira_reg_class_max_nregs[*p2][mode]
1640 <= ira_class_hard_regs_num[*p2]))
1641 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1643 for (p1 = &reg_class_subclasses[cl1][0];
1644 *p1 != LIM_REG_CLASSES; p1++)
1645 if (ira_class_hard_regs_num[*p1] > 0
1646 && (ira_reg_class_max_nregs[*p1][mode]
1647 <= ira_class_hard_regs_num[*p1]))
1648 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1650 ira_assert (cost <= 65535);
1651 ira_register_move_cost[mode][cl1][cl2] = cost;
1653 if (ira_class_subset_p[cl1][cl2])
1654 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1655 else
1656 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1658 if (ira_class_subset_p[cl2][cl1])
1659 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1660 else
1661 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1668 /* This is called once during compiler work. It sets up
1669 different arrays whose values don't depend on the compiled
1670 function. */
1671 void
1672 ira_init_once (void)
1674 ira_init_costs_once ();
1675 lra_init_once ();
1677 ira_use_lra_p = targetm.lra_p ();
1680 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1681 ira_may_move_out_cost for each mode. */
1682 void
1683 target_ira_int::free_register_move_costs (void)
1685 int mode, i;
1687 /* Reset move_cost and friends, making sure we only free shared
1688 table entries once. */
1689 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1690 if (x_ira_register_move_cost[mode])
1692 for (i = 0;
1693 i < mode && (x_ira_register_move_cost[i]
1694 != x_ira_register_move_cost[mode]);
1695 i++)
1697 if (i == mode)
1699 free (x_ira_register_move_cost[mode]);
1700 free (x_ira_may_move_in_cost[mode]);
1701 free (x_ira_may_move_out_cost[mode]);
1704 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1705 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1706 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1707 last_mode_for_init_move_cost = -1;
1710 target_ira_int::~target_ira_int ()
1712 free_ira_costs ();
1713 free_register_move_costs ();
1716 /* This is called every time when register related information is
1717 changed. */
1718 void
1719 ira_init (void)
1721 this_target_ira_int->free_register_move_costs ();
1722 setup_reg_mode_hard_regset ();
1723 setup_alloc_regs (flag_omit_frame_pointer != 0);
1724 setup_class_subset_and_memory_move_costs ();
1725 setup_reg_class_nregs ();
1726 setup_prohibited_class_mode_regs ();
1727 find_reg_classes ();
1728 clarify_prohibited_class_mode_regs ();
1729 setup_hard_regno_aclass ();
1730 ira_init_costs ();
1734 #define ira_prohibited_mode_move_regs_initialized_p \
1735 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1737 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1738 static void
1739 setup_prohibited_mode_move_regs (void)
1741 int i, j;
1742 rtx test_reg1, test_reg2, move_pat;
1743 rtx_insn *move_insn;
1745 if (ira_prohibited_mode_move_regs_initialized_p)
1746 return;
1747 ira_prohibited_mode_move_regs_initialized_p = true;
1748 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1749 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1750 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1751 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1752 for (i = 0; i < NUM_MACHINE_MODES; i++)
1754 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1755 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1757 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1758 continue;
1759 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1760 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1761 INSN_CODE (move_insn) = -1;
1762 recog_memoized (move_insn);
1763 if (INSN_CODE (move_insn) < 0)
1764 continue;
1765 extract_insn (move_insn);
1766 /* We don't know whether the move will be in code that is optimized
1767 for size or speed, so consider all enabled alternatives. */
1768 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1769 continue;
1770 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1777 /* Setup possible alternatives in ALTS for INSN. */
1778 void
1779 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1781 /* MAP nalt * nop -> start of constraints for given operand and
1782 alternative. */
1783 static vec<const char *> insn_constraints;
1784 int nop, nalt;
1785 bool curr_swapped;
1786 const char *p;
1787 int commutative = -1;
1789 extract_insn (insn);
1790 alternative_mask preferred = get_preferred_alternatives (insn);
1791 CLEAR_HARD_REG_SET (alts);
1792 insn_constraints.release ();
1793 insn_constraints.safe_grow_cleared (recog_data.n_operands
1794 * recog_data.n_alternatives + 1);
1795 /* Check that the hard reg set is enough for holding all
1796 alternatives. It is hard to imagine the situation when the
1797 assertion is wrong. */
1798 ira_assert (recog_data.n_alternatives
1799 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1800 FIRST_PSEUDO_REGISTER));
1801 for (curr_swapped = false;; curr_swapped = true)
1803 /* Calculate some data common for all alternatives to speed up the
1804 function. */
1805 for (nop = 0; nop < recog_data.n_operands; nop++)
1807 for (nalt = 0, p = recog_data.constraints[nop];
1808 nalt < recog_data.n_alternatives;
1809 nalt++)
1811 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1812 while (*p && *p != ',')
1814 /* We only support one commutative marker, the first
1815 one. We already set commutative above. */
1816 if (*p == '%' && commutative < 0)
1817 commutative = nop;
1818 p++;
1820 if (*p)
1821 p++;
1824 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1826 if (!TEST_BIT (preferred, nalt)
1827 || TEST_HARD_REG_BIT (alts, nalt))
1828 continue;
1830 for (nop = 0; nop < recog_data.n_operands; nop++)
1832 int c, len;
1834 rtx op = recog_data.operand[nop];
1835 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1836 if (*p == 0 || *p == ',')
1837 continue;
1840 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1842 case '#':
1843 case ',':
1844 c = '\0';
1845 /* FALLTHRU */
1846 case '\0':
1847 len = 0;
1848 break;
1850 case '%':
1851 /* The commutative modifier is handled above. */
1852 break;
1854 case '0': case '1': case '2': case '3': case '4':
1855 case '5': case '6': case '7': case '8': case '9':
1856 goto op_success;
1857 break;
1859 case 'g':
1860 goto op_success;
1861 break;
1863 default:
1865 enum constraint_num cn = lookup_constraint (p);
1866 switch (get_constraint_type (cn))
1868 case CT_REGISTER:
1869 if (reg_class_for_constraint (cn) != NO_REGS)
1870 goto op_success;
1871 break;
1873 case CT_CONST_INT:
1874 if (CONST_INT_P (op)
1875 && (insn_const_int_ok_for_constraint
1876 (INTVAL (op), cn)))
1877 goto op_success;
1878 break;
1880 case CT_ADDRESS:
1881 case CT_MEMORY:
1882 case CT_SPECIAL_MEMORY:
1883 goto op_success;
1885 case CT_FIXED_FORM:
1886 if (constraint_satisfied_p (op, cn))
1887 goto op_success;
1888 break;
1890 break;
1893 while (p += len, c);
1894 break;
1895 op_success:
1898 if (nop >= recog_data.n_operands)
1899 SET_HARD_REG_BIT (alts, nalt);
1901 if (commutative < 0)
1902 break;
1903 /* Swap forth and back to avoid changing recog_data. */
1904 std::swap (recog_data.operand[commutative],
1905 recog_data.operand[commutative + 1]);
1906 if (curr_swapped)
1907 break;
1911 /* Return the number of the output non-early clobber operand which
1912 should be the same in any case as operand with number OP_NUM (or
1913 negative value if there is no such operand). The function takes
1914 only really possible alternatives into consideration. */
1916 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1918 int curr_alt, c, original, dup;
1919 bool ignore_p, use_commut_op_p;
1920 const char *str;
1922 if (op_num < 0 || recog_data.n_alternatives == 0)
1923 return -1;
1924 /* We should find duplications only for input operands. */
1925 if (recog_data.operand_type[op_num] != OP_IN)
1926 return -1;
1927 str = recog_data.constraints[op_num];
1928 use_commut_op_p = false;
1929 for (;;)
1931 rtx op = recog_data.operand[op_num];
1933 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1934 original = -1;;)
1936 c = *str;
1937 if (c == '\0')
1938 break;
1939 if (c == '#')
1940 ignore_p = true;
1941 else if (c == ',')
1943 curr_alt++;
1944 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1946 else if (! ignore_p)
1947 switch (c)
1949 case 'g':
1950 goto fail;
1951 default:
1953 enum constraint_num cn = lookup_constraint (str);
1954 enum reg_class cl = reg_class_for_constraint (cn);
1955 if (cl != NO_REGS
1956 && !targetm.class_likely_spilled_p (cl))
1957 goto fail;
1958 if (constraint_satisfied_p (op, cn))
1959 goto fail;
1960 break;
1963 case '0': case '1': case '2': case '3': case '4':
1964 case '5': case '6': case '7': case '8': case '9':
1965 if (original != -1 && original != c)
1966 goto fail;
1967 original = c;
1968 break;
1970 str += CONSTRAINT_LEN (c, str);
1972 if (original == -1)
1973 goto fail;
1974 dup = -1;
1975 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1976 *str != 0;
1977 str++)
1978 if (ignore_p)
1980 if (*str == ',')
1981 ignore_p = false;
1983 else if (*str == '#')
1984 ignore_p = true;
1985 else if (! ignore_p)
1987 if (*str == '=')
1988 dup = original - '0';
1989 /* It is better ignore an alternative with early clobber. */
1990 else if (*str == '&')
1991 goto fail;
1993 if (dup >= 0)
1994 return dup;
1995 fail:
1996 if (use_commut_op_p)
1997 break;
1998 use_commut_op_p = true;
1999 if (recog_data.constraints[op_num][0] == '%')
2000 str = recog_data.constraints[op_num + 1];
2001 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2002 str = recog_data.constraints[op_num - 1];
2003 else
2004 break;
2006 return -1;
2011 /* Search forward to see if the source register of a copy insn dies
2012 before either it or the destination register is modified, but don't
2013 scan past the end of the basic block. If so, we can replace the
2014 source with the destination and let the source die in the copy
2015 insn.
