2018-02-19 Sebastian Perta <sebastian.perta@renesas.com>
[official-gcc.git] / gcc / final.c
blobcbebbfdf5b077e4a01b0acd29b4e4ddf9d23ad4f
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data declarations. */
87 #endif
89 #include "dwarf2out.h"
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96 So define a null default for it to save conditionalization later. */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
101 /* Is the given character a logical line separator for the assembler? */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
110 /* Bitflags used by final_scan_insn. */
111 #define SEEN_NOTE 1
112 #define SEEN_EMITTED 2
113 #define SEEN_NEXT_VIEW 4
115 /* Last insn processed by final_scan_insn. */
116 static rtx_insn *debug_insn;
117 rtx_insn *current_output_insn;
119 /* Line number of last NOTE. */
120 static int last_linenum;
122 /* Column number of last NOTE. */
123 static int last_columnnum;
125 /* Last discriminator written to assembly. */
126 static int last_discriminator;
128 /* Discriminator of current block. */
129 static int discriminator;
131 /* Highest line number in current block. */
132 static int high_block_linenum;
134 /* Likewise for function. */
135 static int high_function_linenum;
137 /* Filename of last NOTE. */
138 static const char *last_filename;
140 /* Override filename, line and column number. */
141 static const char *override_filename;
142 static int override_linenum;
143 static int override_columnnum;
145 /* Whether to force emission of a line note before the next insn. */
146 static bool force_source_line = false;
148 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
150 /* Nonzero while outputting an `asm' with operands.
151 This means that inconsistencies are the user's fault, so don't die.
152 The precise value is the insn being output, to pass to error_for_asm. */
153 const rtx_insn *this_is_asm_operands;
155 /* Number of operands of this insn, for an `asm' with operands. */
156 static unsigned int insn_noperands;
158 /* Compare optimization flag. */
160 static rtx last_ignored_compare = 0;
162 /* Assign a unique number to each insn that is output.
163 This can be used to generate unique local labels. */
165 static int insn_counter = 0;
167 /* This variable contains machine-dependent flags (defined in tm.h)
168 set and examined by output routines
169 that describe how to interpret the condition codes properly. */
171 CC_STATUS cc_status;
173 /* During output of an insn, this contains a copy of cc_status
174 from before the insn. */
176 CC_STATUS cc_prev_status;
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
180 static int block_depth;
182 /* Nonzero if have enabled APP processing of our assembler output. */
184 static int app_on;
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
189 rtx_sequence *final_sequence;
191 #ifdef ASSEMBLER_DIALECT
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
197 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
198 rtx current_insn_predicate;
200 /* True if printing into -fdump-final-insns= dump. */
201 bool final_insns_dump_p;
203 /* True if profile_function should be called, but hasn't been called yet. */
204 static bool need_profile_function;
206 static int asm_insn_count (rtx);
207 static void profile_function (FILE *);
208 static void profile_after_prologue (FILE *);
209 static bool notice_source_line (rtx_insn *, bool *);
210 static rtx walk_alter_subreg (rtx *, bool *);
211 static void output_asm_name (void);
212 static void output_alternate_entry_point (FILE *, rtx_insn *);
213 static tree get_mem_expr_from_op (rtx, int *);
214 static void output_asm_operand_names (rtx *, int *, int);
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs (rtx_insn *);
217 #endif
218 #if HAVE_cc0
219 static int alter_cond (rtx);
220 #endif
221 static int align_fuzz (rtx, rtx, int, unsigned);
222 static void collect_fn_hard_reg_usage (void);
223 static tree get_call_fndecl (rtx_insn *);
225 /* Initialize data in final at the beginning of a compilation. */
227 void
228 init_final (const char *filename ATTRIBUTE_UNUSED)
230 app_on = 0;
231 final_sequence = 0;
233 #ifdef ASSEMBLER_DIALECT
234 dialect_number = ASSEMBLER_DIALECT;
235 #endif
238 /* Default target function prologue and epilogue assembler output.
240 If not overridden for epilogue code, then the function body itself
241 contains return instructions wherever needed. */
242 void
243 default_function_pro_epilogue (FILE *)
247 void
248 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
249 tree decl ATTRIBUTE_UNUSED,
250 bool new_is_cold ATTRIBUTE_UNUSED)
254 /* Default target hook that outputs nothing to a stream. */
255 void
256 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
260 /* Enable APP processing of subsequent output.
261 Used before the output from an `asm' statement. */
263 void
264 app_enable (void)
266 if (! app_on)
268 fputs (ASM_APP_ON, asm_out_file);
269 app_on = 1;
273 /* Disable APP processing of subsequent output.
274 Called from varasm.c before most kinds of output. */
276 void
277 app_disable (void)
279 if (app_on)
281 fputs (ASM_APP_OFF, asm_out_file);
282 app_on = 0;
286 /* Return the number of slots filled in the current
287 delayed branch sequence (we don't count the insn needing the
288 delay slot). Zero if not in a delayed branch sequence. */
291 dbr_sequence_length (void)
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
295 else
296 return 0;
299 /* The next two pages contain routines used to compute the length of an insn
300 and to shorten branches. */
302 /* Arrays for insn lengths, and addresses. The latter is referenced by
303 `insn_current_length'. */
305 static int *insn_lengths;
307 vec<int> insn_addresses_;
309 /* Max uid for which the above arrays are valid. */
310 static int insn_lengths_max_uid;
312 /* Address of insn being processed. Used by `insn_current_length'. */
313 int insn_current_address;
315 /* Address of insn being processed in previous iteration. */
316 int insn_last_address;
318 /* known invariant alignment of insn being processed. */
319 int insn_current_align;
321 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
322 gives the next following alignment insn that increases the known
323 alignment, or NULL_RTX if there is no such insn.
324 For any alignment obtained this way, we can again index uid_align with
325 its uid to obtain the next following align that in turn increases the
326 alignment, till we reach NULL_RTX; the sequence obtained this way
327 for each insn we'll call the alignment chain of this insn in the following
328 comments. */
330 struct label_alignment
332 short alignment;
333 short max_skip;
336 static rtx *uid_align;
337 static int *uid_shuid;
338 static struct label_alignment *label_align;
340 /* Indicate that branch shortening hasn't yet been done. */
342 void
343 init_insn_lengths (void)
345 if (uid_shuid)
347 free (uid_shuid);
348 uid_shuid = 0;
350 if (insn_lengths)
352 free (insn_lengths);
353 insn_lengths = 0;
354 insn_lengths_max_uid = 0;
356 if (HAVE_ATTR_length)
357 INSN_ADDRESSES_FREE ();
358 if (uid_align)
360 free (uid_align);
361 uid_align = 0;
365 /* Obtain the current length of an insn. If branch shortening has been done,
366 get its actual length. Otherwise, use FALLBACK_FN to calculate the
367 length. */
368 static int
369 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
371 rtx body;
372 int i;
373 int length = 0;
375 if (!HAVE_ATTR_length)
376 return 0;
378 if (insn_lengths_max_uid > INSN_UID (insn))
379 return insn_lengths[INSN_UID (insn)];
380 else
381 switch (GET_CODE (insn))
383 case NOTE:
384 case BARRIER:
385 case CODE_LABEL:
386 case DEBUG_INSN:
387 return 0;
389 case CALL_INSN:
390 case JUMP_INSN:
391 length = fallback_fn (insn);
392 break;
394 case INSN:
395 body = PATTERN (insn);
396 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
397 return 0;
399 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
400 length = asm_insn_count (body) * fallback_fn (insn);
401 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
402 for (i = 0; i < seq->len (); i++)
403 length += get_attr_length_1 (seq->insn (i), fallback_fn);
404 else
405 length = fallback_fn (insn);
406 break;
408 default:
409 break;
412 #ifdef ADJUST_INSN_LENGTH
413 ADJUST_INSN_LENGTH (insn, length);
414 #endif
415 return length;
418 /* Obtain the current length of an insn. If branch shortening has been done,
419 get its actual length. Otherwise, get its maximum length. */
421 get_attr_length (rtx_insn *insn)
423 return get_attr_length_1 (insn, insn_default_length);
426 /* Obtain the current length of an insn. If branch shortening has been done,
427 get its actual length. Otherwise, get its minimum length. */
429 get_attr_min_length (rtx_insn *insn)
431 return get_attr_length_1 (insn, insn_min_length);
434 /* Code to handle alignment inside shorten_branches. */
436 /* Here is an explanation how the algorithm in align_fuzz can give
437 proper results:
439 Call a sequence of instructions beginning with alignment point X
440 and continuing until the next alignment point `block X'. When `X'
441 is used in an expression, it means the alignment value of the
442 alignment point.
444 Call the distance between the start of the first insn of block X, and
445 the end of the last insn of block X `IX', for the `inner size of X'.
446 This is clearly the sum of the instruction lengths.
448 Likewise with the next alignment-delimited block following X, which we
449 shall call block Y.
451 Call the distance between the start of the first insn of block X, and
452 the start of the first insn of block Y `OX', for the `outer size of X'.
454 The estimated padding is then OX - IX.
456 OX can be safely estimated as
458 if (X >= Y)
459 OX = round_up(IX, Y)
460 else
461 OX = round_up(IX, X) + Y - X
463 Clearly est(IX) >= real(IX), because that only depends on the
464 instruction lengths, and those being overestimated is a given.
466 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
467 we needn't worry about that when thinking about OX.
469 When X >= Y, the alignment provided by Y adds no uncertainty factor
470 for branch ranges starting before X, so we can just round what we have.
471 But when X < Y, we don't know anything about the, so to speak,
472 `middle bits', so we have to assume the worst when aligning up from an
473 address mod X to one mod Y, which is Y - X. */
475 #ifndef LABEL_ALIGN
476 #define LABEL_ALIGN(LABEL) align_labels_log
477 #endif
479 #ifndef LOOP_ALIGN
480 #define LOOP_ALIGN(LABEL) align_loops_log
481 #endif
483 #ifndef LABEL_ALIGN_AFTER_BARRIER
484 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
485 #endif
487 #ifndef JUMP_ALIGN
488 #define JUMP_ALIGN(LABEL) align_jumps_log
489 #endif
492 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
494 return 0;
498 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
500 return align_loops_max_skip;
504 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
506 return align_labels_max_skip;
510 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
512 return align_jumps_max_skip;
515 #ifndef ADDR_VEC_ALIGN
516 static int
517 final_addr_vec_align (rtx_jump_table_data *addr_vec)
519 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
521 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
522 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
523 return exact_log2 (align);
527 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
528 #endif
530 #ifndef INSN_LENGTH_ALIGNMENT
531 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
532 #endif
534 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
536 static int min_labelno, max_labelno;
538 #define LABEL_TO_ALIGNMENT(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
541 #define LABEL_TO_MAX_SKIP(LABEL) \
542 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
544 /* For the benefit of port specific code do this also as a function. */
547 label_to_alignment (rtx label)
549 if (CODE_LABEL_NUMBER (label) <= max_labelno)
550 return LABEL_TO_ALIGNMENT (label);
551 return 0;
555 label_to_max_skip (rtx label)
557 if (CODE_LABEL_NUMBER (label) <= max_labelno)
558 return LABEL_TO_MAX_SKIP (label);
559 return 0;
562 /* The differences in addresses
563 between a branch and its target might grow or shrink depending on
564 the alignment the start insn of the range (the branch for a forward
565 branch or the label for a backward branch) starts out on; if these
566 differences are used naively, they can even oscillate infinitely.
567 We therefore want to compute a 'worst case' address difference that
568 is independent of the alignment the start insn of the range end
569 up on, and that is at least as large as the actual difference.
570 The function align_fuzz calculates the amount we have to add to the
571 naively computed difference, by traversing the part of the alignment
572 chain of the start insn of the range that is in front of the end insn
573 of the range, and considering for each alignment the maximum amount
574 that it might contribute to a size increase.
576 For casesi tables, we also want to know worst case minimum amounts of
577 address difference, in case a machine description wants to introduce
578 some common offset that is added to all offsets in a table.
579 For this purpose, align_fuzz with a growth argument of 0 computes the
580 appropriate adjustment. */
582 /* Compute the maximum delta by which the difference of the addresses of
583 START and END might grow / shrink due to a different address for start
584 which changes the size of alignment insns between START and END.
585 KNOWN_ALIGN_LOG is the alignment known for START.
586 GROWTH should be ~0 if the objective is to compute potential code size
587 increase, and 0 if the objective is to compute potential shrink.
588 The return value is undefined for any other value of GROWTH. */
590 static int
591 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
593 int uid = INSN_UID (start);
594 rtx align_label;
595 int known_align = 1 << known_align_log;
596 int end_shuid = INSN_SHUID (end);
597 int fuzz = 0;
599 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
601 int align_addr, new_align;
603 uid = INSN_UID (align_label);
604 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
605 if (uid_shuid[uid] > end_shuid)
606 break;
607 known_align_log = LABEL_TO_ALIGNMENT (align_label);
608 new_align = 1 << known_align_log;
609 if (new_align < known_align)
610 continue;
611 fuzz += (-align_addr ^ growth) & (new_align - known_align);
612 known_align = new_align;
614 return fuzz;
617 /* Compute a worst-case reference address of a branch so that it
618 can be safely used in the presence of aligned labels. Since the
619 size of the branch itself is unknown, the size of the branch is
620 not included in the range. I.e. for a forward branch, the reference
621 address is the end address of the branch as known from the previous
622 branch shortening pass, minus a value to account for possible size
623 increase due to alignment. For a backward branch, it is the start
624 address of the branch as known from the current pass, plus a value
625 to account for possible size increase due to alignment.
626 NB.: Therefore, the maximum offset allowed for backward branches needs
627 to exclude the branch size. */
630 insn_current_reference_address (rtx_insn *branch)
632 rtx dest;
633 int seq_uid;
635 if (! INSN_ADDRESSES_SET_P ())
636 return 0;
638 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
639 seq_uid = INSN_UID (seq);
640 if (!JUMP_P (branch))
641 /* This can happen for example on the PA; the objective is to know the
642 offset to address something in front of the start of the function.
643 Thus, we can treat it like a backward branch.
644 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
645 any alignment we'd encounter, so we skip the call to align_fuzz. */
646 return insn_current_address;
647 dest = JUMP_LABEL (branch);
649 /* BRANCH has no proper alignment chain set, so use SEQ.
650 BRANCH also has no INSN_SHUID. */
651 if (INSN_SHUID (seq) < INSN_SHUID (dest))
653 /* Forward branch. */
654 return (insn_last_address + insn_lengths[seq_uid]
655 - align_fuzz (seq, dest, length_unit_log, ~0));
657 else
659 /* Backward branch. */
660 return (insn_current_address
661 + align_fuzz (dest, seq, length_unit_log, ~0));
665 /* Compute branch alignments based on CFG profile. */
667 unsigned int
668 compute_alignments (void)
670 int log, max_skip, max_log;
671 basic_block bb;
673 if (label_align)
675 free (label_align);
676 label_align = 0;
679 max_labelno = max_label_num ();
680 min_labelno = get_first_label_num ();
681 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
683 /* If not optimizing or optimizing for size, don't assign any alignments. */
684 if (! optimize || optimize_function_for_size_p (cfun))
685 return 0;
687 if (dump_file)
689 dump_reg_info (dump_file);
690 dump_flow_info (dump_file, TDF_DETAILS);
691 flow_loops_dump (dump_file, NULL, 1);
693 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
694 profile_count count_threshold = cfun->cfg->count_max.apply_scale
695 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD));
697 if (dump_file)
699 fprintf (dump_file, "count_max: ");
700 cfun->cfg->count_max.dump (dump_file);
701 fprintf (dump_file, "\n");
703 FOR_EACH_BB_FN (bb, cfun)
705 rtx_insn *label = BB_HEAD (bb);
706 bool has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
710 if (!LABEL_P (label)
711 || optimize_bb_for_size_p (bb))
713 if (dump_file)
714 fprintf (dump_file,
715 "BB %4i loop %2i loop_depth %2i skipped.\n",
716 bb->index,
717 bb->loop_father->num,
718 bb_loop_depth (bb));
719 continue;
721 max_log = LABEL_ALIGN (label);
722 max_skip = targetm.asm_out.label_align_max_skip (label);
723 profile_count fallthru_count = profile_count::zero ();
724 profile_count branch_count = profile_count::zero ();
726 FOR_EACH_EDGE (e, ei, bb->preds)
728 if (e->flags & EDGE_FALLTHRU)
729 has_fallthru = 1, fallthru_count += e->count ();
730 else
731 branch_count += e->count ();
733 if (dump_file)
735 fprintf (dump_file, "BB %4i loop %2i loop_depth"
736 " %2i fall ",
737 bb->index, bb->loop_father->num,
738 bb_loop_depth (bb));
739 fallthru_count.dump (dump_file);
740 fprintf (dump_file, " branch ");
741 branch_count.dump (dump_file);
742 if (!bb->loop_father->inner && bb->loop_father->num)
743 fprintf (dump_file, " inner_loop");
744 if (bb->loop_father->header == bb)
745 fprintf (dump_file, " loop_header");
746 fprintf (dump_file, "\n");
748 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
749 continue;
751 /* There are two purposes to align block with no fallthru incoming edge:
752 1) to avoid fetch stalls when branch destination is near cache boundary
753 2) to improve cache efficiency in case the previous block is not executed
754 (so it does not need to be in the cache).
756 We to catch first case, we align frequently executed blocks.
757 To catch the second, we align blocks that are executed more frequently
758 than the predecessor and the predecessor is likely to not be executed
759 when function is called. */
761 if (!has_fallthru
762 && (branch_count > count_threshold
763 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
764 && (bb->prev_bb->count
765 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
766 ->count.apply_scale (1, 2)))))
768 log = JUMP_ALIGN (label);
769 if (dump_file)
770 fprintf (dump_file, " jump alignment added.\n");
771 if (max_log < log)
773 max_log = log;
774 max_skip = targetm.asm_out.jump_align_max_skip (label);
777 /* In case block is frequent and reached mostly by non-fallthru edge,
778 align it. It is most likely a first block of loop. */
779 if (has_fallthru
780 && !(single_succ_p (bb)
781 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
782 && optimize_bb_for_speed_p (bb)
783 && branch_count + fallthru_count > count_threshold
784 && (branch_count
785 > fallthru_count.apply_scale
786 (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1)))
788 log = LOOP_ALIGN (label);
789 if (dump_file)
790 fprintf (dump_file, " internal loop alignment added.\n");
791 if (max_log < log)
793 max_log = log;
794 max_skip = targetm.asm_out.loop_align_max_skip (label);
797 LABEL_TO_ALIGNMENT (label) = max_log;
798 LABEL_TO_MAX_SKIP (label) = max_skip;
801 loop_optimizer_finalize ();
802 free_dominance_info (CDI_DOMINATORS);
803 return 0;
806 /* Grow the LABEL_ALIGN array after new labels are created. */
808 static void
809 grow_label_align (void)
811 int old = max_labelno;
812 int n_labels;
813 int n_old_labels;
815 max_labelno = max_label_num ();
817 n_labels = max_labelno - min_labelno + 1;
818 n_old_labels = old - min_labelno + 1;
820 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
822 /* Range of labels grows monotonically in the function. Failing here
823 means that the initialization of array got lost. */
824 gcc_assert (n_old_labels <= n_labels);
826 memset (label_align + n_old_labels, 0,
827 (n_labels - n_old_labels) * sizeof (struct label_alignment));
830 /* Update the already computed alignment information. LABEL_PAIRS is a vector
831 made up of pairs of labels for which the alignment information of the first
832 element will be copied from that of the second element. */
834 void
835 update_alignments (vec<rtx> &label_pairs)
837 unsigned int i = 0;
838 rtx iter, label = NULL_RTX;
840 if (max_labelno != max_label_num ())
841 grow_label_align ();
843 FOR_EACH_VEC_ELT (label_pairs, i, iter)
844 if (i & 1)
846 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
847 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
849 else
850 label = iter;
853 namespace {
855 const pass_data pass_data_compute_alignments =
857 RTL_PASS, /* type */
858 "alignments", /* name */
859 OPTGROUP_NONE, /* optinfo_flags */
860 TV_NONE, /* tv_id */
861 0, /* properties_required */
862 0, /* properties_provided */
863 0, /* properties_destroyed */
864 0, /* todo_flags_start */
865 0, /* todo_flags_finish */
868 class pass_compute_alignments : public rtl_opt_pass
870 public:
871 pass_compute_alignments (gcc::context *ctxt)
872 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
875 /* opt_pass methods: */
876 virtual unsigned int execute (function *) { return compute_alignments (); }
878 }; // class pass_compute_alignments
880 } // anon namespace
882 rtl_opt_pass *
883 make_pass_compute_alignments (gcc::context *ctxt)
885 return new pass_compute_alignments (ctxt);
889 /* Make a pass over all insns and compute their actual lengths by shortening
890 any branches of variable length if possible. */
892 /* shorten_branches might be called multiple times: for example, the SH
893 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
894 In order to do this, it needs proper length information, which it obtains
895 by calling shorten_branches. This cannot be collapsed with
896 shorten_branches itself into a single pass unless we also want to integrate
897 reorg.c, since the branch splitting exposes new instructions with delay
898 slots. */
900 void
901 shorten_branches (rtx_insn *first)
903 rtx_insn *insn;
904 int max_uid;
905 int i;
906 int max_log;
907 int max_skip;
908 #define MAX_CODE_ALIGN 16
909 rtx_insn *seq;
910 int something_changed = 1;
911 char *varying_length;
912 rtx body;
913 int uid;
914 rtx align_tab[MAX_CODE_ALIGN];
916 /* Compute maximum UID and allocate label_align / uid_shuid. */
917 max_uid = get_max_uid ();
919 /* Free uid_shuid before reallocating it. */
920 free (uid_shuid);
922 uid_shuid = XNEWVEC (int, max_uid);
924 if (max_labelno != max_label_num ())
925 grow_label_align ();
927 /* Initialize label_align and set up uid_shuid to be strictly
928 monotonically rising with insn order. */
929 /* We use max_log here to keep track of the maximum alignment we want to
930 impose on the next CODE_LABEL (or the current one if we are processing
931 the CODE_LABEL itself). */
933 max_log = 0;
934 max_skip = 0;
936 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
938 int log;
940 INSN_SHUID (insn) = i++;
941 if (INSN_P (insn))
942 continue;
944 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
946 /* Merge in alignments computed by compute_alignments. */
947 log = LABEL_TO_ALIGNMENT (label);
948 if (max_log < log)
950 max_log = log;
951 max_skip = LABEL_TO_MAX_SKIP (label);
954 rtx_jump_table_data *table = jump_table_for_label (label);
955 if (!table)
957 log = LABEL_ALIGN (label);
958 if (max_log < log)
960 max_log = log;
961 max_skip = targetm.asm_out.label_align_max_skip (label);
964 /* ADDR_VECs only take room if read-only data goes into the text
965 section. */
966 if ((JUMP_TABLES_IN_TEXT_SECTION
967 || readonly_data_section == text_section)
968 && table)
970 log = ADDR_VEC_ALIGN (table);
971 if (max_log < log)
973 max_log = log;
974 max_skip = targetm.asm_out.label_align_max_skip (label);
977 LABEL_TO_ALIGNMENT (label) = max_log;
978 LABEL_TO_MAX_SKIP (label) = max_skip;
979 max_log = 0;
980 max_skip = 0;
982 else if (BARRIER_P (insn))
984 rtx_insn *label;
986 for (label = insn; label && ! INSN_P (label);
987 label = NEXT_INSN (label))
988 if (LABEL_P (label))
990 log = LABEL_ALIGN_AFTER_BARRIER (insn);
991 if (max_log < log)
993 max_log = log;
994 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
996 break;
1000 if (!HAVE_ATTR_length)
1001 return;
1003 /* Allocate the rest of the arrays. */
1004 insn_lengths = XNEWVEC (int, max_uid);
1005 insn_lengths_max_uid = max_uid;
1006 /* Syntax errors can lead to labels being outside of the main insn stream.
1007 Initialize insn_addresses, so that we get reproducible results. */
1008 INSN_ADDRESSES_ALLOC (max_uid);
1010 varying_length = XCNEWVEC (char, max_uid);
1012 /* Initialize uid_align. We scan instructions
1013 from end to start, and keep in align_tab[n] the last seen insn
1014 that does an alignment of at least n+1, i.e. the successor
1015 in the alignment chain for an insn that does / has a known
1016 alignment of n. */
1017 uid_align = XCNEWVEC (rtx, max_uid);
1019 for (i = MAX_CODE_ALIGN; --i >= 0;)
1020 align_tab[i] = NULL_RTX;
1021 seq = get_last_insn ();
1022 for (; seq; seq = PREV_INSN (seq))
1024 int uid = INSN_UID (seq);
1025 int log;
1026 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1027 uid_align[uid] = align_tab[0];
1028 if (log)
1030 /* Found an alignment label. */
1031 uid_align[uid] = align_tab[log];
1032 for (i = log - 1; i >= 0; i--)
1033 align_tab[i] = seq;
1037 /* When optimizing, we start assuming minimum length, and keep increasing
1038 lengths as we find the need for this, till nothing changes.
1039 When not optimizing, we start assuming maximum lengths, and
1040 do a single pass to update the lengths. */
1041 bool increasing = optimize != 0;
1043 #ifdef CASE_VECTOR_SHORTEN_MODE
1044 if (optimize)
1046 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1047 label fields. */
1049 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1050 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1051 int rel;
1053 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1055 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1056 int len, i, min, max, insn_shuid;
1057 int min_align;
1058 addr_diff_vec_flags flags;
1060 if (! JUMP_TABLE_DATA_P (insn)
1061 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1062 continue;
1063 pat = PATTERN (insn);
1064 len = XVECLEN (pat, 1);
1065 gcc_assert (len > 0);
1066 min_align = MAX_CODE_ALIGN;
1067 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1069 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1070 int shuid = INSN_SHUID (lab);
1071 if (shuid < min)
1073 min = shuid;
1074 min_lab = lab;
1076 if (shuid > max)
1078 max = shuid;
1079 max_lab = lab;
1081 if (min_align > LABEL_TO_ALIGNMENT (lab))
1082 min_align = LABEL_TO_ALIGNMENT (lab);
1084 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1085 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1086 insn_shuid = INSN_SHUID (insn);
1087 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1088 memset (&flags, 0, sizeof (flags));
1089 flags.min_align = min_align;
1090 flags.base_after_vec = rel > insn_shuid;
1091 flags.min_after_vec = min > insn_shuid;
1092 flags.max_after_vec = max > insn_shuid;
1093 flags.min_after_base = min > rel;
1094 flags.max_after_base = max > rel;
1095 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1097 if (increasing)
1098 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1101 #endif /* CASE_VECTOR_SHORTEN_MODE */
1103 /* Compute initial lengths, addresses, and varying flags for each insn. */
1104 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1106 for (insn_current_address = 0, insn = first;
1107 insn != 0;
1108 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1110 uid = INSN_UID (insn);
1112 insn_lengths[uid] = 0;
1114 if (LABEL_P (insn))
1116 int log = LABEL_TO_ALIGNMENT (insn);
1117 if (log)
1119 int align = 1 << log;
1120 int new_address = (insn_current_address + align - 1) & -align;
1121 insn_lengths[uid] = new_address - insn_current_address;
1125 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1127 if (NOTE_P (insn) || BARRIER_P (insn)
1128 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1129 continue;
1130 if (insn->deleted ())
1131 continue;
1133 body = PATTERN (insn);
1134 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1136 /* This only takes room if read-only data goes into the text
1137 section. */
1138 if (JUMP_TABLES_IN_TEXT_SECTION
1139 || readonly_data_section == text_section)
1140 insn_lengths[uid] = (XVECLEN (body,
1141 GET_CODE (body) == ADDR_DIFF_VEC)
1142 * GET_MODE_SIZE (table->get_data_mode ()));
1143 /* Alignment is handled by ADDR_VEC_ALIGN. */
1145 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1146 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1147 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1149 int i;
1150 int const_delay_slots;
1151 if (DELAY_SLOTS)
1152 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1153 else
1154 const_delay_slots = 0;
1156 int (*inner_length_fun) (rtx_insn *)
1157 = const_delay_slots ? length_fun : insn_default_length;
1158 /* Inside a delay slot sequence, we do not do any branch shortening
1159 if the shortening could change the number of delay slots
1160 of the branch. */
1161 for (i = 0; i < body_seq->len (); i++)
1163 rtx_insn *inner_insn = body_seq->insn (i);
1164 int inner_uid = INSN_UID (inner_insn);
1165 int inner_length;
1167 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1168 || asm_noperands (PATTERN (inner_insn)) >= 0)
1169 inner_length = (asm_insn_count (PATTERN (inner_insn))
1170 * insn_default_length (inner_insn));
1171 else
1172 inner_length = inner_length_fun (inner_insn);
1174 insn_lengths[inner_uid] = inner_length;
1175 if (const_delay_slots)
1177 if ((varying_length[inner_uid]
1178 = insn_variable_length_p (inner_insn)) != 0)
1179 varying_length[uid] = 1;
1180 INSN_ADDRESSES (inner_uid) = (insn_current_address
1181 + insn_lengths[uid]);
1183 else
1184 varying_length[inner_uid] = 0;
1185 insn_lengths[uid] += inner_length;
1188 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1190 insn_lengths[uid] = length_fun (insn);
1191 varying_length[uid] = insn_variable_length_p (insn);
1194 /* If needed, do any adjustment. */
1195 #ifdef ADJUST_INSN_LENGTH
1196 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1197 if (insn_lengths[uid] < 0)
1198 fatal_insn ("negative insn length", insn);
1199 #endif
1202 /* Now loop over all the insns finding varying length insns. For each,
1203 get the current insn length. If it has changed, reflect the change.