2017 This will reduce the number of registers live in that range and may
2018 enable the destination and the source coalescing, thus often saving
2019 one register in addition to a register-register copy. */
2021 static void
2022 decrease_live_ranges_number (void)
2024 basic_block bb;
2025 rtx_insn *insn;
2026 rtx set, src, dest, dest_death, note;
2027 rtx_insn *p, *q;
2028 int sregno, dregno;
2030 if (! flag_expensive_optimizations)
2031 return;
2033 if (ira_dump_file)
2034 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2036 FOR_EACH_BB_FN (bb, cfun)
2037 FOR_BB_INSNS (bb, insn)
2039 set = single_set (insn);
2040 if (! set)
2041 continue;
2042 src = SET_SRC (set);
2043 dest = SET_DEST (set);
2044 if (! REG_P (src) || ! REG_P (dest)
2045 || find_reg_note (insn, REG_DEAD, src))
2046 continue;
2047 sregno = REGNO (src);
2048 dregno = REGNO (dest);
2050 /* We don't want to mess with hard regs if register classes
2051 are small. */
2052 if (sregno == dregno
2053 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2054 && (sregno < FIRST_PSEUDO_REGISTER
2055 || dregno < FIRST_PSEUDO_REGISTER))
2056 /* We don't see all updates to SP if they are in an
2057 auto-inc memory reference, so we must disallow this
2058 optimization on them. */
2059 || sregno == STACK_POINTER_REGNUM
2060 || dregno == STACK_POINTER_REGNUM)
2061 continue;
2063 dest_death = NULL_RTX;
2065 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2067 if (! INSN_P (p))
2068 continue;
2069 if (BLOCK_FOR_INSN (p) != bb)
2070 break;
2072 if (reg_set_p (src, p) || reg_set_p (dest, p)
2073 /* If SRC is an asm-declared register, it must not be
2074 replaced in any asm. Unfortunately, the REG_EXPR
2075 tree for the asm variable may be absent in the SRC
2076 rtx, so we can't check the actual register
2077 declaration easily (the asm operand will have it,
2078 though). To avoid complicating the test for a rare
2079 case, we just don't perform register replacement
2080 for a hard reg mentioned in an asm. */
2081 || (sregno < FIRST_PSEUDO_REGISTER
2082 && asm_noperands (PATTERN (p)) >= 0
2083 && reg_overlap_mentioned_p (src, PATTERN (p)))
2084 /* Don't change hard registers used by a call. */
2085 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2086 && find_reg_fusage (p, USE, src))
2087 /* Don't change a USE of a register. */
2088 || (GET_CODE (PATTERN (p)) == USE
2089 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2090 break;
2092 /* See if all of SRC dies in P. This test is slightly
2093 more conservative than it needs to be. */
2094 if ((note = find_regno_note (p, REG_DEAD, sregno))
2095 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2097 int failed = 0;
2099 /* We can do the optimization. Scan forward from INSN
2100 again, replacing regs as we go. Set FAILED if a
2101 replacement can't be done. In that case, we can't
2102 move the death note for SRC. This should be
2103 rare. */
2105 /* Set to stop at next insn. */
2106 for (q = next_real_insn (insn);
2107 q != next_real_insn (p);
2108 q = next_real_insn (q))
2110 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2112 /* If SRC is a hard register, we might miss
2113 some overlapping registers with
2114 validate_replace_rtx, so we would have to
2115 undo it. We can't if DEST is present in
2116 the insn, so fail in that combination of
2117 cases. */
2118 if (sregno < FIRST_PSEUDO_REGISTER
2119 && reg_mentioned_p (dest, PATTERN (q)))
2120 failed = 1;
2122 /* Attempt to replace all uses. */
2123 else if (!validate_replace_rtx (src, dest, q))
2124 failed = 1;
2126 /* If this succeeded, but some part of the
2127 register is still present, undo the
2128 replacement. */
2129 else if (sregno < FIRST_PSEUDO_REGISTER
2130 && reg_overlap_mentioned_p (src, PATTERN (q)))
2132 validate_replace_rtx (dest, src, q);
2133 failed = 1;
2137 /* If DEST dies here, remove the death note and
2138 save it for later. Make sure ALL of DEST dies
2139 here; again, this is overly conservative. */
2140 if (! dest_death
2141 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2143 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2144 remove_note (q, dest_death);
2145 else
2147 failed = 1;
2148 dest_death = 0;
2153 if (! failed)
2155 /* Move death note of SRC from P to INSN. */
2156 remove_note (p, note);
2157 XEXP (note, 1) = REG_NOTES (insn);
2158 REG_NOTES (insn) = note;
2161 /* DEST is also dead if INSN has a REG_UNUSED note for
2162 DEST. */
2163 if (! dest_death
2164 && (dest_death
2165 = find_regno_note (insn, REG_UNUSED, dregno)))
2167 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2168 remove_note (insn, dest_death);
2171 /* Put death note of DEST on P if we saw it die. */
2172 if (dest_death)
2174 XEXP (dest_death, 1) = REG_NOTES (p);
2175 REG_NOTES (p) = dest_death;
2177 break;
2180 /* If SRC is a hard register which is set or killed in
2181 some other way, we can't do this optimization. */
2182 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2183 break;
2190 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2191 static bool
2192 ira_bad_reload_regno_1 (int regno, rtx x)
2194 int x_regno, n, i;
2195 ira_allocno_t a;
2196 enum reg_class pref;
2198 /* We only deal with pseudo regs. */
2199 if (! x || GET_CODE (x) != REG)
2200 return false;
2202 x_regno = REGNO (x);
2203 if (x_regno < FIRST_PSEUDO_REGISTER)
2204 return false;
2206 /* If the pseudo prefers REGNO explicitly, then do not consider
2207 REGNO a bad spill choice. */
2208 pref = reg_preferred_class (x_regno);
2209 if (reg_class_size[pref] == 1)
2210 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2212 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2213 poor choice for a reload regno. */
2214 a = ira_regno_allocno_map[x_regno];
2215 n = ALLOCNO_NUM_OBJECTS (a);
2216 for (i = 0; i < n; i++)
2218 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2219 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2220 return true;
2222 return false;
2225 /* Return nonzero if REGNO is a particularly bad choice for reloading
2226 IN or OUT. */
2227 bool
2228 ira_bad_reload_regno (int regno, rtx in, rtx out)
2230 return (ira_bad_reload_regno_1 (regno, in)
2231 || ira_bad_reload_regno_1 (regno, out));
2234 /* Add register clobbers from asm statements. */
2235 static void
2236 compute_regs_asm_clobbered (void)
2238 basic_block bb;
2240 FOR_EACH_BB_FN (bb, cfun)
2242 rtx_insn *insn;
2243 FOR_BB_INSNS_REVERSE (bb, insn)
2245 df_ref def;
2247 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2248 FOR_EACH_INSN_DEF (def, insn)
2250 unsigned int dregno = DF_REF_REGNO (def);
2251 if (HARD_REGISTER_NUM_P (dregno))
2252 add_to_hard_reg_set (&crtl->asm_clobbers,
2253 GET_MODE (DF_REF_REAL_REG (def)),
2254 dregno);
2261 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2262 REGS_EVER_LIVE. */
2263 void
2264 ira_setup_eliminable_regset (void)
2266 int i;
2267 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2269 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2270 sp for alloca. So we can't eliminate the frame pointer in that
2271 case. At some point, we should improve this by emitting the
2272 sp-adjusting insns for this case. */
2273 frame_pointer_needed
2274 = (! flag_omit_frame_pointer
2275 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2276 /* We need the frame pointer to catch stack overflow exceptions if
2277 the stack pointer is moving (as for the alloca case just above). */
2278 || (STACK_CHECK_MOVING_SP
2279 && flag_stack_check
2280 && flag_exceptions
2281 && cfun->can_throw_non_call_exceptions)
2282 || crtl->accesses_prior_frames
2283 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2284 /* We need a frame pointer for all Cilk Plus functions that use
2285 Cilk keywords. */
2286 || (flag_cilkplus && cfun->is_cilk_function)
2287 || targetm.frame_pointer_required ());
2289 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2290 RTL is very small. So if we use frame pointer for RA and RTL
2291 actually prevents this, we will spill pseudos assigned to the
2292 frame pointer in LRA. */
2294 if (frame_pointer_needed)
2295 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2297 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2298 CLEAR_HARD_REG_SET (eliminable_regset);
2300 compute_regs_asm_clobbered ();
2302 /* Build the regset of all eliminable registers and show we can't
2303 use those that we already know won't be eliminated. */
2304 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2306 bool cannot_elim
2307 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2308 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2310 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2312 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2314 if (cannot_elim)
2315 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2317 else if (cannot_elim)
2318 error ("%s cannot be used in asm here",
2319 reg_names[eliminables[i].from]);
2320 else
2321 df_set_regs_ever_live (eliminables[i].from, true);
2323 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2325 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2327 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2328 if (frame_pointer_needed)
2329 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2331 else if (frame_pointer_needed)
2332 error ("%s cannot be used in asm here",
2333 reg_names[HARD_FRAME_POINTER_REGNUM]);
2334 else
2335 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2341 /* Vector of substitutions of register numbers,
2342 used to map pseudo regs into hardware regs.
2343 This is set up as a result of register allocation.
2344 Element N is the hard reg assigned to pseudo reg N,
2345 or is -1 if no hard reg was assigned.
2346 If N is a hard reg number, element N is N. */
2347 short *reg_renumber;
2349 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2350 the allocation found by IRA. */
2351 static void
2352 setup_reg_renumber (void)
2354 int regno, hard_regno;
2355 ira_allocno_t a;
2356 ira_allocno_iterator ai;
2358 caller_save_needed = 0;
2359 FOR_EACH_ALLOCNO (a, ai)
2361 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2362 continue;
2363 /* There are no caps at this point. */
2364 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2365 if (! ALLOCNO_ASSIGNED_P (a))
2366 /* It can happen if A is not referenced but partially anticipated
2367 somewhere in a region. */
2368 ALLOCNO_ASSIGNED_P (a) = true;
2369 ira_free_allocno_updated_costs (a);
2370 hard_regno = ALLOCNO_HARD_REGNO (a);
2371 regno = ALLOCNO_REGNO (a);
2372 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2373 if (hard_regno >= 0)
2375 int i, nwords;
2376 enum reg_class pclass;
2377 ira_object_t obj;
2379 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2380 nwords = ALLOCNO_NUM_OBJECTS (a);
2381 for (i = 0; i < nwords; i++)
2383 obj = ALLOCNO_OBJECT (a, i);
2384 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2385 reg_class_contents[pclass]);
2387 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2388 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2389 call_used_reg_set))
2391 ira_assert (!optimize || flag_caller_saves
2392 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2393 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2394 || regno >= ira_reg_equiv_len
2395 || ira_equiv_no_lvalue_p (regno));
2396 caller_save_needed = 1;
2402 /* Set up allocno assignment flags for further allocation
2403 improvements. */
2404 static void
2405 setup_allocno_assignment_flags (void)
2407 int hard_regno;
2408 ira_allocno_t a;
2409 ira_allocno_iterator ai;
2411 FOR_EACH_ALLOCNO (a, ai)
2413 if (! ALLOCNO_ASSIGNED_P (a))
2414 /* It can happen if A is not referenced but partially anticipated
2415 somewhere in a region. */
2416 ira_free_allocno_updated_costs (a);
2417 hard_regno = ALLOCNO_HARD_REGNO (a);
2418 /* Don't assign hard registers to allocnos which are destination
2419 of removed store at the end of loop. It has no sense to keep
2420 the same value in different hard registers. It is also
2421 impossible to assign hard registers correctly to such
2422 allocnos because the cost info and info about intersected
2423 calls are incorrect for them. */
2424 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2425 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2426 || (ALLOCNO_MEMORY_COST (a)
2427 - ALLOCNO_CLASS_COST (a)) < 0);
2428 ira_assert
2429 (hard_regno < 0
2430 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2431 reg_class_contents[ALLOCNO_CLASS (a)]));
2435 /* Evaluate overall allocation cost and the costs for using hard
2436 registers and memory for allocnos. */
2437 static void
2438 calculate_allocation_cost (void)
2440 int hard_regno, cost;
2441 ira_allocno_t a;
2442 ira_allocno_iterator ai;
2444 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2445 FOR_EACH_ALLOCNO (a, ai)
2447 hard_regno = ALLOCNO_HARD_REGNO (a);
2448 ira_assert (hard_regno < 0
2449 || (ira_hard_reg_in_set_p
2450 (hard_regno, ALLOCNO_MODE (a),
2451 reg_class_contents[ALLOCNO_CLASS (a)])));
2452 if (hard_regno < 0)
2454 cost = ALLOCNO_MEMORY_COST (a);
2455 ira_mem_cost += cost;
2457 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2459 cost = (ALLOCNO_HARD_REG_COSTS (a)
2460 [ira_class_hard_reg_index
2461 [ALLOCNO_CLASS (a)][hard_regno]]);
2462 ira_reg_cost += cost;
2464 else
2466 cost = ALLOCNO_CLASS_COST (a);
2467 ira_reg_cost += cost;
2469 ira_overall_cost += cost;
2472 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2474 fprintf (ira_dump_file,
2475 "+++Costs: overall %" PRId64
2476 ", reg %" PRId64
2477 ", mem %" PRId64
2478 ", ld %" PRId64
2479 ", st %" PRId64
2480 ", move %" PRId64,
2481 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2482 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2483 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2484 ira_move_loops_num, ira_additional_jumps_num);
2489 #ifdef ENABLE_IRA_CHECKING
2490 /* Check the correctness of the allocation. We do need this because
2491 of complicated code to transform more one region internal
2492 representation into one region representation. */
2493 static void
2494 check_allocation (void)
2496 ira_allocno_t a;
2497 int hard_regno, nregs, conflict_nregs;
2498 ira_allocno_iterator ai;
2500 FOR_EACH_ALLOCNO (a, ai)
2502 int n = ALLOCNO_NUM_OBJECTS (a);
2503 int i;
2505 if (ALLOCNO_CAP_MEMBER (a) != NULL
2506 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2507 continue;
2508 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2509 if (nregs == 1)
2510 /* We allocated a single hard register. */
2511 n = 1;
2512 else if (n > 1)
2513 /* We allocated multiple hard registers, and we will test
2514 conflicts in a granularity of single hard regs. */
2515 nregs = 1;
2517 for (i = 0; i < n; i++)
2519 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2520 ira_object_t conflict_obj;
2521 ira_object_conflict_iterator oci;
2522 int this_regno = hard_regno;
2523 if (n > 1)
2525 if (REG_WORDS_BIG_ENDIAN)
2526 this_regno += n - i - 1;
2527 else
2528 this_regno += i;
2530 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2532 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2533 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2534 if (conflict_hard_regno < 0)
2535 continue;
2537 conflict_nregs
2538 = (hard_regno_nregs
2539 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2541 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2542 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2544 if (REG_WORDS_BIG_ENDIAN)
2545 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2546 - OBJECT_SUBWORD (conflict_obj) - 1);
2547 else
2548 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2549 conflict_nregs = 1;
2552 if ((conflict_hard_regno <= this_regno
2553 && this_regno < conflict_hard_regno + conflict_nregs)
2554 || (this_regno <= conflict_hard_regno
2555 && conflict_hard_regno < this_regno + nregs))
2557 fprintf (stderr, "bad allocation for %d and %d\n",
2558 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2559 gcc_unreachable ();
2565 #endif
2567 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2568 be already calculated. */
2569 static void
2570 setup_reg_equiv_init (void)
2572 int i;
2573 int max_regno = max_reg_num ();
2575 for (i = 0; i < max_regno; i++)
2576 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2579 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2580 are insns which were generated for such movement. It is assumed
2581 that FROM_REGNO and TO_REGNO always have the same value at the
2582 point of any move containing such registers. This function is used
2583 to update equiv info for register shuffles on the region borders
2584 and for caller save/restore insns. */
2585 void
2586 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2588 rtx_insn *insn;
2589 rtx x, note;
2591 if (! ira_reg_equiv[from_regno].defined_p
2592 && (! ira_reg_equiv[to_regno].defined_p
2593 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2594 && ! MEM_READONLY_P (x))))
2595 return;
2596 insn = insns;
2597 if (NEXT_INSN (insn) != NULL_RTX)
2599 if (! ira_reg_equiv[to_regno].defined_p)
2601 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2602 return;
2604 ira_reg_equiv[to_regno].defined_p = false;
2605 ira_reg_equiv[to_regno].memory
2606 = ira_reg_equiv[to_regno].constant
2607 = ira_reg_equiv[to_regno].invariant
2608 = ira_reg_equiv[to_regno].init_insns = NULL;
2609 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2610 fprintf (ira_dump_file,
2611 " Invalidating equiv info for reg %d\n", to_regno);
2612 return;
2614 /* It is possible that FROM_REGNO still has no equivalence because
2615 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2616 insn was not processed yet. */
2617 if (ira_reg_equiv[from_regno].defined_p)
2619 ira_reg_equiv[to_regno].defined_p = true;
2620 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2622 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2623 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2624 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2625 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2626 ira_reg_equiv[to_regno].memory = x;
2627 if (! MEM_READONLY_P (x))
2628 /* We don't add the insn to insn init list because memory
2629 equivalence is just to say what memory is better to use
2630 when the pseudo is spilled. */
2631 return;
2633 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2635 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2636 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2637 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2638 ira_reg_equiv[to_regno].constant = x;
2640 else
2642 x = ira_reg_equiv[from_regno].invariant;
2643 ira_assert (x != NULL_RTX);
2644 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2645 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2646 ira_reg_equiv[to_regno].invariant = x;
2648 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2650 note = set_unique_reg_note (insn, REG_EQUIV, x);
2651 gcc_assert (note != NULL_RTX);
2652 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2654 fprintf (ira_dump_file,
2655 " Adding equiv note to insn %u for reg %d ",
2656 INSN_UID (insn), to_regno);
2657 dump_value_slim (ira_dump_file, x, 1);
2658 fprintf (ira_dump_file, "\n");
2662 ira_reg_equiv[to_regno].init_insns
2663 = gen_rtx_INSN_LIST (VOIDmode, insn,
2664 ira_reg_equiv[to_regno].init_insns);
2665 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2666 fprintf (ira_dump_file,
2667 " Adding equiv init move insn %u to reg %d\n",
2668 INSN_UID (insn), to_regno);
2671 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2672 by IRA. */
2673 static void
2674 fix_reg_equiv_init (void)
2676 int max_regno = max_reg_num ();
2677 int i, new_regno, max;
2678 rtx set;
2679 rtx_insn_list *x, *next, *prev;
2680 rtx_insn *insn;
2682 if (max_regno_before_ira < max_regno)
2684 max = vec_safe_length (reg_equivs);
2685 grow_reg_equivs ();
2686 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2687 for (prev = NULL, x = reg_equiv_init (i);
2688 x != NULL_RTX;
2689 x = next)
2691 next = x->next ();
2692 insn = x->insn ();
2693 set = single_set (insn);
2694 ira_assert (set != NULL_RTX
2695 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2696 if (REG_P (SET_DEST (set))
2697 && ((int) REGNO (SET_DEST (set)) == i
2698 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2699 new_regno = REGNO (SET_DEST (set));
2700 else if (REG_P (SET_SRC (set))
2701 && ((int) REGNO (SET_SRC (set)) == i
2702 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2703 new_regno = REGNO (SET_SRC (set));
2704 else
2705 gcc_unreachable ();
2706 if (new_regno == i)
2707 prev = x;
2708 else
2710 /* Remove the wrong list element. */
2711 if (prev == NULL_RTX)
2712 reg_equiv_init (i) = next;
2713 else
2714 XEXP (prev, 1) = next;
2715 XEXP (x, 1) = reg_equiv_init (new_regno);
2716 reg_equiv_init (new_regno) = x;
2722 #ifdef ENABLE_IRA_CHECKING
2723 /* Print redundant memory-memory copies. */
2724 static void
2725 print_redundant_copies (void)
2727 int hard_regno;
2728 ira_allocno_t a;
2729 ira_copy_t cp, next_cp;
2730 ira_allocno_iterator ai;
2732 FOR_EACH_ALLOCNO (a, ai)
2734 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2735 /* It is a cap. */
2736 continue;
2737 hard_regno = ALLOCNO_HARD_REGNO (a);
2738 if (hard_regno >= 0)
2739 continue;
2740 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2741 if (cp->first == a)
2742 next_cp = cp->next_first_allocno_copy;
2743 else
2745 next_cp = cp->next_second_allocno_copy;
2746 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2747 && cp->insn != NULL_RTX
2748 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2749 fprintf (ira_dump_file,
2750 " Redundant move from %d(freq %d):%d\n",
2751 INSN_UID (cp->insn), cp->freq, hard_regno);
2755 #endif
2757 /* Setup preferred and alternative classes for new pseudo-registers
2758 created by IRA starting with START. */
2759 static void
2760 setup_preferred_alternate_classes_for_new_pseudos (int start)
2762 int i, old_regno;
2763 int max_regno = max_reg_num ();
2765 for (i = start; i < max_regno; i++)
2767 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2768 ira_assert (i != old_regno);
2769 setup_reg_classes (i, reg_preferred_class (old_regno),
2770 reg_alternate_class (old_regno),
2771 reg_allocno_class (old_regno));
2772 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2773 fprintf (ira_dump_file,
2774 " New r%d: setting preferred %s, alternative %s\n",
2775 i, reg_class_names[reg_preferred_class (old_regno)],
2776 reg_class_names[reg_alternate_class (old_regno)]);
2781 /* The number of entries allocated in reg_info. */
2782 static int allocated_reg_info_size;
2784 /* Regional allocation can create new pseudo-registers. This function
2785 expands some arrays for pseudo-registers. */
2786 static void
2787 expand_reg_info (void)
2789 int i;
2790 int size = max_reg_num ();
2792 resize_reg_info ();
2793 for (i = allocated_reg_info_size; i < size; i++)
2794 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2795 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2796 allocated_reg_info_size = size;
2799 /* Return TRUE if there is too high register pressure in the function.
2800 It is used to decide when stack slot sharing is worth to do. */
2801 static bool
2802 too_high_register_pressure_p (void)
2804 int i;
2805 enum reg_class pclass;
2807 for (i = 0; i < ira_pressure_classes_num; i++)
2809 pclass = ira_pressure_classes[i];
2810 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2811 return true;
2813 return false;
2818 /* Indicate that hard register number FROM was eliminated and replaced with
2819 an offset from hard register number TO. The status of hard registers live
2820 at the start of a basic block is updated by replacing a use of FROM with
2821 a use of TO. */
2823 void
2824 mark_elimination (int from, int to)
2826 basic_block bb;
2827 bitmap r;
2829 FOR_EACH_BB_FN (bb, cfun)
2831 r = DF_LR_IN (bb);
2832 if (bitmap_bit_p (r, from))
2834 bitmap_clear_bit (r, from);
2835 bitmap_set_bit (r, to);
2837 if (! df_live)
2838 continue;
2839 r = DF_LIVE_IN (bb);
2840 if (bitmap_bit_p (r, from))
2842 bitmap_clear_bit (r, from);
2843 bitmap_set_bit (r, to);
2850 /* The length of the following array. */
2851 int ira_reg_equiv_len;
2853 /* Info about equiv. info for each register. */
2854 struct ira_reg_equiv_s *ira_reg_equiv;
2856 /* Expand ira_reg_equiv if necessary. */
2857 void
2858 ira_expand_reg_equiv (void)
2860 int old = ira_reg_equiv_len;
2862 if (ira_reg_equiv_len > max_reg_num ())
2863 return;
2864 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2865 ira_reg_equiv
2866 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2867 ira_reg_equiv_len
2868 * sizeof (struct ira_reg_equiv_s));
2869 gcc_assert (old < ira_reg_equiv_len);
2870 memset (ira_reg_equiv + old, 0,
2871 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2874 static void
2875 init_reg_equiv (void)
2877 ira_reg_equiv_len = 0;
2878 ira_reg_equiv = NULL;
2879 ira_expand_reg_equiv ();
2882 static void
2883 finish_reg_equiv (void)
2885 free (ira_reg_equiv);
2890 struct equivalence
2892 /* Set when a REG_EQUIV note is found or created. Use to
2893 keep track of what memory accesses might be created later,
2894 e.g. by reload. */
2895 rtx replacement;
2896 rtx *src_p;
2898 /* The list of each instruction which initializes this register.
2900 NULL indicates we know nothing about this register's equivalence
2901 properties.
2903 An INSN_LIST with a NULL insn indicates this pseudo is already
2904 known to not have a valid equivalence. */
2905 rtx_insn_list *init_insns;
2907 /* Loop depth is used to recognize equivalences which appear
2908 to be present within the same loop (or in an inner loop). */
2909 short loop_depth;
2910 /* Nonzero if this had a preexisting REG_EQUIV note. */
2911 unsigned char is_arg_equivalence : 1;
2912 /* Set when an attempt should be made to replace a register
2913 with the associated src_p entry. */
2914 unsigned char replace : 1;
2915 /* Set if this register has no known equivalence. */
2916 unsigned char no_equiv : 1;
2917 /* Set if this register is mentioned in a paradoxical subreg. */
2918 unsigned char pdx_subregs : 1;
2921 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2922 structure for that register. */
2923 static struct equivalence *reg_equiv;
2925 /* Used for communication between the following two functions. */
2926 struct equiv_mem_data
2928 /* A MEM that we wish to ensure remains unchanged. */
2929 rtx equiv_mem;
2931 /* Set true if EQUIV_MEM is modified. */
2932 bool equiv_mem_modified;
2935 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2936 Called via note_stores. */
2937 static void
2938 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2939 void *data)
2941 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2943 if ((REG_P (dest)
2944 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2945 || (MEM_P (dest)
2946 && anti_dependence (info->equiv_mem, dest)))
2947 info->equiv_mem_modified = true;
2950 enum valid_equiv { valid_none, valid_combine, valid_reload };
2952 /* Verify that no store between START and the death of REG invalidates
2953 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2954 by storing into an overlapping memory location, or with a non-const
2955 CALL_INSN.
2957 Return VALID_RELOAD if MEMREF remains valid for both reload and
2958 combine_and_move insns, VALID_COMBINE if only valid for
2959 combine_and_move_insns, and VALID_NONE otherwise. */
2960 static enum valid_equiv
2961 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2963 rtx_insn *insn;
2964 rtx note;
2965 struct equiv_mem_data info = { memref, false };
2966 enum valid_equiv ret = valid_reload;
2968 /* If the memory reference has side effects or is volatile, it isn't a
2969 valid equivalence. */
2970 if (side_effects_p (memref))
2971 return valid_none;
2973 for (insn = start; insn; insn = NEXT_INSN (insn))
2975 if (!INSN_P (insn))
2976 continue;
2978 if (find_reg_note (insn, REG_DEAD, reg))
2979 return ret;
2981 if (CALL_P (insn))
2983 /* We can combine a reg def from one insn into a reg use in
2984 another over a call if the memory is readonly or the call
2985 const/pure. However, we can't set reg_equiv notes up for
2986 reload over any call. The problem is the equivalent form
2987 may reference a pseudo which gets assigned a call
2988 clobbered hard reg. When we later replace REG with its
2989 equivalent form, the value in the call-clobbered reg has
2990 been changed and all hell breaks loose. */
2991 ret = valid_combine;
2992 if (!MEM_READONLY_P (memref)
2993 && !RTL_CONST_OR_PURE_CALL_P (insn))
2994 return valid_none;
2997 note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
2998 if (info.equiv_mem_modified)
2999 return valid_none;
3001 /* If a register mentioned in MEMREF is modified via an
3002 auto-increment, we lose the equivalence. Do the same if one
3003 dies; although we could extend the life, it doesn't seem worth
3004 the trouble. */
3006 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3007 if ((REG_NOTE_KIND (note) == REG_INC
3008 || REG_NOTE_KIND (note) == REG_DEAD)
3009 && REG_P (XEXP (note, 0))
3010 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3011 return valid_none;
3014 return valid_none;
3017 /* Returns zero if X is known to be invariant. */
3018 static int
3019 equiv_init_varies_p (rtx x)
3021 RTX_CODE code = GET_CODE (x);
3022 int i;
3023 const char *fmt;
3025 switch (code)
3027 case MEM:
3028 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3030 case CONST:
3031 CASE_CONST_ANY:
3032 case SYMBOL_REF:
3033 case LABEL_REF:
3034 return 0;
3036 case REG:
3037 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3039 case ASM_OPERANDS:
3040 if (MEM_VOLATILE_P (x))
3041 return 1;
3043 /* Fall through. */
3045 default:
3046 break;
3049 fmt = GET_RTX_FORMAT (code);
3050 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3051 if (fmt[i] == 'e')
3053 if (equiv_init_varies_p (XEXP (x, i)))
3054 return 1;
3056 else if (fmt[i] == 'E')
3058 int j;
3059 for (j = 0; j < XVECLEN (x, i); j++)
3060 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3061 return 1;
3064 return 0;
3067 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3068 X is only movable if the registers it uses have equivalent initializations
3069 which appear to be within the same loop (or in an inner loop) and movable
3070 or if they are not candidates for local_alloc and don't vary. */
3071 static int
3072 equiv_init_movable_p (rtx x, int regno)
3074 int i, j;
3075 const char *fmt;
3076 enum rtx_code code = GET_CODE (x);
3078 switch (code)
3080 case SET:
3081 return equiv_init_movable_p (SET_SRC (x), regno);
3083 case CC0:
3084 case CLOBBER:
3085 return 0;
3087 case PRE_INC:
3088 case PRE_DEC:
3089 case POST_INC:
3090 case POST_DEC:
3091 case PRE_MODIFY:
3092 case POST_MODIFY:
3093 return 0;
3095 case REG:
3096 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3097 && reg_equiv[REGNO (x)].replace)
3098 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3099 && ! rtx_varies_p (x, 0)));
3101 case UNSPEC_VOLATILE:
3102 return 0;
3104 case ASM_OPERANDS:
3105 if (MEM_VOLATILE_P (x))
3106 return 0;
3108 /* Fall through. */
3110 default:
3111 break;
3114 fmt = GET_RTX_FORMAT (code);
3115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3116 switch (fmt[i])
3118 case 'e':
3119 if (! equiv_init_movable_p (XEXP (x, i), regno))
3120 return 0;
3121 break;
3122 case 'E':
3123 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3124 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3125 return 0;
3126 break;
3129 return 1;
3132 /* TRUE if X references a memory location that would be affected by a store
3133 to MEMREF. */
3134 static int
3135 memref_referenced_p (rtx memref, rtx x)
3137 int i, j;
3138 const char *fmt;
3139 enum rtx_code code = GET_CODE (x);
3141 switch (code)
3143 case CONST:
3144 case LABEL_REF:
3145 case SYMBOL_REF:
3146 CASE_CONST_ANY:
3147 case PC:
3148 case CC0:
3149 case HIGH:
3150 case LO_SUM:
3151 return 0;
3153 case REG:
3154 return (reg_equiv[REGNO (x)].replacement
3155 && memref_referenced_p (memref,
3156 reg_equiv[REGNO (x)].replacement));
3158 case MEM:
3159 if (true_dependence (memref, VOIDmode, x))
3160 return 1;
3161 break;
3163 case SET:
3164 /* If we are setting a MEM, it doesn't count (its address does), but any
3165 other SET_DEST that has a MEM in it is referencing the MEM. */
3166 if (MEM_P (SET_DEST (x)))
3168 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3169 return 1;
3171 else if (memref_referenced_p (memref, SET_DEST (x)))
3172 return 1;
3174 return memref_referenced_p (memref, SET_SRC (x));
3176 default:
3177 break;
3180 fmt = GET_RTX_FORMAT (code);
3181 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3182 switch (fmt[i])
3184 case 'e':
3185 if (memref_referenced_p (memref, XEXP (x, i)))
3186 return 1;
3187 break;
3188 case 'E':
3189 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3190 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3191 return 1;
3192 break;
3195 return 0;
3198 /* TRUE if some insn in the range (START, END] references a memory location
3199 that would be affected by a store to MEMREF.