1204 When nothing changes for a full pass, we are done. */
1206 while (something_changed)
1208 something_changed = 0;
1209 insn_current_align = MAX_CODE_ALIGN - 1;
1210 for (insn_current_address = 0, insn = first;
1211 insn != 0;
1212 insn = NEXT_INSN (insn))
1214 int new_length;
1215 #ifdef ADJUST_INSN_LENGTH
1216 int tmp_length;
1217 #endif
1218 int length_align;
1220 uid = INSN_UID (insn);
1222 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1224 int log = LABEL_TO_ALIGNMENT (label);
1226 #ifdef CASE_VECTOR_SHORTEN_MODE
1227 /* If the mode of a following jump table was changed, we
1228 may need to update the alignment of this label. */
1230 if (JUMP_TABLES_IN_TEXT_SECTION
1231 || readonly_data_section == text_section)
1233 rtx_jump_table_data *table = jump_table_for_label (label);
1234 if (table)
1236 int newlog = ADDR_VEC_ALIGN (table);
1237 if (newlog != log)
1239 log = newlog;
1240 LABEL_TO_ALIGNMENT (insn) = log;
1241 something_changed = 1;
1245 #endif
1247 if (log > insn_current_align)
1249 int align = 1 << log;
1250 int new_address= (insn_current_address + align - 1) & -align;
1251 insn_lengths[uid] = new_address - insn_current_address;
1252 insn_current_align = log;
1253 insn_current_address = new_address;
1255 else
1256 insn_lengths[uid] = 0;
1257 INSN_ADDRESSES (uid) = insn_current_address;
1258 continue;
1261 length_align = INSN_LENGTH_ALIGNMENT (insn);
1262 if (length_align < insn_current_align)
1263 insn_current_align = length_align;
1265 insn_last_address = INSN_ADDRESSES (uid);
1266 INSN_ADDRESSES (uid) = insn_current_address;
1268 #ifdef CASE_VECTOR_SHORTEN_MODE
1269 if (optimize
1270 && JUMP_TABLE_DATA_P (insn)
1271 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1273 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1274 rtx body = PATTERN (insn);
1275 int old_length = insn_lengths[uid];
1276 rtx_insn *rel_lab =
1277 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1278 rtx min_lab = XEXP (XEXP (body, 2), 0);
1279 rtx max_lab = XEXP (XEXP (body, 3), 0);
1280 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1281 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1282 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1283 rtx_insn *prev;
1284 int rel_align = 0;
1285 addr_diff_vec_flags flags;
1286 scalar_int_mode vec_mode;
1288 /* Avoid automatic aggregate initialization. */
1289 flags = ADDR_DIFF_VEC_FLAGS (body);
1291 /* Try to find a known alignment for rel_lab. */
1292 for (prev = rel_lab;
1293 prev
1294 && ! insn_lengths[INSN_UID (prev)]
1295 && ! (varying_length[INSN_UID (prev)] & 1);
1296 prev = PREV_INSN (prev))
1297 if (varying_length[INSN_UID (prev)] & 2)
1299 rel_align = LABEL_TO_ALIGNMENT (prev);
1300 break;
1303 /* See the comment on addr_diff_vec_flags in rtl.h for the
1304 meaning of the flags values. base: REL_LAB vec: INSN */
1305 /* Anything after INSN has still addresses from the last
1306 pass; adjust these so that they reflect our current
1307 estimate for this pass. */
1308 if (flags.base_after_vec)
1309 rel_addr += insn_current_address - insn_last_address;
1310 if (flags.min_after_vec)
1311 min_addr += insn_current_address - insn_last_address;
1312 if (flags.max_after_vec)
1313 max_addr += insn_current_address - insn_last_address;
1314 /* We want to know the worst case, i.e. lowest possible value
1315 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1316 its offset is positive, and we have to be wary of code shrink;
1317 otherwise, it is negative, and we have to be vary of code
1318 size increase. */
1319 if (flags.min_after_base)
1321 /* If INSN is between REL_LAB and MIN_LAB, the size
1322 changes we are about to make can change the alignment
1323 within the observed offset, therefore we have to break
1324 it up into two parts that are independent. */
1325 if (! flags.base_after_vec && flags.min_after_vec)
1327 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1328 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1330 else
1331 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1333 else
1335 if (flags.base_after_vec && ! flags.min_after_vec)
1337 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1338 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1340 else
1341 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1343 /* Likewise, determine the highest lowest possible value
1344 for the offset of MAX_LAB. */
1345 if (flags.max_after_base)
1347 if (! flags.base_after_vec && flags.max_after_vec)
1349 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1350 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1352 else
1353 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1355 else
1357 if (flags.base_after_vec && ! flags.max_after_vec)
1359 max_addr += align_fuzz (max_lab, insn, 0, 0);
1360 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1362 else
1363 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1365 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1366 max_addr - rel_addr, body);
1367 if (!increasing
1368 || (GET_MODE_SIZE (vec_mode)
1369 >= GET_MODE_SIZE (table->get_data_mode ())))
1370 PUT_MODE (body, vec_mode);
1371 if (JUMP_TABLES_IN_TEXT_SECTION
1372 || readonly_data_section == text_section)
1374 insn_lengths[uid]
1375 = (XVECLEN (body, 1)
1376 * GET_MODE_SIZE (table->get_data_mode ()));
1377 insn_current_address += insn_lengths[uid];
1378 if (insn_lengths[uid] != old_length)
1379 something_changed = 1;
1382 continue;
1384 #endif /* CASE_VECTOR_SHORTEN_MODE */
1386 if (! (varying_length[uid]))
1388 if (NONJUMP_INSN_P (insn)
1389 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1391 int i;
1393 body = PATTERN (insn);
1394 for (i = 0; i < XVECLEN (body, 0); i++)
1396 rtx inner_insn = XVECEXP (body, 0, i);
1397 int inner_uid = INSN_UID (inner_insn);
1399 INSN_ADDRESSES (inner_uid) = insn_current_address;
1401 insn_current_address += insn_lengths[inner_uid];
1404 else
1405 insn_current_address += insn_lengths[uid];
1407 continue;
1410 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1412 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1413 int i;
1415 body = PATTERN (insn);
1416 new_length = 0;
1417 for (i = 0; i < seqn->len (); i++)
1419 rtx_insn *inner_insn = seqn->insn (i);
1420 int inner_uid = INSN_UID (inner_insn);
1421 int inner_length;
1423 INSN_ADDRESSES (inner_uid) = insn_current_address;
1425 /* insn_current_length returns 0 for insns with a
1426 non-varying length. */
1427 if (! varying_length[inner_uid])
1428 inner_length = insn_lengths[inner_uid];
1429 else
1430 inner_length = insn_current_length (inner_insn);
1432 if (inner_length != insn_lengths[inner_uid])
1434 if (!increasing || inner_length > insn_lengths[inner_uid])
1436 insn_lengths[inner_uid] = inner_length;
1437 something_changed = 1;
1439 else
1440 inner_length = insn_lengths[inner_uid];
1442 insn_current_address += inner_length;
1443 new_length += inner_length;
1446 else
1448 new_length = insn_current_length (insn);
1449 insn_current_address += new_length;
1452 #ifdef ADJUST_INSN_LENGTH
1453 /* If needed, do any adjustment. */
1454 tmp_length = new_length;
1455 ADJUST_INSN_LENGTH (insn, new_length);
1456 insn_current_address += (new_length - tmp_length);
1457 #endif
1459 if (new_length != insn_lengths[uid]
1460 && (!increasing || new_length > insn_lengths[uid]))
1462 insn_lengths[uid] = new_length;
1463 something_changed = 1;
1465 else
1466 insn_current_address += insn_lengths[uid] - new_length;
1468 /* For a non-optimizing compile, do only a single pass. */
1469 if (!increasing)
1470 break;
1472 crtl->max_insn_address = insn_current_address;
1473 free (varying_length);
1476 /* Given the body of an INSN known to be generated by an ASM statement, return
1477 the number of machine instructions likely to be generated for this insn.
1478 This is used to compute its length. */
1480 static int
1481 asm_insn_count (rtx body)
1483 const char *templ;
1485 if (GET_CODE (body) == ASM_INPUT)
1486 templ = XSTR (body, 0);
1487 else
1488 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1490 return asm_str_count (templ);
1493 /* Return the number of machine instructions likely to be generated for the
1494 inline-asm template. */
1496 asm_str_count (const char *templ)
1498 int count = 1;
1500 if (!*templ)
1501 return 0;
1503 for (; *templ; templ++)
1504 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1505 || *templ == '\n')
1506 count++;
1508 return count;
1511 /* Return true if DWARF2 debug info can be emitted for DECL. */
1513 static bool
1514 dwarf2_debug_info_emitted_p (tree decl)
1516 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1517 return false;
1519 if (DECL_IGNORED_P (decl))
1520 return false;
1522 return true;
1525 /* Return scope resulting from combination of S1 and S2. */
1526 static tree
1527 choose_inner_scope (tree s1, tree s2)
1529 if (!s1)
1530 return s2;
1531 if (!s2)
1532 return s1;
1533 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1534 return s1;
1535 return s2;
1538 /* Emit lexical block notes needed to change scope from S1 to S2. */
1540 static void
1541 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1543 rtx_insn *insn = orig_insn;
1544 tree com = NULL_TREE;
1545 tree ts1 = s1, ts2 = s2;
1546 tree s;
1548 while (ts1 != ts2)
1550 gcc_assert (ts1 && ts2);
1551 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1552 ts1 = BLOCK_SUPERCONTEXT (ts1);
1553 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1554 ts2 = BLOCK_SUPERCONTEXT (ts2);
1555 else
1557 ts1 = BLOCK_SUPERCONTEXT (ts1);
1558 ts2 = BLOCK_SUPERCONTEXT (ts2);
1561 com = ts1;
1563 /* Close scopes. */
1564 s = s1;
1565 while (s != com)
1567 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1568 NOTE_BLOCK (note) = s;
1569 s = BLOCK_SUPERCONTEXT (s);
1572 /* Open scopes. */
1573 s = s2;
1574 while (s != com)
1576 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1577 NOTE_BLOCK (insn) = s;
1578 s = BLOCK_SUPERCONTEXT (s);
1582 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1583 on the scope tree and the newly reordered instructions. */
1585 static void
1586 reemit_insn_block_notes (void)
1588 tree cur_block = DECL_INITIAL (cfun->decl);
1589 rtx_insn *insn;
1591 insn = get_insns ();
1592 for (; insn; insn = NEXT_INSN (insn))
1594 tree this_block;
1596 /* Prevent lexical blocks from straddling section boundaries. */
1597 if (NOTE_P (insn))
1598 switch (NOTE_KIND (insn))
1600 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1602 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1603 s = BLOCK_SUPERCONTEXT (s))
1605 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1606 NOTE_BLOCK (note) = s;
1607 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1608 NOTE_BLOCK (note) = s;
1611 break;
1613 case NOTE_INSN_BEGIN_STMT:
1614 case NOTE_INSN_INLINE_ENTRY:
1615 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1616 goto set_cur_block_to_this_block;
1618 default:
1619 continue;
1622 if (!active_insn_p (insn))
1623 continue;
1625 /* Avoid putting scope notes between jump table and its label. */
1626 if (JUMP_TABLE_DATA_P (insn))
1627 continue;
1629 this_block = insn_scope (insn);
1630 /* For sequences compute scope resulting from merging all scopes
1631 of instructions nested inside. */
1632 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1634 int i;
1636 this_block = NULL;
1637 for (i = 0; i < body->len (); i++)
1638 this_block = choose_inner_scope (this_block,
1639 insn_scope (body->insn (i)));
1641 set_cur_block_to_this_block:
1642 if (! this_block)
1644 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1645 continue;
1646 else
1647 this_block = DECL_INITIAL (cfun->decl);
1650 if (this_block != cur_block)
1652 change_scope (insn, cur_block, this_block);
1653 cur_block = this_block;
1657 /* change_scope emits before the insn, not after. */
1658 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1659 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1660 delete_insn (note);
1662 reorder_blocks ();
1665 static const char *some_local_dynamic_name;
1667 /* Locate some local-dynamic symbol still in use by this function
1668 so that we can print its name in local-dynamic base patterns.
1669 Return null if there are no local-dynamic references. */
1671 const char *
1672 get_some_local_dynamic_name ()
1674 subrtx_iterator::array_type array;
1675 rtx_insn *insn;
1677 if (some_local_dynamic_name)
1678 return some_local_dynamic_name;
1680 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1681 if (NONDEBUG_INSN_P (insn))
1682 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1684 const_rtx x = *iter;
1685 if (GET_CODE (x) == SYMBOL_REF)
1687 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1688 return some_local_dynamic_name = XSTR (x, 0);
1689 if (CONSTANT_POOL_ADDRESS_P (x))
1690 iter.substitute (get_pool_constant (x));
1694 return 0;
1697 /* Arrange for us to emit a source location note before any further
1698 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1699 *SEEN, as long as we are keeping track of location views. The bit
1700 indicates we have referenced the next view at the current PC, so we
1701 have to emit it. This should be called next to the var_location
1702 debug hook. */
1704 static inline void
1705 set_next_view_needed (int *seen)
1707 if (debug_variable_location_views)
1708 *seen |= SEEN_NEXT_VIEW;
1711 /* Clear the flag in *SEEN indicating we need to emit the next view.
1712 This should be called next to the source_line debug hook. */
1714 static inline void
1715 clear_next_view_needed (int *seen)
1717 *seen &= ~SEEN_NEXT_VIEW;
1720 /* Test whether we have a pending request to emit the next view in
1721 *SEEN, and emit it if needed, clearing the request bit. */
1723 static inline void
1724 maybe_output_next_view (int *seen)
1726 if ((*seen & SEEN_NEXT_VIEW) != 0)
1728 clear_next_view_needed (seen);
1729 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1730 last_filename, last_discriminator,
1731 false);
1735 /* We want to emit param bindings (before the first begin_stmt) in the
1736 initial view, if we are emitting views. To that end, we may
1737 consume initial notes in the function, processing them in
1738 final_start_function, before signaling the beginning of the
1739 prologue, rather than in final.
1741 We don't test whether the DECLs are PARM_DECLs: the assumption is
1742 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1743 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1744 there, we'll just have more variable locations bound in the initial
1745 view, which is consistent with their being bound without any code
1746 that would give them a value. */
1748 static inline bool
1749 in_initial_view_p (rtx_insn *insn)
1751 return (!DECL_IGNORED_P (current_function_decl)
1752 && debug_variable_location_views
1753 && insn && GET_CODE (insn) == NOTE
1754 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1755 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1758 /* Output assembler code for the start of a function,
1759 and initialize some of the variables in this file
1760 for the new function. The label for the function and associated
1761 assembler pseudo-ops have already been output in `assemble_start_function'.
1763 FIRST is the first insn of the rtl for the function being compiled.
1764 FILE is the file to write assembler code to.
1765 SEEN should be initially set to zero, and it may be updated to
1766 indicate we have references to the next location view, that would
1767 require us to emit it at the current PC.
1768 OPTIMIZE_P is nonzero if we should eliminate redundant
1769 test and compare insns. */
1771 static void
1772 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1773 int optimize_p ATTRIBUTE_UNUSED)
1775 block_depth = 0;
1777 this_is_asm_operands = 0;
1779 need_profile_function = false;
1781 last_filename = LOCATION_FILE (prologue_location);
1782 last_linenum = LOCATION_LINE (prologue_location);
1783 last_columnnum = LOCATION_COLUMN (prologue_location);
1784 last_discriminator = discriminator = 0;
1786 high_block_linenum = high_function_linenum = last_linenum;
1788 if (flag_sanitize & SANITIZE_ADDRESS)
1789 asan_function_start ();
1791 rtx_insn *first = *firstp;
1792 if (in_initial_view_p (first))
1796 final_scan_insn (first, file, 0, 0, seen);
1797 first = NEXT_INSN (first);
1799 while (in_initial_view_p (first));
1800 *firstp = first;
1803 if (!DECL_IGNORED_P (current_function_decl))
1804 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1805 last_filename);
1807 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1808 dwarf2out_begin_prologue (0, 0, NULL);
1810 #ifdef LEAF_REG_REMAP
1811 if (crtl->uses_only_leaf_regs)
1812 leaf_renumber_regs (first);
1813 #endif
1815 /* The Sun386i and perhaps other machines don't work right
1816 if the profiling code comes after the prologue. */
1817 if (targetm.profile_before_prologue () && crtl->profile)
1819 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1820 && targetm.have_prologue ())
1822 rtx_insn *insn;
1823 for (insn = first; insn; insn = NEXT_INSN (insn))
1824 if (!NOTE_P (insn))
1826 insn = NULL;
1827 break;
1829 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1830 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1831 break;
1832 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1833 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1834 continue;
1835 else
1837 insn = NULL;
1838 break;
1841 if (insn)
1842 need_profile_function = true;
1843 else
1844 profile_function (file);
1846 else
1847 profile_function (file);
1850 /* If debugging, assign block numbers to all of the blocks in this
1851 function. */
1852 if (write_symbols)
1854 reemit_insn_block_notes ();
1855 number_blocks (current_function_decl);
1856 /* We never actually put out begin/end notes for the top-level
1857 block in the function. But, conceptually, that block is
1858 always needed. */
1859 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1862 HOST_WIDE_INT min_frame_size = constant_lower_bound (get_frame_size ());
1863 if (warn_frame_larger_than
1864 && min_frame_size > frame_larger_than_size)
1866 /* Issue a warning */
1867 warning (OPT_Wframe_larger_than_,
1868 "the frame size of %wd bytes is larger than %wd bytes",
1869 min_frame_size, frame_larger_than_size);
1872 /* First output the function prologue: code to set up the stack frame. */
1873 targetm.asm_out.function_prologue (file);
1875 /* If the machine represents the prologue as RTL, the profiling code must
1876 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1877 if (! targetm.have_prologue ())
1878 profile_after_prologue (file);
1881 /* This is an exported final_start_function_1, callable without SEEN. */
1883 void
1884 final_start_function (rtx_insn *first, FILE *file,
1885 int optimize_p ATTRIBUTE_UNUSED)
1887 int seen = 0;
1888 final_start_function_1 (&first, file, &seen, optimize_p);
1889 gcc_assert (seen == 0);
1892 static void
1893 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1895 if (!targetm.profile_before_prologue () && crtl->profile)
1896 profile_function (file);
1899 static void
1900 profile_function (FILE *file ATTRIBUTE_UNUSED)
1902 #ifndef NO_PROFILE_COUNTERS
1903 # define NO_PROFILE_COUNTERS 0
1904 #endif
1905 #ifdef ASM_OUTPUT_REG_PUSH
1906 rtx sval = NULL, chain = NULL;
1908 if (cfun->returns_struct)
1909 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1910 true);
1911 if (cfun->static_chain_decl)
1912 chain = targetm.calls.static_chain (current_function_decl, true);
1913 #endif /* ASM_OUTPUT_REG_PUSH */
1915 if (! NO_PROFILE_COUNTERS)
1917 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1918 switch_to_section (data_section);
1919 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1920 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1921 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1924 switch_to_section (current_function_section ());
1926 #ifdef ASM_OUTPUT_REG_PUSH
1927 if (sval && REG_P (sval))
1928 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1929 if (chain && REG_P (chain))
1930 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1931 #endif
1933 FUNCTION_PROFILER (file, current_function_funcdef_no);
1935 #ifdef ASM_OUTPUT_REG_PUSH
1936 if (chain && REG_P (chain))
1937 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1938 if (sval && REG_P (sval))
1939 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1940 #endif
1943 /* Output assembler code for the end of a function.