3201 Callers should not call this routine if START is after END in the
3202 RTL chain. */
3204 static int
3205 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3207 rtx_insn *insn;
3209 for (insn = NEXT_INSN (start);
3210 insn && insn != NEXT_INSN (end);
3211 insn = NEXT_INSN (insn))
3213 if (!NONDEBUG_INSN_P (insn))
3214 continue;
3216 if (memref_referenced_p (memref, PATTERN (insn)))
3217 return 1;
3219 /* Nonconst functions may access memory. */
3220 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3221 return 1;
3224 gcc_assert (insn == NEXT_INSN (end));
3225 return 0;
3228 /* Mark REG as having no known equivalence.
3229 Some instructions might have been processed before and furnished
3230 with REG_EQUIV notes for this register; these notes will have to be
3231 removed.
3232 STORE is the piece of RTL that does the non-constant / conflicting
3233 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3234 but needs to be there because this function is called from note_stores. */
3235 static void
3236 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3237 void *data ATTRIBUTE_UNUSED)
3239 int regno;
3240 rtx_insn_list *list;
3242 if (!REG_P (reg))
3243 return;
3244 regno = REGNO (reg);
3245 reg_equiv[regno].no_equiv = 1;
3246 list = reg_equiv[regno].init_insns;
3247 if (list && list->insn () == NULL)
3248 return;
3249 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3250 reg_equiv[regno].replacement = NULL_RTX;
3251 /* This doesn't matter for equivalences made for argument registers, we
3252 should keep their initialization insns. */
3253 if (reg_equiv[regno].is_arg_equivalence)
3254 return;
3255 ira_reg_equiv[regno].defined_p = false;
3256 ira_reg_equiv[regno].init_insns = NULL;
3257 for (; list; list = list->next ())
3259 rtx_insn *insn = list->insn ();
3260 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3264 /* Check whether the SUBREG is a paradoxical subreg and set the result
3265 in PDX_SUBREGS. */
3267 static void
3268 set_paradoxical_subreg (rtx_insn *insn)
3270 subrtx_iterator::array_type array;
3271 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3273 const_rtx subreg = *iter;
3274 if (GET_CODE (subreg) == SUBREG)
3276 const_rtx reg = SUBREG_REG (subreg);
3277 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3278 reg_equiv[REGNO (reg)].pdx_subregs = true;
3283 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3284 equivalent replacement. */
3286 static rtx
3287 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3289 if (REG_P (loc))
3291 bitmap cleared_regs = (bitmap) data;
3292 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3293 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3294 NULL_RTX, adjust_cleared_regs, data);
3296 return NULL_RTX;
3299 /* Find registers that are equivalent to a single value throughout the
3300 compilation (either because they can be referenced in memory or are
3301 set once from a single constant). Lower their priority for a
3302 register.
3304 If such a register is only referenced once, try substituting its
3305 value into the using insn. If it succeeds, we can eliminate the
3306 register completely.
3308 Initialize init_insns in ira_reg_equiv array. */
3309 static void
3310 update_equiv_regs (void)
3312 rtx_insn *insn;
3313 basic_block bb;
3315 /* Scan insns and set pdx_subregs if the reg is used in a
3316 paradoxical subreg. Don't set such reg equivalent to a mem,
3317 because lra will not substitute such equiv memory in order to
3318 prevent access beyond allocated memory for paradoxical memory subreg. */
3319 FOR_EACH_BB_FN (bb, cfun)
3320 FOR_BB_INSNS (bb, insn)
3321 if (NONDEBUG_INSN_P (insn))
3322 set_paradoxical_subreg (insn);
3324 /* Scan the insns and find which registers have equivalences. Do this
3325 in a separate scan of the insns because (due to -fcse-follow-jumps)
3326 a register can be set below its use. */
3327 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3328 FOR_EACH_BB_FN (bb, cfun)
3330 int loop_depth = bb_loop_depth (bb);
3332 for (insn = BB_HEAD (bb);
3333 insn != NEXT_INSN (BB_END (bb));
3334 insn = NEXT_INSN (insn))
3336 rtx note;
3337 rtx set;
3338 rtx dest, src;
3339 int regno;
3341 if (! INSN_P (insn))
3342 continue;
3344 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3345 if (REG_NOTE_KIND (note) == REG_INC)
3346 no_equiv (XEXP (note, 0), note, NULL);
3348 set = single_set (insn);
3350 /* If this insn contains more (or less) than a single SET,
3351 only mark all destinations as having no known equivalence. */
3352 if (set == NULL_RTX
3353 || side_effects_p (SET_SRC (set)))
3355 note_stores (PATTERN (insn), no_equiv, NULL);
3356 continue;
3358 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3360 int i;
3362 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3364 rtx part = XVECEXP (PATTERN (insn), 0, i);
3365 if (part != set)
3366 note_stores (part, no_equiv, NULL);
3370 dest = SET_DEST (set);
3371 src = SET_SRC (set);
3373 /* See if this is setting up the equivalence between an argument
3374 register and its stack slot. */
3375 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3376 if (note)
3378 gcc_assert (REG_P (dest));
3379 regno = REGNO (dest);
3381 /* Note that we don't want to clear init_insns in
3382 ira_reg_equiv even if there are multiple sets of this
3383 register. */
3384 reg_equiv[regno].is_arg_equivalence = 1;
3386 /* The insn result can have equivalence memory although
3387 the equivalence is not set up by the insn. We add
3388 this insn to init insns as it is a flag for now that
3389 regno has an equivalence. We will remove the insn
3390 from init insn list later. */
3391 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3392 ira_reg_equiv[regno].init_insns
3393 = gen_rtx_INSN_LIST (VOIDmode, insn,
3394 ira_reg_equiv[regno].init_insns);
3396 /* Continue normally in case this is a candidate for
3397 replacements. */
3400 if (!optimize)
3401 continue;
3403 /* We only handle the case of a pseudo register being set
3404 once, or always to the same value. */
3405 /* ??? The mn10200 port breaks if we add equivalences for
3406 values that need an ADDRESS_REGS register and set them equivalent
3407 to a MEM of a pseudo. The actual problem is in the over-conservative
3408 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3409 calculate_needs, but we traditionally work around this problem
3410 here by rejecting equivalences when the destination is in a register
3411 that's likely spilled. This is fragile, of course, since the
3412 preferred class of a pseudo depends on all instructions that set
3413 or use it. */
3415 if (!REG_P (dest)
3416 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3417 || (reg_equiv[regno].init_insns
3418 && reg_equiv[regno].init_insns->insn () == NULL)
3419 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3420 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3422 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3423 also set somewhere else to a constant. */
3424 note_stores (set, no_equiv, NULL);
3425 continue;
3428 /* Don't set reg mentioned in a paradoxical subreg
3429 equivalent to a mem. */
3430 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3432 note_stores (set, no_equiv, NULL);
3433 continue;
3436 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3438 /* cse sometimes generates function invariants, but doesn't put a
3439 REG_EQUAL note on the insn. Since this note would be redundant,
3440 there's no point creating it earlier than here. */
3441 if (! note && ! rtx_varies_p (src, 0))
3442 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3444 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3445 since it represents a function call. */
3446 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3447 note = NULL_RTX;
3449 if (DF_REG_DEF_COUNT (regno) != 1)
3451 bool equal_p = true;
3452 rtx_insn_list *list;
3454 /* If we have already processed this pseudo and determined it
3455 can not have an equivalence, then honor that decision. */
3456 if (reg_equiv[regno].no_equiv)
3457 continue;
3459 if (! note
3460 || rtx_varies_p (XEXP (note, 0), 0)
3461 || (reg_equiv[regno].replacement
3462 && ! rtx_equal_p (XEXP (note, 0),
3463 reg_equiv[regno].replacement)))
3465 no_equiv (dest, set, NULL);
3466 continue;
3469 list = reg_equiv[regno].init_insns;
3470 for (; list; list = list->next ())
3472 rtx note_tmp;
3473 rtx_insn *insn_tmp;
3475 insn_tmp = list->insn ();
3476 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3477 gcc_assert (note_tmp);
3478 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3480 equal_p = false;
3481 break;
3485 if (! equal_p)
3487 no_equiv (dest, set, NULL);
3488 continue;
3492 /* Record this insn as initializing this register. */
3493 reg_equiv[regno].init_insns
3494 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3496 /* If this register is known to be equal to a constant, record that
3497 it is always equivalent to the constant. */
3498 if (DF_REG_DEF_COUNT (regno) == 1
3499 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3501 rtx note_value = XEXP (note, 0);
3502 remove_note (insn, note);
3503 set_unique_reg_note (insn, REG_EQUIV, note_value);
3506 /* If this insn introduces a "constant" register, decrease the priority
3507 of that register. Record this insn if the register is only used once
3508 more and the equivalence value is the same as our source.
3510 The latter condition is checked for two reasons: First, it is an
3511 indication that it may be more efficient to actually emit the insn
3512 as written (if no registers are available, reload will substitute
3513 the equivalence). Secondly, it avoids problems with any registers
3514 dying in this insn whose death notes would be missed.
3516 If we don't have a REG_EQUIV note, see if this insn is loading
3517 a register used only in one basic block from a MEM. If so, and the
3518 MEM remains unchanged for the life of the register, add a REG_EQUIV
3519 note. */
3520 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3522 rtx replacement = NULL_RTX;
3523 if (note)
3524 replacement = XEXP (note, 0);
3525 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3526 && MEM_P (SET_SRC (set)))
3528 enum valid_equiv validity;
3529 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3530 if (validity != valid_none)
3532 replacement = copy_rtx (SET_SRC (set));
3533 if (validity == valid_reload)
3534 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3538 /* If we haven't done so, record for reload that this is an
3539 equivalencing insn. */
3540 if (note && !reg_equiv[regno].is_arg_equivalence)
3541 ira_reg_equiv[regno].init_insns
3542 = gen_rtx_INSN_LIST (VOIDmode, insn,
3543 ira_reg_equiv[regno].init_insns);
3545 if (replacement)
3547 reg_equiv[regno].replacement = replacement;
3548 reg_equiv[regno].src_p = &SET_SRC (set);
3549 reg_equiv[regno].loop_depth = (short) loop_depth;
3551 /* Don't mess with things live during setjmp. */
3552 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3554 /* If the register is referenced exactly twice, meaning it is
3555 set once and used once, indicate that the reference may be
3556 replaced by the equivalence we computed above. Do this
3557 even if the register is only used in one block so that
3558 dependencies can be handled where the last register is
3559 used in a different block (i.e. HIGH / LO_SUM sequences)
3560 and to reduce the number of registers alive across
3561 calls. */
3563 if (REG_N_REFS (regno) == 2
3564 && (rtx_equal_p (replacement, src)
3565 || ! equiv_init_varies_p (src))
3566 && NONJUMP_INSN_P (insn)
3567 && equiv_init_movable_p (PATTERN (insn), regno))
3568 reg_equiv[regno].replace = 1;
3575 /* For insns that set a MEM to the contents of a REG that is only used
3576 in a single basic block, see if the register is always equivalent
3577 to that memory location and if moving the store from INSN to the
3578 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3579 initializing insn. */
3580 static void
3581 add_store_equivs (void)
3583 bitmap_head seen_insns;
3585 bitmap_initialize (&seen_insns, NULL);
3586 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3588 rtx set, src, dest;
3589 unsigned regno;
3590 rtx_insn *init_insn;
3592 bitmap_set_bit (&seen_insns, INSN_UID (insn));
3594 if (! INSN_P (insn))
3595 continue;
3597 set = single_set (insn);
3598 if (! set)
3599 continue;
3601 dest = SET_DEST (set);
3602 src = SET_SRC (set);
3604 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3605 REG_EQUIV is likely more useful than the one we are adding. */
3606 if (MEM_P (dest) && REG_P (src)
3607 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3608 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3609 && DF_REG_DEF_COUNT (regno) == 1
3610 && ! reg_equiv[regno].pdx_subregs
3611 && reg_equiv[regno].init_insns != NULL
3612 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3613 && bitmap_bit_p (&seen_insns, INSN_UID (init_insn))
3614 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3615 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3616 && ! memref_used_between_p (dest, init_insn, insn)
3617 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3618 multiple sets. */
3619 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3621 /* This insn makes the equivalence, not the one initializing
3622 the register. */
3623 ira_reg_equiv[regno].init_insns
3624 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3625 df_notes_rescan (init_insn);
3626 if (dump_file)
3627 fprintf (dump_file,
3628 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3629 INSN_UID (init_insn),
3630 INSN_UID (insn));
3633 bitmap_clear (&seen_insns);
3636 /* Scan all regs killed in an insn to see if any of them are registers
3637 only used that once. If so, see if we can replace the reference
3638 with the equivalent form. If we can, delete the initializing
3639 reference and this register will go away. If we can't replace the
3640 reference, and the initializing reference is within the same loop
3641 (or in an inner loop), then move the register initialization just
3642 before the use, so that they are in the same basic block. */
3643 static void
3644 combine_and_move_insns (void)
3646 bitmap cleared_regs = BITMAP_ALLOC (NULL);
3647 int max = max_reg_num ();
3649 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3651 if (!reg_equiv[regno].replace)
3652 continue;
3654 rtx_insn *use_insn = 0;
3655 for (df_ref use = DF_REG_USE_CHAIN (regno);
3656 use;
3657 use = DF_REF_NEXT_REG (use))
3658 if (DF_REF_INSN_INFO (use))
3660 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3661 continue;
3662 gcc_assert (!use_insn);
3663 use_insn = DF_REF_INSN (use);
3665 gcc_assert (use_insn);
3667 /* Don't substitute into jumps. indirect_jump_optimize does
3668 this for anything we are prepared to handle. */
3669 if (JUMP_P (use_insn))
3670 continue;
3672 df_ref def = DF_REG_DEF_CHAIN (regno);
3673 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3674 rtx_insn *def_insn = DF_REF_INSN (def);
3676 /* We may not move instructions that can throw, since that
3677 changes basic block boundaries and we are not prepared to
3678 adjust the CFG to match. */
3679 if (can_throw_internal (def_insn))
3680 continue;
3682 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3683 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3684 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3685 continue;
3687 if (asm_noperands (PATTERN (def_insn)) < 0
3688 && validate_replace_rtx (regno_reg_rtx[regno],
3689 *reg_equiv[regno].src_p, use_insn))
3691 rtx link;
3692 /* Append the REG_DEAD notes from def_insn. */
3693 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3695 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3697 *p = XEXP (link, 1);
3698 XEXP (link, 1) = REG_NOTES (use_insn);
3699 REG_NOTES (use_insn) = link;
3701 else
3702 p = &XEXP (link, 1);
3705 remove_death (regno, use_insn);
3706 SET_REG_N_REFS (regno, 0);
3707 REG_FREQ (regno) = 0;
3708 delete_insn (def_insn);
3710 reg_equiv[regno].init_insns = NULL;
3711 ira_reg_equiv[regno].init_insns = NULL;
3712 bitmap_set_bit (cleared_regs, regno);
3715 /* Move the initialization of the register to just before
3716 USE_INSN. Update the flow information. */
3717 else if (prev_nondebug_insn (use_insn) != def_insn)
3719 rtx_insn *new_insn;
3721 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3722 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3723 REG_NOTES (def_insn) = 0;
3724 /* Rescan it to process the notes. */
3725 df_insn_rescan (new_insn);
3727 /* Make sure this insn is recognized before reload begins,
3728 otherwise eliminate_regs_in_insn will die. */
3729 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3731 delete_insn (def_insn);
3733 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3735 REG_BASIC_BLOCK (regno) = use_bb->index;
3736 REG_N_CALLS_CROSSED (regno) = 0;
3738 if (use_insn == BB_HEAD (use_bb))
3739 BB_HEAD (use_bb) = new_insn;
3741 /* We know regno dies in use_insn, but inside a loop
3742 REG_DEAD notes might be missing when def_insn was in
3743 another basic block. However, when we move def_insn into
3744 this bb we'll definitely get a REG_DEAD note and reload
3745 will see the death. It's possible that update_equiv_regs
3746 set up an equivalence referencing regno for a reg set by
3747 use_insn, when regno was seen as non-local. Now that
3748 regno is local to this block, and dies, such an
3749 equivalence is invalid. */
3750 if (find_reg_note (use_insn, REG_EQUIV, NULL_RTX))
3752 rtx set = single_set (use_insn);
3753 if (set && REG_P (SET_DEST (set)))
3754 no_equiv (SET_DEST (set), set, NULL);
3757 ira_reg_equiv[regno].init_insns
3758 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3759 bitmap_set_bit (cleared_regs, regno);
3763 if (!bitmap_empty_p (cleared_regs))
3765 basic_block bb;
3767 FOR_EACH_BB_FN (bb, cfun)
3769 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3770 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3771 if (!df_live)
3772 continue;
3773 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3774 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3777 /* Last pass - adjust debug insns referencing cleared regs. */
3778 if (MAY_HAVE_DEBUG_INSNS)
3779 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3780 if (DEBUG_INSN_P (insn))
3782 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3783 INSN_VAR_LOCATION_LOC (insn)
3784 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3785 adjust_cleared_regs,
3786 (void *) cleared_regs);
3787 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3788 df_insn_rescan (insn);
3792 BITMAP_FREE (cleared_regs);
3795 /* A pass over indirect jumps, converting simple cases to direct jumps.
3796 Combine does this optimization too, but only within a basic block. */
3797 static void
3798 indirect_jump_optimize (void)
3800 basic_block bb;
3801 bool rebuild_p = false;
3803 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3805 rtx_insn *insn = BB_END (bb);
3806 if (!JUMP_P (insn)
3807 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3808 continue;
3810 rtx x = pc_set (insn);
3811 if (!x || !REG_P (SET_SRC (x)))
3812 continue;
3814 int regno = REGNO (SET_SRC (x));
3815 if (DF_REG_DEF_COUNT (regno) == 1)
3817 df_ref def = DF_REG_DEF_CHAIN (regno);
3818 if (!DF_REF_IS_ARTIFICIAL (def))
3820 rtx_insn *def_insn = DF_REF_INSN (def);
3821 rtx lab = NULL_RTX;
3822 rtx set = single_set (def_insn);
3823 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3824 lab = SET_SRC (set);
3825 else
3827 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3828 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3829 lab = XEXP (eqnote, 0);
3831 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3832 rebuild_p = true;
3837 if (rebuild_p)
3839 timevar_push (TV_JUMP);
3840 rebuild_jump_labels (get_insns ());
3841 if (purge_all_dead_edges ())
3842 delete_unreachable_blocks ();
3843 timevar_pop (TV_JUMP);
3847 /* Set up fields memory, constant, and invariant from init_insns in
3848 the structures of array ira_reg_equiv. */
3849 static void
3850 setup_reg_equiv (void)
3852 int i;
3853 rtx_insn_list *elem, *prev_elem, *next_elem;
3854 rtx_insn *insn;
3855 rtx set, x;
3857 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3858 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3859 elem;
3860 prev_elem = elem, elem = next_elem)
3862 next_elem = elem->next ();
3863 insn = elem->insn ();
3864 set = single_set (insn);
3866 /* Init insns can set up equivalence when the reg is a destination or
3867 a source (in this case the destination is memory). */
3868 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3870 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3872 x = XEXP (x, 0);
3873 if (REG_P (SET_DEST (set))
3874 && REGNO (SET_DEST (set)) == (unsigned int) i
3875 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3877 /* This insn reporting the equivalence but
3878 actually not setting it. Remove it from the
3879 list. */
3880 if (prev_elem == NULL)
3881 ira_reg_equiv[i].init_insns = next_elem;
3882 else
3883 XEXP (prev_elem, 1) = next_elem;
3884 elem = prev_elem;
3887 else if (REG_P (SET_DEST (set))
3888 && REGNO (SET_DEST (set)) == (unsigned int) i)
3889 x = SET_SRC (set);
3890 else
3892 gcc_assert (REG_P (SET_SRC (set))
3893 && REGNO (SET_SRC (set)) == (unsigned int) i);
3894 x = SET_DEST (set);
3896 if (! function_invariant_p (x)
3897 || ! flag_pic
3898 /* A function invariant is often CONSTANT_P but may
3899 include a register. We promise to only pass
3900 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3901 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3903 /* It can happen that a REG_EQUIV note contains a MEM
3904 that is not a legitimate memory operand. As later
3905 stages of reload assume that all addresses found in
3906 the lra_regno_equiv_* arrays were originally
3907 legitimate, we ignore such REG_EQUIV notes. */
3908 if (memory_operand (x, VOIDmode))
3910 ira_reg_equiv[i].defined_p = true;
3911 ira_reg_equiv[i].memory = x;
3912 continue;
3914 else if (function_invariant_p (x))
3916 machine_mode mode;
3918 mode = GET_MODE (SET_DEST (set));
3919 if (GET_CODE (x) == PLUS
3920 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3921 /* This is PLUS of frame pointer and a constant,
3922 or fp, or argp. */
3923 ira_reg_equiv[i].invariant = x;
3924 else if (targetm.legitimate_constant_p (mode, x))
3925 ira_reg_equiv[i].constant = x;
3926 else
3928 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3929 if (ira_reg_equiv[i].memory == NULL_RTX)
3931 ira_reg_equiv[i].defined_p = false;
3932 ira_reg_equiv[i].init_insns = NULL;
3933 break;
3936 ira_reg_equiv[i].defined_p = true;
3937 continue;
3941 ira_reg_equiv[i].defined_p = false;
3942 ira_reg_equiv[i].init_insns = NULL;
3943 break;
3949 /* Print chain C to FILE. */
3950 static void
3951 print_insn_chain (FILE *file, struct insn_chain *c)
3953 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3954 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3955 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3959 /* Print all reload_insn_chains to FILE. */
3960 static void
3961 print_insn_chains (FILE *file)
3963 struct insn_chain *c;
3964 for (c = reload_insn_chain; c ; c = c->next)
3965 print_insn_chain (file, c);
3968 /* Return true if pseudo REGNO should be added to set live_throughout
3969 or dead_or_set of the insn chains for reload consideration. */
3970 static bool
3971 pseudo_for_reload_consideration_p (int regno)
3973 /* Consider spilled pseudos too for IRA because they still have a
3974 chance to get hard-registers in the reload when IRA is used. */
3975 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3978 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3979 REG to the number of nregs, and INIT_VALUE to get the
3980 initialization. ALLOCNUM need not be the regno of REG. */
3981 static void
3982 init_live_subregs (bool init_value, sbitmap *live_subregs,
3983 bitmap live_subregs_used, int allocnum, rtx reg)
3985 unsigned int regno = REGNO (SUBREG_REG (reg));
3986 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3988 gcc_assert (size > 0);
3990 /* Been there, done that. */
3991 if (bitmap_bit_p (live_subregs_used, allocnum))
3992 return;
3994 /* Create a new one. */
3995 if (live_subregs[allocnum] == NULL)
3996 live_subregs[allocnum] = sbitmap_alloc (size);
3998 /* If the entire reg was live before blasting into subregs, we need
3999 to init all of the subregs to ones else init to 0. */
4000 if (init_value)
4001 bitmap_ones (live_subregs[allocnum]);
4002 else
4003 bitmap_clear (live_subregs[allocnum]);
4005 bitmap_set_bit (live_subregs_used, allocnum);
4008 /* Walk the insns of the current function and build reload_insn_chain,
4009 and record register life information. */
4010 static void
4011 build_insn_chain (void)
4013 unsigned int i;
4014 struct insn_chain **p = &reload_insn_chain;
4015 basic_block bb;
4016 struct insn_chain *c = NULL;
4017 struct insn_chain *next = NULL;
4018 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4019 bitmap elim_regset = BITMAP_ALLOC (NULL);
4020 /* live_subregs is a vector used to keep accurate information about
4021 which hardregs are live in multiword pseudos. live_subregs and
4022 live_subregs_used are indexed by pseudo number. The live_subreg
4023 entry for a particular pseudo is only used if the corresponding
4024 element is non zero in live_subregs_used. The sbitmap size of
4025 live_subreg[allocno] is number of bytes that the pseudo can
4026 occupy. */
4027 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4028 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4030 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4031 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4032 bitmap_set_bit (elim_regset, i);
4033 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4035 bitmap_iterator bi;
4036 rtx_insn *insn;
4038 CLEAR_REG_SET (live_relevant_regs);
4039 bitmap_clear (live_subregs_used);
4041 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4043 if (i >= FIRST_PSEUDO_REGISTER)
4044 break;
4045 bitmap_set_bit (live_relevant_regs, i);
4048 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4049 FIRST_PSEUDO_REGISTER, i, bi)
4051 if (pseudo_for_reload_consideration_p (i))
4052 bitmap_set_bit (live_relevant_regs, i);
4055 FOR_BB_INSNS_REVERSE (bb, insn)
4057 if (!NOTE_P (insn) && !BARRIER_P (insn))
4059 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4060 df_ref def, use;
4062 c = new_insn_chain ();
4063 c->next = next;
4064 next = c;
4065 *p = c;
4066 p = &c->prev;
4068 c->insn = insn;
4069 c->block = bb->index;
4071 if (NONDEBUG_INSN_P (insn))
4072 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4074 unsigned int regno = DF_REF_REGNO (def);
4076 /* Ignore may clobbers because these are generated
4077 from calls. However, every other kind of def is
4078 added to dead_or_set. */
4079 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4081 if (regno < FIRST_PSEUDO_REGISTER)
4083 if (!fixed_regs[regno])
4084 bitmap_set_bit (&c->dead_or_set, regno);
4086 else if (pseudo_for_reload_consideration_p (regno))
4087 bitmap_set_bit (&c->dead_or_set, regno);
4090 if ((regno < FIRST_PSEUDO_REGISTER
4091 || reg_renumber[regno] >= 0
4092 || ira_conflicts_p)
4093 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4095 rtx reg = DF_REF_REG (def);
4097 /* We can model subregs, but not if they are
4098 wrapped in ZERO_EXTRACTS. */
4099 if (GET_CODE (reg) == SUBREG
4100 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4102 unsigned int start = SUBREG_BYTE (reg);
4103 unsigned int last = start
4104 + GET_MODE_SIZE (GET_MODE (reg));
4106 init_live_subregs
4107 (bitmap_bit_p (live_relevant_regs, regno),
4108 live_subregs, live_subregs_used, regno, reg);
4110 if (!DF_REF_FLAGS_IS_SET
4111 (def, DF_REF_STRICT_LOW_PART))
4113 /* Expand the range to cover entire words.