1944 For clarity, args are same as those of `final_start_function'
1945 even though not all of them are needed. */
1947 void
1948 final_end_function (void)
1950 app_disable ();
1952 if (!DECL_IGNORED_P (current_function_decl))
1953 debug_hooks->end_function (high_function_linenum);
1955 /* Finally, output the function epilogue:
1956 code to restore the stack frame and return to the caller. */
1957 targetm.asm_out.function_epilogue (asm_out_file);
1959 /* And debug output. */
1960 if (!DECL_IGNORED_P (current_function_decl))
1961 debug_hooks->end_epilogue (last_linenum, last_filename);
1963 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1964 && dwarf2out_do_frame ())
1965 dwarf2out_end_epilogue (last_linenum, last_filename);
1967 some_local_dynamic_name = 0;
1971 /* Dumper helper for basic block information. FILE is the assembly
1972 output file, and INSN is the instruction being emitted. */
1974 static void
1975 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1976 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1978 basic_block bb;
1980 if (!flag_debug_asm)
1981 return;
1983 if (INSN_UID (insn) < bb_map_size
1984 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1986 edge e;
1987 edge_iterator ei;
1989 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1990 if (bb->count.initialized_p ())
1992 fprintf (file, ", count:");
1993 bb->count.dump (file);
1995 fprintf (file, " seq:%d", (*bb_seqn)++);
1996 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1997 FOR_EACH_EDGE (e, ei, bb->preds)
1999 dump_edge_info (file, e, TDF_DETAILS, 0);
2001 fprintf (file, "\n");
2003 if (INSN_UID (insn) < bb_map_size
2004 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
2006 edge e;
2007 edge_iterator ei;
2009 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
2010 FOR_EACH_EDGE (e, ei, bb->succs)
2012 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
2014 fprintf (file, "\n");
2018 /* Output assembler code for some insns: all or part of a function.
2019 For description of args, see `final_start_function', above. */
2021 static void
2022 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
2024 rtx_insn *insn, *next;
2026 /* Used for -dA dump. */
2027 basic_block *start_to_bb = NULL;
2028 basic_block *end_to_bb = NULL;
2029 int bb_map_size = 0;
2030 int bb_seqn = 0;
2032 last_ignored_compare = 0;
2034 if (HAVE_cc0)
2035 for (insn = first; insn; insn = NEXT_INSN (insn))
2037 /* If CC tracking across branches is enabled, record the insn which
2038 jumps to each branch only reached from one place. */
2039 if (optimize_p && JUMP_P (insn))
2041 rtx lab = JUMP_LABEL (insn);
2042 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2044 LABEL_REFS (lab) = insn;
2049 init_recog ();
2051 CC_STATUS_INIT;
2053 if (flag_debug_asm)
2055 basic_block bb;
2057 bb_map_size = get_max_uid () + 1;
2058 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2059 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2061 /* There is no cfg for a thunk. */
2062 if (!cfun->is_thunk)
2063 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2065 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2066 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2070 /* Output the insns. */
2071 for (insn = first; insn;)
2073 if (HAVE_ATTR_length)
2075 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2077 /* This can be triggered by bugs elsewhere in the compiler if
2078 new insns are created after init_insn_lengths is called. */
2079 gcc_assert (NOTE_P (insn));
2080 insn_current_address = -1;
2082 else
2083 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2086 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2087 bb_map_size, &bb_seqn);
2088 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2091 maybe_output_next_view (&seen);
2093 if (flag_debug_asm)
2095 free (start_to_bb);
2096 free (end_to_bb);
2099 /* Remove CFI notes, to avoid compare-debug failures. */
2100 for (insn = first; insn; insn = next)
2102 next = NEXT_INSN (insn);
2103 if (NOTE_P (insn)
2104 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2105 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2106 delete_insn (insn);
2110 /* This is an exported final_1, callable without SEEN. */
2112 void
2113 final (rtx_insn *first, FILE *file, int optimize_p)
2115 /* Those that use the internal final_start_function_1/final_1 API
2116 skip initial debug bind notes in final_start_function_1, and pass
2117 the modified FIRST to final_1. But those that use the public
2118 final_start_function/final APIs, final_start_function can't move
2119 FIRST because it's not passed by reference, so if they were
2120 skipped there, skip them again here. */
2121 while (in_initial_view_p (first))
2122 first = NEXT_INSN (first);
2124 final_1 (first, file, 0, optimize_p);
2127 const char *
2128 get_insn_template (int code, rtx insn)
2130 switch (insn_data[code].output_format)
2132 case INSN_OUTPUT_FORMAT_SINGLE:
2133 return insn_data[code].output.single;
2134 case INSN_OUTPUT_FORMAT_MULTI:
2135 return insn_data[code].output.multi[which_alternative];
2136 case INSN_OUTPUT_FORMAT_FUNCTION:
2137 gcc_assert (insn);
2138 return (*insn_data[code].output.function) (recog_data.operand,
2139 as_a <rtx_insn *> (insn));
2141 default:
2142 gcc_unreachable ();
2146 /* Emit the appropriate declaration for an alternate-entry-point
2147 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2148 LABEL_KIND != LABEL_NORMAL.
2150 The case fall-through in this function is intentional. */
2151 static void
2152 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2154 const char *name = LABEL_NAME (insn);
2156 switch (LABEL_KIND (insn))
2158 case LABEL_WEAK_ENTRY:
2159 #ifdef ASM_WEAKEN_LABEL
2160 ASM_WEAKEN_LABEL (file, name);
2161 gcc_fallthrough ();
2162 #endif
2163 case LABEL_GLOBAL_ENTRY:
2164 targetm.asm_out.globalize_label (file, name);
2165 gcc_fallthrough ();
2166 case LABEL_STATIC_ENTRY:
2167 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2168 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2169 #endif
2170 ASM_OUTPUT_LABEL (file, name);
2171 break;
2173 case LABEL_NORMAL:
2174 default:
2175 gcc_unreachable ();
2179 /* Given a CALL_INSN, find and return the nested CALL. */
2180 static rtx
2181 call_from_call_insn (rtx_call_insn *insn)
2183 rtx x;
2184 gcc_assert (CALL_P (insn));
2185 x = PATTERN (insn);
2187 while (GET_CODE (x) != CALL)
2189 switch (GET_CODE (x))
2191 default:
2192 gcc_unreachable ();
2193 case COND_EXEC:
2194 x = COND_EXEC_CODE (x);
2195 break;
2196 case PARALLEL:
2197 x = XVECEXP (x, 0, 0);
2198 break;
2199 case SET:
2200 x = XEXP (x, 1);
2201 break;
2204 return x;
2207 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2208 corresponding source line, if available. */
2210 static void
2211 asm_show_source (const char *filename, int linenum)
2213 if (!filename)
2214 return;
2216 int line_size;
2217 const char *line = location_get_source_line (filename, linenum, &line_size);
2218 if (!line)
2219 return;
2221 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2222 /* "line" is not 0-terminated, so we must use line_size. */
2223 fwrite (line, 1, line_size, asm_out_file);
2224 fputc ('\n', asm_out_file);
2227 /* The final scan for one insn, INSN.
2228 Args are same as in `final', except that INSN
2229 is the insn being scanned.
2230 Value returned is the next insn to be scanned.
2232 NOPEEPHOLES is the flag to disallow peephole processing (currently
2233 used for within delayed branch sequence output).
2235 SEEN is used to track the end of the prologue, for emitting
2236 debug information. We force the emission of a line note after
2237 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2239 static rtx_insn *
2240 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2241 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2243 #if HAVE_cc0
2244 rtx set;
2245 #endif
2246 rtx_insn *next;
2247 rtx_jump_table_data *table;
2249 insn_counter++;
2251 /* Ignore deleted insns. These can occur when we split insns (due to a
2252 template of "#") while not optimizing. */
2253 if (insn->deleted ())
2254 return NEXT_INSN (insn);
2256 switch (GET_CODE (insn))
2258 case NOTE:
2259 switch (NOTE_KIND (insn))
2261 case NOTE_INSN_DELETED:
2262 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2263 break;
2265 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2266 maybe_output_next_view (seen);
2268 in_cold_section_p = !in_cold_section_p;
2270 if (in_cold_section_p)
2271 cold_function_name
2272 = clone_function_name (current_function_decl, "cold");
2274 if (dwarf2out_do_frame ())
2276 dwarf2out_switch_text_section ();
2277 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2278 && !DECL_IGNORED_P (current_function_decl))
2279 debug_hooks->switch_text_section ();
2281 else if (!DECL_IGNORED_P (current_function_decl))
2282 debug_hooks->switch_text_section ();
2284 switch_to_section (current_function_section ());
2285 targetm.asm_out.function_switched_text_sections (asm_out_file,
2286 current_function_decl,
2287 in_cold_section_p);
2288 /* Emit a label for the split cold section. Form label name by
2289 suffixing "cold" to the original function's name. */
2290 if (in_cold_section_p)
2292 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2293 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2294 IDENTIFIER_POINTER
2295 (cold_function_name),
2296 current_function_decl);
2297 #else
2298 ASM_OUTPUT_LABEL (asm_out_file,
2299 IDENTIFIER_POINTER (cold_function_name));
2300 #endif
2302 break;
2304 case NOTE_INSN_BASIC_BLOCK:
2305 if (need_profile_function)
2307 profile_function (asm_out_file);
2308 need_profile_function = false;
2311 if (targetm.asm_out.unwind_emit)
2312 targetm.asm_out.unwind_emit (asm_out_file, insn);
2314 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2316 break;
2318 case NOTE_INSN_EH_REGION_BEG:
2319 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2320 NOTE_EH_HANDLER (insn));
2321 break;
2323 case NOTE_INSN_EH_REGION_END:
2324 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2325 NOTE_EH_HANDLER (insn));
2326 break;
2328 case NOTE_INSN_PROLOGUE_END:
2329 targetm.asm_out.function_end_prologue (file);
2330 profile_after_prologue (file);
2332 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2334 *seen |= SEEN_EMITTED;
2335 force_source_line = true;
2337 else
2338 *seen |= SEEN_NOTE;
2340 break;
2342 case NOTE_INSN_EPILOGUE_BEG:
2343 if (!DECL_IGNORED_P (current_function_decl))
2344 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2345 targetm.asm_out.function_begin_epilogue (file);
2346 break;
2348 case NOTE_INSN_CFI:
2349 dwarf2out_emit_cfi (NOTE_CFI (insn));
2350 break;
2352 case NOTE_INSN_CFI_LABEL:
2353 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2354 NOTE_LABEL_NUMBER (insn));
2355 break;
2357 case NOTE_INSN_FUNCTION_BEG:
2358 if (need_profile_function)
2360 profile_function (asm_out_file);
2361 need_profile_function = false;
2364 app_disable ();
2365 if (!DECL_IGNORED_P (current_function_decl))
2366 debug_hooks->end_prologue (last_linenum, last_filename);
2368 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2370 *seen |= SEEN_EMITTED;
2371 force_source_line = true;
2373 else
2374 *seen |= SEEN_NOTE;
2376 break;
2378 case NOTE_INSN_BLOCK_BEG:
2379 if (debug_info_level == DINFO_LEVEL_NORMAL
2380 || debug_info_level == DINFO_LEVEL_VERBOSE
2381 || write_symbols == DWARF2_DEBUG
2382 || write_symbols == VMS_AND_DWARF2_DEBUG
2383 || write_symbols == VMS_DEBUG)
2385 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2387 app_disable ();
2388 ++block_depth;
2389 high_block_linenum = last_linenum;
2391 /* Output debugging info about the symbol-block beginning. */
2392 if (!DECL_IGNORED_P (current_function_decl))
2393 debug_hooks->begin_block (last_linenum, n);
2395 /* Mark this block as output. */
2396 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2397 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2399 if (write_symbols == DBX_DEBUG)
2401 location_t *locus_ptr
2402 = block_nonartificial_location (NOTE_BLOCK (insn));
2404 if (locus_ptr != NULL)
2406 override_filename = LOCATION_FILE (*locus_ptr);
2407 override_linenum = LOCATION_LINE (*locus_ptr);
2408 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2411 break;
2413 case NOTE_INSN_BLOCK_END:
2414 maybe_output_next_view (seen);
2416 if (debug_info_level == DINFO_LEVEL_NORMAL
2417 || debug_info_level == DINFO_LEVEL_VERBOSE
2418 || write_symbols == DWARF2_DEBUG
2419 || write_symbols == VMS_AND_DWARF2_DEBUG
2420 || write_symbols == VMS_DEBUG)
2422 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2424 app_disable ();
2426 /* End of a symbol-block. */
2427 --block_depth;
2428 gcc_assert (block_depth >= 0);
2430 if (!DECL_IGNORED_P (current_function_decl))
2431 debug_hooks->end_block (high_block_linenum, n);
2432 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2433 == in_cold_section_p);
2435 if (write_symbols == DBX_DEBUG)
2437 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2438 location_t *locus_ptr
2439 = block_nonartificial_location (outer_block);
2441 if (locus_ptr != NULL)
2443 override_filename = LOCATION_FILE (*locus_ptr);
2444 override_linenum = LOCATION_LINE (*locus_ptr);
2445 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2447 else
2449 override_filename = NULL;
2450 override_linenum = 0;
2451 override_columnnum = 0;
2454 break;
2456 case NOTE_INSN_DELETED_LABEL:
2457 /* Emit the label. We may have deleted the CODE_LABEL because
2458 the label could be proved to be unreachable, though still
2459 referenced (in the form of having its address taken. */
2460 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2461 break;
2463 case NOTE_INSN_DELETED_DEBUG_LABEL:
2464 /* Similarly, but need to use different namespace for it. */
2465 if (CODE_LABEL_NUMBER (insn) != -1)
2466 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2467 break;
2469 case NOTE_INSN_VAR_LOCATION:
2470 case NOTE_INSN_CALL_ARG_LOCATION:
2471 if (!DECL_IGNORED_P (current_function_decl))
2473 debug_hooks->var_location (insn);
2474 set_next_view_needed (seen);
2476 break;
2478 case NOTE_INSN_BEGIN_STMT:
2479 gcc_checking_assert (cfun->debug_nonbind_markers);
2480 if (!DECL_IGNORED_P (current_function_decl)
2481 && notice_source_line (insn, NULL))
2483 output_source_line:
2484 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2485 last_filename, last_discriminator,
2486 true);
2487 clear_next_view_needed (seen);
2489 break;
2491 case NOTE_INSN_INLINE_ENTRY:
2492 gcc_checking_assert (cfun->debug_nonbind_markers);
2493 if (!DECL_IGNORED_P (current_function_decl))
2495 if (!notice_source_line (insn, NULL))
2496 break;
2497 (*debug_hooks->inline_entry) (LOCATION_BLOCK
2498 (NOTE_MARKER_LOCATION (insn)));
2499 goto output_source_line;
2501 break;
2503 default:
2504 gcc_unreachable ();
2505 break;
2507 break;
2509 case BARRIER:
2510 break;
2512 case CODE_LABEL:
2513 /* The target port might emit labels in the output function for
2514 some insn, e.g. sh.c output_branchy_insn. */
2515 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2517 int align = LABEL_TO_ALIGNMENT (insn);
2518 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2519 int max_skip = LABEL_TO_MAX_SKIP (insn);
2520 #endif
2522 if (align && NEXT_INSN (insn))
2524 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2525 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2526 #else
2527 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2528 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2529 #else
2530 ASM_OUTPUT_ALIGN (file, align);
2531 #endif
2532 #endif
2535 CC_STATUS_INIT;
2537 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2538 debug_hooks->label (as_a <rtx_code_label *> (insn));
2540 app_disable ();
2542 /* If this label is followed by a jump-table, make sure we put
2543 the label in the read-only section. Also possibly write the
2544 label and jump table together. */
2545 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2546 if (table)
2548 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2549 /* In this case, the case vector is being moved by the
2550 target, so don't output the label at all. Leave that
2551 to the back end macros. */
2552 #else
2553 if (! JUMP_TABLES_IN_TEXT_SECTION)
2555 int log_align;
2557 switch_to_section (targetm.asm_out.function_rodata_section
2558 (current_function_decl));
2560 #ifdef ADDR_VEC_ALIGN
2561 log_align = ADDR_VEC_ALIGN (table);
2562 #else
2563 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2564 #endif
2565 ASM_OUTPUT_ALIGN (file, log_align);
2567 else
2568 switch_to_section (current_function_section ());
2570 #ifdef ASM_OUTPUT_CASE_LABEL
2571 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2572 #else
2573 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2574 #endif
2575 #endif
2576 break;
2578 if (LABEL_ALT_ENTRY_P (insn))
2579 output_alternate_entry_point (file, insn);
2580 else
2581 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2582 break;
2584 default:
2586 rtx body = PATTERN (insn);
2587 int insn_code_number;
2588 const char *templ;
2589 bool is_stmt, *is_stmt_p;
2591 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2593 is_stmt = false;
2594 is_stmt_p = NULL;
2596 else
2597 is_stmt_p = &is_stmt;
2599 /* Reset this early so it is correct for ASM statements. */
2600 current_insn_predicate = NULL_RTX;
2602 /* An INSN, JUMP_INSN or CALL_INSN.