4114 Bytes added here are "don't care". */
4115 start
4116 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4117 last = ((last + UNITS_PER_WORD - 1)
4118 / UNITS_PER_WORD * UNITS_PER_WORD);
4121 /* Ignore the paradoxical bits. */
4122 if (last > SBITMAP_SIZE (live_subregs[regno]))
4123 last = SBITMAP_SIZE (live_subregs[regno]);
4125 while (start < last)
4127 bitmap_clear_bit (live_subregs[regno], start);
4128 start++;
4131 if (bitmap_empty_p (live_subregs[regno]))
4133 bitmap_clear_bit (live_subregs_used, regno);
4134 bitmap_clear_bit (live_relevant_regs, regno);
4136 else
4137 /* Set live_relevant_regs here because
4138 that bit has to be true to get us to
4139 look at the live_subregs fields. */
4140 bitmap_set_bit (live_relevant_regs, regno);
4142 else
4144 /* DF_REF_PARTIAL is generated for
4145 subregs, STRICT_LOW_PART, and
4146 ZERO_EXTRACT. We handle the subreg
4147 case above so here we have to keep from
4148 modeling the def as a killing def. */
4149 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4151 bitmap_clear_bit (live_subregs_used, regno);
4152 bitmap_clear_bit (live_relevant_regs, regno);
4158 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4159 bitmap_copy (&c->live_throughout, live_relevant_regs);
4161 if (NONDEBUG_INSN_P (insn))
4162 FOR_EACH_INSN_INFO_USE (use, insn_info)
4164 unsigned int regno = DF_REF_REGNO (use);
4165 rtx reg = DF_REF_REG (use);
4167 /* DF_REF_READ_WRITE on a use means that this use
4168 is fabricated from a def that is a partial set
4169 to a multiword reg. Here, we only model the
4170 subreg case that is not wrapped in ZERO_EXTRACT
4171 precisely so we do not need to look at the
4172 fabricated use. */
4173 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4174 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4175 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4176 continue;
4178 /* Add the last use of each var to dead_or_set. */
4179 if (!bitmap_bit_p (live_relevant_regs, regno))
4181 if (regno < FIRST_PSEUDO_REGISTER)
4183 if (!fixed_regs[regno])
4184 bitmap_set_bit (&c->dead_or_set, regno);
4186 else if (pseudo_for_reload_consideration_p (regno))
4187 bitmap_set_bit (&c->dead_or_set, regno);
4190 if (regno < FIRST_PSEUDO_REGISTER
4191 || pseudo_for_reload_consideration_p (regno))
4193 if (GET_CODE (reg) == SUBREG
4194 && !DF_REF_FLAGS_IS_SET (use,
4195 DF_REF_SIGN_EXTRACT
4196 | DF_REF_ZERO_EXTRACT))
4198 unsigned int start = SUBREG_BYTE (reg);
4199 unsigned int last = start
4200 + GET_MODE_SIZE (GET_MODE (reg));
4202 init_live_subregs
4203 (bitmap_bit_p (live_relevant_regs, regno),
4204 live_subregs, live_subregs_used, regno, reg);
4206 /* Ignore the paradoxical bits. */
4207 if (last > SBITMAP_SIZE (live_subregs[regno]))
4208 last = SBITMAP_SIZE (live_subregs[regno]);
4210 while (start < last)
4212 bitmap_set_bit (live_subregs[regno], start);
4213 start++;
4216 else
4217 /* Resetting the live_subregs_used is
4218 effectively saying do not use the subregs
4219 because we are reading the whole
4220 pseudo. */
4221 bitmap_clear_bit (live_subregs_used, regno);
4222 bitmap_set_bit (live_relevant_regs, regno);
4228 /* FIXME!! The following code is a disaster. Reload needs to see the
4229 labels and jump tables that are just hanging out in between
4230 the basic blocks. See pr33676. */
4231 insn = BB_HEAD (bb);
4233 /* Skip over the barriers and cruft. */
4234 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4235 || BLOCK_FOR_INSN (insn) == bb))
4236 insn = PREV_INSN (insn);
4238 /* While we add anything except barriers and notes, the focus is
4239 to get the labels and jump tables into the
4240 reload_insn_chain. */
4241 while (insn)
4243 if (!NOTE_P (insn) && !BARRIER_P (insn))
4245 if (BLOCK_FOR_INSN (insn))
4246 break;
4248 c = new_insn_chain ();
4249 c->next = next;
4250 next = c;
4251 *p = c;
4252 p = &c->prev;
4254 /* The block makes no sense here, but it is what the old
4255 code did. */
4256 c->block = bb->index;
4257 c->insn = insn;
4258 bitmap_copy (&c->live_throughout, live_relevant_regs);
4260 insn = PREV_INSN (insn);
4264 reload_insn_chain = c;
4265 *p = NULL;
4267 for (i = 0; i < (unsigned int) max_regno; i++)
4268 if (live_subregs[i] != NULL)
4269 sbitmap_free (live_subregs[i]);
4270 free (live_subregs);
4271 BITMAP_FREE (live_subregs_used);
4272 BITMAP_FREE (live_relevant_regs);
4273 BITMAP_FREE (elim_regset);
4275 if (dump_file)
4276 print_insn_chains (dump_file);
4279 /* Examine the rtx found in *LOC, which is read or written to as determined
4280 by TYPE. Return false if we find a reason why an insn containing this
4281 rtx should not be moved (such as accesses to non-constant memory), true
4282 otherwise. */
4283 static bool
4284 rtx_moveable_p (rtx *loc, enum op_type type)
4286 const char *fmt;
4287 rtx x = *loc;
4288 enum rtx_code code = GET_CODE (x);
4289 int i, j;
4291 code = GET_CODE (x);
4292 switch (code)
4294 case CONST:
4295 CASE_CONST_ANY:
4296 case SYMBOL_REF:
4297 case LABEL_REF:
4298 return true;
4300 case PC:
4301 return type == OP_IN;
4303 case CC0:
4304 return false;
4306 case REG:
4307 if (x == frame_pointer_rtx)
4308 return true;
4309 if (HARD_REGISTER_P (x))
4310 return false;
4312 return true;
4314 case MEM:
4315 if (type == OP_IN && MEM_READONLY_P (x))
4316 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4317 return false;
4319 case SET:
4320 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4321 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4323 case STRICT_LOW_PART:
4324 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4326 case ZERO_EXTRACT:
4327 case SIGN_EXTRACT:
4328 return (rtx_moveable_p (&XEXP (x, 0), type)
4329 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4330 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4332 case CLOBBER:
4333 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4335 case UNSPEC_VOLATILE:
4336 /* It is a bad idea to consider insns with such rtl
4337 as moveable ones. The insn scheduler also considers them as barrier
4338 for a reason. */
4339 return false;
4341 default:
4342 break;
4345 fmt = GET_RTX_FORMAT (code);
4346 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4348 if (fmt[i] == 'e')
4350 if (!rtx_moveable_p (&XEXP (x, i), type))
4351 return false;
4353 else if (fmt[i] == 'E')
4354 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4356 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4357 return false;
4360 return true;
4363 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4364 to give dominance relationships between two insns I1 and I2. */
4365 static bool
4366 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4368 basic_block bb1 = BLOCK_FOR_INSN (i1);
4369 basic_block bb2 = BLOCK_FOR_INSN (i2);
4371 if (bb1 == bb2)
4372 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4373 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4376 /* Record the range of register numbers added by find_moveable_pseudos. */
4377 int first_moveable_pseudo, last_moveable_pseudo;
4379 /* These two vectors hold data for every register added by
4380 find_movable_pseudos, with index 0 holding data for the
4381 first_moveable_pseudo. */
4382 /* The original home register. */
4383 static vec<rtx> pseudo_replaced_reg;
4385 /* Look for instances where we have an instruction that is known to increase
4386 register pressure, and whose result is not used immediately. If it is
4387 possible to move the instruction downwards to just before its first use,
4388 split its lifetime into two ranges. We create a new pseudo to compute the
4389 value, and emit a move instruction just before the first use. If, after
4390 register allocation, the new pseudo remains unallocated, the function
4391 move_unallocated_pseudos then deletes the move instruction and places
4392 the computation just before the first use.
4394 Such a move is safe and profitable if all the input registers remain live
4395 and unchanged between the original computation and its first use. In such
4396 a situation, the computation is known to increase register pressure, and
4397 moving it is known to at least not worsen it.
4399 We restrict moves to only those cases where a register remains unallocated,
4400 in order to avoid interfering too much with the instruction schedule. As
4401 an exception, we may move insns which only modify their input register
4402 (typically induction variables), as this increases the freedom for our
4403 intended transformation, and does not limit the second instruction
4404 scheduler pass. */
4406 static void
4407 find_moveable_pseudos (void)
4409 unsigned i;
4410 int max_regs = max_reg_num ();
4411 int max_uid = get_max_uid ();
4412 basic_block bb;
4413 int *uid_luid = XNEWVEC (int, max_uid);
4414 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4415 /* A set of registers which are live but not modified throughout a block. */
4416 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4417 last_basic_block_for_fn (cfun));
4418 /* A set of registers which only exist in a given basic block. */
4419 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4420 last_basic_block_for_fn (cfun));
4421 /* A set of registers which are set once, in an instruction that can be
4422 moved freely downwards, but are otherwise transparent to a block. */
4423 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4424 last_basic_block_for_fn (cfun));
4425 bitmap_head live, used, set, interesting, unusable_as_input;
4426 bitmap_iterator bi;
4427 bitmap_initialize (&interesting, 0);
4429 first_moveable_pseudo = max_regs;
4430 pseudo_replaced_reg.release ();
4431 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4433 df_analyze ();
4434 calculate_dominance_info (CDI_DOMINATORS);
4436 i = 0;
4437 bitmap_initialize (&live, 0);
4438 bitmap_initialize (&used, 0);
4439 bitmap_initialize (&set, 0);
4440 bitmap_initialize (&unusable_as_input, 0);
4441 FOR_EACH_BB_FN (bb, cfun)
4443 rtx_insn *insn;
4444 bitmap transp = bb_transp_live + bb->index;
4445 bitmap moveable = bb_moveable_reg_sets + bb->index;
4446 bitmap local = bb_local + bb->index;
4448 bitmap_initialize (local, 0);
4449 bitmap_initialize (transp, 0);
4450 bitmap_initialize (moveable, 0);
4451 bitmap_copy (&live, df_get_live_out (bb));
4452 bitmap_and_into (&live, df_get_live_in (bb));
4453 bitmap_copy (transp, &live);
4454 bitmap_clear (moveable);
4455 bitmap_clear (&live);
4456 bitmap_clear (&used);
4457 bitmap_clear (&set);
4458 FOR_BB_INSNS (bb, insn)
4459 if (NONDEBUG_INSN_P (insn))
4461 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4462 df_ref def, use;
4464 uid_luid[INSN_UID (insn)] = i++;
4466 def = df_single_def (insn_info);
4467 use = df_single_use (insn_info);
4468 if (use
4469 && def
4470 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4471 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4472 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4474 unsigned regno = DF_REF_REGNO (use);
4475 bitmap_set_bit (moveable, regno);
4476 bitmap_set_bit (&set, regno);
4477 bitmap_set_bit (&used, regno);
4478 bitmap_clear_bit (transp, regno);
4479 continue;
4481 FOR_EACH_INSN_INFO_USE (use, insn_info)
4483 unsigned regno = DF_REF_REGNO (use);
4484 bitmap_set_bit (&used, regno);
4485 if (bitmap_clear_bit (moveable, regno))
4486 bitmap_clear_bit (transp, regno);
4489 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4491 unsigned regno = DF_REF_REGNO (def);
4492 bitmap_set_bit (&set, regno);
4493 bitmap_clear_bit (transp, regno);
4494 bitmap_clear_bit (moveable, regno);
4499 bitmap_clear (&live);
4500 bitmap_clear (&used);
4501 bitmap_clear (&set);
4503 FOR_EACH_BB_FN (bb, cfun)
4505 bitmap local = bb_local + bb->index;
4506 rtx_insn *insn;
4508 FOR_BB_INSNS (bb, insn)
4509 if (NONDEBUG_INSN_P (insn))
4511 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4512 rtx_insn *def_insn;
4513 rtx closest_use, note;
4514 df_ref def, use;
4515 unsigned regno;
4516 bool all_dominated, all_local;
4517 machine_mode mode;
4519 def = df_single_def (insn_info);
4520 /* There must be exactly one def in this insn. */
4521 if (!def || !single_set (insn))
4522 continue;
4523 /* This must be the only definition of the reg. We also limit
4524 which modes we deal with so that we can assume we can generate
4525 move instructions. */
4526 regno = DF_REF_REGNO (def);
4527 mode = GET_MODE (DF_REF_REG (def));
4528 if (DF_REG_DEF_COUNT (regno) != 1
4529 || !DF_REF_INSN_INFO (def)
4530 || HARD_REGISTER_NUM_P (regno)
4531 || DF_REG_EQ_USE_COUNT (regno) > 0
4532 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4533 continue;
4534 def_insn = DF_REF_INSN (def);
4536 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4537 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4538 break;
4540 if (note)
4542 if (dump_file)
4543 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4544 regno);
4545 bitmap_set_bit (&unusable_as_input, regno);
4546 continue;
4549 use = DF_REG_USE_CHAIN (regno);
4550 all_dominated = true;
4551 all_local = true;
4552 closest_use = NULL_RTX;
4553 for (; use; use = DF_REF_NEXT_REG (use))
4555 rtx_insn *insn;
4556 if (!DF_REF_INSN_INFO (use))
4558 all_dominated = false;
4559 all_local = false;
4560 break;
4562 insn = DF_REF_INSN (use);
4563 if (DEBUG_INSN_P (insn))
4564 continue;
4565 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4566 all_local = false;
4567 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4568 all_dominated = false;
4569 if (closest_use != insn && closest_use != const0_rtx)
4571 if (closest_use == NULL_RTX)
4572 closest_use = insn;
4573 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4574 closest_use = insn;
4575 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4576 closest_use = const0_rtx;
4579 if (!all_dominated)
4581 if (dump_file)
4582 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4583 regno);
4584 continue;
4586 if (all_local)
4587 bitmap_set_bit (local, regno);
4588 if (closest_use == const0_rtx || closest_use == NULL
4589 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4591 if (dump_file)
4592 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4593 closest_use == const0_rtx || closest_use == NULL
4594 ? " (no unique first use)" : "");