2603 First check for special kinds that recog doesn't recognize. */
2605 if (GET_CODE (body) == USE /* These are just declarations. */
2606 || GET_CODE (body) == CLOBBER)
2607 break;
2609 #if HAVE_cc0
2611 /* If there is a REG_CC_SETTER note on this insn, it means that
2612 the setting of the condition code was done in the delay slot
2613 of the insn that branched here. So recover the cc status
2614 from the insn that set it. */
2616 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2617 if (note)
2619 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2620 NOTICE_UPDATE_CC (PATTERN (other), other);
2621 cc_prev_status = cc_status;
2624 #endif
2626 /* Detect insns that are really jump-tables
2627 and output them as such. */
2629 if (JUMP_TABLE_DATA_P (insn))
2631 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2632 int vlen, idx;
2633 #endif
2635 if (! JUMP_TABLES_IN_TEXT_SECTION)
2636 switch_to_section (targetm.asm_out.function_rodata_section
2637 (current_function_decl));
2638 else
2639 switch_to_section (current_function_section ());
2641 app_disable ();
2643 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2644 if (GET_CODE (body) == ADDR_VEC)
2646 #ifdef ASM_OUTPUT_ADDR_VEC
2647 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2648 #else
2649 gcc_unreachable ();
2650 #endif
2652 else
2654 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2655 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2656 #else
2657 gcc_unreachable ();
2658 #endif
2660 #else
2661 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2662 for (idx = 0; idx < vlen; idx++)
2664 if (GET_CODE (body) == ADDR_VEC)
2666 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2667 ASM_OUTPUT_ADDR_VEC_ELT
2668 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2669 #else
2670 gcc_unreachable ();
2671 #endif
2673 else
2675 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2676 ASM_OUTPUT_ADDR_DIFF_ELT
2677 (file,
2678 body,
2679 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2680 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2681 #else
2682 gcc_unreachable ();
2683 #endif
2686 #ifdef ASM_OUTPUT_CASE_END
2687 ASM_OUTPUT_CASE_END (file,
2688 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2689 insn);
2690 #endif
2691 #endif
2693 switch_to_section (current_function_section ());
2695 if (debug_variable_location_views
2696 && !DECL_IGNORED_P (current_function_decl))
2697 debug_hooks->var_location (insn);
2699 break;
2701 /* Output this line note if it is the first or the last line
2702 note in a row. */
2703 if (!DECL_IGNORED_P (current_function_decl)
2704 && notice_source_line (insn, is_stmt_p))
2706 if (flag_verbose_asm)
2707 asm_show_source (last_filename, last_linenum);
2708 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2709 last_filename, last_discriminator,
2710 is_stmt);
2711 clear_next_view_needed (seen);
2713 else
2714 maybe_output_next_view (seen);
2716 gcc_checking_assert (!DEBUG_INSN_P (insn));
2718 if (GET_CODE (body) == PARALLEL
2719 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2720 body = XVECEXP (body, 0, 0);
2722 if (GET_CODE (body) == ASM_INPUT)
2724 const char *string = XSTR (body, 0);
2726 /* There's no telling what that did to the condition codes. */
2727 CC_STATUS_INIT;
2729 if (string[0])
2731 expanded_location loc;
2733 app_enable ();
2734 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2735 if (*loc.file && loc.line)
2736 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2737 ASM_COMMENT_START, loc.line, loc.file);
2738 fprintf (asm_out_file, "\t%s\n", string);
2739 #if HAVE_AS_LINE_ZERO
2740 if (*loc.file && loc.line)
2741 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2742 #endif
2744 break;
2747 /* Detect `asm' construct with operands. */
2748 if (asm_noperands (body) >= 0)
2750 unsigned int noperands = asm_noperands (body);
2751 rtx *ops = XALLOCAVEC (rtx, noperands);
2752 const char *string;
2753 location_t loc;
2754 expanded_location expanded;
2756 /* There's no telling what that did to the condition codes. */
2757 CC_STATUS_INIT;
2759 /* Get out the operand values. */
2760 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2761 /* Inhibit dying on what would otherwise be compiler bugs. */
2762 insn_noperands = noperands;
2763 this_is_asm_operands = insn;
2764 expanded = expand_location (loc);
2766 #ifdef FINAL_PRESCAN_INSN
2767 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2768 #endif
2770 /* Output the insn using them. */
2771 if (string[0])
2773 app_enable ();
2774 if (expanded.file && expanded.line)
2775 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2776 ASM_COMMENT_START, expanded.line, expanded.file);
2777 output_asm_insn (string, ops);
2778 #if HAVE_AS_LINE_ZERO
2779 if (expanded.file && expanded.line)
2780 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2781 #endif
2784 if (targetm.asm_out.final_postscan_insn)
2785 targetm.asm_out.final_postscan_insn (file, insn, ops,
2786 insn_noperands);
2788 this_is_asm_operands = 0;
2789 break;
2792 app_disable ();
2794 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2796 /* A delayed-branch sequence */
2797 int i;
2799 final_sequence = seq;
2801 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2802 force the restoration of a comparison that was previously
2803 thought unnecessary. If that happens, cancel this sequence
2804 and cause that insn to be restored. */
2806 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2807 if (next != seq->insn (1))
2809 final_sequence = 0;
2810 return next;
2813 for (i = 1; i < seq->len (); i++)
2815 rtx_insn *insn = seq->insn (i);
2816 rtx_insn *next = NEXT_INSN (insn);
2817 /* We loop in case any instruction in a delay slot gets
2818 split. */
2820 insn = final_scan_insn (insn, file, 0, 1, seen);
2821 while (insn != next);
2823 #ifdef DBR_OUTPUT_SEQEND
2824 DBR_OUTPUT_SEQEND (file);
2825 #endif
2826 final_sequence = 0;
2828 /* If the insn requiring the delay slot was a CALL_INSN, the
2829 insns in the delay slot are actually executed before the
2830 called function. Hence we don't preserve any CC-setting
2831 actions in these insns and the CC must be marked as being
2832 clobbered by the function. */
2833 if (CALL_P (seq->insn (0)))
2835 CC_STATUS_INIT;
2837 break;
2840 /* We have a real machine instruction as rtl. */
2842 body = PATTERN (insn);
2844 #if HAVE_cc0
2845 set = single_set (insn);
2847 /* Check for redundant test and compare instructions
2848 (when the condition codes are already set up as desired).
2849 This is done only when optimizing; if not optimizing,
2850 it should be possible for the user to alter a variable
2851 with the debugger in between statements
2852 and the next statement should reexamine the variable
2853 to compute the condition codes. */
2855 if (optimize_p)
2857 if (set
2858 && GET_CODE (SET_DEST (set)) == CC0
2859 && insn != last_ignored_compare)
2861 rtx src1, src2;
2862 if (GET_CODE (SET_SRC (set)) == SUBREG)
2863 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2865 src1 = SET_SRC (set);
2866 src2 = NULL_RTX;
2867 if (GET_CODE (SET_SRC (set)) == COMPARE)
2869 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2870 XEXP (SET_SRC (set), 0)
2871 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2872 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2873 XEXP (SET_SRC (set), 1)
2874 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2875 if (XEXP (SET_SRC (set), 1)
2876 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2877 src2 = XEXP (SET_SRC (set), 0);
2879 if ((cc_status.value1 != 0
2880 && rtx_equal_p (src1, cc_status.value1))
2881 || (cc_status.value2 != 0
2882 && rtx_equal_p (src1, cc_status.value2))
2883 || (src2 != 0 && cc_status.value1 != 0
2884 && rtx_equal_p (src2, cc_status.value1))
2885 || (src2 != 0 && cc_status.value2 != 0
2886 && rtx_equal_p (src2, cc_status.value2)))
2888 /* Don't delete insn if it has an addressing side-effect. */
2889 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2890 /* or if anything in it is volatile. */
2891 && ! volatile_refs_p (PATTERN (insn)))
2893 /* We don't really delete the insn; just ignore it. */
2894 last_ignored_compare = insn;
2895 break;
2901 /* If this is a conditional branch, maybe modify it
2902 if the cc's are in a nonstandard state
2903 so that it accomplishes the same thing that it would
2904 do straightforwardly if the cc's were set up normally. */
2906 if (cc_status.flags != 0
2907 && JUMP_P (insn)
2908 && GET_CODE (body) == SET
2909 && SET_DEST (body) == pc_rtx
2910 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2911 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2912 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2914 /* This function may alter the contents of its argument
2915 and clear some of the cc_status.flags bits.
2916 It may also return 1 meaning condition now always true
2917 or -1 meaning condition now always false
2918 or 2 meaning condition nontrivial but altered. */
2919 int result = alter_cond (XEXP (SET_SRC (body), 0));
2920 /* If condition now has fixed value, replace the IF_THEN_ELSE
2921 with its then-operand or its else-operand. */
2922 if (result == 1)
2923 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2924 if (result == -1)
2925 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2927 /* The jump is now either unconditional or a no-op.
2928 If it has become a no-op, don't try to output it.
2929 (It would not be recognized.) */
2930 if (SET_SRC (body) == pc_rtx)
2932 delete_insn (insn);
2933 break;
2935 else if (ANY_RETURN_P (SET_SRC (body)))
2936 /* Replace (set (pc) (return)) with (return). */
2937 PATTERN (insn) = body = SET_SRC (body);
2939 /* Rerecognize the instruction if it has changed. */
2940 if (result != 0)
2941 INSN_CODE (insn) = -1;
2944 /* If this is a conditional trap, maybe modify it if the cc's
2945 are in a nonstandard state so that it accomplishes the same
2946 thing that it would do straightforwardly if the cc's were
2947 set up normally. */
2948 if (cc_status.flags != 0
2949 && NONJUMP_INSN_P (insn)
2950 && GET_CODE (body) == TRAP_IF
2951 && COMPARISON_P (TRAP_CONDITION (body))
2952 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2954 /* This function may alter the contents of its argument
2955 and clear some of the cc_status.flags bits.
2956 It may also return 1 meaning condition now always true
2957 or -1 meaning condition now always false
2958 or 2 meaning condition nontrivial but altered. */
2959 int result = alter_cond (TRAP_CONDITION (body));
2961 /* If TRAP_CONDITION has become always false, delete the
2962 instruction. */
2963 if (result == -1)
2965 delete_insn (insn);
2966 break;
2969 /* If TRAP_CONDITION has become always true, replace
2970 TRAP_CONDITION with const_true_rtx. */
2971 if (result == 1)
2972 TRAP_CONDITION (body) = const_true_rtx;
2974 /* Rerecognize the instruction if it has changed. */
2975 if (result != 0)
2976 INSN_CODE (insn) = -1;
2979 /* Make same adjustments to instructions that examine the
2980 condition codes without jumping and instructions that
2981 handle conditional moves (if this machine has either one). */
2983 if (cc_status.flags != 0
2984 && set != 0)
2986 rtx cond_rtx, then_rtx, else_rtx;
2988 if (!JUMP_P (insn)
2989 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2991 cond_rtx = XEXP (SET_SRC (set), 0);
2992 then_rtx = XEXP (SET_SRC (set), 1);
2993 else_rtx = XEXP (SET_SRC (set), 2);
2995 else
2997 cond_rtx = SET_SRC (set);
2998 then_rtx = const_true_rtx;
2999 else_rtx = const0_rtx;
3002 if (COMPARISON_P (cond_rtx)
3003 && XEXP (cond_rtx, 0) == cc0_rtx)
3005 int result;
3006 result = alter_cond (cond_rtx);
3007 if (result == 1)
3008 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3009 else if (result == -1)
3010 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3011 else if (result == 2)
3012 INSN_CODE (insn) = -1;
3013 if (SET_DEST (set) == SET_SRC (set))
3014 delete_insn (insn);
3018 #endif
3020 /* Do machine-specific peephole optimizations if desired. */
3022 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
3024 rtx_insn *next = peephole (insn);
3025 /* When peepholing, if there were notes within the peephole,
3026 emit them before the peephole. */
3027 if (next != 0 && next != NEXT_INSN (insn))
3029 rtx_insn *note, *prev = PREV_INSN (insn);
3031 for (note = NEXT_INSN (insn); note != next;
3032 note = NEXT_INSN (note))
3033 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
3035 /* Put the notes in the proper position for a later
3036 rescan. For example, the SH target can do this
3037 when generating a far jump in a delayed branch
3038 sequence. */
3039 note = NEXT_INSN (insn);
3040 SET_PREV_INSN (note) = prev;
3041 SET_NEXT_INSN (prev) = note;
3042 SET_NEXT_INSN (PREV_INSN (next)) = insn;
3043 SET_PREV_INSN (insn) = PREV_INSN (next);
3044 SET_NEXT_INSN (insn) = next;
3045 SET_PREV_INSN (next) = insn;
3048 /* PEEPHOLE might have changed this. */
3049 body = PATTERN (insn);
3052 /* Try to recognize the instruction.
3053 If successful, verify that the operands satisfy the
3054 constraints for the instruction. Crash if they don't,
3055 since `reload' should have changed them so that they do. */
3057 insn_code_number = recog_memoized (insn);
3058 cleanup_subreg_operands (insn);
3060 /* Dump the insn in the assembly for debugging (-dAP).
3061 If the final dump is requested as slim RTL, dump slim
3062 RTL to the assembly file also. */
3063 if (flag_dump_rtl_in_asm)
3065 print_rtx_head = ASM_COMMENT_START;
3066 if (! (dump_flags & TDF_SLIM))
3067 print_rtl_single (asm_out_file, insn);
3068 else
3069 dump_insn_slim (asm_out_file, insn);
3070 print_rtx_head = "";
3073 if (! constrain_operands_cached (insn, 1))
3074 fatal_insn_not_found (insn);
3076 /* Some target machines need to prescan each insn before
3077 it is output. */
3079 #ifdef FINAL_PRESCAN_INSN
3080 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3081 #endif
3083 if (targetm.have_conditional_execution ()
3084 && GET_CODE (PATTERN (insn)) == COND_EXEC)
3085 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3087 #if HAVE_cc0
3088 cc_prev_status = cc_status;
3090 /* Update `cc_status' for this instruction.
3091 The instruction's output routine may change it further.
3092 If the output routine for a jump insn needs to depend
3093 on the cc status, it should look at cc_prev_status. */
3095 NOTICE_UPDATE_CC (body, insn);
3096 #endif
3098 current_output_insn = debug_insn = insn;
3100 /* Find the proper template for this insn. */
3101 templ = get_insn_template (insn_code_number, insn);
3103 /* If the C code returns 0, it means that it is a jump insn
3104 which follows a deleted test insn, and that test insn
3105 needs to be reinserted. */
3106 if (templ == 0)
3108 rtx_insn *prev;
3110 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3112 /* We have already processed the notes between the setter and
3113 the user. Make sure we don't process them again, this is
3114 particularly important if one of the notes is a block
3115 scope note or an EH note. */
3116 for (prev = insn;
3117 prev != last_ignored_compare;
3118 prev = PREV_INSN (prev))
3120 if (NOTE_P (prev))
3121 delete_insn (prev); /* Use delete_note. */
3124 return prev;
3127 /* If the template is the string "#", it means that this insn must
3128 be split. */
3129 if (templ[0] == '#' && templ[1] == '\0')
3131 rtx_insn *new_rtx = try_split (body, insn, 0);
3133 /* If we didn't split the insn, go away. */
3134 if (new_rtx == insn && PATTERN (new_rtx) == body)
3135 fatal_insn ("could not split insn", insn);
3137 /* If we have a length attribute, this instruction should have
3138 been split in shorten_branches, to ensure that we would have
3139 valid length info for the splitees. */
3140 gcc_assert (!HAVE_ATTR_length);
3142 return new_rtx;
3145 /* ??? This will put the directives in the wrong place if
3146 get_insn_template outputs assembly directly. However calling it
3147 before get_insn_template breaks if the insns is split. */
3148 if (targetm.asm_out.unwind_emit_before_insn
3149 && targetm.asm_out.unwind_emit)
3150 targetm.asm_out.unwind_emit (asm_out_file, insn);
3152 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3153 if (call_insn != NULL)
3155 rtx x = call_from_call_insn (call_insn);
3156 x = XEXP (x, 0);
3157 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3159 tree t;
3160 x = XEXP (x, 0);
3161 t = SYMBOL_REF_DECL (x);
3162 if (t)
3163 assemble_external (t);
3167 /* Output assembler code from the template. */
3168 output_asm_insn (templ, recog_data.operand);
3170 /* Some target machines need to postscan each insn after
3171 it is output. */
3172 if (targetm.asm_out.final_postscan_insn)
3173 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3174 recog_data.n_operands);
3176 if (!targetm.asm_out.unwind_emit_before_insn
3177 && targetm.asm_out.unwind_emit)
3178 targetm.asm_out.unwind_emit (asm_out_file, insn);
3180 /* Let the debug info back-end know about this call. We do this only
3181 after the instruction has been emitted because labels that may be
3182 created to reference the call instruction must appear after it. */
3183 if ((debug_variable_location_views || call_insn != NULL)
3184 && !DECL_IGNORED_P (current_function_decl))
3185 debug_hooks->var_location (insn);
3187 current_output_insn = debug_insn = 0;
3190 return NEXT_INSN (insn);
3193 /* This is a wrapper around final_scan_insn_1 that allows ports to
3194 call it recursively without a known value for SEEN. The value is
3195 saved at the outermost call, and recovered for recursive calls.
3196 Recursive calls MUST pass NULL, or the same pointer if they can
3197 otherwise get to it. */
3199 rtx_insn *
3200 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3201 int nopeepholes, int *seen)
3203 static int *enclosing_seen;
3204 static int recursion_counter;
3206 gcc_assert (seen || recursion_counter);
3207 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3209 if (!recursion_counter++)
3210 enclosing_seen = seen;
3211 else if (!seen)
3212 seen = enclosing_seen;
3214 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3216 if (!--recursion_counter)
3217 enclosing_seen = NULL;
3219 return ret;
3223 /* Return whether a source line note needs to be emitted before INSN.
3224 Sets IS_STMT to TRUE if the line should be marked as a possible
3225 breakpoint location. */
3227 static bool
3228 notice_source_line (rtx_insn *insn, bool *is_stmt)
3230 const char *filename;
3231 int linenum, columnnum;
3233 if (NOTE_MARKER_P (insn))
3235 location_t loc = NOTE_MARKER_LOCATION (insn);
3236 /* The inline entry markers (gimple, insn, note) carry the
3237 location of the call, because that's what we want to carry
3238 during compilation, but the location we want to output in
3239 debug information for the inline entry point is the location
3240 of the function itself. */
3241 if (NOTE_KIND (insn) == NOTE_INSN_INLINE_ENTRY)
3243 tree block = LOCATION_BLOCK (loc);
3244 tree fn = block_ultimate_origin (block);
3245 loc = DECL_SOURCE_LOCATION (fn);
3247 expanded_location xloc = expand_location (loc);
3248 if (xloc.line == 0)
3250 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3251 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3252 return false;
3254 filename = xloc.file;
3255 linenum = xloc.line;
3256 columnnum = xloc.column;
3257 force_source_line = true;
3259 else if (override_filename)
3261 filename = override_filename;
3262 linenum = override_linenum;
3263 columnnum = override_columnnum;
3265 else if (INSN_HAS_LOCATION (insn))
3267 expanded_location xloc = insn_location (insn);
3268 filename = xloc.file;
3269 linenum = xloc.line;
3270 columnnum = xloc.column;
3272 else
3274 filename = NULL;
3275 linenum = 0;
3276 columnnum = 0;
3279 if (filename == NULL)
3280 return false;
3282 if (force_source_line
3283 || filename != last_filename
3284 || last_linenum != linenum
3285 || (debug_column_info && last_columnnum != columnnum))
3287 force_source_line = false;
3288 last_filename = filename;
3289 last_linenum = linenum;
3290 last_columnnum = columnnum;
3291 last_discriminator = discriminator;
3292 if (is_stmt)
3293 *is_stmt = true;
3294 high_block_linenum = MAX (last_linenum, high_block_linenum);
3295 high_function_linenum = MAX (last_linenum, high_function_linenum);
3296 return true;
3299 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3301 /* If the discriminator changed, but the line number did not,
3302 output the line table entry with is_stmt false so the
3303 debugger does not treat this as a breakpoint location. */
3304 last_discriminator = discriminator;
3305 if (is_stmt)
3306 *is_stmt = false;
3307 return true;
3310 return false;
3313 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3314 directly to the desired hard register. */
3316 void
3317 cleanup_subreg_operands (rtx_insn *insn)
3319 int i;
3320 bool changed = false;
3321 extract_insn_cached (insn);
3322 for (i = 0; i < recog_data.n_operands; i++)
3324 /* The following test cannot use recog_data.operand when testing
3325 for a SUBREG: the underlying object might have been changed
3326 already if we are inside a match_operator expression that
3327 matches the else clause. Instead we test the underlying
3328 expression directly. */
3329 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3331 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3332 changed = true;
3334 else if (GET_CODE (recog_data.operand[i]) == PLUS
3335 || GET_CODE (recog_data.operand[i]) == MULT
3336 || MEM_P (recog_data.operand[i]))
3337 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3340 for (i = 0; i < recog_data.n_dups; i++)
3342 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3344 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3345 changed = true;
3347 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3348 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3349 || MEM_P (*recog_data.dup_loc[i]))
3350 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3352 if (changed)
3353 df_insn_rescan (insn);
3356 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3357 the thing it is a subreg of. Do it anyway if FINAL_P. */
3360 alter_subreg (rtx *xp, bool final_p)
3362 rtx x = *xp;
3363 rtx y = SUBREG_REG (x);
3365 /* simplify_subreg does not remove subreg from volatile references.
3366 We are required to. */
3367 if (MEM_P (y))
3369 poly_int64 offset = SUBREG_BYTE (x);
3371 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3372 contains 0 instead of the proper offset. See simplify_subreg. */
3373 if (paradoxical_subreg_p (x))
3374 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3376 if (final_p)
3377 *xp = adjust_address (y, GET_MODE (x), offset);
3378 else
3379 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3381 else if (REG_P (y) && HARD_REGISTER_P (y))
3383 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3384 SUBREG_BYTE (x));
3386 if (new_rtx != 0)
3387 *xp = new_rtx;
3388 else if (final_p && REG_P (y))
3390 /* Simplify_subreg can't handle some REG cases, but we have to. */
3391 unsigned int regno;
3392 poly_int64 offset;
3394 regno = subreg_regno (x);
3395 if (subreg_lowpart_p (x))
3396 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3397 else
3398 offset = SUBREG_BYTE (x);
3399 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3403 return *xp;
3406 /* Do alter_subreg on all the SUBREGs contained in X. */
3408 static rtx
3409 walk_alter_subreg (rtx *xp, bool *changed)
3411 rtx x = *xp;
3412 switch (GET_CODE (x))
3414 case PLUS:
3415 case MULT:
3416 case AND:
3417 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3418 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3419 break;
3421 case MEM:
3422 case ZERO_EXTEND:
3423 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3424 break;
3426 case SUBREG:
3427 *changed = true;
3428 return alter_subreg (xp, true);
3430 default:
3431 break;
3434 return *xp;
3437 #if HAVE_cc0
3439 /* Given BODY, the body of a jump instruction, alter the jump condition
3440 as required by the bits that are set in cc_status.flags.
3441 Not all of the bits there can be handled at this level in all cases.
3443 The value is normally 0.
3444 1 means that the condition has become always true.
3445 -1 means that the condition has become always false.
3446 2 means that COND has been altered. */
3448 static int
3449 alter_cond (rtx cond)
3451 int value = 0;
3453 if (cc_status.flags & CC_REVERSED)
3455 value = 2;
3456 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3459 if (cc_status.flags & CC_INVERTED)
3461 value = 2;
3462 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3465 if (cc_status.flags & CC_NOT_POSITIVE)
3466 switch (GET_CODE (cond))
3468 case LE:
3469 case LEU:
3470 case GEU:
3471 /* Jump becomes unconditional. */
3472 return 1;
3474 case GT:
3475 case GTU:
3476 case LTU:
3477 /* Jump becomes no-op. */
3478 return -1;
3480 case GE:
3481 PUT_CODE (cond, EQ);
3482 value = 2;
3483 break;
3485 case LT:
3486 PUT_CODE (cond, NE);
3487 value = 2;
3488 break;
3490 default:
3491 break;
3494 if (cc_status.flags & CC_NOT_NEGATIVE)
3495 switch (GET_CODE (cond))
3497 case GE:
3498 case GEU:
3499 /* Jump becomes unconditional. */
3500 return 1;
3502 case LT:
3503 case LTU:
3504 /* Jump becomes no-op. */
3505 return -1;
3507 case LE:
3508 case LEU:
3509 PUT_CODE (cond, EQ);
3510 value = 2;
3511 break;
3513 case GT:
3514 case GTU:
3515 PUT_CODE (cond, NE);
3516 value = 2;
3517 break;
3519 default:
3520 break;
3523 if (cc_status.flags & CC_NO_OVERFLOW)
3524 switch (GET_CODE (cond))
3526 case GEU:
3527 /* Jump becomes unconditional. */
3528 return 1;
3530 case LEU:
3531 PUT_CODE (cond, EQ);
3532 value = 2;
3533 break;
3535 case GTU:
3536 PUT_CODE (cond, NE);
3537 value = 2;
3538 break;
3540 case LTU:
3541 /* Jump becomes no-op. */
3542 return -1;
3544 default:
3545 break;
3548 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3549 switch (GET_CODE (cond))
3551 default:
3552 gcc_unreachable ();
3554 case NE:
3555 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3556 value = 2;
3557 break;
3559 case EQ:
3560 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3561 value = 2;
3562 break;
3565 if (cc_status.flags & CC_NOT_SIGNED)
3566 /* The flags are valid if signed condition operators are converted
3567 to unsigned. */
3568 switch (GET_CODE (cond))
3570 case LE:
3571 PUT_CODE (cond, LEU);
3572 value = 2;
3573 break;
3575 case LT:
3576 PUT_CODE (cond, LTU);
3577 value = 2;
3578 break;
3580 case GT:
3581 PUT_CODE (cond, GTU);
3582 value = 2;
3583 break;
3585 case GE:
3586 PUT_CODE (cond, GEU);
3587 value = 2;
3588 break;
3590 default:
3591 break;
3594 return value;
3596 #endif
3598 /* Report inconsistency between the assembler template and the operands.
3599 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3601 void
3602 output_operand_lossage (const char *cmsgid, ...)
3604 char *fmt_string;
3605 char *new_message;
3606 const char *pfx_str;
3607 va_list ap;
3609 va_start (ap, cmsgid);
3611 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3612 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3613 new_message = xvasprintf (fmt_string, ap);
3615 if (this_is_asm_operands)
3616 error_for_asm (this_is_asm_operands, "%s", new_message);
3617 else
3618 internal_error ("%s", new_message);
3620 free (fmt_string);
3621 free (new_message);
3622 va_end (ap);
3625 /* Output of assembler code from a template, and its subroutines. */
3627 /* Annotate the assembly with a comment describing the pattern and
3628 alternative used. */
3630 static void
3631 output_asm_name (void)
3633 if (debug_insn)
3635 fprintf (asm_out_file, "\t%s %d\t",
3636 ASM_COMMENT_START, INSN_UID (debug_insn));
3638 fprintf (asm_out_file, "[c=%d",
3639 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3640 if (HAVE_ATTR_length)
3641 fprintf (asm_out_file, " l=%d",
3642 get_attr_length (debug_insn));
3643 fprintf (asm_out_file, "] ");
3645 int num = INSN_CODE (debug_insn);
3646 fprintf (asm_out_file, "%s", insn_data[num].name);
3647 if (insn_data[num].n_alternatives > 1)
3648 fprintf (asm_out_file, "/%d", which_alternative);
3650 /* Clear this so only the first assembler insn
3651 of any rtl insn will get the special comment for -dp. */
3652 debug_insn = 0;
3656 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3657 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3658 corresponds to the address of the object and 0 if to the object. */
3660 static tree
3661 get_mem_expr_from_op (rtx op, int *paddressp)
3663 tree expr;
3664 int inner_addressp;
3666 *paddressp = 0;
3668 if (REG_P (op))
3669 return REG_EXPR (op);
3670 else if (!MEM_P (op))
3671 return 0;
3673 if (MEM_EXPR (op) != 0)
3674 return MEM_EXPR (op);
3676 /* Otherwise we have an address, so indicate it and look at the address. */
3677 *paddressp = 1;
3678 op = XEXP (op, 0);
3680 /* First check if we have a decl for the address, then look at the right side
3681 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3682 But don't allow the address to itself be indirect. */
3683 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3684 return expr;
3685 else if (GET_CODE (op) == PLUS
3686 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3687 return expr;
3689 while (UNARY_P (op)
3690 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3691 op = XEXP (op, 0);
3693 expr = get_mem_expr_from_op (op, &inner_addressp);
3694 return inner_addressp ? 0 : expr;
3697 /* Output operand names for assembler instructions. OPERANDS is the
3698 operand vector, OPORDER is the order to write the operands, and NOPS
3699 is the number of operands to write. */
3701 static void
3702 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3704 int wrote = 0;
3705 int i;
3707 for (i = 0; i < nops; i++)
3709 int addressp;
3710 rtx op = operands[oporder[i]];
3711 tree expr = get_mem_expr_from_op (op, &addressp);
3713 fprintf (asm_out_file, "%c%s",
3714 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3715 wrote = 1;
3716 if (expr)
3718 fprintf (asm_out_file, "%s",
3719 addressp ? "*" : "");
3720 print_mem_expr (asm_out_file, expr);
3721 wrote = 1;
3723 else if (REG_P (op) && ORIGINAL_REGNO (op)
3724 && ORIGINAL_REGNO (op) != REGNO (op))
3725 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3729 #ifdef ASSEMBLER_DIALECT
3730 /* Helper function to parse assembler dialects in the asm string.
3731 This is called from output_asm_insn and asm_fprintf. */
3732 static const char *
3733 do_assembler_dialects (const char *p, int *dialect)
3735 char c = *(p - 1);
3737 switch (c)
3739 case '{':
3741 int i;
3743 if (*dialect)
3744 output_operand_lossage ("nested assembly dialect alternatives");
3745 else
3746 *dialect = 1;
3748 /* If we want the first dialect, do nothing. Otherwise, skip
3749 DIALECT_NUMBER of strings ending with '|'. */
3750 for (i = 0; i < dialect_number; i++)
3752 while (*p && *p != '}')
3754 if (*p == '|')
3756 p++;
3757 break;
3760 /* Skip over any character after a percent sign. */
3761 if (*p == '%')
3762 p++;
3763 if (*p)
3764 p++;
3767 if (*p == '}')
3768 break;
3771 if (*p == '\0')
3772 output_operand_lossage ("unterminated assembly dialect alternative");
3774 break;
3776 case '|':
3777 if (*dialect)
3779 /* Skip to close brace. */
3782 if (*p == '\0')
3784 output_operand_lossage ("unterminated assembly dialect alternative");
3785 break;
3788 /* Skip over any character after a percent sign. */
3789 if (*p == '%' && p[1])
3791 p += 2;
3792 continue;
3795 if (*p++ == '}')
3796 break;
3798 while (1);
3800 *dialect = 0;
3802 else
3803 putc (c, asm_out_file);
3804 break;
3806 case '}':
3807 if (! *dialect)
3808 putc (c, asm_out_file);
3809 *dialect = 0;
3810 break;
3811 default:
3812 gcc_unreachable ();
3815 return p;
3817 #endif
3819 /* Output text from TEMPLATE to the assembler output file,
3820 obeying %-directions to substitute operands taken from
3821 the vector OPERANDS.
3823 %N (for N a digit) means print operand N in usual manner.
3824 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3825 and print the label name with no punctuation.
3826 %cN means require operand N to be a constant
3827 and print the constant expression with no punctuation.
3828 %aN means expect operand N to be a memory address
3829 (not a memory reference!) and print a reference
3830 to that address.