4595 continue;
4597 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4599 if (dump_file)
4600 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4601 regno);
4602 continue;
4605 bitmap_set_bit (&interesting, regno);
4606 /* If we get here, we know closest_use is a non-NULL insn
4607 (as opposed to const_0_rtx). */
4608 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4610 if (dump_file && (all_local || all_dominated))
4612 fprintf (dump_file, "Reg %u:", regno);
4613 if (all_local)
4614 fprintf (dump_file, " local to bb %d", bb->index);
4615 if (all_dominated)
4616 fprintf (dump_file, " def dominates all uses");
4617 if (closest_use != const0_rtx)
4618 fprintf (dump_file, " has unique first use");
4619 fputs ("\n", dump_file);
4624 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4626 df_ref def = DF_REG_DEF_CHAIN (i);
4627 rtx_insn *def_insn = DF_REF_INSN (def);
4628 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4629 bitmap def_bb_local = bb_local + def_block->index;
4630 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4631 bitmap def_bb_transp = bb_transp_live + def_block->index;
4632 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4633 rtx_insn *use_insn = closest_uses[i];
4634 df_ref use;
4635 bool all_ok = true;
4636 bool all_transp = true;
4638 if (!REG_P (DF_REF_REG (def)))
4639 continue;
4641 if (!local_to_bb_p)
4643 if (dump_file)
4644 fprintf (dump_file, "Reg %u not local to one basic block\n",
4646 continue;
4648 if (reg_equiv_init (i) != NULL_RTX)
4650 if (dump_file)
4651 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4653 continue;
4655 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4657 if (dump_file)
4658 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4659 INSN_UID (def_insn), i);
4660 continue;
4662 if (dump_file)
4663 fprintf (dump_file, "Examining insn %d, def for %d\n",
4664 INSN_UID (def_insn), i);
4665 FOR_EACH_INSN_USE (use, def_insn)
4667 unsigned regno = DF_REF_REGNO (use);
4668 if (bitmap_bit_p (&unusable_as_input, regno))
4670 all_ok = false;
4671 if (dump_file)
4672 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4673 break;
4675 if (!bitmap_bit_p (def_bb_transp, regno))
4677 if (bitmap_bit_p (def_bb_moveable, regno)
4678 && !control_flow_insn_p (use_insn)
4679 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4681 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4683 rtx_insn *x = NEXT_INSN (def_insn);
4684 while (!modified_in_p (DF_REF_REG (use), x))
4686 gcc_assert (x != use_insn);
4687 x = NEXT_INSN (x);
4689 if (dump_file)
4690 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4691 regno, INSN_UID (x));
4692 emit_insn_after (PATTERN (x), use_insn);
4693 set_insn_deleted (x);
4695 else
4697 if (dump_file)
4698 fprintf (dump_file, " input reg %u modified between def and use\n",
4699 regno);
4700 all_transp = false;
4703 else
4704 all_transp = false;
4707 if (!all_ok)
4708 continue;
4709 if (!dbg_cnt (ira_move))
4710 break;
4711 if (dump_file)
4712 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4714 if (all_transp)
4716 rtx def_reg = DF_REF_REG (def);
4717 rtx newreg = ira_create_new_reg (def_reg);
4718 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4720 unsigned nregno = REGNO (newreg);
4721 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4722 nregno -= max_regs;
4723 pseudo_replaced_reg[nregno] = def_reg;
4728 FOR_EACH_BB_FN (bb, cfun)
4730 bitmap_clear (bb_local + bb->index);
4731 bitmap_clear (bb_transp_live + bb->index);
4732 bitmap_clear (bb_moveable_reg_sets + bb->index);
4734 bitmap_clear (&interesting);
4735 bitmap_clear (&unusable_as_input);
4736 free (uid_luid);
4737 free (closest_uses);
4738 free (bb_local);
4739 free (bb_transp_live);
4740 free (bb_moveable_reg_sets);
4742 last_moveable_pseudo = max_reg_num ();
4744 fix_reg_equiv_init ();
4745 expand_reg_info ();
4746 regstat_free_n_sets_and_refs ();
4747 regstat_free_ri ();
4748 regstat_init_n_sets_and_refs ();
4749 regstat_compute_ri ();
4750 free_dominance_info (CDI_DOMINATORS);
4753 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4754 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4755 the destination. Otherwise return NULL. */
4757 static rtx
4758 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4760 rtx src = SET_SRC (set);
4761 rtx dest = SET_DEST (set);
4762 if (!REG_P (src) || !HARD_REGISTER_P (src)
4763 || !REG_P (dest) || HARD_REGISTER_P (dest)
4764 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4765 return NULL;
4766 return dest;
4769 /* If insn is interesting for parameter range-splitting shrink-wrapping
4770 preparation, i.e. it is a single set from a hard register to a pseudo, which
4771 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4772 parallel statement with only one such statement, return the destination.
4773 Otherwise return NULL. */
4775 static rtx
4776 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4778 if (!INSN_P (insn))
4779 return NULL;
4780 rtx pat = PATTERN (insn);
4781 if (GET_CODE (pat) == SET)
4782 return interesting_dest_for_shprep_1 (pat, call_dom);
4784 if (GET_CODE (pat) != PARALLEL)
4785 return NULL;
4786 rtx ret = NULL;
4787 for (int i = 0; i < XVECLEN (pat, 0); i++)
4789 rtx sub = XVECEXP (pat, 0, i);
4790 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4791 continue;
4792 if (GET_CODE (sub) != SET
4793 || side_effects_p (sub))
4794 return NULL;
4795 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4796 if (dest && ret)
4797 return NULL;
4798 if (dest)
4799 ret = dest;
4801 return ret;
4804 /* Split live ranges of pseudos that are loaded from hard registers in the
4805 first BB in a BB that dominates all non-sibling call if such a BB can be
4806 found and is not in a loop. Return true if the function has made any
4807 changes. */
4809 static bool
4810 split_live_ranges_for_shrink_wrap (void)
4812 basic_block bb, call_dom = NULL;
4813 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4814 rtx_insn *insn, *last_interesting_insn = NULL;
4815 bitmap_head need_new, reachable;
4816 vec<basic_block> queue;
4818 if (!SHRINK_WRAPPING_ENABLED)
4819 return false;
4821 bitmap_initialize (&need_new, 0);
4822 bitmap_initialize (&reachable, 0);
4823 queue.create (n_basic_blocks_for_fn (cfun));
4825 FOR_EACH_BB_FN (bb, cfun)
4826 FOR_BB_INSNS (bb, insn)
4827 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4829 if (bb == first)
4831 bitmap_clear (&need_new);
4832 bitmap_clear (&reachable);
4833 queue.release ();
4834 return false;
4837 bitmap_set_bit (&need_new, bb->index);
4838 bitmap_set_bit (&reachable, bb->index);
4839 queue.quick_push (bb);
4840 break;
4843 if (queue.is_empty ())
4845 bitmap_clear (&need_new);
4846 bitmap_clear (&reachable);
4847 queue.release ();
4848 return false;
4851 while (!queue.is_empty ())
4853 edge e;
4854 edge_iterator ei;
4856 bb = queue.pop ();
4857 FOR_EACH_EDGE (e, ei, bb->succs)
4858 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4859 && bitmap_set_bit (&reachable, e->dest->index))
4860 queue.quick_push (e->dest);
4862 queue.release ();
4864 FOR_BB_INSNS (first, insn)
4866 rtx dest = interesting_dest_for_shprep (insn, NULL);
4867 if (!dest)
4868 continue;
4870 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4872 bitmap_clear (&need_new);
4873 bitmap_clear (&reachable);
4874 return false;
4877 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4878 use;
4879 use = DF_REF_NEXT_REG (use))
4881 int ubbi = DF_REF_BB (use)->index;
4882 if (bitmap_bit_p (&reachable, ubbi))
4883 bitmap_set_bit (&need_new, ubbi);
4885 last_interesting_insn = insn;
4888 bitmap_clear (&reachable);
4889 if (!last_interesting_insn)
4891 bitmap_clear (&need_new);
4892 return false;
4895 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4896 bitmap_clear (&need_new);
4897 if (call_dom == first)
4898 return false;
4900 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4901 while (bb_loop_depth (call_dom) > 0)
4902 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4903 loop_optimizer_finalize ();
4905 if (call_dom == first)
4906 return false;
4908 calculate_dominance_info (CDI_POST_DOMINATORS);
4909 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4911 free_dominance_info (CDI_POST_DOMINATORS);
4912 return false;
4914 free_dominance_info (CDI_POST_DOMINATORS);
4916 if (dump_file)
4917 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4918 call_dom->index);
4920 bool ret = false;
4921 FOR_BB_INSNS (first, insn)
4923 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4924 if (!dest || dest == pic_offset_table_rtx)
4925 continue;
4927 rtx newreg = NULL_RTX;
4928 df_ref use, next;
4929 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4931 rtx_insn *uin = DF_REF_INSN (use);
4932 next = DF_REF_NEXT_REG (use);
4934 basic_block ubb = BLOCK_FOR_INSN (uin);
4935 if (ubb == call_dom
4936 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4938 if (!newreg)
4939 newreg = ira_create_new_reg (dest);
4940 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4944 if (newreg)
4946 rtx_insn *new_move = gen_move_insn (newreg, dest);
4947 emit_insn_after (new_move, bb_note (call_dom));
4948 if (dump_file)
4950 fprintf (dump_file, "Split live-range of register ");
4951 print_rtl_single (dump_file, dest);
4953 ret = true;
4956 if (insn == last_interesting_insn)
4957 break;
4959 apply_change_group ();
4960 return ret;
4963 /* Perform the second half of the transformation started in
4964 find_moveable_pseudos. We look for instances where the newly introduced
4965 pseudo remains unallocated, and remove it by moving the definition to
4966 just before its use, replacing the move instruction generated by
4967 find_moveable_pseudos. */
4968 static void
4969 move_unallocated_pseudos (void)
4971 int i;
4972 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4973 if (reg_renumber[i] < 0)
4975 int idx = i - first_moveable_pseudo;
4976 rtx other_reg = pseudo_replaced_reg[idx];
4977 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4978 /* The use must follow all definitions of OTHER_REG, so we can
4979 insert the new definition immediately after any of them. */
4980 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4981 rtx_insn *move_insn = DF_REF_INSN (other_def);
4982 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4983 rtx set;
4984 int success;
4986 if (dump_file)
4987 fprintf (dump_file, "moving def of %d (insn %d now) ",
4988 REGNO (other_reg), INSN_UID (def_insn));
4990 delete_insn (move_insn);
4991 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4992 delete_insn (DF_REF_INSN (other_def));
4993 delete_insn (def_insn);
4995 set = single_set (newinsn);
4996 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
4997 gcc_assert (success);
4998 if (dump_file)
4999 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5000 INSN_UID (newinsn), i);
5001 SET_REG_N_REFS (i, 0);
5005 /* If the backend knows where to allocate pseudos for hard
5006 register initial values, register these allocations now. */
5007 static void
5008 allocate_initial_values (void)
5010 if (targetm.allocate_initial_value)
5012 rtx hreg, preg, x;
5013 int i, regno;
5015 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5017 if (! initial_value_entry (i, &hreg, &preg))
5018 break;
5020 x = targetm.allocate_initial_value (hreg);
5021 regno = REGNO (preg);
5022 if (x && REG_N_SETS (regno) <= 1)
5024 if (MEM_P (x))
5025 reg_equiv_memory_loc (regno) = x;
5026 else
5028 basic_block bb;
5029 int new_regno;
5031 gcc_assert (REG_P (x));
5032 new_regno = REGNO (x);
5033 reg_renumber[regno] = new_regno;
5034 /* Poke the regno right into regno_reg_rtx so that even
5035 fixed regs are accepted. */
5036 SET_REGNO (preg, new_regno);
5037 /* Update global register liveness information. */
5038 FOR_EACH_BB_FN (bb, cfun)
5040 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5041 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5042 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5043 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5049 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5050 &hreg, &preg));
5055 /* True when we use LRA instead of reload pass for the current
5056 function. */
5057 bool ira_use_lra_p;
5059 /* True if we have allocno conflicts. It is false for non-optimized
5060 mode or when the conflict table is too big. */
5061 bool ira_conflicts_p;
5063 /* Saved between IRA and reload. */
5064 static int saved_flag_ira_share_spill_slots;
5066 /* This is the main entry of IRA. */
5067 static void
5068 ira (FILE *f)
5070 bool loops_p;
5071 int ira_max_point_before_emit;
5072 bool saved_flag_caller_saves = flag_caller_saves;
5073 enum ira_region saved_flag_ira_region = flag_ira_region;
5075 clear_bb_flags ();
5077 /* Perform target specific PIC register initialization. */
5078 targetm.init_pic_reg ();
5080 ira_conflicts_p = optimize > 0;
5082 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5083 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5084 use simplified and faster algorithms in LRA. */
5085 lra_simple_p
5086 = (ira_use_lra_p
5087 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5088 if (lra_simple_p)
5090 /* It permits to skip live range splitting in LRA. */
5091 flag_caller_saves = false;
5092 /* There is no sense to do regional allocation when we use
5093 simplified LRA. */
5094 flag_ira_region = IRA_REGION_ONE;
5095 ira_conflicts_p = false;
5098 #ifndef IRA_NO_OBSTACK
5099 gcc_obstack_init (&ira_obstack);
5100 #endif
5101 bitmap_obstack_initialize (&ira_bitmap_obstack);
5103 /* LRA uses its own infrastructure to handle caller save registers. */
5104 if (flag_caller_saves && !ira_use_lra_p)
5105 init_caller_save ();
5107 if (flag_ira_verbose < 10)
5109 internal_flag_ira_verbose = flag_ira_verbose;
5110 ira_dump_file = f;
5112 else
5114 internal_flag_ira_verbose = flag_ira_verbose - 10;
5115 ira_dump_file = stderr;
5118 setup_prohibited_mode_move_regs ();
5119 decrease_live_ranges_number ();
5120 df_note_add_problem ();
5122 /* DF_LIVE can't be used in the register allocator, too many other
5123 parts of the compiler depend on using the "classic" liveness
5124 interpretation of the DF_LR problem. See PR38711.