3831 %nN means expect operand N to be a constant
3832 and print a constant expression for minus the value
3833 of the operand, with no other punctuation. */
3835 void
3836 output_asm_insn (const char *templ, rtx *operands)
3838 const char *p;
3839 int c;
3840 #ifdef ASSEMBLER_DIALECT
3841 int dialect = 0;
3842 #endif
3843 int oporder[MAX_RECOG_OPERANDS];
3844 char opoutput[MAX_RECOG_OPERANDS];
3845 int ops = 0;
3847 /* An insn may return a null string template
3848 in a case where no assembler code is needed. */
3849 if (*templ == 0)
3850 return;
3852 memset (opoutput, 0, sizeof opoutput);
3853 p = templ;
3854 putc ('\t', asm_out_file);
3856 #ifdef ASM_OUTPUT_OPCODE
3857 ASM_OUTPUT_OPCODE (asm_out_file, p);
3858 #endif
3860 while ((c = *p++))
3861 switch (c)
3863 case '\n':
3864 if (flag_verbose_asm)
3865 output_asm_operand_names (operands, oporder, ops);
3866 if (flag_print_asm_name)
3867 output_asm_name ();
3869 ops = 0;
3870 memset (opoutput, 0, sizeof opoutput);
3872 putc (c, asm_out_file);
3873 #ifdef ASM_OUTPUT_OPCODE
3874 while ((c = *p) == '\t')
3876 putc (c, asm_out_file);
3877 p++;
3879 ASM_OUTPUT_OPCODE (asm_out_file, p);
3880 #endif
3881 break;
3883 #ifdef ASSEMBLER_DIALECT
3884 case '{':
3885 case '}':
3886 case '|':
3887 p = do_assembler_dialects (p, &dialect);
3888 break;
3889 #endif
3891 case '%':
3892 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3893 if ASSEMBLER_DIALECT defined and these characters have a special
3894 meaning as dialect delimiters.*/
3895 if (*p == '%'
3896 #ifdef ASSEMBLER_DIALECT
3897 || *p == '{' || *p == '}' || *p == '|'
3898 #endif
3901 putc (*p, asm_out_file);
3902 p++;
3904 /* %= outputs a number which is unique to each insn in the entire
3905 compilation. This is useful for making local labels that are
3906 referred to more than once in a given insn. */
3907 else if (*p == '=')
3909 p++;
3910 fprintf (asm_out_file, "%d", insn_counter);
3912 /* % followed by a letter and some digits
3913 outputs an operand in a special way depending on the letter.
3914 Letters `acln' are implemented directly.
3915 Other letters are passed to `output_operand' so that
3916 the TARGET_PRINT_OPERAND hook can define them. */
3917 else if (ISALPHA (*p))
3919 int letter = *p++;
3920 unsigned long opnum;
3921 char *endptr;
3923 opnum = strtoul (p, &endptr, 10);
3925 if (endptr == p)
3926 output_operand_lossage ("operand number missing "
3927 "after %%-letter");
3928 else if (this_is_asm_operands && opnum >= insn_noperands)
3929 output_operand_lossage ("operand number out of range");
3930 else if (letter == 'l')
3931 output_asm_label (operands[opnum]);
3932 else if (letter == 'a')
3933 output_address (VOIDmode, operands[opnum]);
3934 else if (letter == 'c')
3936 if (CONSTANT_ADDRESS_P (operands[opnum]))
3937 output_addr_const (asm_out_file, operands[opnum]);
3938 else
3939 output_operand (operands[opnum], 'c');
3941 else if (letter == 'n')
3943 if (CONST_INT_P (operands[opnum]))
3944 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3945 - INTVAL (operands[opnum]));
3946 else
3948 putc ('-', asm_out_file);
3949 output_addr_const (asm_out_file, operands[opnum]);
3952 else
3953 output_operand (operands[opnum], letter);
3955 if (!opoutput[opnum])
3956 oporder[ops++] = opnum;
3957 opoutput[opnum] = 1;
3959 p = endptr;
3960 c = *p;
3962 /* % followed by a digit outputs an operand the default way. */
3963 else if (ISDIGIT (*p))
3965 unsigned long opnum;
3966 char *endptr;
3968 opnum = strtoul (p, &endptr, 10);
3969 if (this_is_asm_operands && opnum >= insn_noperands)
3970 output_operand_lossage ("operand number out of range");
3971 else
3972 output_operand (operands[opnum], 0);
3974 if (!opoutput[opnum])
3975 oporder[ops++] = opnum;
3976 opoutput[opnum] = 1;
3978 p = endptr;
3979 c = *p;
3981 /* % followed by punctuation: output something for that
3982 punctuation character alone, with no operand. The
3983 TARGET_PRINT_OPERAND hook decides what is actually done. */
3984 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3985 output_operand (NULL_RTX, *p++);
3986 else
3987 output_operand_lossage ("invalid %%-code");
3988 break;
3990 default:
3991 putc (c, asm_out_file);
3994 /* Try to keep the asm a bit more readable. */
3995 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
3996 putc ('\t', asm_out_file);
3998 /* Write out the variable names for operands, if we know them. */
3999 if (flag_verbose_asm)
4000 output_asm_operand_names (operands, oporder, ops);
4001 if (flag_print_asm_name)
4002 output_asm_name ();
4004 putc ('\n', asm_out_file);
4007 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
4009 void
4010 output_asm_label (rtx x)
4012 char buf[256];
4014 if (GET_CODE (x) == LABEL_REF)
4015 x = label_ref_label (x);
4016 if (LABEL_P (x)
4017 || (NOTE_P (x)
4018 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4019 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4020 else
4021 output_operand_lossage ("'%%l' operand isn't a label");
4023 assemble_name (asm_out_file, buf);
4026 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
4028 void
4029 mark_symbol_refs_as_used (rtx x)
4031 subrtx_iterator::array_type array;
4032 FOR_EACH_SUBRTX (iter, array, x, ALL)
4034 const_rtx x = *iter;
4035 if (GET_CODE (x) == SYMBOL_REF)
4036 if (tree t = SYMBOL_REF_DECL (x))
4037 assemble_external (t);
4041 /* Print operand X using machine-dependent assembler syntax.
4042 CODE is a non-digit that preceded the operand-number in the % spec,
4043 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
4044 between the % and the digits.
4045 When CODE is a non-letter, X is 0.
4047 The meanings of the letters are machine-dependent and controlled
4048 by TARGET_PRINT_OPERAND. */
4050 void
4051 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4053 if (x && GET_CODE (x) == SUBREG)
4054 x = alter_subreg (&x, true);
4056 /* X must not be a pseudo reg. */
4057 if (!targetm.no_register_allocation)
4058 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4060 targetm.asm_out.print_operand (asm_out_file, x, code);
4062 if (x == NULL_RTX)
4063 return;
4065 mark_symbol_refs_as_used (x);
4068 /* Print a memory reference operand for address X using
4069 machine-dependent assembler syntax. */
4071 void
4072 output_address (machine_mode mode, rtx x)
4074 bool changed = false;
4075 walk_alter_subreg (&x, &changed);
4076 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4079 /* Print an integer constant expression in assembler syntax.
4080 Addition and subtraction are the only arithmetic
4081 that may appear in these expressions. */
4083 void
4084 output_addr_const (FILE *file, rtx x)
4086 char buf[256];
4088 restart:
4089 switch (GET_CODE (x))
4091 case PC:
4092 putc ('.', file);
4093 break;
4095 case SYMBOL_REF:
4096 if (SYMBOL_REF_DECL (x))
4097 assemble_external (SYMBOL_REF_DECL (x));
4098 #ifdef ASM_OUTPUT_SYMBOL_REF
4099 ASM_OUTPUT_SYMBOL_REF (file, x);
4100 #else
4101 assemble_name (file, XSTR (x, 0));
4102 #endif
4103 break;
4105 case LABEL_REF:
4106 x = label_ref_label (x);
4107 /* Fall through. */
4108 case CODE_LABEL:
4109 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4110 #ifdef ASM_OUTPUT_LABEL_REF
4111 ASM_OUTPUT_LABEL_REF (file, buf);
4112 #else
4113 assemble_name (file, buf);
4114 #endif
4115 break;
4117 case CONST_INT:
4118 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4119 break;
4121 case CONST:
4122 /* This used to output parentheses around the expression,
4123 but that does not work on the 386 (either ATT or BSD assembler). */
4124 output_addr_const (file, XEXP (x, 0));
4125 break;
4127 case CONST_WIDE_INT:
4128 /* We do not know the mode here so we have to use a round about
4129 way to build a wide-int to get it printed properly. */
4131 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4132 CONST_WIDE_INT_NUNITS (x),
4133 CONST_WIDE_INT_NUNITS (x)
4134 * HOST_BITS_PER_WIDE_INT,
4135 false);
4136 print_decs (w, file);
4138 break;
4140 case CONST_DOUBLE:
4141 if (CONST_DOUBLE_AS_INT_P (x))
4143 /* We can use %d if the number is one word and positive. */
4144 if (CONST_DOUBLE_HIGH (x))
4145 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4146 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4147 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4148 else if (CONST_DOUBLE_LOW (x) < 0)
4149 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4150 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4151 else
4152 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4154 else
4155 /* We can't handle floating point constants;
4156 PRINT_OPERAND must handle them. */
4157 output_operand_lossage ("floating constant misused");
4158 break;
4160 case CONST_FIXED:
4161 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4162 break;
4164 case PLUS:
4165 /* Some assemblers need integer constants to appear last (eg masm). */
4166 if (CONST_INT_P (XEXP (x, 0)))
4168 output_addr_const (file, XEXP (x, 1));
4169 if (INTVAL (XEXP (x, 0)) >= 0)
4170 fprintf (file, "+");
4171 output_addr_const (file, XEXP (x, 0));
4173 else
4175 output_addr_const (file, XEXP (x, 0));
4176 if (!CONST_INT_P (XEXP (x, 1))
4177 || INTVAL (XEXP (x, 1)) >= 0)
4178 fprintf (file, "+");
4179 output_addr_const (file, XEXP (x, 1));
4181 break;
4183 case MINUS:
4184 /* Avoid outputting things like x-x or x+5-x,
4185 since some assemblers can't handle that. */
4186 x = simplify_subtraction (x);
4187 if (GET_CODE (x) != MINUS)
4188 goto restart;
4190 output_addr_const (file, XEXP (x, 0));
4191 fprintf (file, "-");
4192 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4193 || GET_CODE (XEXP (x, 1)) == PC
4194 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4195 output_addr_const (file, XEXP (x, 1));
4196 else
4198 fputs (targetm.asm_out.open_paren, file);
4199 output_addr_const (file, XEXP (x, 1));
4200 fputs (targetm.asm_out.close_paren, file);
4202 break;
4204 case ZERO_EXTEND:
4205 case SIGN_EXTEND:
4206 case SUBREG:
4207 case TRUNCATE:
4208 output_addr_const (file, XEXP (x, 0));
4209 break;
4211 default:
4212 if (targetm.asm_out.output_addr_const_extra (file, x))
4213 break;
4215 output_operand_lossage ("invalid expression as operand");
4219 /* Output a quoted string. */
4221 void
4222 output_quoted_string (FILE *asm_file, const char *string)
4224 #ifdef OUTPUT_QUOTED_STRING
4225 OUTPUT_QUOTED_STRING (asm_file, string);
4226 #else
4227 char c;
4229 putc ('\"', asm_file);
4230 while ((c = *string++) != 0)
4232 if (ISPRINT (c))
4234 if (c == '\"' || c == '\\')
4235 putc ('\\', asm_file);
4236 putc (c, asm_file);
4238 else
4239 fprintf (asm_file, "\\%03o", (unsigned char) c);
4241 putc ('\"', asm_file);
4242 #endif
4245 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4247 void
4248 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4250 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4251 if (value == 0)
4252 putc ('0', f);
4253 else
4255 char *p = buf + sizeof (buf);
4257 *--p = "0123456789abcdef"[value % 16];
4258 while ((value /= 16) != 0);
4259 *--p = 'x';
4260 *--p = '0';
4261 fwrite (p, 1, buf + sizeof (buf) - p, f);
4265 /* Internal function that prints an unsigned long in decimal in reverse.
4266 The output string IS NOT null-terminated. */
4268 static int
4269 sprint_ul_rev (char *s, unsigned long value)
4271 int i = 0;
4274 s[i] = "0123456789"[value % 10];
4275 value /= 10;
4276 i++;
4277 /* alternate version, without modulo */
4278 /* oldval = value; */
4279 /* value /= 10; */
4280 /* s[i] = "0123456789" [oldval - 10*value]; */
4281 /* i++ */
4283 while (value != 0);
4284 return i;
4287 /* Write an unsigned long as decimal to a file, fast. */
4289 void
4290 fprint_ul (FILE *f, unsigned long value)
4292 /* python says: len(str(2**64)) == 20 */
4293 char s[20];
4294 int i;
4296 i = sprint_ul_rev (s, value);
4298 /* It's probably too small to bother with string reversal and fputs. */
4301 i--;
4302 putc (s[i], f);
4304 while (i != 0);
4307 /* Write an unsigned long as decimal to a string, fast.
4308 s must be wide enough to not overflow, at least 21 chars.
4309 Returns the length of the string (without terminating '\0'). */
4312 sprint_ul (char *s, unsigned long value)
4314 int len = sprint_ul_rev (s, value);
4315 s[len] = '\0';
4317 std::reverse (s, s + len);
4318 return len;
4321 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4322 %R prints the value of REGISTER_PREFIX.
4323 %L prints the value of LOCAL_LABEL_PREFIX.
4324 %U prints the value of USER_LABEL_PREFIX.
4325 %I prints the value of IMMEDIATE_PREFIX.
4326 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4327 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4329 We handle alternate assembler dialects here, just like output_asm_insn. */
4331 void
4332 asm_fprintf (FILE *file, const char *p, ...)
4334 char buf[10];
4335 char *q, c;
4336 #ifdef ASSEMBLER_DIALECT
4337 int dialect = 0;
4338 #endif
4339 va_list argptr;
4341 va_start (argptr, p);
4343 buf[0] = '%';
4345 while ((c = *p++))
4346 switch (c)
4348 #ifdef ASSEMBLER_DIALECT
4349 case '{':
4350 case '}':
4351 case '|':
4352 p = do_assembler_dialects (p, &dialect);
4353 break;
4354 #endif
4356 case '%':
4357 c = *p++;
4358 q = &buf[1];
4359 while (strchr ("-+ #0", c))
4361 *q++ = c;
4362 c = *p++;
4364 while (ISDIGIT (c) || c == '.')
4366 *q++ = c;
4367 c = *p++;
4369 switch (c)
4371 case '%':
4372 putc ('%', file);
4373 break;
4375 case 'd': case 'i': case 'u':
4376 case 'x': case 'X': case 'o':
4377 case 'c':
4378 *q++ = c;
4379 *q = 0;
4380 fprintf (file, buf, va_arg (argptr, int));
4381 break;
4383 case 'w':
4384 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4385 'o' cases, but we do not check for those cases. It
4386 means that the value is a HOST_WIDE_INT, which may be
4387 either `long' or `long long'. */
4388 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4389 q += strlen (HOST_WIDE_INT_PRINT);
4390 *q++ = *p++;
4391 *q = 0;
4392 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4393 break;
4395 case 'l':
4396 *q++ = c;
4397 #ifdef HAVE_LONG_LONG
4398 if (*p == 'l')
4400 *q++ = *p++;
4401 *q++ = *p++;
4402 *q = 0;
4403 fprintf (file, buf, va_arg (argptr, long long));
4405 else
4406 #endif
4408 *q++ = *p++;
4409 *q = 0;
4410 fprintf (file, buf, va_arg (argptr, long));
4413 break;
4415 case 's':
4416 *q++ = c;
4417 *q = 0;
4418 fprintf (file, buf, va_arg (argptr, char *));
4419 break;
4421 case 'O':
4422 #ifdef ASM_OUTPUT_OPCODE
4423 ASM_OUTPUT_OPCODE (asm_out_file, p);
4424 #endif
4425 break;
4427 case 'R':
4428 #ifdef REGISTER_PREFIX
4429 fprintf (file, "%s", REGISTER_PREFIX);
4430 #endif
4431 break;
4433 case 'I':
4434 #ifdef IMMEDIATE_PREFIX
4435 fprintf (file, "%s", IMMEDIATE_PREFIX);
4436 #endif
4437 break;
4439 case 'L':
4440 #ifdef LOCAL_LABEL_PREFIX
4441 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4442 #endif
4443 break;
4445 case 'U':
4446 fputs (user_label_prefix, file);
4447 break;
4449 #ifdef ASM_FPRINTF_EXTENSIONS
4450 /* Uppercase letters are reserved for general use by asm_fprintf
4451 and so are not available to target specific code. In order to
4452 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4453 they are defined here. As they get turned into real extensions
4454 to asm_fprintf they should be removed from this list. */
4455 case 'A': case 'B': case 'C': case 'D': case 'E':
4456 case 'F': case 'G': case 'H': case 'J': case 'K':
4457 case 'M': case 'N': case 'P': case 'Q': case 'S':
4458 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4459 break;
4461 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4462 #endif
4463 default:
4464 gcc_unreachable ();
4466 break;
4468 default:
4469 putc (c, file);
4471 va_end (argptr);
4474 /* Return nonzero if this function has no function calls. */
4477 leaf_function_p (void)
4479 rtx_insn *insn;
4481 /* Ensure we walk the entire function body. */
4482 gcc_assert (!in_sequence_p ());
4484 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4485 functions even if they call mcount. */
4486 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4487 return 0;
4489 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4491 if (CALL_P (insn)
4492 && ! SIBLING_CALL_P (insn))
4493 return 0;
4494 if (NONJUMP_INSN_P (insn)
4495 && GET_CODE (PATTERN (insn)) == SEQUENCE
4496 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4497 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4498 return 0;
4501 return 1;
4504 /* Return 1 if branch is a forward branch.
4505 Uses insn_shuid array, so it works only in the final pass. May be used by
4506 output templates to customary add branch prediction hints.
4509 final_forward_branch_p (rtx_insn *insn)
4511 int insn_id, label_id;
4513 gcc_assert (uid_shuid);
4514 insn_id = INSN_SHUID (insn);
4515 label_id = INSN_SHUID (JUMP_LABEL (insn));
4516 /* We've hit some insns that does not have id information available. */
4517 gcc_assert (insn_id && label_id);
4518 return insn_id < label_id;
4521 /* On some machines, a function with no call insns
4522 can run faster if it doesn't create its own register window.
4523 When output, the leaf function should use only the "output"
4524 registers. Ordinarily, the function would be compiled to use
4525 the "input" registers to find its arguments; it is a candidate
4526 for leaf treatment if it uses only the "input" registers.
4527 Leaf function treatment means renumbering so the function
4528 uses the "output" registers instead. */
4530 #ifdef LEAF_REGISTERS
4532 /* Return 1 if this function uses only the registers that can be
4533 safely renumbered. */
4536 only_leaf_regs_used (void)
4538 int i;
4539 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4541 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4542 if ((df_regs_ever_live_p (i) || global_regs[i])
4543 && ! permitted_reg_in_leaf_functions[i])
4544 return 0;
4546 if (crtl->uses_pic_offset_table
4547 && pic_offset_table_rtx != 0
4548 && REG_P (pic_offset_table_rtx)
4549 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4550 return 0;
4552 return 1;
4555 /* Scan all instructions and renumber all registers into those
4556 available in leaf functions. */
4558 static void
4559 leaf_renumber_regs (rtx_insn *first)
4561 rtx_insn *insn;
4563 /* Renumber only the actual patterns.
4564 The reg-notes can contain frame pointer refs,
4565 and renumbering them could crash, and should not be needed. */
4566 for (insn = first; insn; insn = NEXT_INSN (insn))
4567 if (INSN_P (insn))
4568 leaf_renumber_regs_insn (PATTERN (insn));
4571 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4572 available in leaf functions. */
4574 void
4575 leaf_renumber_regs_insn (rtx in_rtx)
4577 int i, j;
4578 const char *format_ptr;
4580 if (in_rtx == 0)
4581 return;
4583 /* Renumber all input-registers into output-registers.
4584 renumbered_regs would be 1 for an output-register;
4585 they */
4587 if (REG_P (in_rtx))
4589 int newreg;
4591 /* Don't renumber the same reg twice. */
4592 if (in_rtx->used)
4593 return;
4595 newreg = REGNO (in_rtx);
4596 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4597 to reach here as part of a REG_NOTE. */
4598 if (newreg >= FIRST_PSEUDO_REGISTER)
4600 in_rtx->used = 1;
4601 return;
4603 newreg = LEAF_REG_REMAP (newreg);
4604 gcc_assert (newreg >= 0);
4605 df_set_regs_ever_live (REGNO (in_rtx), false);
4606 df_set_regs_ever_live (newreg, true);
4607 SET_REGNO (in_rtx, newreg);
4608 in_rtx->used = 1;
4609 return;
4612 if (INSN_P (in_rtx))
4614 /* Inside a SEQUENCE, we find insns.
4615 Renumber just the patterns of these insns,
4616 just as we do for the top-level insns. */
4617 leaf_renumber_regs_insn (PATTERN (in_rtx));
4618 return;
4621 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4623 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4624 switch (*format_ptr++)
4626 case 'e':
4627 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4628 break;
4630 case 'E':
4631 if (XVEC (in_rtx, i) != NULL)
4632 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4633 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4634 break;
4636 case 'S':
4637 case 's':
4638 case '0':
4639 case 'i':
4640 case 'w':
4641 case 'p':
4642 case 'n':
4643 case 'u':
4644 break;
4646 default:
4647 gcc_unreachable ();
4650 #endif
4652 /* Turn the RTL into assembly. */
4653 static unsigned int
4654 rest_of_handle_final (void)
4656 const char *fnname = get_fnname_from_decl (current_function_decl);
4658 /* Turn debug markers into notes if the var-tracking pass has not
4659 been invoked. */
4660 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4661 delete_vta_debug_insns (false);
4663 assemble_start_function (current_function_decl, fnname);
4664 rtx_insn *first = get_insns ();
4665 int seen = 0;
4666 final_start_function_1 (&first, asm_out_file, &seen, optimize);
4667 final_1 (first, asm_out_file, seen, optimize);
4668 if (flag_ipa_ra
4669 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)))
4670 collect_fn_hard_reg_usage ();
4671 final_end_function ();
4673 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4674 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4675 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4676 output_function_exception_table (fnname);
4678 assemble_end_function (current_function_decl, fnname);
4680 /* Free up reg info memory. */
4681 free_reg_info ();
4683 if (! quiet_flag)
4684 fflush (asm_out_file);
4686 /* Write DBX symbols if requested. */
4688 /* Note that for those inline functions where we don't initially
4689 know for certain that we will be generating an out-of-line copy,
4690 the first invocation of this routine (rest_of_compilation) will
4691 skip over this code by doing a `goto exit_rest_of_compilation;'.
4692 Later on, wrapup_global_declarations will (indirectly) call
4693 rest_of_compilation again for those inline functions that need
4694 to have out-of-line copies generated. During that call, we
4695 *will* be routed past here. */
4697 timevar_push (TV_SYMOUT);
4698 if (!DECL_IGNORED_P (current_function_decl))
4699 debug_hooks->function_decl (current_function_decl);
4700 timevar_pop (TV_SYMOUT);
4702 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4703 DECL_INITIAL (current_function_decl) = error_mark_node;
4705 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4706 && targetm.have_ctors_dtors)
4707 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4708 decl_init_priority_lookup
4709 (current_function_decl));
4710 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4711 && targetm.have_ctors_dtors)
4712 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4713 decl_fini_priority_lookup
4714 (current_function_decl));
4715 return 0;
4718 namespace {
4720 const pass_data pass_data_final =
4722 RTL_PASS, /* type */
4723 "final", /* name */
4724 OPTGROUP_NONE, /* optinfo_flags */
4725 TV_FINAL, /* tv_id */
4726 0, /* properties_required */
4727 0, /* properties_provided */
4728 0, /* properties_destroyed */
4729 0, /* todo_flags_start */
4730 0, /* todo_flags_finish */
4733 class pass_final : public rtl_opt_pass
4735 public:
4736 pass_final (gcc::context *ctxt)
4737 : rtl_opt_pass (pass_data_final, ctxt)
4740 /* opt_pass methods: */
4741 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4743 }; // class pass_final
4745 } // anon namespace
4747 rtl_opt_pass *
4748 make_pass_final (gcc::context *ctxt)
4750 return new pass_final (ctxt);
4754 static unsigned int
4755 rest_of_handle_shorten_branches (void)
4757 /* Shorten branches. */
4758 shorten_branches (get_insns ());
4759 return 0;
4762 namespace {
4764 const pass_data pass_data_shorten_branches =
4766 RTL_PASS, /* type */
4767 "shorten", /* name */
4768 OPTGROUP_NONE, /* optinfo_flags */
4769 TV_SHORTEN_BRANCH, /* tv_id */
4770 0, /* properties_required */
4771 0, /* properties_provided */
4772 0, /* properties_destroyed */
4773 0, /* todo_flags_start */
4774 0, /* todo_flags_finish */
4777 class pass_shorten_branches : public rtl_opt_pass
4779 public:
4780 pass_shorten_branches (gcc::context *ctxt)
4781 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4784 /* opt_pass methods: */
4785 virtual unsigned int execute (function *)
4787 return rest_of_handle_shorten_branches ();
4790 }; // class pass_shorten_branches
4792 } // anon namespace
4794 rtl_opt_pass *
4795 make_pass_shorten_branches (gcc::context *ctxt)
4797 return new pass_shorten_branches (ctxt);
4801 static unsigned int
4802 rest_of_clean_state (void)
4804 rtx_insn *insn, *next;
4805 FILE *final_output = NULL;
4806 int save_unnumbered = flag_dump_unnumbered;
4807 int save_noaddr = flag_dump_noaddr;
4809 if (flag_dump_final_insns)
4811 final_output = fopen (flag_dump_final_insns, "a");
4812 if (!final_output)
4814 error ("could not open final insn dump file %qs: %m",
4815 flag_dump_final_insns);
4816 flag_dump_final_insns = NULL;
4818 else
4820 flag_dump_noaddr = flag_dump_unnumbered = 1;
4821 if (flag_compare_debug_opt || flag_compare_debug)
4822 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4823 dump_function_header (final_output, current_function_decl,
4824 dump_flags);
4825 final_insns_dump_p = true;
4827 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4828 if (LABEL_P (insn))
4829 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4830 else
4832 if (NOTE_P (insn))
4833 set_block_for_insn (insn, NULL);
4834 INSN_UID (insn) = 0;
4839 /* It is very important to decompose the RTL instruction chain here:
4840 debug information keeps pointing into CODE_LABEL insns inside the function
4841 body. If these remain pointing to the other insns, we end up preserving
4842 whole RTL chain and attached detailed debug info in memory. */
4843 for (insn = get_insns (); insn; insn = next)
4845 next = NEXT_INSN (insn);
4846 SET_NEXT_INSN (insn) = NULL;
4847 SET_PREV_INSN (insn) = NULL;
4849 if (final_output
4850 && (!NOTE_P (insn) ||
4851 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4852 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4853 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4854 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4855 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4856 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4857 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4858 print_rtl_single (final_output, insn);
4861 if (final_output)
4863 flag_dump_noaddr = save_noaddr;
4864 flag_dump_unnumbered = save_unnumbered;
4865 final_insns_dump_p = false;
4867 if (fclose (final_output))
4869 error ("could not close final insn dump file %qs: %m",
4870 flag_dump_final_insns);
4871 flag_dump_final_insns = NULL;
4875 flag_rerun_cse_after_global_opts = 0;
4876 reload_completed = 0;
4877 epilogue_completed = 0;
4878 #ifdef STACK_REGS
4879 regstack_completed = 0;
4880 #endif
4882 /* Clear out the insn_length contents now that they are no
4883 longer valid. */
4884 init_insn_lengths ();
4886 /* Show no temporary slots allocated. */
4887 init_temp_slots ();
4889 free_bb_for_insn ();
4891 if (cfun->gimple_df)
4892 delete_tree_ssa (cfun);
4894 /* We can reduce stack alignment on call site only when we are sure that
4895 the function body just produced will be actually used in the final
4896 executable. */
4897 if (decl_binds_to_current_def_p (current_function_decl))
4899 unsigned int pref = crtl->preferred_stack_boundary;
4900 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4901 pref = crtl->stack_alignment_needed;
4902 cgraph_node::rtl_info (current_function_decl)
4903 ->preferred_incoming_stack_boundary = pref;
4906 /* Make sure volatile mem refs aren't considered valid operands for
4907 arithmetic insns. We must call this here if this is a nested inline
4908 function, since the above code leaves us in the init_recog state,
4909 and the function context push/pop code does not save/restore volatile_ok.
4911 ??? Maybe it isn't necessary for expand_start_function to call this
4912 anymore if we do it here? */
4914 init_recog_no_volatile ();
4916 /* We're done with this function. Free up memory if we can. */
4917 free_after_parsing (cfun);
4918 free_after_compilation (cfun);
4919 return 0;
4922 namespace {
4924 const pass_data pass_data_clean_state =
4926 RTL_PASS, /* type */
4927 "*clean_state", /* name */
4928 OPTGROUP_NONE, /* optinfo_flags */
4929 TV_FINAL, /* tv_id */
4930 0, /* properties_required */
4931 0, /* properties_provided */
4932 PROP_rtl, /* properties_destroyed */
4933 0, /* todo_flags_start */
4934 0, /* todo_flags_finish */
4937 class pass_clean_state : public rtl_opt_pass
4939 public:
4940 pass_clean_state (gcc::context *ctxt)
4941 : rtl_opt_pass (pass_data_clean_state, ctxt)
4944 /* opt_pass methods: */
4945 virtual unsigned int execute (function *)
4947 return rest_of_clean_state ();
4950 }; // class pass_clean_state
4952 } // anon namespace
4954 rtl_opt_pass *
4955 make_pass_clean_state (gcc::context *ctxt)
4957 return new pass_clean_state (ctxt);
4960 /* Return true if INSN is a call to the current function. */
4962 static bool
4963 self_recursive_call_p (rtx_insn *insn)
4965 tree fndecl = get_call_fndecl (insn);
4966 return (fndecl == current_function_decl
4967 && decl_binds_to_current_def_p (fndecl));
4970 /* Collect hard register usage for the current function. */
4972 static void
4973 collect_fn_hard_reg_usage (void)
4975 rtx_insn *insn;
4976 #ifdef STACK_REGS
4977 int i;
4978 #endif
4979 struct cgraph_rtl_info *node;
4980 HARD_REG_SET function_used_regs;
4982 /* ??? To be removed when all the ports have been fixed. */
4983 if (!targetm.call_fusage_contains_non_callee_clobbers)
4984 return;
4986 CLEAR_HARD_REG_SET (function_used_regs);
4988 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4990 HARD_REG_SET insn_used_regs;
4992 if (!NONDEBUG_INSN_P (insn))
4993 continue;
4995 if (CALL_P (insn)
4996 && !self_recursive_call_p (insn))
4998 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4999 call_used_reg_set))
5000 return;
5002 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5005 find_all_hard_reg_sets (insn, &insn_used_regs, false);
5006 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5009 /* Be conservative - mark fixed and global registers as used. */
5010 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
5012 #ifdef STACK_REGS
5013 /* Handle STACK_REGS conservatively, since the df-framework does not
5014 provide accurate information for them. */
5016 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5017 SET_HARD_REG_BIT (function_used_regs, i);
5018 #endif
5020 /* The information we have gathered is only interesting if it exposes a
5021 register from the call_used_regs that is not used in this function. */
5022 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
5023 return;
5025 node = cgraph_node::rtl_info (current_function_decl);
5026 gcc_assert (node != NULL);
5028 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
5029 node->function_used_regs_valid = 1;
5032 /* Get the declaration of the function called by INSN. */
5034 static tree
5035 get_call_fndecl (rtx_insn *insn)
5037 rtx note, datum;
5039 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
5040 if (note == NULL_RTX)
5041 return NULL_TREE;
5043 datum = XEXP (note, 0);
5044 if (datum != NULL_RTX)
5045 return SYMBOL_REF_DECL (datum);
5047 return NULL_TREE;
5050 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
5051 call targets that can be overwritten. */
5053 static struct cgraph_rtl_info *
5054 get_call_cgraph_rtl_info (rtx_insn *insn)
5056 tree fndecl;
5058 if (insn == NULL_RTX)
5059 return NULL;
5061 fndecl = get_call_fndecl (insn);
5062 if (fndecl == NULL_TREE
5063 || !decl_binds_to_current_def_p (fndecl))
5064 return NULL;
5066 return cgraph_node::rtl_info (fndecl);
5069 /* Find hard registers used by function call instruction INSN, and return them
5070 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
5072 bool
5073 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
5074 HARD_REG_SET default_set)
5076 if (flag_ipa_ra)
5078 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
5079 if (node != NULL
5080 && node->function_used_regs_valid)
5082 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
5083 AND_HARD_REG_SET (*reg_set, default_set);
5084 return true;
5088 COPY_HARD_REG_SET (*reg_set, default_set);
5089 return false;