5125 Remove the problem, so that we don't spend time updating it in
5126 any of the df_analyze() calls during IRA/LRA. */
5127 if (optimize > 1)
5128 df_remove_problem (df_live);
5129 gcc_checking_assert (df_live == NULL);
5131 if (flag_checking)
5132 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5134 df_analyze ();
5136 init_reg_equiv ();
5137 if (ira_conflicts_p)
5139 calculate_dominance_info (CDI_DOMINATORS);
5141 if (split_live_ranges_for_shrink_wrap ())
5142 df_analyze ();
5144 free_dominance_info (CDI_DOMINATORS);
5147 df_clear_flags (DF_NO_INSN_RESCAN);
5149 indirect_jump_optimize ();
5150 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5151 df_analyze ();
5153 regstat_init_n_sets_and_refs ();
5154 regstat_compute_ri ();
5156 /* If we are not optimizing, then this is the only place before
5157 register allocation where dataflow is done. And that is needed
5158 to generate these warnings. */
5159 if (warn_clobbered)
5160 generate_setjmp_warnings ();
5162 /* Determine if the current function is a leaf before running IRA
5163 since this can impact optimizations done by the prologue and
5164 epilogue thus changing register elimination offsets. */
5165 crtl->is_leaf = leaf_function_p ();
5167 if (resize_reg_info () && flag_ira_loop_pressure)
5168 ira_set_pseudo_classes (true, ira_dump_file);
5170 init_alias_analysis ();
5171 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5172 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5173 update_equiv_regs ();
5175 /* Don't move insns if live range shrinkage or register
5176 pressure-sensitive scheduling were done because it will not
5177 improve allocation but likely worsen insn scheduling. */
5178 if (optimize
5179 && !flag_live_range_shrinkage
5180 && !(flag_sched_pressure && flag_schedule_insns))
5181 combine_and_move_insns ();
5183 /* Gather additional equivalences with memory. */
5184 if (optimize)
5185 add_store_equivs ();
5187 loop_optimizer_finalize ();
5188 free_dominance_info (CDI_DOMINATORS);
5189 end_alias_analysis ();
5190 free (reg_equiv);
5192 setup_reg_equiv ();
5193 grow_reg_equivs ();
5194 setup_reg_equiv_init ();
5196 allocated_reg_info_size = max_reg_num ();
5198 /* It is not worth to do such improvement when we use a simple
5199 allocation because of -O0 usage or because the function is too
5200 big. */
5201 if (ira_conflicts_p)
5202 find_moveable_pseudos ();
5204 max_regno_before_ira = max_reg_num ();
5205 ira_setup_eliminable_regset ();
5207 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5208 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5209 ira_move_loops_num = ira_additional_jumps_num = 0;
5211 ira_assert (current_loops == NULL);
5212 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5213 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5215 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5216 fprintf (ira_dump_file, "Building IRA IR\n");
5217 loops_p = ira_build ();
5219 ira_assert (ira_conflicts_p || !loops_p);
5221 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5222 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5223 /* It is just wasting compiler's time to pack spilled pseudos into
5224 stack slots in this case -- prohibit it. We also do this if
5225 there is setjmp call because a variable not modified between
5226 setjmp and longjmp the compiler is required to preserve its
5227 value and sharing slots does not guarantee it. */
5228 flag_ira_share_spill_slots = FALSE;
5230 ira_color ();
5232 ira_max_point_before_emit = ira_max_point;
5234 ira_initiate_emit_data ();
5236 ira_emit (loops_p);
5238 max_regno = max_reg_num ();
5239 if (ira_conflicts_p)
5241 if (! loops_p)
5243 if (! ira_use_lra_p)
5244 ira_initiate_assign ();
5246 else
5248 expand_reg_info ();
5250 if (ira_use_lra_p)
5252 ira_allocno_t a;
5253 ira_allocno_iterator ai;
5255 FOR_EACH_ALLOCNO (a, ai)
5257 int old_regno = ALLOCNO_REGNO (a);
5258 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5260 ALLOCNO_REGNO (a) = new_regno;
5262 if (old_regno != new_regno)
5263 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5264 reg_alternate_class (old_regno),
5265 reg_allocno_class (old_regno));
5269 else
5271 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5272 fprintf (ira_dump_file, "Flattening IR\n");
5273 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5275 /* New insns were generated: add notes and recalculate live
5276 info. */
5277 df_analyze ();
5279 /* ??? Rebuild the loop tree, but why? Does the loop tree
5280 change if new insns were generated? Can that be handled
5281 by updating the loop tree incrementally? */
5282 loop_optimizer_finalize ();
5283 free_dominance_info (CDI_DOMINATORS);
5284 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5285 | LOOPS_HAVE_RECORDED_EXITS);
5287 if (! ira_use_lra_p)
5289 setup_allocno_assignment_flags ();
5290 ira_initiate_assign ();
5291 ira_reassign_conflict_allocnos (max_regno);
5296 ira_finish_emit_data ();
5298 setup_reg_renumber ();
5300 calculate_allocation_cost ();
5302 #ifdef ENABLE_IRA_CHECKING
5303 if (ira_conflicts_p)
5304 check_allocation ();
5305 #endif
5307 if (max_regno != max_regno_before_ira)
5309 regstat_free_n_sets_and_refs ();
5310 regstat_free_ri ();
5311 regstat_init_n_sets_and_refs ();
5312 regstat_compute_ri ();
5315 overall_cost_before = ira_overall_cost;
5316 if (! ira_conflicts_p)
5317 grow_reg_equivs ();
5318 else
5320 fix_reg_equiv_init ();
5322 #ifdef ENABLE_IRA_CHECKING
5323 print_redundant_copies ();
5324 #endif
5325 if (! ira_use_lra_p)
5327 ira_spilled_reg_stack_slots_num = 0;
5328 ira_spilled_reg_stack_slots
5329 = ((struct ira_spilled_reg_stack_slot *)
5330 ira_allocate (max_regno
5331 * sizeof (struct ira_spilled_reg_stack_slot)));
5332 memset (ira_spilled_reg_stack_slots, 0,
5333 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5336 allocate_initial_values ();
5338 /* See comment for find_moveable_pseudos call. */
5339 if (ira_conflicts_p)
5340 move_unallocated_pseudos ();
5342 /* Restore original values. */
5343 if (lra_simple_p)
5345 flag_caller_saves = saved_flag_caller_saves;
5346 flag_ira_region = saved_flag_ira_region;
5350 static void
5351 do_reload (void)
5353 basic_block bb;
5354 bool need_dce;
5355 unsigned pic_offset_table_regno = INVALID_REGNUM;
5357 if (flag_ira_verbose < 10)
5358 ira_dump_file = dump_file;
5360 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5361 after reload to avoid possible wrong usages of hard reg assigned
5362 to it. */
5363 if (pic_offset_table_rtx
5364 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5365 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5367 timevar_push (TV_RELOAD);
5368 if (ira_use_lra_p)
5370 if (current_loops != NULL)
5372 loop_optimizer_finalize ();
5373 free_dominance_info (CDI_DOMINATORS);
5375 FOR_ALL_BB_FN (bb, cfun)
5376 bb->loop_father = NULL;
5377 current_loops = NULL;
5379 ira_destroy ();
5381 lra (ira_dump_file);
5382 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5383 LRA. */
5384 vec_free (reg_equivs);
5385 reg_equivs = NULL;
5386 need_dce = false;
5388 else
5390 df_set_flags (DF_NO_INSN_RESCAN);
5391 build_insn_chain ();
5393 need_dce = reload (get_insns (), ira_conflicts_p);
5396 timevar_pop (TV_RELOAD);
5398 timevar_push (TV_IRA);
5400 if (ira_conflicts_p && ! ira_use_lra_p)
5402 ira_free (ira_spilled_reg_stack_slots);
5403 ira_finish_assign ();
5406 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5407 && overall_cost_before != ira_overall_cost)
5408 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5409 ira_overall_cost);
5411 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5413 if (! ira_use_lra_p)
5415 ira_destroy ();
5416 if (current_loops != NULL)
5418 loop_optimizer_finalize ();
5419 free_dominance_info (CDI_DOMINATORS);
5421 FOR_ALL_BB_FN (bb, cfun)
5422 bb->loop_father = NULL;
5423 current_loops = NULL;
5425 regstat_free_ri ();
5426 regstat_free_n_sets_and_refs ();
5429 if (optimize)
5430 cleanup_cfg (CLEANUP_EXPENSIVE);
5432 finish_reg_equiv ();
5434 bitmap_obstack_release (&ira_bitmap_obstack);
5435 #ifndef IRA_NO_OBSTACK
5436 obstack_free (&ira_obstack, NULL);
5437 #endif
5439 /* The code after the reload has changed so much that at this point
5440 we might as well just rescan everything. Note that
5441 df_rescan_all_insns is not going to help here because it does not
5442 touch the artificial uses and defs. */
5443 df_finish_pass (true);
5444 df_scan_alloc (NULL);
5445 df_scan_blocks ();
5447 if (optimize > 1)
5449 df_live_add_problem ();
5450 df_live_set_all_dirty ();
5453 if (optimize)
5454 df_analyze ();
5456 if (need_dce && optimize)
5457 run_fast_dce ();
5459 /* Diagnose uses of the hard frame pointer when it is used as a global
5460 register. Often we can get away with letting the user appropriate
5461 the frame pointer, but we should let them know when code generation
5462 makes that impossible. */
5463 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5465 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5466 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5467 "frame pointer required, but reserved");
5468 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5471 /* If we are doing generic stack checking, give a warning if this
5472 function's frame size is larger than we expect. */
5473 if (flag_stack_check == GENERIC_STACK_CHECK)
5475 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5477 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5478 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5479 size += UNITS_PER_WORD;
5481 if (size > STACK_CHECK_MAX_FRAME_SIZE)
5482 warning (0, "frame size too large for reliable stack checking");
5485 if (pic_offset_table_regno != INVALID_REGNUM)
5486 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5488 timevar_pop (TV_IRA);
5491 /* Run the integrated register allocator. */
5493 namespace {
5495 const pass_data pass_data_ira =
5497 RTL_PASS, /* type */
5498 "ira", /* name */
5499 OPTGROUP_NONE, /* optinfo_flags */
5500 TV_IRA, /* tv_id */
5501 0, /* properties_required */
5502 0, /* properties_provided */
5503 0, /* properties_destroyed */
5504 0, /* todo_flags_start */
5505 TODO_do_not_ggc_collect, /* todo_flags_finish */
5508 class pass_ira : public rtl_opt_pass
5510 public:
5511 pass_ira (gcc::context *ctxt)
5512 : rtl_opt_pass (pass_data_ira, ctxt)
5515 /* opt_pass methods: */
5516 virtual bool gate (function *)
5518 return !targetm.no_register_allocation;
5520 virtual unsigned int execute (function *)
5522 ira (dump_file);
5523 return 0;
5526 }; // class pass_ira
5528 } // anon namespace
5530 rtl_opt_pass *
5531 make_pass_ira (gcc::context *ctxt)
5533 return new pass_ira (ctxt);
5536 namespace {
5538 const pass_data pass_data_reload =
5540 RTL_PASS, /* type */
5541 "reload", /* name */
5542 OPTGROUP_NONE, /* optinfo_flags */
5543 TV_RELOAD, /* tv_id */
5544 0, /* properties_required */
5545 0, /* properties_provided */
5546 0, /* properties_destroyed */
5547 0, /* todo_flags_start */
5548 0, /* todo_flags_finish */
5551 class pass_reload : public rtl_opt_pass
5553 public:
5554 pass_reload (gcc::context *ctxt)
5555 : rtl_opt_pass (pass_data_reload, ctxt)
5558 /* opt_pass methods: */
5559 virtual bool gate (function *)
5561 return !targetm.no_register_allocation;
5563 virtual unsigned int execute (function *)
5565 do_reload ();
5566 return 0;
5569 }; // class pass_reload
5571 } // anon namespace
5573 rtl_opt_pass *
5574 make_pass_reload (gcc::context *ctxt)
5576 return new pass_reload (ctxt);